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H I G H L I G H T S    

• Integrated steady-state load flow model for general multi-carrier energy system.  

• Multi-carrier network description based on graph-theory.  

• Coupling node allows for bidirectional flow.  

• Coupling node able to represent a variety of coupling components.  

• Insight into existence and uniqueness of a solution to integrated load flow problems.  

A R T I C L E  I N F O   
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A B S T R A C T   

Coupling single-carrier networks into multi-carrier energy systems (MESs) has recently become more important. 
Conventional load flow models for the separate single-carrier networks are not able to capture the full extend of 
the coupling. Recently, different models for multi-carrier energy networks have been proposed, either using the 
energy hub (EH) concept, or using a case specific approach. Although the EH concept can be applied to a general 
MES, it is unclear how the EH should be represented in the graph of the MES. On the other hand, the case specific 
approaches are not easily applicable to general MESs. This paper presents a graph-based framework for steady- 
state load flow analysis of general MESs. Furthermore, the effect of coupling on the resulting integrated system of 
equations is investigated. The proposed framework is validated using a small MES. This example shows that our 
framework is applicable to a general MES, and that it generalizes both the EH concept and the case specific 
approach.   

1. Introduction 

Multi-carrier energy systems (MESs) have recently become more 
important, as the need for efficient, reliable, and low carbon energy 
systems increases. In MESs, different energy carriers, such as electricity 
and heat, interact with each other, leading to one integrated system. 
Hence, MESs are sometimes called integrated energy systems. These 
energy systems have higher performance than classical single-carrier 
(SC) energy systems due to increased flexibility, reliability, use of re-
newables and distributed generation, and reduced carbon emission. An 
overview of MESs is given in [1]. 

An important tool for the design and operation of energy systems is 
steady-state load flow analysis, where the (different) time scales of the 

different systems play no role. For load flow analysis, energy systems 
are mathematically abstracted to a graph or network. Load flow models 
for single-carrier networks (SCNs) have been widely studied, but load 
flow models for multi-carrier networks (MCNs) have only been pro-
posed recently. Two types of models can be distinguished. The first uses 
the energy hub (EH) concept, the other a case specific approach. 

The energy hub (EH) concept was first introduced in [2], and 
models a coupling between different energy carriers by relating the 
input and output energy of the EH through a coupling matrix. Uni-
directional flow from input to output is assumed, such that the coupling 
matrix is constant or a function of the input power only. Within the EH, 
transmission of the energy of each carrier is not taken into account. In  
[3,4], the EH concept is extended to allow for bidirectional flow, based 
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Nomenclature 

Abbreviations 

GHV gross heating value. 
AC alternating current. 
BC boundary condition. 
CHP combined heat and power plant. 
EH energy hub. 
GB gas boiler. 
GG gas-fired generator. 
MCN multi-carrier network. 
MES multi-carrier energy system. 
NR the Newton-Raphson method. 
SC single-carrier. 
SCN single-carrier network. 

Roman symbols 

a Parameter for a gas-fired generator, taking into account 
the valve-point effect. 

b Parameter for a gas-fired gener ator, taking into account 
the valve-point effect. 

b Susceptance, the imaginary part of y
C Pipe constant. 
Cp Specific heat of water. 
c Parameter for a gas-fired gener ator, taking into account 

the valve-point effect. 
D Scaling matrix. 
D Diameter of a pipe or line. 
d Parameter for a gas-fired gener ator, taking into account 

the valve-point effect. 
Set of links or edges. 

E Energy. 
e Link or edge. 
e Error of the Newton-Raphson method. 
e Parameter for a gas-fired genera tor, taking into account 

the valve-point effect. 
F System of (nonlinear) load flow equations. 
f Fanning friction factor of a pipe. 

Graph. 
g Conductance, the real part of y.
g Gravitational constant. 
h Head. 
I Current. 

Imaginary unit. 
J Jacobian matrix. 
L Length of a pipe or line. 
m Water mass flow rate. 

Network. 
P Active power, the real part of S
p Pressure.  

Reactive power, the imaginary part of S. 
q Gas flow rate. 
r Compressor ratio. 
r Resistance, the real part of z.
Rair Specific gas constant of air. 
Re Reynolds number. 
S Complex power, given by +P Q
S Specific gravity. 
T Temperature. 

Set of terminal links. 
t Terminal link. 

Set of nodes or vertices. 
V Voltage amplitude. 

V Voltage, with angle and amplitude V .
v Node or vertex. 
x Reactance, the imaginary part of z . 
x Vector of variables. 
y Admittance, given by +g b.
Z Compressibility factor. 
z Impedance, given by +r x.

Greek symbols 

Difference. 
Voltage angle. 
Relative roughness of a pipe. 
Efficiency. 
Heat transfer coefficient. 

µ Kinematic viscosity. 
Dispatch factor. 
Heat power. 
Density. 

Superscripts 

a Ambient. 
c Coupling. 

T Temperature difference. 
e Electricity. 
end End of a link, directly next to the node. 
g Gas. 
h Heat. 
I Kirchhoff’s current law. 
k Iteration of the Newton-Raphson method. 
L Link or link equation. 
m Conservation of mass (in the heat network). 
min Minimum produced. 
o Outflow; directly after a heat exchanger. 
P Conservation of energy, specifically of active power. 

Thermal link equation.  
Conservation of energy, specifically of reactive power. 

q Conservation of mass (in gas network). 
r Return line. 
S Conservation of energy. 
s Supply line. 
start Beginning of a link, directly next to the node. 
T Mixing-rule. 
TL Terminal link. 

Subscripts 

a Actual value. 
b Base value. 
CHP combined heat and power plant. 
F Function. 
GB gas boiler. 
GG gas-fired generator. 
i Node index. 
in Flow coming into a node, with respect to actual direction of 

flow 
j Node index. 
k Link index. 
l Terminal link index. 
n Index of matrix or vector. 
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on graph and network theory. They provide detailed graph re-
presentations of energy flows within an EH. However, the connection of 
the EH to the rest of the network is not described, such that load flow 
analysis for the entire network is not possible. In [5], the EH concept is 
extended by explicitly modeling the connection between the EH and the 
rest of the network. All local energy generation is included in the EH. 
Although their extension provides a load flow model for the entire MES, 
they assume the output power of the EH to be a linear function of the 
input power. Moreover, the EH is not described as a node or link, such 
that the graph representation of the EH is unclear. 

The second type of load flow models for MESs combines the existing 
equations for the SCNs and models for the coupling units into one 
system of equations. This allows for load flow analysis of the full MES, 
and for a more detailed model of the coupling units. This approach is 
used in [6,7] to model a combined electricity and gas network, in [8,9] 
to model a combined electricity and heat network, and in [10–12] to 
model a combined electricity, gas, and heat network. However, they do 
not specify how to integrate the single-carrier models using a general 
coupling component, making it difficult to use this approach for a 
general MES. 

The load flow models for MES encountered so far do not state how 
the graphs of SCNs can be combined into one MCN. A good description 
of integrated networks of multiple energy carriers is very important. 
Some couplings between energy systems, while possible in practice, can 
lead to model problems. In this paper, we provide a systematic analysis 
of the SCNs to determine how energy systems of different carriers can 
be combined into one MCN. 

