
Evaluating the performance of the LIME and Grad-CAM

explanation methods on a LEGO multi-label image classification

task

Cian, David1, van Gemert, Jan (supervisor)2, and Lengyel, Attila (supervisor)3

1,2,3Delft University of Technology

July 15, 2020

Abstract

In this paper, we run two methods of explanation,
namely LIME and Grad-CAM, on a convolutional
neural network trained to label images with the
LEGO bricks that are visible in them. We evaluate
them on two criteria, the improvement of the net-
work’s core performance and the trust they are able
to generate for users of the system. We find that in
general, Grad-CAM seems to outperform LIME on
this specific task: it yields more detailed insight from
the point of view of core performance and 80% of
respondents asked to choose between them when it
comes to the trust they inspire in the model choose
Grad-CAM. However, we also posit that it is more
useful to employ these two methods together, as the
insights they yield are complementary.

1 Introduction

A dump of the raw data from an experiment isn’t
what you’d call a scientific article, and it certainly
wouldn’t be published in any reputable publication.
Indeed, scientific papers never directly include the
raw data, and for good reason: first, it would run for
hundreds of pages, but more importantly, it would
be virtually useless to the reader. Of course, the raw
data should be available, for reproducibility purposes,
but the article itself is instead a structured and mean-

ingful presentation of results stemming from the data.
The claims made in a paper must be both clear and
supported by the data, and the universally adopted
compromises to achieve this are tables and figures.

This is a prime example of the main ideas behind
explanations. The brain’s cognitive capabilities are
limited, and it has an easier time understanding data
in certain formats than others. In turn, understand-
ing a phenomenon, which is to say having a mental
model thereof, is a platform for further deductive rea-
soning about the phenomenon, which makes under-
standing a useful asset for a variety of tasks. In gen-
eral, we refer to any technique that affords us greater
understanding as an explanation technique. No won-
der then that, as a technology which garners a lot of
attention, while being rather complex, we desire arti-
ficial intelligence (AI) to be explained to us. Indeed,
this has given birth to a new subfield attempting to
explain not the theoretical underpinnings of AI but
the behavior of precise instances of AI systems: ex-
plainable AI (XAI).

Deep learning (DL) is a paradigm of AI which
makes use of deep artificial neural networks (ANN).
An ANN is collection of computing units inspired by
biological neurons and organized in layers, where one
layer feeds input to the next. The first layer is an
input layer, while the last layer is an output layer.
Strictly speaking, when there are one or more hidden
layers between the input and output layer, we have

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



a deep learning network. These models, which are
often referred to as machine learning (ML) instead of
AI, come with many trainable parameters. In fact,
the amount can range in the hundreds of millions. As
such, even with access to the parameters, no human
can understand the operation of the network without
further processing and aggregation of these parame-
ters into a representation that is easier to digest.

Not all explanations are created equal, and it is
important when choosing an explanation to pick the
right tool for the job. Different stakeholders have
different expectations as to a deep learning model.
Some, such as candidates being subjected to a DL-
powered hiring system, might expect it to not show
any racial or gender bias. Others, such as the mili-
tary, might expect their systems to be safe from ma-
licious actors. Depending on the explanation tech-
nique chosen, we can expect different performance
depending on the metrics we look at. Looking at
the terms in a candidate’s CV that the DL model
considers most relevant to the hiring decision is an
easy way of checking for race or gender bias. On the
other hand, this isn’t necessarily what the military
is looking for: instead, they might find data about
the model’s sensitivity to minor perturbations in the
input data, as are common in evasion attacks on DL
models, to be better.

The question we aim to answer in our paper is: how
does the performance of explanation techniques for
deep learning compare on a multi-label classification
task? Multi-label classification consists of assigning
multiple labels to an input. In our case, the precise
task is one that is painstakingly performed on a daily
basis by children all around the world, yet oddly over-
looked in research literature: namely, when looking
at a pile of LEGO bricks, figuring out if it contains
that one piece you’re missing for your precious LEGO
Star Wars AT-AT. Concretely, we want to label an
image of a pile of LEGO bricks with the names of all
the visible bricks.

There are two main benefits to applying explana-
tion techniques to LEGO brick identification in im-
ages. First, an enhanced understanding of the inner
workings of the DL model allows the developers of
the model to improve core performance, which is the
umbrella term we use to denote all metrics relating

to how well the model labels the images. Second,
it can strengthen the trust that users place in the
DL model’s results, which is crucial, as people prefer
using systems they trust. As such, we will evaluate
the performance of the models on these two criteria.
We bring the following contributions. First, we ap-
ply two state-of-the-art explanation methods for deep
learning networks to the LEGO identification task.
Second, we discuss and compare their performance
on several metrics pertaining to the two criteria of
improving core performance and improving trust.

