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Analytical solution of a mass-spring system containing shape memory alloys:
E�ects of nonlinearity and hysteresis

Mingzhao Zhuoa,b, Minglu Xiaa, Qingping Suna,∗

aDepartment of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong
bFaculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands

Abstract

Nonlinear dynamics of vibration systems containing NiTi shape memory alloy (SMA) bars have long been obscured

by the lack of an analytical solution, like the analytical solution for du�ng equation. The problem results from the

nonlinear and hysteretic restoring force of the SMA bar. Here we use a piecewise linear hysteretic model to describe

the force-displacement relation of the SMA bar and use the averaging method to solve the equation of motion. We

thus obtain an approximate analytical solution of the steady-state response of an SMA mass-spring system. The

analytical solution can describe both stable and unstable behaviors of the vibration system and therefore o�er a

comprehensive understanding of the nonlinear responses. It is shown that the phase transition induced softening

nonlinearity bends the frequency response curve (FRC) to the left, while the subsequent rehardening of martensite

further bends the FRC to the right, leading to multi-valued regions and jump phenomena. The hysteresis is found

to have little in�uence on the bending but it can signi�cantly suppress the response amplitude. Comparison of the

analytical results with experimental data validates the piecewise linear hysteretic model and the analytical solutions.

This work provides a theoretical tool for design and vibration control of SMA mass-spring systems.

Keywords: NiTi shape memory alloy, nonlinear vibration, piecewise linear hysteretic model, phase transition,

hysteresis, mass-spring system

1. Introduction

Due to the large recoverable deformation and damping capacity, NiTi shape memory alloys (SMAs) have been

widely used in medical surgery, smart structures, and civil and seismic engineering [1–5]. Analytical studies of

nonlinear dynamics of vibration systems containing SMA components have long been restricted by the complexity of

constitutive models of SMAs [6–8]. The complexity results from the nonlinear behavior accompanied by a hysteresis

during the forward and reverse phase transitions. Here we use a simple but e�ective constitutive model and an

analytical approach to obtain a full picture of the nonlinear responses of an SMA mass-spring system.

Motivated by industrial demands and academic interests, researchers have so far explored various vibration sys-

tems with NiTi SMA components. Based on the constitutive model from Graesser and Cozzarelli [9], Feng and Li [10]
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studied the dynamic response of a mechanical system containing an SMA bar and found that phase transition can re-

duce the resonance frequency and suppress the peak response. Savi and Machado investigated the vibration of a shape

memory two-bar truss system [11, 12] using a polynomial constitutive model and presented a general overview [13]

of nonlinear dynamics and chaos of smart material systems built with SMAs. Seelecke [14] focused on the response

of a rigid mass suspended by a thin-walled SMA tube under isothermal and non-isothermal conditions by numerical

simulations. Bernardini, Vestroni, and Lacarbonara [15, 16] numerically studied the thermomechanical responses of

a single degree of freedom system with an SMA bar as the spring element using a modi�ed thermomechanical model

from Ivshin and Pence [17]. Bernardini and Rega [18] recently proposed a comprehensive thermomechanical model-

ing framework and compared the performances of di�erent SMA models in terms of the nonlinear dynamic response

prediction. Piccirillo et al. studied the primary resonance and free response of an SMA oscillator [19] subjected to

harmonic excitation using a polynomial constitutive model and further considered the SMA oscillator [20] under the

non-ideal excitation using a thermomechanical model. Lagoudas and Machado [21–23] analyzed the nonlinear dy-

namics and chaos in a superelastic SMA oscillator using a hysteretic and rate-independent constitutive model under

isothermal and non-isothermal conditions by numerical simulation. Moumni et al. [24, 25] employed coupled ther-

momechanical Zaki-Moumni model [7] to simulate the forced oscillation of an SMA mass-spring-damper system. Xia

and Sun [26, 27] investigated the jump phenomena of thermomechanical responses in the frequency, amplitude, and

time domains for a torsional system with an NiTi wire and further explored the grain size e�ect of NiTi polycrys-

tals [28] on the stability of nonlinear dynamic responses. Jose et al. [29] examined an SMA bar as a vibration isolator

and evaluated the displacement transmissibility by numerically solving state space equations.

In the vibration systems containing NiTi SMAs, the restoring force is not only nonlinear but also hysteretic

because of the hysteresis in the stress strain curve of SMAs during phase transitions. For better utilization of SMA

vibration systems, it is important to have a comprehensive understanding of the system responses, including stable

and unstable solutions and jump phenomena, and to reveal the e�ects of nonlinearity and hysteresis (in the restoring

force) on the system responses. The numerical studies reported above can accurately simulate the dynamic responses

of the vibration systems by using accurate but complicated thermomechanical models [6–8, 17, 23, 30]. However, they

have limitations in obtaining the unstable solutions of the nonlinear systems and are not suitable for analyzing the

associated jump phenomena. Moreover, numerical studies can only present the overall responses of the system and

thus have di�culties in explicitly distinguishing the e�ects of nonlinearity and hysteresis on the vibration responses.

Likewise, experimental studies cannot capture unstable solutions and present the overall responses that are the results

of combined e�ects of nonlinearity and hysteresis. In contrast, analytical solutions can overcome these di�culties to

complement numerical and experimental studies.

