

Delft University of Technology

Reinforcement learning of motor skills using Policy Search and human corrective advice

Celemin, Carlos; Maeda, Guilherme; Ruiz-del-Solar, Javier; Peters, Jan; Kober, Jens

DOI
10.1177/0278364919871998
Publication date
2019
Document Version
Final published version
Published in
International Journal of Robotics Research

Citation (APA)
Celemin, C., Maeda, G., Ruiz-del-Solar, J., Peters, J., & Kober, J. (2019). Reinforcement learning of motor
skills using Policy Search and human corrective advice. International Journal of Robotics Research, 38(14),
1560-1580. https://doi.org/10.1177/0278364919871998

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1177/0278364919871998
https://doi.org/10.1177/0278364919871998

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Article

The International Journal of

Robotics Research

1–21

� The Author(s) 2019

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/0278364919871998

journals.sagepub.com/home/ijr

Reinforcement learning of motor skills
using Policy Search and human corrective
advice

Carlos Celemin1,2, Guilherme Maeda3,4, Javier Ruiz-del-Solar1,

Jan Peters5 and Jens Kober2

Abstract

Robot learning problems are limited by physical constraints, which make learning successful policies for complex motor

skills on real systems unfeasible. Some reinforcement learning methods, like Policy Search, offer stable convergence

toward locally optimal solutions, whereas interactive machine learning or learning-from-demonstration methods allow

fast transfer of human knowledge to the agents. However, most methods require expert demonstrations. In this work, we

propose the use of human corrective advice in the actions domain for learning motor trajectories. Additionally, we com-

bine this human feedback with reward functions in a Policy Search learning scheme. The use of both sources of informa-

tion speeds up the learning process, since the intuitive knowledge of the human teacher can be easily transferred to the

agent, while the Policy Search method with the cost/reward function take over for supervising the process and reducing

the influence of occasional wrong human corrections. This interactive approach has been validated for learning movement

primitives with simulated arms with several degrees of freedom in reaching via-point movements, and also using real

robots in such tasks as ‘‘writing characters’’ and the ball-in-a-cup game. Compared with standard reinforcement learning

without human advice, the results show that the proposed method not only converges to higher rewards when learning

movement primitives, but also that the learning is sped up by a factor of 4–40 times, depending on the task.

Keywords

Reinforcement learning, Policy Search, Learning from Demonstrations, interactive machine learning, movement
primitives, motor skills

1. Introduction

In Learning from Demonstrations (LfD) (Argall et al.,

2009; Chernova and Thomaz, 2014), a human teacher pro-

vides examples of the task execution to an agent or robot,

using either teleoperation, kinesthetic teaching, or by pro-

viding demonstrations with his or her own body. Those

demonstrations are recorded and used to compute a model

of the primitive intended for executing the task. With LfD,

the robot can quickly learn a policy that satisfies simple

tasks, or in complex cases, a policy that is close to its satis-

faction. However, LfD has a number of limitations: (1) it

requires expert demonstrations; (2) the learned skill

depends on the quality of the demonstrations provided by

the users; (3) some of the demonstrations might be subopti-

mal or ambiguous. This constrains the performance of the

learned policy.

Robot motor skill learning has been the subject of

research for several years. Machine learning has been used

for obtaining trajectory representations, since several appli-

cations face the necessity of encoding sequences of points

into a policy model that can be used to execute a motor

skill. Motor primitives models have been used to represent

the movements required for many tasks, including

1Department of Electrical Engineering & Advanced Mining Technology

Center, University of Chile, Chile
2Cognitive Robotics Department, Delft University of Technology,

Netherlands
3Preferred Networks, Inc., Japan
4Department of Brain Robot Interface, ATR Computational Neuroscience

Lab, Japan
5Intelligent Autonomous Systems lab, Technische Universität Darmstadt,

Germany

Corresponding author:

Carlos Celemin, Cognitive Robotics Department, Delft University of

Technology, Building 34, Mekelweg 2, 2628 CD Delft, Netherlands.

Email: c.e.celeminpaez@tudelft.nl

uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/0278364919871998
journals.sagepub.com/home/ijr
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0278364919871998&domain=pdf&date_stamp=2019-09-12

drumming (Pongas et al., 2005), T-ball batting (Peters and

Schaal, 2008), the ball-in-a-cup game (Kober and Peters,

2009), pancake flipping (Kormushev et al., 2010), ball

throwing, dart throwing, robot table tennis (Kober et al.,

2012), and executing a golf swing (Maeda et al., 2016).

The mentioned tasks have been solved using policies

based on models that present some generalization capabil-

ities, such as the Dynamic Movement Primitives (DMPs)

model (Ijspeert et al., 2002), primitives based on Gaussian

mixture models (Khansari-Zadeh and Billard, 2011), or

probabilistic movement primitives (ProMPs) (Paraschos

et al., 2013). These models have interesting properties that

can be convenient in many applications. Movement primi-

tives can be learned through demonstrations or by self-

improvement using reinforcement learning.

In robotics, reinforcement learning (Kober et al., 2013)

has been used to learn and improve movement primitives,

often initially acquired from demonstrations. Policy Search

methods have shown to be particularly suitable for learning

with real robots (Deisenroth et al., 2013), attaining higher

rewards with respect to an initial (demonstrated) policy.

However, the optimization process requires a large number

of trials, which is usually impractical or expensive when

using real systems. Also, the Policy Search method strongly

relies on good demonstrations, since it is a local search

method (Deisenroth et al., 2013), but for certain tasks the

human teacher might not be able to provide useful demon-

strations, particularly when the dynamics of the task or the

limitations of the robot are unknown. For example, how

many swings are required to achieve a ball-in-a-cup task,

given a heavy ball and a robot with limited accelerations

that cannot toss the ball high enough in one shot? This lack

of intuition suggests some form of interactive learning pro-

cess where human knowledge is added or transferred as the

robot optimizes the policy.

In this work, we propose a method for learning motor

skills with real robots, which renders convergence feasible

in very few episodes. It combines Policy Search algorithms

with human corrections in order to leverage the exploration

provided by the Policy Search method with the knowledge

of a human teacher. Our proposed method guides the explo-

ration of a Policy Search algorithm with the human teach-

er’s current knowledge of the task. We assume this process

to be dynamic in the sense that the teacher knowledge also

improves on observing the effects of the corrections

through the interaction of the robot with the environment

and its respective performance.

The corrections advised by the teachers are in the

actions domain, since it fits better to Policy Search meth-

ods (actor-only); in previous works it has been shown that

the corrective advice in this domain fits better with contin-

uous action problems, and that non-expert users can lead

the learning agents to high-performance policies, even

though they cannot teleoperate the agent properly to fulfill

the task (Celemin and Ruiz-del Solar, 2018). Moreover,

human teachers like to provide feedback in this domain

more than in the evaluative domain. It has been shown that

users prefer to give information about ‘‘how to execute the

task’’ or ‘‘how to improve the task’’ than ‘‘how good is an

action or a policy’’ (Amershi et al., 2014; Suay et al., 2012;

Thomaz et al., 2006). Therefore, the framework COACH

(Corrective Advice Communicated by Humans) (Celemin

and Ruiz-del Solar, 2018) is used to incorporate the teacher

corrections in the Policy Search loop, in which the human

teacher occasionally advises corrections during execution

time. The advice is a relative change of the magnitude of

the action executed at time step t. The advice is given to

the agent during execution but in the time step t + 1, which

is immediately after the execution of the action to be

corrected.

Additionally, this paper introduces a method to adapt

COACH for training policies in problems where the teacher’s

corrections are in the task domain, but the policy computes

actions in the joint space. This mismatch between the refer-

ence frames of actions and human corrections is known as

the ‘‘correspondence problem’’ (Argall et al., 2009; Breazeal

and Scassellati, 2002; Schaal et al., 2003). The mapping of

the human corrective feedback in the task domain onto the

the joint space allows one to effectively train policies for

robot arms of several degrees of freedom (DoF).

The experiments presented in this paper show that the

proposed method can be utilized to shape detailed trajec-

tories with vague action corrections. The human corrective

feedback for shaping trajectories is tested in a problem of

learning to write characters with simulated and real robot

arms. Significant reductions in the number of trials required

to learn reaching movements with simulated arms are pre-

sented; actually the introduced method is tens of times

faster than the conventional Policy Search method when

the arm has 50 DoF. The method is also tested in the real-

world problem of the ball-in-a-cup game (Figure 1). In this

case, successful policies can be obtained four times faster

than with the traditional Policy Search approach.

The remainder of this paper is organized as follows.

Section 2 presents related work. Section 3 provides the

Fig. 1. Ball-in-a-cup task execution of a policy learned using the

proposed interactive Policy Search method.

2 The International Journal of Robotics Research 00(0)

background of the methods proposed in this work. Section

4 introduces the use of corrective feedback to shape move-

ment primitives. The Policy Search method with human

corrective advice, which is the main contribution of this

work, is presented in Section 5. In Section 6, the validation

experiments and the results are presented. Finally, the con-

clusions are discussed in Section 7.

2. Related work

This section presents a brief introduction to interactive

machine learning methods, along with their application for

training movement primitives. The closest approaches to

the method proposed in this work are described and their

limitations are listed in order to motivate the presented

contribution.

2.1. Interactive machine learning

Considering the drawbacks already mentioned about LfD,

learning approaches that address the participation of human

teachers throughout the entire robot learning process—as

opposed to only the initial demonstration—-have been pro-

posed. When observing a current suboptimal policy execu-

tion, the teacher obtains some insights about policy

enhancement, and participates in the learning loop by inter-

actively providing feedback during policy learning, in order

to perform corrections.

The teacher’s feedback can be evaluative. In these

approaches, the teacher evaluates how desirable an exe-

cuted action is, through signals of reward or punishment.