Furthermore, the available load flow models for MES do not con-
sider the effect of coupling on the load flow models. Usually, a coupling 
model introduces more unknowns than equations. Additional equations 
or boundary conditions (BCs) are needed for the total system to be 
solvable. In the models encountered so far, some or all of the energy 
flows to or from the couplings are assumed known as additional BCs. 
However, this effectively decouples the integrated load flow model of 
the MES into the separate single-carrier parts, such that the flexibility 
provided by coupling the energy systems into one MES is not fully 
modeled. To obtain a truly integrated model description of a MES, the 
additional BCs must be imposed elsewhere in the MCN. Not all com-
binations of load flow equations and BCs for such integrated energy 
systems (consisting of gas, electricity, and heat) lead to well-posed 
problems. For good solvability of the integrated load flow problem, the 
BCs used are of primary importance. In this work we give a thorough 
mathematical analysis of the required BCs. 

Based on the systematic analysis of the SCNs and on the thorough 
analysis of the BCs, we propose a new graph-based model framework 
for steady-state load flow problems of general MESs. A comprehensive 
definition of a single-carrier energy system as a SCN, with corre-
sponding load flow models for the network elements, allows for a sys-
tematic analysis of coupling SCNs into MCN. Similarities of the different 
carriers are exploited to define a network representation of a general 
energy system. We introduce a coupling node to couple the the various 
energy systems. Load flow equations are associated with the various 
network elements, including the coupling node. Collecting all the 
equations gives the integrated system of equations for steady-state load 
flow of a MES. This new framework makes it possible to describe in-
tegrated energy systems in a very efficient way. 

The proposed framework includes and extends the currently avail-
able load flow models for MES. It provides guidelines for combining SC 
gas, electricity, and heat networks into one MCN, such that the resulting 
integrated system of load flow equations is (uniquely) solvable. Our 

coupling nodes are very general. Therefore, it is possible to represent a 
large variety of coupling components, and to use various models for 
(the same) coupling components, both linear and nonlinear. The cou-
pling nodes in this paper are able to describe bidirectional flow in a 
correct way. The framework can be used for MES including other car-
riers than gas, electricity, or heat. 

In short, our main contributions are: (i) the generic, uniform re-
presentation of energy transportation networks, (ii) the use of coupling 
nodes to couple energy networks, allowing for easy integration of 
various single-carrier networks into MCNs, and (iii) insight into ex-
istence and uniqueness of solutions of integrated load flow problems. 

In Section 2, we present our comprehensive graph representation of 
MESs consisting of gas, electricity and heat. The load flow models and 
coupling models for the various network elements are described in 
Section 3. We propose an integrated steady-state load flow model for 
MESs in Section 4. In this section, the need for additional BCs, and the 
effect on the integrated system of load flow equations is described. In 
Section 5, an example MES is used for validation, and to provide insight 
into solvability issues due the coupling of the SCNs into one MCN. 

2. Graph representation 

Energy systems have their own terminology based on the energy 
carrier. For instance, a basic power grid is an electrical network con-
sisting of power lines connected by buses, whereas a basic gas network 
consists of pipes connected at junctions. Mathematically, all energy 
systems are represented by a graph or network. 

2.1. Terms and definitions 

A graph is a pair ( , ), where is a set of nodes or vertices vi
and is a set of links or edges ek. A link is a set of two nodes, =e v v{ , }k i j , 
or an ordered pair of nodes, =e v v( , )k i j . If all links in are ordered, the 
graph is directed, if none of the links are ordered, the graph is un-
directed. A network is a graph, directed or not, with an associated 
physical model. An energy transportation network, or flow network, is a 
network where the associated model is a representation of an energy 
transportation system, in which energy is transported along the links. 

Flow enters or leaves the network through sources and sinks, which 
are both called loads or terminal nodes. In the graph, these terminal 
nodes are a subset of . Inflow and outflow can be represented by 
values associated with the terminal nodes, but it is convenient to see 
inflow and outflow of a terminal node as flow through an open link 
connected to that node. These open links, connected to a single node 
only, are called terminal links. By definition, a terminal link can only be 
connected to a terminal node. Conversely, a node without a terminal 
link connected to it is not a terminal node. The direction of a terminal 
link is defined as outgoing, such that the terminal node acts as a source 
if the flow is opposite in direction to the terminal link, and acts as a sink 
if the flow is in the same direction as the terminal link. We add the 
terminal links explicitly to the network representation. 

Let be the set of terminal links. Then a flow network is re-
presented by the collection = ={ , , } { , }. Hence, is di-
rected if is directed, and undirected if is undirected. 

For notational simplicity, i is used as the node index (vi), k as the 
link index (ek), and l as the terminal link index (tl). 

2.2. Single-carrier energy systems 

A gas network is represented by a directed graph. A node represents 

n At standard conditions. 
out Flow going out of a node, with respect to actual direction 

of flow. 

p.u. Per unit value. 
x Variable.   
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a junction, sink, or source, where a junction is modeled as a terminal 
node with zero in- or outflow. A pipe or a compressor is represented by 
a link. A balanced alternating current (AC) power grid is represented by 
an undirected graph. A node represents a bus, sink, or source. A 
transmission line or a transformer is represented by a link. The physical 
pipeline model of a heat pipeline system consists of a supply line and 
return line, connected to each other through the (heat) loads. Heat is 
injected into or extracted from the water in the network through heat 
exchangers (see e.g. [13]). A circulation pump is usually located at the 
source of the heating system. Hence, the hydraulic part of the heat 
network is a closed system. Fig. 1a gives a model representation of a 
source connected to a sink by a single pipe. We assume that the water 
flow in the return line is opposite in direction, but equal in size, to the 
water flow in the supply line [14]. The return line is not modeled ex-
plicitly, and the hydraulic part of the system is no longer closed. A heat 
pipeline system is then represented as a directed graph. A node re-
presents a junction, sink, or source. A pipe in the supply line is re-
presented by a link. A terminal link represents a heat exchanger and a 
connection between supply and return line. We assume that a node can 
have only sink or only source terminal links connected to it, such that 
we can call the node a sink or a source respectively. Fig. 1b gives the 
network representation of a source connected to a sink by a single pipe. 

Variables are associated with nodes, links, and terminal links. For 
basic steady-state load flow analysis, these variables, and the network 
elements they are associated with, are shown in Table 1. Variables as-
sociated with terminal links are seen as nodal variables. To distinguish 
between (terminal) link and nodal variables, the nodal variables are 
called injected. If a node has more than one terminal link connected to 
it, the injected flow or power is the sum of all the flows or powers on the 
terminal links. For the load flow equations, some nodal and links 
variables are associated with the beginning or end of a link, directly 
next to a node. For a link from node i to node j, they are denoted by 
[·]ij

start and [·]ij
end respectively. See for example the supply and return line 

temperatures of the heat network in Fig. 1b. For pipe models, it typi-
cally holds that =q qij ji, with gas flow q, or =m mij ji, with water 
flow m, whereas for most electrical line models I Iij ji, with com-
plex current I . 