In this study we present analytical solutions of a mass-spring vibration system (Fig. 1). An SMA bar is applied

in the vibration system as the spring element providing the restoring force. Due to martensite phase transitions, the

restoring force is nonlinear and hysteretic (Figs. 2 and 3); therefore, the mass-spring system is called a nonlinear and

hysteretic vibration system. To consider the nonlinearity and hysteresis, we introduce a piecewise linear hysteretic

model (Sec. 2.1) to describe the behavior of NiTi SMAs. The averaging method [31, 32] is then used (Sec. 3) to solve the
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Fig. 1. Illustration of an NiTi SMA mass-spring-damper system.

equation of motion (Sec. 2.2) of the nonlinear and hysteretic system. This analytical approach enables us to quantify

the nonlinearity and hysteresis by terms of clear physical meanings (Sec. 3.3). Based on the analytical results, we plot

frequency response curves (Sec. 4.1) and phase planes (Sec. 4.2) to demonstrate both stable and unstable solutions and

to analyze jump phenomena. Frequency response curves (FRCs) obtained are compared with FRCs by direct numerical

integration (Appendix A). Furthermore, we change model parameters (Sec. 4.3) to discuss e�ects of nonlinearity and

hysteresis (the change of nonlinearity and hysteresis can be achieved in experiments by using wires of di�erent

grain sizes [33–36]). Finally, we compare the analytical solutions with experimental results of a torsional vibration

system (Sec. 5) for the purpose of validation.

2. Nonlinear hysteretic oscillator

The mass-spring mechanical system consists of a mass attached to an NiTi SMA bar and a dashpot as shown in

Fig. 1. Here we include the rate-dependent dashpot to make our model general (consider possible viscous components

in the vibration system), but our focus is the hysteresis of the NiTi SMA bar that serves as the nonlinear spring

element. The restoring force provided by the SMA bar are described by a piecewise linear and hysteretic model in

Sec. 2.1. The oscillator is harmonically excited, and the equation of motion is established and nondimensionalized in

Sec. 2.2.

2.1. Piecewise linear and hysteretic stress-strain model

Many thermomechanical models [6–8, 17, 23, 30, 37] have been proposed to describe di�erent aspects of the

behavior of SMA materials, but they are usually complicated and need numerical methods to obtain the solutions.

To quantify the nonlinearity and hysteresis of NiTi SMAs, we use a piecewise linear hysteretic model which can be

handled by an approximate analytical method.

For an NiTi bar under uniaxial tension, the stress strain relation can be simpli�ed as a piecewise linear and

hysteretic function [38] as shown in Fig. 2. When an external load is applied, the material will �rst undergo elastic

extension in austenite phase until martensite transformation start stress σMs is reached. As the stress continues

increasing, the forward martensitic phase transition takes place and proceeds until the martensite �nish stress σMf

with generation of a large transformation strain ϵL. A further increase of stress leads to the elastic deformation of

pure martensite. During unloading, the martensite �rst deforms elastically until the reverse M→A transition start

stress σAs. The reverse phase transition proceeds and �nishes at austenite �nish stress σAf with full recovery of the

phase transformation strain. Further unloading the austenite brings the strain back to zero. The stress strain curves

3



σ

ϵ

EA

Et

EM

A

B

σMs

σMf

σAf

σAs

ϵL

Fig. 2. Stress strain relation of NiTi shape memory alloy in tension. Young’s moduli of pure austenite, pure martensite, and their mixture in phase

transitions are denoted by EA, EM, and Et, respectively. Martensites start and �nish at σMs and σMf, while austenites start and �nish at σAs and σAf.

The maximum transformation strain is denoted by ϵL. Line AB represents the linear elastic loading/unloading path of the two-phase mixture in

the case of partial phase transitions, and its slope is de�ned in Eq. (8).

during the elastic deformation of pure martensite and austenites are characterized by their modulus EM and EA,

respectively. In the forward and reverse phase transitions, the stress strain curves are also approximated to be linear

and have the same slopes Et for simplicity.

Another important issue in modeling is to determine the reloading/unloading path for partial phase transitions.

We assume that the volume fraction of martensite ξ scales linearly with the stress in the forward (from σMs to σMf)

and reverse (from σAs to σAf) phase transitions. Hence, a stress strain point (A) during the forward phase transition

corresponds uniquely to a point (B) in the reverse phase transition with the same value of martensite volume frac-

tion ξ . The straight line AB are de�ned as the linear elastic reloading/unloading path of the two-phase mixture in

the case of partial phase transitions (Fig. 2). On this path, no phase transition occurs.

2.2. Equation of motion

The equation of motion for the mechanical vibration system (Fig. 1) is given by

m
d2x

dt2
+ c

dx

dt
+ F (x) = F0 cos(ωt), (1)

where x is the displacement of mass m, c is the viscous damping coe�cient, F (x) denotes the nonlinear hysteretic

restoring force provided by the NiTi SMA bar, and F0 cos(ωt) represents the external excitation.

To nondimensionalize Eq. (1), we �rst compute sti�ness of the NiTi SMA bar in austenite phase as

ka =
EAS

L
,

where L is the length of the bar, S is the cross-sectional area of the bar. We then let

ω2
0 =

ka
m
, ζ =

c

2mω0
, Ω =

ω

ω0
, τ = ω0t, y =

x

xm

y ′ =
dy

dτ
, y ′′ =

d2y

dτ 2
, f (y) =

F (x)

kaxm
, α =

F0
kaxm

,

(2)
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where xm is the bar extension when martensite phase transition starts. Dividing both sides of Eq. (1) by kaxm, we

arrive at the nondimensionalized form:

y ′′ + 2ζy ′ + f (y) = α cos(Ωτ ).

