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by Pepijn te MARVELDE

In the realm of machine learning (ML), the need for efficiency in training processes is
paramount. The conventional first step in an ML workflow involves collecting data
from various sources and merging them into a single table, a process known as mate-
rialization, which can introduce inefficiencies caused by redundant data. Factorized
ML strives to reduce this by maintaining the original data forms and performing
model training on the separate source tables. This approach can lead to significant
increases in training efficiency.

However, factorized training does not always reduce cost compared to traditional
materialized training. This research tackles this issue by examining the multidimen-
sional cost optimization problem that emerges when deciding between factorized
and traditional materialized learning methods. It fills in gaps left by prior research,
which is focused on CPU-based training, by investigating the cost estimation land-
scape for factorized ML, with a special emphasis on GPU performance compared to
CPUs. The used factorized ML framework is expanded to incorporate GPU train-
ing, a topic not explored in previous research. We demonstrate that GPU training
exhibits significantly different cost characteristics than CPU training, which has sub-
stantial implications for the design of cost models and the optimization of factorized
ML.

Through an empirical study, an ML-based cost model is developed that can accu-
rately predict the faster training method for a wide range of scenarios. On an exten-
sive evaluation with real-world datasets this model boasts an average speedup of
3.8×, versus the state-of-the-art’s 0.9×. We also show that it generalizes to scenarios
with datasets and hardware settings on which the model is not trained, keeping 82%
of training set performance.

Our innovative cost model for factorized ML enables significant time savings in
training-intensive scenarios and further underlines the benefits of factorized train-
ing. However, effort should be invested into incorporating factorized training into
existing ML frameworks so this method of training a model, and our cost model, can
be evaluated in a larger set of realistic scenarios.

HTTP://WWW.TUDELFT.NL
https://www.tudelft.nl/en/ewi/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/
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Chapter 1

Introduction

The field of Machine Learning (ML) has gained massive traction over the last few
decades, with both industry and academia investing substantial efforts to enhance
data availability and the performance of ML algorithms. This performance factor en-
compasses both the accuracy of a model and the computational and time costs asso-
ciated with training these models. To make training more efficient, a novel approach
called factorized learning has been proposed [1]. This approach enables models to
be trained on normalized data. It is applicable to a wide range of realistic ML work-
flow scenarios and joinable data sources, thus opening up new possibilities for more
efficient model training.

In a typical machine learning scenario, the first step for a data scientist aiming to
train a model is to gather the necessary data for the training process. Often, these
data come from disparate sources. Therefore, they first need to join these sources to
create a single dataset to use as input for an ML model. This is achieved through
a process called Data Integration (DI). The act of executing the join between the
tables is called materialization [2]. Factorized learning eliminates this prerequisite
to the training process by learning directly from the source datasets, without first
joining them. Figure 1.1 illustrates the difference between factorized learning and
learning over materialized data. The reason factorized learning can be more efficient
is that the values in the materialized data (orange cells in T in the figure) do not
lead to redundant computations during training. However, source datasets can also
have redundant values, and this redundancy is not the only factor that affects the
efficiency of factorized learning. Apart from the data-characteristics (which include
redundancy), model parameters and hardware characteristics can also influence the
choice between factorized learning and materialization.

Therefore, because factorization does not always increase efficiency, there is a need to
be able to select those cases where factorization is beneficial. This decision between
factorization and materialization is a multidimensional cost optimization problem.
Creating a cost model capable of making this choice is an interesting and important
problem because factorized learning is a very novel approach to the fundamentals
of machine learning. It has potential to reduce the cost of model training without
affecting performance. Factorized ML could also be easily extensible to federated
learning in a scenario where computations involving a source dataset are executed
in the silo in which the dataset is located [4].
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: Materialized data

Source datasets

order_id customer_sk date

1 11 2024-01-01

2 12 2023-01-02

3 11 2024-01-03

... ... ...

: Order
order_id product_id quantity price

1 21 2 20

1 22 1 25

2 23 3 13

3 21 1 10

... ... ...

 Lineitem

order_id customer_sk date product_id quantity price return_quantity

1 11 2024-01-01 21 2 20 0
1 11 2024-01-01 22 1 25 0
2 12 2024-01-02 23 3 13 0
3 11 2024-01-03 21 1 10 1
... ... ... ... ... ... ...

Join

Factorized
Learning

Learning over
Materialized data

order_id product_id return_quantity
3 21 1
... ... ...

 Order returns

FIGURE 1.1: Running Example: Source tables S and target table T.
Illustration of input data used for factorized Learning vs Learning
over Materialized data, schema from TPCx-AI [3] use case 1 (unused
columns not shown). Target redundancy, that is avoided by factoriza-

tion, shown in orange.

However, solving this problem is challenging because the optimization space is ex-
ceptionally large and may be hardware-dependent. Previous solutions, such as Mor-
pheus [5] and Amalur’s cost estimation [6], have focused on theoretical cost or sim-
ple heuristics without considering the hardware dimension.

Figure 1.2 shows the applicability of the cost model we propose. For an ML practi-
tioner aiming to optimize their training processes with the use of factorized learn-
ing, the data preparation and preprocessing steps do not change. Gathering source
datasets and defining how to, e.g., join and clean them is still necessary. After finish-
ing preprocessing, formalizing how the datasets should be joined, and having de-
cided which model they want to train, our cost model predicts the optimal training
method, factorized, or materialized. Using such a cost model can result in consid-
erable time savings, particularly in scenarios where the total training time is high,
such as hyperparameter tuning or training complex models. This is elaborated on in
Section 5.1.

Collection

Integration

Data preparation

Exploration

Cleaning

Model training

Formalized
dataset

Feature
engineering

Model selection

Iterate

Materialized
learning

Factorized
learning

Cost
model

Hyperparam. tuning
Online training

Data preprocessing

Evaluate
model

Deploy model

Hardware
specifications

FIGURE 1.2: Function of this thesis’ cost model in an ML pipeline.
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1.1 Running Example

Throughout this thesis we use a running example, based on TPCx-AI [3] use case
1, to explain various concepts. The scenario is that of a data scientist working for
an e-Commerce firm, who is tasked with creating a data science pipeline to perform
customer segmentation. Three tables are joined to create a single table which is then
used as input in a K-Means clustering model. The schema of the tables and the
joined table are shown in Figure 1.1.

The three tables to be joined are the Orders table (S1), the Lineitem table (S2), and
the Order returns table (S3). The Orders table contains information about orders
made by customers, the schema of this table is S1(order_id, customer_sk, date). The
Lineitem table contains information about the items in each order, its schema is
S2(order_id, product_id, quantity, price). The Order returns table, having schema
S3(order_id, product_id, return_quantity), contains information about the returns
made by customers.

The joined table contains all the columns from the three source tables and is used as
input for the K-Means clustering model. It is created by first left joining S2 with S1
on shared columns order_id and product_id, then joining the result of this with S1
on order_id. After this we have T(order_id, customer_sk, date, product_id, quantity,
price, return_quantity).

1.2 Research Questions & Contributions

This thesis focuses on facilitating the adoption of factorized machine learning. A
significant part of this work involves developing a cost model designed to accurately
decide the optimal approach for training a machine learning model. The cost model,
considering the data, model, and hardware dimensions, decides between factorized
or materialized computation.

1.2.1 Research Questions

The research questions answered in this thesis are:

RQ.1 How can we optimize and implement factorized Machine Learning for GPUs?

RQ.2 How can we accurately predict the optimal choice between factorized or
materialized training of a Machine Learning model, on CPU and GPU,
through leveraging knowledge about model, data, and hardware charac-
teristics?

1.2.2 Contributions

The Research Questions are answered by providing the following contributions:

C.1 A GPU optimized implementation of Amalur’s factorized Machine Learn-
ing framework.

C.2 A cost model that predicts whether factorized or materialized learning is
faster, capable of accurate predictions regardless of dataset, model hyper-
parameters, or hardware used. This cost model is the result of a detailed
study that compares multiple cost calculation strategies.
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1.3 Cost Estimation for Factorized Machine Learning

To develop a cost model capable of accurately predicting whether factorized or ma-
terialized learning is faster, we capture the runtime of training types for a set of
scenarios. We vary the data used, the models trained, and the hardware settings.
These collected results are then used as training data to create several types of cost
models.

Evaluation on real-world datasets shows that our models outperform the state-of-
the-art (SOTA), specifically our Hybrid model, which combines a linear regression
and an XGBoost model, performs well. It outclasses the SOTA in scenarios with
real-world datasets, reaching 80% of the maximum achievable time saved. This cost
model also generalizes well to scenarios with novel hardware settings and datasets,
only losing 18% of its predictive power.

1.4 Outline

This section provides an overview of the structure of the remainder of this thesis. We
start with the theoretical concepts and principles that underpin our study in Chap-
ter 2. The literature review (Chapter 3) reviews existing research relevant to our
topic and identifies gaps or limitations in the existing literature. In the methodol-
ogy chapter (Chapter 4), we describe our overall approach to this empirical study,
including the breakdown and motivation of the independent variables chosen. In
Chapter 5, we detail the statistical and analytical methods used to analyze the data,
present the results of each experiment, and include visualizations to illustrate key
findings. Next, in Chapter 6, the results are evaluated and discussed. It starts with
an explanation of how the empirical results were gathered, followed by a discussion
of the results of the experiments in relation to the research questions. Here, we also
evaluate the validity and reliability of the results and compare our findings with
those of the existing literature. This chapter ends with an in-depth interpretation
and discussion of the results and their implications. Finally, in the conclusion chap-
ter (Chapter 7), the main contributions and findings of this thesis are summarized,
and we provide an outlook for future research.
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Chapter 2

Preliminaries: Factorized Machine
Learning

This chapter details the preliminary theoretical concepts that form the foundation
for this thesis. First, we explain Data Integration: the process of combining data
from different sources, which is a crucial step in any ML workflow, in Section 2.1.
With these concepts in mind, we explore factorized Machine Learning in detail (Sec-
tion 2.2). Finally, in Section 2.3, we explain GPUs and how they are crucial for the
ML industry. With these concepts, we provide the theoretical foundation necessary
for understanding the content presented in the next chapters of this thesis.

2.1 Data Integration

In order to comprehend the significance and complexities of factorized Machine
Learning, it is necessary to have a grasp of the field of Data Integration (DI). In its
broadest sense, DI details the relationships between datasets, enabling the merging
of data from diverse sources into a unified dataset. This process is crucial for ML
applications, as ML frameworks (such as Keras1 and TensorFlow2) typically require
a single table as input. An example of such a DI scenario is illustrated in Figure 1.1.

However, when merging data sets into a unified table is essential for machine learn-
ing, it may present the following significant challenges [7].

1. Extra storage
The joined dataset will take extra space to store.

2. Computational redundancy
Joining tables can introduce duplication of values in the materialized data
(shown in orange in Figure 1.1). These values are included in any computa-
tions made during the training of an ML model in this dataset, resulting in
duplicate computations.

3. Join time
For complex scenarios, joining datasets can take a significant amount of time.

4. Maintenance headaches
Join query needs updating when changing input table schemas.

1https://keras.io/
2https://www.tensorflow.org/

https://keras.io/
https://www.tensorflow.org/
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Factorized Machine Learning seeks to address issues one through three through the
concept of “learning over joins” [1], which involves shifting the computations re-
quired for an ML model to the individual tables.

2.1.1 Schema Mapping

Schema mapping is an integral step in the Data Integration process and thus to
factorized ML. These mappings specify how the source datasets map to the target
tables. Having a formal way to specify how these datasets relate is especially im-
portant for factorized ML. It allows us to convert these relationships between the
source tables and the target table to a form that can be translated to linear algebra:
the normalized matrix (detailed in Subsection 2.2.1).

For the running example the schema mapping is as follows:

Given source datasets, with abbreviated column names:

o = order_id, c = customer_id, d = date,
pid = product_id, q = quantity, p = price, rq = return_quantity
S1(o, c, d)
S2(o, pid, q, p)
S3(o, pid, rq)

The mapping to target table T can be specified as follows. First, we left join S2 with
S3 on S2.o = S3.o and S2.pid = S3.pid to get an intermediate table with schema:

T(o, pid, q, p, rq)

Next, we inner join this with S1 to get the final table T:

T(o, c, d, pid, q, p, rq)

Now that we have the schema mapping, we can translate this to the normalized
matrix, which we will do in the next section.

2.2 Factorized Machine Learning

As stated previously in this thesis, factorized ML is the process of training Machine
Learning models on multiple tables without the need to materialize the join between
these tables. This section will go in-depth on how this can be achieved, continuing
the running example from Figure 1.1. We start with the definitions (Subsection 2.2.1)
followed by an in-depth example of the involved linear algebra (Section 2.2.1).

2.2.1 Normalized Matrix

As Machine Learning algorithms can be expressed in Linear Algebra (LA), we need
to express the Data Integration scenario of an ML use case in terms of Linear Al-
gebra, i.e., we need to translate the Schema Mappings of an integration scenario to
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Linear Algebra to allow us to achieve the goal of “pushing down” ML to the sepa-
rate source tables. This is achieved through the Normalized matrix: A set of matrices
that capture the necessary DI metadata telling us how the source tables map to the
materialized Target table [4], [5].

The Mapping matrix and Indicator matrix respectively represent how the columns
and rows from each source table Sk map to the Target table T.

Mapping Matrix

The Mapping Matrix M is a set of matrices Mk for each source table Sk that denotes
how the source columns map to the target columns. A value of 1 in this matrix
indicates that the corresponding column (via column number) in Sk corresponds to
the corresponding column (via column number) in T. The formal definition is as
follows.

Definition 2.2.1 (Mapping matrix [4]). Each source table Sk has a corresponding bi-
nary Mapping matrix M of shape cT × cSk , where

Mk[i, j] =

{
1, if j-th column of Sk is mapped to the i-th column of T
0, otherwise

Note that in the case that there is no column overlap between source tables this
Mapping Matrix is redundant. This affects the materialization step, as shown in
Definition 2.2.3.

Indicator Matrix

Now that we have defined how to map the columns from the source tables to the
target table, we need to do the same for the rows. This is done with the Indicator
matrix.

Definition 2.2.2 (Indicator matrix [5]). Each source table Sk has a corresponding bi-
nary Indicator matrix I of shape rT × rSk , where

Ik[i, j] =

{
1, if i-th row of Sk is mapped to the j-th row of T
0, otherwise

Materialization

Using the normalized matrix, we can now materialize the join to obtain the target
matrix T:

Definition 2.2.3 (Materializing the Normalized Matrix to obtain Target matrix T).

Given

k Table id k ∈ [1, n]

Sk Source tables

Mk Mapping matrices
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Ik Indicator matrices

T =


∑n

k=1 IkSk MT
k , if there is column overlap between source tables

...
...

...
I1S1 · · · InSn

...
...

...