2.3. Coupling of energy systems 

Two nodes can be connected in three ways: connect the two nodes 
by a link, merge the two nodes into one node, or introduce an addi-
tional node and connect the nodes to it. A link is a network component 
with two flow connections, making it difficult to use as a representation 
of a coupling involving more than two carriers, such as a combined heat 
and power plant (CHP). Moreover, a physical interpretation of a cou-
pling link is not straightforward. Coupling by merging two nodes is 
complicated by the nodal variables. Suppose we want to merge two 
electrical nodes, each with a voltage magnitude V and voltage angle , 
into one new electrical node. Some combined V and must then be 
defined for this new node, or a node with multiple voltages must be 
allowed. Coupling two nodes of a different carrier by merging in-
troduces similar difficulties. Therefore, we couple networks by in-
troducing an additional node, called a coupling node. 

No variables are associated with the coupling node, meaning that it 
does not belong to any of the SCNs. If the coupling node is used to 
couple networks with the same carrier, the coupling node is called 
homogeneous. Similarly, it is called heterogeneous when used to couple 
networks with different carriers. Nodes and links of an SCN are called 
homogeneous. A network is then called heterogeneous if it has one or 
more heterogeneous nodes, and homogeneous if it consists of only 
homogeneous nodes and links. A heterogeneous coupling node can be 
connected to a (terminal) link of any carrier. However, no variables are 
associated with the coupling node, so that links representing certain 
physical components cannot be connected. For instance, a link re-
presenting a gas pipe cannot be connected, since the flow model 

associated with the link requires both start and end node to have a 
nodal pressure p. We couple a (heterogeneous) coupling node to any 
other node by a dummy link. These links do not represent any physical 
component, they merely show a connection between nodes. If the 
dummy link connects a coupling node and a SC node, the dummy link is 
considered homogeneous and of the same carrier as the SC node. As 
such, it has the same variables associated with it as any other link of 
that carrier. Fig. 2 shows the network representation of a heterogeneous 
coupling node connecting a gas network, electrical network, and heat 
network. The arrows on the (terminal) links show defined directions, 
not actual directions of flow. Hence, the coupling node concept allows 
for bidirectional flow. 

3. Load flow models 

Conservation of energy holds for all the SC nodes. All SC links re-
presenting a physical component have a link equation, which relates 
link and nodal variables, determined by the physical component. The 
general equations per carrier and network element are given as follows. 

3.1. Gas 

For steady-state load flow, a basic gas network can be completely 
described by conservation of mass and the link equations [15]. In every 
node vi

g, conservation of mass holds: 

=f q q 0i
q

j j i
ij i

, (1) 

with qi the injected flow, and qij the link flow. For every link ek
g

from node vi
g to node vj

g, the general link equation is given 
by: 

=( )f q p p, , 0k
g

ij i
g

j
g

(2) 

with pi
g the nodal pressure. For gas pipes, the link equations are gen-

erally nonlinear in the pressures. 

3.2. Electricity 

Using an AC steady-state approximation, a power grid is completely 

Fig. 1. Model (a) and network (b) representation of a heating system consisting 
of a source i connected with a single pipe to a sink j. Variables are shown next 
to the element they are associated with (see Table 1). Terminal links are defined 
as outgoing. 
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described by Kirchhoff’s current law, link equations, and the complex 
power equation [16]. In every node vi

e, Kirchhoff’s current law 
holds: 

=f I I 0i
I

j j i
ij i

, (3) 

with Ii the injected current, and Iij the link current. For every link 
ek

e from node vi
e to node vj

e, the general link equation is 
given by: 

=f I V V( , , ) 0k
e

ij i j (4) 

with Vi the nodal voltage. Finally, in every node vi
e, the complex 

power equation holds: 

=f S V I( ) 0i
S

i i i (5) 

with Si the injected complex power, and where [·] denotes the complex 
conjugate. 

3.3. Heat 

The load flow model for a heat network consists of a hydraulic and a 
thermal part. Using a steady-state approximation, the hydraulic part is 
similar to the model for a gas network, such that conservation of mass 
holds in every node vi

h, and a link (flow) equation holds for every 
link ek

h from node vi
h to node vj

h. The thermal part is 
completely described by conservation of energy, a thermal link equa-
tion, and the heat power equation. In every node vi

h, conservation 
of mass holds: 

=f m m 0i
m

j j i
ij i

, (6) 

with mi the injected mass flow, and mij the link mass flow. For every 
link ek

h from node vi
h to node vj

h, the general hydraulic 
link equation is given by: 

=( )f m p p, , 0k
h

ij i
h

j
h

(7) 

with pi
h the nodal pressure. For heat pipes, the link equations are 

generally nonlinear in the mass flow. The general thermal link equa-
tions are given by: 

=

=

f T T m

f T T m
( , , ) 0

( , , ) 0
k
s

k
s

k
s

k

k
r

k
r

k
r

k

, ,start ,end

, ,start ,end
(8) 

with T s the supply line temperature, and Tr the return line temperature. 
The ‘start’ and ‘end’ of the link are defined with respect to actual di-
rection of flow instead of defined direction of the link. In every node 
vi

h, conservation of energy holds. Assuming a constant specific 
heat Cp of the water, and only taking convection within the water into 
account, it reduces to a mixing-rule: 

=

=

f m T m T

f m T m T

( ) ( ) 0

( ) ( ) 0
i
T s

i
s s s

i
T r

i
r r r

out in in

out in in

s

r
(9) 

where mout denotes the sum of all outgoing flows of node vi. Note that 
=m mr s

in out and =m mr s
out in. A heat source or sink, represented 

by a terminal link tl connected to node vi, has a heat power equation 
given by: 

=f C m T 0i l p i l i l i l, , , , (10) 

with a temperature difference defined by: 

T
T T t
T T t

,if is a sink
,if is a sourcei l

i
s

i l
o

l

i l
o

i
r

l
,

,

, (11) 

Here, i l, is the heat power, mi l, is the mass flow of the terminal link, and 
Ti l

o
, is the outflow temperature of the source or sink. Since a terminal 

link is defined as outgoing, >m, 0i l i l, , if tl is a sink, and <m, 0i l i l, , if 
tl is a source. 

3.4. Multi-carrier energy systems 

To create a MES, homogeneous nodes are coupled to a hetero-
geneous coupling node using dummy links. The dummy links only show 
a connection between nodes, they do not represent a physical compo-
nent. However, they could be seen as lossless transmission lines or pipes 
for model purposes. A gas dummy link only has a gas flow qk, but no 
link equation. An electrical dummy link has complex current =I Iij ji, 
active power =P P Pij ji , and reactive power =Q Q Qij ji , 
but no link equation, such that P and are independent of V and I . A heat 
dummy link has mass flow mk, supply temperature =T Tij

s
ij
s,start ,end, and 

return temperature =T Tij
r

ij
r,start ,end. The coupling variables, denoted by 

[·]c, and their associated location in the network representation are 
shown in Fig. 2. Since the dummy links are homogeneous links, their 
variables contribute to the nodal equations of the homogeneous nodes 
they are connected to. 

In every heterogeneous coupling node vi
c, one or more cou-

pling equations hold. For a node i connected with a dummy link to a 
homogeneous node j of each carrier, and connected with one heat 
terminal link l, we assume the coupling equations to be of the general 
form: 

=( )f q P Q m T T m T, , , , , , , , 0i
c

ij
c

ij
c

ij
c

ij
c

ij
s

ij
r

i l
c

i l
o c

i l
c

, ,
,

, (12) 

This general form can be easily adjusted if a coupling node has multiple 
or no links of a carrier connected to it. Since a heat terminal link re-
presents a heat source or sink, one of the coupling equations will be a 
heat Eq. (10) for every heat terminal link connected to the coupling 
node. 