By convention, this equation can be rewritten as

Üx + 2ζ Ûx + f (x) = α cosωt . (3)

Based on the tensile stress strain curve in Fig. 2, we derive the nondimensionalized force-displacement curve of

the SMA bar as shown in Fig. 3. The force-displacement curve includes the compressive part and is made symmetric

about the origin for simplicity although the response of an NiTi SMA bar under tension is not exactly the same as

under compression [39]. In Fig. 3, the restoring force can be explicitly expressed as follows:

f (x) =



kx + (ϵ + 1 − k)xI − ϵ, I

(ϵ + 1)x − ϵr , II

x, III

(ϵ + 1)x + ϵ, IV

kx + (ϵ + 1 − k)xV + ϵ, V

(ϵ + 1)x + ϵr , VI

x, VII

(ϵ + 1)x − ϵ, VIII

(δ + 1)(x − t), IX

(δ + 1)(x + t), X

(4)

All parameters in Eq. (4) and Fig. 3 are de�ned and explained as follows and will be used in Sec. 4 for discussions.

We de�ne ϵ (−1 ≤ ϵ ≤ 0) as

ϵ =
Et
EA
− 1, (5)

and δ (δ > ϵ) as

δ =
EM

EA
− 1. (6)

By de�nition (5) we see that ϵ characterizes the softening (Et < EA) nonlinearity during the forward phase transition;

Equation (6) indicates that δ represents the rehardening (EM > Et) nonlinearity after the full forward phase transition.

Here r is the ratio of the bar extension at the �nish of the reverse phase transition (rxm) over the bar extension at the

start of the forward phase transition (xm): it characterizes the size of the hysteresis in the vertical direction in Fig. 3;

t is associated with the maximum transformation strain ϵL (Fig. 2) and de�ned as

t =
LϵL

xm
. (7)
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Fig. 3. Piecewise linear hysteretic restoring force f (x ) of the NiTi SMA bar as de�ned in Eq. (4). The �lled gray area is the hysteresis loop area H

expressed in the second formula of Eq. (11).

The slope k of inner elastic path I and V for partial phase transitions with martensite volume fraction ξ is expressed

as

k = 1 + ϵδξ

ϵ − δ + δξ
, (8)

and the martensite volume fraction ξ is determined by

ξ =


xI − 1
λ − 1 , I
xV + 1
1 − λ , V

(9)

where xI and xV are the values of x at the time when state I and V are entered, and λ is the ratio of the bar extension

at the full forward phase transition (λxm) over the bar extension at the start of forward phase transition (xm), which

is related to t as

λ =
ϵ − (1 + δ ) t

ϵ − δ
. (10)

The hysteresis loop areaH in Fig. 3 depends on the steady-state response amplitude R and is calculated as follows:

H =


0, R ≤ 1

−ϵ (1 − r )
[
2R − 2 − ξδ (1 − r )

ϵ − δ

]
, 1 ≤ R ≤ λ

−ϵ (1 − r )
[
2λ − 2 − δ (1 − r )

ϵ − δ

]
, R ≥ λ

(11)

In the second formula (when 1 ≤ R ≤ λ), R = xI and ξ is determined by Eq. (9).

3. Approximate analytical solution

The response of an SMA vibration system generally �rst experiences a transient state and �nally reaches a steady

state [26, 27]. The steady-state response is a sinusoidal function of time with the same frequency as the excitation.
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Although it is unlikely to have an explicit analytical solution for such a nonlinear hysteretic vibration system, an

approximate analytical approach can be used to obtain the steady-state responses and reveal the roles of nonlinearity

and hysteresis.

Here the averaging method based on Ref. [31] is employed to solve Eq. (3) by assuming the following form of

solution with slowly varying amplitude R and phase angle ϕ

{
x = R cos(ωt + ϕ) = R cosθ,

Ûx = −ωR sin(ωt + ϕ) = −ωR sinθ .

(12)

(13)

This implies
ÛR cosθ − R Ûϕ sinθ = 0. (14)

Di�erentiating Eq. (13) with respect to time t and then substituting it into Eq. (3), yield

−ω ÛR sinθ − ω2R cosθ − ωR Ûϕ cosθ − 2ζωR sinθ + f (R, θ ) = α cosωt . (15)

Here considering x = R cosθ , we use f (R, θ ), instead of f (x) in Eq. (3), to denote the restoring force to explicitly

show the dependence on R and θ . Multiplying both sides of Eq. (15) by sinθ and cosθ , and then taking into account

Eq. (14), we can get 
−ω ÛR − ω2R sinθ cosθ − 2ζωRsin2θ + f (R, θ ) sinθ = α cosωt sinθ,

−ωR Ûϕ − ω2Rcos2θ − 2ζωR sinθ cosθ + f (R, θ ) cosθ = α cosωt cosθ .
(16)

Since R and ϕ are assumed to vary slowly compared to θ , Equations (16) can be averaged over one cycle of θ to give
ÛR =

S (R)

2ω −
α sinϕ
2ω − ζR,

Ûϕ =
C (R)

2Rω −
α cosϕ
2Rω −

ω

2 ,
(17)

where

S (R) =
1
π

∫ 2π

0
[f (R, θ ) sinθ ] dθ , C (R) =

1
π

∫ 2π

0
[f (R, θ ) cosθ ] dθ . (18)

Due to the piecewise linear restoring force f (R, θ ), S(R) andC(R) are continuous piecewise functions of response

amplitude R. Referring to Fig. 3 and Eq. (4), we carefully compute S(R) and C(R) in Eq. (18) and obtain the following

expressions for S(R) and C(R):

(1) when R ≤ 1,

S(R) = 0, C(R) = R. (19)
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(2) when 1 ≤ R ≤ λ,