, otherwise

The materialization case when there is no column overlap is a horizontal concate-
nation of each source matrix Sk multiplied by Ik: IkSk, k ∈ [1, n]. Intuitively the
materialization process can be seen as:

for each k ∈ [1, n] do ▷ For each source table
rowsk ← IkSk ▷ Map the source table rows to the target table
Tk ← rowsk MT

k ▷ Map the source table columns to the target table
end for
T ← ∑n

k=1 Tk ▷ Sum the results

Running Example: Normalized Matrix

To translate the normalized matrix to how it is used in ML algorithms, we first show
the full normalized matrix of the running example, followed by the materialized
Target table T. The goal is to show how the matrices interact to allow computation
without materializing the join. For completeness, we show the calculations with the
Mapping matrices Mk included, but as highlighted before, this is not needed due to
this scenario having no column overlap. However, it is insightful to show as it gives
an idea of how this process looks when there is column overlap.

These are the corresponding Source matrices S1..3 for the source tables shown in
Figure 1.1. The orange numbers over the columns denote in which column of T they
will end up. The blue numbers at the end of each row illustrate to which target table
rows they are mapped.

S1 =


0 1 2
1 11 2024 0, 1
2 12 2024 2
3 11 2024 3

 S2 =


3 4 5
2 20 40 0
1 25 25 1
3 13 39 2
1 10 10 3

 S3 =
[6
1 3
]

The Indicator matrices denote how rows from S map to rows in T. The column num-
ber denotes the row in S, the row number denotes the row in T. The blue annotations
show more clearly how this works in the form row number in Sk → row number in
T.

I1 =


1 0 0 0→ 0
1 0 0 0→ 1
0 1 0 1→ 2
0 0 1 2→ 3

 I2 =


1 0 0 0 0→ 0
0 1 0 0 1→ 1
0 0 1 0 2→ 2
0 0 0 1 3→ 3

 I3 =


0 → 0
0 → 1
0 → 2
1 0→ 3
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The Mapping matrices denote how columns from S map to columns in T. The row
number denotes the column in T, the column number denotes the column in S. The
orange annotations show this in the form: column number in Sk → column number
in T.

M1 =



1 0 0 0→ 0
0 1 0 1→ 1
0 0 1 2→ 2
0 0 0 → 3
0 0 0 → 4
0 0 0 → 5
0 0 0 → 6


M2 =



0 0 0 → 0
0 0 0 → 1
0 0 0 → 2
1 0 0 0→ 3
0 1 0 1→ 4
0 0 1 2→ 5
0 0 0 → 6


M3 =



0 → 0
0 → 1
0 → 2
0 → 3
0 → 4
0 → 5
1 0→ 6



For conciseness we show the calculation of one of the sub-target tables T1.

T1 = I1 S1 MT
1

T1 =


1 0 0
1 0 0
0 1 0
0 0 1


1 11 2024

2 12 2024
3 11 2024

MT
1

T1 =


1 11 2024
1 11 2024
2 12 2024
3 11 2023


1 0 0 0 0 0 0

0 1 0 0 0 0 0
0 0 1 0 0 0 0



T1 =


1 11 2024 0 0 0 0
1 11 2024 0 0 0 0
2 12 2024 0 0 0 0
3 11 2023 0 0 0 0



The materialized Target table T is the element wise sum of the dot product of each
tuple of Indicator, Source, and Mapping matrices. For each source table Sk the inter-
mittent result is shown as Tk. For clarity the cells from each source table are colored
in the same color in the intermittent result and in Target table T.

T1 = I1S1MT
1 =


0 1 2 3 · · · 6
1 11 2024 0 · · · 0
1 11 2024 0 · · · 0
2 12 2024 0 · · · 0
3 11 2023 0 · · · 0

T2 = I2S2MT
2 =


0 1 2 3 4 5 6
0 0 0 2 20 40 0
0 0 0 1 25 25 0
0 0 0 3 13 39 0
0 0 0 1 10 10 0



T3 = I3S3MT
3 =


0 · · · 5 6
0 · · · 0 0
0 · · · 0 0
0 · · · 0 0
0 · · · 0 1

T =
3

∑
k=1

IkSk MT
k =


0 1 2 3 4 5 6
1 11 2024 2 20 40 0 0
1 11 2024 1 25 25 0 1
2 12 2024 3 13 39 0 2
3 11 2024 1 10 10 1 3
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2.2.2 Factorized Linear Algebra

In the previous section, we have shown the properties of the Normalized matrix.
This section will show how commonly used Linear Algebra operators are rewritten
for the Normalized matrix for the purpose of performing factorized ML [5]. We will
show how to perform element-wise operations, reduction operations, dot-product
operations, and a running example of right matrix multiplication (RMM) on the
Normalized matrix. The goal is to show how (most of) these operations can be
performed without materializing the join between the source tables, and how the
Normalized matrix allows us to do so.

Element-wise Scalar Operations

This group of operators perform an operation on every element of a matrix inde-
pendently of each other. The arithmetic operations are: +, −, ×, ÷ and ∧ (these
operators are denoted by ⊘). This can be seen as a scalar function f applied to each
element of a matrix T. The rewrite rule therefore is very simple for these arithmetic
operators, as well as for any other scalar function (e.g., log, round) f :

x⊘ T → [x⊘ S, I, M]

T ⊘ x → [S⊘ x, I, M]

or more generally:

f (T)→ [ f (S), I, M]

These operations all return a normalized matrix and can thus be performed without
materializing the join between the source tables. In the used implementation [6],
when a normalized matrix is transposed, the actual computation is not carried out,
but the transpose is simply added as a flag. Then, for any downstream operators,
the transpose flag is checked, and the computation is performed accordingly. For
these element-wise operations the transposed rewrite is:

f (TT)→ [ f (S), I, M]T

Aggregation

The supported aggregation operators are row-wise and column-wise summation,
respectively abbreviated to rowSums and colSums. For the factorized rowSums case
we sum each source table separately, then multiply with the indicator matrices and
sum the results, the mapping matrix is irrelevant. This operation produces a sin-
gle (column) vector of size rT × 1. For the transposed case, it is equal to a column
summation. These rewrite rules are:

rowSums(T)→
n

∑
k=1

IkrowSums(Sk)

rowSums(TT)→ colSums(T)

Summing column-wise gives a row vector of shape 1× cT. It is equal to first sum-
ming the indicator tables column-wise, then materializing with these aggregated



2.2. Factorized Machine Learning 11

indicator matrices. The rewrite rule for the factorized case is:

colSums(T)→
n

∑
k=1

colSums(Ik)Sk MT
k

colSums(TT)→ rowSums(T)

As these operations do not create normalized matrices, and in fact materialize (part
of) the join the benefit of factorized computation is smaller.

Multiplication

As matrix multiplication is not commutative, there are different rewrite rules for
left- and right-matrix multiplication. The rewrite rule for left matrix multiplication
(LMM) with another matrix X is:

TX →
n

∑
k=1

IkSk MT
k X

TTX → (XTT)T

For right matrix multiplication (RMM) the rule is the same, we still essentially ma-
terialize the join, but with X on the left-hand side:

XT →
n

∑
k=1

XIkSk MT
k

XTT → (TXT)T

Running Example: Right Matrix Multiplication

We showcase right RMM and its rewrite rule by multiplying with X. First for the
materialized Target table T:

XT =
[
1 1 2 3

]
1 11 2024 2 20 40 0
1 11 2024 1 25 25 0
2 12 2024 3 13 39 0
3 11 2023 1 10 10 1


=

[
15 79 14165 12 101 173 3

]
Now for the Normalized matrix, recall the rewrite rule for RMM:

XT =
n

∑
k=1

XIkSk MT
k

For conciseness we refer back to sub results T0···2 and use them directly here. We also
leave out X in the subcalculations for T1,2.

= XT0 + XT1 + XT2
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=
[
1 1 2 3

]
1 11 2024 0 · · · 0
1 11 2024 0 · · · 0
2 12 2024 0 · · · 0
3 11 2023 0 · · · 0

+ X


0 0 0 2 20 40 0
0 0 0 1 25 25 0
0 0 0 3 13 39 0
0 0 0 1 10 10 0

+ X


0 · · · 0 0
0 · · · 0 0
0 · · · 0 0
0 · · · 0 1


=

[
15 79 14165 0 0 0 0

]
+

[
0 0 0 12 101 173 0

]
+

[
0 0 0 0 0 0 3

]
=

[
15 79 14165 12 101 173 3

]
2.2.3 Machine Learning Models

We use the same machine learning models as Morpheus [5] and [6]. These models
are linear regression, logistic regression, K-Means clustering, and Gaussian NMF.
Having demonstrated the transformation rules for the relevant Linear Algebra op-
erations, we are now able to illustrate how these models can be adapted for the
Normalized matrix. This adaptation enables us to execute these machine learning
models without materializing the join between the source tables. The algorithms are
detailed in the next sections, with the factorized operators used highlighted in red.
Within the algorithms, we use the following conventions: X represents the matrix of
independent variables, which in our scenario corresponds to the normalized matrix.
The dependent variable is denoted as y, the weight vector as w, the learning rate as
γ, and n represents the number of iterations.

Linear Regression

Algorithm 1 Linear regression using Gradient Descent [5]

Require: X, y, w, γ
for i ∈ 1 : n do

w = w− γ(XT((Xw)− y))
end for

Linear regression (Algorithm 1) is an ML technique fit to find linear relationships
between independent variables and a dependent variable. The algorithm utilizes
gradient descent to iteratively converge towards the best solution. The LA operators
performed on the normalized matrix T are Transpose TT, and Left Matrix Multipli-
cation TX.

Logistic Regression

Logistic regression (Algorithm 2) is very similar to linear regression, but instead of
predicting a continuous value, it predicts a binary value. The rewrite rule for logistic
regression uses the same operators as linear regression: Transpose and Left Matrix
Multiplication.

Algorithm 2 Logistic regression using Gradient Descent [5]

Require: X, y, w, γ
for i ∈ 1 : n do

w = w− γ

(
XT y

1+eXw

)
end for
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K-means Clustering

The regression algorithms discussed above are supervised, that is, they predict a
value based on a set of input features. K-Means clustering is an unsupervised al-
gorithm that groups data points into a predefined number of clusters based on their
similarity. The operators used to calculate the clusters are exp (X2), Scalar Multiplica-
tion, Transposition, Row Summation, and Left Matrix Multiplication. The algorithm
is shown in Algorithm 3.

Algorithm 3 K-Means Clustering [5]
1r×c denotes a matrix of size r× c filled with ones, this is used to repeat a vector to a
matrix, either row- or column-wise.
Require: X, k (number of centroids)

C = rand(rX × k) ▷ Randomly initialize centroids matrix C
DX = rowSums(X2)× 11×k ▷ Compute the l2-norm of points for distances
T2 = 2× X
for i ∈ 1 : n do

D = DX − T2C +
(
1rX×1 × colSums(C2)

)
▷ Compute distances

A = (D == rowMin(D)× 11×k) ▷ Assign points to the closest centroid

C =
XT A

1cX×1×colSums(A)
▷ Update centroids

end for

Gaussian Non-negative Matrix Factorization

Gaussian Non-negative Matrix Factorization (Gaussian NMF) is a technique used to
decompose a matrix into two smaller non-negative matrices. It is used for feature
extraction from data and is often used in image processing and text mining. The
operators used in the algorithm are Transpose and Right Matrix Multiplication. The
rank hyperparameter r controls the size of the resulting matrices. The algorithm is
shown in Algorithm 4.

Algorithm 4 Gaussian Non-negative Matrix Factorization [5]

Require: X, r (rank)
W = rand(rX × r) ▷ Randomly initialize W
H = rand(r× cX) ▷ Randomly initialize H
for i ∈ 1 : n do

H = H ×
(

WT X
WTWH

)
W = W ×

(
XHT

W(HHT)

)
end for

2.2.4 Overview

In this section we have presented the rewrite rules for the Normalized matrix, for
commonly used Linear Algebra operators, and how these are used in the training of
Machine Learning models without the need to explicitly compute the join between
the source tables. Table 2.1 provides a summary of the operators discussed, with the
final column describing the specific operators used for each ML model. This under-
scores the importance of a robust cost model in factorized ML, since various models
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leverage a range of operators in distinct ways when benefiting from factorized com-
putation.

Group Operator Example 2nd

Operand
Output Used in models

Element-
wise

Addition T + x scalar x

Normalized
Matrix

—
Multiplication T × x scalar x K-Means
Division T/x scalar x —
Transposition TT — LinReg, Lo-

gReg, K-Means,
G-NMF

Generic Scalar
Function

f (T) f K-Means (exp)

Aggrega-
tion

Row Summa-
tion

row-
Sums(T)

— Column Vec-
tor

K-Means

Column Sum-
mation

col-
Sums(T)

— Row Vector —

Multipli-
cation

Left Matrix
Multiplication

TY Matrix Y
(cT × rY)

Matrix (rT ×
cX)

LinReg, LogReg,
K-Means

Right Matrix
Multiplication

YT Matrix Y
(cX × rX)

Matrix (rY ×
cT)

G-NMF

TABLE 2.1: Overview of factorized ML operators.

2.3 Machine Learning on GPUs

Graphics Processing Units (GPUs) have emerged as the preferred processing units
in the Machine Learning domain due to their significant advantages over Central
Processing Units (CPUs). As CPUs are designed for diverse general-purpose appli-
cations, this is not surprising. Whereas CPUs excel in executing sequential tasks,
such as running an operating system, GPUs are optimized for parallel tasks. This
specialization enables them to efficiently execute identical operations on multiple
pieces of data simultaneously with a considerably higher degree of parallelism than
CPUs, exactly what is needed for the prevalent linear algebra operations in ML.

2.3.1 Architecture

This section elaborates on the architecture of a GPU, emphasizing its effectiveness in
performing Linear Algebra tasks. Figure 2.1 illustrates the architectural differences
between a CPU and a GPU and will serve as a point of reference throughout this
section.

The heart of the GPU is the Streaming Multiprocessor (SM), which is responsible for
executing thousands of parallel threads. Each SM comprises multiple CUDA cores
(highlighted in blue), resembling CPU cores, that carry out arithmetic operations.
These cores are optimized to manage multiple operations concurrently, enhancing
their effectiveness for the matrix and vector calculations crucial in Machine Learn-
ing.

Data and code are transferred to the streaming multiprocessors (SMs) by passing
through various memory layers. Initially, data is fetched from the host and stored in
the GPU’s DRAM, after which it is moved to the SM via the L2 cache. This facilitates
quick data exchange and minimizes latency. Threads are grouped into blocks and
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CPU GPU

DRAM

L3 Cache

Core

L1 Cache

Con-
trol

Core

L1 Cache

Con-
trol

Core

L1 Cache

Con-
trol

Core

L1 Cache

Con-
trol

L2 Cache L2 Cache

DRAM

L2 Cache

Multiprocessor

Compute Primitive Scalar Vector

FIGURE 2.1: Simplified view of the difference in architecture between
a CPU and a GPU. Compute cores are blue, control units green and L1
Cache is marked in yellow. Figure based on visualizations from [8]–
[10]. Compute Primitive shows an algorithm performing sequential
matrix multiplication where a scalar operation is processed at a time,
and a SIMD algorithm were a vector operation is computed in paral-

lel.

then allocated to SMs for scheduling. This organization enables efficient resource
management and parallel thread execution. Each SM is responsible for managing a
block of threads that are then scheduled for execution. The cores within the SM exe-
cute these threads concurrently, resulting in a high degree of parallelism. This simul-
taneous processing of multiple data points is known as Single Instruction, Multiple
Data (SIMD) architecture. Although CPUs also support SIMD, GPUs offer a much
higher degree of parallelism, due to the higher number of cores, which proves to
be advantageous in Machine Learning applications, where identical operations are
applied across numerous data points.