Interactive reinforcement learning (Thomaz and Breazeal,

2006), TAMER (Knox and Stone, 2009), and the work of

Thomaz and Breazeal (2007) have been used to explore the

considerations of this kind of human feedback in contrast

to the reward function of an autonomous reinforcement

learning scheme. Moreover, human teachers can assess pol-

icies in learning from human preferences approaches, in

which the teacher iteratively observes the execution of two

different policies and chooses the one that is considered

best (Akrour et al., 2011, 2014), with good results in sim-

ple tasks; this approach has also been applied to the learn-

ing of complex simulated tasks with deep neural networks

(Christiano et al., 2017), and applied to manipulation tasks

with real robots (Jain et al., 2013).

The feedback given by a human teacher can be correc-

tive in the actions domain. The agent can be interrupted by

the user while executing a policy, in order to make

improvements (Mericxli et al., 2011). The user provides

demonstrations for the current state, and the new data are

attached to the policy, in order to be executed in similar

states. For tasks of continuous actions, the Advice-

Operator Policy Improvement (A-OPI) approach (Argall

et al., 2008) is a framework that allows human teachers to

provide corrections on relative changes to executed actions

(e.g., relative change of action magnitude). COACH

(Celemin and Ruiz-del Solar, 2018) is a framework based

on the same kind of feedback used by A-OPI but, addition-

ally, it is intended to be used at execution time, since it has

a module that models the human teacher’s intentions, to

adapt the size of the policy correction, and a module that

handles the delay of the human response.

2.2. Interactive corrections with movement

primitives

Interactive corrections can also be applied in the context of

movement primitives. In this case, corrections are used to

update the parameters that shape the characteristics of the

robot movement. The feeding assistance robot developed

by Canal et al. (2016) is preprogrammed with a ProMP

(Paraschos et al., 2013) for feeding disabled people. Then a

framework is proposed to allow caregivers to personalize

the original trajectory to the preferences of the disabled per-

son. In this framework, the caregiver physically adapts the

ProMP execution through kinesthetic feedback. The new

executed path is recorded to create a new ProMP. Argall

et al. (2011) proposed a system that allows the modification

of a primitive during execution with tactile feedback. If the

user provides a correction with an effector displacement

with respect to the original trajectory, the displacement is

applied from there on to the rest of the path, then all the

data points are recorded to rederive the policy after the

execution.

Kinesthetic teaching is used for incremental refinement

of trajectories of context-dependent policies (Ewerton et al.,

2016), represented with ProMPs, wherein the user may

modify the trajectory execution to perform a correction.

Then the data points of the recorded trajectory are applied

to update the probability distribution of the ProMP. That

method was tested in reaching tasks with a robot arm.

2.3. Interactive corrections via coarse feedback

There are a number of cases where none of the previous

approaches can actually be applied. Here we describe a few

scenarios:

1. There is no expert available to provide high-quality

demonstrations that lead to a policy with acceptable

performance (e.g., a person with a disability without a

caregiver, who needs to fix a policy for a new task or

environment).

2. The final user does not have access to an interface to

provide new demonstrations, such as intuitive teleo-

peration interfaces, wearable sensors, or motion cap-

ture systems.

3. The robot is not back-driveable or its dimensions are

not suited for direct human physical interaction

required by kinesthetic teaching.

4. The task involves fast robot movements, making kines-

thetic corrections impractical or unsafe for the teacher.

Celemin et al. 3

In these cases, wherein detailed feedback cannot be pro-

vided to the learner, approaches like A-OPI or COACH that

are based on simpler signals of correction are better suited.

Since there is no possibility of detailed corrections, these

algorithms are suitable because in this case the human-

agent interface does not need tactile or force sensors, and

can be limited to simple, sparse, occasional, and vague

commands given via a keyboard, voice commands, or

gestures.

The approach by Schroecker et al. (2016) is closest to

our work; in that approach, the problem caused by the

absence of expert demonstrations was partially overcome

by combining a Policy Search algorithm with interactive

definitions of via-points for adapting DMPs. In that work,

the teacher could stop the trajectory execution and move a

robot (physically or remotely) to a desired position at that

specific time step. This via-point correction was then used

to update the distribution used for the Policy Search explo-

ration. The method was validated in simulations of writing

letters and object insertion with a robot arm. The approach

by Schroecker et al. (2016), however, only addressed the

kinematics of the tasks, focusing on the shape of the trajec-

tories. This interactive Policy Search strategy is not suitable

for tasks where the dynamics are dominant (e.g., throwing

and catching an object) since stopping the task to adapt a

specific via-point is physically impractical and the instant

of correction is not evident. Also, modifying a via-point to

satisfy certain kinematic configurations invariably affects

the acceleration and thus the outcomes of a dynamic task.

In this paper, we use COACH (Celemin and Ruiz-del

Solar, 2018) as the mechanism for interactive corrections

as it allows human feedback to be introduced during robot

execution. However, COACH was originally designed for

interactive optimization of policies in a Markov decision

process setting. In this paper, we provide a new formulation

of COACH for time-dependent parametrized policies that

makes it compatible with the improvement of movement

primitives.

3. Background

The learning method proposed in this paper is a hybrid

algorithm that employs the interaction of a human teacher

for guiding the convergence of a Policy Search algorithm

through the COACH framework. This section briefly intro-

duces the basics of the Policy Search method, followed by

the COACH framework.

3.1. Policy Search

Known as an actor-only method, the Policy Search method

is a class of reinforcement learning algorithms that learn

parametrized policies directly in the parameter space using

a cost or reward function. Unlike critic methods, these algo-

rithms do not compute a value function. Computing the

value function requires observing transitions in the com-

plete state-action space, leading to a heavy demand of data

and time that is not feasible with most real physical sys-

tems. Therefore, in robotic applications, the Policy Search

method is often more suitable than value-function-based

reinforcement learning. Additionally, the use of parame-

trized policies reduces the search space, which is important

where there are time and energy limitations, as is usually

the case of learning with robots (Deisenroth et al., 2013).

Moreover, in robotic applications, the Policy Search

method is a better choice than value-based methods, owing

to the properties of scalability and stability of the conver-

gence (Kober et al., 2013), because a small change of the

policy may lead to large changes of the value function,

which in turn can produce large changes of the policy.

Given unlimited training on simulated environments, this

high sensitivity to parameter changes may be convenient

for finding the globally optimal solution. Real robots, how-

ever, demand stable, smooth, and fast convergence.

Typically, a Policy Search method works with three

steps, as shown in Algorithm 1: exploration, evaluation,

and updating. The exploration step creates samples of the

current policy for executing each roll-out or episode. In the

evaluation step, the quality of the executed roll-outs is

assessed, i.e., the exploration done during the roll-out exe-

cution is evaluated with the cost or reward function. The

update step uses the evaluation of the roll-outs to compute

the new parameters of the policy. This update can be based

on policy gradients, expectation-maximization, information

theoretic, or stochastic optimization approaches.

During the last years, several Policy Search algorithms

have been proposed and evaluated using different strategies

in each of the three steps. For the case of policies repre-

sented as movement primitives, well-known algorithms

exist, such as Policy Learning by Weighting Exploration

with the Returns (PoWER) (Kober and Peters, 2009),

Relative Entropy Policy Search (Peters et al., 2010), Policy

Improvement with Path Integrals (PI2) (Theodorou et al.,

2010), and black-box optimization methods, such as

Covariance Matrix Adaptation Evolutionary Strategy

(Hansen and Ostermeier, 2001; Metzen et al., 2014; Stulp

and Sigaud, 2013). Our proposed method can work with

any Policy Search variant by accessing the exploration

noise and adapting it with human feedback.

3.2. COACH: Corrective Advice Communicated

by Humans

With COACH (Celemin and Ruiz-del Solar, 2018), a

human teacher provides occasional binary feedback as a

Algorithm 1. Model free Policy Search.

1: repeat
2: Explore: Execute M roll-outs using pk

3: Evaluate: Obtain outcomes of trajectories or actions
4: Update: Compute pk + 1 given the roll-outs and evaluations
5: until Policy converges pk + 1’pk

4 The International Journal of Robotics Research 00(0)

correction in the action domain, in order to update the cur-

rent policy for the state wherein the advised action is exe-

cuted. The trainer has to advise the correction immediately

after the execution of the action to be modified. The binary

signals increase or decrease the magnitude of the executed

action, and this signal can be given independently for every

degree of freedom that composes the action vector. The

interactive learning is based on the four modules reviewed

next.

3.2.1. Human feedback modeling. H(s) is a module

learned during the training process that tries to predict the

human advice regarding the current state s. The model is

applied to compute the adaptive learning rate used for

updating the parameters of the policy model P(s). That pre-

diction defines how much the policy will be modified

when the teacher advises a correction in the visited state s.

3.2.2. Human feedback supervised learner. This module

updates the parameters v of the human feedback module

H(s)= FTv, using a stochastic gradient descent based

strategy. These weights are updated proportionally to the

value of the prediction error, i.e., the difference between

the human advice h and the prediction given by H(s). The

state space is mapped to the features space onto the fea-

tures vector F, which is the same used in the human feed-

back module H(s) and the policy module P(s).

3.2.3. Policy supervised learner. The policy P(s) is the

module that maps the observed states onto actions

(P(s)= FTw). In advising a correction, the human teacher

is trying to modify the executed P(s); therefore, this mod-

ule updates the weighting vector of the policy model (w),

also using a stochastic gradient descent based strategy. But

in this case, the error prediction is unknown, since the

teacher provides the correction trend, not the exact value of

the action to be executed. Because of this error assumption,

COACH sets the prediction error as

error= h � e ð1Þ

where h and e are the sign and magnitude of the error

respectively, h is the teacher feedback (�1 or + 1; that is,

decrease or increase), and e is a constant value defined at

the beginning of the learning process.