S (R) =
2
π

[∫ θ1

0
f (R, θ ) sinθ dθ +

∫ θ2

θ1
f (R, θ ) sinθ dθ +

∫ θ3

θ2
f (R, θ ) sinθ dθ +

∫ π

θ3
f (R, θ ) sinθ dθ

]
=
ϵ (1 − r )
πR

[
2R − 2 − ξδ (1 − r )

ϵ − δ

]
,

C (R) =
2
π

[∫ θ1

0
f (R, θ ) cosθ dθ +

∫ θ2

θ1
f (R, θ ) cosθ dθ +

∫ θ3

θ2
f (R, θ ) cosθ dθ +

∫ π

θ3
f (R, θ ) cosθ dθ

]
=
ϵR

π
(π − θ1 + θ2 − θ3) +

ϵR

2π (sin 2θ1 − sin 2θ2 + sin 2θ3) + R

+
R

π
(k − 1)

(
θ1 −

sin 2θ1
2

)
,

(20)

where

cosθ1 = 1 −
(
1 + ξδ

ϵ − δ

)
1 − r
R
, cosθ2 =

r

R
, cosθ3 = −

1
R
,

k = 1 + ϵδξ

ϵ − δ + δξ
, ξ =

R − 1
λ − 1 , λ =

ϵ − (1 + δ ) t
ϵ − δ

,

and R cosθ1, R cosθ2, R cosθ3 are the values of x at the intersection points between I and II, II and III, III and IV,

respectively.

(3) when R ≥ λ,

S (R) =
ϵ (1 − r )
πR

[
2λ − 2 − δ (1 − r )

ϵ − δ

]
,

C (R) =
ϵR

2π (sin 2θ1 − sin 2θ2 + sin 2θ3 − sin 2θ4) −
ϵR

π
(θ1 − θ2 + θ3 − θ4) + R

−
δR

2π (sin 2θ1 − sin 2θ4 − 2θ1 + 2θ4) + δR,

(21)

where

cosθ1 =
[
λ −

ϵ (1 − r )
ϵ − δ

]
1
R
, cosθ2 =

r

R
, cosθ3 = −

1
R
, cosθ4 = −

λ

R
,

and R cosθ1, R cosθ2, R cosθ3, R cosθ4 are the values of x at the intersection points between IX and II, II and III, III

and IV, IV and X, respectively.

3.1. Steady-state response

In the steady state, letting ÛR = Ûϕ = 0 in Eq. (17) gives
−2ζωRs + S (Rs) = α sinϕs,

−ω2Rs +C (Rs) = α cosϕs,
(22)

where the subscript “s” denotes the steady state. From Eq. (22), FRCs of amplitude and phase can be obtained via

[S (Rs) − 2ζωRs]
2 +

[
C (Rs) − ω

2Rs
]2
= α2 (23)

and

tanϕs =
S (Rs) − 2ζωRs
C (Rs) − ω2Rs

, (24)
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where ϕs ∈ [−π , 0]. Expanding Eq. (23) gives

ω4 + aω2 + bω + c = 0, (25)

where

a =

[
4ζ 2 − 2C (Rs)

Rs

]
, b = −4ζ S (Rs)

Rs
, c =

[
S (Rs)

Rs

]2
+

[
C (Rs)

Rs

]2
−
α2

R2
s
.

Equation (25) is used to obtain the FRC, which describes the steady-state response amplitude Rs as a function

of the excitation frequency ω at a given excitation amplitude α . Speci�cally, FRCs are obtained by solving Eq. (25)

for the excitation frequency ω in terms of the response amplitude Rs, instead of calculating Rs from ω. At a given

response amplitude Rs, there are four roots ω for the quartic polynomial equation (25), but only two of them are

positive and used to plot the FRC. The formulas for roots of Eq. (25) can be found in mathematical handbooks [40]

and is not presented here for the sake of conciseness.

The last step is to determine the maximum response amplitude where only one positive root exists. The necessary

conditions for the maximum response amplitude are
ω4

c + aω
2
c + bωc + c = 0,

4ω3
c + 2aωc + b = 0,

(26)

where ωc is the critical frequency at which the maximum response amplitude occurs. After elimination of ωc, the

following expression is obtained[
2a

(
4c − a2

)
− 9b2

] [
8c

(
4c − a2

)
+ 3ab2

]
+ 2b2

(
a2 + 12c

)2
= 0, (27)

which can be solved for the maximum response amplitude.

For the special case of zero viscous damping (ζ = 0, so b = 0), the FRC expression is more concise:

ω2 =
C (Rs) ±

√
α2 − [S (Rs)]

2

Rs
. (28)

Here we can get the two positive square roots for each response amplitude Rs. Note that, in this particular case,

hysteresis of the NiTi bar still exists and is considered in S (Rs). The maximum response amplitude occurs at the

point where ω2 has a double root: α2 = [S (Rs)]
2. According to Eq. (28), we can also de�ne the backbone curve that

quanti�es the bend of FRCs as

ω =

√
C (Rs)

Rs
. (29)

3.2. Stability analysis

Actually, more than one solution exists at some excitation frequencies, but not all of them are stable. To determine

whether a solution is stable, the Jacobian matrix of Eqs. (17) at (Rs,ϕs) is �rst computed as

J =
1
2ω


dS
dR − 2ζω −α cosϕ

∂
∂R

(
C−α cosϕ

R

)
α sinϕ

R

 (Rs,ϕs)

=
1
2ω


dS
dR − 2ζω Rω2 −C

1
R

(
dC
R − ω

2
)

S
R − 2ζω

R=Rs

. (30)

9



The trace of the Jacobian matrix (30) is found to be always negative:

T =

[
1

2Rω
d (RS)

dR
− 2ζ

]
R=Rs

= −

[
1

2Rπω
dH

dR
+ 2ζ

]
R=Rs

< 0.

