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Abstract
This paper examines the generalization capabili-
ties of the Soft Actor-Critic (SAC) algorithm when
combined with Behavioral Cloning (BC) in a Min-
iGrid Four-Room Environment. Reinforcement
learning (RL), particularly offline, is important
for tasks where interactions with the environments
are risky or costly, and this research focuses on
multi-task environments where generalizability to
new tasks is crucial. Our findings indicate that
SAC+BC can achieve generalization performance
close to BC. Notably, while BC shows robustness
across various dataset characteristics (quality, di-
versity, size), SAC alone struggles without inte-
grating BC, highlighting the enhancement in gen-
eralization brought by this hybrid approach. Fur-
thermore, an increased data size only enhances
generalizability when introducing greater diver-
sity. However, these results are constrained by
hardware limitations, suggesting that further hy-
perparameter optimization and using more seeds
could validate and possibly enhance our findings,
demonstrating that SAC+BC is even more effective
than shown. The implementation details and the
source code for this study are available on GitHub
at https://github.com/AxelGeist/multi-task-offline-
reinforcement-learning.

1 Introduction
Reinforcement learning (RL) has experienced strong growth
in certain domains during the last few years [1] due to its
promise of solving complex decision problems. Unlike stan-
dard RL, often called online RL, where agents continuously
interact with and learn from their environment, offline RL
allows agents to learn solely from a pre-existing fixed dataset
without further interaction with the environment. This
dataset comprises a set of experiences previously gathered
from the environment, enabling learning from past interac-
tions. Offline RL is particularly interesting in a multi-task
environment where agents try to learn from multiple tasks
and then try to make a good decision on a new, unseen task.
This approach is relevant for domains where interactions
with the environment are either risky or too costly, such as
autonomous driving and medical diagnostics. [2].

Studies by Levine et al. [3] and Kumar et al. [4] have laid the
groundwork for understanding offline RL. Despite progress,
integrating offline RL methods into multi-task scenarios
remains challenging, as they often underperform compared
to approaches like Behavioral Cloning (BC) [5]. BC is a
strong baseline that can be used to show how good offline RL
can generalize to new, unseen tasks in a multi-task setting [6].

Central to this research is the paper [6], which examines the
generalizability of offline RL algorithms across varied tasks.
This research aims to reproduce and extend the conclusions
of [6]. Building on the findings of [6], the Soft Actor-Critic

(SAC) algorithm in combination with BC is chosen to be
investigated in a simplified MiniGrid environment called
four-room [7, 8], with the goal to determine whether the
generalization problems persist under these conditions.

SAC is an advanced RL algorithm that optimizes a stochastic
policy in an off-policy manner, incorporating entropy to en-
courage exploration [9]. The choice to investigate SAC+BC
stems from the hypothesis that the hybrid approach can
mitigate some of the common challenges associated with
SAC when used alone. Specifically, SAC’s ability to explore
and adapt to complex environments may complement BC’s
capability to quickly imitate effective behaviors from expert
data, potentially leading to better generalization across
multiple tasks.

The primary research questions on which this study is based
are therefore:

1. Can SAC combined with BC effectively generalize to
new tasks within a multi-task RL environment?

2. What characteristics of the offline dataset are critical for
the success or failure of SAC+BC in such settings?

The structure of this paper is designed to answer these
questions through a comprehensive analysis of both theory
and practical experiments. This introduction is followed by
a review of related papers in Section 2, which provides an
in-depth analysis of previous research, highlights critical
achievements, and identifies the gaps this study aims to
address. The following background chapter in Section 3 will
formalize the concepts used in this study. Section 4 then
presents the experimental setup and describes the datasets
generated for this study and the benchmarks used to assess
the generalization capabilities of SAC+BC. In the subsequent
sections, the results of the experiments are systematically
presented. Finally, the paper concludes by summarizing the
main findings, highlighting their contribution to the broader
field of offline multi-task RL, and suggesting directions for
future research.

Our key contributions are the following:

• Our findings indicate that SAC+BC has no significant
generalization gap compared to BC when using optimal
or suboptimal data.

• We demonstrate that SAC+BCs performed best when
trained on higher quality (optimal) datasets.

• Our results show that increasing the amount of data im-
proves the generalizability of SAC+BC if and only if it
leads to a greater variety of data.

2 Related Work
Generalization Various studies have looked at the gener-
alization capabilities of RL. Notable works include Hansen
et al. [10], Mediratta et al. [6], Raileanu et al. [11], Cobbe
et al. [12], and Farebrother et al. [13]. Studies such as Lyle
et al. [14] and Kirk et al. [15] have focused on training
online RL agents that generalize to new transition and reward
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functions. These works are similar to ours as they explore
how well specific RL algorithms can generalize to new tasks,
although they utilize online RL algorithms while our focus
is on offline RL. There is a more similar paper by Mazoure
et al. [16], which trains an offline RL agent with contrastive
learning. However, it is more focused on improving the
generalizability of contrastive learning, while we focus on
finding out how well SAC+BC can generalize and under
what circumstances. The most closely related work is by
Mediratta et al. [6], which examines the Generalization Gap.
While their study investigates multiple offline RL agents
against various baselines in two environments, we aim to
reproduce their findings with a narrower focus. Our study
will examine a single offline RL agent (SAC+BC), two
baselines (BC and SAC), and one environment (four-room),
none of which, except for the BC baseline, are part of the
paper from Mediratta et al. [6].

