
Multi-agent pathfinding with waypoints using Branch-Price-and-Cut

Andor C. Michels1 ,
Supervisors: Jesse Mulderij1 , Mathijs de Weerdt1

1Delft University of Technology

Abstract

In the multi-agent pathfinding (MAPF) prob-
lem, agents have to traverse a graph to a
goal location without running into each other.
Currently, the Branch-and-Cut-and-Price-MAPF
(BCP-MAPF) algorithm is the state-of-the-art al-
gorithm for solving MAPF problems, which uses
Branch-Price-and-Cut (BPC) to solve a linear min-
imization problem. The multi-agent pathfinding
with waypoints (MAPFW) problem is a variation
on the classical MAPF problem. MAPFW can be
useful for e.g. navigating warehouses and schedul-
ing trains. However, little to no research exists on
MAPFW. This research proposes two extensions
to the BCP-MAPF algorithm to incorporate way-
points and reviews their performance.

1 Introduction
Multi-agent pathfinding (MAPF) is the problem of multiple
agents moving on a graph without occupying the same vertex
or edge as another agent. Solving this problem can be very
important for e.g. automated warehouses [28], airport logis-
tics [21] and train scheduling [1].

Numerous algorithms exist with different areas of appli-
cation. The current state-of-the-art algorithms for the basic
MAPF problem are Conflict-Based Search (CBS) [25] and
Branch-and-Cut-and-Price (BCP) [18, 17]. However, in most
real-life situations, agents are required to do more than move
to a certain location. For example, the multi-agent pickup
and delivery (MAPD) problem [19] assigns one ’waypoint’
to each agent, which has to be passed on its way to the end
location. The MAPD problem can be generalized to an arbi-
trary amount of waypoints such that the agent can do multiple
tasks or pick up multiple items and bring them to a location
in a warehouse scenario. We will call this extension multi-
agent pathfinding with waypoints (MAPFW). Despite its use-
fulness, little to no research has been done on this extension
of MAPF.

The aim of this research is to find how the BCP MAPF
algorithm can be effectively extended to include waypoints.
We are looking specifically to BCP because it is the current
state algorithm for solving MAPF problems.

This paper provides: (1) an analysis of extending BCP-
MAPF with waypoints; (2) two possible algorithms for solv-
ing the MAPFW problem using Branch-Price-and-Cut and;
(3) experiments that compare the performance of said algo-
rithms on four different grid-based maps.

2 MAPFW problem statement
This section will define the MAPFW problem. Let G =
(V,E) be an undirected graph containing a set of vertices V
and a set of edgesE ⊂ V ×V . LetA be a set of agents a, with
a start location sa ∈ V , an end location ga ∈ V and a set of
waypoints Wa ⊂ V . At every timestep t ∈ Z≥, an agent can
do one of two actions: either move to a neighbouring vertex,
or stay on its current vertex.

A solution to the MAPFW problem has every agent a start-
ing on vertex sa at t = 0, moving according to the previously
described actions, and stopping at vertex ga, while passing
every waypoint w ∈ Wa at least once. At no timestep t
two agents may cross the same edge (edge conflict) and at
no timestep t two agents may be at the same vertex (vertex
conflict). For every agent a, the sequence of actions is the
path pa with cost c(pa), equal to the amount of actions. An
optimal solution to the MAPFW problem is a solution where∑
a∈A

c(pa) is minimised.

3 Background
This section summarizes the literature on different subjects
used throughout this research. First, Linear Programming and
Integer Linear Programming are introduced, followed by the
solving technique Branch-Price-and-Cut. Finally, a Linear
Programming formulation of the traveling salesman problem
is provided.

3.1 LP and ILP
In Linear Programming (LP), a linear function, subject to cer-
tain linear constraints, is minimized. A simple example of a
LP problem is the following:

minimize cTx
subject to Ax ≤ b,

x ≥ 0

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

Solving a linear program can be done in polynomial time
[16], but it is often solved using the exponential simplex
method [22], since it’s more efficient in practice.

In Integer Linear Programming (ILP), a linear program is
solved while fixing the variables to integers. In contrast with
LP, ILP is NP-complete.