2 Explanation theory and re-
lated work

We drew inspiration for the LEGO identification con-
text of the paper from a contraption built by Daniel
West to automatically sort LEGO bricks by type into
separate bins [1]. Previous research comparing two
explanation methods experimentally can be found
in [2], which compares sensitivity analysis (SA) and
layer-wise relevance propagation (LRP).

2.1 Explanation scope

Broadly speaking, explanation methods as they ex-
ist today belong to two categories in terms of scope:
global and local explanations [3]. Global explana-
tion methods provide information about the model
itself, irrespective of any particular input: explana-
tion methods in this category are akin to inductive
reasoning. Local explanation methods, by contrast,
examine a model’s inference process based on a spe-
cific input in order to explain its prediction: they are
akin to abductive reasoning. In [4], these methods
are said to explain respectively the data representa-
tion a network has learned and its processing during
an instance of inference.

2.2 Faithfulness and interpretability

The faithfulness of an explanation method refers to
how accurately it portrays a model’s functioning. Its
interpretability refers to how easy it is for a human
to improve his or her understanding of the model’s

2



function by using the explanation method. While
not mutually exclusive, improving faithfulness usu-
ally increases complexity, whereas improving inter-
pretability usually decreases complexity. Choosing
between faithfulness and interpretability isn’t a zero-
sum game, as certain methods do better than other
on both fronts, but this is a major trade-off. In-
deed, [5] picks up on the faithfulness-interpretability
trade-off and concludes that Grad-CAM offers both
faithfulness and interpretability. This trade-off is also
outlined in [4], where faithfulness is referred to as
completeness instead.

2.3 Evaluation metrics

As outlined in [3], metrics for the evaluation of
explanation methods can be divided into three
categories: application-grounded, human-grounded
and functionally-grounded metrics. Application-
grounded metrics measure the success of humans on
real-life tasks with intrinsic value, when aided by an
explanation technique: for instance, such a metric
could be obtained by comparing the performance ob-
tained by a deep learning network tuned by an expert
with and without access to the explanation technique.
Human-grounded metrics rely on human judgment
to evaluate methods on generally desirable criteria
rather than criteria specific to a certain task. A sim-
ple such human-grounded metric, also mentioned in
[3] is binary forced choice, where the humans partici-
pating to the evaluation of the methods are presented
with the explanations produced by two methods and
have to choose that which they consider of higher
quality. Finally, functionally-grounded metrics evalu-
ate explanation methods without any human input: a
basic metric sometime used in this category is model
sparsity when using lasso (L2) regularization, as de-
scribed in [6].

3 Method

3.1 Kernels and feature maps

Convolutional neural networks are called this way due
to their use of convolutional layers which apply con-

volutions to their input. An image can be represented
as a three dimensional tensor, where the last dimen-
sion, for instance, can represent the three channels,
namely red, green and blue for an RGB image. The
convolution is computed as the sum of the elements
of a region of the image weighted by the coefficients
of another three dimensional tensor called the convo-
lution kernel.

In conventional computer vision methods, convolu-
tion kernels such as the Prewitt or Sobel filters have
fixed weights and are designed by humans. In CNNs,
the principle behind convolution stays the same, but
the network learns the weights of the kernels through
backpropagation.

Visualizing the learned convolution kernels makes
for a rudimentary method of explanation. It is also
a perfect illustration of the faithfulness for inter-
pretability trade-off. On one hand, the method is
a very faithful one, as it displays the network’s con-
volutional layers without any loss of information: all
the weights are shown. On the other hand, it is hard
to drawn anything but basic conclusions from this ex-
planation. For instance, it is fairly easy to see when
a kernel for edge detection has been learned on the
first convolutional layer, but kernels on the first con-
volutional layer can also learn kernels tailored to the
specific input distribution, which aren’t readily inter-
pretable for humans. Visualizing kernels on deeper
layers yields almost no interpretable information, as
the convolutions on deeper layers are learned so as to
work with the learned convolutions from the previous
layer which feed into them.