Any physical coupling unit for which the model equation(s) are of 
the form (12), can be represented by a (heterogeneous) coupling node. 
Most conversion units, such as gas-fired generators, CHPs, electrical 
boilers, or gas-to-power units are modeled in such a way. Moreover, the 
coupling node concept allows for both linear and nonlinear models. 

Table 1 
Load flow variables for a gas, heat, and electrical network, per associated 
network element.      

Carrier Node Link Terminal node  

Gas Pressure pg Flow q Injected flow q

Heat Pressure ph Flow m Injected flow m

Supply temperature T s Outflow temperature To

Return temperature Tr Heat power 

Electricity Voltage V Current I Injected current I
Injected complex power S

Fig. 2. Coupling node ic, connected by dummy links to a gas node ig, an elec-
trical node ie, and a heat node ih. The coupling variables are shown next to the 
(terminal) links they are associated with. 
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4. System of equations 

4.1. Node types 

Typically, the SCNs have more variables than equations. Therefore, 
some (nodal) variables are assumed known, which we call the boundary 
conditions (BCs) of the network. A node type is assigned to every node 
based on the known variables. The standard node types for SCNs are 
shown in Table 2. The steady-state load flow problem is formulated by 
collecting the load flow equations into one system of equations. The size 
of this system for the SCNs is reduced by using the BCs and by sub-
stituting some equations into others. For each carrier, several for-
mulations for the system of equations are used, see e.g. [15] for gas,  
[16,17], or [18] for electricity, and [9] or [19] for heat. We use the 
following systems of equations. 

For gas, we use the full formulation (instead of the more commonly 
used nodal formulation). The system of (nonlinear) equations is given 
by: 

= = =F F
F

0 x
q
p,g

q

L
g

g
(13) 

with pg the vector of unknown nodal pressures, q the vector of un-
known link flows, F q the vector of conservation of mass (1) for every 
node with known injected flow, and F L the vector of link equations. 

For electricity, we use the complex power formulation in polar co-
ordinates. For every node i, the link Eqs. (4) are substituted in 
Kirchhoff’s current law (3), which is subsequently substituted in the 
complex power Eq. (5). This equation, which gives conservation of 
energy, is then split in the active power part fi

P and reactive power part 
fi

Q, where = +f f fi
S

i
P

i
Q. The system of (nonlinear) equations is given 

by: 

= = =F F
F

0 x V,e
P

Q
e

(14) 

Here, F P and F Q are the vectors of conservation of energy for every 
node with known injected active or reactive power, and and V are 
the vectors of unknown nodal voltage angle and voltage amplitude. 

For heat, the thermal link Eqs. (8) can usually be rewritten such that 
Tk

end is a function of mk and Tk
start. This temperature is then substituted in 

the mixing-rule (9). We consider two different BCs for the terminal 
links, we assume i l, and either Ti l

o
, or Ti l, known. If T o is known, it is 

substituted in (9) and in (10). If instead Ti l, is known, Ti l
o
, is added as a 

variable, and (11) is added to the system of equations as 

= =f
T T T l
T T T l

0
,if is a sink
,if is a sourcei l

T i
s

i l
o

i l

i l
o

i
r

i l
,

, ,

, , (15) 

In the commonly used formulation (see e.g. [5] or [9]), the terminal 
flows mi l, are written as function of Ti l

o
, and i l, , using (10), and sub-

stituted into the other equations. The resulting system of equations is 
smaller than (16). However, conservation of mass (6) is then nonlinear, 
and the supply line mixing rule f T s

depends on Tr and vice versa. We do 
not substitute terminal flows into the other equations. The system of 
nonlinear equations for this terminal link formulation is then given by: 

= = =F

F
F
F
F
F

F

x

m
m
p
T
T
T

0,h

m

L

T

T

T

h

L

TL

h

s

r

o

s

r

(16) 

with mL the vector of link mass flows, mTL the vector of unknown 
terminal link mass flows, ph the vector of unknown nodal pressures, T s

and Tr the vectors of unknown nodal supply and return temperatures, 
T o the vector of unknown terminal outflow temperatures, Fm the vector 

of conservation of mass for every non slack node, F L the vector of link 
equations, FTs

the vector of supply line mixing rules for every node with 
Ti

s unknown and every source node with Ti l
o
, unknown, FTr

the vector of 
return line mixing rules for every node with Ti

r unknown and every sink 
node with Ti l

o
, unknown, F the vector of heat power equations, and F T

the vector of temperature difference equations. 
For an MCN, the dummy and terminal links of a coupling generally 

introduce more variables than the coupling node introduces equations. 
These extra degrees of freedom could be used for optimization purposes 
(e.g. [20]). However, for steady-state load flow, (additional) BCs are 
needed in an MCN. One commonly used option is to prescribe one or 
more of the coupling energies (e.g. [2,5,10,12]). However, this effec-
tively decouples the integrated network. If one or more of the coupling 
energies are known, the coupling equations of most coupling units can 
be used to directly determine (some of) the other energies. These en-
ergies, combined with the already prescribes ones, can then be used as 
BCs for the SCNs. In that case, there is no need to model the load flow 
problem as one integrated system of equations, and the advantages 
provided by a coupling are not fully used. Therefore, we will assume all 
coupling (energy) flows, q P Q m, , ,c c c c, and c, unknown. If a coupling 
unit produces or consumes heat, T o c, or T c can be assumed known as a 
BC without decoupling the system of equations. The additionally re-
quired boundary conditions are imposed elsewhere in the MCN, that is, 
they are imposed in the single-carrier parts. 

Imposing the additionally required BCs on the homogeneous nodes 
may lead to new node types, as also observed in [7] for a power grid. 
Consider, for instance, a gas network connected to a power grid through 
a generator. Suppose the electrical node to which we couple is a slack 
node before coupling, such that P and are unknown, and V and are 
known. We could then replace this unknown input power with the 
unknown coupling power, such that the coupling, or the gas network, 
could be considered as the slack for the power grid. However, the 
coupling powers Pc and Qc flow into the power grid through a dummy 
link. Since we want to replace the slack powers with the coupling 
powers, the total injected power of the electrical node should be zero 
after coupling. Hence, the electrical node turns into a new node with 
P Q V, , , and known, called a PQV -node. Table 3 gives some, but 
not all, possible new node types. The names of the node types indicate 
which variables are assumed known. For the heat network, nodes that 
are not a sink or a source are junctions, which are nodes that have no 
inflow or outflow. In the physical heating system, these corresponds to 
junctions in the pipelines, without a connection between the supply and 
the return line. Not all of these are realistic from a physical perspective. 
For instance, a heat sink slack node would physically be a node where 
the pump to regularize pressure is located at a sink instead of at a 
source. However, they might be needed to solve the integrated system 
of equations. 

The system of nonlinear equations for the coupling part is given by: 

Table 2 
Standard node types for single-carrier networks.      