Offline RL+BC Several researchers have already inves-
tigated the combination of RL with BC, mainly with online
RL approaches [17]. TD3+BC is an example of integrating
offline RL with BC and is known for its simplicity and state-
of-the-art performance [17]. Like SAC+BC, TD3+BC is an
off-policy algorithm, but it is not applicable to environments
with discrete action spaces, such as the four-room environ-
ment [18] used in this study. Another related work is [19],
which evaluates SAC+BC in continuous action space envi-
ronments. Using offline data, this approach combines pre-
training with BC and online fine-tuning. In contrast, to assess
its generalizability, this research evaluates SAC+BC in a dis-
crete action space environment exclusively in the offline and
multi-task setting.

3 Background
This chapter introduces the most important concepts for this
study. First, Offline RL is described, followed by the con-
cepts of multi-task setting and generalizability, followed by
an explanation of BC, SAC, and SAC+BC.

3.1 Offline RL
In RL, an agent learns decision-making by interacting
with an environment within a Markov Decision Process
(MDP) [20]. An MDP is formally defined as a tuple
M = (S,A, T,R, p0, γ), where S is a set of states, A is a
set of actions, T : S × A → P (S) represents the transition
probability function, which maps each state-action pair to a
probability distribution over the states, R : S×A → R is the
reward function, specifying the immediate reward received
after taking action in a state, p0 : P (S) represents the initial
state distribution, specifying the likelihood of starting in each
state, γ is the discount factor, with 0 ≤ γ < 1, indicating
the present value of future rewards. [21] This aims to learn a
policy (π) that maximizes the discounted cumulative reward.

RL is categorized into online and offline modes. In online RL,
the agent learns by actively interacting with the environment
in real time. Offline RL, or batch RL, trains the agent us-
ing a pre-collected, fixed dataset without further environment

interaction. This method is suitable when real-time interac-
tion is impractical or risky. However, it faces challenges like
distribution shift, where the dataset may not fully capture the
variety of real-world scenarios the agent might encounter. [3]

3.2 Multi-Task Setting and Generalizability
RL tasks can be single-task or multi-task. In a single-task set-
ting, an agent learns to master one specific task by developing
a policy (π) to maximize its expected reward (r) in a given
environment (E). In contrast, a multi-task setting requires
the agent to learn a versatile policy applicable to multiple
related tasks across various environments (E1, E2, ..., En),
each with unique objectives and reward structures. [22]

With the multi-task setting, it is possible to test the agent’s
ability to adapt to new, unseen tasks that share characteristics
with the learned tasks. If the agent performs good on new,
unseen tasks, then the agent generalizes well. Thus, general-
izability in a multi-task setting refers to the ability of an agent
to perform well in several different tasks for which it has not
been specifically trained but which are similar to the training
tasks.

3.3 BC
BC is a method in imitation learning where an agent learns
to mimic expert behavior by training on a dataset of state-
action pairs. Unlike RL algorithms that rely on reward sig-
nals, BC uses supervised learning to learn the policy from
expert demonstrations directly [23]. The process can be for-
mally defined as follows: Let D = {(si, ai)}Ni=1 be a dataset
of N state-action pairs, where si ∈ S is a state and ai ∈ A
is the corresponding action taken by the expert in that state.
The objective of BC is to learn a policy πθ : S → A pa-
rameterized by θ that maps states to actions by minimizing
the loss function. The loss function ℓ measures the difference
between the predicted action πθ(si) and the expert action ai.
Common choices for ℓ include the mean squared error for
continuous actions or the negative log-likelihood for discrete
actions. The experimental setup section describes in detail the
loss function implemented in this study. The learned policy
πθ aims to generalize the expert’s behavior to unseen states
by effectively mapping states to actions based on the expert’s
demonstrations [23]. BC is simple to implement and does not
require a reward function, making it a strong baseline for of-
fline RL regarding generalization capabilities [6]. However,
BC has limitations, such as poor performance with subopti-
mal or insufficiently diverse data [23].

3.4 SAC
SAC is a model-free, off-policy RL algorithm designed
for environments with both continuous and discrete action
spaces. It combines the benefits of value-based and policy-
based methods while incorporating entropy regularization to
encourage exploration. SAC maximizes the expected re-
ward and entropy, balancing exploration and exploitation [9].
Thus, SAC introduces novel assumptions, including entropy
regularization, the use of stochastic policies, and clipped dou-
ble Q-learning to address overestimation bias by maintain-
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ing two Q-networks and using the minimum Q-value for up-
dates [9, 24].

3.5 SAC+BC
SAC+BC aims to improve the SAC algorithm by integrating
a BC term. The BC term will be added to the policy loss [17],
which should minimize the discrepancy between the agent’s
actions and those done in the offline dataset. The experimen-
tal setup section formalizes in detail the policy loss function
implemented in this study. This should ensure that SAC be-
haves closer to the policy used to create the dataset and adds
some stability.

4 Experimental Setup
The experimental setup describes the simulated environment,
the details of the datasets created, the implementation of the
algorithms, the tuning of the hyperparameters, and the mea-
surement of the performance of these algorithms. Figure 6
shows an overview of the setup.