Visualizing convolution kernels is the only global
explanation method we use in this paper. Moving
into the realm of local explanations using convolution
kernels is a useful complement to the purely global
method of looking strictly at the kernels themselves.
Any visualization of the output of an entire hidden
layer, such as a fully connected layer of perceptrons,
is called an activation map. In the case of a con-
volutional layer, the activation map is also called a
feature map, as convolutional networks can be con-
sidered to learn visual features of an image. Visual-
izing these feature maps for an input image provides
a workaround for the problem encountered with ker-
nel visualization, where learned kernels on a layer

3



are adapted to the learned kernels of the previous
layer, as it directly shows the response of a layer to
its input. For stacked convolutional layers, the fea-
ture maps maintain the locality of activations, which
means that the response of a deep convolutional layer
with respect to the input image can be seen. Pooling
layers lead to loss of locality due to the downsampling
of their input, but for small window sizes, such as 2
by 2, this effect is negligible.

In this paper, we visualize both convolution kernels
and feature maps in the early stages of our analysis,
due to their simplicity and faithfulness to the under-
lying model. However, these methods constitute little
more than a smoke test of the model under analysis.

3.2 Gradient-weighted class activa-
tion mapping (Grad-CAM)

Grad-CAM is an explanation technique which can be
applied to any CNN post-hoc, without requiring any
modification of the network under analysis [5]. It is
a generalization of class activation mapping (CAM)
[7], which by contrast requires a network architecture
consisting of stacked convolutional layers, followed by
global average pooling (GAP) and a softmax activa-
tion. For simplicity, we present it only in the context
of a CNN for image classification. When given an
input and a class, Grad-CAM produces a heat map
of the class activation: it color codes parts of the
input image according to how much they positively
contribute to the system labeling the image with the
provided class. In other words, it produces a class
activation map.

First, the gradient ∂yc

∂Ak of the score yc for class c
before the final soft-max layer is computed with re-
spect to the feature map activation Ak of convolution
k from the deepest convolutional layer. Then, the
backpropagated gradients are globally max-pooled
to yield the importance of the convolution for the
class, αc

k: this is called the neuron importance weight,
hence the adjective ”gradient-weighted”. Finally, a
localization map Lc is obtained by computing the
weighted sum, followed by a ReLU, to obtain only
positive contributions.

Lc = ReLU(
∑
k

αc
kA

k)

3.3 Local interpretable model-
agnostic explanations (LIME)

LIME is an explanation technique which is, as the
name suggests, model-agnostic [8]: it can be applied
mutatis mutandis to any kind of classifier. For a
given input and prediction, it generates a readily in-
terpretable model which is locally close to the real
model. Our LEGO brick labeling is a multi-label im-
age classification task, which in turn is just a series
of binary image classification tasks. For such a task,
LIME generates a linear model which takes as input
superpixels of the original image. The superpixels are
computed using the quickshift algorithm [9]. Then,
a heatmap can be overlayed over the input image,
highlighting superpixels that contribute positively to
a prediction in green and superpixels that contribute
negatively in red. The highlighted superpixels can be
selected if their contribution to the prediction is over
a certain threshold or as the top N superpixels that
contribute the most (positively or negatively).

4 Experiments

4.1 Data

The data used to train the network is made up of
819 pictures of resolution 4608 by 3072 and 817 pic-
tures of resolution 5472 by 3648. In these pictures,
between 1 and 10 LEGO bricks are visible, drawn
from a LEGO box containing 85 different types of
bricks. Lighting conditions vary: pictures can be il-
luminated by natural or artificial light. Backgrounds
also vary, ranging from plain backgrounds consisting
of only one solid color to intricate textures. In addi-
tion, synthetic data was used in preliminary stages to
explore viable network architectures. The synthetic
data was generated by running a headless Blender on
a GPU compute cluster.

4



4.2 Convolutional neural network

To label images with the visible LEGO bricks, we
use a convolutional neural network (CNN), inspired
by the architecture of AlexNet [10].

Figure 1: Network architecture. The network con-
sists of five convolutional layers and three dense lay-
ers, with three maximum pooling layers and three
batch normalization layers in the convolutional part
of the network.

We use leaky rectified linear units (leaky ReLU)
as an activation function for all hidden layers. Leaky
ReLU is a variant of the standard rectified linear units
(ReLU). The ReLU activation function is defined as
such: f(x) = max(0, x). It is a non-saturating non-
linearity. In this context, non-saturating means that
as x goes toward infinity, the activation function also
goes toward infinity (as opposed to say, the hyper-
bolic tangent activation function which squeezes the
input between −1 and 1). ReLU is prone to the ”dy-
ing problem”, where negative input will yield a null
gradient from which it is hard to recover, leading to
large parts of the network becoming useless over time.
Leaky ReLU, on the other hand, has a slope of α
for negative input, which mitigates the dying ReLU
problem. This is important for our comparison of
explanation methods because many of them, such as
Grad-CAM, make use of gradients: large swathes of
dying neurons can in some cases cause numerical in-
stability, and otherwise yield technically correct, but
unremarkable explanations consisting of almost uni-
formly zero intensity heatmaps.