However, because of the broad applicability of ILP [13, 15]
and the large amount of research done on ILP [8, 7, 2], there
exist very efficient industrial solvers. Therefore, it can be
useful to reduce an NP-hard problem to an ILP program.

3.2 BPC
Branch-Price-and-Cut (BPC) is a technique for solving ILP
problems.

In the early research on BPC, it was named Branch-and-
cut-and-Price (BCP). Desrosiers et al. [11] have proposed
to change the name to Branch-Price-and-Cut, as it better re-
flects the order of operations. This naming scheme has been
adopted by several researchers [9, 12], but the old naming
scheme has been used by the creators of the BCP-MAPF al-
gorithm [18, 17]. In this paper, we will use BPC for the solv-
ing technique, and BCP-MAPF for the MAPF algorithm in-
vented by Lam et al. [18, 17].

BPC contains 3 main components: the master problem, the
pricer and the separators.

In the master problem, the linear program is solved with a
subset of the constraints. When a fractional solution is found,
the algorithm branches and creates a new constraint such that
a fractional variable is either rounded up or down. Then the
new linear program is solved again. This process is repeated
until an integer solution is found.

Because the search space of ILP problems is generally very
large, it can be useful to limit the number of variables in the
master problem. For the MAPFW problem, time can be in-
finitely expanded, making the search space infinitely large,
meaning that limiting the number of variables is necessary.
The pricer generates variables that could result in valid so-
lutions for the master problem that could be better than the
current solutions. This way a lot of irrelevant, unused vari-
ables do not have to be taken into account. This is generally
referred to as column generation. Since the relevant search
space is often exponential in size, the set of variables needs
to be expanded a lot. Therefore, the pricer must be relatively
efficient.

When branching, two branches are created that can in turn
branch. Often, a lot of these branches need to be partially
searched in order to verify an optimal solution. The con-
straints that are necessary for the problem are referred to
as problem constraints, whereas the constraints that are not
strictly necessary are called redundant constraints. Redun-
dant constraints can be useful by cutting away extra fractional
solutions.

When the master problem has found a solution that does
not adhere to one of the redundant constraints, the separators
will add one of the constraints, a ’cut’, to the master problem.
This is generally referred to as row generation.

Not all branches have to be fully searched. The current best
sub-optimal solution can be used as an upper bound, since

any solution with a higher cost is less optimal. This greatly
reduces the size of the search space.

3.3 BCP-MAPF
BCP-MAPF is a reduction of MAPF to an ILP problem that
can be effectively solved using BPC [18, 17]. It works by
eliminating conflicts between different agents. BCP-MAPF
is optimal and complete. This part will describe the BCP-
MAPF algorithm in terms of the elements of BPC.

For every agent a ∈ A and every path p ∈ Pa, define cp ∈
R≥ as the constant cost of path p, and λp as a variable that
represents the extent to which a path is chosen. The master
problem is represented as follows:

minimize
∑
a∈A

∑
p∈Pa

cpλp

subject to
∑

p∈Pa

λp ≥ 1 ∀a ∈ A

λp ≥ 0 ∀a ∈ A, p ∈ Pa

In this problem, λp will always be between 0 and 1 since it
cannot be lower and selecting multiple paths per agent will
never minimize the cost function.

In the MAPF problem, 2 paths cannot cross the same vertex
or the same edge at the same time. Therefore 2 problem con-
straints are added to the problem. Let Gt = (V t, Et) be the
time-extended graph of G = (V,E), where v = (l, t) ∈ V t

represents location l ∈ V at time t ∈ Z≥. If e ∈ Et is the
edge from (l1, t) to (l2, t+ 1), then e′ ∈ Et is the edge from
(l2, t) to (l1, t + 1). To enable staying in place, for every
vertex v = (l, t), there is an edge e from (l, t) to (l, t+ 1).

For every agent a ∈ A, every path p ∈ Pa and every vertex
v ∈ V t, define xpv ∈ {0, 1} as a constant indicating if path
p uses vertex v. For every agent a ∈ A, every path p ∈ Pa

and every edge e ∈ Et, define ypv ∈ {0, 1} as a constant
indicating if path p uses edge e.