4.1 Simulation Environment
This study aims to assess whether SAC+BC can generalize
in a multi-task setting and identify dataset properties that
influence its generalization performance. The first step is
to select the environment in which the algorithm will be
trained and evaluated. A simplified version of the MiniGrid
four-room environment is used, as it is straightforward
enough to train offline RL algorithms within a reasonable
timeframe on a standard laptop. Despite its simplicity, it
remains complex enough to draw meaningful conclusions
about generalization capabilities. This environment has also
been validated by prior RL generalization research. [21]

We utilize three configurations of the environment
as described in [21]: Train, Test Reachable, and
Test Unreachable. Each configuration consists of 40
tasks, each defined by its starting location, goal location, and
the topology of a four-room layout. The Train configuration
is designed for agent training, while the Test configurations
evaluate the agent’s performance. In the Test Reachable
configuration, tasks only differ from those in the Train set
by their starting locations. The goal locations and topology
remain unchanged. Consequently, the agent can locate the
goal from any new starting point by applying knowledge
acquired during training. Conversely, the Test Unreachable
tasks involve variations in goal locations or topology,
which prevent the agent from reaching the goal solely by
following the learned policy. The rationale behind these
two test configurations is to differentiate between reachable
and unreachable generalization scenarios. We expect that
performance on reachable tasks will be superior, as these
conditions are more prevalent in the training data. [21].

4.2 Datasets
After defining the environment, the next step is to create mul-
tiple datasets to train the offline RL model. These datasets
are created with various characteristics, such as quality and

size, as existing research suggests that these attributes signif-
icantly influence the generalization capabilities of offline RL
algorithms [6]. Data diversity can also positively affect the
generalization ability of an RL algorithm [6]. Therefore, the
impact of data diversity will be indirectly assessed through
data quality, given that datasets derived from suboptimal and
mixed policies are inherently more diverse than those from
optimal policies.

Thus, the following datasets are created:
1. Optimal dataset with experience from 40 episodes
2. Suboptimal dataset with experience from 80 episodes
3. Mixed optimal-suboptimal dataset with experience from

80 episodes
The optimal dataset was created using the optimal policy
specified by the environment [7]. Therefore, this dataset has
a success rate of 100% in every episode, i.e. every deci-
sion made by the agent leads to the most optimal result. The
suboptimal dataset will be created with a 50% success rate
in each episode to represent scenarios of imperfect decision-
making. Suboptimal datasets are created by training a Deep
Q-Network (DQN) model using the stable-baseline3 library
[25] with a CNN architecture based on [26] until it success-
fully completes 20 out of 40 tasks within the environment.
The training will be halted once this milestone is reached and
the current DQN model is saved. This trained model then in-
teracts with the training environment to generate the dataset.
The mixed dataset is generated by uniformly selecting be-
tween optimal and suboptimal policies (50% each) to deter-
mine the action taken.

4.3 Implementation Details of BC
The baseline algorithm must now be chosen, which will
help to compare and verify the generalization capabilities of
SAC+BC. BC is chosen as it has demonstrated strong perfor-
mance as a baseline for offline RL algorithms [6]. The BC
algorithm used in this study is based on the DiscreteBC al-
gorithm from the d3rlpy library [27]. The algorithm makes
use of a loss function designed to minimize the negative log-
likelihood of the observed actions, represented as [27]:

LBC(θ) = Eat,st∼D

[
−
∑
a

p(a|st) log πθ(a|st)

]
In this formula, θ represents the parameters of the policy πθ.
The term Eat,st∼D denotes the expectation taken over the
distribution of state-action pairs (st, at) sampled from the
dataset D. The term p(a|st) is a one-hot vector represent-
ing the observed action a taken in state st from the dataset,
meaning p(a|st) = 1 for the action a that was taken and 0 for
all other actions. Lastly, log πθ(a|st) is the log probability of
taking action a given state st under the policy πθ. This setup
aims to match the policy closely to the actions in the training
dataset [27].

4.4 Implementation Details of SAC and SAC+BC
The second baseline is the standard SAC implementation.
This implementation is derived from the SAC-N version
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available on GitHub [28], based on the work by An et al. [29].
The primary distinction from the SAC-N implementation,
which utilizes N Q-ensemble networks, is that this standard
SAC implementation uses only 2 Q-networks. The SAC actor
loss is formulated as follows [28]:

LSAC(θ) = Es∼D,a∼πθ
[π(a|s) (α log(π(a|s))−Qmin(s, a))]

where π(a|s) represents the policy distribution over actions
a given state s, Qmin(s, a) is the minimum Q-value across
the two critic networks for the action-state pair, and α is the
temperature parameter that balances the trade-off between
exploration and exploitation.

Note that SAC+BC integrates a simplified BC term into the
SAC actor loss function to improve computational efficiency.
Calculating the log probability only for actions sampled from
the replay buffer avoids the overhead of summing over all
possible actions. The SAC+BC actor loss, incorporating the
simplified BC term, is defined as:

LSAC+BC(θ) = LSAC(θ) + βEs∼D,arb∼D [− log π(arb|s)]

where arb are the actions from the replay buffer represent-
ing desired actions, and β is a hyperparameter that controls
the influence of the behavior cloning term on the overall loss
function. This term pulls the policy distribution towards ac-
tions known to be effective from past experiences or expert
demonstrations.