This is because the hysteresis loop areaH increases with R monotonically, which can be veri�ed in Fig. 3 and Eq. (11).

The determinant of Jacobian matrix (30) is

D =
1

4ω2

[(
dS
dR − 2ζω

) ( S
R − 2ζω

)
+

(
dC
dR − ω

2
) (C

R − ω
2) ]

R=Rs
(31)

=
1

8ω2Rs

[
dW (R)

dR

]
R=Rs

, (32)

where

W (R) = [S (R) − 2ζωR]2 +
[
C (R) − ω2R

]2
− α2. (33)

By the trace-determinant criterion [41], the steady-state solution will be stable if D > 0 but unstable if D < 0

when T < 0.

3.3. Physical interpretation

To understand the physical meaning of S(R) and C(R), the restoring force f (x) in Eq. (3) is approximated by

Fourier series with the primary harmonic:

f (x) = f (R cosθ ) ≈ f0 + S sinθ +C cosθ, (34)

where f0 is calculated to be zero in the current model

f0 =
1
2π

∫ 2π

0
f (R, θ ) dθ = 0

and coe�cients of the primary harmonic—S and C—have the same expressions as in Eq. (18). Expressing sinθ

and cosθ in Eq. (34) by x and Ûx according to Eqs. (12) and (13), we can reformulate the restoring force as

f (x) = −
S (R)

ωR
Ûx +

C (R)

R
x . (35)

Substituting Eq. (35) into the governing equation (3), we obtain the equivalent equation of motion

Üx +

(
2ζ − S (R)

ωR

)
Ûx +

C (R)

R
x = α cosωt . (36)

We can also arrive at the steady-state solution (22) by solving Eq. (36) with a standard method, which can be found

in textbook [42].

As Eq. (35) indicates, the hysteretic nonlinear restoring force f (x) can be approximated as the sum of a rate-

independent (because ω in the denominator cancels out the rate e�ect of Ûx ) damping term (the �rst term) and a

nonlinear force term (the second term). In the bracket of Eq. (36), the �rst term represents the rate-dependent viscous

damping of the vibration system, while the second term comes from the hysteresis of SMAs. In the steady state, the

energy dissipated per cycle by the second term is calculated to be exactly the same as the hysteresis loop area in

Eq. (11):

Wd = π

(
−
S(R)

ωR

)
ωR2 = −πRS = H , (37)
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Fig. 4. Frequency response curves (FRCs) showing a single bend in (a) and double bends in (b). The system parameters are ϵ = −1.0, ζ = 0.08,

r = 0.5, α = 0.5 for (a) and ϵ = −1.0, δ = −0.1, ζ = 0.045, r = 0.5, t = 2.0, α = 0.5 for (b). W is de�ned in Eq. (33), P1 to P5 are stable and

unstable solutions corresponding to Fig. 6. The inset diagrams show the force-displacement curves to obtain the FRCs.

where S is expressed in Eqs. (19), (20), and (21). The calculation in Eq. (37) can be found in equation (3.7.2) of

textbook [42]. This equivalence validates the average method in terms of energy dissipation. It is remarked that

the nonlinear force term is mainly determined by the nonlinearity and depends weakly on the hysteresis.

4. Results and discussions

This section shows frequency response curves (FRCs) from the approximate analytical solution and discusses the

e�ects of nonlinearity and hysteresis. Two typical FRCs are presented to show the multi-valued region and jump

phenomena, and then the analytical solution is compared with results by numerical method for a cluster of FRCs.

The phase planes clearly show the stability of analytical solutions in multi-valued regions of the FRCs. Finally, the

e�ects of nonlinearity and hysteresis are investigated by comparing FRCs at di�erent model parameters.

4.1. Frequency response curves

Figure 4 shows two typical FRCs: one has a single bend while the other has double bends. The FRC in Fig. 4a

bends to the left resulting in a multi-valued region. The bending to the left is caused by material softening due to

martensitic phase transition. In this case, the maximum deformation is in the partial phase transition region, i.e., the

maximum response amplitude does not exceed the full phase transition threshold (Rs < λ). The FRC in Fig. 4b �rst

shows a bending to the left and then a subsequent bending to the right leading to an “S" shape with two overlapped

multi-valued regions in the frequency domain. The �rst bending to the left is due to martensitic phase transition,

while the subsequent bending to the right is attributed to the elastic deformation of martensite phase after the full

phase transition.

In Fig. 4, the solid curves denote the stable solutions, which can be realized in experiments and numerical simula-

tions [24, 27]; however, those unstable solutions represented by the dashed lines can not be realized in actual responses
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Fig. 5. Frequency response curves at di�erent excitation amplitudes. The system parameters are ϵ = −1.0, δ = −0.1, ζ = 0.06, r = 0.5, t = 2.0.

no matter how the excitation frequency is exerted. To identify the unstable solutions, the determinant D (de�ned

in Eq.(32)) on the dashed line is evaluated according to the trace-determinant criterion (Sec. 3.2). Speci�cally, we

check the value of W de�ned in Eq. (33). It is obvious that W is equal to zero (W = 0) on the FRC because Eq. (23)

exactly corresponds to W = 0. Below the FRC, W < 0, and above the FRC, W > 0. Therefore, we can conclude

D ∝ ∂W /∂Rs ≈ ∆W /∆Rs < 0 on the dashed line and the solution is unstable. We also calculate the speci�c value

of D according to its de�nition (31) and further con�rm that the determinant D on the dashed line is negative.