Vertex conflicts caused by 2 paths using the same vertex
can be resolved by allowing only one of the paths. This is
done with the following linear constraint:∑

a∈A

∑
p∈Pa

xpvλp ≤ 1 ∀v ∈ V t

Similarly, edge conflicts caused by 2 paths using the same
edge can be resolved with a linear constraint:∑

a∈A

∑
p∈Pa

(ype + ype′)λp ≤ 1 ∀e ∈ Et

BCP-MAPF contains 7 redundant constraints that greatly re-
duce the execution time of the algorithm. These redundant
constraints are also used in the MAPFW-algorithms described
in this paper. However, since they do not specifically add to
the extension with waypoints, they are not further discussed.
More information on these constraints can be found in [18]
and [17].

The pricer generates single-agent shortest paths for all
agents on the time-extended graph with edge weights adjusted
relative to conflicts found in the master problem.

2

3.4 TSP
The Traveling Salesman Problem (TSP) is the problem of
finding the shortest route through all points in a set. Several
well-documented ILP formulations exist for the TSP prob-
lem, one of which is the Miller-Tucker-Zemlin (MTZ) for-
mulation [20].

Let n be the number of nodes. Let xij be the edge from
vertex i ∈ {1, ..., n} to vertex j ∈ {1, ..., n} and let dij be the
cost of edge xij . Take ui as arbitrary non-negative integers.
The MTZ model is represented as follows:

minimize
∑∑

0≤i6=j≤n
dijxij

subject to
n∑

i=0
i6=j

xij = 1 ∀j ∈ {1, ..., n}

n∑
j=0
j 6=i

xij = 1 ∀i ∈ {1, ..., n}

ui − uj + nxij ≤ n− 1 1 ≤ i 6= j ≤ n
xij ∈ {0, 1} ∀i, j ∈ {1, ..., n}
ui ∈ Z≥ ∀i ∈ {1, ..., n}

A lot of research exists on tightening the relations and finding
cutting planes for the MTZ formulation [3, 4, 10, 24, 26].
There also exist specific branch-and-cut algorithms for time-
dependent variations on MTZ [6].

4 Analysis
The extension of the MAPF-problem with waypoints can be
seen as a variation of TSP with a start and end location that
are not necessarily the same. Therefore, to find a valid exten-
sion of BCP-MAPF with waypoints, we have to find where to
solve this variation of TSP.

In the original BCP-MAPF algorithm, two large sub-
problems are solved. In the pricer, valid paths are found. In
the ILP formulation, these paths are used to find an optimal
solution. Solving TSP can be done in either of these sub-
problems.

This section analyzes the MAPFW problem by discussing
important aspects found when extending BCP-MAPF with
waypoints in certain ways: first by merging the MTZ formu-
lation in the master problem, second by using TSP to find the
optimal order of waypoints.

4.1 BCP-MAPF with MTZ
Since the minimization problems of BCP-MAPF and MTZ
are similar, the two models can be combined in a single
model.

Take the same definitions as the BCP-MAPF model. For
every agent a ∈ A, define Wa ⊂ V as the set of waypoints
agent a has to visit, and define sa ∈ V and ga ∈ V as the start
and goal vertices of agent a. For every agent a ∈ A, define
pvw ∈ Pa as the path from v to w, where v ∈ W ∪ s and
w ∈W ∪g, and define λvw = λpvw

as a variable representing
to what extent pvw is chosen. For every agent a ∈ A and
every path p ∈ Pa, define up as an arbitrary positive integer.
The MAPFW problem can be modelled as follows:

minimize
∑
a∈A

∑
p∈Pa

cpλp

subject to:
λvw ≥ 0 ∀a ∈ A, pvw ∈ Pa∑
v∈Wa∪s

v 6=w

λvw ≥ 1 ∀w ∈Wa ∪ g∑
w∈Wa∪s

w 6=v

λvw ≥ 1 ∀v ∈Wa ∪ s

uv − uw + (|Wa|+ 2)λvw ≤ |Wa|+ 1 ∀v∈Wa∪s,
∀w∈Wa∪g

λvw ∈ {0, 1} ∀v∈Wa∪s,
∀w∈Wa∪g

uv ∈ Z≥ ∀v ∈Wa ∪ s ∪ g∑
a∈A

∑
p∈Pa

xpvλp ≤ 1 ∀v ∈ V∑
a∈A

∑
p∈Pa

(ype + ype′)λp ≤ 1 ∀e ∈ E

However, such a formulation has several significant draw-
backs. The first drawback is that the pricer has to gener-
ate paths to and from every waypoint. Note that the cost
of a path in the MAPF problem depends on the starting
time, since different starting times result in different conflicts
on the graph. MTZ can theoretically work with this time-
dependency. However, this also implies that for every way-
point, a path needs to be generated for each possible starting
time, i.e. all possible end times of previous paths. This results
in a worst-case time complexity for the pricer of O(|W |!).
Similarly, the space complexity will be O(|W |!), since ev-
ery path is passed to the master problem to verify whether it
is part of an optimal solution. As noted earlier, the pricer is
called frequently and should therefore be relatively efficient.
This means that generating segments of the final path in the
pricer is not viable.

g2 w1
a1

a2

g1

Figure 1: Example of a situation where a concatenation of shortest
paths does not work. Both agents a1 and a2 need to move to goal
locations g1 and g2 respectively, but agent a1 had to pass waypoint
w1 before stopping at g1.

The second drawback is that the shortest path is not neces-
sarily the concatenation of shortest paths from point to point.
When separate paths are created, a conflict in a certain path
does not impact a previous path. In this way, the shortest path
to a waypoint can create a situation in which the optimal so-
lution is no longer reachable.

Such a situation is demonstrated in Figure 1. Agent a1
moves to waypoint w1 before going to goal g1. Agent a2
moves directly to g2. While moving to w1, agent a1 will not
get a conflict when using the shortest path. Therefore, the
shortest path to w1 generated by the pricer will always stay
the same. When moving from w1 to g1, there is a conflict
with agent a2. This will eventually result in agent a2 moving
back to its start location so a1 can pass to g1, since there is no
other possibility. However, the optimal solution has a1 first

3

step aside to g1 to let a2 pass, before going to w1. This means
the algorithm is not optimal.

Both these problems can theoretically be removed by im-
plementing the shortest path problem in the master prob-
lem. ILP formulations exist for time-continuous shortest path
problems [23]. However, with the search space being every
possible vertex in time and without easy pricing the variables,
the algorithm will get a significant time-hit when running on
larger instances.

To summarize, we derive three important points:

• Generating path segments in the pricer and combining
them in the ILP formulation is not viable.

• The shortest path through waypoints is not the concate-
nation of shortest paths from waypoint to waypoint.

• Solving the pathfinding in the ILP formulation is not vi-
able.

Combining these aspects shows that solving TSP in the ILP
formulation is not efficient, meaning that solving TSP in the
pricer shows more promise.

4.2 Waypoint order using TSP
Solving the shortest path algorithm with ordered waypoints
on a time-extended graph can easily be done with a variation
of the A* algorithm by using the heuristic to steer the agent
to the next waypoint and keeping track of which waypoints
have been visited.

Therefore it can be useful for the pricer to first compute the
best order of waypoints using a traditional TSP algorithm and
second compute the shortest path through the ordered way-
points. This way, the problem of the shortest path not being
the concatenation of shortest paths, as described in section
4.1, is avoided.

However, TSP would calculate the order of waypoints for
the shortest concatenation of shortest paths, which is not nec-
essarily the same order as the general shortest path through
the waypoints.

g2 w1a

w1b

a1
a2

g1

Figure 2: Example of a situation where determining the order of
waypoints using TSP does not work. Both agents a1 and a2 need
to move to goal locations g1 and g2 respectively, but agent a1 had
to pass waypoints w1a and w1b in arbitrary order before stopping at
g1.

An example is demonstrated in Figure 2. Initially, the
shortest paths are a1 → w1a → w1b → g1 and a2 → g2.
When agent a1 moves from w1a to w1b, there is a conflict
with agent a2. Two situations are created: (1) agent a2 waits
at its starting location so a1 can pass, similar to what happens
in Figure 1, resulting in a total cost of 11 + 11 = 22; (2)
Agent a1 waits out the conflict and moves towards w1b later,
resulting in TSP determining that the order a1 → w1b →

w1a → g1 is faster, resulting in a total cost of 15 + 5 = 20.
The branching algorithm will eventually choose the latter op-
tion because of its lower cost. However, the optimal cost with
path a1 → w1a → w1b → g1 and a2 → g2 is 13 + 5 = 18, if
agent a1 starts by moving up and down to let agent a2 pass.
Therefore, this is not an optimal algorithm.