4.5 Hyperparameter Tuning
Before comparing the performance of SAC+BC, SAC, and
BC, the hyperparameters of each algorithm need to be
tuned. This step is crucial to ensure that each algorithm
performs at its best in the given environment, as suboptimal
hyperparameters could lead to incorrect conclusions due
to poor performance [30]. It is also important to make a
similar effort to tune the hyperparameters for each algorithm,
including the baseline, to ensure a fair comparison.

The Optuna framework was used to tune the parameters
of BC, SAC, and SAC+BC. Optuna uses a tree-structured
parzen estimator (TPE), which proposes hyperparameter
values based on the defined ranges in an objective function.
TPE models the probability of achieving better trial results
and intelligently samples new hyperparameters to explore
the most promising areas efficiently. This approach helps
to optimize the search process so that it quickly converges
to optimal hyperparameter settings for the given objective,
which in our case is to achieve high mean rewards. [31]

BC, SAC, and SAC+BC are specifically tuned on the
optimal, suboptimal, and mixed datasets. The tuning for
each algorithm is done with three hyperparameters, which is
not optimal. However, more parameters would have made
tuning infeasible since the tuning is limited by the local
machine used. Each hyperparameter combination is run with
five different seeds (0, 1, 2, 3, 4) to increase the stability of
each trial and reduce the stochastic/random nature of each
algorithm. The range of hyperparameters used per algorithm

and dataset can be seen in Tables 1, 2, and 3.

Due to the demanding nature of hyperparameter tuning
and the limitations of the local machine used, the range of
training steps was reduced to allow a manageable number
of trials. Initial training and evaluation were performed
on the training environment using default parameters with
50,000 training steps. These results helped determine the
appropriate range of training steps for the tuning with
Optuna. For example, SAC performed best at around 25,000
training steps, leading to the selection of a range from 15,000
to 30,000 steps for this algorithm. The number of trials was
set based on the overall time needed for each algorithm’s
tuning process. SAC, which needs the most time because of
the higher number of training steps, was limited to 20 trials,
while BC and SAC+BC were each set to 50 trials.

The results of the hyperparameter tuning can be found in the
appendix under Figures 7, 8, 9, 10, 11, 12, 13, 14, and 15.
Based on these results, the best hyperparameters were se-
lected as shown in Tables 4, 5, and 6. Note that the hyper-
parameters were selected based on their performance in the
training set, as using the test sets for validation would com-
promise the integrity of the test set.

4.6 Generalization Evaluation Metrics
The average reward and standard deviation are calculated to
assess the algorithms’ performance. Specific pairs of seeds
are used for training and evaluation: each model is trained
with one of five seeds (10, 11, 12, 13, 14) and then evaluated
with a corresponding seed (20, 21, 22, 23, 24), respectively.
For example, the model trained with seed 10 is evaluated with
seed 20, the model with seed 11 with seed 21, and so on.
Thus, in the end, every mean reward and standard deviation
is the average of five results.

5 Experimental Results
This section presents the results for BC, SAC, and SAC+BC
in the MiniGrid Four-Room Environment. We start with the
learning curve and then present the generalization results un-
der different dataset conditions.

5.1 Learning Curves
Behavioral Cloning (BC) converges rapidly with a perfect
mean reward of 1.0 on optimal datasets. It only achieves
mean rewards of 0.3 and 0.2, respectively, on reachable
and unreachable tasks. With suboptimal datasets, it peaks
at 0.4 in training environments and 0.2 in reachable envi-
ronments, slightly decreasing in unreachable environments.
Mixed dataset training enhances performance, reaching
mean rewards of 0.4 in reachable and 0.25 in unreachable
environments after 50,000 steps (Figures 16, 17, 18).

SAC performs poorly in all environments, failing to achieve
rewards with optimal and suboptimal datasets. With a mixed
dataset, it achieves a very low mean reward below 0.2 in all
environments (Figures 19, 20, 21).
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SAC+BC initially excels with the optimal dataset, achieving
full rewards within 1,000 steps, but its performance declines
over time, dropping to a mean reward of 0.05 by 50,000 steps,
with similar decreases in both reachable and unreachable en-
vironments. With the suboptimal dataset, SAC+BC stabilizes
at a mean reward of 0.4 in the training environment after
30,000 to 50,000 steps, maintaining mean rewards at around
0.15 in the reachable and unreachable environments, with
slightly better performance in the reachable setting. Con-
trastingly, SAC+BC underperforms with the mixed dataset,
as one seed’s near-zero rewards significantly reduce the av-
erage. However, the remaining seeds perform comparably to
BC (Figures 22, 23, 24).

5.2 Generalization to New Environments using
Optimal Data

This section examines the generalization performance of
SAC+BC, using BC and SAC as the baseline for generaliza-
tion. The analysis uses an optimal dataset with 40 episodes
and 20,000 training steps to train the models. Figure 1
displays the performance of BC, SAC, and SAC+BC across
different environments, such as train, reachable test, and
unreachable tasks.

Figure 1: Performance on the Optimal Dataset. The error bar repre-
sents the standard deviation. Results are averaged over five seeds.

