
Evolved Neuromorphic Control
for High Speed Divergence-based
Landings of MAVs
J. J. Hagenaars

Fa
cu

lty
of

Ae
ro

sp
ac

e
En

gi
ne

er
in

g

Evolved Neuromorphic Control
for High Speed

Divergence-based Landings of
MAVs

by

J. J. Hagenaars
to obtain the degree of Master of Science

at the Delft University of Technology.

Student number: 4297091
Project duration: February, 2019 – February, 2020
Readers: Dr G. C. H. E. de Croon, TU Delft, supervisor

Prof. S. M. Bohte, CWI
Dr J. Kober, TU Delft
Dr E. van Kampen, TU Delft
F. Paredes-Vallés MSc, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Acknowledgements
I would like to start off by thanking my supervisors, Guido and Fede, for their invaluable guidance and
backing. Guido, I never left your office without a big smile on my face and heaps of inspiration in my
pocket. Fede, you were always available for questions, and your patience in answering them was never
absent. I look forward to continue to work with you both. A word of appreciation also goes out to Kirk
and Sander, who have been a major source of knowledge. Kirk, thank you for the meetings filled with
practical tips, and for the foundation that this work is built upon. Sander, I am grateful that you have
taken the time to meet with me several times, and I hope that we can continue this fruitful cooperation.

Evelien, thank you for being a never-ceasing source of support, humour and perspective. The past years
of my life would have been empty without you.

Dear family and Familie Lups, though I may not always seem as appreciative, I really am thankful that
you have been there for me since the beginning, and I cannot do without you all.

Boys of the Upper House, thanks for all the memes, drinks and long days. I would not have enjoyed
coming to Delft every day as much if it were not for you. Veel dank ook aan Peter, hij is echt geweldig.

J. J. Hagenaars
Delft, February 2020

iii

Abstract
Flying insects are capable of autonomous vision-based navigation in cluttered environments, reliably
avoiding objects through fast and agile manoeuvres. Meanwhile, insect-scale micro air vehicles still lag
far behind their biological counterparts, displaying inferior performance at a fraction of the energy effi-
ciency. In light of this, it is in our interest to try and mimic flying insects in terms of their vision-based
navigation capabilities, and consequently apply gained knowledge to a manoeuvre of relevance. This
thesis does so through evolving spiking neural networks for controlling divergence-based landings of mi-
cro air vehicles, while minimising the network’s spike rate. We demonstrate vision-based neuromorphic
control for a real-world, continuous problem, as well as the feasibility of extending this controller to one
that is end-to-end-learnt, and can work with an event-based camera. Furthermore, we provide insight
into the resources required for successfully solving the problem of divergence-based landing, showing
that high-resolution control can be learnt with only a single spiking neuron. Finally, we look at evolving
only a subset of the spiking neural network’s available hyperparameters, suggesting that the best results
are obtained when all parameters are affected by the learning process.

v

Contents

Acknowledgements iii

Abstract v

List of Symbols xi

List of Abbreviations xv

List of Figures xvii

List of Tables xix

List of Listings xxi

1 Introduction 1
1.1 Motivation and research question . 2
1.2 Structure of this work . 3

I Scientific Paper 5

II Literature Study 31

2 Optical Flow Control of MAVs 33
2.1 Optical flow modelling and estimation . 33

2.1.1 The pinhole camera model . 33
2.1.2 Derivation of visual observables . 34
2.1.3 Estimation methods . 36

2.2 Bio-inspired navigation with optical flow . 37
2.2.1 Controlling flight speed and lateral position in corridors 37
2.2.2 Terrain following and landing . 38

3 Event-Based Vision Sensors & Optical Flow 41
3.1 Event-based vision sensors . 41

3.1.1 Working principle . 42
3.1.2 Variants and comparison . 42

3.2 Event-based optical flow . 43
3.2.1 Estimation methods . 43
3.2.2 Applications. 45

4 Reinforcement Learning 47
4.1 Reinforcement learning in biology . 47

4.1.1 Psychology . 47
4.1.2 Neuroscience . 48

4.2 Reinforcement learning basics . 49
4.2.1 Elements . 49
4.2.2 Exploration versus exploitation . 51
4.2.3 Model-free versus model-based. 52
4.2.4 Temporal-difference learning . 53
4.2.5 On-policy versus off-policy control . 54
4.2.6 Tabular representation versus function approximation 55
4.2.7 Direct policy search: policy gradient and actor-critic methods. 57
4.2.8 Reward signal design . 58
4.2.9 Continuous time and space. 59
4.2.10 Game playing . 60

vii

viii Contents

4.3 Reinforcement learning in robot control . 61
4.3.1 Difficulties. 61
4.3.2 MAV control . 62

5 Reward-Modulated Neuromorphic Computing 63
5.1 Spiking neural networks . 63

5.1.1 Biological background . 63
5.1.2 Neuron models . 64

5.2 Learning in spiking neural networks . 67
5.2.1 Synaptic plasticity . 67
5.2.2 Unsupervised learning . 68
5.2.3 Supervised learning . 69
5.2.4 Reinforcement learning . 70

5.3 Neuromorphic applications . 75
5.3.1 Hardware implementations . 75
5.3.2 Simulation frameworks . 75
5.3.3 Applications in optical flow estimation . 76
5.3.4 Applications in vision-based navigation . 76

6 Synthesis of Literature 79
6.1 Vision-based navigation for MAVs . 79
6.2 Reinforcement learning . 80
6.3 Reward-modulated neuromorphic computing . 80

III Preliminary Evaluation of Reward-Modulated Neuromorphic Computing for Vertical Control 83

7 Methodology 85
7.1 Outline of the analysis . 85
7.2 Spiking neural network simulator . 86
7.3 Vertical control simulation environment . 86

7.3.1 Environment characteristics . 87
7.3.2 State observation . 87
7.3.3 Action selection . 87
7.3.4 Reward function . 88

8 Vertical control with reward-modulated neuromorphic computing 91
8.1 Reward-modulated learning . 91

8.1.1 R-STDP. 91
8.1.2 R-max . 92
8.1.3 Reward prediction . 92

8.2 Network configuration . 93
8.2.1 Neuron models and synapses . 93
8.2.2 Encoding state . 94
8.2.3 Decoding actions . 95

8.3 Simulation settings . 95
8.4 Results . 96

8.4.1 Discrete action space + goal altitude problem . 97
8.4.2 Discrete action space + zero-divergence problem 98
8.4.3 Continuous action space + goal altitude problem.100
8.4.4 Continuous action space + zero-divergence problem101

9 Discussion of Preliminary Experiments 105
9.1 Simulation set-up .105
9.2 Performance & feasibility of reward-modulated learning for MAV control.106

9.2.1 R-STDP versus R-max .106
9.2.2 Altitude + vertical speed versus divergence perception.106
9.2.3 Continuous versus discrete actions. .107

9.3 Implications of the analysis .107

Contents ix

IV Appendices 109

A Default Simulation Configurations 111

List of Symbols

Math symbols

⟨·⟩ average of a stochastic variable
→ approach
≈ approximately equal
← assignment
.= equality that is true by definition
exp (·) exponential function
∈ is an element of
∞ to infinity and beyond
∇ nabla operator
̸= inequality
Pr {·} probability of an event occurring
ȧ derivative of a w.r.t. time t

maxa, arg maxa f (a) (argument a of) maximum value of function f(a)
a · b dot product of vectors a and b
(a, b] interval that includes b but not a

A ∼ b sample random variable A from distribution b

Cov [·] covariance of a stochastic variable
E [·] expectation of a stochastic variable
R set of real numbers
∆ difference operator
δ Dirac delta function

Greek symbols

∆t simulation time step duration
∆θ width of stochastic neural firing threshold region
α learning rate/step size
β scaling constant
γ discount rate
δ temporal-difference error
ε probability of taking a non-greedy action
ε (t) kernel describing presynaptic spike contributions for time-since-spike t

η (t) kernel describing neural membrane afterpotential for time-since-spike t

θ policy parameter vector
θ neural firing threshold
κ (t) kernel describing external current contributions for time-since-spike t

λ eligibility trace decay rate
ν neural activity
π, π (a | s) , π (s) policy (vector), stochastic or deterministic
ρ̂ discrete version of instantaneous neural firing rate ρ

ρ stochastic intensity of point process denoting instantaneous neural firing rate
σ, σ width/standard deviation (vector)
τ time-to-contact
τa time constant of decay of variable a

xi

xii List of Symbols

ωx, ωy ventral flow components along X, Y

Latin symbols
A, a action
A+, A− magnitude of synaptic change due to long-term potentiation or depression
A (s) set of all actions available in state s
D flow field divergence
e, e eligibility trace (vector)
P pre

j , P post
i tracking variables for pre- and postsynaptic spike trace

urest neural membrane potential in rest
f focal length
g gravitational acceleration
G return
h altitude above a surface
H update target
I (t) neural input current
I (x, y, t) image intensity function
J performance function
m mass
N amount of …
n episode number
O, o origin of a coordinate system
P event polarity
p, q, r rotational rates around X, Y, Z
qπ action-value function following policy π
R̄ mean reward
R set of all rewards
R, r reward
S set of all states
S (R) success signal as a monotonic function of reward R
S, s, s state (vector)
t̂ time of previous neural firing
T thrust
t time
u neural membrane potential
U unsupervised part of reward-modulated learning rules
u, v optical flow components
U, V, W translational velocities along X, Y, Z
u0, v0, w0 optical flow visual observables
V, Q estimate of state-value and action-value function
v̂, q̂ parametrised estimate of state-value and action-value function
vπ state-value function following policy π
W weight
w, w weight or synaptic efficacy (vector)
X presynaptic spike train
x, y position on the image plane/in the pixel array
X, Y, Z axes of the Cartesian coordinate system (metric position)
xj , yi binary variables indicating a pre- or postsynaptic spike
Y postsynaptic spike train

Sub- and superscripts
∗ optimality
+, − long-term potentiation and depression subscripts
f neural firing index
h actor neuron index

List of Symbols xiii

i postsynaptic neuron index
j presynaptic neuron index
k place cell index
n step index
pre, post pre- and postsynaptic contribution subscripts
T final time step of an episode
t time step index

List of Abbreviations

A
AER address-event representation
ANNarchy Artificial Neural Networks Architect
API application programming interface
ATIS Asynchronous Time-based Image Sensor

B
BCM Bienenstock-Cooper-Munro

C
CNN convolutional neural network
CPU central processing unit
CUDA Compute Unified Device Architecture

D
DAVIS Dynamic and Active-pixel Vision Sensor
DDPG deep deterministic policy gradient
DP dynamic programming
DQN deep Q-network
DVS Dynamic Vision Sensor

E
eDVS Embedded Dynamic Vision Sensor

F
FoC focus of contraction
FoE focus of expansion

G
GPS global positioning system

H
HJB Hamilton-Jacobi-Bellman
HPC hippocampal place cell

I
IMU inertial measurement unit

L
LIF leaky integrate-and-fire
LQR linear quadratic regulator
LTD long-term depression

xv

xvi List of Abbreviations

LTP long-term potentiation

M
MDP Markov decision process
meDVS Miniature Embedded Dynamic Vision Sensor
MNIST modified National Institute of Standards and Technology

N
NEST Neural Simulation Tool
N-MNIST neuromorphic modified National Institute of Standards and Technology

O
ODE ordinary differential equation

P
PPO proximal policy optimisation
PSP postsynaptic potential

R
RPE reward prediction error

S
SLAYER spike layer error reassignment
SpiNNaker Spiking Neural Network Architecture
SRM spike response model
SRV stochastic real-valued

T
TD temporal-difference
TD-LTP temporal-difference-based long term potentiation
TD-STDP temporal-difference-based spike-timing-dependent plasticity
TLU threshold logic unit
TTC time-to-contact

U
UCB upper-confidence bound

V
VLSI very-large-scale integration

X
XOR exclusive OR

List of Figures

2.1 Pinhole camera model. 34
2.2 The aperture problem. 37

3.1 Schematic overview of EMD models. 42
3.2 Working principle of a DVS pixel. 43

4.1 Interaction between agent and environment. 49
4.2 Illustration of an eligibility trace. 54

5.1 Schematic image of a biological neuron. 64
5.2 Build-up of postsynaptic membrane potential over time due to presynaptic spikes coming

from two neurons. 65
5.3 STDP windows based on experimental data. 68
5.4 BCM windows for LTD and LTP. 70
5.5 Overview of reward-modulated learning rules. 71

7.1 Schematic overview of the vertical simulation environment. 87
7.2 Possible reward functions for the zero-divergence problem. 89
7.3 Possible reward function for the goal altitude problem. 89

8.1 Instantaneous firing rates of place cells as a function of state. 94
8.2 Accumulated reward moving average for the discrete action space + goal altitude problem. 97
8.3 Final distribution of the synaptic weights for the discrete action space + goal altitude

problem. 98
8.4 Altitude over time for the discrete action space + goal altitude problem. 98
8.5 Accumulated reward moving average for the discrete action space + zero-divergence

problem. 99
8.6 Altitude over time for the discrete action space + zero-divergence problem. 99
8.7 Accumulated reward moving average for the continuous action space + goal altitude

problem. 100
8.8 Altitude over time for the continuous action space + goal altitude problem. 101
8.9 Accumulated reward moving average for the continuous action space + zero-divergence

problem. 101
8.10 Final distribution of the synaptic weights for the continuous action space + zero-divergence

problem. 102
8.11 Distribution of the synaptic weights over time for R-STDP with h0 = 1 m in combination

with the continuous action space + zero-divergence problem. 102
8.12 Altitude over time for the continuous action space + zero-divergence problem. 103

xvii

List of Tables

5.1 Comparison of reward-modulated learning rules for SNNs. 74

8.1 Hyperparameter variations for each simulation case. 96

A.1 Default hyperparameter values for the discrete simulation cases. 112
A.2 Default hyperparameter values for the continuous simulation cases. 113

xix

List of Listings

7.1 A minimal working example of an SNN simulated with BindsNET. 86

xxi

1
Introduction

Flying insects are everything we would like micro air vehicles (MAVs) to be: units that can navigate
autonomously in cluttered environments through fast and agile manoeuvres, while being energy effi-
cient and reliable with respect to vision-based obstacle avoidance. Though insect-scale MAVs like the
DelFly (de Croon, de Clercq, Ruijsink, Remes & de Wagter, 2009; Karásek, Muijres, Wagter, Remes
& de Croon, 2018) or the RoboBee (Ma, Chirarattananon, Fuller & Wood, 2013) have already been
developed, these are still a far cry from achieving parity regarding efficient and intelligent flight. In
light of this, it is in our interest to try and mimic flying insects in terms of their vision-based naviga-
tion capabilities, and consequently apply gained knowledge to a manoeuvre of relevance, such as landing.