When a large change must be applied to the magnitude

of the action at a state s, the teacher would advise a

sequence of corrections of constant sign (either only + 1

or only �1); these corrections in the human feedback mod-

ule make the absolute value of the prediction H(s) tend

asymptotically to 1, which is the largest possible magni-

tude. Conversely, when the user is fine-tuning the magni-

tude of the action with small changes, the sequence of

advised corrections would alternate between �1 and + 1,

which makes the absolute value of H(s) tend to zero. This

correlation of jH(s)j and the size of the action modification

intended by the teacher can be used to detect when to apply

small or large updates to the policy by means of an adap-

tive learning rate based on this prediction. The adaptive

learning rate or size step of the policy is calculated from

jH(s)j, the absolute value of H in each time step.

3.2.4. Credit assigner. This module is necessary for prob-

lems of high frequency, in which human teachers are not

able to advise each executed continuous action at every

independent time step. The credit assigner module tackles

this problem by associating the feedback not only to the

last state-action pair, but to several past state-action pairs.

Each past state-action pair is weighted with the correspond-

ing probability that characterizes the human response delay.

In this process, a new feature vector is computed by the

credit assigner (Fcred); this is the actual vector used by the

human feedback and the policy supervised learner mod-

ules. This module is borrowed from TAMER, which intro-

duces a gamma distribution based on psychological studies

of human response to events of different complexities. That

distribution is often approximated by a uniform distribution

in its support region, so it prunes time steps with low prob-

ability; more details can be found in the paper by Knox

and Stone (2009).

The general scheme of COACH is presented in Figure 2,

wherein the connections between the aforementioned mod-

ules are depicted.

4. Corrective advice for shaping movement

primitives

This section proposes modifications of the COACH algo-

rithm for training parameterized movement primitives. The

original COACH algorithm was proposed for a Markov

decision process setting (Celemin and Ruiz-del Solar,

2018), where human feedback is used to improve a policy

Fig. 2. General scheme of COACH, with its internal module.

Celemin et al. 5

that evolves under the Markov assumption in a state space

s. In this article, the goal is to adapt COACH for training

movement primitives, so that human feedback can be used

to correct a time-dependent policy. This work is focused on

movement primitives, such as DMPs or ProMPs, whose

evolutions are defined by a phase variable zt, but other

representations are also possible (Khansari-Zadeh and

Billard, 2011). Essentially, the representation changes from

the state variable s to the phase variable zt.

In DMPs, the policy is represented by a dynamic system

comprising a linear spring damper (equation (2)), deter-

mined by the constants af and bf , and attached to a goal

attractor xgoal

ft = af (bf (xgoal � xt)� _xt) ð2Þ

This system is modified by an arbitrary nonlinear term

g(zt)
>w for shaping complex trajectories such that its accel-

eration is

1

t
€xt = ft + g(zt)

>w ð3Þ

where w is the parameters vector (or the weighting vector),

g(zt) is the basis function vector, and t is the sampling time

of the system.

In the case of ProMPs, the policy model is a probability

distribution in the parameter space, represented with a

mean and a covariance matrix obtained from a set of

demonstrations. During execution, this probability distribu-

tion is conditioned for every specific context, so that the

model applies the Bayesian rule of conditioning to compute

the most probable trajectory, given an observation. With

the Bayesian inference, a set of parameters w of a linear

model of basis functions is obtained and the trajectory is

computed using

xt = g(zt)
>w ð4Þ

COACH can be used to train the movement primitive by

updating the parameter vector w via human advice. The

update uses stochastic gradient descent with the error

assumption in equation ((1)), and the derivative

∂xt

∂wl

= ½gt�l ð5Þ

where the right-hand side of the equation represents the lth

basis function at time step t. Since this work is focused on

correcting single trajectories, in the cases of ProMPs, the

corrected vector w can be used to update the global mean

and covariance matrices, as in Ewerton et al. (2016).

The user advises local corrections during the motor skill

execution. This advice propagates over the next time steps

as changes in the weightings are smoothed ahead by the

shape of the basis functions gt (usually radial basis func-

tions), so that the effect of the correction can be appreciated

immediately.

While COACH can be used to advise corrections in

either the task or joint space of the robot, advising correc-

tions at the joint level is not intuitive for human demonstra-

tors who teach robots with many DoF. Thus, hereinafter,

this work addresses the case where corrections are made in

the task space of the robot. In other words, we assume that

the human demonstrator is not going to advise corrections

to the robot’s joint movements. Under this assumption, the

algorithm still needs to be considered for policies for com-

puting actions in either the task or joint domains. In the

second case especially, the algorithm has to deal with the

correspondence problem between corrections in the end-

effector space mapped to the joint space. If the policy is

represented at the task level in Cartesian space, the

COACH adaptation is straightforward and an inverse kine-

matics function must be used as a last step to map the

learned policy to the joint space of the robot, as is typically

done for this kind of policy. Conversely, if the policy is rep-

resented in the joint space, the inverse kinematics function

must be used on the human feedback to translate the

human correction into the corresponding space.

For policies that represent the end-effector trajectory,

the learning scheme is simpler because, according to our

assumption, human corrections are in the same domain, so

they can be used to modify the policy directly. Policies in

the Cartesian domain can be used only with robots that

have an operation mode that uses an inverse model, so the

learning scheme requests commands in the end-effector

space and maps them to actions in joint space, e.g., an

inverse kinematics that translates position requests to the

respective vectors of joint angles.

Figure 3 depicts the scheme for this kind of policy. The

left-hand side shows the stage in which the demonstrations

are gathered and the initial policy is obtained; the right-

hand side shows the stage of learning with COACH

wherein the human teacher advises the executed action.

The ‘‘Update’’ block computes the COACH modules and

modifies the parameters vector of the policy; the blocks

surrounded by red dashed lines work during and after the

learning process for executing the current policy. Between

the policy computation and the action execution, there is a

block for mapping the action computed by the policy onto

the actuator space.

Algorithm 2 presents the general COACH framework

for training movement primitives represented with a linear

combination of basis functions. Functions like

computePolicy() or updatePolicy() perform different com-

putations, depending on whether the policy represents

actions in task or joints space.

We first explain the algorithm considering the details for

training policies in the Cartesian space; thereafter, we intro-

duce the differences for the case of policies in the joint

space, wherein the ‘‘correspondence problem’’ needs to be

solved. The algorithm begins by stating some variables and

defining the magnitude for the error assumption e in equa-

tion (1) and the learning rate b (lines 1 and 2). The n

weightings ct that represent the probability function of the

6 The International Journal of Robotics Research 00(0)

credit assigner are computed (lines 3 and 4). The loop

between lines 5 and 19 is executed once per time step. The

function getBasisFunctions(zt) maps the phase variable to

the features vector gt (line 6); in line 7, the function

computePolicy(w, gt) computes the action based on the lin-

ear model of the policy (equation (4)), which is used intern-

ally by the inverse model to compute the action qt in joint

space; then the action is executed by the robot (line 8). If

human advice h is received before the next time step (line

10), the steps in lines 12 to 19 are executed. When there is

a human correction, the features vector that includes the

weighted sum of the past features vectors Fcred is com-

puted (lines 13 and 14); afterwards, the expected human

feedback prediction H(zt) is computed (line 15) and its

parameters v updated with the stochastic gradient descent

(SGD) rule (line 16); the adaptive learning rate a(zt) is

obtained with an additional bias that avoids situations

where learning rates are almost zero, which would preclude

changes in the policy, after the corresponding human cor-

rection (in practice, we set bias= 0:05) (line 17). The error

assumption from equation (1) is computed (line 18), and

named errorX, where the subscript X means that this error

is defined in Cartesian space. Then the policy module is

updated in a similar way as the human feedback modules,

except using the errorX assumption, so that the function

updatePolicy(errorX ,F
cred,w) computes Dw with

Dw errorX �Fcred ð6Þ

and updates the weightings of the policy.

4.1. Solving the correspondence problem for

policies defined in the joint space

Policies that map the actions in the joint space directly are

simpler to execute as they are already given as actuator

commands. However, during learning, more steps are

required for solving the ‘‘correspondence problem’’

between the human advice and the actuator space. Figure 4

shows the scheme for learning this kind of policy, in which

the user advises the correction in the task space, an inverse

kinematics block propagates this correction to the joints

space, and the updating block modifies the weightings w
based on the modules of COACH. During policy execution

(the area surrounded by the red dashed line), the inverse

model is not needed because it is used only during the time

steps advised by the teacher in the learning process.

In contrast to the original COACH scheme, and the one

used for policies in the Cartesian space, wherein the human

model and the policy are in the same domain, here the

human model H is in the task domain, whereas the policy

model is in the joint space. Therefore, some additional

steps are necessary to compute the correction of the policy.

In this case, in Algorithm 2 the function

computePolicy(w, gt) computes the action qt to be executed

directly, without the need of an inverse model, and until

line 18 the implementation is the same. The function

updatePolicy(errorX ,F
cred,w) is the most important

change, since it is responsible for mapping the correction

to the joint space.

Fig. 3. Learning scheme for movement primitives in the

Cartesian space.
IK: inverse kinematics; MP: movement primitive.

Algorithm 2. COACH for training movement primitives.

1: e constant
2: b constant
3: for 0 ł t\n do
4: ct assignCredit(t)
5: for all zt do
6: gt getBasisFunctions(t)
7: qt computePolicy(w, gt)
8: takeAction(qt)
9: wait for next time step
10: h getHumanCorrectiveAdvice()
11: if h 6¼ 0 then

12: Fcred 0
13: for 0 ł i\n do

14: Fcred Fcred + (ci � gt�i)

15: H(zt) FcredT � v
16: Dv b � (h� H(zt)) �Fcred

v v + Dv

17: a(zt) jH(zt)j+bias= jFcredT � vj+bias
18: errorX h � e � a(zt)

19: updatePolicy(errorX ,F
cred,w)

Fig. 4. Learning scheme for movement primitives in the joint

space.
IK: inverse kinematics; MP: movement primitive.