2.3.2 Estimating Performance on GPU

Following the architecture overview, it is essential to grasp the performance dy-
namics of a GPU in the context of Machine Learning applications, specifically fo-
cusing on Linear Algebra operations. The GPU’s ability to execute thousands of
threads concurrently is the basis of its computational power, particularly for tasks
with high arithmetic intensity. The following passages provide valuable perspec-
tives from [11].

The arithmetic intensity refers to the ratio of mathematical operations performed
per memory operation. In the context of GPUs, it is a critical factor in determining
performance constraints. The time it takes for a function to execute on a GPU can be
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constrained by memory bandwidth, mathematical bandwidth, or latency. To illus-
trate this, imagine a function that reads the input data, performs calculations, and
writes the output. In an ideal case, the time spent on memory operations Tmem and
math operations Tmath can overlap (because many threads are running at once). In
this ideal case, the total execution time will approach max(Tmem, Tmath). As will be
shown in Section 5.2 programs on GPUs are often limited by their memory band-
width, due to their very high computational throughput. On the contrary, for CPU
operations, the total time taken is highly correlated with Tmath (Section 5.1). This dis-
crepancy introduces difficulties in creating a singular cost model that performs well
on both the CPU and GPU scenarios.

When the computational time Tmath exceeds the memory access time Tmem, a func-
tion is classified as math-bound, indicating that the GPU’s computational capabili-
ties are the limiting factor. On the contrary, if Tmem is higher, it is memory-bound,
which means that the memory bandwidth is the restricting element. This relation-
ship is illustrated by the inequality #ops

BWmath
> #bytes

BWmem
, which can be rearranged as

#ops
#bytes >

BWmath
BWmem

. Here, the left side denotes a function’s arithmetic intensity, while the
right side represents the GPU’s ops : byte ratio, i.e., the number of Floating Point
Operations (FLOPs) per byte retrieved from memory.

In practice, many Machine Learning operations, such as linear layers or activation
functions, often have low arithmetic intensities, sometimes executing only one op-
eration for every two-byte element accessed from and stored in memory. This char-
acteristic typically renders them memory-bound on GPUs. However, for operations
with high arithmetic intensity, like large matrix multiplications, the GPU’s mathe-
matical bandwidth emerges as the constraining factor.

To fully leverage a GPU’s capabilities, it is crucial to ensure sufficient parallelism.
This is achieved by launching a significant number of thread blocks, ideally several
times higher than the number of SMs, to minimize the tail effect, where only a few
active thread blocks remain towards the end of a function’s execution. By main-
taining a high level of parallelism, GPUs can effectively hide instruction latency and
maximize throughput, rendering them better suited for the parallel processing de-
mands of Machine Learning compared to CPUs.

How this relates to the performance of factorized ML on GPUs, and the impact it
has on the trade-off between materialized and factorized learning, is discussed in
Section 5.2.
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Chapter 3

Literature Review

Factorized machine learning is a novel technique that allows learning over normal-
ized data without materializing the join of multiple tables. This can potentially
reduce redundancy in I/O and computation and speed up the learning process.
Several ways have been proposed to achieve and implement this technique. These
works are discussed in Section 3.1. However, since Factorization is not always the
faster choice [1], [4]–[6]. Consideration must go into choosing the right data rep-
resentation for ML workflows. Works that present contributions to answering this
question are laid out in Section 3.2. Finally, we draw inspiration from the SOTA
Machine Learning Optimizers in Section 3.3.

3.1 Factorized Machine Learning

The concept of factorized Learning was proposed in [1]. The paper demonstrates
that learning over joins can avoid redundancy in I/O and computation. The authors
show that their factorized Learning framework, Orion, is faster in certain tested sce-
narios where materializing the join introduces significant redundancy. However,
its focus on two-table joins limits its applicability to real-world scenarios. The cost
model proposed in this paper is based on hardware, data characteristics, and model
parameters. Despite its contributions, the scope of the model is limited since it only
considers buffer memory as hardware, input table dimensions as data characteris-
tics, and the number of iterations as the only model parameter.

Santoku [12], a toolkit that implements factorized learning in R, extends Orion. The
toolkit additionally supports ML models with categorical features, such as Naive
Bayes, and extends the factorized approach to ML inference. However, Orion and
Santoku have some limitations:

1. Only support PK/FK joins.

2. Requires one-hot encoding of categorical features.

3. Requires manual effort to create a factorized implementation of an ML algo-
rithm.

F [13] addresses this first limitation by extending Factorized Learning to any natural
join. However, F only applies to least squares regression models. AC/DC, a system
developed by the same authors, generalizes F to non-linear models and eliminates
the need for one-hot encoding of categorical features. This is achieved by using
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sparse data representations for categorical features, which avoid the redundancy of
one-hot encoding.

Morpheus [5] proposes a solution to the third problem mentioned earlier. Morpheus
uses generic rewrite rules for Linear Algebra (LA) operators to factorize a large en-
semble of ML models, without manually rewriting the algorithms. This is achieved
by using a specific representation of normalized data called the normalized matrix.
The rewrite rules apply this normalized matrix to generalize factorized computa-
tions. MorpheusFI [14] extends this data abstraction to the interacted normalized
matrix which can capture non-linear interactions between features, thus extending
factorized learning to ML models with quadratic feature spaces. [15] Uses this as a
basis to extend MorpheusFI to Gaussian Mixture Models and Neural Networks.

Although the previously mentioned works are mostly specialized pieces of soft-
ware with limited applicability to real-world ML workflows, Trinity [16] aims to
enable writing factorized learning workloads once and deploying them across mul-
tiple programming languages and linear algebra tools. This means that DB and ML
optimizations can be implemented once and applied to many languages or LA run-
times. However, a significant drawback is that the user must specify whether to
materialize the join or perform factorized ML. How other systems alleviate this re-
sponsibility from the user is described next.

3.2 Cost Estimation for Factorized Machine Learning

Several works propose frameworks and methods to decide between factorization (F)
and materialization (M). However, their cost models have limitations, as they rely
on theoretical analysis, simple heuristics, or conservative assumptions. This section
reviews these works and highlights their contributions and challenges.

In [1] an analytical model that compares the I/O cost and the CPU cost between F
and M is used. The authors analyze the number of operations for each step of Batch
Gradient Descent in relation to the input data sizes. This results in a prediction
for CPU cost and I/O cost. In their experiments, the model accurately predicts the
fastest approach 95% of the time.

Morpheus [5] argues that the use of specific cost models for LA operators is not fea-
sible because it makes the cost model dependent on a single LA back-end. Therefore,
they advocate for a “system-agnostic approach that does not need cost models for
operators”. This approach uses a decision rule based on feature and tuple ratios to
determine whether to factorize. The rule is as follows:

Definition 3.2.1 (Morpheus’ Decision Rule).

τ Tuple ratio

ρ Feature ratio

OptimizeMorpheus(τ, ρ) =

{
Factorize τ > 5∧ ρ > 1
Materialize, otherwise
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The conservative choice of thresholds results in Morpheus predicting materializa-
tion in cases where it is slower than factorization, but the authors show that these
speed-ups are often less than 1.5x.

MorpheusFI [14] analyzes performance trade-offs and crossovers between its fac-
torized interaction framework and materialized execution for LA operations. The
authors identify sparsity as another key factor that affects runtime, along with the
already known tuple ratio, and feature ratio. They propose a heuristic decision rule
based on these factors to help users decide when to use their framework. The de-
cision rule uses the cost ratio of the factorized and materialized approaches for left
matrix multiplication. The decision rule considers the number of base tables, the
number of sparse dimension tables, and the sparsity of each dimension table, it states
that factorization should be undertaken only when a low ratio of the base tables is
sparse, or if the ratio is high and the sparsity of each base table times the ratio of the
number of samples in S to the number of rows in R is greater than 1. It is important
to note that this rule has not been subjected to comprehensive evaluation.

Definition 3.2.2 (MorpheusFI’s Decision Rule).

q Number of base tables with sparsity < 5%

p Number of base tables

ek Sparsity of Rk

rS1 Number of samples in S1

rk Number of rows in Rk

OptimizeMorpheusFI(q, p, e, rS1 , r) =



Factorize q < ⌊ p
2 ⌋ ∨ (q ≥

⌊ p
2 ⌋ ∧ ∀k ∈

[1, q], ek
rS1
rk

>

1)
Materialize otherwise

Amalur [6] implements a combination between the two previously mentioned cost
estimation approaches: analytical counting of operations and a heuristic decision
rule. The decision rule is based on the complexity ratio between factorization and
materialization. It computes the number of FLOPs for both approaches. This in-
volves analyzing the training algorithms of various ML models and creating for-
mulas to compute the number of FLOPs needed with regard to the input datasets.
Which approach to take is chosen as follows.

Definition 3.2.3 (Amalur’s Decision Rule).

s Standard complexity

f Factorized complexity
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OptimizeAmalur(s, f ) =

{
Factorize s

f > 1.5

Materialize otherwise

The threshold value t = 1.5 was chosen as the boundary to cater to preferring false
negatives to false positives. This approach shows performance comparable to that
of Morpheus.

A comparison of these approaches (see Table 3.1) shows that most cost models are
simple heuristic decision rules. Even Orion’s analytical cost model is primarily used
to count operations. The final decision is also based on a decision rule. These rules
are effective at predicting cases where the answer is obvious, such as when there is
substantial redundancy. However, a cost model that can accurately predict difficult
cases, which are likely to occur more often, is still needed. To achieve this, a decision
rule will not suffice. Some explainability may have to be traded for the benefit of
creating a more accurate cost model.

System Model Relevant features

Orion [1] Analytical cost model (I/O
and CPU cost) → Decision
Rule

• Buffer size
• Input table dimensions
• Model iterations

Morpheus [5] Heuristic decision rule
• Tuple ratio
• Feature ratio

MorpheusFI [14] Heuristic decision rule
• Sparsity
• Input table dimensions

Amalur [6] Analytical cost model
(FLOPs)→ Decision rule • Complexity ratio

TABLE 3.1: Overview of cost models for factorized learning

3.3 Machine Learning Optimizers

Machine learning optimizers are algorithms or techniques that improve the perfor-
mance of machine learning tasks by finding the optimal configuration or schedule
for a given hardware back-end. Optimizers often rely on cost models to estimate the
runtime or resource consumption of different options and select the most efficient
one. In this section, a selection of existing machine learning optimizers and how
they approach the cost estimation problem are reviewed. How their ideas can be
applied or adapted to the factorized machine learning setting is also discussed.

[17] Presents a new algorithm for optimizing the schedule of machine learning tasks
compiled with Halide [18], a compiler that efficiently expresses and compiles ar-
ray computations for image processing, computer vision, scientific computation and
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machine learning. The algorithm uses a cost model to predict the fastest schedule
and reduce runtime. The cost model, a neural network, takes two sets of features
as input for each stage of the algorithm: algorithm-specific features and schedule-
dependent features. These features are embedded and fed into a fully connected
layer that predicts coefficients for hand-crafted terms. These terms are non-linear
combinations of input features that the authors expect to be related to runtime. Ex-
amples are tasks per core, or the number of times storage is allocated. The computed
coefficients are then used to predict the runtime of a given task.

TVM [10] is an end-to-end automated optimization compiler for deep learning that
achieves portability of performance through graph and operator level optimizations.
It uses a statistical approach to the cost model by using an ML model to predict
runtime on a given hardware back-end. The model considers features such as the
number of float additions and integer comparisons to make its predictions. This
approach enables TVM to generate efficient code for a wide range of hardware back-
ends without requiring detailed hardware information or manual tuning.

These optimizers are not directly applicable to the scenario we are creating a cost
model for, as the models cannot currently be compiled with TVM or Halide and
making them compatible is outside the scope of this thesis. However, insights from
these optimizers can inform the cost estimation problem addressed in this research.
Table 3.2 presents factors that can help create an accurate model to predict whether
materialization or factorization is faster.

System Reference Model Relevant features

TVM [10] XGBoost
• Memory access count
• Memory buffer reuse ratio
• Number of time kernel is

called
• Touched memory size

Halide [17] Vector of hand-
crafted features
multiplied by coeffi-
cients computed by
Neural Network

• Total number of allocations
made

• Total number of bytes read
• Total number of scalar in-

structions

TABLE 3.2: Overview of discussed ML optimizers

3.4 Research Gap

A comprehensive performance analysis of factorized machine learning, conducted
through profiling and experimentation, will provide valuable information for de-
veloping an accurate cost model. This cost model aims to determine the optimal
approach, factorization or materialization, in terms of training time. By comparing
this analysis with an analysis of materialized machine learning, we can gain a deeper
understanding of the computational differences and the factors that influence them.
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Previous research has identified data, hardware, and model characteristics as factors
that impact the decision to factorize or materialize. However, these works have not
been able to accurately predict the optimal approach due to their limited optimiza-
tion space and narrow ranges for cost model parameters. Additionally, the influence
of hardware on runtime and its relationship with the trade-off between factoriza-
tion and materialization have not been fully considered by the authors. Despite the
widespread adoption of GPUs for ML model training, the impact of factorized train-
ing on the trade-off has not been explored in any prior work. Therefore, the main
research gaps in this area can be summarized as follows.

RG.1 The trade-off between factorization and materialization in relation to hard-
ware characteristics, particularly for training on GPUs, remains an under-
explored area of study.

RG.2 Limited optimization space and narrow ranges for cost model parameters.

RG.1 is addressed by RQ.1 on a GPU optimized factorized ML implementation, in
Section 4.1.1. To answer RQ.2, on how to create an accurate and robust cost model,
we perform experiments with a large range of independent variables increasing the
optimization space when compared to related research. The details on how this fills
RG.2 are in Section 6.1.
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Chapter 4

Methodology

This chapter outlines the methodology used to get an accurate cost prediction for
factorized Machine Learning. We start by introducing the problem setting in Sec-
tion 4.1, where we explain the choices for the independent variables. Next, we
present the proposed cost estimation models in Section 4.2.

4.1 Problem Setting

As this is an empirical study, the focus is on carried out experiments and their re-
sults. Therefore, it is extremely important to design these experiments well. This
starts with a look back at the problem we are trying to solve, after which we can say
precisely what is needed to solve this problem. The experiments are then designed
to gather the necessary results to arrive at a fitting solution.

4.1.1 Independent Variables

To reiterate, the objective of this thesis is to develop an accurate and generalizable
cost model to determine whether factorized or materialized Machine Learning is the
optimal choice for a given Machine Learning scenario. This requires understand-
ing the factors that influence this decision. Prior research has already identified the
three dimensions that impact cost: data characteristics [4]–[6], hardware characteris-
tics [1], and model type & hyperparameters [4], [6]. In this section, we elaborate on
the independent variables that are taken into account in this study.