Like all animals that can see, insects rely on patterns of visual motion, or optical flow (Gibson, 1950), for
many important behaviours. During landing, for instance, honeybees have been observed to maintain a
constant rate of expansion, or divergence, of the optical flow field to ensure a smooth approach (Baird,
Boeddeker, Ibbotson & Srinivasan, 2013). Light-sensitive cells and neurons in the retinas of these anim-
als allow them to perceive motion in a spike-based manner, with the neurons giving off electrical pulses
in response to different levels of stimulation by the cells sensitive to brightness changes (Posch, Serrano-
Gotarredona, Linares-Barranco & Delbruck, 2014). Underlying networks of interconnected neurons use
the resulting temporal sequences of discrete spikes to come up with a motion estimate. The sparsity
and asynchronicity of this process make it very energy efficient, and a great candidate for on-board
optical flow estimation.

The desirable qualities of such an end-to-end spike-driven approach have inspired researchers to come
up with artificial substitutes, which we call neuromorphic, for the components of the biological mo-
tion estimation process. Event-based cameras (Gallego et al., 2019; Posch et al., 2014), whose pixels
asynchronously register brightness changes as events, take the place of the retina. Spiking neural net-
works (SNNs, Maass, 1997) assume the role of the underlying networks, subsequently transforming
these event sequences into an estimate of visual motion. Analogous to these networks of biological
neurons, SNNs carry out computations in a sparse and asynchronous manner, making them a natural
fit for the sparse, temporal data generated by the event-based camera (Orchard & Etienne-Cummings,
2014; Roy, Jaiswal & Panda, 2019). This asynchronicity also implies that SNNs are inherently more
energy efficient than the conventional artificial neural networks (ANNs) that operate synchronously,
given that each spike costs a certain amount of energy (Tavanaei, Ghodrati, Kheradpisheh, Masquelier
& Maida, 2019). This advantage carries over to hardware implementations of SNNs (Bouvier et al.,
2019), meaning that it is possible to run large SNNs at an order of magnitude lower power consumption
than comparable ANNs (Pfeiffer & Pfeil, 2018).

Despite these benefits, SNNs have not yet become widespread in vision-based robot control applications.
The cause of this may lie partially in the difficulty of training SNNs: the discrete spiking nature of these
networks severely limits the application of the gradient-based optimisation algorithms that work so well
for ANNs. Instead, most learning is based on the relative timing of spikes (Caporale & Dan, 2008),
often in combination with a surrogate gradient (Bohte, Kok & La Poutré, 2002; Shrestha & Orchard,

1

2 Introduction

2018) or global reward signal (Florian, 2007; Frémaux, Sprekeler & Gerstner, 2013; Vasilaki, Frémaux,
Urbanczik, Senn & Gerstner, 2009) to allow the specification of desired behaviour or goals. As far as
vision-based robot control is concerned, these learning rules currently seem to be limited to simulated
applications (Bing, Meschede, Chen, Knoll & Huang, 2020; Clawson, Ferrari, Fuller & Wood, 2016) or
discrete problems (Zhao, Zeng & Xu, 2018), with no real-world, continuous control implementations
that the authors are aware of. This leads us to believe that the available learning methods are, as of
this moment, not mature enough for solving such complex tasks.

ANNs, on the other hand, have been employed successfully for real-world, vision-based continuous con-
trol. For instance, Scheper and de Croon (2020) used an evolutionary algorithm to optimise ANNs for
performing divergence-based landings of MAVs. Solving the same control problem, but replacing the
ANNs with SNNs, this work aims to demonstrate that SNNs can in fact already be taught to perform
vision-based, continuous control in a real-world environment through the use of evolutionary learning.
When applied to neural networks, this kind of learning is called neuroevolution (Floreano, Dürr & Mat-
tiussi, 2008). The generality of the evolutionary framework, both in terms of suitable problems (Bäck,
Fogel & Michalewicz, 1997) as well as the structure and characteristics of the evolved individuals (Fogel,
1997), adds to the strength of this approach.

As was argued at the beginning of this introduction, the authors believe it is in our interest to mimic
nature regarding the vision system that gives flying insects their navigation abilities. To progress
towards this goal, we aim to demonstrate here that SNNs are capable of controlling a real-world MAV
landing when given an estimate of divergence. However, the biological accuracy of the process of
estimating divergence is left largely unregarded. To still make a contribution on this front, we will
demonstrate the feasibility of an interface with the work of Paredes-Vallés, Scheper and de Croon
(2019), where an SNN is trained to extract optical flow quantities (including divergence) from event-
based camera data. The combination of their work with ours will then result in an end-to-end-learnt,
spike-driven pipeline that closely resembles its biological counterpart.

1.1 Motivation and research question
The aim of this thesis is to come up with an end-to-end trainable and bio-inspired system that is capable
of vision-based navigation through event-based optical flow control. The motivation behind the pursuit
of such a fully trainable, bio-inspired system is twofold: 1) the fact that the system is comprised of
only SNNs processing event-based data means that it can be implemented on low-power neuromorphic
hardware such as Intel’s Loihi (Davies et al., 2018), which would in theory allow on-board optical flow
control on insect-scale MAVs such as the DelFly (de Croon et al., 2009; Karásek et al., 2018), and 2)
investigating the learning capacity of SNNs regarding complex problems like real-world control. Sum-
marising the above in a research objective:

Achieving an end-to-end trainable, neuromorphic system capable of learning event-
based optical flow control in the real world.

Clearly, this objective consists of several parts. An SNN will have to be configured properly for it to
process the optical flow inputs optimally, while for the network to be able to run on board an MAV
it should not be too computationally demanding. In order for the system to be trainable an evolu-
tionary framework well-suited for this control problem has to be selected, in close correspondence with
the appropriate objective functions and evolutionary mechanisms. Finally, an interface with the work
of Paredes-Vallés et al. (2019) should be demonstrated to show the system’s compatibility with event-
based camera inputs. This leads to the following research question:

Can a spiking neural network be trained, using a neuroevolutionary framework, to
map event-based optical flow visual observables to control inputs to a micro aerial
vehicle, with the goal of letting it perform real-world landings?

1.2 Structure of this work 3

Which, according to the above-mentioned parts, can be split up into sub-questions as follows:

• What is the optimal configuration of the spiking neural network, and can this
be run on board the micro aerial vehicle?

• Given the real-world control task, what is the optimal configuration of the
neuroevolutionary framework?

• Can the spiking neural network, being trained in simulation, be used on board
a micro aerial vehicle to perform real-world landings using conventional optical
flow control?

• What constitutes an interface with the work of Paredes-Vallés et al. (2019),
and does the implementation of such an interface affect the performance of
the spiking neural network regarding its task of controlling optical-flow-based
landings?

1.2 Structure of this work
This thesis consists of four parts. Part I contains a standalone scientific paper that presents the main
contributions of this thesis.

Part II gives an in-depth account of relevant literature on the topics of (event-based) optical flow con-
trol, reinforcement learning and reward-modulated neuromorphic computing and its use in vision-based
navigation. In Chapter 2, optical flow is introduced along with conventional estimation methods, and
its application in MAV navigation is discussed. Next, Chapter 3 quickly summarises current event-based
cameras and event-based optical flow estimation methods, after which Chapter 4 covers the concept of
reinforcement learning and its presence in organisms and robot control. Chapter 5 introduces spiking
neural networks, goes over their learning rules and applications in soft- and hardware, and focuses on
their use for vision-based navigation and MAV control. Finally, Chapter 6 synthesises the provided
literature.

Next, Part III discusses the preliminary experiments performed to gain a deeper understanding of the
topic. These experiments consist of testing the performance of various reward-modulated learning rules
in a simple vertical simulator. Chapter 7 documents the simulation environment and settings in detail.
In Chapter 8, the implementation of the various learning rules is explained, and their performance is
evaluated and compared across numerous parameter settings. Chapter 9 discusses the outcomes of the
experiments, and tries to provide guidance on which learning rule is most promising for the task at
hand. Furthermore, it covers the relation between these preliminary experiments and the final paper
presented in Part I.

Finally, Part IV contains the appendices, of which there is only one: Appendix A lists the default
parameters for all simulation cases described in Chapters 7 and 8.

I
Scientific Paper

5

Evolved Neuromorphic Control for High Speed
Divergence-based Landings of MAVs

J. J. Hagenaars∗‡, F. Paredes-Vallés†‡, S. M. Bohte§, G. C. H. E. de Croon†‡

‡Micro Air Vehicle Laboratory
Delft University of Technology

Delft, The Netherlands

§Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

Abstract—Flying insects are capable of autonomous vision-
based navigation in cluttered environments, reliably avoiding
objects through fast and agile manoeuvres. Meanwhile, insect-
scale micro air vehicles still lag far behind their biological
counterparts, displaying inferior performance at a fraction of
the energy efficiency. In light of this, it is in our interest to try
and mimic flying insects in terms of their vision-based navigation
capabilities, and consequently apply gained knowledge to a man-
oeuvre of relevance. This paper does so through evolving spiking
neural networks for controlling divergence-based landings of
micro air vehicles, while minimising the network’s spike rate.
We demonstrate vision-based neuromorphic control for a real-
world, continuous problem, as well as the feasibility of extending
this controller to one that is end-to-end-learnt, and can work
with an event-based camera. Furthermore, we provide insight
into the resources required for successfully solving the problem
of divergence-based landing, showing that high-resolution control
can be learnt with only a single spiking neuron. Finally, we look at
evolving only a subset of the spiking neural network’s available
hyperparameters, suggesting that the best results are obtained
when all parameters are affected by the learning process.

Index Terms—spiking neural networks, optical flow, micro air
vehicles, neuroevolution

I. INTRODUCTION

Flying insects are everything we would like micro air
vehicles (MAVs) to be: units that can navigate autonomously
in cluttered environments through fast and agile manoeuvres,
while being energy efficient and reliable with respect to vision-
based obstacle avoidance. Though insect-scale MAVs like
the DelFly [1], [2] or the RoboBee [3] have already been
developed, these are still a far cry from achieving parity
regarding efficient and intelligent flight. In light of this, it
is in our interest to try and mimic flying insects in terms
of their vision-based navigation capabilities, and consequently
apply gained knowledge to a manoeuvre of relevance, such as
landing.

∗MSc student, †supervisor. This work includes several software pack-
ages: 1) the evolutionary framework: https://github.com/Huizerd/
evolutionary; 2) a vertical simulation environment: https://
github.com/Huizerd/gym-quad; 3) an SNN library in C: https:
//github.com/Huizerd/tinysnn; 4) the Paparazzi autopilot software:
https://github.com/Huizerd/paparazzi. Videos of the flight
tests can be found on https://www.youtube.com/playlist?list=
PL_KSX9GOn2P9wfgUNIR_FVbx3FoXBOK68.

Figure 1. Parrot Bebop 2 quadrotor MAV.

Like all animals that can see, insects rely on patterns
of visual motion, or optical flow [4], for many important
behaviours. During landing, for instance, honeybees have
been observed to maintain a constant rate of expansion, or
divergence, of the optical flow field to ensure a smooth
approach [5]. Light-sensitive cells and neurons in the retinas
of these animals allow them to perceive motion in a spike-
based manner, with the neurons giving off electrical pulses
in response to different levels of stimulation by the cells
sensitive to brightness changes [6]. Underlying networks of
interconnected neurons use the resulting temporal sequences
of discrete spikes to come up with a motion estimate. The
sparsity and asynchronicity of this process make it very energy
efficient, and a great candidate for on-board optical flow
estimation.