Celemin et al. 7

Algorithm 3 describes this function in which errorX is

mapped to the policy domain using forward and inverse

kinematics models. In line 2, the vector qt is not computed

with the current basis functions vector gt, but with the basis

functions given by the credit assigner, i.e., the policy com-

putes the expected action to be corrected according to the

used human delay probability distribution. The current

effector pose is computed with FK(qt) and added to errorX

in order to obtain the ‘‘desired’’ effector position (line 3),

which is used to obtain the ‘‘desired’’ joint vector based on

the inverse kinematics model (line 4). In line 5, the differ-

ence between the ‘‘desired’’ joint vector and that computed

by the current policy is considered the propagation of the

error from the task space to the actuator space, called

errorq. Finally, the SGD is computed to update the weights

w in lines 6 and 7.

5. Simultaneous corrective advice and Policy

Search method for learning movement

primitives

The learning methods presented in the previous section are

fully based on human corrections. This can be useful in

some simple problems, but in some others, the inherent

drawbacks of interactive learning mentioned in Section 2.1

might influence the convergence more negatively. This sec-

tion presents a core contribution of this work—a synergistic

combination of the Policy Search method with human

corrections—in the sense that the Policy Search method is

used to reduce the impact of erroneous human feedback,

while correct human feedback is used to speed up the learn-

ing process of a Policy Search algorithm.

The proposed method combines the evolution of Policy

Search algorithms with the knowledge that a human teacher

can share based on corrective advice. According to the cost

function, the Policy Search algorithm decreases or ‘‘filters

out’’ the influence of improper corrections given by the

teacher. In essence, our proposed method enables human

guidance based on COACH to influence and bias the explo-

ration of a Policy Search algorithm in the form of explora-

tion noise. Figure 5 depicts the proposed scheme. An initial

parameter vector winit is disturbed, either with the original

exploration strategy defined by the Policy Search algorithm

or with human guidance, through the roll-out execution.

The parameter update is carried out according to the

particular Policy Search implementation. These iterations

continue until convergence, resulting in a final policy wfinal.

As a result, this combination enables joint skill learning,

where the robot can start with a blank policy, and human

exploration is added whenever the human teacher judges

that his or her knowledge on the task can benefit the robot

learning.

Thus, during the roll-outs selected to be advised by the

user, the COACH algorithm is run, but taking into account

that the vector w is loaded into a wt vector every time step

in order to have all the changes in memory, since the eva-

luation stage (Algorithm 1, line 3) can be step-based,

depending on the Policy Search algorithm used as the base-

line (Deisenroth et al., 2013).

Algorithm 4 is a high-level description of the proposed

strategy for complementing the Policy Search method with

human advice during the exploration stage. Like Algorithm

1, the explore, evaluate, and update stages are run every kth

iteration, but with an important difference in the exploration

process. There are two exploration modes: the original

exploration strategy of the Policy Search method, and the

exploration based on COACH. The user chooses one of

them through the flag HumanGuidance (line 4). If it is con-

sidered necessary and possible to advise the agent, the roll-

out using the COACH-based exploration is run (line 5); oth-

erwise, the teacher allows random exploration of the origi-

nal Policy Search algorithm (lines 8 and 9). This condition

is kept constant for the entire roll-out, so both sources of

exploration are not combined. This allows the user to trans-

parently observe the effect of the advice on the policy.

The flag HumanGuidance can be switched differently

depending on the algorithm implementation. For instance,

the human–machine interface can query it before every

roll-out execution. In particular, for the implementations of

this work, this flag is set False by default and switched on

when the user advises a correction. If, during a roll-out, the

user does not give corrective feedback, the flag is set False

for the following roll-out.

During each iteration of the Policy Search algorithm, M

roll-outs of T time steps are carried out; the vector w½1� cor-

responds to w½init� in Figure 5. Vector ½wm�t contains the

parameters w at time step t of the mth roll-out. For the roll-

outs in which the user is giving corrective feedback

Algorithm 3. Function updatePolicy(errorX ,Fcred,w) for
policies in joint space.

1: def update Policy(errorX ,F
cred,w)

2: qt FcredT � w
3: ~Xt FK(qt)+ errorX

4: ~qt IK(~Xt, qt)
5: errorq ~qt � qt

6: Dw errorq �Fcred

7: w w + Dw

Fig. 5. Interactive Policy Search with COACH-based

exploration.

8 The International Journal of Robotics Research 00(0)

(HumanGuidance==True), the initial parameters vector

used for the (m + 1)th roll-out (line 6) is the last one result-

ing from the immediate previous roll-out, i.e., ½wm�T . This

is to keep the same policy that is being incrementally

advised by the teacher. The rest of the algorithm follows

the regular Policy Search scheme.

6. Experiments and results

The use of human corrective feedback is first validated for

shaping trajectories without the use of the Policy Search

method. Thereafter, more complex experiments are pre-

sented to compare the proposed interactive Policy Search

method with respect to the conventional Policy Search

method.

6.1. Learning movement primitives with

corrective advice

Experiments were carried out exclusively to evaluate the

use of COACH for training movement primitives. As a

proof of concept, we propose the problem of teaching a

robot how to write letters, in simulation and using a real

robot. The objective in this experiment is to evaluate

improvements that can be made to the shape of a trajectory

(encoded as a movement primitive) via corrective advice.

This improvement is quantified against the original set of

points that compose a letter, used as a ground truth. Two

different approaches were evaluated: policy refinement,

and policy reuse. In the first case, the goal is to improve

the shape of a given letter. The latter case addresses an

application of transfer learning, where the goal is to reuse

one of the existing policies, and reshape it via corrective

advice to fit a new desired symbol.

The procedure consisted of an initial stage, where a user

interface was used to visually indicate a reference letter to

be drawn on a screen. The user then provided a set of

demonstrations of trajectories for each indicated letter. An

RGB camera captured the user’s pen movement and

recorded the whole path into a dataset, which was used to

train an initial Cartesian policy, parametrized as a ProMP

(equation (4)) but without using the covariance. Figure 6

shows the screen of the interface for recording demonstra-

tions. The top figure shows one instance of a human

demonstration. The bottom figure shows the reference

symbol (in blue) overlaid with one of the provided demon-

strations (in red). Extension 1 shows the interface while

demonstrations are recorded.
1

In a second stage, the user attempted to refine the policy

resulting from the first stage. Two different interactive

approaches were used to correct the policy: (i) corrections

with more demonstrations and (ii) corrections with

COACH. To quantify the performance of both strategies,

the learned symbols were compared with the ground truth

symbols using the Euclidean distance after alignment with

dynamic time warping.

The experiments were carried out both in simulation,

with a 3-DoF robot arm, and with a real UR5 robot with 6-

DoF. Figure 7 shows the simulated case, where the robotic

arm draws the learned symbol (in red) while the teacher

provides corrective feedback to correct the trajectory toward

the ground truth reference (in blue). In each experiment,

five participants demonstrated and corrected the robot pri-

mitive. The participants were between 26 and 37 years old;

there were three engineers and two with a background in

the social sciences. Each user took a first session of practice

to become habituated to the interaction with the recording

and corrective interfaces.

Algorithm 4. Policy Search with simultaneous human guidance.

1: repeat
2: Explore: first roll-out with the current policy pk

w1 = w½k�

3: for m = 1 . . . M do
4: if HumanGuidance==True do
5: ½wm�t RunRollOutCOACH (½wm�1)
6: ½wm + 1�1 ½wm�T
7: else

8: ½wm�t PS exploration(w½k�)
9: RunRollOut(½wm�t)
10: Evaluate: cost of each roll-out

½Rm�t = fT +
PT

t = 0 r
½m�
t

11: Update: Compute new policy parameters using

w½k + 1� Update(½wm�t, ½Rm�t)
12: until Policy converges pk + 1’pk

Fig. 6. Demonstration recording.

Celemin et al. 9

6.1.1. Experiments of policy refinement. In this experi-

ment, a set of six symbols was learned (letters: a,c,I,m,p,s).

The objective was to improve and refine the trajectories

learned from demonstrations. For each symbol, three poli-

cies derived from the first set of demonstration are

compared.

� Primitives resulting from the original demonstrations.

For each letter, a policy was learned with a regression

using a batch of five demonstrated trajectories.
� Primitives resulting from corrections with COACH.

During five sequential executions, the users observed

the policy execution resulting from the five demonstra-

tions and simultaneously interacted to provide correc-

tions using COACH. The corrections were relative to

the original policy in the Cartesian space. The users

used a keyboard with two keys for correcting along the

x axis and two keys for correcting along the y axis. The

users advised corrections to make the end effector pass

closer to the reference symbol.
� Primitives resulting from corrections with more demon-

strations. The users observed the initial policy from the

five demonstrations, and provided five additional

demonstrations for improvement.

Results of learning with a simulated arm. The average

learning curves for all the symbols are plotted in Figure 8.

In the cases of learning only with demonstrations, the fig-

ure plots a constant dashed line of the final error resulting

after the regression with the datasets. Since the symbols

used as reference are sets of points without physical dimen-

sions, the demonstrations recorded in the pixel space are

normalized, so the error measurements do not have units.

It is possible to see that when correcting the trajectory

with COACH, providing corrective feedback during five

episodes of the trajectory, the error is decreased by 79.83%.

Conversely, the strategy of correcting with more demon-

strations only obtained around 40% error reduction with

respect to the primitives learned with the first demonstra-

tion dataset. The aforementioned reductions mean that with

the same amount of trials (five new demonstrations vs. five

episodes of correction with COACH), with corrective feed-

back, a human teacher can achieve almost twice the error

reduction with respect to the strategy of recording more

demonstrations.