Data

Existing literature has recognized the impact of certain data characteristics on fac-
torized learning. Morpheus [5] argues that the most significant of these factors is
the relationship between the number of columns/rows in the Source tables and the
Target table. The authors expand on this notion in [14], demonstrating that sparsity
has serious implications for the factorization vs materialization (F/M) trade-off. In
this study, we incorporate the characteristics mentioned in previous research, sup-
plemented by a new set of features. We also include a wider range of variation for
each data characteristic, which allows for more insight into the relationship between
these data characteristics and the training cost. The data considered characteristics
are detailed in Table 4.1.



24 Chapter 4. Methodology

Independent
Variable

Symbol Explanation Reason for choice

Sparsity e Fraction of zero-
valued elements

Impacts the number of computa-
tion needed for sparse implemen-
tations. [5], [6], [14]

Table Size
(rows/
columns)

c/r Dimensions of ta-
bles. Both Target
and Source.

[5], [6]

Tuple ratio ρ Ratio of rows from
S2···k in S1

Influences the number of redun-
dant operations when computing
a model [5], [6]

Feature ratio τ Ratio of columns
from S2···k in S1

Influences the number of redun-
dant operations when computing
a model [5], [6]

Join type jt The join type used
to join the source
tables to the target
table

[6]

Selectivity σ The fraction of
rows from S1···k
that are included
in T

Can be used to estimate the com-
putational redundancy between
F/M [6], [14]

TABLE 4.1: Overview of data related features varied in this study.
A reference in the column ’Reason for choice’ denotes this feature is
either used in the cost estimation rule in that publication, or the pub-
lication has a thorough analysis showing the impact of this feature on

runtime.

Hardware

This section answers how this thesis addresses RG.2 by addressing the hardware
characteristics that represent the second dimension that influences the cost of model
training. In this study, we vary these characteristics to understand their impact on
training cost. The primary distinction in hardware is between CPU and GPU. This
thesis places a greater focus on GPUs, given their prevalent use in the training of
ML models. However, to facilitate a comparison, we also include CPUs, albeit with
a lesser degree of variation. We experiment with different degrees of parallelism
by altering the number of cores. As for the characteristics associated with GPUs,
we vary them through experiments on different GPU types and architectures. By
changing the types of GPU used, we aim to understand the effect of the following
variables.

• Number of Streaming Processors

• Number of compute cores, clock speeds and floating point processing power

• Cache characteristics (L1, L2 size & bandwidth)
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• Memory characteristics (bandwidth, frequency)

• GPU architecture

The specific values for these variables, along with the exact types of GPU used, are
provided in Appendix B. A more comprehensive discussion of GPU Architectures is
presented in the next paragraph.

GPU Architectures We intentionally chose a variety of GPU architectures to cap-
ture metrics of GPUs with different characteristics. Both older (Pascal, 2016) and
newer (Ampere, 2020) architectures are incorporated with the aim of developing a
cost model that is not confined to a single generation of hardware. Restricting the
study to GPUs from a single generation would constrain the generalizability of the
cost model, as they employ the same architecture, i.e., they utilize similar Streaming
Multiprocessors and Cache layouts.

Model

The characteristics of the model are varied by selecting four distinct models: linear
regression, logistic regression, Gaussian Non-negative Matrix Factorization, and K-
Means Clustering. To avoid an exponential increase in the number of combinations
of independent variables, we opt not to vary certain hyperparameters, such as k
in K-Means or r in G-NMF. Nevertheless, we incorporate a multitude of features
that encapsulate the variations that would otherwise be captured by altering these
hyperparameters.

One of those features is the complexity of the model, that is, the number of opera-
tions needed to train a model. The hyperparameters mentioned above are parame-
ters of the function to compute this feature; thus, we assume that our cost models
will still be able to accurately predict runtime for different hyperparameter settings,
as the complexity (ratio) has already been shown to be a capable predictor for the
F/M trade-off.

4.1.2 Dependent Variables

In this study, the dependent variable is the cost of training a model, which is repre-
sented as the training time. The objective of the cost models is to identify the most
efficient method for training a model, which is why we utilize training time as the
dependent variable.

A variety of profiling metrics is also gathered to quantify the cost of training a
model. These metrics are used to calculate the cost associated with each opera-
tion in the training process. By conducting micro-benchmarks within a representa-
tive sub-range of our dependent variables, we discern how these variables influence
the execution of computations on the GPU. The collected metrics are shown in Ta-
ble 4.2. They allow us to calculate the total time taken for computation and memory
(ops : byte), and allow us to infer how changes in the independent variables affect
the utilization of GPUs and the F/M trade-off.
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Section name Metric name Metric unit

Command line profiler metrics dram__bytes_read.sum byte
dram__bytes_write.sum byte

GPU speed of light throughput Duration nsecond
SM frequency cycle/second
Elapsed cycles cycle
SM active cycles cycle
Compute (SM) throughput %
DRAM frequency cycle/second
Memory throughput %
DRAM throughput %
L1 cache throughput %
L2 cache throughput %

Memory workload analysis Memory throughput byte/second
Mem busy %
Max bandwidth %
L1 hit rate %
L2 hit rate %
Mem pipes busy %

TABLE 4.2: Collected profiling metrics and their explanation. The
metrics related to the compute cost are bold, those related to the

memory cost are italicized.

4.2 Proposed Cost Models

This section provides an introduction to the concepts underlying our proposed cost
models, which are elaborated in Chapter 5. We first give a short introduction to the
models and the reasoning behind choosing these models after which we go slightly
more in-depth into each separate cost model.

4.2.1 Overview

The first model, termed the analytical model, is a formula derived from the actual
cost of the operations. By using this formula to deterministically calculate the cost
of training a model, for both the factorized and materialized case, we infer which is
optimal. Its simplicity lends itself to high explainability, but it may not perform as
well as more complex methods due to the impracticality of incorporating the effects
of all independent variables.

Including more independent variables as features is straight-forward for ML-based
cost models, which is why the next types are ML-based. With our second model, a
linear regression model, we can incorporate more features, broadening the decision
space. The third model, a tree-boosting model, uses a set of regression trees for its
predictions. It is chosen as it is still explainable, but can capture the more intricate in-
teractions between features than the linear models. It is interesting to compare these
cost-based models to reason about the complexity of the problem and the general-
izability of the models. If the tree-boosting model outperforms the other models,
it suggests that the problem is more complex as there are non-linear feature inter-
actions that cannot be captured in a linear model. However, if the linear models



4.2. Proposed Cost Models 27

perform sufficiently well, they are likely a better choice as there is less risk of over-
fitting to training data. Finally, we propose a hybrid model, which integrates the
insights derived from the preceding cost models and leverages the strengths of the
most effective models to build a superior model.

Our cost modelling approach differs from previous research in two key areas. Firstly,
we hypothesize that hardware choice affects the F/M trade-off, and thus we include
hardware characteristics in our cost models. Secondly, we investigate the use of ML-
based cost models as they allow for more complex feature interactions to be cap-
tured. This is in contrast to previous research, which has primarily used analytical
decision rules decide whether to factorize or materialize.

4.2.2 Analytical

The analytical model is a deterministic model, constructed by examining the oper-
ations executed by the learning algorithm. This model is based on a formula de-
rived from the actual cost of the operations. It encapsulates the critical factors of
the algorithm, such as the number of matrix multiplications. For example, if an al-
gorithm performs one addition and two multiplications, the formula for this would
be ADD + 2MULT. The actual cost values for ADD and MULT are determined
through micro benchmarks, and these values are then used to complete the formula
and obtain the final model. In our context, these operations are the linear algebra
operations performed as part of the machine learning model training. Therefore,
by capturing the profiling metrics mentioned in Table 4.2, we can compute the cost
of each operation in the training process. As will be demonstrated in Chapter 5,
the memory cost of an operation is a reliable predictor for its total runtime. This
is the reason we concentrate on the memory cost of an operation in the analytical
model. When compared to related research, this cost model is the most like Orion’s
cost model [1], which also explicitly incorporates multiple cost factors like I/O and
Cache costs. However, Orion is highly specific to CPU training, whereas the analyt-
ical model in this study is GPU-focused.

By profiling across a broad spectrum of the selected independent variables, we can
estimate their impact on memory cost. Integrating this information into the analyti-
cal model, allows us to construct a highly interpretable model that can be utilized to
estimate the cost of various approaches.

4.2.3 Linear Regression

This model is grounded in empirical data and utilizes linear regression to predict
runtime and make a decision between factorization and materialization. It takes
into account various features known to influence performance, including the size
of the input data, the complexity of the algorithm, and the hardware configuration.
By examining the relationships between these features and the actual runtime of the
algorithm, the linear regression model can make accurate and interpretable predic-
tions about the cost of different approaches.

Previous research has shown that modelling linear relations between features is suf-
ficient for accurate predictions, e.g., Morpheus’ decision rule that only takes into
account tuple- and feature-ratios [5], and Amalur’s complexity ratio [4]. If the cost
characteristics of factorized training on GPU do not differ significantly from those
of training on CPU, we expect this linear cost model to perform well. However, if
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the cost characteristics are more complex, a more intricate model will result in more
accurate predictions.

4.2.4 XGBoost

To evaluate whether the preceding models, such as the analytical and linear regres-
sion models, are overly simplistic, we incorporate a more intricate XGBoost regres-
sor model. If this model surpasses the performance of the other models, it suggests
that more complex feature interactions occur that the other models have not been
able to capture. This model is capable of modeling these complex interactions from
the data and making more precise predictions about the cost of different approaches.
The primary disadvantage is that this model is more expensive to train and is prone
to overfitting on small training sets [19].

4.2.5 Hybrid

Finally, the insights obtained from the preceding cost models are combined and used
in a hybrid model. By leveraging the strengths of multiple models, the hybrid model
is able to make more accurate predictions about the cost of different approaches.
Which models are chosen, and how they are combined is determined by the perfor-
mance of the individual models. Through an analysis of the performance on spe-
cific scenarios, i.e., CPU and GPU scenarios, we pick the best models for the hybrid
model. This model is expected to outperform the individual models, as it can lever-
age the strengths of each model to make more accurate predictions.
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Chapter 5

Cost Estimation

In this chapter, we present the results of our experimental work and explain their
application in the formulation of four different cost models. The first section (Sec-
tion 5.1) provides an overview of the results of the runtime experiment, motivating
why a cost model is necessary. In Section 5.2 the collected profiling metrics are ag-
gregated and analyzed, providing information on how the fundamentals of the GPU
can affect the F/M trade-off. Section 5.3 outlines how we compiled and manipulated
our independent variables to produce a suitable dataset for training models. Finally,
in Section 5.4, we explore various cost models created using the detailed results of
the runtime and profiling experiments, and we assess the merits and drawbacks of
our analytical, linear regression, XGBoost, and hybrid models.

5.1 Motivation

This section illustrates the need for precise cost estimation when deciding between
factorization and materialization strategies. We structure this motivation in three
stages. First, we demonstrate the advantages of factorization. Next, we examine
how the characteristics of the data and models affect the outcome. By visualizing
the performance ratio ( TimeM

TimeF
) against various independent variables, we identify

initial trends that affect the F/M trade-off. Finally, we highlight the significance of
GPUs in this context.

5.1.1 Benefit of Factorization
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FIGURE 5.1: Average Performance ratio of ML models for positive
cases (TimeM > TimeF), split per tested real dataset and compute

type.
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The aim of factorized machine learning is to minimize unnecessary operations dur-
ing model training, thus enhancing efficiency and speed. The comparative perfor-
mance of factorization versus materialization on actual datasets is depicted in Fig-
ure 5.1. The exploration of factorization proves advantageous; it is observed that in
18% of the instances tested on real datasets, factorization is faster, yielding an av-
erage acceleration 5.1×. In the most extreme cases, the training time is reduced by
more than 20 seconds, a 27-fold reduction. Particularly in situations where training
is recurrent, such as during hyperparameter tuning or online learning, this efficiency
can translate into substantial time savings.

5.1.2 Data & Model Characteristics
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FIGURE 5.2: Performance ratio ( TimeM
TimeF

) against independent vari-
ables. Broken down by compute type (CPU/GPU). 99% confidence
interval shown as shaded area. The sparsity ratio is defined as the
sparsity of the source tables Sk, k ∈ [1, n] divided by the sparsity of
target table T. The sparsity of S is defined as the total nonzero val-
ues in the base tables divided by the total number of cells in the base

tables, ∑n
k=1 nnz(Sk)

∑n
k=1 rSk

×cSk
. High sparsity ratio means the target table is rela-

tively denser than the source tables.

The influence of different data related independent variables on the performance ra-
tio is discussed here, and shown in Figure 5.2. The data reveals a modest inverse
relationship between the performance ratio and the sparsity of the target table (T).
Further analysis, shown in the second column, delves deeper into the connection
between performance and sparsity. A higher sparsity ratio —meaning the base ta-
bles (Sk) have a higher count of zero-valued items relative to the target table (T)—
generally results in factorization being more efficient than materialization. The plots
on the far right suggest that a higher complexity ratio ( FLOPM

FLOPF
) tends to favor factor-

ization as the optimal training approach. This aligns with the logical premise that
factorization is advantageous when it eliminates redundant operations.

It is crucial to note that the relationship between these data characteristics and the ac-
celeration provided by factorization becomes less distinct with GPU computations.
The reason is that these computations are typically limited by memory capacity
rather than processing power. This perspective is examined in detail in Section 5.2,
which delves into the metrics gathered during profiling experiments.



5.1. Motivation 31

0 1 2

CPU 08c
CPU 16c
CPU 32c

KMeans

0.0 0.2 0.4

LMM T

1 10 20

Left multiply

1 2 4

Row summation T

0.0 0.5 1.0

1080Ti
2080Ti

A40
P100
V100

0 1 5 10 0.1 0.2 0.3 0.00 0.05 0.10
Performance Ratio TimeM

TimeF

Co
m

pu
te

 U
ni

t

FIGURE 5.3: Box plots showing performance ratio, of various opera-
tors on synthetic data, against independent hardware variables. The

performance ratio is shown to be affected by hardware choice.

5.1.3 Hardware Characteristics

The hardware used for computation not only affects a program’s runtime, but also
influences the F/M trade-off. Different processing units (i.e., CPU or GPU type) have
unique thresholds at which factorization becomes more advantageous than material-
ization. This phenomenon is illustrated in Figure 5.3. The impact on the performance
ratio varies depending on the hardware and the specific operation performed. For
example, the average performance ratio for transposed Left Matrix Multiplication
on the P100 GPU is 3.03± 2.70, in contrast to a marginally lower 2.32± 2.21. On the
contrary, for left (scalar) multiplication, the V100 GPU exhibits a higher performance
ratio of 0.21± 0.04, compared to the P100 0.19± 0.05.