The desirable qualities of such an end-to-end spike-driven
approach have inspired researchers to come up with artificial
substitutes, which we call neuromorphic, for the components
of the biological motion estimation process. Event-based cam-

1

eras [6], [7], whose pixels asynchronously register brightness
changes as events, take the place of the retina. Spiking neural
networks (SNNs) [8] assume the role of the underlying net-
works, subsequently transforming these event sequences into
an estimate of visual motion. Analogous to these networks
of biological neurons, SNNs carry out computations in a
sparse and asynchronous manner, making them a natural fit
for the sparse, temporal data generated by the event-based
camera [9], [10]. This asynchronicity also implies that SNNs
are inherently more energy efficient than the conventional
artificial neural networks (ANNs) that operate synchronously,
given that each spike costs a certain amount of energy [11].
This advantage carries over to hardware implementations of
SNNs [12], meaning that it is possible to run large SNNs at an
order of magnitude lower power consumption than comparable
ANNs [13].

Despite these benefits, SNNs have not yet become wide-
spread in vision-based robot control applications. The cause
of this may lie partially in the difficulty of training SNNs: the
discrete spiking nature of these networks severely limits the
application of the gradient-based optimisation algorithms that
work so well for ANNs. Instead, most learning is based on
the relative timing of spikes [14], often in combination with a
surrogate gradient [15], [16] or global reward signal [17]–[19]
to allow the specification of desired behaviour or goals. As far
as vision-based robot control is concerned, these learning rules
currently seem to be limited to simulated applications [20],
[21] or discrete problems [22], with no real-world, continuous
control implementations that the authors are aware of. This
leads us to believe that the available learning methods are, as
of this moment, not mature enough for solving such complex
tasks.

ANNs, on the other hand, have been employed success-
fully for real-world, vision-based continuous control. For in-
stance, [23] used an evolutionary algorithm to optimise ANNs
for performing divergence-based landings of MAVs. Solving
the same control problem, but replacing the ANNs with SNNs,
this work aims to demonstrate that SNNs can in fact already be
taught to perform vision-based, continuous control in a real-
world environment through the use of evolutionary learning.
When applied to neural networks, this kind of learning is
called neuroevolution [24]. The generality of the evolutionary
framework, both in terms of suitable problems [25] as well
as the structure and characteristics of the evolved individu-
als [26], adds to the strength of this approach.

As was argued at the beginning of this introduction, the
authors believe it is in our interest to mimic nature regarding
the vision system that gives flying insects their navigation
abilities. To progress towards this goal, we aim to demonstrate
here that SNNs are capable of controlling a real-world MAV
landing when given an estimate of divergence. However, the
biological accuracy of the process of estimating divergence
is left largely unregarded. To still make a contribution on
this front, we will demonstrate the feasibility of an interface
with the work of [27], where an SNN is trained to extract
optical flow quantities (including divergence) from event-based

camera data. The combination of their work with ours will
then result in an end-to-end-learnt, spike-driven pipeline that
closely resembles its biological counterpart.

This paper contains three main contributions. First, it
demonstrates learnt neuromorphic control based on conven-
tional optical flow for the real-world, continuous problem of
optical flow landing, and argues that this can be extended to
end-to-end-learnt control and event-based optical flow with
the work of [27]. Second, it explores the concept of energy-
minimising neuroevolution, and shows its positive influence on
the resolution and smoothness of control. Third, it investigates
the effect the number of hidden neurons and the set of
evolving hyperparameters on performance on the divergence-
based landing task, providing insight into the difficulty of the
learning problem and the room energy-minimising neuroevolu-
tion leaves for pruning neurons.

The remainder of this paper is structured as follows. Sec-
tion II provides related work concerning divergence-based
landing, neuromorphic controllers, neuroevolution for robot
control and the reality gap between simulation and the real
world. The control problem, simulation environment, SNN
configuration and neuroevolution procedure are discussed in
Section III, while Section IV goes over the set-up of the per-
formed experiments and lists their findings. Conclusions drawn
from these findings are stated in Section V. Appendices A to E
follow after that.

II. RELATED WORK

A. Divergence-based Landing

Insects make use of a plethora of navigation strategies
based on visual observables [28]. One of these observables
is the flow-field divergence D, which quantifies the flow’s
rate of expansion and in physical terms corresponds to the
ratio of vertical velocity and height. Divergence was found
to be kept constant by honeybees when landing on vertical
surfaces [5], a strategy which has subsequently been employed
for optical-flow-based, vertical landings of MAVs, using a
simple proportional controller in combination with a con-
ventional camera [29]–[31] or an event-based cameras [23],
[32]. Comparing these camera types, [23] showed a decreased
divergence estimation error for the event-based variant. Ad-
ditionally, the lower latency of these cameras makes them
especially suitable for high-speed landings, as was confirmed
by [32]. Despite these benefits, however, this work will make
use of a conventional, frame-based camera to limit set-up
complexity.

In the presence of measurement noise, delay and environ-
mental disturbances (as is the case during real-world tests),
the non-linear relation between control and sensing leads to
vertical oscillations at a certain height above the surface for
a certain fixed proportional control gain [33]. Delaying the
onset of these self-induced oscillations can be done through
gain adaptation [30], [31] or by responding asymmetrically,
i.e., differently for increasing and decreasing divergence val-
ues [23].

2

B. Neuromorphic Robot Controllers

Neuromorphic control, meaning control using SNNs, can
either be learnt or hand-engineered. Whereas the latter ap-
proach already lends itself for more sophisticated, real-world
control tasks, fully learnt controllers have so far only been
implemented for simpler or simulated problems. For in-
stance, [34]–[36] already demonstrate real-world vision-based
control of a wheeled robot with a neuromorphic processor, but
their SNNs are (largely) made up of hand-designed and hand-
tuned neuronal populations and connections. On the other
hand, in [22], a reward-modulated learning rule is used to
learn the synaptic weights of most connections. However,
while the task of learning MAV obstacle avoidance presented
there might seem similar to the landing problem we consider
here, it is in fact converted to a much simpler (almost one-
to-one) mapping between discrete inputs and outputs through
preprocessing.

Regarding simulation, the authors of [21] show fully learnt
neuromorphic control based on vision for the lane-keeping
task developed in [37]. Events coming from an event-based
camera excite a population of Poisson neurons, whose spikes
are fed to a two-neuron SNN that outputs motor speeds
for a two-wheeled robot. Although all synaptic weights are
learnt through reward-modulated learning, the lane-keeping
task is set up in such a way that its complexity remains
limited: rewards are tailored to each individual neuron, so that
increased firing inevitably results in a self-centering policy,
independent of incoming Poisson spikes. It remains to be seen
how well the reward-modulated learning rule would hold up
for a truly global reward, or in the presence of real-world-
like amounts of noise. In [20], the authors employ the same
learning rule and a three-layer SNN for learning flight control
of a simulated robotic insect. Despite seeming more difficult
at first sight, reward is based on the deviation from the flight
trajectory generated by a linear quadratic regulator (LQR),
making it essentially a lane-keeping task similar to [21]. Still, a
global reward is used, making this work of interest for further
research. More examples of learnt neuromorphic robot control
can be found in [38].

C. Neuroevolution for Control

Reviews of the neuroevolution field show the feasibility of
using evolution for learning in ANNs [39] and SNNs [24].
Although many regarded the evolutionary approach to only be
tractable for smaller networks, recent work has demonstrated
this to be false, with over four million parameters being
evolved to produce successful game-playing agents [40]. Apart
from also scaling well in terms of compute (since individuals
in a population can be evaluated in parallel), neuroevolution
proved to often be more sample efficient than RL-based
learning approaches [39]. Additionally, the population-based
framework of evolution inherently promotes behavioural di-
versity in case of multiple objectives [39] and can be used
for the optimisation of all parameters of a network, including
learning rule characteristics [41].

Most recent control applications of evolution focus on
ANN-based game playing or other simulated tasks [40], [42],
[43]. More relevant, however, is the field of evolutionary
robotics, which encompasses neuroevolution for real-world
control. For instance, [23] demonstrate real-world event-based
optical flow control of a landing MAV, where the ANN
controller is evolved offline. It was shown that a small network
of three layers (eight hidden neurons) was sufficient to perform
continuous control, with only the weights being evolved.
In [44], [45], neuroevolution of ANNs is demonstrated for
real-world MAV control in the horizontal plane.

The number of recent real-world applications involving
neuroevolution for SNN controllers seems to be limited. The
authors of [46], [47] evolve SNNs for the control of a two-
wheeled robot based on basic vision (e.g., light sensors).
On the other hand, [48] learns a walking task for a six-
legged robot offline, and then transfers the learnt policy to
the real world. There seems to little consensus among these
works about the to-be-evolved parameters: some mainly evolve
the topology of the network, while others evolve only the
SNN’s weights and constants. The same can be seen for more
recent applications of neuroevolution to SNNs for control
in simulation. For example, [49] evolves SNN weights and
neuron types, while [50], [51] follow the NEAT [52] approach,
where either a connection or neuron is added/removed, or a
connection weight is changed.

Another promising approach is the combination of learning
and evolution, where offline evolution evolves the paramet-
ers of both network and learning rule, and online learning
is used to deal with changing situations during operation.
Several works demonstrate this combination for SNNs. Most
recently, [53] demonstrated the successful classification of
event-based camera data using an evolved SNN. However,
like [54], the addition of online learning based on relative
spike times did not seem to improve performance in general.
Reward-modulated learning rules could prove to be a better
option, something which is hinted at by the results of [55],
where evolved ANNs that include modulatory neurons out-
perform those that do not. Still, more research is needed in
this direction before a definitive conclusion can be drawn.

D. Crossing the Reality Gap

In evolutionary robotics, the reality gap is the discrepancy
between simulation and the real world, for instance because
agents exploit simulator inaccuracies, or because they can-
not deal with real-world noise [56], [57]. Multiple ways of
bridging this gap have been proposed [58], [59], of which one
is the addition of all kinds of noise during simulation [60],
and another is the varying of simulation parameters [61].
The authors of [62] adopt this approach for the evolution
of divergence-based landing controllers for MAVs, varying
delay, computational jitter, (proportional) sensor noise, thrust
responsiveness and simulation frequency.

A very similar approach, which has recently surfaced in
the field of deep learning, is the concept of domain ran-
domisation [63]. Mainly applied to vision-based control, the

3

randomisation of the domain consists of randomly varying the
textures, colours and shapes of relevant objects, as well as
adding distracting, non-relevant objects. In this way, learnt
agents are supposed to develop robustness to (irrelevant)
changes in the environment, improving their transferability
to the real world. The success of this approach has been
demonstrated by [64] for vision-based navigation of an MAV
through gates in various surroundings, and by [65] for car
detection on the KITTI dataset.

III. METHODOLOGY

A. Landing with Optical Flow

The optical flow formulation used here originates from [66]
and has subsequently been employed by many works on
optical-flow-based landing [23], [30]–[33]. It starts from a
downward-facing camera above a static planar scene, as
depicted in Fig. 2. If the camera were to move, this ego-
motion would cause a perceived optical flow, which can be
summarised with the help of visual observables.

Consider the two reference frames in Fig. 2: the inertial
world frameW and the moving camera frame C, of which the
latter is centred at the camera’s focal point. Position in both
frames is given by the coordinates (X,Y, Z), with (U, V,W)
denoting the translational velocities along the respective axes.
The Euler angles φ, θ and ψ describe the attitude of C with
respect to W in terms of roll, pitch and yaw, and p, q and r
give the corresponding rotational rates.

Starting from the pinhole camera model [67], we can relate
camera ego-motion to optical flow, and subsequently to the
visual observables. Again looking at Fig. 2, translational and
rotational movements of the camera cause a point (x, y) to
move across the field-of-view with optical flow components
(u, v), leading to the following expression:

u = −UC
ZC

+
WC
ZC

x− q + ry + pxy − qx2

v = −VC
ZC

+
WC
ZC

y + p− rx− qxy + py2
(1)

The structure of Eq. (1) implies that the optical flow of a
point can be decomposed into a translational and a rotational
component. With knowledge of the camera’s rotational rates,
the optical flow can be derotated, as is common in, e.g., MAV-
based applications [23], [30]–[33], [66], leaving us with the
purely translational optical flow components (uT , vT). If we
furthermore consider the scene to be planar, the depth ZC of
all points in the camera’s field-of-view can be described by:

ZC = Z0 + αXC + βYC (2)

with Z0 the distance to the surface along ZC , and α and
β the slopes of the planar scene relative to XC and YC ,
respectively [66]. Knowing that the projection of each point
in C onto the camera’s image plane can be expressed as
(x, y) = (XC/ZC , YC/ZC), we can rewrite Eq. (2):

ZC − Z0

ZC
= αx+ βy (3)

XW

YW

ZW

θ, q

φ, p

YC

XC

ZC

UC

VC

WC

ψ, r

Figure 2. Definition of the inertial world frame W and the moving camera
frame C, as well as their respective translational and rotational velocities and
Euler angles. Adapted from [68].