Figure 1 illustrates that SAC+BC, when trained on optimal
data, performs comparably to BC across all environments,
indicating no significant generalization gap. As expected,
SAC+BC and BC show slightly better reachable generaliza-
tion than unreachable generalization. Conversely, SAC ex-
hibits consistently low performance, with mean rewards be-
low 0.1 across all tested environments and achieving no re-
wards in the training environment. This suggests that SAC
lacks generalization and learning capabilities in this setup,
and the inclusion of the BC term is likely a crucial factor in
the improved performance of SAC+BC.

5.3 Generalization to New Environments using
Mixed Optimal-Suboptimal Data

This subsection evaluates the generalization ability of
SAC+BC to new environments when trained on a mixed
dataset over 50,000 training steps, as shown in Figure 2. BC
consistently outperforms both SAC and SAC+BC across all
environments under these conditions. Notably, SAC+BC
shows significant variability in performance, evidenced by a
large standard deviation. This variability stems from incon-
sistencies where SAC+BC performed comparably to BC in
four out of five seeds but drastically underperformed in the
fifth, achieving nearly zero rewards across all environments.
This suggests that while SAC+BC can potentially match
BC’s generalization performance, it lacks reliability, which
leads to a significant generalization gap to BC.

Figure 2: Performance on the Mixed Dataset. The error bar repre-
sents the standard deviation. Results are averaged over five seeds.

Moreover, both BC and SAC+BC show better results than
SAC, though the margin between SAC+BC and SAC is rela-
tively small in the test environments. This indicates that while
SAC+BC improves upon SAC’s capabilities, the enhance-
ment is modest and does not bridge the gap to BC, especially
in terms of consistent generalization to new environments.
To thoroughly understand the instability in SAC+BC’s per-
formance, an analysis with significantly more than five seeds
would be required. However, based on the results presented,
the results are consistent with [6], which states that BC out-
performs state-of-the-art offline RL methods when learning
from a mixed expert-suboptimal dataset.

5.4 Generalization to New Environments using
Suboptimal Data

This section explores the generalization capabilities of
SAC+BC when trained on a suboptimal dataset consisting of
80 episodes over 20,000 training steps shown in Figure 3.

SAC underperforms with the suboptimal dataset across all en-
vironments. In contrast, SAC+BC shows a notable improve-
ment over SAC. Although it does not surpass BC’s overall
performance, SAC+BC achieves nearly identical results to
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Figure 3: Performance on the Suboptimal Dataset. The error bar
represents the standard deviation. Results are averaged over five
seeds.

BC on the unreachable tasks and performs only slightly worse
on the reachable tasks. However, BC clearly outperforms
SAC+BC in the training environment, achieving a mean re-
ward just below 0.4 compared to SAC+BC’s just above 0.2.
These results indicate that the difference in the unreachable
generalization between BC and SAC+BC is almost zero and
is also marginal for the reachable generalization.

5.5 The Effect of Data Diversity on Generalization
The impact of data diversity on generalization has been
implicitly assessed through optimal, suboptimal, and mixed
datasets, each embodying varying levels of diversity. The
mixed dataset, comprising experiences from both optimal
and suboptimal policies, is considered the most diverse.
While one can argue about which of the optimal or sub-
optimal datasets is more diverse, the key observation is
that if SAC+BC achieves better generalization with the
mixed dataset than the optimal and suboptimal datasets, this
suggests that greater diversity could improve generalization.

In the preceding sections, we explored how the SAC+BC
model generalizes to new environments, revealing no gen-
eralization gap when trained on the optimal or suboptimal
datasets. However, a significant gap was observed with the
mixed dataset (Figure 2). While BC generalizes best on the
mixed dataset, SAC+BC generalizes best on the optimal
dataset. This suggests that data quality may play a more
critical role than diversity in the performance of SAC+BC,
which shows a performance decline from optimal to mixed
and then to suboptimal datasets. However, the considerable
variability in performance, highlighted by the large standard
deviations in Figure 2, indicates potential instability when
using diverse data sources. This instability makes it diffi-
cult to draw reliable conclusions about the impact of data
diversity on SAC+BC. There can be many reasons for the
instability, e.g., incorrect tuning of the hyperparameters or
the use of too few seeds.

Conversely, SAC generalizes like BC best with the mixed
dataset, achieving consistent performance across the training
and both testing environments. Although the performance is
not high, the added diversity in the mixed dataset might have
played a crucial role in the improved performance. Thus,
greater diversity seems to increase the generalizability of BC
and SAC, which is consistent with previous research [6].

5.6 The Effect of Data Size on Generalization
The influence of dataset size on generalization was investi-
gated by creating datasets with 40, 80, 200, and 400 episodes.
These sizes were selected based on the representation of the
tasks in the training environment. At 40 episodes, each of the
40 tasks appears once during the dataset’s creation. For 400
episodes, however, each task appears ten times, so each task
appears more frequently within the larger dataset.

Figure 25 shows that increasing the optimal dataset size has
no significant effect on performance for all algorithms.

However, when training the models on the mixed dataset,
as shown in Figure 4, increasing the data size enhanced the
performance significantly of both BC and SAC+BC across
all environments, particularly in the training environment. In
contrast, the data size had no noteworthy effect on SAC.

Figure 4: Effect of an Increasing Mixed Dataset Size with 50k Train-
ing Steps. The error bar represents the standard deviation. Results
are averaged over five seeds.