The main takeaway of this part is that the previous obser-
vation of the sequence of shortest paths not being the overall
shortest path, also has to be taken into account when finding
the optimal order of waypoints.

This problem can be mitigated by always calculating paths
from the start. A TSP solution can iteratively add waypoints
to find the optimal order while calculating paths with the so
far constructed order. More on this solution can be found in
section 5.2.

5 BCP-MAPFW
In this section, 2 extensions of BCP-MAPF with waypoints
are proposed. First, an algorithm that solves TSP in A* using
a heuristic that steers agents towards all waypoints. Second,
an algorithm that uses the TSP principle shown in section 4.2.

5.1 BCP-MAPFW-A*
BCP-MAPFW-A* is an optimal and complete algorithm for
MAPFW that uses A* in the pricer to find shortest paths with
multiple waypoints on the time-extended graph. The A* al-
gorithm is a variation on the A* algorithm from the original
BCP-MAPF algorithm that uses a heuristic to steer the agent
towards the waypoints. This way, the complete paths are gen-
erated in the pricer, avoiding all problems found in section
4.1.

Define t and g as the current and goal locations respec-
tively. Let W ′ be the set of yet unvisited waypoints and let
dxy be the expected cost of going from location x to location
y. There are generally only a handful of y locations for which
the distance needs to be calculated, specifically the waypoints
and the goal location. Therefore, this can be pre-computed
with a floodfill to any x ∈ G. The heuristic function h is:

h(t, g,W) =

h0(t, g,W), if |W | = 0

h1(t, g,W), if |W | = 1

h2(t, g,W), if |W | ≥ 2
h0(t, g,W) = dtg
h1(t, g,W) = dtw + dwg

h2(t, g,W) = min
w1∈W ′

(dtw1
+

min
w2∈W ′−w1

dw2g+∑
w3∈W ′−w1

min
w4∈W ′

dw3w4
)

This heuristic contains three situations: (1) There are no way-
points left to go to; (2) There is 1 waypoint left to go to; (3)
There are multiple waypoints to go to. In case (1), the heuris-
tic leads directly towards the goal location, similar to a classic
A* heuristic. In case (2), the heuristic leads first to the way-
point, then to the goal. As long as the expected costs are opti-
mistic, it is trivial to show that these heuristics are optimistic.
Case 3 can be interpreted as: Take a waypoint w1 ∈W ′. The

4

heuristic consists of the cost to w1, the lowest cost from any
waypoint in W ′ −w1 to the goal and the sum of lowest costs
from any waypoint inW ′ to every waypoint inW ′−w1. Take
the minimum of all w1 ∈W ′.

The cost to w1 is the minimum cost needed to go to that
waypoint. The lowest cost from any waypoint in W ′ − w1

to the goal is the minimum cost needed to go to the goal,
knowing that w1 is not the last waypoint visited. The lowest
cost from any waypoint in W ′ to every waypoint in W ′ −
w1 is the minimum cost needed to visit that waypoint. The
minimum of the sum of these costs will always be optimistic.

Because all heuristics are optimistic, the A* algorithm is
optimal.

5.2 BCP-MAPFW-TSP
BCP-MAPFW-TSP is an optimal and complete algorithm for
MAPFW that uses a variation on TSP to find the optimal or-
der of waypoints in the pricer. The TSP algorithm uses the
principle shown in section 4.2.

Data: start s, goal g, waypoints W
Result: the shortest path from s to g through every

waypoint in W
if |W| = 0 then

return A*({s, g})
PriorityQueue q;
q.push({s}, h(s, g, W));
while q is not empty do

(order, path) = q.pop;
if |W| = |order|+ 1 then

q.push(order + g, A*(order + g));
else if |W| = |order|+ 2 then

return path;
else

foreach w ∈ W - order do
q.push(order + w, A*(order + w) + h(w, g,

W - order));
end

end
return no path;
Algorithm 1: TSP algorithm for BCP-MAPFW-TSP

The algorithm uses an A* implementation with ordered
waypoints that uses the heuristic function hA∗ = dsw1

+
dw1w2

+ · · · + dwng to steer from one waypoint to the next.
Here dxy is pre-computed using a floodfill, similar to the pre-
vious algorithm. This is a relatively efficient way of finding
the shortest path through ordered waypoints.