Finally, by substituting Eq. (3) together with
the camera’s depth-scaled velocities (ϑx, ϑy, ϑz) =
(UC/Z0, VC/Z0,WC/Z0) into Eq. (1), we end up with
the following expressions for translational optical flow [66]:

uT = (−ϑx + ϑzx)(1− αx− βy)

vT = (−ϑy + ϑzy)(1− αx− βy)
(4)

As is apparent from Eq. (4), the depth-scaled velocities
can be derived from the translational optical flow of several
points in the camera’s field-of-view. The ventral flows and
divergence, which make up the visual observables and which
quantify the average flows along XC and YC and the divergence
of the flow field, are then defined as [66]:

ωx = −ϑx ωy = −ϑy D = 2ϑz (5)

Following [31] and the subsequent implementations by [23],
[32], divergence can be estimated through the relative, tem-
poral variation in the distance between any two image points.
Referred to as size divergence Dt, this method results in a
reliable estimate of divergence D̂ when averaged over a set of
ND pairs of points:

Ds(t) =
2

∆t

l(t−∆t)− l(t)
l(t−∆t)

D̂(t) =
1

N

ND∑
i=1

Ds(t)

(6)

where the factor 2 ensures compatibility with Eq. (5).
Like [23], [32], this work employs a FAST corner de-
tector [69] in combination with a pyramidal Lucas-Kanade
feature tracker [70], [71] as implemented in the Paparazzi
autopilot software1. To limit computational expense, ND is
capped at 100 points.

1http://wiki.paparazziuav.org/wiki/Main_Page

4

In addition to an estimate of divergence D̂, an estimate of
the derivative of divergence ∆D̂ can also be computed with a
simple time difference:

∆D̂(t) =
D̂(t)− D̂(t−∆t)

∆t
(7)

As suggested by [23], the divergence derivative could play a
role in controlling fast landings, where knowledge of changes
in landing speed become more important.

Although the aim of the authors is to work towards end-to-
end-learnt, neuromorphic optical flow control, they have opted
to go with a frame-based instead of an event-based optical flow
set-up here. It is believed that the added demonstration value
of such a set-up does not weigh up to the increased complexity
due to the integration of an event-based camera. Furthermore,
as demonstrated by [23], [32], event-based optical flow es-
timation actually outperforms frame-based estimation in terms
of accuracy, making for an easier control problem. Finally,
the goal of end-to-end-learnt neuromorphic control implies
estimation of optical flow is learnt, making it more important
to demonstrate the feasibility of an interface with [27] than to
implement a to-be-replaced event-based estimation technique.

B. Spiking Neural Network Architecture

SNNs fundamentally mimic the biological networks of
neurons found in the animal brain. Data is sent through these
networks as sparse sets of spikes, which makes them compu-
tationally more powerful [8], [12], more energy efficient [11],
[72], [73] and better able to cope with rapidly changing
inputs [74]. Various neuron models with differing levels of
abstraction are available, ranging from accurate biophysical
formulations [75] to more tractable models, of which the most-
used are the leaky integrate-and-fire (LIF) [76] and the spike-
response model (SRM) [77]. Regardless of the used model,
the conceptual principles of each SNN are the same. Neurons
are connected through synapses, which have a certain efficacy
(weight) with which they conduct spikes. The alteration of
this weight through learning is called synaptic plasticity. The
neuron on the receiving end of a synapse is named postsyn-
aptic, while the transmitting neuron is labelled presynaptic.
Incoming spikes contribute to the membrane potential ui(t) of
a neuron in an additive (excitatory) or subtractive (inhibitory)
way. In case no inputs are received, ui(t) decays to a resting
potential urest . On the other hand, if the quantity of inputs is
large enough to push the membrane potential above a threshold
θi, the neuron itself emits a spike, after which the potential is
reset to urest and the neuron enters a refractive period during
which membrane potential is stagnant.

Because this work aims to apply SNNs as a computational
framework for real-time control, and only to a lesser extent
strives to achieve a completely accurate representation of
biological processing, we opted for an SNN consisting of LIF
neurons. The success of previous, related applications of the
LIF model helps in this respect [27], [78]–[80].

Although neuronal dynamics are considered to be continu-
ous, they have to be discretised in some way for use in

computer simulations. Taking the LIF model for membrane
potential ui(t) and discretising it with a forward Euler tech-
nique, we end up with:

ui(t) = ui(t−∆t) · τui + αuiii(t) (8)

where we assumed urest = 0 and take the membrane decay
as a factor τui

instead of a scaled time constant. ii(t) is the
forcing function working on the postsynaptic neuron i, which
usually corresponds to the presynaptic spikes multiplied by
their respective synaptic weights, i.e., ii(t) =

∑
j wijsj(t).

Instead of spikes, the neuron can also receive presynaptic
currents cj(t), i.e., ii(t) =

∑
j wijcj(t). The influence of the

forcing function on the membrane potential is scaled with a
constant αui

.
Neuron i emits a binary spike si at time t if ui(t) = θi.

Immediately after, the membrane potential is reset to urest ,
and the neuron may enter into a refractory period, interrupting
dynamics for a few milliseconds. Though implementing this
could be done through a simple counter, we opted to neglect
this feature to somewhat limit the number of hyperparameters.

Instead of keeping θi fixed, it can be made dependent on
the neuron’s firing rate. By increasing the threshold slightly
for each emitted spike, excessive firing can be prevented,
while continually decaying the threshold ensures the neuron
stays responsive to small inputs. Furthermore, threshold decay
ensures spiking can occur no matter the weight initialisation,
meaning that learning can always take place. An adaptive LIF
neuron’s threshold can thus be represented as follows:

θi(t) = θi(t−∆t) · τθi + αθisi(t) (9)

The binary nature of SNNs requires functions that transform
real-valued signals to binary spikes and vice-versa, i.e., encod-
ings and decodings. Two types of encodings are used in this
work. The first makes use of two non-spiking neurons per input
observation, one for positive and one for negative observation
values. These neurons give off a proportional current, with
at most one neuron being active at a given time. The non-
spiking nature of these neurons furthermore allows them to
be responsive to changing inputs, and similar mechanisms
are actually observed in the biological retina’s photoelectric
cells [6], [81]. More specifically, the current ci(t) coming out
of each neuron can be expressed as:

ci(t) = |f(oi(t))| (10)

where oi(t) is the observation variable belonging to neuron
i, and f(·) is a clamping function, i.e., min(0, ·) in case of the
negative neuron and max(0, ·) in case of the positive neuron.

The second encoding is based on the idea of place cells [82],
which are neurons in the animal brain that have been observed
to fire when its host finds itself in a certain spatial location,
with different neurons coupled to different locations, thus
providing a sort of ‘cognitive map’. The authors of [18], [19]
adapt this concept to encode ranges of real-valued observations
by distributing place cells modelled by inhomogeneous Pois-
son processes uniformly across these ranges, with the firing

5

probability of any cell dependent on the distance between the
current value and the centre of the cell. This work employs
a non-spiking variant, which instead gives out a proportional
current:

ci(t) = exp

(
−‖o(t)− πi‖2

2σ2
p

)
(11)

where o(t) is the current observation vector, πi contains
the place cell’s centre for each observation variable and σ2

p is
a vector regulating the width of place cells per observation
variable. Here, we always take σp equal to the distance
between two adjacent, uniformly distributed centres to ensure
enough overlap.

Instead of a uniform distribution of place cells, it might be
preferred to have a non-uniform distribution, for instance to
provide higher resolution for values close to zero, which is
also a characteristic of the output layer in [27]. In this case,
π can follow a cubic spacing function. Fig. 3 illustrates the
two layouts. For both cases, σp = 5.

As Fig. 3 illustrates, observations that lie far outside the
outermost place cell centres may lead to no current at all, and
thus no spiking (and no control). To prevent this, observations
are clamped to the range between the outer place cell centres,
i.e., o(t) = max(r1,min(o(t), r2)), such that activity is
identical to observations that lie exactly on these centres.

For decoding binary spikes to real-valued scalars (actions)
in a range [r1, r2], the postsynaptic trace, which is essentially
just a low-pass filter over postsynaptic spikes, can be used,
together with, e.g., a simple scaling:

ai(t) = r1 + (r2 − r1) · Xi(t)

η

Xi(t) = Xi(t−∆t) · τxi + αxisi(t)

(12)

Different combinations of α and τ lead to different decoding
dynamics. For instance, little decay and large additions due
to incoming spikes allow higher values to be reached, but
also impede the trace to come down quickly again, making
dynamics rather slow. On the other hand, high α and τ would
make for a very fast-adapting decoding, but also one that
would have problems giving out a temporally stable value.

0

0.5

1

c i
[-

]

−30 −20 −10 0 10 20 30
0

0.5

1

oi [-]

c i
[-

]

Figure 3. Position of uniformly distributed and cubically distributed place
cells in the observation space.

Decodings different from the one mentioned above, such as
the weighted vector of neuron activities in [19], were also
tested in preliminary experiments, but these were found to
have inferior performance, while adding complexity.

The SNN used for the control task in this work is kept
relatively simple, with only a single hidden layer of not more
than 20 adaptive LIF neurons, and a single output LIF neuron
(we consider vertical control to be one-dimensional, with the
SNN controller setting the thrust). The adaptive neurons in the
hidden layer ensure sufficient initial spiking, easing learning
during the first few generations. A similar-sized ANN in [23]
demonstrated quite high-resolution control, thus proving the
feasibility of using only a small network. In fact, there might
even be a certain degree of redundancy in these smaller
networks, both in terms of hyperparameter overlap as well
as connections and hidden neurons.

C. Evolving Energy-efficient Neuromorphic Controllers

The vast majority of evolutionary algorithms starts off with
the same four components:

• A population of randomly initialised candidate solutions
(individuals), each having a certain policy

• A method to evaluate the fitness (performance) of these
individuals

• A way to alter individuals, generating new policies
• A selection mechanism to select well-performing indi-

viduals and filter out bad ones

The tasks of each of these four components can be carried
out in different ways. Alteration of individuals can happen,
for instance, through mutation or crossover, which modifies an
existing individual or combines parts of others, respectively, to
create offspring. There seems to be little consensus in existing
literature [83]–[86] as to what an evolutionary framework for
SNNs should look like. We opt for a mutation-only approach,
because crossover tends to work best when natural building
blocks are available. The distributed knowledge representation
in neural networks does not seem to satisfy this requirement,
which could lead to destroyed policies or the permutation
problem, where different networks have the same policy [87].

Selection is carried out using the multi-objective genetic al-
gorithm NSGA-II [88]. The ability to deal with multiple object-
ives gives us the ability to specify different aspects of a ‘good’
policy, and also gives a flexible framework for adding object-
ives later. The spectrum of policies resulting from a multi-
objective optimisation allows us to distinguish various optimal
behaviours, as demonstrated by [23] for the evolution of
divergence-based landing controllers. Alternatives to NSGA-
II would be an evolution strategies approach, such as MO-
CMA-ES [89], or another genetic algorithm, MOEA/D [90].
Both evolution strategies and genetic algorithms have seen
successful large-scale implementations for ANNs [40], [42].
Although [91] showed MOEA/D outperforming NSGA-II for
some problems, we use the latter here because of its good
performance in [23] and its availability in DEAP [92], a
distributed Python framework for evolutionary algorithms.

6

The objectives used in this work are almost identical to
those used in [23] to evolve landing controllers. In order to
stimulate fast landing, f1 is the time it takes to land, i.e.,
reach an altitude of 0.05 m (to prevent infinite D and account
for landing leg length). Next, f2, which is the final altitude,
encourages landing in general. f3, the final velocity, ensures
landings are soft. As mentioned before, one of the benefits
of SNNs is their decreased energy consumption compared to
ANNs [11]. The authors of [93] looked into further minim-
ising this consumption when converting ANNs to SNNs, by
including loss function terms representing connection sparsity
or predicted number of spikes. Though their results show that
network activity can be reduced by more than half while
maintaining accuracy, there seems to be no clear winner as
to which of these methods works best. We therefore opt to
include the most straightforward of the two, total spike rate
of the complete network, as an additional objective f4.

At the start of the evolutionary process, a population of
µ SNN individuals is initialised with random weights, while
hyperparameters are set either according to the standard initial
configuration (in case they will be mutated) or a set of selected
values (in case they are fixed). The individuals are then
evaluated in a set of randomised environments to determine
their fitness (f1, f2, f3) or (f1, f2, f3, f4).

After this, the steps for each generation are the same and
as follows:

1) Select a Pareto front of non-dominated individuals from
the population. The remaining individuals compete in a
tournament based on dominance and crowding distance
(see [88]) for the leftover spots, such that we end up
with a selection of µ individuals.

2) Form offspring λ through mutation of the selected
individuals.

3) Randomise the environments and subsequently re-
evaluate both the population and its offspring. The fact
that the population is evaluated again decreases the
chance that individuals will be selected simply because
they received ‘easy’ environments, which is realistic
given the high stochasticity of our evaluations.

4) Select a new population of µ individuals from both the
old population and its offspring (µ+λ) using NSGA-II.

Depending on the case, different mutations can take place
when creating the offspring. The mutation probability Pmut

is fixed to 0.3 for all mutations, meaning that parameters
have a 30% chance of being replaced by a mutated variant.
Table I lists the distributions per parameter from which these
replacements are sampled. Note that the distribution for syn-
aptic weights is identical to the one used in [23]. Threshold
θi is only mutated for non-adaptive neurons, i.e., those in the
output layer.