Moreover, from the learning curves, it is possible to

demonstrate that, with only one episode of corrective

advice with COACH, the human teacher can attain better

improvement than can be achieved with the new set of five

demonstrations. After the first episode of advising correc-

tions, the average error of the trajectories is decreased by

73%. Most of the improvement is achieved in the first epi-

sode. This observation is not only taken from the learning

curves, but also from the appearance of the learned letters.

For instance, Figure 9 shows the progress of improving a

trajectory with corrective advice; most of the change

obtained from the corrections happens in the first episode.

Table 1 shows the final errors obtained after correcting

the policies with COACH and with more demonstrations

for each of the six explored letters. Basically, the trends of

the average results are kept; only one anomaly is high-

lighted. In the case of the letter ‘‘p’’, after the process of

correction by recording more demonstrations, the error was

increased by 2:41%. A correcting session with the simu-

lated arm is shown in Extension 2.
2

Results of learning with a real arm. The previous experi-

ments were replicated using a real UR5 arm. The same

symbols and comparisons were used in this case. The

Fig. 7. Policy execution and correction with the simulated 3-

DoF arm. Human feedback was used to make the robot draw as

close as possible to the reference letter (in blue). The initial

demonstration is shown in red.

Fig. 8. Average error during learning to write with a simulated

arm.

10 The International Journal of Robotics Research 00(0)

participants were between 23 and 29 years old, only three

with engineering skills. The points composing the drawn

trajectories were obtained from the robot’s odometry, and

compared with the reference symbol for the error

calculation.

Examples of corrected symbols are shown in Figure 10,

where the initial policy obtained from demonstrations is

drawn in white, while the final trajectory after five epi-

sodes of correction is shown in red. Figure 11 shows the

average curves of learning and correcting with demonstra-

tions in contrast with the learning curve of correcting with

COACH. The error reduction obtained using more demon-

strations is, on average, 30:7%, and around 84:4% when

using COACH. In this case, the error reduction with the

first episode of correction is 53:8%, which again is higher

than the one achieved with five new demonstrations.

The final results for each symbol are listed in Table 2.

These results have similar trends to the results with the

simulated arm. The lowest error reduction is with the sym-

bol ‘‘p’’, but this is still higher than the average of the error

reductions resulting from the strategy of correcting with

more demonstrations. In general, these results are consis-

tent with the previous ones. The use of corrective advice to

shape trajectories is hence a good strategy for learning

agents from human teachers, especially in situations

wherein the combination of user expertise and the quality

of the user interface does not obtain the best conditions for

recording high-performance demonstrations. The results

show that detailed trajectories can be shaped easily only

using vague binary corrective feedback. A correcting ses-

sion with the real UR5 arm is shown in the Extension 3.3

Figure 12 depicts the evolution of the amount of correc-

tions advised by the teachers during the learning process.

Every event of pressing a keyboard to suggest a change in

the trajectory is counted as a correction. The results show

that, in general, the evolution of the corrections is similar

in both the simulated and the real arm experiments. Most

(70%) of the corrections are given in the first and second

episodes, wherein above 90% of the policy improvement is

obtained.

Fig. 9. Trajectory correction progress: learned primitive (red),

symbol of reference (blue). (a) Policy without corrections, (b)

after one correction episode, (c) after five episodes, (d) after

eight episodes.

Fig. 11. Average error when learning to write with a real arm.

Table 1. Average error for each symbol trained, multiplied by

10�2.

Symbol Demos Corrections Corrections

(COACH) (more demos)

Error Error Decreased Error Decreased
error, % error, %

a 1.322 0.115 91.27 0.638 51.75
c 0.709 0.085 88.05 0.338 52.29
I 0.125 0.033 73.50 0.041 66.93
m 0.878 0.088 89.93 0.458 47.85
p 0.182 0.089 51.05 0.187 �2.41
s 0.432 0.064 85.17 0.300 30.48

Fig. 10. Examples of learning the letters ‘‘p’’ and ‘‘m’’ with the

real robot. Policy derived from demonstrations (white), and

policy trained with corrective advice (red).

Celemin et al. 11

6.1.2 Experiments of transfer learning for policy reuse with

a simulated arm. In policy reuse, the user can provide cor-

rections to a primitive whenever a task is changed, or when

the task has to be performed in a new environment. There

can be cases in which recording demonstrations can be

complicated, for different reasons, e.g., (1) the absence of

an expert user in the task, who is able to provide high-

quality demonstrations that lead to a policy with acceptable

performance; (2) when the final user does not have access

to an interface, such as wearable sensors or a complex

vision system, to provide new demonstrations; (3) when

kinesthetic teaching is not possible, since it is constrained

to robots with physical dimensions that a human teacher

can handle. For some of those cases, the knowledge already

represented by the primitive can be reused; then the user

only needs to execute local modifications for the points of

the trajectory that need to be fixed for the new conditions.

This previous discussion motivates the evaluation approach

of policy reuse; this is presented alongside the results of

policy refinement with a simulated robotic arm.

Here, users had to correct and improve a trajectory to

reduce the error between the path printed by the simulated

arm and the reference symbol taken as ground truth. In con-

trast to the previous experiments of policy refinement, in

this case, the initial policy corresponds to a symbol that is

different from the desired ground truth, resulting in larger

initial errors.

Two symbols were explored for evaluating COACH for

policy reuse. First, a primitive for the letter ‘‘z’’ was used as

an initial policy for the task of drawing a ‘‘2’’. The second

was a ‘‘V’’ used for drawing an ‘‘U’’.

In Figure 13, the left-hand side shows the reference let-

ter (blue) used for recording the demonstrations for the ini-

tial policy, as well as the final policy (red), which was

subsequently obtained through the corrective process with

COACH. The right-hand side shows the same final policy

for the symbol ‘‘z’’ (red), which is used as the initial policy

for learning the symbol ‘‘2’’, and its baseline (blue).

In this experiment, the user has to provide the

corrective feedback during 10 episodes of the path execu-

tion. Figure 14 shows the evolution of the error through the

episodes of correction during policy execution. Before the

correction of the trajectories, the average error was 0.1717.

Unlike in the policy refinement experiments, in this case, at

the first episode, the users advised large changes of the pol-

icy, decreasing the initial error by about 90%. By the fourth

episode, the corrections obtained a 99% error reduction.

Moreover, it is possible to observe that, by the third epi-

sode of corrections, the error was reduced to a level lower

Table 2. Average error for each symbol trained using the real robot. The error is multiplied by 10�2.

Symbol Demos Corrections Corrections

(COACH) (more demos)

Error Error Decreased Error Decreased
error, % error, %

a 1.483 0.158 89.35 1.151 22.45
c 0.842 0.115 86.34 0.401 52.38
I 0.284 0.096 66.20 0.182 36.62
m 1.287 0.127 90.13 0.967 24.86
p 0.174 0.109 37.36 0.159 8.62
s 1.206 0.216 82.09 0.796 34.00

Fig. 12. Average of the corrections advised by the teachers for

correcting the letters.

Fig. 13. Initial trajectory for the transfer learning process: from

‘‘z’’ to ‘‘2’’.

12 The International Journal of Robotics Research 00(0)

than the one obtained by a policy derived from datasets of

five demonstrations; by the fifth episode, the percentage of

error reduction was around 68%, also with respect to the

policy obtained from demonstrations, which is a similar

error obtained in the experiments of policy refinement.

Figure 15 depicts the progress of the shape drawn for the

symbol ‘‘U’’, where the initial policy is for drawing a ‘‘V’’.

6.2. Learning with simultaneous corrective

advice and Policy Search

So far, trajectories were optimized purely by human feed-

back with COACH. In this section, we validate the combi-

nation of the Policy Search method with the human-

guidance-based exploration using COACH in well-known

problems in simulation and with a real robot.

In simulation, experiments were carried out using an

arm with varying DoF in a reaching a via-point task. In a

second set of experiments, the ‘‘ball in the cup’’ game was

learned using a real robot. In both tasks, we compared the

proposed interactive Policy Search strategy with a standard

Policy Search algorithm, in terms of the convergence rate

and final performance of the policies. Although the pro-

posed hybrid method can be implemented with different

Policy Search algorithms, in this experimental procedure

both the standard and the hybrid Policy Search method are

based on PI2 (Theodorou et al., 2010).

6.2.1. Learning multi-DoF via-point movement tasks. The

first set of experiments for the validation of the hybrid

approach is carried out by replicating the experiments

intended to compare Policy Search algorithms by

Theodorou et al. (2010), and that has been repeated by

Stulp and Sigaud (2012, 2013). The experiment involved

learning robot arm reaching movements (similar to human

reaching movements) with a total duration of 0.5 s. The

task has the condition of reaching a specific via-point at

t = 0:3 s, which is an approximation to hitting movements,

because they require time–space synchronization.

The learning task is evaluated in four different cases:

first, with a one-dimensional moving point (one DoF); the

next three cases are with planar arms of 2, 10, and 50 DoF,

respectively. The policies are represented with DMPs,

which compute the actions in the joint space for the multi-

DoF tasks. The experiments were executed first with the

original Policy Search algorithm PI2, and followed by our

hybrid approach, combining the Policy Search method and

the COACH variation for policies defined in the joint and

Cartesian space. Five users between 23 and 30 years old

participated in these experiments; two participants were

engineers while the others did not have a technical back-

ground. For every explored case, 20 runs of 500 roll-outs

were executed for each of the algorithms. The obtained

results are averaged and presented with their standard

deviation.

One DoF via-point task. In this task, the initial position of

the movement is yt0 = 0, and the DMP has the goal attrac-

tor g = 1 in order to finish the movement with yt500ms’1.