Compute Unit Mean Std. Dev. Count % with Speedup

CPU 08c 1.27 0.25 172 1.78%
CPU 16c 1.32 0.34 579 5.99%
CPU 32c 1.48 0.46 2873 29.74%
1080Ti 2.27 1.60 432 4.47%
2080Ti 1.87 1.09 425 4.40%
A40 2.00 1.20 392 4.06%
P100 2.52 1.84 461 4.77%
V100 1.95 1.13 404 4.18%

TABLE 5.1: Mean performance ratio of ML models for cases where
factorization is preferred over materialization (speedup > 1). This
shows hardware choice is a large factor in when to choose factoriza-

tion over materialization.

In instances where factorization is favored over materialization (when TimeM >
TimeF), the performance varies between GPU types. Both the average performance
ratio and the number of instances where factorization outperforms materialization
differ, as indicated in Table 5.1. This variation underscores the importance of hard-
ware selection in the factorization versus materialization decision. However, the
variation among GPU models is less pronounced than the disparity between CPUs
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and GPUs. Consequently, it may be more beneficial to consider the type of compu-
tation —CPU or GPU— as an independent variable in the cost models rather than
focusing on specific GPU models.

When comparing the performance ratio with the complexity ratio for different hard-
ware settings, an interesting pattern emerges. As described in Section 3.2, the com-
plexity ratio is the ratio of the number of floating point operations (FLOPs) needed
for the factorized case divided by the FLOPs of the materialized case. According to
previous research, a higher complexity ratio typically indicates that factorization is
more advantageous. However, our experiments reveal that while this is generally
true for CPU operations, it does not always apply to GPU computations. This pat-
tern is illustrated in Figure 5.4, and the reasons behind it are explored further in the
following section.
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FIGURE 5.4: Performance ratio, of various operators on synthetic
data, against complexity ratio, broken down by CPU and GPU. 95%
Confidence interval shown as shaded area. Where a lot of operators
show clear correlation between the complexity ratio and the perfor-

mance ratio on CPU, this is not the case for GPU.

5.2 GPU Performance Analysis

An essential preliminary step in creating a precise cost model is understanding the
performance attributes of the scenarios under examination. This section analyzes
the profiling metrics collected during the experiments to understand the influence
of hardware selection on the factorization versus materialization trade-off. The first
analysis involves comparing the memory cost and the math cost in the profiled sce-
narios. According to NVIDIA, an effective method to predict the execution time of a
GPU program is to calculate max(Tmem, Tmath) [11]. In this formula Tmem is the time
required to transfer data to and from the GPU memory, while Tmath denotes the time
needed for actual computations. This approach is in line with the inherently parallel
architecture of GPUs. Should the data transfer to the GPU prove insufficiently fast,
the GPU’s Streaming Multiprocessors will remain idle, awaiting data. This indicates
a memory-bound program. Conversely, if Tmath > Tmem, the program is considered
compute bound. This section elaborates which scenario applies to our experiments
and details how this knowledge can be harnessed to estimate the runtime for ma-
chine learning training scenarios.

Figure 5.5 shows the relationship between memory time Tmem and computation time
Tmath, revealing a strong correlation (ρ = 0.99). The data predominantly shows that



5.2. GPU Performance Analysis 33

10 4 10 2 100

Memory cost Tmem

10 4

10 2

100

M
at

h 
co

st
 T

m
at

h

y = x

Materialized

10 4 10 2 100

Memory cost Tmem

10 4

10 2

100
y = x

Factorized

FIGURE 5.5: Memory cost (Tmem) vs compute cost (Tmath) of profiled
scenarios. The memory cost is computed as the total number of bytes
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Multiprocessors were active divided by the measured average SM fre-

quency.

the memory cost exceeds the computational cost, as most points lie below the y = x
line, indicating that the operations are memory-bound. This observation suggests
that memory cost prediction should be prioritized in our cost estimation efforts. A
notable distinction between factorization and materialization emerges when exam-
ining their correlation values; materialized cases exhibit a correlation of ρ = 0.99,
while factorized cases show a significantly lower correlation of ρ = 0.40. This dis-
crepancy arises because materialization typically involves handling a single matrix,
or two in the case of matrix multiplication. In contrast, the factorized case on the
normalized matrix involves multiple matrices (Sk, Ik, Mk, k ∈ {1 . . . n}), each con-
tributing to different computations. Although this diversity reduces both the mem-
ory and the computation costs, on average, it also results in a deviation from the
Tmem = Tmath line due to the sequential execution of computations on these matrices
within the GPU.

Roofline Model

More insights into the efficiency of the tested scenarios, and the differences between
factorization and materialization, and GPU types, can be gained by using a roofline
model. It is a “model that offers insight . . . on improving parallel software and hard-
ware for floating point computations” [20]. The model delineates whether an opera-
tion is constrained by memory or computation. On the x-axis, it plots the arithmetic
intensity of a program (in our context, this refers to an operator applied to a dataset),
measured in FLOPs per byte. The y-axis represents the achievable performance in
GFLOPS. The roofline itself (illustrated in gray) signifies the performance limit for a
particular GPU, derived from its maximum memory bandwidth and computational
capacity in FLOPs per second. The intersection point, known as the “ridge point,”
indicates the minimum arithmetic intensity required to fully leverage the compu-
tational capabilities of the GPU. By plotting programs on this chart, one can infer
whether a program is memory-bound (to the left of the ridge point) or compute-
bound (to the right of the ridge point). This analysis is crucial because it highlights
potential optimization possibilities by pinpointing performance bottlenecks.
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FIGURE 5.6: Roofline chart showing where the performance of
the GPUs lies in the memory-bound vs compute-bound spectrum.
The subplots on top and right side of each figure show the distri-
bution along the performance (GFLOPs) and operational intensity

(FLOPS/byte) axes. Similar GPU types have similar distributions.

The roofline charts depicted in Figure 5.6 validate that most scenarios are constrained
by memory. However, what stands out is the impact of the GPU type on perfor-
mance, as well as the contrast between factorization and materialization. The differ-
ence among GPU models is particularly evident in the distribution plots to the right
of each subplot. High-performance GPUs such as the A10G and A40 demonstrate
a superior memory bandwidth compared to the GTX1660Ti, which often reaches a
plateau in performance due to memory bandwidth limitations. Consequently, sce-
narios involving the A10G and A40 achieve a higher average performance.

The divergence between factorization and materialization highlighted in these graphs
is informative. Materialized operators exhibit lower arithmetic complexity than their
factorized counterparts, as indicated in the top density plots. This suggests that fac-
torized operators, on average, are less constrained by memory, allowing them to bet-
ter leverage the computational resources of the GPU. However, the significant vari-
ance in performance achieved by factorized operators, as shown in the right density
plots, is due to the sequential execution of operations on different matrix segments.
There is potential for optimization here, which could allow these operators to more
effectively utilize the GPU’s computational power.

The roofline chart in Figure 5.7 provides a detailed comparison of different oper-
ators, highlighting the distinctions between factorization and materialization. For
Left Matrix Multiplication (LMM), the factorized approach exhibits a large variance
in performance, aligning with the previously mentioned use of a normalized ma-
trix. Despite this variance, factorization generally appears to be advantageous for
LMM, as indicated by the profiling metrics that suggest a more complete utiliza-
tion of GPU resources. In contrast, the difference in performance between factorized
and materialized cases for Left Scalar Multiplication is less pronounced. This is ex-
pected since the factorized operation is simpler and involves only the multiplication
of source matrices by a scalar. The rightmost plot reveals a clear underutilization of
GPU capabilities for Transpose Row Summation in the factorized form, compared
to the materialized form. This suggests that while factorization can be beneficial for
certain operations, it may not always be the most efficient use of GPU resources.
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FIGURE 5.7: Roofline chart comparing factorization and material-
ization for Left Matrix Multiplication, Left Scalar Multiplication and

Row Summation Transpose. Metrics from NVIDIA A40.

For a complete view of all operators, the full set of roofline charts is available in
Appendix C, providing insight into the performance dynamics of each operator.

5.3 Feature Engineering

We proceed to construct a well-suited dataset for training our cost models. Building
on the foundational work that has revealed the relations between speedup and var-
ious data and hardware characteristics in Section 5.1, and incorporating the insights
from our profiling analysis we enrich and process the dataset.

This dataset, gathered through our comprehensive experiments, has a sample for
each unique scenario, with the runtime and attributes of the dataset, the operator
type, the model form (F/M), and the hardware configuration. The following section
outlines the preprocessing and augmentation of this dataset with additional features.
The enrichment process is designed to capture the complex interactions and patterns
we have observed. The features are carefully crafted to enhance the models’ ability
to make predictions about when to use factorization or materialization. The com-
plete set of features is detailed in Appendix D, with a focused discussion on a select
subset presented in Table 5.3.

5.3.1 Preprocessing Profiling Metrics

The feature engineering process begins with the integration of the profiling metrics
into the dataset. This process presents two significant challenges. The first challenge
arises from the fact that these metrics are collected at the kernel level, while our focus
is on operator performance. To address this, we aggregate kernel-level metrics to
reflect the performance of the entire scenario. The second challenge is the incomplete
coverage of the metrics, as they were collected for a subset of scenarios. The strategy
to overcome these obstacles is depicted in Figure 5.8 and is further detailed below.

The procedure to aggregate kernel-level metrics to operator-level metrics is as fol-
lows, and is also depicted in Figure 5.8 (marked by the “1”). For each scenario, we
compute the sum of the metrics that are totals, i.e., the metrics with units of nanosec-
onds, bytes, or cycles (refer to Table 4.2 for applicable metrics). The remaining metrics
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FIGURE 5.8: Workflow of enriching the collected data with additional
features from the profiling experiments. Items related to these profil-
ing experiments are bolded, while the features from the data, model
& hardware characteristics are italicized. Description for the aggrega-

tion process (“1”) is in Section 5.3.

are either percentages or measures per second. For these metrics, we calculate the
weighted average, where the weight is the runtime of the kernel. This ensures that
the metrics accurately represent the total runtime of the scenario. This procedure
yields precise operator-level metrics for each scenario.

The second issue relates to the fact that metrics are not collected for all scenarios.
This is addressed by fitting a statistical model to the collected metrics and employ-
ing this model to predict the missing metrics. The model, denoted as OperatorCost
in Figure 5.8, is an ensemble of linear regressors. It uses aggregated metrics, hard-
ware characteristics, and data characteristics as features, with memory cost Tmem as
the target variable. Each combination of operator and training type (F/M) has its
own linear regression model. To enhance the model, we engineer an additional set
of features derived from the metrics collected, as shown in Table 5.2. The model is
trained on a subset of the metrics collected and tested on the remaining metrics. Sub-
sequently, the model is used to predict the missing metrics. This process is crucial to
ensure that we have metrics for all scenarios, as the cost models require a complete
dataset for training. The true versus predicted values of this model are depicted in
Figure 5.9.

5.3.2 Model-level Math- and Memory-cost

In this section, we describe the process of calculating the memory and mathematical
costs for each scenario. Contrary to the previous section, which estimated the mem-
ory cost as perceived by the GPU, we now compute the theoretical costs. Memory
cost is determined by dividing the total number of bytes read and written to mem-
ory by memory throughput. The mathematical cost is computed as the total number
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Feature Formula Description

dram_bytes_sum dram_bytes_read_sum +
dram_bytes_write_sum

Total number of bytes read and
written to DRAM.

Tmem
dram_bytes_sum

memory_throughput_byte_weighted_mean Total memory bytes divided by
the achieved memory throughput.
Gives the cost of the involved mem-
ory operators in seconds.

Tmath
sm_active_cycles_sum

sm_frequency_weighted_mean Total active cycles divided by the
achieved frequency of the Stream-
ing Multiprocessors. Gives the cost
of the involved math operators in
seconds.

FLOPs compute_throughput_weighted_mean
100 ×

gpu_processing_power
Total number of FLOPs executed in
the scenario. Processing power is
for double precision.

arithmetic_-
intensity

FLOPs×duration
dram_bytes_sum The number of FLOPs executed per

byte read or written to memory.

TABLE 5.2: Overview of features computed from the profiling met-
rics. Features beginning with "gpu" are constants for the specific GPU

used.

of FLOPs required for a computation. These definitions align with those used in the
profiling experiments. However, in this context, we derive them from the available
data and model characteristics, rather than predicting them using a regressor, as was
explained in the preceding section.

The complexity of an operator or model, as previously detailed, is equal to the math-
ematical costs and is determined by examining the algorithms and summing the
computations performed. This process takes into account various data characteris-
tics, such as the number of nonzero items and dataset sizes. For memory costs, a
similar approach is employed, but we sum the number of bytes read and written
to memory. For each Machine Learning (ML) model, we incorporate both the to-
tal summed costs and the costs per involved operator as features. This results in a
multitude of additional features that can be utilized to train the cost models.

A subset of these features is presented in Table 5.3. The complete set of features is
displayed in Appendix D. These features are used to train the cost models, as will
be detailed in the subsequent section.

5.4 Cost Models

This section details the process of developing four different types of cost models,
each capable of choosing when to favor factorization over materialization. These
models are constructed using the enriched dataset, as described in the preceding
section. We start with an introduction of the metrics used to evaluate the perfor-
mance of the cost model (Subsection 5.4.1), followed by the models themselves. The
first model, designed to be as interpretable as possible, is an analytical model (Sub-
section 5.4.2). Next, we fit a range of linear regressors to the dataset to create a linear
ML-based cost model (Subsection 5.4.3). The third model is a tree-boosting model,
used to demonstrate the performance of a more intricate model (Subsection 5.4.4).
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FIGURE 5.9: True Tmem vs predicted Tmem for the analytical model’s
OperatorCost function. Tested on samples not used for training. MSE:

0.0295.

The final model is a hybrid model that merges linear regression and tree-boosting
models to produce a more precise model.

5.4.1 Problem Modeling and Assessing Performance

The decision whether to opt for factorization or materialization is a binary classifi-
cation problem. However, it is more important to accurately predict scenarios that
save more time. Therefore, we use regression models instead of classification mod-
els. This approach enables us to define the decision boundary, allowing greater flex-
ibility in prioritizing scenarios with greater performance benefits.

Metrics to Assess Cost Model Performance

To assess the effectiveness of the cost models, we use a variety of metrics that provide
insight into both the accuracy and efficiency of the models. Previous work [1], [6],
[14] predominantly uses accuracy and speedup (performance ratio) to evaluate the
efficacy of their cost estimation methods. However, due to the imbalanced nature
of the dataset, where most scenarios lean toward materialization, accuracy is not
an appropriate measure. Similarly, the performance ratio has its limitations since
averaging the ratio of multiple scenarios into a single value may lead to information
being lost, such as the amount of time saved, which is a more informative metric to
evaluate the performance of cost models across various scenarios.