Training the models with the suboptimal dataset showed in
Figure 5 that increasing the data size affected all algorithms
positively. SAC, in particular, performed well in all envi-
ronments, increasing from a mean reward of just over 0 to
around 0.25-0.38, while the average of the suboptimal dataset
was 0.5. In fact, SAC performed just as well as SAC+BC
when the dataset was extended to 400 episodes. However,
BC also had a big jump in the training environment and even
slightly outperformed the dataset.

Overall, increasing the dataset size affected the generalization
of BC, SAC, and SAC+BC positively when trained on subop-
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Figure 5: Effect of an Increasing Suboptimal Dataset Size with 20k
Training Steps. The error bar represents the standard deviation. Re-
sults are averaged over five seeds.

timal and mixed datasets. However, it had no effect when
trained on the optimal dataset.

6 Responsible Research
6.1 Ethics
In scientific research, particularly in machine learning,
ethical data handling is essential. The datasets used for
learning and evaluating algorithms such as BC, SAC, and
SAC+BC have been conducted transparently and justifiably.
This study strictly avoids fabricating results or unjustifiably
discarding data, as such practices would compromise the
integrity of this research findings. Moreover, addressing
bias is equally critical. Each data source has been evaluated
for its origins and ethical implications, with particular
attention to biases that might strengthen societal inequalities.
This research also adheres to the principles outlined in the
Netherlands Code of Conduct for Research Integrity, such
as honesty, scrupulousness, transparency, independence, and
responsibility [32]. All contributions are original, properly
credited, and cited. This paper follows stringent plagiarism
policies and clearly defines authorship criteria to ensure
integrity.

6.2 Reproducibility
To ensure the reproducibility of the findings, this research
adheres strictly to the FAIR principles (Findable, Accessible,
Interoperable, and Reusable) [33].

Findable: The datasets and algorithms from this study are
available in a public GitHub repository, with datasets in
a clearly labeled ”datasets” folder and algorithms in the
root directory, ensuring easy replication and attribution of
results. GitHub Link: https://github.com/AxelGeist/multi-
task-offline-reinforcement-learning. Accessible: Since the
GitHub repository is public, anyone can access the datasets

and algorithms used to generate all the results. Interopera-
ble: The datasets are structured in d4rl format [34] to ensure
easy integration into common offline RL algorithms. This
simplifies various scientific investigations through seamless
combination with different data sources. Reusable: The ex-
periments used specific seeds to ensure replicability. A re-
quirements.txt file in the GitHub repository details the soft-
ware libraries needed to recreate the study’s computational
environment and reproduce the results accurately.

7 Discussion
Data Quality Data quality significantly influences gen-
eralization. The experiments showed that SAC+BC and
BC displayed similar test performance on optimal and
suboptimal datasets. However, BC outperformed SAC+BC
on the mixed dataset. This shows that the generalization
gap between BC and SAC+BC was zero on the optimal
dataset and minimal on the suboptimal dataset. Despite a
noticeable generalization gap between BC and SAC+BC
on the mixed dataset, the performance of SAC+BC was
significantly influenced by sensitivity to a particular seed,
indicating that the actual gap might differ. The gap may be
only marginal, meaning that SAC+BC generalizes best in
a mixed dataset, which is also the case for BC and SAC.
However, using only five seeds limits the reliability of these
results, so further investigation is required to assess the
performance of SAC+BC on the mixed dataset accurately.
Conversely, SAC consistently underperformed in the offline
setting across all dataset qualities, which is to be expected
from an algorithm that was primarily developed for online
RL. Overall, SAC+BC demonstrates a smaller generalization
gap to BC compared to other offline RL methods [6],
showing that adding the BC term significantly enhances
SAC’s generalization capabilities.

Data Size The impact of data size on model generalization
varies significantly depending on the dataset’s characteristics.
Our findings reveal that increasing the data size enhances
generalization for BC, SAC, and SAC+BC when using mixed
and suboptimal datasets. However, data size increases do not
improve performance with optimal data. In cases of optimal
data, where actions are typically deterministic, enlarging
the dataset does not introduce new types of transitions, thus
not contributing to diversity. Conversely, for mixed and
suboptimal datasets, which are compiled using stochastic
actions, increasing the dataset size adds a variety of new
transitions, enhancing data diversity. These results are thus
consistent with previous research indicating that simply in-
creasing the amount of data without increasing diversity does
not significantly improve adaptation to new environments.
Furthermore, this study notes a significant improvement in
SAC’s overall performance with larger suboptimal datasets.
This enhancement likely stems from the fact that a more
extensive suboptimal dataset closely simulates online envi-
ronmental interactions, which are rich in unique experiences.
This increase in data diversity appears to benefit SAC, which
relies on diverse data to approximate real-world online
learning scenarios more effectively. Overall, the study
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suggests that BC and SAC+BC improve generalization when
the dataset is enlarged, but only if this increases diversity.