The cost function is rt = 0 for all time steps except in

t = 300ms, as shown in equation (7), where G is the via-

point set to G = 0:25

r300ms = 108(G � yt300ms)
2 ð7Þ

When participating in the learning process, the user

observes the movement execution and advises the binary

correction with a keyboard, similarly to the interaction in

the experiments of learning to write letters, but only using

two keys.

In Figure 16, the evolution of the cost function through

the roll-outs execution is shown. The human feedback

Fig. 14. Policy reuse; average error for learning symbols. Fig. 15. Trajectory correction progress for policy reuse: learned

primitive (red), symbol of reference (blue). (a) Policy without

corrections, (b) after one correction episode, (c) after five

episodes, (d) after ten episodes.

Celemin et al. 13

supporting the Policy Search improvement makes a signifi-

cant difference regarding the original Policy Search algo-

rithm. The convergence time is reduced by one order of

magnitude; the interactive Policy Search method is about

83% faster than the conventional Policy Search method.

Moreover, it is possible to see that the variance of the cost

function is decreased with the human guidance.

Multi-DoF via-point tasks. In these cases of simulated pla-

nar arms, the initial position is a = 0 for all the joint angles;

it sets a robot pose that is a straight line parallel to the hori-

zontal axis. The goal attractor xgoal results in a semicircular

configuration, as shown in Figure 17, where the end effec-

tor of a 10 DoF arm touches the y axis. The end effector is

moving in two-dimensional space, and has to pass through

the via-point G = (0:5, 0:5).
Figure 17(a) shows the trajectory of the arm with the ini-

tial policy of the learning process. In Figure 17(b), the end

effector is already passing through the via-point.

The objective of the cost function is to reduce the dis-

tance between the end effector and the via-point at t = 300

ms. Additionally, it also tries to reduce joints accelerations,

giving more priority to the joints that are closer to the

‘‘shoulder’’ of the arm, with D the number of DoF of the

robotic arm, as

rt = 108d(t � 300ms) � ((xt � 0:5)2 + (yt � 0:5)2)

+

PD
d = 1 (D + 1� d)(€ad, t)

2PD
d = 1 (D + 1� d)

ð8Þ

During the interactive learning process, the user advises

the corrections with binary corrections in both axes, as was

done for correcting the letters in the previous subsection. In

previous works, these experiments have been carried out

for learning policies in the joint space domain; nevertheless,

in this paper we approach the problem in both the Cartesian

and the joint domains.

The learning curves in Figures 18 to 20 show the

improvement achieved when the Policy Search method

takes the human corrective feedback into consideration.

The general trend shown in the curves is that the hybrid

agents converge faster than the standard Policy Search

method. In the cases of 10 and 50 DoF, the standard Policy

Search method learns faster in the Cartesian domain than

in the joint space, owing to the smaller search space. In

contrast, the interactive Policy Search method learns faster

when learning policies in joint space compared with when

learning policies represented in the end-effector domain.

Since the original problem is only explored with policies

in the joint space, and also because the best obtained poli-

cies are in that domain, the rest of the analysis is only

focused on the comparison between standard and interac-

tive Policy Search methods for learning policies in joint

space.

For the task with the two DoF arm the interactive Policy

Search method decreases the initial cost by 95% within the

first 50 roll-outs, and then maintains a slight rate of

improvement, reaching 97:9% by the 500th trial. In con-

trast, the conventional Policy Search method attains the

95% of cost reduction approximately after 210 trials, i.e.,

it is four times slower than the interactive Policy Search

Fig/ 16. Learning curve of the one degree of freedom (DoF) via-

point movement task. Average and 6 1 standard deviation of 20 runs.
PS: Policy Search.

Fig. 17. ‘‘Stroboscopic’’ visualization of the 10 DoF planar robot

arm movement: (a) simply toward the goal, (b) through the via-

point (green/red dot).

14 The International Journal of Robotics Research 00(0)

method. However, the conventional Policy Search method

keeps the error reduction, and outperforms the performance

of the interactive Policy Search method after 280 episodes,

reaching a total reduction of 99:2% with 500 episodes.

In the experiments with the 10 DoF arm, results are sim-

ilar, but with a greater difference between the cost of both

algorithms. The 95% reduction is obtained during the first

30 trials with the interactive Policy Search method, whereas

the conventional Policy Search method is 11 times slower

for achieving that performance and after 500 roll-outs

reaches the curve of the interactive Policy Search method.

For the last case, with 50 DoF, again the difference is

increased drastically, as 500 roll-outs are not enough for

the Policy Search agent to converge in this problem. Then,

at the end of the learning process, the Policy Search agent

only achieved a 86:9% decrease of the initial cost.

Conversely, the interactive Policy Search method achieved

a 95% reduction by approximately 25 episodes and con-

verged completely after the 60th episode.

In the previously presented results, the convergence of

the Policy Search method is affected when the number of

DoF is increased, owing to the curse of dimensionality. But

the convergence of the proposed interactive Policy Search

method shows a counterintuitive trend after the increase of

DoFs. Indeed, the fastest convergence obtained using

human feedback is in the case of the arm with 50 DoF. The

reason behind this effect has to do with the correspondence

problem between the corrective advice in the effector

domain, which is mapped to the joint space, where the pol-

icy is defined. When the human teacher advises a correc-

tion to the two DoF arm, in several cases the solution

found by the inverse kinematics model could be a joint

configuration very different from the previous one, or it

simply could not find a proper solution that matched the

end-effector position correction.

These problems cause policy updates that do not match

the user’s intention; therefore, the teacher’s correction

might harm the policy from time to time. Nevertheless,

when the task has more DoF, this problem diminishes. The

more redundant the arm is, the easier it is to shape the end-

effector trajectory with corrective advice. Although, for the

case of the two DoF arm, the corrective advice does not

work perfectly, the Policy Search method still benefits

strongly from the human guidance and reduces the conver-

gence time by 76%, compared with the conventional

Policy Search method.

As in the experiments of learning to write symbols, for

this case, the amount of corrections advised during the

Fig. 18. Learning curve of the two degrees of freedom (DoF)

via-point movement task. Average and 6 1 standard deviation of

20 runs.
PS: Policy Search.

Fig. 19. Learning curve of the 10 degrees of freedom (DoF) via-

point movement task. Average and 6 1 standard deviation of 20 runs.
PS: Policy Search.

Fig. 20. Learning curve of the 50 degrees of freedom (DoF) via-

point movement task. Average and 6 1 standard deviation of 20 runs.
PS: Policy Search.

Celemin et al. 15

episodes is presented in Figure 21. The curves show that

the users advised almost two corrections per episode at the

beginning, which is extremely less information than that

needed to demonstrate the complete trajectory, and also

easier for non-expert users, who probably cannot success-

fully demonstrate accurate movements at this speed. There

is a correlation between the reduction of the corrections

and the reduction of the cost in the learning curves; this is

because the users decrease the frequency of the corrections

when the performance is better, for instance with the arm

of 50 DoF, the learning curves in Figure 20 are the fastest,

whereas in Figure 21 it is possible to see that it needs the

least amount of corrections. These results show the poten-

tial of the proposed method for learning policies that need

to synchronize movements in time and space based on rein-

forcement learning, as it requires very few of this kind of

binary coarse correction.

6.2.2. Ball-in-a-cup game. The ball-in-a-cup game is a

challenging children’s game that requires accurate skills in

a relatively fast movement. The game uses a toy composed

of a ball attached to a cup with a string. The cup is held

with the hand of the player, or, in this case, attached to the

end effector of the robot. Initially, the ball hangs steady

below the cup, and the arm has to move the cup fast enough

to launch the ball high in the air to catch it during the

landing.

A reward function that represents the task objective

would be one that punishes a failed trial and rewards when

the ball falls into the cup. However, such a function is not

informative for efficient (or even feasible) learning in a

reinforcement learning setting. This problem was

approached by Kober and Peters (2009) with a more com-

plex function of the form

rt =
exp (� a(xc � xb)

2 � a(yc � yb)
2) if t = tc

0 otherwise

�

ð9Þ

using the Policy Search algorithm PoWER on a real robotic

arm Barrett WAM.

In this reward function, the ball and cup positions are

½xb, yb, zb� and ½xc, yc, zc�, respectively. The time t = tc is the

moment when the ball passes the rim of the cup with down-

ward direction; for all the other time steps t 6¼ tc, the func-

tion is rt = 0. This reward function was used by the Policy

Search method to improve an initial policy obtained from a

human demonstration.

In this work, we validate the proposed interactive Policy

Search method with this problem using a seven DoF

KUKA lightweight arm and an OptiTrack system, which

tracks the position of the ball and the cup, to compute the

reward function. Nevertheless, there are two important dif-

ferences with respect to the work of Kober and Peters

(2009). First, here the policy computes the trajectory of the

end effector instead of computing actions in the joint space;

secondly, we consider not only how to improve policies

learned from human demonstrations, but also how to learn

the policies from scratch; therefore, the reward function of

equation (9) is complemented in order to make it more

informative.

When the arm tosses the ball with a height lower than

the cup, equation (9) is completely uninformative, as it

always results in a zero. To lead the policy to a behavior

wherein equation (9) is applicable, we propose to comple-

ment this function with a term that rewards the height

obtained in those cases.

Then, when the ball does not reach the height of the cup

rth =
zb � zc

ls + lc
ð10Þ

is applied, where lc and ls denote the length of the cup and

the string, respectively, and t = th is the moment when the

ball reaches the maximum height. The sum of lc and ls is

the distance between the ball and the rim of the cup when

the ball is hanging motionless.

With this extension, the ‘‘ball-in-a-cup’’ task can be con-

sidered a composition of the sub-task ‘‘swinging the ball’’

with the objective of tossing the ball higher than the cup,

followed by the sub-task ‘‘catching the ball’, which aims to

move the arm for intercepting the ball with the cup. For

the computations of the learning algorithms, the reward

function is transformed into a cost function by multiplying

it by �1.