During the evolution, a hall of fame is maintained, which
contains the all-time Pareto front of best individuals. After
Ngen generations, all individuals in the hall-of-fame are eval-
uated by letting them perform 250 landings and quantifying the
median and inter-quartile range (IQR) for each evolutionary
objective. Then, the best-performing individuals are selected.

Table I
SAMPLING DISTRIBUTIONS OF MUTATED PARAMETERS

Parameter Distribution

wij U(−wij − 0.05, 2wij + 0.05)

αui , αθi , αxi U(α− 2/3, α+ 2/3), clamped to [0, 2]

τui , τθi , τxi U(τ − 1/3, τ + 1/3), clamped to [0, 1]

θi U(θi − 1/3, θi + 1/3), clamped to [0, 1]

So even though the hall-of-fame may still contain individuals
that got ‘lucky’ during evolution, these will be identified and
disregarded during the subsequent evaluation.

D. Randomised Vertical Simulation Environment

The vertical simulation environment in which individuals
are evaluated makes use of domain randomisation and artificial
noise to improve transferability to the real world. The available
observations are the divergence D̂ and its derivative ∆D̂. The
simulated MAV is just a unit mass under influence of gravity,
and control happens in 1D with the SNN controller selecting
a thrust setpoint Tsp. This leads to the following dynamics
model [23]:

h(t) = h(t−∆t) + ∆t · v(t−∆)

v(t) = v(t−∆t) + ∆t · T (t−∆t) + w(t)

T (t) = T (t−∆t) + ∆t · Tsp · g − T (t−∆t)

∆t+ τT

(13)

where the states altitude h, velocity v and thrust T (in ms−2)
are updated using the forward Euler method. τT represents the
spin-up and spin-down time of the rotors. The thrust setpoint
Tsp selected by the SNN is clamped to a realistic range of
acceleration for the MAV, namely [−0.8, 0.5] g. w is added
vertical wind, according to the model in [23]:

w(t) = w(t−∆t) + ∆t · N (0, σ2
wind)− w(t−∆t)

∆t+ σwind
(14)

with σwind the standard deviation of the normally distrib-
uted wind.

Noise is added to the divergence estimation according to
the model in [33]. The observed divergence D̂ is the result of
adding a delay δD to the ground-truth divergence, along with
white noise and proportional white noise:

D̂(t) = D(t− δD ·∆t) +N (0, σ2
D)

+D(t− δD ·∆t) · N (0, σ2
Dprop

)
(15)

where σD and σDprop
are the standard deviations for the

added noise and proportional noise, respectively. Additionally,
computational jitter is introduced similarly to [23], in order
to simulate the case in which the estimated divergence is not
updated due to, e.g., insufficient corners. Each time step, there
is the probability Pjitter that the estimated divergence from the
previous step is used (for a maximum of one step).

7

Table II
SAMPLING DISTRIBUTIONS OF ENVIRONMENT PARAMETERS [23]

Parameter Distribution

δD U{1, 4} steps

σD U(0.05, 0.15) s−1

σDprop U(0.0, 0.25) s−1

τT U(0.005, 0.04) s

∆t U(0.02, 0.0333) s

Pjitter U(0.0, 0.2)

Added delay and noise, motor dynamics, simulation fre-
quency and jitter are randomised to minimise the reality gap.
Table II lists the distributions from which these are drawn.

The evaluation of an individual consists of four landings,
from initial altitudes h0 = 2, 4, 6, 8 m. The environment is
bounded in altitude and time: [0.05, h0 + 5] m and 30 s,
respectively. Individuals start out without initial velocity and
acceleration, and are left to settle for 0.5 s. Each landing has its
own, differently randomised environment, with parameters (as
in Table II) being redrawn at the start of each generation, such
that all individuals experience the same four environments.
Fitnesses are averaged across the four landings, with individu-
als that do not manage to land receiving extra punishment. It
might be argued that the averaging of fitnesses across different
altitudes leads to a biased f1 (time to land), however tests
indicated that scaling f1 with initial altitude did not improve
performance.

IV. EXPERIMENTS

A. Experimental Set-up

1) Simulation: Several cases are considered in simulation.
20-base is the baseline configuration given in Table III in
Appendix A. 20-sm adds a fourth evolutionary objective, f4, to
minimise the SNN’s total spike rate. 20-sm-pu and 20-sm-pc
additionally implement place cell encodings (only divergence),
in order to potentially show a successful interface between the
SNN in this work and the one in [27]. 1-sm and 0-sm are set up
to investigate the SNN’s redundancy regarding hidden neurons,
while 20-sm-wt and 20-sm-w try to quantify the effect fixing
addition/decay constants and thresholds has on performance,
respectively. Table IV in Appendix A gives the exact variations
for all non-default cases.

20-base, 20-sm and 1/0-sm are each initialised four times
(meaning four evolutions), after which the final hall-of-fame
individuals are combined for analysis. 20-sm-pu/pc, 20-sm-
wt and 20-sm-w are all initialised twice to save computational
expense. All initial synaptic weights are drawn from a uniform
distribution U(0, 1). Simulations are carried out in Python
3.6 on a laptop running Ubuntu 18.04 LTS, equipped with
an Intel i7-7700HQ quad-core CPU (eight virtual cores) and
16 GB of memory.

The framework used here for simulating SNNs is PySNN2,
which is written on top of the popular deep learning pack-
age PyTorch3 and allows both quick prototyping and effi-
cient execution through a modular approach of Neuron and
Connection objects.

2) Real World: The MAV used in this work is a Parrot
Bebop 2 running the Paparazzi autopilot software on its
780 MHz dual-core ARM Cortex A9 processor. Landings start
from an initial altitude of roughly 4 m. Horizontal guidance
and ground-truth measurements are provided by an OptiTrack4

motion capture system. Optical flow is estimated using the
Bebop’s downward-facing CMOS camera, with texture being
provided by a car play mat, as is shown in Fig. 1. Each
landing run starts off with 10 seconds of hover, in order to
reliably calibrate the nominal thrust needed for hover. Optical
flow is estimated at a rate of approximately 45 Hz, while
the custom vertical control loop implementing the divergence-
based landing runs at roughly 512 Hz. Measurements are
logged at approximately 100 Hz.

To run the SNN on board, a framework for building small
spiking networks has been developed in C. This framework,
called TinySNN, is based on the above-mentioned PySNN,
allowing an almost seamless transfer of networks from simu-
lation to the real-world hardware. Links to TinySNN and the
accompanying Paparazzi code can be found at the bottom of
the first page.

As discussed in [23], linearly transforming the thrust set-
point Tsp to rotor commands leads to poor tracking perform-
ance due to unmodelled drag and non-linear aerodynamic
effects due to a descent through the propeller downwash.
To solve this, a PI controller was used to convert the thrust
setpoint to motor commands, as was suggested by [45]. The
gains of this controller, together with other settings related to
real-world tests, can be found in Table VI in Appendix B.

B. Effect of Energy Minimisation on Control Resolution

While the concept of energy minimisation is appealing for
any type of controller, SNNs are particularly suited because
of their sparse, spiking nature. However, including minimal
spike rate as an objective during the evolutionary process may
have an influence on the control resolution of the resulting
individuals. For instance, a certain increase in desired thrust
may be achieved through several output neuron spikes that
each increase its postsynaptic trace somewhat (small αxi

), or
through a single, more effective spike (large αxi

). However,
the larger the αxi

, the smaller the general control resolution,
given that fewer intermediate values of postsynaptic trace
(and thus desired thrust) can be achieved. Therefore, it is
important to quantify the effect of spike minimisation on
control resolution.

Fig. 4 displays two Pareto fronts (based on median perform-
ance) of evolved individuals side by side: one optimised for
minimal spiking (20-sm), and one where this objective was

2https://github.com/BasBuller/PySNN
3https://pytorch.org/
4https://optitrack.com/

8

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Time to land [s]

Fi
na

l
ve

lo
ci

ty
[m

s−
1

]

0

100

200

300

Sp
ik

e
ra

te
[H

z]

(a) 20-base: not optimising for spike rate.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Time to land [s]

Fi
na

l
ve

lo
ci

ty
[m

s−
1

]

0

100

200

300

Sp
ik

e
ra

te
[H

z]

(b) 20-sm: optimising for minimal spike rate.

Figure 4. Sensitivity analysis Pareto front (based on median performance) of individuals in the final hall of fame for 20-base and 20-sm. Error bars indicate
the 25th and 75th percentile of performance over 250 evaluations in terms of time to land and final velocity from a starting height of 4 m. The radius of the
dots is proportional to the spike rate’s IQR, and the colour indicates the median. Selected individuals are indicated by a red circle. The dimension responsible
for final altitude (f2) of the controllers is not shown in this figure, as this was almost consistently minimised for all of them.

left out (20-base). The performance (and sensitivity) in terms
of time to land and final velocity is similar for both evolutions,
but the spike-optimised population achieves this performance
with much fewer spikes: the median total spike rate for 20-
base is 162.3 Hz, while that of 20-sm is 40.8 Hz.

Comparing Fig. 4a with the Pareto fronts of ANN control-
lers in [23], two differences immediately become apparent: 1)
the variance in performance of ANN-based individuals is much
smaller, especially for the slower-landing individuals (t > 6 s),
and 2) these slower-landing individuals take up a larger part of
the resulting controllers and have a much lower median final
velocity (v < 0.1 ms−1) in the case of evolving ANNs. Some
methods for promoting slower-landing individuals were tried
(e.g., an increased weighting factor for f3 or a spike decoding
based on a weighted vector of neuron activities), but to no
avail.

Testing two selected individuals from both evolutions in
simulation, we see in Fig. 5 that the flight profiles when
starting from a height of 4 m look roughly similar across
five runs in a randomised environment. Differences in terms
of variability in time to land and the final velocity can be
explained by the difference in sensitivity of the selected indi-
viduals. A more notable disparity is observed in the vertical
velocity profiles and the thrust setpoint Tsp, which are more
flattened and which have a smaller magnitude of oscillation,
respectively, for the spike-optimised individual. Though one
could think this is because of the decreased spiking of the
output neuron, this is not the case, as indicated by Fig. 6,
where we show both networks, their synaptic weights and the
average firing rate per neuron side by side. The exact firing
rates of both output neurons are 21.2 Hz and 19.6 Hz for
20-base and 20-sm, respectively.

It is immediately clear from Fig. 6 that only very few
neurons contribute to the actual actions of both individuals. In
fact, it seems to be that, for both networks, only a single path

from input to output layer causes all output neuron activity.
Fig. 17 in Appendix C confirms this, where the spike traces
of the responsible hidden neurons (i = 7 for 20-base and
i = 11 for 20-sm) are identical to those of the respective output
neurons, with both R2 = 1. And while there is still a lot of
‘redundant’ spiking going on in the individual from 20-base,
this has almost entirely been eliminated in the network belong-
ing to 20-sm, with all but a few hidden neurons completely
dormant, and a lot of inhibitory synaptic connections. It seems

0

2

4

h
[m

] base
sm

−2

0

v
[m

s−
1

]

−0.5

0

0.5

T
s
p

[g
]

−0.5

0

0.5

T
s
p

(l
p)

[g
]

0 1 2 3 4 5

−10

0

10

t [s]

D̂
[s
−
1

]

Figure 5. Height, velocity, thrust setpoint (raw and 20-step moving average)
and divergence for five simulated runs of selected individuals from 20-base
and 20-sm (see Fig. 4) in a randomised environment.

9

+D
+∆D
−D
−∆D

αxi
= 1.14

τxi
= 0.00

(a) 20-base: not optimising for spike rate.

0

10

20

30

Sp
ik

e
ra

te
[H

z]

+D
+∆D
−D
−∆D

αxi
= 1.27

τxi
= 0.17

(b) 20-sm: optimising for minimal spike rate.

Figure 6. Average firing rates (in Hz) and synaptic weights of selected individuals from 20-base and 20-sm for the five simulated runs displayed in Fig. 5.
Vertex colour is proportional to neuron firing rate, while synaptic weight is directly proportional to edge weight in points. Edge colours indicate inhibitory
(purple) or excitatory (yellow) synapses. Synaptic connections with a weight |wij | < 0.05 are not shown. The labels indicate the quantity encoded by each
input neuron.

reasonable to assume that further evolutionary optimisation
would eliminate also the remaining redundant spike activity.

Given that the spike traces of the output neurons for both
cases are also pretty similar, the observed difference in Tsp
must be the result of different addition and decay constants.
And indeed: while 20-sm’s output neuron has τxi

= 0.174, the
individual from 20-base has an output neuron with τxi = 0.0.
In combination with the neuron’s αxi > 1, this means that
Tsp is either −0.8 g or 0.5 g. In other words: the SNN from
20-base acts as a pure bang-bang controller (also called on-off
control [94]), while the controller from 20-sm allows for some
intermediate values of Tsp. Opposite to what was expected, it
seems therefore that energy minimisation has a positive effect
on control resolution.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

τxi [-]

Pr
ob

ab
ili

ty
de

ns
ity

[-
]

base
sm

Figure 7. Probability density histograms of the values of τxi of the output
neuron for all individuals on the Pareto front for 20-base and 20-sm (see
Fig. 4). The Mann-Whitney U test confirms, with a p-value of 3.15e−7, that
these histograms are drawn from different distributions. Medians for both
cases are 0.006 and 0.571, respectively.