Data Diversity The study indicates that data diversity
enhances the generalization capabilities of both BC and
SAC, as both generalize best on the most diverse data
(mixed). This aligns with findings from previous research
such as [6] and [21], which suggest that diversity generally
increases generalizability. However, the impact of diversity
on SAC+BC is less clear. Since data diversity has not
been explicitly analyzed, the effect of data diversity needs
to be figured out by implicitly analyzing data quality and
size. When analyzing data quality, SAC+BC performs best
with the optimal dataset and worst with the suboptimal
dataset, with performance on the most diverse dataset
(mixed) falling in between. Thus, data quality analysis did
not help determine the impact of data diversity. However,
as mentioned before, SAC+BC might be able to perform
better on the mixed dataset than in Figure 2 if more seeds
are used or if the hyperparameters of SAC+BC are better
tuned so that it performs more stably, which would then
possibly show that diversity increases the generalizability of
SAC+BC. However, this could not be shown with the current
experimental setup, so this should be considered in future
studies. Analyzing data size shows that increasing data size,
combined with diversity, positively affects the generalization
capabilities of BC and SAC+BC.

Limitations This study is subject to several limitations.
The experiments were conducted in only one environment,
which is relatively simple, limiting the results to this en-
vironment. In addition, the tuning of the hyperparameters
was limited by the computational capacities of the local
computer used. This limitation led to suboptimal values
of the hyperparameters, which are reflected in the learning
curves. This problem was particularly evident in SAC+BC,
where the performance did not converge even after 50,000
training steps for the suboptimal and mixed dataset. In
addition, SAC+BC significantly dropped its performance on
the optimal dataset after approximately 21,000 training steps.
Furthermore, a low number of seeds was used (five), which
can be seen from the unstable learning curves in Figure 17
and the large standard variation for SAC+BC on the mixed
dataset in Figure 2.

Future Work Several steps can be taken in future research
to address these limitations and enhance the robustness and
applicability of the findings. Future studies should consider
employing a more diverse array of environments, including
those that are more complex and varied. This approach would
help in assessing the generalization capabilities in more com-
plex environments. Additionally, by using more powerful
computational resources, hyperparameter tuning can be con-
ducted more extensively and potentially more optimally. This
could enhance the performance of the models, particularly in
terms of stability across various datasets. Furthermore, in-
creasing the number of seeds for the experiments could pro-
vide a more reliable and stable evaluation of the models. This
increase would help mitigate the effects of variability seen in

the mixed dataset and provide a clearer picture of the model’s
performance. For models like SAC+BC, extending the num-
ber of training steps beyond 50,000 might allow the models
more time to converge, particularly on suboptimal or mixed
datasets.

8 Conclusion
The purpose of this study is to determine whether SAC+BC
could effectively generalize to new tasks within a multi-task
RL environment. It was demonstrated that SAC+BC could
generalize in multiple scenarios comparably or nearly as
well as BC, thus showing better reachable and unreachable
generalization than many other offline RL algorithms [6].
However, BC remains a strong baseline, as it mostly matches
or exceeds the performance of SAC+BC. This answers the
first research question and indicates that SAC combined with
BC is effective in new task generalizations given specific
datasets.

To answer the second research question, which offline dataset
characteristics are critical for the success of SAC+BC in a
multi-task RL environment, the quality, size, and diversity of
the datasets play an important role. Dataset quality is crucial,
with the performance of SAC+BC peaking with high-quality
data, becoming less stable with mixed-quality data, and
lowest with suboptimal data, highlighting the need for more
research to better understand the impact of mixed datasets.
Size enhances generalizability only when it introduces
greater diversity, so simply increasing the amount of data
does not necessarily improve generalizability. Therefore, a
careful selection of dataset attributes is required to ensure
generalizability for SAC+BC.

Despite these results, the experiments encountered significant
limitations due to the constraints of the available hardware.
Therefore, it would be advisable to undertake a more thor-
ough tuning of hyperparameters and the use of more than
five seeds. Such an effort could more robustly validate the
strength of the results and potentially show whether SAC+BC
could close the generalization gap to BC.
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Figure 6: Structure of the Experimental Setup
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B Hyperparameter Tuning

Dataset Hyperparameter Range/Options
Optimal Training Steps 50 to 1000

Learning Rate [1× 10−4, 3× 10−4]
Batch Size [32, 64, 100, 128]

Suboptimal Training Steps 400 to 4000
Learning Rate [1× 10−4, 3× 10−4]

Batch Size [32, 64, 100, 128]
Mixed Training Steps 50 to 1000

Learning Rate [1× 10−4, 3× 10−4]
Batch Size [32, 64, 100, 128]

Table 1: Ranges used for Hyperparameter Tuning on BC with Op-
tuna [31].

Dataset Hyperparameter Range/Options
Optimal Training Steps 15000 to 30000

Learning Rate [1× 10−4, 3× 10−4]
Gamma 0.95 to 0.99

Suboptimal Training Steps 15000 to 30000
Learning Rate [1× 10−4, 3× 10−4]

Gamma 0.95 to 0.99
Mixed Training Steps 15000 to 30000

Learning Rate [1× 10−4, 3× 10−4]
Gamma 0.95 to 0.99

Table 2: Ranges used for Hyperparameter Tuning on SAC with Op-
tuna [31].

Dataset Hyperparameter Range/Options
Optimal Training Steps 50 to 1000

Learning Rate [1× 10−4, 3× 10−4]
Beta 0 to 1.0

Suboptimal Training Steps 500 to 3000
Learning Rate [1× 10−4, 3× 10−4]

Beta 0 to 1.0
Mixed Training Steps 50 to 1000

Learning Rate [1× 10−4, 3× 10−4]
Beta 0 to 1.0

Table 3: Ranges used for Hyperparameter Tuning on SAC+BC with
Optuna [31].