Network Node type Specified Unknown  

Gas Reference pg q
Load q pg

Electricity Slack V , P Q,
Generator (PV) P V, Q,
Load (PQ) P Q, V ,

Heat Source reference slack T p,s h T T m, , ,r o

Source To and < 0 T T p m, , ,r s h

Sink To and > 0 T T p m, , ,r s h

Junction =m 0 T T p, ,r s h
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= = =F
f

F
F

x

q
P
Q
m

T

0,c

c

T

c

o

c

c

(17) 

Here, f c is the vector of coupling equations, F
c

is the vector of heat 
power equations, F T c

the vector of temperature difference equations, 
T o is the vector of unknown outflow temperatures, and q P Q m, , , , and 

are the vectors of the coupling gas flow, active power, reactive power, 
water link mass flow, and terminal link heat power. 

The load flow equations of the SC parts and the coupling part are 
combined to form the integrated system of nonlinear equations de-
scribing the steady-state load flow problem for a MES. Since a (het-
erogeneous) coupling node is connected by homogeneous (dummy) 
links to the homogeneous single-carrier nodes, q P Q, ,c c c, and mc are 
included in the nodal conservation laws of the SCNs. Furthermore, mc

and T o c, are included in (9) of the heat network, and T
i
r
h is included in 

the heat power equation for the coupling node, if the coupling unit 
produces heat. Combining the SC systems (13), (14), and (16) with the 
coupling part (17) gives the integrated system of equations for a MES: 

= = =F

F
F
F
F

x

x
x
x
x

0,

g

e

h

c

g

e

h

c (18)  

4.2. Scaling 

The variables and parameters in the load flow equations can have 
values which are orders of magnitude apart, even within an SCN. For 
instance, usually q~ 1 kg/s whereas p ~g 105 Pa. Normalizing or scaling 
the variables and equations for power grids is commonly done, and is 
called the per unit system (e.g. [16]). In [5], this system is extended to 
the heat network, to have consistency throughout the MES. We extend 
this notion further, such that a per unit system can be adopted in the gas 
network as well. The per unit value of a quantity x is defined as: 

x
x
x

a

b
p.u. (19) 

with xa the actual value and xb the base value. The per unit value is 
dimensionless, but is usually given dimension p.u.. For a power grid, 

V b and S b are usually given. The other base values, assuming single- 
phase flow, are then determined by: 

=

=

I

y

b
S
V

b
S
V

b
b

b

b
2 (20) 

with y the admittance. In the per unit system, the same load flow Eqs.  
(3)–(5) are used as in the unscaled case, but with the normalized 
parameters and variables. For gas, we specify qb and pb

g . The parameters 
in the load flow Eqs. (1) and (2) are determined based on qb and pb

g , 
such that (1) and (2) hold for both the actual and the per unit variables. 
For a heat network, we specify m p T, ,b b

h
b, and b, and the parameters in 

the load flow equations are determined accordingly. 
For many coupling units, generally E P~ ~g c c c, with E qGHVg and 

GHV the gross heating value of gas. Hence we take = =E Sb
g c

b
c

b
, for 

consistency throughout the MES. The parameters in the coupling Eq.  
(12) are determined accordingly, based on E P,b

g c
b
c, , and b

c, such that  
(12) holds for both the actual and the per unit variables. 

The per unit system requires scaling all parameters in every equa-
tion used. Another option is to scale F and x by matrix multiplication. 
The equations are scaled by a diagonal matrix DF with =D( )F nn F

1
( )b n

, 
with Fb the vector with base values for each equation, such that 
F D FF is the scaled system of equations. The variables are scaled by 
a diagonal matrix Dx with =D( )x nn x

1
( )b n

, with xb the vector with base 
values for each variable, such that x D xx is the scaled variable vector. 
The base values for the load flow equations are chosen such that 

=F F F( ) ( ) ( )a n b n np.u. for every n. Then =F D FF ap.u. and =x D xx ap.u. . 
Hence, using DF and Dx with suitable base values is equivalent to using 
the per unit system, without having to scale all the parameters in every 
equation used. 

4.3. Newton–Raphson method 

Several methods can be used to solve a nonlinear system of equa-
tions. For instance, fixed-point iteration methods, such as the 
Gauss–Seidel power flow method for power grids, or the 
Newton–Raphson method (NR). We solve the integrated system of 
nonlinear Eq. (18) using NR, because it has quadratic convergence. The 
iteration scheme in multiple dimensions is given by: 

=J x s F x( ) ( )k k k (21a)  

= ++x x sk k k1 (21b) 

Due to the choice for a (heterogeneous) coupling node connected to the 
SCNs by (homogeneous dummy) links, the Jacobian matrix J is given 
by: 

= =J

J J J J
J J J J
J J J J
J J J J

J J
J J

J J
J J

0 0
0 0
0 0
0 0

gg ge gh gc

eg ee eh ec

hg he hh hc

cg ce ch cc

gg gc

ee ec

hh hc

ch cc (22) 

where the submatrices are defined as 

=J F
x

g e h c, , , , ,
(23) 

This distinct structure holds for any MCN for which the load flow 
equations satisfy the general form (1)–(12). Since the BCs additionally 
required by the coupling are imposed in the SC parts, these submatrices 
will generally not be square. In other words, a single-carrier part might 
be overdetermined while another might be underdetermined. More-
over, without reordering, this system (21a) cannot be solved blockwise. 

When using scaling by matrix multiplication, the iteration scheme is 
adjusted to [21]: 

Table 3 
Some possible new node types for multi-carrier networks.      

Carrier Node type Specified Unknown  

Gas Slack – p q,g

Reference load p q,g –  

Electricity PV P V, , Q
QV Q V, , P
PQV P Q V, , , –  

Heat Source/sink reference T p, ,o h T T m, ,s r

Source temperature T T,s o, and < 0 T p m, ,r h

Reference =p m, 0h T T,r s

Temperature =T m, 0s T p,r h

Reference temperature =T p m, , 0s h Tr

Sink slack T p,r h T T m, , ,s o

Source/ sink T T , T T T p m, , , ,o r s h

Source/sink reference T T p, , h T T T m, , ,o r s

Source temperature T T T, ,s T T p m, , ,o r h

Coupling Standard – To

Temperature To –  
T T To
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=x s F xĴ( ) ( )k k k (24a)  

= ++x x sk k k1 (24b) 

with =x D xk
x

k1 , and =x D J x DĴ( ) ( )k
F

k
x

1. Note that =J D J DF a xp.u.
1

when DF and Dx are chosen such that =F D FF ap.u. and =x D xx ap.u. . 
Therefore, unscaled NR (21) with the per unit system is equivalent to 
scaled NR (24). 

For the error ek at each NR iteration k, we use =e F x( )k k
2 for 

unscaled NR (21), and =e D F x( )k
F

k
2 for scaled NR (24), with · 2 the 

2-norm. Convergence is reached after k iterations if <e tolk for a chosen 
tolerance tol. 