Consequently, we introduce a new metric, the time saved. It is the difference be-
tween the sum of materialized times and the sum of factorized times, for those cases
where the cost models predict factorization to be faster. This metric offers a more
practical assessment of the effectiveness of the model in real-world scenarios. Cases
where the model predicts materialization to be faster are less relevant, as such a case
will not result in a time loss compared to the normal, materialized execution. How-
ever, to evaluate whether the models exhibit adequate performance, the maximum
potential time saved is also considered as a benchmark. To still allow reasoning
about the achieved speedup of a set of scenarios, we adjust the performance ratio to
be a weighted average according to the training time of a scenario. The final met-
ric, used to assess generalizability as discussed in Subsection 6.2.2, is the utility of a
model, which represents the proportion of time saved by using this model in relation
to the maximum achievable time savings. These metrics are outlined in Table 5.4.
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Dimension Feature Symbol Formula

Data Dataset size (rows, columns) rT, cT

Sparsity eT
nnz(T)
rT×cT

Sparsity ratio eT
eS

Tuple ratio τ
∑

p
k=1 dk
dS

# Base tables n
Data & Model Complexity ratio FLOPM

FLOPF

Memory ratio bytesM
bytesF

Hardware Compute type
GPU memory bandwidth

Model Operator
# Iterations iter

Dependent Execution Time TimeM, TimeF

Performance ratio TimeM
TimeF

Time saved TimeM − TimeF

TABLE 5.3: Table showing a subset of the base, and de-
rived/engineered features used for training the cost models

5.4.2 Analytical

Look up all used
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each operator
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How many times is each
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Materialize
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Choose training
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FIGURE 5.10: Architecture of the Analytical model. Shows the control
flow of inputs to a final decision on whether to use factorization or

materialization. OperatorCost is the function defined in Figure 5.8.

As demonstrated in Section 5.2, the runtime of the evaluated Machine Learning sce-
narios is primarily determined by the time required to read and write to memory.
Consequently, to generate an accurate prediction of the execution time of a scenario,
we can use the memory cost as a proxy measure, an approach adopted by this ana-
lytical model.
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Metric Formula Description

Time Saved ∑ TimeM − ∑ TimeF where
factorization is predicted to
be faster

The sum of the time saved for all
positively predicted scenarios.

Maximum Pos-
sible Time Saved

∑ TimeM − ∑ TimeF where
factorization is faster

The maximum possible time that
could be saved.

Weighted Per-
formance Ratio

∑ TimeM
∑ TimeF

where factorization is
predicted to be faster

The ratio of the total materializa-
tion time to the total factorization
time.

Utility U = Time Saved
Max. Time Saved The fraction of time saved when

using this model, relative to the
maximum time saved.

TABLE 5.4: Metrics to assess cost model performance

ANLY.1 Profiling Metrics Based model

The procedure to calculate the factorized and materialized memory cost is shown
in Figure 5.10. First, we gather the operators used in the model under evaluation.
Next, we employ a regression model, fitted to the collected profiling metrics (as illus-
trated in Figure 5.8), to predict the memory cost of the factorized and materialized
operators. This step is fit, as we lack profiling metrics for the scenarios under test. Fi-
nally, we sum the costs for each training type and select the scenario with the lowest
predicted runtime.

A significant limitation of this model is its dependence on a pre-trained regressor
to predict the memory cost. This regressor is trained on a subset of the collected
metrics and is used to predict missing metrics. As it is only fit to a subset of possible
operator scenarios, it is unsuitable for predicting the cost of operations that deviate
from the tested scenarios. The development of a model capable of predicting the
memory cost for all scenarios is a complex undertaking and is left for future work.

ANLY.2 Model-level Memory Cost Analysis Based model

By inspecting the operations performed during ML model training, we can calcu-
late the number of bytes read and written during computation. This is achieved by
calculating the number of bytes read and written for each operation and summing
these values. The memory cost is then determined by dividing the total number of
bytes read and written by the GPU’s memory throughput. Compared to ANLY.1,
this model is more adaptable to new ML models, as it does not require a pre-trained
regressor to estimate the operator cost. However, it does not consider other factors
that influence memory cost, such as cache layout and hit rates.

Analytical Model Evaluation

Both analytical models yield a predicted memory cost for the factorized and materi-
alized cases. To arrive at the final decision, we compute the ratio between the cases
and opt for factorization if this ratio ( M

F ) exceeds a certain threshold. This threshold
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is fine-tuned to minimize the number of false positives while still favoring factoriza-
tion in instances where it significantly outperforms materialization in terms of time
efficiency. For the first analytical model (ANLY.1), we set the threshold at 1.7, and
for ANLY.2, we set it at 10.0. The fact that the model only performs well with such
a high ratio of materialized to factorized memory cost indicates that factorization
introduces considerable overhead in areas not captured by this simplistic memory
estimation.

The results of the evaluation are shown in Figure 5.11. Both models perform simi-
larly well. The ANLY.1 model predicts much fewer false positives, but the sum of
time lost by these false positives is almost the same as that of the FPs for ANLY.2.
Subtracting the time lost for the FPs from the time saved for the true positives, we see
that ANLY.2 saves more time than ANLY.1. This is likely due to the fact that ANLY.2
is more conservative in predicting factorization, and thus has a higher threshold
for when to choose factorization over materialization. Altogether, both models save
around 250s of the total 1, 670s of the validation set. Breaking down the positively
predicted cases by compute type, we see that a lot of time (147s & 136s respectively,
shown in Figure 5.15) is lost for false positives of CPU scenarios. So, for GPU sce-
narios, the model is more accurate than for CPU scenarios, which is expected, as we
only use memory cost as a model for runtime. We have shown this to be a valid
strategy for GPUs, but for CPUs, the runtime is largely dominated by the number of
FLOPs executed.
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FIGURE 5.11: Confusion matrix of the analytical models’ perfor-
mance on the test set (CPU and GPU on synthetic data). Decision
boundaries set at 1.7 and 10.0 respectively. Adding time difference of
the false positive cases and the true positive cases gives the total time

saved by the model. For ANLY.1 this is 256s, for ANLY.2 it is 257s.

The evaluation results are presented in Figure 5.11. Both models, ANLY.1 and ANLY.2,
exhibit comparable performance. Although ANLY.1 predicts fewer false positives,
the cumulative time lost due to these false positives is nearly identical to that of
ANLY.2. By subtracting the time lost due to false positives from the time saved by
true positives, it is observed that ANLY.2 saves more time than ANLY.1. This is
likely because ANLY.2 adopts a more conservative approach to predicting factoriza-
tion, thus having a higher threshold for choosing factorization over materialization.

Both models save approximately 250 seconds of the total 1, 670 seconds of the val-
idation set. When we break down the positively predicted cases by compute type,
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we find that a significant amount of time (147 seconds and 136 seconds, respectively,
as shown in Figure 5.15) is lost due to false positives in CPU scenarios. Therefore,
these models are more accurate for GPU scenarios than for CPU scenarios, which
aligns with our expectation, as we use memory cost as a model for runtime. We
have demonstrated this to be a valid strategy for GPUs, but for CPUs, the runtime is
predominantly determined by the number of Floating Point Operations Per Second
(FLOPs) executed.

5.4.3 Linear Regression

In this section, we investigate the second type of cost model, the linear regression
model. The objective of this model is to maintain explainability while delivering su-
perior performance compared to the manually tuned decision rules found in related
work. We employ a range of models, all of which fundamentally rely on linear re-
gression. We start with a single regressor and, by partitioning the dataset according
to the categorical variables, we eventually arrive at more intricate models compris-
ing ensembles of linear regression models.

The architecture of each of the linear regression models is depicted in Figure 5.12. In
short, before training, the dataset is partitioned according to several categorical vari-
ables (operator type, hardware type, or F/M), or by filtering a portion of the dataset.
Each final model comprises a set of linear regression models, each of which is fit
to a subset of the training data. For example, for LINR.3, we train two regressors:
one for the factorization scenarios and the other for the materialization scenarios.
During inference, each regressor is used to predict the runtime of the scenario under
test. The output is the difference between the predicted materialized time and the
predicted factorized time, which is used to estimate the time saved by opting for
factorization over materialization. If a categorical variable is not used to divide the
dataset, it is incorporated as a feature of the model.

Regressor
ensemble

Filter non-model operators

Full dataset, no split

Factorized Materialized

Only model operators

Split by Split by model

CPUGPU

Split by hardware type

K-MeansLinReg

Split by model

LinReg K-Means

Split by model

K-MeansLinReg

GPU

Split by hardware 

CPU

Split by hardware 

LINR.1

LINR.5

LINR.2

LINR.6

LINR.3

LINR.7

LINR.4

GPUCPU

FIGURE 5.12: Architecture of the linear regression models. Shows
how the data, and models, are split for each model. The final split-
level belonging to each respective model is colored in the same color.
For LINR.5 we show the linear regression ensemble fit to the data. For
clarity, we leave this out for the other models. Each box represents a
regression model, the same-colored boxes, connected via dotted lines,
are combined into an ensemble to end up with the linear regression

cost models.
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LINR.1 Linear Regressor Fit to Full Training Set

The first linear regressor is trained on the complete training set, which includes all
operators. The rationale behind this approach is the probable existence of a corre-
lation between the performance of individual operators and the performance of the
models in which they are used. By training the regressor on the entire set of opera-
tors, we strive to capture these correlations and leverage them to enhance accuracy.
This model predicts the time conserved by opting for factorization over materializa-
tion.

LINR.2 Linear Regressor Fit to Model Runtimes

The second linear regressor is trained only on the runtimes of the models, and the
individual operators are left out of the training set. This model helps determine
whether the inclusion of operators contributes to utility. Similarly to LINR.1, this
model forecasts the time conserved by opting for factorization over materialization.

LINR.3 Separate Regressors for F and M

This model is a composite of two linear regressors, one for factorization and another
for materialization. By training distinct regressors for factorization and materializa-
tion, we aim to more explicitly capture the correlations between independent vari-
ables and runtime than the preceding models. Each internal regressor predicts the
runtime of the scenario under test, and the final prediction is the faster predicted
scenario.

LINR.4 Separate Regressors for each Model Type

Similar to LINR.3, this model is also a composite of multiple internal regressors.
However, instead of having a single regressor for each factorization and material-
ization, we have a distinct regressor for each type of model. This is done to capture
the differences in the correlations between independent variables and runtime for
different model types. Like the first two models, this model forecasts the time saved
by choosing factorization over materialization (by predicting whether time is con-
served by choosing F).

LINR.5 Separate Regressors for CPU and GPU

In previous sections, we have shown that the choice of hardware plays a significant
role in the trade-off we investigate. Therefore, it is likely that there are differences in
the correlations between the independent variables and the runtime between CPU
and GPU. A singular linear regression model is probably incapable of capturing
these differences. Consequently, we test the performance of a set of models, one
which is only fit to CPU scenarios and another which is only fit to GPU scenarios.

LINR.6 Separate Regressors for F, M and Model Type

The next version of the linear regression model we create is a combination of LINR.4
and LINR.3. By training separate regressors for every combination of factorization,
materialization, and model type, we enable the models to more freely capture dif-
ferences between groups.



44 Chapter 5. Cost Estimation

LINR.7 Separate Regressors For Each Combination of Categories

The final, most granular, ensemble is one that has a distinct regressor for each com-
bination of factorization, materialization, model type, and hardware. This is done
to capture the differences in the correlations between the independent variables and
runtime for each combination of the dimensions.
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FIGURE 5.13: Evaluation of the linear regression models on the vali-
dation set (synthetic data, only models). The plots show statistics of
those scenarios where the model predicts that factorization is faster.
The plot on the left shows ∑ TimeM−∑ TimeF, the total time saved in
positively predicted scenarios. The right plots show TimeM

TimeF
highlight-

ing that conservative models can result in high performance ratios
with a low amount of time saved, for example LINR.7.

A performance comparison for the linear regression models is shown in Figure 5.13.
We choose to highlight the cases where the model predicts factorization to be faster
and evaluate the saved time in these cases. Overall, models that fit more distinct
regressors perform better, showing that each of the chosen categorical variables im-
pacts the F/M trade-off.

Models LINR.1 through LINR.3 demonstrate little time saved, but the average speedup
of positively classified cases is high. This is attributable to these models producing
either a substantial number of false negatives, thereby missing out on a significant
amount of time saved (LINR.1), or many false positives, which reduces the total time
saved (LINR.2 and LINR.3). LINR.4, which is split solely by model type, performs
the worst among the models, indicating a correlation between the performance ra-
tios of the different model types. The LINR.5 and LINR.6 models both identify a
relatively large fraction of positive samples, albeit at the cost of numerous false pos-
itives and negatives. LINR.7, which is the most granular, performs the best on the
validation set. This is likely because it can capture the differences in the relation-
ships between the independent variables and the runtime for each combination of
the dimensions. This model is the most complex, but also the most accurate, with
a utility value of 0.65, indicating that it saves 65% of the maximum possible time
saved.
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However, when evaluating the test datasets (which includes real-world datasets,
the train-test split is elaborated in Subsection 6.1.5), the performance of the models
is considerably lower (visualized in Figure 5.15 for LINR.1 and LINR.5). This is
probably due to the models overfitting to the training data (which contains only
synthetic dataset scenarios). LINR.1 and LINR.5 show the best utility, which can be
explained by the fact that they do not use extensive partitioning of the training data,
thereby preventing the regression from fitting to the training data. To address this,
we choose to evaluate the performance of a more complex model.

5.4.4 XGBoost

The third type of model we evaluate is XGBoost [19], specifically an XGBRegressor1.
This model is a gradient-boosting algorithm, an ensemble learning method that uti-
lizes a series of decision trees. We employ XGBoost due to its excellent performance
demonstrated in related cost prediction scenarios [10], as well as its excellent ability
to handle unbalanced datasets [21]. The model is trained on a dataset identical to
the linear regression models and employs the same features.

Model Target Pruning Decision Boundary

XGB.1 Runtime All operators TimeM > TimeF
XGB.2 Runtime Only models
XGB.3 Speedup All operators speedup > 1.0
XGB.4 Speedup Only model
XGB.5 Time saved All operators time_saved > 0.0
XGB.6 Time saved Only models

TABLE 5.5: Overview of the different configurations for the XGBoost
models.

We explore a variety of configurations for this model, varying along two dimensions:
their target variable, and whether all operators are included, or just the model oper-
ators, in the training dataset. The target variable is either the runtime of the scenario
(with separate targets for factorized and materialized), the speedup of a scenario,
or the time saved by opting for factorization over materialization. The dataset can
be pruned to retain only training samples, where the operator is one of the model
types (K-Means, logistic regression, linear regression, or GNMF), or all samples can
be retained. By evaluating multiple models with different configurations, we aim
to identify the model that best captures the relationships between independent vari-
ables and the factorization/materialization (F/M) trade-off. An overview of which
model uses which configuration and how the decision to materialize or factorize is
made based on the predicted value(s), is presented in Table 5.5.

A comparative evaluation of the XGB models is shown in Figure 5.14. As expected,
these models, being more complex, outperform the linear regression models. Among
the XGB models, there is minimal variation in performance on the validation set.
There are no significant differences in performance based on the target variable used
or whether all operators are included in the training set. XGB.3, which predicts the
speedup of factorization over materialization, marginally exceeds the other models,
accurately predicting 98% of the validation scenarios.

1https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.
XGBRegressor

https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBRegressor
https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBRegressor
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FIGURE 5.14: Evaluation of the XGBoost models on the validation
set.