The TSP algorithm itself is heavily based on a standard A*
algorithm where the cost to each waypoint is re-calculated ev-
ery cycle. The pseudocode for the TSP variation can be found
in Algorithm 1. The h function referred to in the algorithm is
the heuristic function from section 5.1.

Because of the principle shown in section 4.2, this al-
gorithm generates the shortest path through the waypoints,
meaning that this MAPFW solution is optimal. However,
the constant re-calculating of the whole path can cause a
performance-hit.

6 Experiments
The experiments compare the proposed MAPFW algorithms
to each other and explore strengths and weaknesses.

Both BCP-MAPFW algorithms are implemented with
SCIP [14] as BPC solver and CPLEX as LP solver.
Both are single-threaded. The experiments are run on an
AMD Ryzen 1700x at 3.4GHz. The algorithms will be
benchmarked on 4 different grid-based maps, available on
mapfw.nl1: ’random16x16’ (16x16), ’cohenwh’ (53x22),
’den206d’ (190x50), ’lak503d’ (194x194). The maps are in
order of increasing size. The first map is a map filled with
random obstacles, randomly generated for each run. The sec-
ond map is a model of a warehouse by [5]. The last two are
benchmark maps from the moving AI lab repository2 [27].
All benchmarks are generated and collected by the MAPFW
benchmarking server.

The experiment is divided in two parts. First, both algo-
rithms are run on all maps with 5 waypoints and a varying
amount of agents, with randomized locations and a time limit
of 1 minute. For each number of agents, 50 runs are done,
until no more solutions are found within the time limit.

Second, the first experiment is repeated, but with 5 agents
and a varying number waypoints.

7 Results
Figure 3 and 4 show the results from the experiments as the
percentage of instances solved within the time limit. From
these graphs alone, three interesting observations can be
made.

First, BCP-MAPFW-A* is heavily influenced by the size
of the map. It outperforms BCP-MAPFW-TSP in the two
smallest maps, while on lak503d, it is significantly outper-
formed by BCP-MAPFW-TSP. This is presumably because
of the lack of direction that the heuristic function can give
when waypoints are in opposite directions, in contrast to the
directed heuristic of BCP-MAPFW-TSP. BCP-MAPFW-A*
outperforms BCP-MAPFW-TSP on smaller maps because of
the inefficiency of re-calculating intermediate paths.

Second, the performance of BCP-MAPFW-TSP on ran-
dom16x16 and lak503d is similar, which is probably corre-
lated to the lack of corridors, parts where agents cannot pass
each other, which are more present on cohenwh and den206d.

Third, BCP-MAPFW-TSP cannot solve instances with
more than 9 waypoints, regardless of the map, while BCP-
MAPFW-A* is more dependable on the map and can solve
instances with upto 17 waypoints on random16x16. This is
because when waypoints are close together, BCP-MAPFW-
A* can steer in their general direction, while BCP-MAPFW-
TSP treats them separately. The inefficiency of re-calculating
intermediate paths also has an impact here.

When the time limit is reached and the algorithm has found
a (sub-optimal) solution, this solution is returned. In gen-
eral, this solution is relatively close to an optimal solution,
sometimes returning an optimal solution. Because of the lack

1https://mapfw.nl/
2https://movingai.com/

5

https://mapfw.nl/
https://movingai.com/

2 5 10 15 20 25

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

random16x16

A*
TSP

2 5 10

0%

20%

40%

60%

80%

100%

Agents

cohenwh

2 5 10 15

0%

20%

40%

60%

80%

100%

Agents

den206d

2 5 10 15 20

0%

20%

40%

60%

80%

100%

Agents

lak503d

Figure 3: Percentage solved per number of agents. Higher is better.