In general, it is difficult to derive conditions to guarantee con-
vergence, both for fixed-point methods and for NR. If the problem is ill- 
posed, such that the Jacobian matrix is singular, NR will not find a 
solution, even if the initial guess x0 is close to the solution. Even if the 
problem is well-posed, care has to be taken when initializing the so-
lution vector. A badly chosen initial guess can cause convergence pro-
blems for the solver. Moreover, it can lead to singular Jacobians, de-
pending on the models used. For instance, a well-known problem in gas 
networks is the zero-flow problem, where a zero flow rate in a pipe can 
cause zero first derivatives of flow equations, and hence singular 
Jacobians. Other commonly used pipe flow models can cause zero or 
undefined first derivatives of the flow equations for a flat initial guess of 
pressure. The models used for the gas and heat pipes in the examples in 
Section 5 require nonzero flow, but can handle a flat pressure field. 

4.4. Model framework 

The proposed graph-based model framework for steady-state load 
flow problems of MES is summarized as follows, which is also shown in  
Fig. 3. First, the SCs gas, electricity, and heat systems to be combined 
into a multi-carrier system are represented by a network as described in 
Section 2.2. Then, the desired coupling units are represented by a 
coupling node, and connected to SC networks using dummy links, as 
described in Section 2.3. The resulting graph is the MCN corresponding 
to the MES. Third, load flow equations are chosen for each network 
element, see Section 3. Node types, or BCs, are chosen, and the load 
flow equations are collected into one integrated system of Eqs. (18). 
Finally, this system of nonlinear equation is solved using NR. 

The node types, and the location of the coupling nodes in the graph, 
must be carefully chosen. Certain combinations of node types, or graph 
topologies, can result in systems of equations that are not (uniquely) 
solvable. A necessary condition for the load flow problem to be un-
iquely solvable is that the number of equations F is equal to the number 
of variables x . However, even with a square system, the problem might 
still be ill-posed, such that are no or multiple solutions. The proposed 
model framework provides insight into when the load flow problem of a 
MES is uniquely solvable [22]. 

Using dummy links to connect the SC into one MCN show the 
connection between the SC parts explicitly. This connection is more 
difficult to see when the coupling flows are incorporated into injected 
nodal flows, as is commonly done (see for instance [5,10], or [12]). 
Furthermore, using dummy links, the load flow models of the SC parts 
are only slightly altered, and the effect of coupling is included through 
the coupling part of the system of equations, as reflected by the distinct 
structure of the Jacobian matrix (22). 

The load flow models and network elements can represent a variety 
of physical components of an energy system, such that the model fra-
mework is applicable to general MESs. Moreover, using different cou-
pling components, models, or node types, results in different MCNs for 
the same MES. 

5. Example 

To illustrate the proposed model framework, we consider a small 

MES, which is based on a case study introduced in [10], and later 
adapted in [5] using an extended EH approach. For comparison, and to 
show that our framework is applicable to general MES, we consider two 
different ways of coupling the single-carrier networks of this MES, one 
similar to the couplings used in [10] and the other similar to [5]. 

5.1. Networks 

Fig. 4a and b show the networks for both ways of coupling. In 
network 1, we use a gas-fired generator (GG), gas boiler (GB), and a 
combined heat and power plant (CHP) for the coupling. In network 2, 
we use two EHs. For both networks, the same models are used in the 
single-carrier part. We use the models given below. All equations, 
variables, and parameters are in S.I. units, unless stated otherwise.  
Table 4 summarizes the parameter values used in the equations for both 
networks. 

In the gas network, links 0 1 , 0 2g g g g, and 3 2g g, represent 
pipes, and link 1 2g g represents a compressor. The pipes are modeled 
using the steady-state flow equation (e.g. [15]), such that the link Eq.  
(2) becomes 

= =( )f q p p p
f

C
q q, , 0k

g
ij i

g
j
g

k
g k

k
g k k2

(25) 

with = ( )p p p f( ) ,k
g

i
g

j
g

k
2 2

the Fanning friction factor, and Ck
g the 

pipe constant: 

=C SD
TR L Z8k

g k

k

5

air (26) 

with S the specific gravity of the gas, Rair the specific gas constant of air, 
T the temperature of the gas, Z the compressibility factor, Dk the pipe 
diameter, and Lk the pipe length. For the friction factor, we use the 
implicit Colebrook-White equation for the turbulent regime: 

= +
f D f

1
2

2log
3.7

2.51
Rek

k

k k
10

(27) 

with k the relative roughness of the pipe, =Re q
µ D
4 k

n k
the Reynolds 

number, with µ the kinematic viscosity, and = p S R T( )/( )n n nair the 
density of the medium at standard conditions with Tn the temperature at 
standard conditions. The compressor is modeled by a fixed pressure 
ratio, such that the link Eq. (2) becomes 

= =( )f p p r p p, 0k
g

i
g

j
g

k i
g

j
g

(28) 

with rk the compressor ratio. 
In the electrical network, all links represent transmission lines, 

which we model as short lines. The power in the links is then given by 
(e.g. [16]): 

Fig. 3. Flowchart of the graph-based model framework for steady-state load 
flow problems of MESs. 
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= +

=

( )
( )

P g V V V g b

Q b V V V g b

cos sin

sin cos

ij ij i i j ij ij ij ij

ij ij i i j ij ij ij ij

2

2

(29) 

with = +y g bij ij ij the line admittance. Using these link equations, the 
complex power Eq. (5) for a node i then becomes 

= =
f

f

P P

Q Q
0i

P

i
Q

j j i
ij i

j j i
ij i

,

, (30) 

We use =x 1/6ij Ωand =r x /10ij ij for all links. The admittance is the 
inverse of the line impedance = +z r xij ij ij, such that =b x z/ij ij ij

2

and =g r z/ij ij ij

2

. 

In the heat network, all links represent pipes. For the hydraulic 
model, we use a steady-state flow equation, such that the link Eq. (7) 
becomes 

= =( )f m p p p
f

C
m m, , 0k

h
ij i

h
j
h

k
h k

k
h k k2

(31) 

with =p p pk
h

i
h

j
h, and Ck

h the pipe constant: 

=C D
L8

2
k
h k

k

5

(32) 

with the density of the water, Dk the diameter of the pipe, and Lk the 
length of the pipe. We use the friction factor given by Colebrook- 
White’s Eq. (27). For the thermal model in both supply and return line, 
we assume that the convective heat transfer from the water into the 
surroundings is in the radial direction only, that the heat loss of a pipe is 
independent of the direction of flow, and that the conductive heat 
transfer within the water is negligible. The temperature drop over a 
pipe then becomes exponential [23], such that the thermal link Eq. (8), 
for both the supply and return line, is given by 

= +T L
C m

T T Texp ( )k
k k

p k
k

a aend start

(33) 

where Tk
end and Tk

start are the temperatures at the end and the start of the 
pipe in °C, T a is the ambient temperature in °C, k is a heat transfer 
coefficient of the pipe, and Cp is the specific heat of water. 

In network 1, node 0c represents a GG, node 1c a GB, and node 2c a 
CHP. We use linear models for the GB and CHP, and use the same 
nonlinear model as proposed in [10] for the GG: 

= +

+ + =
= =

= =

f q P q a P bP

c d e P P
f q q

f q P q

( , ) GHV ( )
sin( ( )) 0

( , ) GHV 0

( , , ) GHV 0

c c c c c c

c

c c c c c

c c c c c P

0 0 0 0 0
2

0
min

0

1 1 1 1 GB 1

2 2 2 2 2

c c
2

CHP

2

CHP (34) 

with GHV the GHV of gas, a b c d, , , , and e parameters of the GG, Pmin

the minimum power produced by the GG, and GB and CHP the effi-
ciencies of the GB and the CHP. 