Unlike previous works that use DMPs for this problem,

we opted to represent the policy with the ProMP form of

equation (4), as in the experiments of Section 6.1, since the

convergence to goal attractors is not a necessary property

for this task. Again, PI2 is the base Policy Search algorithm

for these experiments.

Fig. 21. Average of the corrections advised by the teachers for

correcting the multi-DoF via-point movements.
DoF: degrees of freedom.

16 The International Journal of Robotics Research 00(0)

In the experimental procedure, for the learning pro-

cesses, cups of two different sizes were used to change the

difficulty of the task. The big cup (approximately twice the

diameter of the ball) was attached to the robot arm via a

stick, see Figure 1. The big cup also contained the small

cup (diameter approximately 1.3 times the ball’s diameter).

During learning processes, the human teacher sat in front

of the robot,with a perspective similar to that in Figure 1.

Most of the validation experiments were carried out with

the big cup. The standard Policy Search method was com-

pared with learning with human feedback in the interactive

Policy Search approach, along with the pure COACH

method, executing 10 runs for each approach. In this experi-

ment, two participants performed as teachers; one was an

author of this paper, and the other was a person without

technical experience. Since the learned policy computes

actions in the end-effector domain, the two interactive

methods are based on the complete COACH approach for

training motor primitives in the Cartesian space. A key-

board was used to advise the corrections by the user.

The first set of experiments started with a policy derived

from a kinesthetic demonstration and using the big cup.

The learning curves presented in Figure 22 show the large

difference between learning with the Policy Search and

interactive methods. The Policy Search method achieves

policies that catch the ball with the cup at around the 60th

trial, and keep improving until convergence after 90 trials.

In contrast, with COACH and the interactive Policy Search

method, the task is achieved after 10 and 15 episodes,

respectively. With COACH, the improvement stops very

quickly, because on observing a successful policy, a human

use reduces the effort for enhancing it, either because the

need for improvement is not particularly evident or

improvement is not necessary. For human teachers, it is

hard to infer corrections when suboptimal policies are close

to the optimal.

Conversely, at the beginning, the interactive Policy

Search method is slightly slower than the pure COACH

method, owing to the influence of some of the first roll-outs

in the update process. However, with the hybrid method,

the improvement continues until the 70th episode, reaching

the best average performance. This improvement results

from both sources of feedback, especially from the reward

function.

The learning curve of the Policy Search method reaches

and outperforms the cost obtained with COACH within

75–80 trials, i.e., it needs four times more trials. However,

within 100 trials, Policy Search does not attain the perfor-

mance obtained by interactive Policy Search.

For a second set of experiments, a more challenging sce-

nario was used to test the learning algorithms, wherein a

previous demonstration was not given by the human teacher

(learning from scratch). Therefore, a policy that did not

request any movement was set at the beginning of the learn-

ing process.

Since the arm was not able to toss the ball to the neces-

sary height in one shot, the robot needed to learn the

‘‘swinging the ball’’ sub-task, so that the ball would oscil-

late like a pendulum to obtain enough momentum. In that

first part of the learning process, the term in equation (10)

of the reward function plays an important role. When the

policy evolves, maximizing equation (10), it continues

learning to catch the ball with the cup using equation (9).

The results of these experiments are shown in Figure 23,

which shows that these interactive methods, based on vague

corrective advice, are more robust to the initial policy than

the standard Policy Search method. Both learning curves of

the methods based on corrective advice are basically the

same as the experiments for learning with an initial

Fig. 22. Convergence curves for learning the ‘‘ball-in-a-cup’’

game with an initial demonstration. Average and 6 1 standard

deviation of 20 runs.
PS, Policy Search.

Fig. 23. Convergence curves for learning ‘‘ball-in-a-cup’’ game

from scratch. Average and 6 1 standard deviation of 20 runs.
PS, Policy Search.

Celemin et al. 17

demonstration, but delayed by approximately five trials,

owing to the episodes intended to learn to swing the ball.

The convergence of Policy Search method is very sensi-

tive to the initial policy. In this scenario, the Policy Search

method takes about 170 episodes to attain successful poli-

cies. The very beginning of the learning process is very

slow because the random movements tend to diminish the

effect of the previous ones, even considering that the algo-

rithm implementations of this work use state-dependent

exploration, as in Kober and Peters (2009) and Theodorou

et al. (2010) for avoiding high-frequency actions.

Finally, the interactive Policy Search method keeps opti-

mizing the policy when the improvement is not evident for

the human teachers, outperforming the outcomes obtained

with only COACH after 30 trials.

Figure 24 shows the number of corrections advised dur-

ing the roll-outs. Like the conclusion obtained from the

experiments of the multi-DoF via-point movements, the

faster the cost reduction, the fewer advised corrections. In

this case, using only COACH requires less corrections than

the combined method; this is because the Policy Search

updating process makes the progress slightly slower, as

shown in Figures 22 and 23.

The set-up with the small cup was used to compare the

interactive algorithms while learning from scratch. In

Figure 25, the means of the learning curves based on

human feedback presented in Figure 23 were taken as a ref-

erence to be compared with the experiments of learning

using the small cup.

Since the cost function is the same, and basically takes

into account the distance of the ball to the center of the cup,

the size of the cup would not affect the cost evolution with

an algorithm based only on the computed reward for updat-

ing the policy, like the Policy Search algorithm. But in the

cases of the methods with human feedback, it is possible to

see that the cost is decreased faster in the set-up with the

small cup.

The previous counterintuitive observation is due to prob-

lems with the human perception, because for a teacher it is

hard to know whether the ball is falling into the cup exactly

through its center or not. The users may not be able to esti-

mate depth accurately, so when teachers are in front of the

robot, it is harder to make the ball to pass through the x and

y center of the big cup. With the smaller cup, the rim of the

cup itself is a visual aid. Then, when the ball hits the rim,

the user infers the correction based on that visual informa-

tion. Therefore, when the policy makes the ball fall into the

cup without touching the rim, it is already crossing its cen-

ter or very close to it.

With the small cup, the users could track the progress of

the policy better, so Figure 25 shows that users were

engaged with the learning process during more trials, e.g.,

when learning with only COACH and the big cup, the pol-

icy improvement stopped at roll-out 25, whereas with the

small cup they kept correcting during five more roll-outs.

In the previous experiments, the last part of the improve-

ment using the interactive Policy Search method is mostly

based on the reward function. However, this last experiment

with the small cup shows that in cases wherein the human

perception is enough to obtain insights about how good a

policy is when it is close to the optimum (rarely), with only

COACH is possible to achieve performances like the

obtained with the interactive Policy Search method.

Extension 4 shows the learning process of the task with the

proposed learning method.
4

7. Conclusions

In this paper, we have proposed the use of human correc-

tive feedback within the framework of Policy Search

Fig. 24. Average of the corrections advised by the teachers for

correcting the ‘‘ball-in-a-cup’’ movements.
PS, Policy Search.

Fig. 25. Comparison of learning curves for the ‘‘ball-in-a-cup’’

task, in the scenario of learning from scratch using the big and

small cups.
PS, Policy Search.

18 The International Journal of Robotics Research 00(0)

methods for learning movement primitives. First, the appli-

cation of pure corrective advice for adapting parametrized

trajectories during time execution was presented as a sim-

ple extension of the COACH framework. Secondly, this

extension was integrated in the exploration stage of stan-

dard Policy Search algorithms in order to combine both

sources of improvement: (1) random exploration and (2)

human corrections.

Schemes based on pure human corrective advice showed

that this type of relative correction with vague binary sig-

nals provide human teachers with the capability of modify-

ing trajectories while a robot executes it. The experiment of

writing symbols showed that users can obtain very good

shapes for the symbols with corrective feedback. The users

obtained better policies using corrective advice than they

did solely from demonstrations, which means that the appli-

cation of corrective advice renders it less necessary to have

users with a high level of expertise in the task and in using

human–robot interfaces.

The validation of the proposed interactive Policy Search

method showed outstanding results in two well-known

benchmark problems with simulated and real robots. The

learning curves showed that the proposed method speeds

up the convergence of Policy Search by between 4 and

more than 40 times. Human feedback is extremely power-

ful in accelerating the learning process at the beginning,

whereas the cost function has an important influence for

performing fine-tuning when suboptimal policies have a

good performance, but the users’ perception is not able to

determine how more improvement can be obtained through

corrections, e.g., when the policy already accomplishes the

task but the energy used can be further reduced.

The validation of the proposed hybrid learning scheme

showed that it is possible to learn complex skills, such as

those required to solve the‘‘ball-in-a-cup’’ task, without pre-

vious demonstrations. This method allows learning pro-

cesses to be started from scratch, i.e., initial static policies,

which incrementally receive the user’s corrective advice.

Little by little, the human teachers guide the robot to poli-

cies that satisfy their understanding about the fulfillment of

the task. Also, the results show that it is possible to learn

this skill based only on human corrections.

Moreover, the proposed strategy to cope with the corre-

spondence problem—matching the human feedback given

in the task domain with the policy in the joint space—has

shown that the method scales to high-dimensionality prob-

lems; in fact, in problems using multi-DoF planar arms, the

best results obtained are for the arm of most DoF.

The corrective feedback used in COACH is limited to

applications in which the teacher can observe the world,

evaluate, and advise corrections according to his or her

understanding of the task, and the dynamics of the environ-

ment. For problems with fast and complex transitions in

high-dimensional action spaces, the user would not always

be able to give appropriate advice, e.g., when learning to

control a drone; the learning curve of our proposed

interactive Policy Search would then be similar to one of

pure reinforcement learning, since few feedback signals

would be given by the teacher. Therefore, there is still a

need to extend these methods to approaches that transform

the problems to scenarios wherein the teacher can advise,

for instance, providing feedback in offline playback, or

simultaneous policy and model learning for carrying out

part of the training in simulation.