Jump phenomena are observed in the multi-valued regions. In Fig. 4a, the response amplitude jumps up from

point 1 to 2 and then decreases as the excitation frequency increases quasi-statically (compared to the variation of

the excitation and response). With decreasing excitation frequency, the response amplitude jumps down from point 3

to 4 and then decreases. However, the double bends in Fig. 4b make the path dependence of the jump phenomena more

complex. With increasing excitation frequencies, the response amplitude jumps up from 1 to 2 and then decreases

continuously. If the frequency is reduced after point 2, the response amplitude will �rst increase and then jump up

from 3 to 4. Afterwards, the response amplitude either decreases and jumps down from 5 to 6 or increases and jumps

down from 7 to 8 depending on the variation of the excitation frequency.

Figure 5 shows a family of FRCs at di�erent excitation amplitudes. The good agreement between analytical

solutions and numerical results by Runge-Kutta method (Appendix A) suggests that the assumption of primary

resonance in the response is reasonable and that the analytical method is appropriate for the considered vibration

system. The absence of numerical results on the dashed lines further con�rms that unstable solutions can not be

realized in direct numerical simulations. The backbone curve de�ned in Eq. (29) exhibits an “S" shape that di�ers

signi�cantly from a vertical line at the natural frequency for a linear vibration system.
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Fig. 6. Phase planes showing three (a) and �ve (b) steady-state solutions. The system parameters are ϵ = −1.0, ζ = 0.08, r = 0.5, α = 0.5, ω = 0.6

for (a) and ϵ = −1.0, δ = −0.1, ζ = 0.045, r = 0.5, t = 2.0, α = 0.5, ω = 0.69 for (b).

4.2. Phase plane

In nonlinear vibration systems, initial conditions (e.g., initial position and velocity of the mass block in Fig. 1)

determine which steady-state solution is �nally realized when multi-valued responses exist [43]. The following

forward time di�erence scheme is derived from Eq. (17) to calculate trajectories starting at di�erent initial points in

the phase plane: 
Rn+1 − Rn

∆t
=

S (Rn)

2ω −
A

2ω sinϕn − ζRn,

ϕn+1 − ϕn
∆t

=
C (Rn)

2Rnω
−

A

2Rnω
cosϕn −

ω

2 .
(38)

Corresponding to the three solutions at a speci�c frequency in Fig. 4a, the phase plane in Fig. 6a shows two

stable spirals (P1 and P3) and one unstable saddle P2. All initial conditions in the red area lead to the stable spiral P3
corresponding to the steady-state solution on the upper branch in Fig. 4a, while all initial conditions in the blue area

arrive at the stable spiral P1 corresponding to the steady-state solution on the lower branch in Fig. 4a. The saddle

point P2 corresponds to the unstable solution marked on the dashed line in Fig. 4a.

The phase plane in Fig. 6b shows the �ve steady-state solutions in the overlapped multi-valued region of Fig. 4b.

Points P1, P3 and P5 are three stable spirals; P2 and P4 are two unstable saddles. They correspond to the �ve solutions

denoted by solid dots in Fig. 4b respectively. The three stable spirals have their respective domains of attraction shaded

by three di�erent colors. If the frequency is increased beyond the �ve-solution region, P1 and P2 will disappear and

the attraction domain of P1 will be merged into P3, degenerating into the three-solution case. On further increases

of the excitation frequency, P4 and P5 will also disappear leading to only one solution. Reversely, if the frequency

decreases continuously, P3 and P4 will disappear �rst and the attraction domain of P3 will turn into that of P5. Finally,

P2 and P5 will also vanish with only one steady-state solution remaining.
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Fig. 7. E�ects of nonlinearity on frequency response curves in the softening (a) and rehardening (b) region. The system parameters are ζ = 0.08,

r = 1.0, α = 0.5 for (a) and ϵ = −1.0, ζ = 0.06, r = 0.5, λ = 3.0, α = 0.7 for (b).

4.3. E�ects of nonlinearity and hysteresis

The softening nonlinearity is characterized by ϵ (ranging from −1 to 0) in Eq. (5). When ϵ = 0 there is no phase

transition and therefore no nonlinearity; when ϵ = −1 the phase transition occurs on the stress plateau and the

softening nonlinearity is maximum in our model. As ϵ decreases from 0 to −1, modulus Et decreases from EA to 0

and the softening nonlinearity increases. In Fig. 7a, the FRC gradually bends to the left with the increase of softening

nonlinearity, and the reduction of Et also results in the increase of the maximum response amplitude. Here to focus on

the e�ect of softening nonlinearity, the transformation strain ϵL (or λ in Eq. (10)) is set to be large enough to ensure

all the responses are within the phase transition region and the hysteresis is removed by letting r = 1 according

to Eq. (11). Therefore, bending of the FRC to the left and the increased maximum amplitude are solely caused by

softening of modulus Et.

The rehardening nonlinearity after the full martensite phase transition is characterized by δ (δ > ϵ) in Eq. (6).

Figure 7b shows that, when the deformation enters the rehardening region, the FRC bends to the right and the bending

increases with the hardening (δ = −0.2 to δ = 0.2) for a given softening nonlinearity ϵ = −1.0. Furthermore, for a

given ϵ the larger the rehardening nonlinearity δ , the smaller the maximum response amplitude, which indicates the

suppressing of response amplitude by the rehardening nonlinearity.