In network 2, both nodes represent an EH. The coupling matrices 
are chosen such that the EHs model the same conversion of energy as 
the coupling components in network 1: 

=

=

f q P
P

q

f q P
P

q

( , , ) (1 ) (GHV )

( , , ) (1 ) (GHV )

c c c c
c

c
c

c c c c
c

c
c

0 0 0 0
0

0

0 GG

0 GB
0

1 1 1 1
1

1

1 CHP

1 CHP
1

(35) 

with 0 and 1 dispatch factors, and GG the efficiency of the (linearized) 
GG. To ensure consistency with network 1, we take 

=

=

=

+

+

0.45

0.77

0.27

P
q

q
q q

P
P

GG GHV

0

1

c

c

c

c c

c

c c

0

0

0

0 1

2

2 2 (36) 

with q P,c c, and c the coupling energies of network 1. 

Fig. 4. Network topology using two different ways of coupling. Network 1 (a) is based on [10], network 2 (b) is based on [5]. The links show predefined direction of 
flow, the terminal links show actual direction of flow. 
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5.2. Node types 

In [5] and [10], the coupling heat powers are assumed known. We 
assume all coupling energies unknown, but assume T o of all coupling 
nodes known. As BCs for the heat terminal links, Ti l

o
, is specified instead 

of Ti l, . For network 1, the coupling models require 5 additional BCs if 
T o is known for all coupling nodes. In comparison, the coupling models 
for network 2 only require 3 additional This shows that the coupling 
units determine the additional BCs required. Conversely, requiring 
realistic or physical BCs for all nodes limits the coupling units that can 
be used to couple SCNs. Table 5 gives the nodes types used for both 
networks. These node sets are not unique, for instance, instead of the 
node set given for network 2, node 2h can be taken as sink reference 
node and T o for node 1c can be kept as unknown. The corresponding 
system of load flow equations would then also be solvable for suitable 
initial conditions. 

With these node sets, the system of load flow equations for the MES  
(18) consists of 32 equations and variables for network 1, and 33 
equations and variables for network 2. To solve the systems of equa-
tions, we use scaled NR (24) with a tolerance of 10−6. As base values 
we take =q 1b kg/s, pb

g = 1 × 105 Pa, = ×V 10/ 3 10b
3 V, 

=m 1b kg/s, pb
h = 1 × 105 Pa, =T 130b °C, S b = 10 × 106 W, b = 

10 × 106 W, and Eb
g = 10 × 106 W. We also solve the load flow 

problem using per unit scaling, with the same base values, and unscaled 
NR (21) with a tolerance of 10−6. 

The values used for the BCs are given in Tables 8–14, and the initial 
guess to the solution vector for both matrix scaling and per unit scaling 
is given in Table 6. In the heat network, the values for the head =h p

g

h
, 

with g the gravitational constant, are given instead of the nodal pres-
sure. The nodal pressure is still used in the calculations. Table 7 and  
Fig. 5 give the error of the scaled system of equations using matrix 
scaling and per unit scaling for every iteration of NR. This shows that 
scaling by matrix multiplication is indeed equivalent to scaling using 
the per unit system, when the same base values are used, and the 
parameters in the load flow equations are scaled accordingly for the per 
unit system. 

Tables 8–14 give the results for both network 1 and 2. For com-
parison, the results found in [5,10] are also listed. Our results for net-
work 1 match the ones found in [10], except for the gas network. 
However, plugging in their pressures values in the flow Eq. (25) does 
not give their gas pipe flows. The ratio between their presented gas 
flows and the flows obtained from the flow equations seems to be a 
factor ln10. 

Our results for network 2 match the ones found in [5], except for 
small differences in the heat network. In [5], a different model for sinks 
and sources is used. That is, they use =T T Ti l i

s
i
r

, for both sinks and 
sources, whereas we use the temperature difference in (11). Second, 
they use a different thermal model for the pipe lines. 

The other small differences are due to differences in BCs, and dif-
ferent formulations of the system of load flow equations. In [5,10], the 
heat powers of the coupling components are assumed known, while, for 
our BCs, the heat network determines the required heat power. Through 
the coupling equations, the coupling gas flows and active power can be 
determined, which are then effectively a specified value from the per-
spective of the single-carrier gas and electrical networks. Due to small 
differences in the coupling heat powers between our result and the one 
presented in [5,10], the result in the gas and electrical part is also 
slightly different. 

6. Conclusion 

We developed a graph-based model framework for steady-state load 
flow analysis of general multi-carrier energy systems (MESs), consisting 
of gas, electricity, and heat. The framework is based on connecting the 
single-carrier networks (SCNs) to a heterogeneous coupling node, using Ta
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homogeneous dummy links, to form one multi-carrier network. The 
load flow equations for the SCNs and for the coupling nodes are col-
lected into one integrated system of nonlinear load flow equations. The 
framework allows for a variety of single-carrier components and load 
flow models. The coupling node allows for bidirectional flow, and can 
represent a variety of couplings, such as a single converter component, 
an energy hub, or a complete heterogeneous network. Having the 
coupling node represent a complete heterogeneous network could lead 
to a hierarchical approach. 

We assume the coupling energies unknown, since the SCNs would 
effectively be decoupled otherwise. This requires additional boundary 
conditions in the single-carrier part of the network, leading to new node 
types. Using these new node types, the system of nonlinear load flow 
equations is formulated. Due to the introduction of the heterogeneous 
coupling node, the SCNs are independent of each other. The inter-
dependencies enter the system of equations through the coupling part. 
This approach leads to a Jacobian matrix with a distinct structure, in 
which the submatrices are not necessarily square. However, the node 
types and location of the coupling nodes in the graph must be carefully 
chosen. Certain combinations of node types, or graph topologies, can 
result in systems of equations that are not (uniquely) solvable. This is 
still an open problem. Our systematic approach to the graph re-
presentation of MESs, and corresponding formulation of the system of 
load flow equations, provides insight into which coupling nodes and 
node types lead to such unsolvable systems. 

Using our proposed model framework, we modeled one MES con-
sisting of gas, electricity, and heat. Two multi-carrier networks were 
used to model this MES. They have the same SCNs, but use different 
coupling components. This example shows that our proposed model 
framework can be used to model steady-state load flow for general 

Table 5 
Node type sets used for the example networks.          

Network 1 Network 2 

Node Node type Specified Unknown Node Node type Specified Unknown  

0g Ref. pg q 0g Ref. pg q
1g Load q pg 1g load q pg

2g Ref. load p q,g - 2g load q pg

3g Load =q 0 pg 3g load =q 0 pg

0e PQV P Q V, , , – 0e PQV P Q V, , , - 
1e Load P Q, V , 1e load P Q, V ,
2e PQV P Q V, , 2e PQV P Q V, ,

0h Ref. =p m, 0h T T,r s 0h Ref. =p m, 0h T T,r s

1h Sink To and > 0 T T p m, , ,r s h 1h sink To and > 0 T T p m, , ,r s h

2h Sink Ref. >T p, 0,o h T T m, ,r s 2h sink To and > 0 T T p m, , ,r s h

0c Standard – – 0c temp. To – 

1c Temp. To – 1c temp. To – 

2c Temp. To –  

Table 6 
Initial values of x0 used for NR, for the example networks.      