To support this claim, Fig. 7 shows the probability density
histograms of the values of τxi of the output neuron for all
Pareto individuals from 20-base and 20-sm. The (statistic-
ally significant) absence of a large peak near zero for 20-
sm confirms that adding spike minimisation as an objective
contributes to smoother control, with fewer output neuron
decays equal (or very close) to zero.

0

2

4

h
[m

] base
sm

−2

0

v
[m

s−
1

]

−0.5

0

0.5

T
s
p

[g
]

−0.5

0

0.5

T
s
p

(l
p)

[g
]

0 1 2 3 4 5

−10

0

10

t [s]

D̂
[s
−
1

]

Figure 8. Height, velocity, thrust setpoint (raw and 20-step moving average)
and divergence for ten real-world flight tests of selected individuals from
20-base and 20-sm (see Fig. 4). Runs ended when h < 0.1 m (instead of the
h < 0.05 m in simulation) to account for the offset created by the MAV’s
landing legs at initialisation. The length of the t-axis is kept at 5 s for easier
comparison with Fig. 5.

10

Real-world flight tests of the selected individuals from 20-
base and 20-sm can be seen in Fig. 8. The latter spike-
minimised controller seems much more able to cross the reality
gap, with touchdowns almost as smooth as in simulation. The
20-base individual, on the other hand, quite often lands with
a final velocity in excess of 2 ms−1, something which was
not observed in simulation. It seems, therefore, that the bang-
bang control evolved in 20-base is ineffective in the real world,
while the slightly smoother control policy of 20-sm transfers
rather well. This observation is confirmed by [23], who argue
that quick alteration of completely spinning up and down
the rotors causes control to be dependent on motor dynamics
(spin-up and spin-down time τT). Given that these dynamics
are almost certainly different for simulation and real world,
bang-bang controllers will likely not transfer well. This might
also explain why both individuals in Fig. 8 perform much
faster landings in the real world (around 3 s) than in simulation
(around 5 s). The decreased oscillatory magnitude of the
bang-bang control by the 20-sm individual, however, allows
for sufficiently smooth control, while the larger magnitude
of the 20-base controller does not. Approaching the control
smoothness of the ANNs in [23] would most likely require a
different spike decoding, or a clamping on the output neuron’s
trace decay, to prevent near-complete decays. Section IV-D
will look into the effectiveness of the latter approach for
networks with fewer hidden neurons.

C. Towards End-to-End-Learnt Control

One of the aims of this paper is to demonstrate a successful
interface between the output layer of [27] and the landing
controller developed here, in order to advance towards fully
learnt, neuromorphic optical flow control. To this end, the
cases here consists of two types of place cell encodings
for divergence: one uniformly distributed (20-sm-pu), and

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Time to land [s]

Fi
na

l
ve

lo
ci

ty
[m

s−
1

]

sm
pu
pc

Figure 9. Pareto front (based on median performance over 250 evaluations)
of individuals in the final hall of fame for 20-sm and 20-sm-pu/pc. The
dot’s colour shade is proportional to the spike rate median: lighter means
a higher rate. As opposed to Fig. 4, the dot size is constant, meaning that no
sensitivity information can be inferred from this plot. Selected individuals are
indicated by a black circle. The dimension responsible for final altitude (f2)
of the controllers is not shown in this figure, as this was almost consistently
minimised for all of them.

one with cubically distributed centres (20-sm-pc). The output
layer of the SNN in [27] correlates the optical flow visual
observables (which include divergence) with the activity of
certain neurons. The sensitivity of these neurons is higher
for values close to zero, something which is also true for
the cubically distributed place cells of 20-sm-pc. Therefore,
we regard a demonstration of successful landings by SNN
controllers from this case as a proxy for a successful interface
with [27].

Fig. 9 shows the individuals on the median-performance
Pareto front for 20-sm and 20-sm-pu/pc. While the fronts
are mostly similar, there do seem to be more slow-landing
individuals with lower touchdown velocities for 20-sm-pu
and 20-sm-pc. This is most likely a coincidence, as there
is no direct connection between the encoding of divergence
and the smoothness of evolved control policy. Nonetheless, it
is interesting to further examine the characteristics of these
controllers.

Simulated runs of the three selected individuals from Fig. 9
are displayed in Fig. 10. From this, we can conclude that
a place cell encoding is suitable for the learning problem
presented here. It should therefore also be possible to achieve
successful landings using the divergence estimation network
from [27].

Examining the performed landings in Fig. 10 in more detail,
we see that the controllers from 20-sm-pu/pc take a bit longer
to land, but do so with a smoother touchdown and much
decreased oscillations in velocity. This is consistent with the
median performance of the individuals as stated in Fig. 9. Also
interesting are the plots of the desired thrust Tsp, which show

0

2

4

h
[m

]

sm pu pc

−2

0

v
[m

s−
1

]

−0.5

0

0.5

T
s
p

[g
]

−0.5

0

0.5

T
s
p

(l
p)

[g
]

0 2 4 6 8

−10

0

10

t [s]

D̂
[s
−
1

]

Figure 10. Height, velocity, thrust setpoint (raw and 20-step moving average)
and divergence for five simulated runs of selected individuals from 20-sm and
20-sm-pu/pc (see Fig. 9) in a randomised environment.

11

less bang-bang behaviour for both 20-sm-pu and 20-sm-pc.
As mentioned before, this is mainly the result of the decay
constant τxi

of the output neurons, which is 0.34 and 0.61
for 20-sm-pu and 20-sm-pc, respectively. Figs. 18a and 18b in
Appendix D also list these values and additionally show the
structure and activity of the SNNs. As was the case with the
networks in Fig. 6, there is a single path from input to output
that is responsible for most of the control. Looking at the labels
next to the input neurons, which indicate the centres (in s−1)
of the place cells encoding divergence, we see that both these
paths originate from place cells representing positive values of
divergence. In fact, the same is true for the networks in Fig. 6,
where the responsible paths start from the positive divergence
neuron.

Another way to look at the strategy of evolved controllers
is through visualisation of the transient and steady-state re-
sponses. Fig. 11 compares the transient response for 20-sm and
20-sm-pu/pc. The steady-state response, as well as an enlarged
version of the transient response, can be found in Fig. 19a
in Appendix E. Transient responses are made up of multiple
simulated landings for which divergence and desired thrust are
recorded, while the steady-state response is quantified by sub-
jecting the individuals to a constant observation (divergence
only for 20-sm-pu/pc) for a certain number of time steps. Both
the transient and steady-state response show a range of thrust
setpoints that seems to correspond with the range of actions in
Fig. 10. Also clearly visible are the number of different thrust
levels each controller can achieve: while the 20-sm controller
on the left only has three levels, the individuals from 20-sm-
pu/pc can choose from a greater number of setpoints, which
seems to be beneficial for control smoothness. Furthermore,
the range of possible Tsp’s is smaller for the latter individuals.
One could argue that this results in less responsive control,
however the performance in Fig. 10 suggests that values close
to the the thrust bounds are not necessary for smooth landing
control that is still sufficiently quick. Given that both the
greater number of possible setpoints, as well as the thrust
range, are likely to be the result of smaller addition constants
in combination with less decay, we will try to promote these
in the next section. A more detailed analysis of the transient
and steady-state response of the various controllers, as well as

−10 −5 0 5 10

−0.5

0

0.5

D [s−1]

T
s
p

[g
]

−10 −5 0 5 10

D [s−1]

−10 −5 0 5 10

D [s−1]

Figure 11. Transient responses of selected individuals from 20-sm (left),
20-sm-pu (middle) and 20-sm-pc (right) as given in Fig. 9. To obtain
these, observed divergence D and thrust setpoint Tsp were recorded during
100 simulated landings (blue dots) and subsequently sorted by increasing
divergence and passed through a 40-step moving average (red lines). An
enlarged version can be found in Fig. 19a in Appendix E.

a comparison with the often-used proportional controller [29]–
[32] will also be given there.

D. Promoting Smooth Control for a Single-Neuron SNN

One of the insightful outcomes of the energy-minimising
evolution presented previously is an indication of the minimum
amount of resources needed for solving the problem of landing
based on divergence. Given the large number of dormant
neurons and weak connections in the evolved SNNs of 20-
base and especially 20-sm, one would be inclined to think
networks with only a couple of hidden neurons would perform
just as well. Therefore, the networks in this section have
either a single hidden neuron (1-sm) or no hidden layer at
all (0-sm). Fig. 6 suggests that controllers with only one
hidden neuron should be able to land successfully, given
the large number of dormant neurons and weak connections
in both evolved SNNs. Evidently, this says little about the
feasibility of landing controllers without a hidden layer. Recent
research [95] implies, however, that single neurons may be
more capable than has thus far been assumed: by responding in
a damped manner to strong stimuli, certain kinds of neurons in
the human brain are able to solve the XOR problem, which was
previously thought to require multi-layer networks. Looking at
our available divergence encodings, it could be that these allow
a similar reduction in necessary network complexity.

In order to promote smooth control, the mutation of the
various addition and decay constants is clamped to a range
[0, 1] and [0.3, 1], respectively. In this way, complete decay
of voltage, trace and threshold is prevented, while the smaller
additions promote smoother traces and prevent uselessly large
contributions to neuron voltages (given that thresholds θi
are bound to [0, 1]). Table V in Appendix A lists these
adjustments.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Time to land [s]

Fi
na

l
ve

lo
ci

ty
[m

s−
1

]

20
1
0

Figure 12. Pareto front (based on median performance over 250 evaluations)
of individuals in the final hall of fame for 20-sm and 1/0-sm. The dot’s colour
shade is proportional to the spike rate median: lighter means a higher rate.
As opposed to Fig. 4, the dot size is constant, meaning that no sensitivity
information can be inferred from this plot. Selected individuals are indicated
by a black circle. The dimension responsible for final altitude (f2) of the
controllers is not shown in this figure, as this was almost consistently
minimised for all of them.

12

0

2

4
h

[m
] 20 1 0

−2

0

v
[m

s−
1

]

−0.5

0

0.5

T
s
p

[g
]

−0.5

0

0.5

T
s
p

(l
p)

[g
]

0 1 2 3 4 5 6

−10

0

10

t [s]

D̂
[s
−
1

]

Figure 13. Height, velocity, thrust setpoint (raw and 20-step moving average)
and divergence for five simulated runs of selected individuals from 20-sm and
1/0-sm (see Fig. 12) in a randomised environment.

Fig. 12 compares the median-performance Pareto front for
20-sm and 1/0-sm. It immediately becomes clear that the front
of 1-sm outperforms those of the other cases. Most likely, this
is the result of a combination of an increase in evolutionary
resources available per neuron and the prevention of inferior
parameter combinations by clamping addition and decay con-
stants. A quick comparison of 1-sm and 0-sm indicates that,
while Pareto individuals from 0-sm may be able to land
successfully, having a hidden layer (even though it consists
of only a single neuron) will lead to better performance.

Fig. 13 shows simulated landing runs of selected individuals
from 20-sm and 1/0-sm, with all having a roughly equal time-
to-land performance. The plots of vertical speed confirm that
1-sm performs better in terms of final velocity. Interesting,
however, is the way in which this performance is accom-
plished. As can be seen from the two graphs for thrust setpoint
Tsp, 1-sm is characterised by a very slow output neuron trace
decay and few output spikes. This leads to a desired thrust
that is slowly varying most of the time, but which can increase
suddenly through the emission of a spike, resulting in the small
‘hops’ in vertical speed during descent. As the ground nears,
the magnitude of these hops seems to decrease, leading to
superior low-altitude control compared to 20-sm and 0-sm.

Nevertheless, the landings performed by the single-neuron
controller (0-sm) also look promising. Like 3a, trace decay
is slower, which allows a larger number of thrust setpoints
to be selected. It remains to be seen, however, whether the
oscillations are slow enough to transfer well to the real world.

Figs. 18c and 18d in Appendix D give the exact values of
αxi

and τxi
, along with the synaptic weights and the firing

−10 −5 0 5 10

−0.5

0

0.5

D [s−1]

T
s
p

[g
]

−10 −5 0 5 10

D [s−1]

−10 −5 0 5 10

D [s−1]

Figure 14. Transient responses of selected individuals from 20-sm (left), 1-
sm (middle) and 0-sm (right) as given in Fig. 12. To obtain these, observed
divergence D and thrust setpoint Tsp were recorded during 100 simulated
landings (blue dots) and subsequently sorted by increasing divergence and
passed through a 40-step moving average (red lines). An enlarged version
can be found in Fig. 19b in Appendix E.

rate of the neurons during the runs in Fig. 13. Though the
network from 1-sm has seemingly meaningful connections to
both the +D and −D input neurons, we know from 20-
base, 20-sm and 20-sm-pu/pc that a connection to +D should
suffice. Nonetheless, it is possible that this pair of an excitatory
and inhibitory connection contributes to smooth control.