We now examine the e�ect of hysteresisH that depends on two parameters—r and ϵ . From Eq. (11), the hysteresis

loop area H increases as r decreases from 1 to 0 at a �xed value of ϵ (< 0). Figure 8a shows the FRCs in the phase

transition region (no rehardening) at di�erent values of r , while Fig. 8b shows the FRCs with the rehardening nonlin-

earity beyond the full martensite phase transition. It is seen that the response amplitudes in both cases decrease with

the increase of hysteresis. Therefore, the e�ect of hysteresis is mainly to suppress the vibration response amplitude

without a�ecting the bend of FRCs. It is remarked that the hysteresis H discussed above is solely from SMAs and

here we do not consider the e�ect of viscous damping by using a �xed coe�cient ζ .

14



0 1 2
0

3

6

Excitation frequency ω

Re
sp

on
se

am
pl

itu
de

R
s

r = 0.2
r = 0.4
r = 0.6
r = 0.8

x

f (x)
(a)

0 0.75 1.5
0

3.5

7

Excitation frequency ω

r = 0.2
r = 0.4
r = 0.6
r = 0.8

x

f (x)
(b)

Fig. 8. E�ect of hysteresis on frequency response curves by varying r at a �xed ϵ . The system parameters are ϵ = −1.0, ζ = 0.08, α = 0.5 for (a)

and ϵ = −1.0, ζ = 0.06, δ = −0.1, t = 2.0, α = 0.7 for (b).

Now we change the hysteresis by varying ϵ at a �xed value of r . The hysteresis H (Eq. (11)) increases as ϵ

decreases from 0 to −1 at a �xed value of r (< 1). In contrast to the increasing response amplitude in Fig. 7a, the

maximum response amplitude decreases with decreasing ϵ (increasing softening nonlinearity) as shown in Fig. 9.

This indicates that the suppressing e�ect of hysteresis on the response amplitude can even outweigh the enhancing

e�ect of softening nonlinearity. However, the bending of FRCs in Fig. 9 has the same trend as in Fig. 7a, con�rming

that the bend of FRC is mainly determined by the nonlinearity but almost independent of the hysteresis.

5. Comparison with experimental data

To validate our model and analytical solutions, we simulate the experiments in Refs. [27, 28] where a SMA tor-

sional vibration system was built and the vibration responses were measured. The SMA wires used are of di�erent

grain sizes (in average) and their torsional behaviors are consequently di�erent (Fig. 6a in Ref. [28]); di�erent tor-

sional behaviors impact the responses of the vibration system (Fig. 7 in Ref. [28]). The torsional behavior can be

described by the piecewise linear hysteretic model, and therefore the analytical method can be used to predict the

vibration responses.

In the experimental setup, excitation was not directly applied to the mass block but to the SMA bar (see Fig. 3

of Ref. [27] and Fig. 1 of Ref. [28]). After manipulating the equilibrium equation we obtain the following equivalent

equation of motion (similar to Eq. (1) in Ref. [27]):

J Üγ + c Ûγ +Ms(γ ) = (2π f )2AJ sin(2π f t), (39)

where γ is the rotation angle of the NiTi SMA wire, J is the rotational moment of inertia, c is the viscous damping

coe�cient, Ms is the restoring torque by the NiTi SMA wire, and (2π f )2AJ sin(2π f t) is the equivalent external

excitation. The torsional vibration system does not contain any viscous damping component; therefore, we only
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consider the hysteresis (included in Ms) between forward and reverse phase transitions and set the viscous damping

coe�cient to be zero (i.e., c = 0).

To make the force term Ms more clear, we explicitly express its torsional part (the inverse torsional part is sym-

metric, referring to Eq. (4) and Fig. 3) as

Ms =



kaγ + (kt − ka)(xI − γm), I

ktγ + (ka − kt)rγm, II

kaγ , VII

ktγ + (ka − kt)γm, VIII.

(40)

In these expressions, the restoring torque Ms is not nondimensionalized and only takes the transformation softening

stage into account. The subsequent rehardening part is disregarded because the maximum rotation in experiments

are within the softening region as shown in Figs. 10 and 12. The four parameters to be determined here are sti�ness

of austenite ka, sti�ness of the phase transition kt, the wire rotation γm when martensite phase transition starts, and r

that characterizes the size of hysteresis (Fig. 3).

The piecewise linear hysteretic model is �rst adjusted to �t the torque-rotation angle curve of the SMA wire to

obtain the four material parameters (ka, kt, γm, r ) forMs in Eq. (40), and the equation of motion (39) is then solved with

the method in Sec. 3. The rotational moment of inertia J of the mass block and excitation amplitudeA and frequency f

can be found in Refs [27, 28]. In plots of FRCs (Fig. 11 and 13), the steady-state response amplitude (on the y axis) by

our analytical method is doubled because experiments measured the steady-state peak-to-valley magnitude which is

twice the response amplitude as we de�ne in Eq. (12).

Figures 10 and 11 show the experimental data from Figs. 4 and 6 of Ref. [27], respectively, and the results of

our analytical approach. It is demonstrated in Fig. 10 that the piecewise linear hysteretic model can well describe the

torque-rotation angle response of the SMA wire. Figure 11 shows analytical and experimental FRCs at four excitation
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Fig. 10. Torque-rotation angle relation of the NiTi wire. Experimental data are from Ref. [27].

amplitudes A = 3◦, 6◦, 9◦, 12◦. The rotational moment of inertia is J = 0.032 kgm2. For each excitation amplitude,

independent experiments are performed at discrete frequencies in the ascending order (from 0.4 Hz up to 0.7 Hz

at an interval of 0.005 Hz) and descending order (from 0.7 Hz down to 0.4 Hz at 0.005 Hz interval). The analytical

FRCs show the frequency span from 0.4 to 0.8 Hz. As we can see, the experimental data points are basically located

around the analytical FRCs and the analytical solutions are able to capture the trend of FRC bending due to material

softening. In the left lower part of the FRCs, the response amplitude is small and the SMA wire behaves linearly;

the analytical solution here is actually that of a linear vibration system. The right upper part with larger response

amplitude has already entered the softening part of the SMA torsional wire.