5.4.5 Quantitative Comparison Using Real-world Data

The performance of the two most effective models for each type is illustrated in
Figure 5.15. We plot the total time saved on the test scenarios, which includes the
scenarios on the Hamlet and TPCx-AI datasets. As expected, the most complex XG-
Boost models perform best. Specifically, XGB.3 and XGB.5 save 600 and 700 seconds,
respectively, of the total 1670 seconds. The linear regression model performs the
worst, probably due to overfitting to the synthetic data in the training set.

Interestingly, when we dissect the performance by compute type, the XGBoost mod-
els perform significantly better on GPU scenarios than on CPU scenarios, whereas
LINR.5 performs better on CPU scenarios. This can be attributed to the fact that
LINR.5 comprises two separate regressors, one for the CPU and one for the GPU,
enabling it to capture the differences in the relationships between independent vari-
ables and runtime for each compute type. The process of combining these models to
create a more accurate hybrid model is discussed in the following section.
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FIGURE 5.15: Comparison of the best models, broken down by com-
pute type. Evaluated on the test set.

Combining Cost Models

To construct the final cost model, we combine the best performing models. We em-
ploy the XGB.3 model for GPU scenarios and the LINR.5 model for CPU scenarios.
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This approach is adopted to capture the differences in the relationships between in-
dependent variables and runtime for each compute type. The final model is evalu-
ated on the test set, and the results are presented in Figure 5.15. The model achieves
80% of the performance of an ideal cost model, saving 1344 seconds of the total 1670
seconds. This represents a significant improvement over the best individual models,
which achieved a maximum of 47% of theoretical performance.

Qualitative Comparison

In the Machine Learning (ML) framework proposed in [4], for which this thesis de-
velops a cost model, the decision between factorization and materialization is made
at runtime. Consequently, this should not introduce any overhead to the training
process. We briefly touch upon the overhead introduced by the cost of inference
of the models, as well as other factors that could influence the choice between cost
models. An overview of all aspects is presented in Table 5.6.

Model Training time Extensibility Inference Speed Performance

Analytical 1 − + − −
Analytical 2 + + −
linear regression + − + −
XGBoost +/− − +/− +/−
Hybrid +/− − +/− +

TABLE 5.6: Qualitative comparison of the different models.

The first aspect we examine is the training time. For linear regression models, this is
fast, but it is slower for the XGBoost model. The outliers in this case are the analytical
models. ANLY.1 is notably slow as it requires fitting a large set of regressors, one
for each combination of operator and F/M. In contrast, ANLY.2 does not have a
traditional training time as it employs a handcrafted formula.

In terms of extensibility, the ANLY.1 models are the easiest to extend for new ML
models, as they already possess an inherent “understanding” of the operators used,
provided by the included profiling metrics on LA operators. For the remaining mod-
els, an updated training set is required, which includes the new ML models.

Arguably, the most crucial factor, other than performance, is inference speed, as we
want to avoid overhead in the training process. ANLY.2 and the linear regression
model are very quick as they are simple equations with no more than 30 terms. XG-
Boost, and consequently the hybrid model, is slightly slower, but still fast. ANLY.1 is
the slowest here, as computing the OperatorCost of all involved operators is costly.

The final aspect is performance, which was discussed in the previous section.

5.4.6 Evaluating Feature Importance

To determine which characteristics are most influential in the factorization/materialization
(F/M) trade-off, we examine the final hybrid model, with a particular focus on the
gain per feature from the GPU leg of the model.

We present the gain of the ten most influential features of the XGBoost model in
Figure 5.16. The gain quantifies the impact of a feature based on its contribution to
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reducing training error in the underlying decision trees. It can be interpreted as a
measure of the influence a feature exerts on the model’s prediction, which is insight-
ful, as we are interested in identifying which features most significantly impact the
F/M trade-off.
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FIGURE 5.16: Feature importances of the Hybrid model, XGBoost
(GPU) leg.

From the figure, we can deduce that the model type is the most impactful. This
aligns with the results shown in Section 5.1, where we demonstrate that the choice
of model significantly influences the F/M trade-off. Due to the operators used in
each model, the speedup varies considerably between models, even when applied
to the same dataset. For instance, factorized Gaussian training is beneficial twice
as often as factorized K-Means. Other important features include data characteris-
tics such as the number of rows in tables (rS1 , rT), features related to the number of
zeros in a table (eT, nnz(S)), or features related to the differences between the ma-
terialized and factorized case (ρ, FLOPM

FLOPF
). We observe that although the relationship

between complexity and speedup was not as clear in Section 5.1, features related to
the number of operations are important, even when considering only GPUs. This is
evident from the relatively high gain of the materialized and scalar complexity. This
is logical, as scalar operations have high speed-ups compared to other operators.

From these gain values we can conclude that, in our experiments, differences be-
tween GPUs are less impactful than differences in data characteristics and models.
The GPU characteristic with the highest gain is a categorical feature for the GPU ar-
chitecture, with a gain of 7, followed by the L1 cache size and the number of Stream-
ing Multiprocessors with gain values of 2.5 and 1.4, respectively.
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Chapter 6

Evaluation

This chapter presents Contribution C.2: A robust cost model for Amalur’s factorized
ML framework, and a comparison with the SOTA. The previous chapter described
the process of developing four types of cost models, and evaluated how they com-
pared in terms of performance. This chapter extends this evaluation by comparing
our best performing cost models with the SOTA, in Section 6.2, and we add a dis-
cussion on the generalizability of our best cost model, as well as a thorough analysis
of the results. We end with a critical perspective on the implications and constraints
of this research in Section 6.3. Prior to that, the methodology for collecting results is
detailed in Section 6.1.

6.1 Experiment Setup

This section provides a comprehensive explanation of all the necessary steps to re-
produce the results. It covers the experimental setup (software, datasets & hard-
ware), as well as the data processing methods employed to guarantee reliable results
for the cost models (validation strategy). For further details and implementations,
please consult the GitHub repository1.

6.1.1 Software

The factorized ML framework (Amalur [4]) is implemented in Python (3.10.4) and
uses SciPy (1.8.0), NumPy (1.22.4) and CuPy (12.1.1). All experiments were run in a
Docker container with an image based on NVIDIA’s base image with CUDA 12.1.1
and Ubuntu 20.042.

The choice to use CuPy as the backend for the factorized ML framework was made
to ensure that the experiments could run on both CPU and GPU. CuPy is a GPU-
accelerated library for numerical computations that is compatible with NumPy and
SciPy [22]. This allows for minimal changes to the codebase, whether you are using
a GPU or a CPU. To allow for exploitation of multiple cores for sparse matrix multi-
plication3 we use MKL (Intel Math Kernel Library) [23] as NumPy’s backend for the
CPU experiments.

For collecting the GPU metrics, we use NVIDIA’s Nsight Compute (ncu)4 which is
a command-line profiling tool that collects detailed performance metrics from the

1https://github.com/ptemarvelde/amalur-experiments
2nvidia/cuda:12.1.1-devel-ubuntu20.04
3https://github.com/flatironinstitute/sparse_dot
4https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html

https://github.com/ptemarvelde/amalur-experiments
https://hub.docker.com/layers/nvidia/cuda/12.1.1-devel-ubuntu20.04/images/sha256-5bd13c67a4479a1c13238b470d89a92937ce68ba5f21b930d50c463e3314f657?context=explore
https://github.com/flatironinstitute/sparse_dot
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html
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GPU. The metrics are collected in a CSV file for downstream analysis, detailed in
Section 5.3. The cost models were created using Scikit-learn [24].

6.1.2 Datasets

The datasets used in the experiments are a mix of synthetic and real-world datasets.
The synthetic datasets are used to generate a training set to train the cost models.
The real-world datasets are used to validate the cost models on unseen data.

Synthetic Datasets

To create synthetic datasets with a wide variety of data characteristics, the data gen-
erator from [6] was used, which in turn is an adaptation of the data generator5

from [25]. In total, we generate 2415 datasets, each being a two-table join. All other
parameters were varied; the values are shown in Table 6.1.

Data Characteristic Symbol Range

S1 (Entity) table rows rS1 [40, 000, 1, 000, 000]
S2 (Attribute) table rows rS2 [526, 1, 000, 000]
S1 (Entity) table columns cS1 [1, 50]
S2 (Attribute) table columns cS2 [2, 50]
Target table rows rT [60, 000, 1, 000, 000]
Target table columns cT [11, 100]
Target Sparsity eT [0.0, 0.9]
Tuple ratio ρ [1, 190]
Feature ratio τ [0.2, 1]
Join Type jT Inner, left or outer.
Selectivity σ [1.0, 2.0]

TABLE 6.1: Ranges of data characteristics for the generated synthetic
datasets

The data is organized in a star schema. S1 is the Entity (transactional) table, which
is connected to the attribute table S2. This attribute table holds the features of the
entities. The target table T is the result of the join between S1 and S2. An example
with an inner join is shown in Figure 6.1.

Real-world Datasets

The synthetic datasets are convenient for testing and training purposes. However,
to assess whether the cost models are generalizable to real-world data, we use real-
world datasets for validation.

Project Hamlet [26] The Hamlet datasets are widely used in the relevant litera-
ture [1], [4], [5], [26]. Comprising a collection of seven datasets, the Hamlet datasets
are tailored to simulate data integration scenarios within a machine learning work-
flow. Initially developed to assess inner join scenarios, certain rows from various
source tables were excluded to accommodate other join types. The data attributes of
these datasets are detailed in Table 6.2.

5https://github.com/delftdata/valentine-data-fabricator

https://github.com/delftdata/valentine-data-fabricator
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FIGURE 6.1: Example of synthetic dataset generation. The entity table
S1 is joined with the attribute table S2 to create the target table T.

Dataset→
Charac-
teristic ↓

Book Expedia Flight Lastfm Movie Walmart Yelp

rT 253K 942K 66.5K 344K 1M 422K 216K
cT 81.7K 52.3K 13.7K 55.3K 13.3K 2.44K 55.6K
n 2 3 4 2 2 3 2
rS1 27.9K 942K 66.5K 5K 6.04K 422K 11.5K
rS2 50K 11.9K 540 50K 3.71K 2.34K 43.9K
rS3 37K 3.17K 45
rS4 3.17K
cS1 28K 27 20 5.02K 9.51K 1 11.7K
cS2 53.6K 12K 718 50.2K 3.84K 2.39K 43.9K
cS3 40.2K 6.46K 53
cS4 6.47K

TABLE 6.2: Hamlet dataset characteristics. r is the number of rows, c
is the number of columns, and n is the number of tables. Subscripts

denote which table the characteristic belongs to.

TPCx-AI [3] We also assess a more practical scenario than what the Hamlet datasets
provide, which is derived from a real-world benchmark used for evaluating end-to-
end ML platforms. Since this aspect is not the primary focus of this study, we uti-
lized only two of the ten use cases provided, specifically the first and the tenth. This
benchmark includes a data generator with the ability to scale generation by adjust-
ing scale factors ranging from 0.01 to 0.5, leading to the creation of 18 datasets for
each use case. Details on the data characteristics of these datasets can be found in
Figure 6.2.

The first use case, which involves a join operation among three tables, has been cov-
ered in the running example. First, the lineitem table is combined with the order
returns data, which is subsequently linked with the orders table. This process yields
a table with cT = 7 columns, each row representing a product sold in an order. In
the TPCx-AI benchmark, customer segmentation is accomplished through K-Means
clustering on this dataset. However, we evaluate all four machine learning mod-
els outlined in this thesis, focusing on the training procedure rather than the final
classifier’s effectiveness. The following scenario involves a join between two tables.
Here, the transaction table is merged with the customer table, resulting in a table
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with cT = 5 columns aimed at identifying fraudulent transactions. The same mod-
els utilized in the first scenario are applied in this context as well. For a complete
overview of the dataset schema, including the relevant tables and columns, refer to
Figure A.1.

6.1.3 Hardware

The experiments were carried out on a wide range of machines to test various hard-
ware configurations. Most of the experiments were run on the Delft AI Cluster6,
allowing for testing across different GPU architectures. As profiling was not feasi-
ble on this cluster, some profiling experiments were carried out on a local machine,
AWS, and resources from the Web Information Systems group7. Details of which
experiments were carried out on the specific machines can be found in Table 6.3.

6.1.4 Experiment Setting

To guarantee the reliability of the training data, each experiment was performed
with a repetition count of 30. The profiling experiments, on the other hand, were
not replicated, as NCU guarantees consistent and actionable results by replaying
kernel launches [27]. All experiments were carried out in a containerized setting
to ensure reproducibility. The profiling experiments used the same image as the
runtime experiments to maintain consistency in the environment. Docker8 served
as the container runtime, except on the DAIC cluster, where the usage of Apptainer9

images was mandated.

6https://daic.tudelft.nl/
7https://www.wis.ewi.tudelft.nl/
8https://www.docker.com/
9https://apptainer.org/

https://daic.tudelft.nl/
https://www.wis.ewi.tudelft.nl/
https://www.docker.com/
https://apptainer.org/
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Experiment
type

Machine Archi-
tecture

Compute Unit Experiment

profile

WIS ST4 Ampere GPU A40 GPU-P-1
AWS G5.xlarge Ampere GPU A10G GPU-P-2
Personal Work-
station

Turing GPU 1660Ti GPU-P-3

runtime

DAIC

Ampere GPU A40 GPU-T-1
Volta GPU V100 GPU-T-2
Pascal GPU P100 GPU-T-3
Turing GPU 2080Ti GPU-T-4
Pascal GPU 1080Ti GPU-T-5

WIS ST4 —

EPYC 7H12
CPU 8 cores

CPU-T-1

EPYC 7H12
CPU 16 cores

CPU-T-2

EPYC 7H12
CPU 32 cores

CPU-T-3

TABLE 6.3: Experiment to machine mapping. The experiment type is
either profiling or runtime. Profiling experiments are used to collect
the hardware specific metrics for our training data. Runtime exper-
iments are used to gather data on the runtime of the factorized ML

framework compared to materialized learning.

6.1.5 Validation Strategy

Given the vast range of potential data, model, and hardware features, it is crucial to
have confidence in our model’s ability to provide accurate predictions for new situ-
ations. To test this, we used a rigorous train-validate-test split. 70% of the data from
synthetic datasets is allocated to the training set, while the remaining 30% forms the
validation set. The real-world datasets are exclusively reserved for testing purposes.
Since these datasets are not used in training the cost models, they offer a reliable
assessment of performance in novel scenarios, as discussed in Subsection 6.2.2. Sim-
ilarly, to ensure robustness in the hardware aspect, we adopt a comparable strategy
by isolating the samples of GPU-T-5 for testing. Lastly, to explore the dimension of
model characteristics, we perform an ablation study (see Section 6.2.2) to investigate
the impact of excluding various models on the cost model’s performance.

6.2 Cost Model Performance and Comparative Analysis

In this section we answer

RQ.2 How can we accurately predict the optimal choice between factorized or ma-
terialized training of a Machine Learning model, on CPU and GPU, through
leveraging knowledge about model, data, and hardware characteristics?

We first illustrate the comparison of the cost models with the state-of-the-art in cost
estimation for factorized Machine Learning training. Next, we demonstrate the abil-
ity of the best performing cost models to generalize effectively to novel scenarios.
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6.2.1 Cost Model Comparison

We compare our best performing cost models from each type with the SOTA. Using
the test set described previously, which includes real datasets and new hardware
configurations, we evaluate the performance of the cost models. Figure 6.3 presents
the results of this comparative assessment. The plot on the left shows the precision,
accuracy, f1 score and recall score of the cost models. The right plot quantifies the
total time saved by the cost models across the set of scenarios.