Fig. 14 compares the transient response of (from left ro
right) 20-sm, 1-sm and 0-sm. The response of 1-sm shows
a much larger number of possible thrust setpoints than any
other individual, due to its relatively small αxi

and τxi
close

to unity. The controller from 0-sm, on the other hand, only has
five levels, which have to cover the entire range [−0.8, 0.5] g.
It is therefore likely that 0-sm will not transfer as well to the
real world as 1-sm.

Examining the transient responses in Fig. 19 in Appendix E
more closely, we can see that those of 1-sm and 0-sm seem
to be more tightly grouped together, especially for D < 0.
This may be the result of having only a few spiking neurons,
which allows for less variance in the first place. Coupled to
this is the number of connections to neurons encoding negative
divergence: while these may be weak, they can influence the
output trace, and their contributions can be quite significant if
the currents coming from other encoding neurons are zero.

The steady-state response of the selected individuals from 1-
sm and 0-sm is also displayed in Fig. 19b in Appendix E. Like
20-sm, the response shows a gradient in the vertical direction
due to the availability of ∆D. The strength of this gradient
corresponds to the synaptic weights in Figs. 18c and 18d: 1-
sm only has weak/zero connections to neurons encoding ∆D,
while 0-sm has a stronger link to +∆D.

Apart from individual characteristics, Fig. 19 also tells us
something about the difficulty and nature of the problem of
divergence-based landing. Clearly, the transient responses of
the individuals all take some kind of sigmoid shape, though it
may be more of a half sigmoid for D ≥ 0, and a sloped line for
D < 0. In comparison, the response given by a proportional
divergence controller would be a straight line, with its slope
dependent on the controller’s gain. The steady-state plot of
such a controller would have an even gradient along D, of
course plateauing at the thrust bounds.

The problem and its solution are therefore certainly non-

13

0

2

4
h

[m
] 20 1 0

−2

0

v
[m

s−
1

]

−0.5

0

0.5

T
s
p

[g
]

−0.5

0

0.5

T
s
p

(l
p)

[g
]

0 1 2 3 4 5 6

−10

0

10

t [s]

D̂
[s
−
1

]

Figure 15. Height, velocity, thrust setpoint (raw and 20-step moving average)
and divergence for ten real-world flight tests of selected individuals from 20-
sm and 1/0-sm (see Fig. 12). Runs ended when h < 0.1 m (instead of the
h < 0.05 m in simulation) to account for the offset created by the MAV’s
landing legs at initialisation. The length of the t-axis is kept at 6 s for easier
comparison with Fig. 13.

linear, and not entirely trivial. Actually, as [23] points out,
the solution is quite complex if one wants to minimise the
oscillations that follow from optical flow control. On the other
hand, given that the transient solution has a sigmoid shape, a
functioning controller could also be made of a single ANN
neuron with a sigmoidal activation function. The beauty of
the SNN, however, is that it can approximate this function
through its inherent dynamics, which makes for an arguably
simpler solution.

Fig. 15 compares the real-world performance of 1-sm and
0-sm to that of the individual from 20-sm. All land more
or less equally fast, but 1-sm seems to touch down with
the least amount of residual velocity. As was predicted, its
slower control dynamics helped in a successful transfer from
simulation. Still, real-world landings take about half a second
less (before decelerating close to the ground) than the landings
in simulation, so there obviously still is some discrepancy.

E. Evolving Parameter Subsets and Optimality

Apart from a redundancy in neurons, the large number
of hyperparameters in SNNs could mean that some of these
are also (partially) redundant, in the sense that the effect of
changing these parameters can also be achieved by changing
one or more other parameters. This would mean that we could
fix at least some of the hyperparameters and optimise the
others through evolution, while achieving equally good results.
20-sm-wt and 20-sm-w are set up to look into this, by offsetting
addition and decay constants (α’s and τ ’s) from the evolved

0 100 200 300 400
0.8

0.85

0.9

0.95

Generations [-]

N
or

m
al

is
ed

hy
pe

rv
ol

um
e

[-
]

all
wij + θi

wij

Figure 16. Normalised hypervolumes during the evolution of 20-sm, 20-sm-wt
and 20-sm-w. Note that 20-sm is initialised four times, while the subcases of
20-sm-wt and 20-sm-w are each initialised twice. Solid lines indicate the mean
over these initialisations, while the coloured fills give the standard deviation.

values of the selected individual from 20-sm, and seeing how
well the evolution of weights and thresholds (20-sm-wt) or
weights only (20-sm-w) can compensate for these offsets.

One way of quantifying how well an optimisation algorithm
does its job is tracking how much of the total hypervolume
of the 3D/4D fitness space it is able to ‘consume’. As
evolution continues, the Pareto front consisting of the best
individuals should leave less and less room for optimisation.
Fig. 16 presents the normalised hypervolume occupied by
the optimisation. We distinguish three categories: optimising
all hyperparameters and weights (20-sm, four initialisations),
optimising weights and thresholds (20-sm-wt, three different
settings with each two initialisations), and optimising weights
only (20-sm-w, three different settings with each two initial-
isations).

First of all, it seems that most runs would have benefitted
from more generations, as the slope of the plots indicates
that progress has not halted yet. Second, we see the largest
occupied hypervolume for the runs that involve the evolution
of all hyperparameters and weights. On the other hand, there
does not seem to be a significant difference in optimisation
between evolving weights and thresholds or weights only.
While this might seem strange at first, note that only the
threshold of the non-adaptive output neuron is mutated, as
Section III already mentioned. Apparently, the influence of
the exact output neuron threshold is therefore minor.

The findings presented by Fig. 16 suggest that it might be
a good idea for SNN learning frameworks to consider more
than just the synaptic weights. By including hyperparameters
such as thresholds and addition and decay constants during
learning, it is likely that better results are obtained. Though
it might not always be possible to integrate the tuning of
these hyperparameters directly in the rule, it should certainly
be preferred to modify them using an evolutionary algorithm,
instead of optimising them by hand.

14

V. CONCLUSION

In this paper, we have demonstrated that evolved neur-
omorphic controllers are capable of real-world, continuous
control in the form of landing MAVs based on divergence.
While still making use of a conventional optical flow estima-
tion method here, we have shown the feasibility of an interface
between this work and that of [27], therefore arguing that our
controller can be extended to an end-to-end-learnt, event-based
spiking controller.

Furthermore, by minimising the amount of spikes during
evolution, we have provided insight into the resources re-
quired for successfully solving the problem of divergence-
based landing. As it turned out, SNNs with hidden layers of a
single neuron or no hidden layer at all were also able to land
smoothly, all the while doing so at a fraction of the energy
(spikes) required. A study of the hyperparameters of the best-
performing controllers allowed the promotion of smooth and
transferable control policies through limitation of the mutation
range of trace, threshold and voltage decay.

Finally, we have looked at evolving only a subset of the
SNN’s available hyperparameters. The outcome of this sugges-
ted that, as opposed to popular practice, better results can be
obtained by including all hyperparameters in the optimisation
process, instead of tuning these by hand or not tuning at all.

Future work should focus on achieving the previously
described end-to-end-learnt pipeline, as well as incorporating
energy minimisation into the popular NEAT framework. Ex-
pansion to other manoeuvres, vehicles and real-world environ-
ments should determine whether learning demonstrated here
generalises well.

REFERENCES

[1] G. C. H. E. de Croon, K. M. E. de Clercq, R. Ruijsink,
B. Remes, and C. de Wagter, “Design, Aerodynamics, and Vision-
Based Control of the DelFly,” International Journal of Micro Air
Vehicles, vol. 1, no. 2, pp. 71–97, Jun. 2009. [Online]. Available:
https://doi.org/10.1260/175682909789498288

[2] M. Karásek, F. T. Muijres, C. D. Wagter, B. D. W. Remes, and
G. C. H. E. de Croon, “A tailless aerial robotic flapper reveals
that flies use torque coupling in rapid banked turns,” Science,
vol. 361, no. 6407, pp. 1089–1094, Sep. 2018. [Online]. Available:
http://science.sciencemag.org/content/361/6407/1089

[3] K. Y. Ma, P. Chirarattananon, S. B. Fuller, and R. J. Wood,
“Controlled Flight of a Biologically Inspired, Insect-Scale Robot,”
Science, vol. 340, no. 6132, pp. 603–607, May 2013. [Online].
Available: https://science.sciencemag.org/content/340/6132/603

[4] J. J. Gibson, The Perception of the Visual World. Boston: Houghton
Mifflin Company, 1950.

[5] E. Baird, N. Boeddeker, M. R. Ibbotson, and M. V. Srinivasan, “A
universal strategy for visually guided landing,” Proceedings of the
National Academy of Sciences, vol. 110, no. 46, pp. 18 686–18 691, Nov.
2013. [Online]. Available: https://www.pnas.org/content/110/46/18686

[6] C. Posch, T. Serrano-Gotarredona, B. Linares-Barranco, and T. Del-
bruck, “Retinomorphic Event-Based Vision Sensors: Bioinspired Cam-
eras With Spiking Output,” Proceedings of the IEEE, vol. 102, no. 10,
pp. 1470–1484, Oct. 2014.

[7] G. Gallego, T. Delbruck, G. Orchard, C. Bartolozzi, B. Taba,
A. Censi, S. Leutenegger, A. Davison, J. Conradt, K. Daniilidis, and
D. Scaramuzza, “Event-based Vision: A Survey,” arXiv:1904.08405
[cs], Apr. 2019, arXiv: 1904.08405. [Online]. Available: http:
//arxiv.org/abs/1904.08405

[8] W. Maass, “Networks of spiking neurons: The third generation of neural
network models,” Neural Networks, vol. 10, no. 9, pp. 1659–1671,
Dec. 1997. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0893608097000117

[9] G. Orchard and R. Etienne-Cummings, “Bioinspired Visual Motion
Estimation,” Proceedings of the IEEE, vol. 102, no. 10, pp. 1520–1536,
Oct. 2014.

[10] K. Roy, A. Jaiswal, and P. Panda, “Towards spike-based machine
intelligence with neuromorphic computing,” Nature, vol. 575, no. 7784,
pp. 607–617, Nov. 2019. [Online]. Available: https://www.nature.com/
articles/s41586-019-1677-2

[11] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and
A. Maida, “Deep learning in spiking neural networks,” Neural
Networks, vol. 111, pp. 47–63, Mar. 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608018303332

[12] M. Bouvier, A. Valentian, T. Mesquida, F. Rummens, M. Reyboz,
E. Vianello, and E. Beigne, “Spiking Neural Networks Hardware
Implementations and Challenges: A Survey,” J. Emerg. Technol.
Comput. Syst., vol. 15, no. 2, pp. 22:1–22:35, Apr. 2019. [Online].
Available: http://doi.acm.org/10.1145/3304103

[13] M. Pfeiffer and T. Pfeil, “Deep Learning With Spiking Neurons:
Opportunities and Challenges,” Frontiers in Neuroscience, vol. 12, Oct.
2018. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC6209684/

[14] N. Caporale and Y. Dan, “Spike Timing–Dependent Plasticity: A
Hebbian Learning Rule,” Annual Review of Neuroscience, vol. 31,
no. 1, pp. 25–46, 2008. [Online]. Available: https://doi.org/10.1146/
annurev.neuro.31.060407.125639

[15] S. M. Bohte, J. N. Kok, and H. La Poutré, “Error-backpropagation
in temporally encoded networks of spiking neurons,” Neurocomputing,
vol. 48, no. 1, pp. 17–37, Oct. 2002. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0925231201006580

[16] S. B. Shrestha and G. Orchard, “SLAYER: Spike Layer Error
Reassignment in Time,” in Advances in Neural Information Processing
Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, Eds. Curran Associates, Inc.,
2018, pp. 1412–1421. [Online]. Available: http://papers.nips.cc/paper/
7415-slayer-spike-layer-error-reassignment-in-time.pdf

[17] R. V. Florian, “Reinforcement Learning Through Modulation of
Spike-Timing-Dependent Synaptic Plasticity,” Neural Computation,
vol. 19, no. 6, pp. 1468–1502, Apr. 2007. [Online]. Available:
https://doi.org/10.1162/neco.2007.19.6.1468

[18] E. Vasilaki, N. Frémaux, R. Urbanczik, W. Senn, and W. Gerstner,
“Spike-Based Reinforcement Learning in Continuous State and
Action Space: When Policy Gradient Methods Fail,” PLOS
Computational Biology, vol. 5, no. 12, p. e1000586, Dec. 2009.
[Online]. Available: https://journals.plos.org/ploscompbiol/article?id=
10.1371/journal.pcbi.1000586

[19] N. Frémaux, H. Sprekeler, and W. Gerstner, “Reinforcement Learning
Using a Continuous Time Actor-Critic Framework with Spiking
Neurons,” PLOS Computational Biology, vol. 9, no. 4, p. e1003024,
Apr. 2013. [Online]. Available: https://journals.plos.org/ploscompbiol/
article?id=10.1371/journal.pcbi.1003024

[20] T. S. Clawson, S. Ferrari, S. B. Fuller, and R. J. Wood, “Spiking neural
network (SNN) control of a flapping insect-scale robot,” in 2016 IEEE
55th Conference on Decision and Control (CDC), Dec. 2016, pp. 3381–
3388.