Figs. 12 and 13 show experimental data in Ref. [28] for torsional behaviors and FRCs of SMA wires of di�erent

grain sizes. In experiments for all grain sizes, the excitation amplitude was �xed at A = 5◦ and the excitation

frequency f varied in the range of 0.4 and 0.8 Hz according to the ascending and descending order with an interval

of 0.01 Hz. The system has a rotational moment of inertia of J = 0.01875 kgm2. At the small grain size of 10 nm, the

torque-rotation angle relation is almost linear with a quite small hysteresis; the response is therefore similar to that

of a linear vibration system: the FRC shows a peak without bending. As the grain size increases, the torque-rotation

angle curve shows a more and more clear softening part with increased hysteresis, and correspondingly the FRC

bends more and more to the left. As we can see, the piecewise linear hysteretic model can capture the variation of

the sti�ness and hysteresis of the torque-rotation angle relations (Fig. 12), and the analytical solutions can basically

predict the FRCs (Fig. 13). The model and analytical solution can thus be further used to study grain size e�ect on

responses of SMA vibration systems.

It is remarked that the experimental data points only cover part of the FRCs in Figs. 11 and 13: the multi-valued

region is not clearly observed in experimental FRCs. In this sense, the analytical method is important for us to quickly

detect all the stable and unstable solutions and show a full picture of the solution, which can in turn provide practical

guidelines for experimental design of SMA vibration systems.
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6. Conclusions

A piecewise linear hysteretic model is used to describe the constitutive behavior of an SMA bar, and this simple

but e�ective model enables us to examine an SMA mass-spring system using an approximate analytical method.

The analytical method captures all the stable and unstable solutions and analyzes the jump phenomena, which can

facilitate the understanding of experimental and numerical simulation results. We show that the nonlinear hysteretic

restoring force of an SMA bar can be decomposed into a nonlinear force term and a hysteresis term (Eq. (35)). The

e�ects of nonlinearity and hysteresis on FRCs are revealed by the parametric study: softening nonlinearity by the

phase transition bends the FRC to the left, while subsequent rehardening of martensite bends it to the right, leading

to an S-shaped FRC; hysteresis can signi�cantly suppress the vibration by energy dissipation, but almost does not

a�ect the bend of FRCs.

The piecewise linear hysteretic model and proposed analytical method are validated by comparison with experi-

mental results of a torsional vibration system. Our analytical solutions can provide guidelines for design of vibration

systems to achieve desired performance. The model and analytical method also apply to mechanical systems con-

taining nanostructured NiTi SMAs to study the grain size e�ect on vibration responses.
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Appendix A. Numerical integration

To compare with the analytical solution, we also develop direct numerical integration procedures. Equation (3) is

a second order ordinary di�erential equation, and it can be readily solved in each state by an explicit �nite di�erence

technique such as the fourth order Runge-Kutta method that is used in our computation (Fig. 5). The major di�culty

lies in the transition between those di�erent states. According to the de�nition of each state in Eq. (4) and Fig. 3, the

rules for all state transitions are given in Table A.1, and the key point is to check whether a state transition occurs at

each time step based on these rules.

In the numerical calculation, one more issue to be addressed is to describe the reloading paths in the cases of

partial reverse phase transitions; hence, two more states (Fig. 3) are added:

f (x) =


kx + (ϵ + 1 − k)xRI − ϵr , RI

kx + (ϵ + 1 − k)xRV + ϵr , RV

where the slope of the inner path is determined by

k = 1 + ϵδξ

ϵ − δ + δξ
,
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Table A.1. Rules for state transitions.

Transition Conditions Transition Conditions

IX→ II x = λ − ϵ (1−r )
ϵ−δ , Ûx < 0 II→ RI x > r , Ûx = 0

RI→ VIII x = xRI + (1 − r )
(
1 + ξ δ

ϵ−δ

)
, Ûx > 0 RI→ II x = xRI, Ûx < 0

II→ III x = r , Ûx < 0 III→ IV x = −1, Ûx < 0

V→ VI x = xV + (1 − r )
(
1 + ξ δ

ϵ−δ

)
, Ûx > 0 IV→ V x > −λ, Ûx = 0

V→ IV x = xV, Ûx < 0 IV→ X x = −λ, Ûx < 0

X→ VI x = −λ + ϵ (1−r )
ϵ−δ , Ûx > 0 VI→ RV x < −r , Ûx = 0

RV→ IV x = xRV − (1 − r )
(
1 + ξ δ

ϵ−δ

)
, Ûx < 0 VI→ VII (III) x = −r , Ûx > 0

RV→ VI x = xRV, Ûx > 0 VII (III)→ VIII x = 1, Ûx > 0

VIII→ I x < λ, Ûx = 0 I→ VIII x = xI, Ûx > 0

I→ II x = xI − (1 − r )
(
1 + ξ δ

ϵ−δ

)
, Ûx < 0 VIII→ IX x = λ, Ûx > 0

and the martensite volume fraction is computed by

ξ =


(ϵ − δ ) (xRI − r )

ϵ (λ − 1) − δ (λ − r ) , RI

−
(ϵ − δ ) (xRV + r )

ϵ (λ − 1) − δ (λ − r ) , RV,

where xRI and xRV are the values of x at the time when state RI and RV are entered.
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