From the figure we can infer how each model behaves with regard to the preci-
sion/recall trade-off. The SOTA cost models show diminished precision, yet en-
hanced recall, showing a tendency toward favoring predicting a positive label, which
in this case means that the factorized training is faster. MorpheusFI [14] shows the
best recall, explained by precision and accuracy, labeling all cases as positive, re-
sulting in a total time loss of 13, 000 seconds. Morpheus [1] presents a smaller time
loss of approximately 7000 seconds, reflecting a slightly more conservative approach
than MorpheusFI. Amalur [4] shows a total time loss of approximately 500 seconds,
outperforming Morpheus and MorpheusFI. The Hybrid cost model introduced in
this thesis has a net time savings of 1350 seconds, with an accuracy of 95%, which is
a significant improvement over the SOTA.
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FIGURE 6.3: Comparison of the cost models. Performance evaluated
on the test set (real datasets and new hardware).

We have shown stellar performance across the test set; next we will explore the gen-
eralizability of our two best cost models, XGB.5 and the Hybrid model.

6.2.2 Exploring Generalizability

The aim of this thesis is to create a cost model capable of reliably predicting the most
suitable option between factorized and materialized training methods for a Machine
Learning model. To ensure that this cost model maintains good performance in un-
familiar situations, i.e., it is not overfitting to the training data, we evaluate the cost
models on the real-world datasets, and on new hardware. The results are shown in
Figure 6.4.
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can see how a model performs on the test set compared to the vali-
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× 100. A value of 100% means that the cost model performs

equally well on the test set as on the training set.

Significant disparities exist among the models in terms of their ability to generalize
to unfamiliar situations. The XGBoost model excels in terms of relative performance
on new hardware, but underperforms on real-world datasets. The hybrid model
combines the strengths of the XGBoost and linear regression models, achieving good
relative performance of 82% on the full dataset.

Ablation Study

To assess the generalizability of our cost model on new model types, we performed
an ablation study. In this study, we systematically exclude individual model types
and evaluate the model performance in test set scenarios exclusive to the omitted
model type.
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FIGURE 6.5: Result of the leave-one-out ablation study of the Hybrid
model. The x-axis shows the relative performance of the cost model,
defined as total time saved, with regard to the test set, for each group.

The results of this ablation study are illustrated in Figure 6.5. The x-axis represents
the relative performance compared to an ideal model. The findings indicate that
our hybrid model exhibits suboptimal performance when applied to new model
types. While the Gaussian Non-negative Matrix Factorization (NMF) demonstrates
marginal utility, facilitating some time savings, the application of our cost model to
other models, notably K-Means and linear regression, would lead to considerable
increases in computational time. This suggests that our cost model is specifically
tailored to the model types included in its training dataset. The inclusion of linear
algebra operators within the training set confers additional benefits, as evidenced
in Figure 5 (Figure 5.14); however, these benefits are insufficient to achieve model
independence in cost estimation.
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To mitigate this limitation, we propose two potential strategies: First, refining the
feature engineering process to incorporate a broader spectrum of model-agnostic
derived features, necessitating a comprehensive analysis of the factorized machine
learning framework and its supported models. Second, and perhaps more effec-
tively, expanding the training dataset to include emerging models as they are inte-
grated into the factorized machine learning framework.

6.3 Discussion

Our research demonstrates that the Hybrid cost model adeptly predicts the most
efficient training method -factorized or materialized- for machine learning models
across CPU and GPU scenarios. This model shows commendable generalizability to
novel scenarios and surpasses state-of-the-art (SOTA) models in the domain of cost
estimation for factorized ML training. However, this study is not without limita-
tions.

The first important note is that the SOTA cost models lack design considerations for
GPU-based training. This oversight is non-trivial, as our findings reveal a significant
divergence in the factorization-materialization trade-off between CPU and GPU en-
vironments. But this still skews the comparison in favor of our models, as we do
include GPU-specific features in our cost models.

Another limitation is that the cost models were trained on synthetic data. While syn-
thetic data generation aims to replicate real-world datasets, discrepancies with real-
world scenarios are inevitable. Our models have demonstrated proficiency with
actual data; however, the potential for overfitting to synthetic data cannot be dis-
missed, and the robust performance observed with datasets such as Hamlet and
TPCx-AI may not be entirely indicative of broader applicability. This concern ex-
tends to the hardware aspect, where the models show promising adaptability to
new hardware configurations, yet the question of how representative these configu-
rations are of real-world settings remains uncertain.

Despite these limitations, we believe that our contributions to cost estimation for
ML training are substantial. The Hybrid cost model yields encouraging results and
consistently outperforms SOTA in a multitude of scenarios. We hope that this work
will inspire continued exploration in this field.

6.4 Conclusion

This chapter has presented a comprehensive evaluation of our hybrid cost model
for factorized and materialized ML training. We have shown the model’s ability to
accurately discern the optimal training approach and its superiority over SOTA in
real-world scenarios. Although the model adapts well to new hardware and data
parameters, its predictive utility for scenarios involving new ML models is limited.

The next chapter will explore future work and potential improvements for our cost
model.
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Chapter 7

Conclusion

In closing, we consolidate the key contributions and discoveries of this thesis in
Section 7.1. Additionally, we acknowledge the limitations and outline potential areas
for future research in Section 7.2.

7.1 Cost Estimation for Factorized Machine Learning

Our research explores the dynamics of cost estimation for factorized machine learn-
ing, focusing on the comparative performance of GPUs versus CPUs. We find that
GPU training exhibits distinct cost characteristics from CPU training, which signifi-
cantly influences cost model design and optimization of factorized machine learning
processes.

Previous cost estimation methodologies have predominantly centered on CPU con-
texts, resulting in inaccuracies when extrapolated to GPU environments. Our analy-
sis reveals a pronounced difference in the speedup of factorized model training be-
tween CPU and GPU platforms. This discrepancy is due to the distinct architectural
designs and processing capabilities of GPUs, which require a customized approach
to cost estimation.

Through empirical research and extensive experimentation, we have formulated an
innovative cost model that is tuned to the nuances of GPU computation. Our model
diverges from existing methods by incorporating a deeper understanding of GPU
architecture, and by leveraging a more comprehensive set of features to decide the
training approach.

By accounting for the unique cost factors associated with GPU usage, we provide
a more reliable framework for predicting whether factorization is beneficial. The
results of our comparative analysis demonstrate that our cost model outperforms
existing methods, both for CPU and GPU scenarios. In the tested scenarios on real-
world datasets, for which a perfect model would result in 1667 seconds saved, the
SOTA cost model achieves a time loss of 507s. Using our hybrid cost model would
save 1350s, reaching almost 80% of the maximum possible utility.

This progress in cost estimation facilitates the broader adoption of factorized ma-
chine learning within the industry, enabling considerable time savings in scenarios
that use intensive training. Such scenarios include training large models, hyperpa-
rameter optimization, and real-time training. The impact of using our cost model
in the ML workflow is minimal, but when factorization is faster, we achieve an av-
erage speedup of 3.8×. The largest hurdle for a Data Scientist to use this approach
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is the adaption of their data integration workflow, so it fits into the factorized ML
framework, which currently is a manual process.

Despite promising results, our model comes with certain limitations. The need to
account for the unique characteristics of GPU computation introduces complexity
into our model, which makes its predictions less explainable than the state-of-the-art
models. Another risk associated with the added complexity is overfitting to the cur-
rent implementation. How our cost model performs when another implementation
of factorized learning is used for training is uncertain. Furthermore, the introduction
of new machine learning models requires additional work to adapt our cost model
accordingly. These challenges highlight areas for future research and improvement.
Nevertheless, the benefits of our model in terms of accuracy and efficiency make it a
valuable contribution to the field of factorized machine learning.

7.2 Future Work

As we look forward, there are several promising directions for future work. This
thesis has demonstrated the value of factorized machine learning in real-world set-
tings, but to facilitate its adoption in the industry, steps must be taken. We believe
there are two valuable areas for future research: the integration of factorized ma-
chine learning into widely used frameworks and the continuation of cost estimation
efforts.

7.2.1 Integration of Factorized Training into ML Frameworks

Integrating factorized training in a widely used ML framework such as TensorFlow
or PyTorch would improve the practicality and reach of factorized machine learning,
as well as open up opportunities for investigating cost estimation. Given the matu-
rity of these frameworks and the extensive research already conducted to optimize
their training processes, this could significantly advance our understanding of cost
dynamics in factorized machine learning.

Moreover, this integration also aids in the exploration of factorized machine learn-
ing in a distributed setting. This would be a significant advancement, as it would
allow us to leverage the power of distributed computing to further enhance the effi-
ciency and scalability of factorized machine learning models. This could potentially
lead to advances in handling larger datasets and more complex computations, thus
broadening the scope and impact of factorized machine learning.

7.2.2 Exploring Cost Estimation Further

In terms of future steps specifically for cost estimation in factorized machine learn-
ing, we propose two main areas of focus. Firstly, other types of cost models could
be explored, such as those based on micro benchmarking. This would involve per-
forming performance tests on individual operations, at training time, right before
running the training algorithm. The insights gained from these benchmarks could
then be used to make informed decisions between materialization and factorization.
This could improve accuracy as the actual datasets can be used for these bench-
marks. However, consideration must be given to keeping the overhead of such an
approach low. Another direction that could complement our proposed approach
is the exploration of online training. This would involve continuously updating
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the model as new scenarios are tested, leading to a continuously improving model.
Such an approach would be particularly valuable in a real-world factorized machine
learning framework, allowing users to benefit from other users’ insights.

Secondly, one could expand on the profiling experiments conducted in this thesis.
By conducting more extensive profiling experiments, on model training scenarios
instead of individual operators, we could gain a deeper understanding of the cost
dynamics of factorized machine learning. This would allow us to refine our cost
model further and potentially identify new cost factors that could be incorporated
into the model. However, this would require a significant investment in time and
resources, as profiling experiments are time-consuming and computationally expen-
sive.

Despite the challenges, such as higher complexity and the need for additional work
with the introduction of new machine learning models, our model makes a valuable
contribution to the field in terms of accuracy and efficiency. These future directions
highlight the potential for continued refinement and expansion of our cost model,
contributing to the ongoing advancement of factorized machine learning.
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Appendix A

TPCx-AI Dataset Schema

financial_account

PK fa_customer_sk INTEGER

transaction_limit DECIMAL

financial_transactions

PK transaction_id INTEGER

amount DOUBLE

IBAN STRING

FK senderID INTEGER

FK receiverID STRING

time DATE

order_returns

FK or_order_id INTEGER

FK or_product_id INTEGER

or_return_quantity INTEGER

lineitem

FK li_order_id INTEGER

FK li_product_id INTEGER

quantity INTEGER

price DECIMAL

order

PK o_order_id INTEGER

FK o_customer_sk INTEGER

weekday STRING

date DATE

store INTEGER

trip_type INTEGER

customer

PK c_customer_sk INTEGER

c_customer_id STRING

c_current_addr_sk INTEGER

c_first_name STRING

c_last_name STRING

c_preferred_cust_flag CHAR

c_birth_day INTEGER

c_birth_month INTEGER

c_birth_year INTEGER

c_birth_country STRING

c_login STRING

c_email_address STRING

Use Case 1 Use Case 10

FIGURE A.1: Simplified schema from the TPCx-AI [3] benchmark.
Only schemas used in experiments are shown.
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Appendix B

GPU Characteristics

GPU
→

P100 1080Ti V100 2080Ti 1660Ti A40 A10G

Group ↓ Unit ↓ Character-
istic↓

Architecture Pas. Pas. Vol. Tur. Tur. Amp. Amp.

Number of
SM

56 28 80 68 24 84 72

Cores 3,584 3,584 5,120 4,352 1,536 10,752 9216

Cache
Size

KB/SM L1 24 48 128 64 64 128 128

MB L2 4.0 2.8 6.2 5.5 1.5 6.0 6

Clock
Speed

MHz Base 1,126 1,480 1,230 1,350 1,500 1,305 1320

Max Boost 1,303 1,582 1,370 1,545 1,770 1,740 1710

Memory bit Bus Width 4,096 352 4,096 352 192 384 384

GB Size 16 11 32 11 6 48 24

MT/S Clock 1,430 11,000 1,750 14,000 12,000 7,248 6,252

GB/s Bandwidth 732 484 900 616 288 696 600

Processing
Power

TFLOPS Half Preci-
sion

21.20 0.17 112.22 23.50 9.22 149.68 31.52

Single Pre-
cision

10.60 10.61 14.03 11.75 4.61 37.42 31.52

Double
Precision

5.30 0.33 7.01 0.32 0.14 0.58 0.99

TABLE B.1: Hardware characteristics used GPUs. Architecture abbre-
vations: Pas. = Pascal, Vol. = Volta, Tur. = Turing, Amp. = Ampere.
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Appendix C

GPU analysis additional figures
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FIGURE C.1: Full set of visualizations showing roofline charts per
operator (A40 GPU). Note: the transpose column summation figure
should look like the row summation (non transpose) figure. It is sim-
ilar to the regular column sums due to a big in the implementation
that has since been resolved. This does not affect the runtime scenar-
ios for ML models as this operator is not used in any of the tested

models.
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Appendix D

Full Cost Model Feature Set

Dimension Feature Symbol Formula Type Notes

Data Dataset size (rows, columns) rT , cT N
Feature ratio ρ nS

∑
p
k=1 nk

N
Join type jt C
Selectivity σ

∑n
k=1 rSk

rT
N

Sparsity eT
nnz(T)
rT×cT

N
Sparsity ratio eT

eS
N

Tuple ratio τ ∑
p
k=1 dk
dS

N
# Base tables n N
# Nonzero values nnz(T) nnz(S) =

∑n
k=1 nnz(Sk)

N

# Sparse base tables (e < 0.05) q |{Sk ∈ S|eSk <
0.05}|

N From [14]

Data & Model Complexity MFLOP,
FFLOP

N For each op-
erator

Complexity ratio FLOPM
FLOPF

N
Memory bytes sum bytesM,

bytesF
N For each op-

erator
Memory ratio bytesM

bytesF
N For each op-

erator
Hardware Arithmetic intensity #ops

#bytes N
Compute type C CPU, GPU
Compute unit C CPU with

number of
cores or GPU
type

FLOPs #ops N
GPU memory bandwidth N
GPU processing power (double
precision)

N

Math cost Tmath N
Memory cost Tmem N
Total bytes #bytes N

Model Operator C
Rank r N GNMF
# Clusters k N K-MEans
# Iterations iter N

Dependent Execution Time TimeM, TimeF N
Performance ratio TimeM

TimeF
N

Time saved TimeM − TimeF N

TABLE D.1: Table showing base, and derived/engineered features
used for training the cost models. N stands for numerical, C for cat-
egorical. For each operator means that for each operator used in the

model, the feature is calculated.
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