Network 1 Network 2 
Node Initial value Initial value  

0g – – 
1g pg = 40 × 105 Pa pg = 45 × 105 Pa 
2g – pg = 47 × 105 Pa 
3g pg = 40 × 105 Pa pg = 45 × 105 Pa    

0e – – 
1e = ×V 10/ 3 103 V, = 0 rad = ×V 10/ 3 103 V, = 0 rad 
2e = 0 rad = 0 rad    

0h Tr = 50 °C, T s = 100 °C Tr = 50 °C, T s = 100 °C 

1h Tr = 50 °C, T s = 120 °C, h = 
10 m, m = 20 kg/s 

Tr = 50 °C, T s = 120 °C, h = 
254.3706 m, m = 20 kg/s 

2h Tr = 50 °C, T s = 120 °C, m = 
20 kg/s 

T ,r = 50 °C, T s = 120 °C, h = 
4300 m, m = 20 kg/s    

0c q = 2.19223 kg/s, P =  
50 × 106 W, Q = 0 W 

q = 2.19223 kg/s, P =  
50 × 106 W, Q = 0 W, m = 10 kg/ 
s, = 30 × 106 W 

1c q = 0.65767 kg/s, m = 10 kg/s, 
= 30 × 106 W 

q = 0.65767 kg/s, P =  
10 × 106 W, Q = 0 W, m = 10 kg/ 
s, = 25 × 106 W 

2c q = 0.65767 kg/s, P =  
10 × 106 W, Q = 0 W, m = 10 kg/ 
s, = 25 × 106 W     

Table 7 
Error of NR per iteration for network 1 and network 2, using matrix scaling and per unit scaling. The error is D F x( )F a

k
2 for matrix scaling, and F x( )k

p.u. 2 for per unit 
scaling.          

Network 1 Network 2 

iter. D F x( )a
k

F 2 F x( )k
p.u. 2 D Fa xk F xk

D Fa xk
F ( ) 2 p.u.( ) 2

F ( ) 2

D F x( )a
k

F 2 F x( )k
p.u. 2 D Fa xk F xk

D Fa xk
F ( ) 2 p.u.( ) 2

F ( ) 2

0 2.1756 × 103 2.1756 × 103 2.0903 × 10−16 3.1521 × 103 3.1521 × 103 4.3280 × 10−16 

1 9.2049 × 102 9.2049 × 102 4.9403 × 10−16 6.8240 × 102 6.8240 × 102 3.3320 × 10−16 

2 1.6054 × 102 1.6054 × 102 5.3111 × 10−16 5.3596 × 101 5.3596 × 101 3.1818 × 1015 

3 2.4988 × 10−1 2.4988 × 10−1 1.5817 × 10−13 5.4506 × 10−1 5.4506 × 10−1 5.6319 × 10−13 

4 5.9439 × 10−4 5.9439 × 10−4 3.0217 × 10−10 5.0576 × 10−5 5.0576 × 10−5 6.8517 × 10−9 

5 5.9071 × 10−7 5.9071 × 10−7 2.0139 × 10−7 1.6610 × 10−8 1.6610 × 10−8 7.4091 × 10−6 
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MESs. Moreover, our framework can be used with different components 
and models, both in the SCNs and for the coupling units. Therefore, our 
framework includes and extends the currently available load flow 
models for MESs. 

Future work includes optimal load flow models for general MES, 
and application of the proposed framework to large MESs. 
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Table 8 
Results for the gas network, for network 1 (a), from [10] (b), for network 2 (c), and from [5] (d).                 

p [bar] qinj [103 m3/h]  q [103 m3/h] 

Node (a) (b) (c) (d) (a) (b) (c) (d) Link (a) (b) (c) (d)  

0 50.000 50.000 50.000 – −46.715 −47.108 −46.715 – 0–1 18.233 29.831 18.233 – 
1 29.102 40.816 29.102 – 10.865 10.000 10.865 – 0–2 16.408 4.810 16.408 – 
2 34.077 49.783 34.077 – 20.000 20.000 20.000 – 3–2 7.368 18.966 7.368 – 
3 37.833 53.061 37.833 – 0.000 – 0.000 – 1–3 7.368 18.966 7.368 – 

Table 9 
Results for the electrical network, for network 1 (a) and from [10] (b).          

V [p.u.] δ [°] Sinj [MW] 

Node (a) (b) (a) (b) (a) (b)  

0 1.060 1.060 0.000 0.000 0.145 + 0.000 0.145  + 0.000
1 0.980 0.980 −6.989 −7.022 30.000 + 15.000 30.000 + 15.000
2 1.000 1.000 −6.048 −6.116 30.136 + 15.000 30.136 + 15.000

Sij [MW] Sji [MW] Sij
loss [MW] 

Link (a) (b) (a) (b) (a) (b) 

0–1 26.862 + 15.801 26.981 + 15.811 −26.429 −11.479 −26.545 −11.459 0.432 + 4.322 0.435 + 4.352
0–2 23.492 + 11.551 23.741 + 11.552 −23.187 −8.501 −23.430 −8.450 0.305 + 3.050 0.310 + 3.102
1–2 −3.571 −3.521 −3.455 −3.541 3.584  + 3.652 3.467  + 3.669 0.013 + 0.131 0.013 + 0.127

Total     0.750 + 7.502 0.758 + 7.581

Table 10 
Results for the electrical network, for network 2 (c) and from [5] (d).          

V [p.u.] δ [°] Sinj [MW] 

Node (c) (d) (c) (d) (c) (d)  

0 1.060 1.060 0.000 0.000 0.145 + 0.000 0.145 + 0.000
1 0.980 0.980 −6.989 −7.022 30.000 + 15.000 30.000 + 15.000
2 1.000 1.000 −6.048 −6.116 30.136 + 15.000 30.136 + 15.000

Sij [MW] Sji [MW] Sij
loss [MW] 

Link (c) (d) (c) (d) (c) (d) 

0–1 26.861 + 15.801 26.981 + 15.811 −26.429 −11.479 – 0.432 + 4.322 0.435 + 4.352
0–2 23.492 + 11.551 23.740 + 11.552 −23.187 −8.501 – 0.305 + 3.049 0.310 + 3.102
1–2 −3.571 −3.521 −3.455 −3.541 3.584  + 3.652 – 0.013 + 0.131 0.013 + 0.127

Total     0.750 + 7.502 0.758 + 7.581

Table 11 
Results for the hydraulic part of the heat network, for network 1 (a), from [10] (b), for network 2 (c), and from [5] (d).                 

h [m] minj [kg/s]  m [kg/s] 

Node (a) (b) (c) (d) (a) (b) (c) (d) Link (a) (b) (c) (d)  

0 5517.000 – 5517.000 5517.000 0.000 – 0.000 – 0–1 64.687 64.694 64.687 65.962 
1 225.103 – 225.066 10.666 121.223 – 121.223 – 0–2 31.408 31.453 31.409 29.893 
2 4268.109 – 4268.046 4383.800 65.026 – 65.026 – 1–2 −56.537 −56.533 −56.537 −58.778 
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