2 5 10 15

0%

20%

40%

60%

80%

100%

Waypoints

Pe
rc

en
ta

ge
So

lv
ed

random16x16

A*
TSP

2 5 10 15

0%

20%

40%

60%

80%

100%

Waypoints

cohenwh

2 5

0%

20%

40%

60%

80%

100%

Waypoints

den206d

2 5

0%

20%

40%

60%

80%

100%

Waypoints

lak503d

Figure 4: Percentage solved per number of waypoints. Higher is better.

of optimal solutions found by other algorithms in these in-
stances, no exact significant numbers can be published on the
performance of these sub-optimal solutions.

8 Responsible research
To improve research repeatability, this section contains infor-
mation of this researches research environment.

The code used in this research is available on github3, as is
the source code of the original BCP-MAPF algorithm4. Both
CPLEX and SCIP are freely available with an academic li-
cense. All benchmarks and benchmark results are available
online5.

9 Future research
One way of extending BCP-MAPF that has not been dis-
cussed in this paper is dynamically adding orders of way-
points to the pricer as the minimum cost of all paths becomes
larger than the minimum cost of other orders. This way, the
number of paths in the master problem is limited to only the
paths that could result in an optimal solution, and the pricer
can run the relatively efficient ordered waypoint A* algorithm
that is used in section 5.2. A set of N best solutions to the TSP

3https://github.com/ACMichels/bcp-mapfw
4https://github.com/ed-lam/bcp-mapf
5https://mapfw.nl/

problem can be solved using a variation of the TSP algorithm
in the same section.

10 Conclusion
This paper provided two algorithms based on BCP-MAPF for
solving the multi-agent pathfinding with waypoints problem,
with a comparison between the two algorithms. In conclu-
sion, BCP-MAPFW-A* works best on smaller maps and is
more scalable to more waypoints, while BCP-MAPFW-TSP
is better scalable to larger maps but has a tighter limit on the
number of waypoints.

11 Acknowledgements
I thank Jesse Mulderij for the invaluable knowledge he pro-
vided. Without it, this project would not have been finished
in the time that it has. I also thank Noah Jadoenathmisier and
Stef Siekman for setting up the benchmarks on the bench-
marking server.

References
[1] D. Atzmon, A. Diei, and D. Rave. Multi-train path find-

ing. In Twelfth Annual Symposium on Combinatorial
Search, 2019.

[2] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W.
Savelsbergh, and P. H. Vance. Branch-and-price: Col-

6

https://github.com/ACMichels/bcp-mapfw
https://github.com/ed-lam/bcp-mapf
https://mapfw.nl/

umn generation for solving huge integer programs. Op-
erations research, 46(3):316–329, 1998.

[3] T. Bektaş and L. Gouveia. Requiem for the miller–
tucker–zemlin subtour elimination constraints? Eu-
ropean Journal of Operational Research, 236(3):820–
832, 2014.

[4] G. Campuzano, C. Obreque, and M. M. Aguayo. Ac-
celerating the miller–tucker–zemlin model for the asym-
metric traveling salesman problem. Expert Systems with
Applications, 148:113229, 2020.

[5] L. Cohen, S. Koenig, S. Kumar, G. Wagner, H. Choset,
D. Chan, and N. Sturtevant. Rapid randomized restarts
for multi-agent path finding: Preliminary results. In
Proceedings of the International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS),
pages 1909–1911, 2018.

[6] J.-F. Cordeau, G. Ghiani, and E. Guerriero. Analysis
and branch-and-cut algorithm for the time-dependent
travelling salesman problem. Transportation science,
48(1):46–58, 2014.

[7] R. J. Dakin. A tree-search algorithm for mixed in-
teger programming problems. The computer journal,
8(3):250–255, 1965.

[8] G. B. Dantzig and P. Wolfe. Decomposition principle
for linear programs. Operations research, 8(1):101–
111, 1960.

[9] G. Desaulniers, J. G. Rakke, and L. C. Coelho.
A branch-price-and-cut algorithm for the inventory-
routing problem. Transportation Science, 50(3):1060–
1076, 2016.

[10] M. Desrochers and G. Laporte. Improvements and
extensions to the Miller-Tucker-Zemlin subtour elim-
ination constraints. Operations Research Letters,
10(1):27–36, 1991.

[11] J. Desrosiers and M. E. Lübbecke. Branch-price-and-cut
algorithms. Wiley encyclopedia of operations research
and management science, 2010.