Figure 7: Hyperparameter Tuning Results for BC on the Optimal
Dataset. Results are averaged over 5 seeds.

Figure 8: Hyperparameter Tuning Results for BC on the Suboptimal
Dataset. Results are averaged over 5 seeds.

Figure 9: Hyperparameter Tuning Results for BC on the Mixed
Dataset. Results are averaged over 5 seeds.
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Figure 10: Hyperparameter Tuning Results for SAC on the Optimal
Dataset. Results are averaged over 5 seeds.

Figure 11: Hyperparameter Tuning Results for SAC on the Subopti-
mal Dataset. Results are averaged over 5 seeds.

Figure 12: Hyperparameter Tuning Results for SAC on the Mixed
Dataset. Results are averaged over 5 seeds.

Figure 13: Hyperparameter Tuning Results for SAC+BC on the Op-
timal Dataset. Results are averaged over 5 seeds.

Figure 14: Hyperparameter Tuning Results for SAC+BC on the Sub-
optimal Dataset. Results are averaged over 5 seeds.

Figure 15: Hyperparameter Tuning Results for SAC+BC on the
Mixed Dataset. Results are averaged over 5 seeds.
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Dataset Hyperparameter Value
Optimal Learning Rate 1.5× 10−4

Batch Size 100
Suboptimal Learning Rate 2.4× 10−4

Batch Size 128
Mixed Learning Rate 2.8× 10−4

Batch Size 128

Table 4: Selected hyperparameters for BC. The hyperparameters that
are not displayed are based on the default values of DiscreteBC in
the d3rlpy library [27].

Dataset Hyperparameter Value
Optimal Learning Rate 2.3× 10−4

Gamma 0.96
Hidden Dimensions 256

Critics 2
Tau 0.005

Buffer Size 1,000,000
Batch Size 256

Epochs 5000
Updates on Epoch 10

Suboptimal Learning Rate 2.6× 10−4

Gamma 0.95
Hidden Dimensions 256

Critics 2
Tau 0.005

Buffer Size 1,000,000
Batch Size 256

Epochs 5000
Updates on Epoch 10

Mixed Learning Rate 2.56× 10−4

Gamma 0.99
Hidden Dimensions 256

Critics 2
Tau 0.005

Buffer Size 1,000,000
Batch Size 256

Epochs 5000
Updates on Epoch 10

Table 5: Selected hyperparameters for SAC. Learning rate and
gamma were selected using Optuna [31] and the remaining parame-
ters were default values from [28].

Dataset Hyperparameter Value
Optimal Learning Rate 3.0× 10−4

Beta 1.0
Gamma 0.99

Hidden Dimensions 256
Critics 2

Tau 0.005
Buffer Size 1,000,000
Batch Size 256

Epochs 5000
Updates on Epoch 10

Suboptimal Learning Rate 2.3× 10−4

Beta 1.0
Gamma 0.99

Hidden Dimensions 256
Critics 2

Tau 0.005
Buffer Size 1,000,000
Batch Size 256

Epochs 5000
Updates on Epoch 10

Mixed Learning Rate 1.4× 10−4

Beta 1.0
Gamma 0.99

Hidden Dimensions 256
Critics 2

Tau 0.005
Buffer Size 1,000,000
Batch Size 256

Epochs 5000
Updates on Epoch 10

Table 6: Selected hyperparameters for SAC+BC. Learning rate and
Beta were selected using Optuna [31] and the remaining parameters
were default values from [28].
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C Learning Curves

Figure 16: Learning Curve of BC with the Optimal Dataset. The
standard deviation is displayed as a shaded area with the correspond-
ing colour. Results are averaged over 5 seeds.

Figure 17: Learning Curve of BC with the Suboptimal Dataset. The
standard deviation is displayed as a shaded area with the correspond-
ing colour. Results are averaged over 5 seeds.

Figure 18: Learning Curve of BC with the Mixed Dataset. The stan-
dard deviation is displayed as a shaded area with the corresponding
colour. Results are averaged over 5 seeds.

Figure 19: Learning Curve of SAC with the Optimal Dataset. The
standard deviation is displayed as a shaded area with the correspond-
ing colour. Results are averaged over 5 seeds.

Figure 20: Learning Curve of SAC with the Suboptimal Dataset.
The standard deviation is displayed as a shaded area with the corre-
sponding colour. Results are averaged over 5 seeds.
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Figure 21: Learning Curve of SAC with the Mixed Dataset. The
standard deviation is displayed as a shaded area with the correspond-
ing colour. Results are averaged over 5 seeds.

Figure 22: Learning Curve of SAC+BC with the Optimal Dataset.
The standard deviation is displayed as a shaded area with the corre-
sponding colour. Results are averaged over 5 seeds.

Figure 23: Learning Curve of SAC+BC with the Suboptimal
Dataset. The standard deviation is displayed as a shaded area with
the corresponding colour. Results are averaged over 5 seeds.

Figure 24: Learning Curve of SAC+BC with the Mixed Dataset.
The standard deviation is displayed as a shaded area with the corre-
sponding colour. Results are averaged over 5 seeds.
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D The Effect of Data Size on Generalization

Figure 25: Effect of an Increasing Optimal Dataset Size with 20k
Training Steps. The error bar represents the standard deviation. Re-
sults are averaged over five seeds.
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