During training, we use an Adam optimizer and a
custom loss function: weighted binary cross-entropy
with logits. The training dataset consists of images
where between 1 and 10 LEGO bricks are visible,
which can belong to 85 different classes of bricks.
This means that in any given image, roughly between
1.2% and 12% of the labels appear in the image an-

−5 0 5
0

2

4

−5 0 5
−2

0

2

4

Figure 2: ReLU and leaky ReLU. Leaky ReLU main-
tains a small slope for negative inputs, mitigating the
problem of dying neurons.

notation. As such, when using a regular binary cross-
entropy function, the network easily learns to output
no labels, since it is much more prone to outputting
false positives than false negatives. In order to cir-
cumvent this, our weighted binary cross-entropy with
logits is defined as follows:

W-BCE(x) = −t log(x)wpositive − (1 − t) log(1 − x)

where x is the prediction in logits for a single label,
t is the target label (1 if brick is visible, 0 otherwise),
and wpositive is the coefficient by which we weight
positive predictions to increase recall and decrease
precision (or vice-versa).

4.3 Core performance

The specific problem we focus on is to label an image
with the LEGO bricks visible in it. As a multi-label
classification task, the problem belongs to a com-
mon class of tasks. However, to the knowledge of
the author, no research except that concerning the
construction of the LEGO sorting machine has been
done into this specific instance. Furthermore, several
factors contribute to making this a fairly hard prob-
lem in the realm of multi-label classification. During
the development and training of our network, we will
analyze it using the chosen explanation methods in
order to see what information we can glean about the
model’s functioning and in some cases mitigate these
factors.

It is quite common, especially for novices lacking
extensive experience with machine learning models,

5



0

0.5

1

00.20.40.60.81

0

10

20

t

x

Figure 3: Weighted binary cross-entropy with logits.
The graph is for a positive weight of 16. Looking at
the graph for (t, x) = (1, 0), which represents a false
negative, and (t, x) = (0, 1), which represents a false
positive, the loss is much greater for false positives
than false negatives.

to miss certain less obvious aspects of a problem
which nonetheless play a major role. In the case
of LEGO multi-label classification, a plausible error
when overlooking the class imbalance caused by a
brick being much more often absent than present in
an image is to use a plain binary cross-entropy (BCE)
loss function. This causes the network to quickly con-
verge toward outputting all bricks as being always
absent from the images. Taking a quick glance at
the output of Grad-CAM, we see that none or al-
most none of the image contributes positively to the
predictions when training the network with BCE. We
note however that this could have been deduced just
as well by looking at the learned kernels or the LIME
explanation with a very low threshold.

We examine now the network after 40 epochs of
training with a weighted binary cross entropy with
logits loss function. It registers a loss of 16.251 (with
false negatives set to count 22 times as much as false
positives), and a binary accuracy of 84,71%. Looking
at the convolution filters learned by the first convo-

Figure 4: Grad-CAM output for network trained
with BCE. Except the top right corner, no part of
the image contributes positively to the prediction for
a certain brick being present with a confidence of al-
most zero (in other words, the brick is predicted as
absent with high confidence).

lutional layer, we can make several remarks. For the
first layer only, since the filters are three dimensional
tensors, we can visualize them in two dimensions as
RGB images.

Figure 5: Learned convolution kernels after 40
epochs. Only one fourth of all the learned kernels
are shown here.

As we might expect, the network learns several ker-
nels which seem to be edge detectors. This is a type
of kernel which is often encountered when engineering
features by hand in computer vision, so it is reassur-
ing to see the network make use of these kernels.

Figure 6: Edge detectors. The edge detection kernels
are not as clean as those defined by a human, but the
lines can clearly be seen for these filters.

We also see on the kernel visualizations that many
of them consist of a more or less uniform color, and
that such filters cover a wide range of colors. This
is also reassuring, as one might expect the network

6



to discriminate between bricks heavily based on their
color: indeed, while it doesn’t allow the network to
decide between two bricks of the same color but dif-
ferent shape, it is an easy criterion to learn to at least
distinguish between bricks of different colors.