More future work is intended to extend this learning

scheme for policies parameterized with deep neural net-

works, so the advantages of the method proposed in this

work can be obtained for learning end-to-end policies.

Also, further research will consider how to learn reward

functions from human corrective feedback, in order to

apply reinforcement learning in situations wherein there is

no reward function available, and it is not possible to record

expert demonstrations.

Acknowledgments

The authors would like to thank Rui Silva, Manuela Veloso at

Carnegie Mellon University, and Dorothea Koert and Marco

Ewerton at Technische Universität Darmstadt for their construc-

tive and valuable discussions during the development of this

work.

Funding

This work was supported by the FONDECYT project (grant num-

ber 1161500), CONICYTPCHA/Doctorado Nacional/2015-

21151488, the European Community’s Seventh Framework

Programme (grant number FP7-ICT-2013-10) under grant agree-

ment 610878 (3rdHand), and the Japanese New Energy and

Industrial Technology Development Organization.

Notes

1. https://youtu.be/ptslNZdum2s?t=3

2. https://youtu.be/ptslNZdum2s?t=24

3. https://youtu.be/ptslNZdum2s?t=67

4. https://youtu.be/ptslNZdum2s?t=129

References

Akrour R, Schoenauer M and Sebag M (2011) Preference-based

policy learning. In: Gunopulos D, Hofmann T, Malerba D, et

al. (eds) Machine Learning and Knowledge Discovery in Data-

bases. ECML PKDD 2011. Berlin: Springer, pp. 12–27.

Akrour R, Schoenauer M, Sebag M, et al. (2014) Programming by

feedback. Proceedings of Machine Learning Research 32(2):

1503–1511.

Amershi S, Cakmak M, Knox WB, et al. (2014) Power to the peo-

ple: The role of humans in interactive machine learning. AI

Magazine 35(4): 105–120.

Argall BD, Browning B and Veloso M (2008) Learning robot

motion control with demonstration and advice-operators. In:

IEEE/RSJ international conference on intelligent robots and

systems (IROS), Nice, France, 22–26 September 2008, pp.

399–404. Piscataway, NJ: IEEE.

Celemin et al. 19

Argall BD, Chernova S, Veloso M, et al. (2009) A survey of robot

learning from demonstration. Robotics and Autonomous Sys-

tems 57(5): 469–483.

Argall BD, Sauser EL and Billard A (2011) Tactile Guidance for

Policy Adaptation, vol. 2. Boston, MA: Now Publishers Inc.

Breazeal C and Scassellati B (2002) Robots that imitate humans.

Trends in Cognitive Sciences 6(11): 481–487.

Canal G, Alenyà G and Torras C (2016) Personalization frame-

work for adaptive robotic feeding assistance. In: Agah A,

Cabibihan JJ, Howard A, et al. (eds) International Confer-

ence on Social Robotics. Social Robotics. ICSR 2016. Cham:

Springer, pp. 22–31.

Celemin C and Ruiz-del Solar J (2018) An interactive framework

for learning continuous actions policies based on corrective

feedback. Journal of Intelligent & Robotic Systems 95(1):

77–97.

Chernova S and Thomaz AL (2014) Robot learning from human

teachers. Synthesis Lectures on Artificial Intelligence and

Machine Learning 8(3): 1–121.

Christiano P, Leike J, Brown TB, et al. (2017) Deep reinforcement

learning from human preferences. arXiv arXiv:1706.03741.

Deisenroth MP, Neumann G and Peters J (2013) A survey on Pol-

icy Search for robotics. Foundations and Trends in Robotics

2(1–2): 1–142.

Ewerton M, Maeda G, Kollegger G, et al. (2016) Incremental imi-

tation learning of context-dependent motor skills. In: IEEE-

RAS 16th international conference on humanoid robots (huma-

noids), Cancun, Mexico, 15–17 November 2016, pp. 351–358.

Piscataway, NJ: IEEE.

Hansen N and Ostermeier A (2001) Completely derandomized

self-adaptation in evolution strategies. Evolutionary Computa-

tion 9(2): 159–195.

Ijspeert AJ, Nakanishi J and Schaal S (2002) Movement imitation

with nonlinear dynamical systems in humanoid robots. In:

IEEE international conference on robotics and automation

(ICRA), Washington, DC, USA, 11–15 May 2002, vol. 2, pp.

1398–1403. Piscataway, NJ: IEEE.

Jain A, Wojcik B, Joachims T, et al. (2013) Learning trajectory

preferences for manipulators via iterative improvement.

Advances in Neural Information Processing Systems (NIPS)

26: 575–583.

Khansari-Zadeh SM and Billard A (2011) Learning stable non-

linear dynamical systems with Gaussian mixture models. IEEE

Transactions on Robotics 27(5): 943–957.

Knox WB and Stone P (2009) Interactively shaping agents via

human reinforcement: The tamer framework. In: Fifth interna-

tional conference on knowledge capture, Redondo Beach, CA,

USA, 1–4 September 2009, pp. 9–16. New York, NY: ACM.

Kober J and Peters J (2009) Policy search for motor primitives in

robotics. Advances in Neural Information Processing Systems

(NIPS). 21: 849–856.

Kober J, Bagnell JA and Peters J (2013) Reinforcement learning

in robotics: A survey. The International Journal of Robotics

Research 32(11): 1238–1274.

Kober J, Wilhelm A, Oztop E, et al. (2012) Reinforcement learn-

ing to adjust parametrized motor primitives to new situations.

Autonomous Robots 33(4): 361–379.

Kormushev P, Calinon S and Caldwell DG (2010) Robot motor

skill coordination with em-based reinforcement learning. In:

IEEE/RSJ international conference on intelligent robots and

systems (IROS), Taipei, Taiwan, 18–22 October 2010, pp.

3232–3237. Piscataway, NJ: IEEE.

Maeda G, Ewerton M, Koert D, et al. (2016) Acquiring and gen-

eralizing the embodiment mapping from human observations

to robot skills. IEEE Robotics and Automation Letters 1(2):

784–791.

Mericxli Cx, Veloso M and Akin HL (2011) Task refinement for

autonomous robots using complementary corrective human

feedback. International Journal of Advanced Robotic Systems

8(2): 16.

Metzen JH, Fabisch A, Senger L, et al. (2014) Towards learning

of generic skills for robotic manipulation. KI-Künstliche Intel-

ligenz 28(1): 15–20.

Paraschos A, Daniel C, Peters J, et al. (2013) Probabilistic move-

ment primitives. Advances in Neural Information Processing

Systems (NIPS) 26: 2616–2624.

Peters J and Schaal S (2008) Reinforcement learning of motor

skills with policy gradients. Neural Networks 21(4):

682–697.

Peters J, Mülling K and Altun Y (2010) Relative entropy Policy

Search. In: Conference on artificial intelligence (AAAI).

Atlanta, GA, USA, 11–15 – July 2010, pp. 1607–1612. Menlo

Park, CA: AAAI Press.

Pongas D, Billard A and Schaal S (2005) Rapid synchronization

and accurate phase-locking of rhythmic motor primitives. In:

IEEE/RSJ international conference on intelligent robots and

systems (IROS), Edmonton, Canada, 2–6 August 2005, pp.

2911–2916. Piscataway, NJ: IEEE.

Schaal S, Ijspeert AJ and Billard A (2003) Computational

approaches to motor learning by imitation. Philosophical

Transactions of the Royal Society of London B: Biological

Sciences 358(1431): 537–547.

Schroecker Y, Ben Amor H and Thomaz AL (2016) Directing

Policy Search with interactively taught via-points. In: Interna-

tional conference on autonomous agents & multiagent systems,

Singapore, 9–13 May 2016, pp. 1052–1059. Richland, SC:

International Foundation for Autonomous Agents and Multia-

gent Systems.

Stulp F and Sigaud O (2012) Path integral policy improve-

ment with covariance matrix adaptation. arXivarXiv:

1206.4621.

Stulp F and Sigaud O (2013) Robot skill learning: From reinforce-

ment learning to evolution strategies. Paladyn, Journal of

Behavioral Robotics 4(1): 49–61.

Suay HB, Toris R and Chernova S (2012) A practical comparison

of three robot learning from demonstration algorithm. Interna-

tional Journal of Social Robotics 4(4): 319–330.

Theodorou E, Buchli J and Schaal S (2010) A generalized path

integral control approach to reinforcement learning. Journal of

Machine Learning Research 11: 3137–3181.

Thomaz AL and Breazeal C (2006) Adding guidance to interactive

reinforcement learning. In: Proceedings of the Twentieth Con-

ference on Artificial Intelligence (AAAI).

Thomaz AL and Breazeal C (2007) Asymmetric interpretations of

positive and negative human feedback for a social learning

agent. In: 16th IEEE international symposium on robot and

human interactive communication (RO-MAN), Jeju, South

Korea, 26–29 August 2007, pp. 720–725. Piscataway, NJ:

IEEE.

20 The International Journal of Robotics Research 00(0)

Thomaz AL, Hoffman G and Breazeal C (2006) Reinforcement

learning with human teachers: Understanding how people want

to teach robots. In: 15th IEEE international symposium on

robot and human interactive communication (RO-MAN), pp.

352–357. Piscataway, NJ: IEEE.

Appendix: Index to multimedia extensions

Archives of IJRR multimedia extensions published prior to

2014 can be found at http://www.ijrr.org, after 2014 all

videos are available on the IJRR YouTube channel at http://

www.youtube.com/user/ijrrmultimedia

Table of multimedia extensions.

Extension Media type Description

1 Video User interface for recording
demonstrations

2 Video Learning to write characters with a
simulated robot arm

3 Video Learning to write characters with a
real robot arm

4 Video The ‘‘ball-in-a-cup’’ game

Celemin et al. 21