[12] F. G. Engineer, K. C. Furman, G. L. Nemhauser, M. W.
Savelsbergh, and J.-H. Song. A branch-price-and-cut al-
gorithm for single-product maritime inventory routing.
Operations Research, 60(1):106–122, 2012.

[13] C. A. Floudas and X. Lin. Mixed integer linear pro-
gramming in process scheduling: Modeling, algorithms,
and applications. Annals of Operations Research,
139(1):131–162, 2005.

[14] A. Gleixner, M. Bastubbe, L. Eifler, T. Gally, G. Gam-
rath, R. L. Gottwald, G. Hendel, C. Hojny, T. Koch,
M. E. Lübbecke, S. J. Maher, M. Miltenberger,
B. Müller, M. E. Pfetsch, C. Puchert, D. Rehfeldt,
F. Schlösser, C. Schubert, F. Serrano, Y. Shinano, J. M.
Viernickel, M. Walter, F. Wegscheider, J. T. Witt, and
J. Witzig. The SCIP Optimization Suite 6.0. Technical
report, Optimization Online, July 2018.

[15] I. E. Grossmann and J. Santibanez. Applications of
mixed-integer linear programming in process synthe-
sis. Computers & Chemical Engineering, 4(4):205–214,
1980.

[16] L. G. Khachiyan. A polynomial algorithm in linear pro-
gramming. In Doklady Akademii Nauk, volume 244:5,
pages 1093–1096. Russian Academy of Sciences, 1979.

[17] E. Lam and P. L. Bodic. New valid inequalities in
branch-and-cut-and-price for multi-agent path finding.
In Proceedings of the International Conference on Au-
tomated Planning and Scheduling (ICAPS), page (in
print), 2020.

[18] E. Lam, P. L. Bodic, D. Harabor, and P. Stuckey.
Branch-and-cut-and-price for multi-agent pathfinding.
In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), page (in print), 2019.

[19] H. Ma, J. Li, S. Kumar, and S. Koenig. Lifelong multi-
agent path finding for online pickup and delivery tasks.
In Proceedings of the International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS),
pages 837–845, 2017.

[20] C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer
programming formulation of traveling salesman prob-
lems. ACM, 7(4):326–329, 1960.

[21] R. Morris, C. S. Pasareanu, K. Luckow, W. Malik,
H. Ma, T. S. Kumar, and S. Koenig. Planning, schedul-
ing and monitoring for airport surface operations. In
Workshops at the Thirtieth AAAI Conference on Artifi-
cial Intelligence, 2016.

[22] J. C. Nash. The (dantzig) simplex method for linear
programming. Computing in Science & Engineering,
2(1):29–31, 2000.

[23] A. B. Philpott. Continuous-time shortest path problems
and linear programming. SIAM journal on control and
optimization, 32(2):538–552, 1994.

[24] T. Sawik. A note on the miller-tucker-zemlin model for
the asymmetric traveling salesman problem. Bulletin
of the Polish Academy of Sciences. Technical Sciences,
64(3), 2016.

[25] G. Sharon, R. Stern, A. Felner, and N. Sturtevant.
Conflict-based search for optimal multi-agent pathfind-
ing. Artificial Intelligence, 219:40–66, 2015.

[26] H. D. Sherali and P. J. Driscoll. On tightening the relax-
ations of miller-tucker-zemlin formulations for asym-
metric traveling salesman problems. Operations Re-
search, 50(4):656–669, 2002.

[27] N. R. Sturtevant. Benchmarks for grid-based pathfind-
ing. IEEE Transactions on Computational Intelligence
and AI in Games, 4(2):144–148, 2012.

[28] P. R. Wurman, R. D’Andrea, and M. Mountz. Coordi-
nating hundreds of cooperative, autonomous vehicles in
warehouses. AI magazine, 29(1):9–9, 2008.

7

	Introduction
	MAPFW problem statement
	Background
	LP and ILP
	BPC
	BCP-MAPF
	TSP

	Analysis
	BCP-MAPF with MTZ
	Waypoint order using TSP

	BCP-MAPFW
	BCP-MAPFW-A*
	BCP-MAPFW-TSP

	Experiments
	Results
	Responsible research
	Future research
	Conclusion
	Acknowledgements