For deeper convolutional layers, there is no eas-
ily interpretable visualization. We show a glimpse of
the second convolutional layer’s kernels to allow the
reader to convince himself or herself of the poor inter-
pretability of kernel visualizations for layers beyond
the first.

Figure 7: Learned kernels of the second convolutional
layer. On each line are displayed the first four chan-
nels of a kernel.

Moving on to feature maps, as computed for a spe-
cific input image, we can make a couple of observa-
tions. As we go deeper along the convolutional stack,
we see that the network focuses more on the bricks
and less on the background: in the last convolutional
layer, most feature maps activate almost exclusively
on bricks. However, it is the other way around for
a minority of convolutions, as they activate for the
background instead. Another interesting observation
is that the network distinguishes between bricks, as
can be seen from certain feature maps where one or
more bricks produce large activations as opposed to
other bricks, but it globally still has a hard time dis-
tinguishing between them, as in most activation maps
all bricks are highlighted with similar intensity. A po-
tential cause for this result is the similarity of certain
bricks, which causes a relatively untrained network
such as ours, which was only trained for 40 epochs,
to not be able to discriminate between bricks.

Visualizing kernels and feature maps can reveal in-
teresting information, but it makes for lackluster ex-

Figure 8: Activation maps. The image at the top is
the input image. Below are shown 9 activation maps
from respectively the first, third and fifth (and last)
convolutional layers.

planation. A major shortcoming is that these meth-
ods do not tell us anything about the functioning of
the dense part of the network, or any other layers for
that fact except the convolutional layers. In short,
they only tell a small, isolated part of the story be-
hind a prediction. For this reason, we turn to more
advanced, holistic methods: Grad-CAM and LIME.

The Grad-CAM explanations confirm our previous
remark that the network sometimes looks at the back-
ground instead of the bricks, sometimes has trouble
distinguishing between bricks and looks at all of them
together, and sometimes looks precisely at one brick.
This is where the class-discriminativity of Grad-CAM
comes in handy, as it clearly shows when the network
can differentiate between the bricks it sees. On the
other hand, LIME doesn’t seem to generate particu-
larly telling explanations in this case. LIME does in
general offer however two benefits compared to Grad-
CAM: it builds a linear model, from which easy to un-

7



Figure 9: Grad-CAM and LIME explanations. The
top row shows the Grad-CAM generated explanations
for six images, for the brick predicted with the most
confidence as being present. The bottom row shows
the LIME generated explanations for the same im-
ages, displaying the 40 superpixels which contribute
the most (positively) to a prediction.

derstand and concisely expressed knowledge is much
easier to extract, and it highlights superpixels, which
means it is possible to see how the network reasons
based on patches of similar pixels.

4.4 Trust

We use binary forced choice to compare the trust
in the network inspired by Grad-CAM and LIME.
We do not consider kernel visualizations and feature
maps for trust, since understanding these requires
moderate expertise in deep learning for computer vi-
sion. 10 participants must answer 10 binary forced
choice questions, where they are provided for each
with the original input image the two explanations
generated by Grad-CAM and LIME and must choose
between the two according to which method causes
them to trust the system more. The test is conducted
as a blind study, where the participants are not in-
formed of which method is which. Additionally, they
are not informed of the model’s prediction in order to
avoid the correctness of the prediction swaying their
vote. The participants must also qualify their level
of familiarity with deep learning, in order to check if
familiarity changes how trustworthy a model is per-
ceived based on the explanations.

On average, 80% of respondents find Grad-CAM
to inspire more trust, and 20% find LIME to inspire
more trust. Based on our discussion of the core per-
formance criterion, this result confirms our remark
that Grad-CAM seems more adapted for this task,
network architecture, and stage of training across

Not familiar

30%

A bit familiar

50%

Familiar

20%

Figure 10: Level of familiarity with deep learning of
survey respondents.

users of varied levels of expertise.

4.5 Reproducibility

We strive to make our experiments easy to check
and reproduce. To this end, we invite the reader to
view configuration parameters (e.g. random number
generator seeds for NumPy and TensorFlow), hyper-
parameters, model architecture, weights and perfor-
mance across runs on Weights & Biases [11]. The
Jupyter notebook used for the project, as well as sev-
eral utility scripts are publicly available on GitLab
[12]. The part of the real dataset which was used to
train the networks, consisting of about 1800 images,
is also available on a distant server from TU Delft,
on request. Additionally, for the readers interested in
generating more synthetic data or generating custom
synthetic data, the code is also available on GitLab,
on request.

5 Discussion

In this paper, we evaluated two explanation meth-
ods, Grad-CAM and LIME, as well as kernel and
feature map visualizations, on a convolutional neu-
ral network designed to label images with the LEGO
bricks they contain. We conducted this evaluation
on two criteria, namely the improvement of the core
performance of the model, as well as the trust expla-
nation methods can generate for the network under
analysis. We saw that each method has its strengths
and weaknesses, and that certain methods are more
adapted than other for this use case, and for certain
purposes: for instance, visualizing kernels is perfectly

8



fine for gleaning basic insight, but a more complex
analysis warrants the use of Grad-CAM or LIME.
The conclusion we draw from our analysis is two-
fold. First, we reiterate that one must choose the
right tool for the job: not all explanation methods
work equally well, and their performance varies de-
pending on three factors: the objectives of the ML
model (not just the core performance but also trust
in this case), the users of the explanation (scores for
trust Grad-CAM and LIME vary depending on the
level of expertise), and the ML model under analy-
sis. Second, it is wise to use multiple methods, as
it is unlikely that only one method will yield all the
insight that can be acquired.

Of course, this research was rather limited in scope
due to time constraints. Only two out of the many
existing methods of explanation were tried. Further-
more, methods of explanation belong to a wide and
varied range of categories, and although Grad-CAM
and LIME belong to two different categories, namely
salience methods and linear proxy methods, other
methods, such as activation maximization, would also
have been interesting to include. The evaluation was
conducted only qualitatively and was not formal, a
shortcoming which is as is lamented enough in the
research literature in the field of XAI.

6 Acknowledgments

The author would like to acknowledge the generous
support of this project’s two supervisors, Prof. Jan
van Gemert and Attila Lengyel, as well as the im-
portant part Berend Kam, Hiba Abderrazik, Nishad
Thakur, and Rembrandt Oltmans played in the data
collection and labeling. Finally, the author expresses
his gratitude to the Delft University of Technology
for the opportunity to pursue this research.

References

[1] Daniel West. The WORLD’S FIRST Universal
LEGO Sorting Machine.

[2] Wojciech Samek, Thomas Wiegand, and
Klaus-Robert Müller. Explainable Artifi-

cial Intelligence: Understanding, Visualiz-
ing and Interpreting Deep Learning Models.
arXiv:1708.08296 [cs, stat], August 2017. arXiv:
1708.08296.

[3] Finale Doshi-Velez and Been Kim. Towards
A Rigorous Science of Interpretable Machine
Learning. arXiv:1702.08608 [cs, stat], March
2017. arXiv: 1702.08608.

[4] Leilani H. Gilpin, David Bau, Ben Z. Yuan,
Ayesha Bajwa, Michael Specter, and Lalana Ka-
gal. Explaining Explanations: An Overview of
Interpretability of Machine Learning. In 2018
IEEE 5th International Conference on Data Sci-
ence and Advanced Analytics (DSAA), pages 80–
89, October 2018.

[5] Ramprasaath R. Selvaraju, Michael Cogswell,
Abhishek Das, Ramakrishna Vedantam, Devi
Parikh, and Dhruv Batra. Grad-CAM: Visual
Explanations from Deep Networks via Gradient-
based Localization. International Journal of
Computer Vision, 128(2):336–359, February
2020. arXiv: 1610.02391.

[6] Zachary C. Lipton. The Mythos of Model Inter-
pretability. arXiv:1606.03490 [cs, stat], March
2017. arXiv: 1606.03490.

[7] Bolei Zhou, Aditya Khosla, Agata Lapedriza,
Aude Oliva, and Antonio Torralba. Learning
Deep Features for Discriminative Localization.
arXiv:1512.04150 [cs], December 2015. arXiv:
1512.04150.

[8] Marco Tulio Ribeiro, Sameer Singh, and Car-
los Guestrin. ”Why Should I Trust You?”:
Explaining the Predictions of Any Classifier.
arXiv:1602.04938 [cs, stat], August 2016. arXiv:
1602.04938.

[9] Andrea Vedaldi and Stefano Soatto. Quick shift
and kernel methods for mode seeking. In In Eu-
ropean Conference on Computer Vision, volume
IV, pages 705–718, 2008.

9



[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E.
Hinton. ImageNet classification with deep con-
volutional neural networks. Communications of
the ACM, 60(6):84–90, May 2017.

[11] David Cian. Weights & Biases - XAI Research
Project.

[12] David Cian. GitLab - XAI Research Project.

10