[21] Z. Bing, C. Meschede, G. Chen, A. Knoll, and K. Huang, “Indirect
and direct training of spiking neural networks for end-to-end control
of a lane-keeping vehicle,” Neural Networks, vol. 121, pp. 21–36, Jan.
2020. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0893608019301595

[22] F. Zhao, Y. Zeng, and B. Xu, “A Brain-Inspired Decision-Making
Spiking Neural Network and Its Application in Unmanned Aerial
Vehicle,” Frontiers in Neurorobotics, vol. 12, 2018. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fnbot.2018.00056/full

[23] K. Y. W. Scheper and G. C. H. E. de Croon, “Evolution of
robust high speed optical-flow-based landing for autonomous MAVs,”
Robotics and Autonomous Systems, vol. 124, p. 103380, Feb.
2020. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0921889019302404

[24] D. Floreano, P. Dürr, and C. Mattiussi, “Neuroevolution: from
architectures to learning,” Evolutionary Intelligence, vol. 1, no. 1,

15

pp. 47–62, Mar. 2008. [Online]. Available: https://doi.org/10.1007/
s12065-007-0002-4

[25] T. Bäck, D. B. Fogel, and Z. Michalewicz, Handbook of Evolutionary
Computation. CRC Press, Jan. 1997. [Online]. Available: https:
//www.taylorfrancis.com/books/9780367802486

[26] D. B. Fogel, “The Advantages of Evolutionary Computation,” in
Biocomputing and Emergent Computation: Proceedings of BCEC97.
World Scientific Press, 1997, pp. 1–11. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=648178.749054

[27] F. Paredes-Vallés, K. Y. W. Scheper, and G. C. H. E. de Croon,
“Unsupervised Learning of a Hierarchical Spiking Neural Network for
Optical Flow Estimation: From Events to Global Motion Perception,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.
1–1, 2019.

[28] J. R. Serres and F. Ruffier, “Optic flow-based collision-free strategies:
From insects to robots,” Arthropod Structure & Development,
vol. 46, no. 5, pp. 703–717, Sep. 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S146780391730066X

[29] B. Herissé, T. Hamel, R. Mahony, and F. Russotto, “Landing a VTOL
Unmanned Aerial Vehicle on a Moving Platform Using Optical Flow,”
IEEE Transactions on Robotics, vol. 28, no. 1, pp. 77–89, Feb. 2012.

[30] G. C. H. E. de Croon, “Monocular distance estimation with
optical flow maneuvers and efference copies: a stability-based
strategy,” Bioinspiration & Biomimetics, vol. 11, no. 1, p. 016004,
Jan. 2016. [Online]. Available: https://doi.org/10.1088%2F1748-3190%
2F11%2F1%2F016004

[31] H. W. Ho, G. C. H. E. de Croon, E. van Kampen, Q. P. Chu, and
M. Mulder, “Adaptive Gain Control Strategy for Constant Optical Flow
Divergence Landing,” IEEE Transactions on Robotics, vol. 34, no. 2,
pp. 508–516, Apr. 2018.

[32] B. J. Pijnacker Hordijk, K. Y. W. Scheper, and G. C. H. E. de Croon,
“Vertical landing for micro air vehicles using event-based optical flow,”
Journal of Field Robotics, vol. 35, no. 1, pp. 69–90, 2018. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21764

[33] H. W. Ho and G. C. H. E. de Croon, “Characterization of Flow Field
Divergence for MAVs Vertical Control Landing,” in AIAA Guidance,
Navigation, and Control Conference. San Diego, California, USA:
American Institute of Aeronautics and Astronautics, Jan. 2016. [Online].
Available: http://arc.aiaa.org/doi/10.2514/6.2016-0106

[34] F. Galluppi, C. Denk, M. C. Meiner, T. C. Stewart, L. A. Plana, C. Eli-
asmith, S. Furber, and J. Conradt, “Event-based neural computing on an
autonomous mobile platform,” in 2014 IEEE International Conference
on Robotics and Automation (ICRA), May 2014, pp. 2862–2867, iSSN:
1050-4729.

[35] M. B. Milde, H. Blum, A. Dietmüller, D. Sumislawska, J. Conradt,
G. Indiveri, and Y. Sandamirskaya, “Obstacle Avoidance and Target
Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital
Neuromorphic Processing System,” Frontiers in Neurorobotics, vol. 11,
2017. [Online]. Available: https://www.frontiersin.org/articles/10.3389/
fnbot.2017.00028/full

[36] H. Blum, A. Dietmüller, M. Milde, J. Conradt, G. Indiveri,
and Y. Sandamirskaya, “A neuromorphic controller for a robotic
vehicle equipped with a dynamic vision sensor,” in Robotics
Science and Systems, RSS 2017. Berlin, Germany: Proceedings of
Robotics: Science and Systems 2017, Jul. 2017. [Online]. Available:
http://www.roboticsproceedings.org/rss13/p35.pdf

[37] J. Kaiser, J. C. V. Tieck, C. Hubschneider, P. Wolf, M. Weber, M. Hoff,
A. Friedrich, K. Wojtasik, A. Roennau, R. Kohlhaas, R. Dillmann,
and J. M. Zöllner, “Towards a framework for end-to-end control of
a simulated vehicle with spiking neural networks,” in 2016 IEEE
International Conference on Simulation, Modeling, and Programming
for Autonomous Robots (SIMPAR), Dec. 2016, pp. 127–134, iSSN: null.

[38] Z. Bing, C. Meschede, F. Röhrbein, K. Huang, and A. C.
Knoll, “A Survey of Robotics Control Based on Learning-Inspired
Spiking Neural Networks,” Frontiers in Neurorobotics, vol. 12, 2018.
[Online]. Available: https://www.frontiersin.org/articles/10.3389/fnbot.
2018.00035/full

[39] K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, “Designing
neural networks through neuroevolution,” Nature Machine Intelligence,
vol. 1, no. 1, pp. 24–35, Jan. 2019. [Online]. Available: https:
//www.nature.com/articles/s42256-018-0006-z

[40] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and
J. Clune, “Deep Neuroevolution: Genetic Algorithms Are a Competitive
Alternative for Training Deep Neural Networks for Reinforcement

Learning,” arXiv:1712.06567 [cs], Apr. 2018, arXiv: 1712.06567.
[Online]. Available: http://arxiv.org/abs/1712.06567

[41] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Donahue,
A. Razavi, O. Vinyals, T. Green, I. Dunning, K. Simonyan, C. Fernando,
and K. Kavukcuoglu, “Population Based Training of Neural Networks,”
arXiv:1711.09846 [cs], Nov. 2017, arXiv: 1711.09846. [Online].
Available: http://arxiv.org/abs/1711.09846

[42] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution
Strategies as a Scalable Alternative to Reinforcement Learning,”
arXiv:1703.03864 [cs, stat], Sep. 2017, arXiv: 1703.03864. [Online].
Available: http://arxiv.org/abs/1703.03864

[43] M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris, G. Lever, A. G.
Castañeda, C. Beattie, N. C. Rabinowitz, A. S. Morcos, A. Ruderman,
N. Sonnerat, T. Green, L. Deason, J. Z. Leibo, D. Silver, D. Hassabis,
K. Kavukcuoglu, and T. Graepel, “Human-level performance in 3D
multiplayer games with population-based reinforcement learning,”
Science, vol. 364, no. 6443, pp. 859–865, May 2019. [Online].
Available: https://science.sciencemag.org/content/364/6443/859

[44] P. Szczawinski, M. Duarte, S. Oliveira, and A. L. Christensen, “Toward
Evolved Vision-based Control for a Quadrocopter,” in Proceedings of
the 9th Conference on Telecommunications, 2013, pp. 153–156.

[45] K. Y. W. Scheper and G. C. H. E. de Croon, “Abstraction, Sensory-
Motor Coordination, and the Reality Gap in Evolutionary Robotics,”
Artificial Life, vol. 23, no. 2, pp. 124–141, May 2017. [Online].
Available: https://doi.org/10.1162/ARTL_a_00227

[46] D. Floreano, J.-C. Zufferey, and J.-D. Nicoud, “From Wheels
to Wings with Evolutionary Spiking Circuits,” Artificial Life,
vol. 11, no. 1-2, pp. 121–138, Jan. 2005. [Online]. Available:
https://doi.org/10.1162/1064546053278900

[47] R. Batllori, C. B. Laramee, W. Land, and J. D. Schaffer, “Evolving
spiking neural networks for robot control,” Procedia Computer
Science, vol. 6, pp. 329–334, Jan. 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050911005254

[48] N. Takase, J. Botzheim, and N. Kubota, “Evolving spiking neural
network for robot locomotion generation,” in 2015 IEEE Congress on
Evolutionary Computation (CEC), May 2015, pp. 558–565, iSSN: 1941-
0026.

[49] J. Pérez, J. A. Cabrera, J. J. Castillo, and J. M. Velasco, “Bio-
inspired spiking neural network for nonlinear systems control,” Neural
Networks, vol. 104, pp. 15–25, Aug. 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608018301229

[50] A. Vandesompele, F. Walter, and F. Röhrbein, “Neuro-evolution of
spiking neural networks on SpiNNaker neuromorphic hardware,” in 2016
IEEE Symposium Series on Computational Intelligence (SSCI), Dec.
2016, pp. 1–6.

[51] H. Qiu, M. Garratt, D. Howard, and S. Anavatti, “Evolving Spiking
Neural Networks for Nonlinear Control Problems,” in 2018 IEEE
Symposium Series on Computational Intelligence (SSCI), Nov. 2018,
pp. 1367–1373.

[52] K. O. Stanley and R. Miikkulainen, “Evolving Neural Networks
through Augmenting Topologies,” Evolutionary Computation, vol. 10,
no. 2, pp. 99–127, Jun. 2002. [Online]. Available: https://doi.org/10.
1162/106365602320169811

[53] L. Salt, D. Howard, G. Indiveri, and Y. Sandamirskaya, “Parameter Op-
timization and Learning in a Spiking Neural Network for UAV Obstacle
Avoidance Targeting Neuromorphic Processors,” IEEE Transactions on
Neural Networks and Learning Systems, pp. 1–14, 2019.

[54] R. V. Florian, “Spiking Neural Controllers for Pushing Objects Around,”
in From Animals to Animats 9, ser. Lecture Notes in Computer Science,
S. Nolfi, G. Baldassarre, R. Calabretta, J. C. T. Hallam, D. Marocco, J.-
A. Meyer, O. Miglino, and D. Parisi, Eds. Berlin, Heidelberg: Springer,
2006, pp. 570–581.

[55] A. Soltoggio, P. Durr, C. Mattiussi, and D. Floreano, “Evolving neur-
omodulatory topologies for reinforcement learning-like problems,” in
2007 IEEE Congress on Evolutionary Computation, Sep. 2007, pp.
2471–2478, iSSN: 1941-0026.

[56] S. Nolfi and D. Floreano, Evolutionary Robotics: The Biology, Intelli-
gence, and Technology of Self-Organizing Machines. Scituate, MA,
USA: Bradford Company, 2004.

[57] J. C. Bongard, “Evolutionary Robotics,” Communications of the ACM,
vol. 56, no. 8, pp. 74–83, Aug. 2013.

[58] F. Silva, M. Duarte, L. Correia, S. M. Oliveira, and A. L. Christensen,
“Open Issues in Evolutionary Robotics,” Evolutionary Computation,

16

vol. 24, no. 2, pp. 205–236, Nov. 2015. [Online]. Available:
https://doi.org/10.1162/EVCO_a_00172

[59] S. Nolfi, J. Bongard, P. Husbands, and D. Floreano, “Evolutionary
Robotics,” in Springer Handbook of Robotics, ser. Springer Handbooks,
B. Siciliano and O. Khatib, Eds. Cham: Springer International
Publishing, 2016, pp. 2035–2068. [Online]. Available: https://doi.org/
10.1007/978-3-319-32552-1_76

[60] N. Jakobi, P. Husbands, and I. Harvey, “Noise and the reality gap: The
use of simulation in evolutionary robotics,” in Advances in Artificial
Life, ser. Lecture Notes in Computer Science, F. Morán, A. Moreno,
J. J. Merelo, and P. Chacón, Eds. Berlin, Heidelberg: Springer, 1995,
pp. 704–720.

[61] N. Jakobi, “Half-baked, Ad-hoc and Noisy: Minimal Simulations for
Evolutionary Robotics,” in Fourth European Conference on Artificial
Life. MIT Press, 1997, pp. 348–357.

[62] K. Y. W. Scheper, “Abstraction as a Tool to Bridge
the Reality Gap in Evolutionary Robotics,” 2019. [On-
line]. Available: https://repository.tudelft.nl/islandora/object/uuid%
3A389f453e-f7ff-4fea-a353-32755cf9a9e1

[63] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from sim-
ulation to the real world,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Sep. 2017, pp. 23–30, iSSN:
2153-0866.

[64] A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun, and
D. Scaramuzza, “Deep Drone Racing: From Simulation to Reality with
Domain Randomization,” arXiv:1905.09727 [cs], May 2019, arXiv:
1905.09727. [Online]. Available: http://arxiv.org/abs/1905.09727

[65] J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil,
T. To, E. Cameracci, S. Boochoon, and S. Birchfield, “Training
Deep Networks With Synthetic Data: Bridging the Reality Gap
by Domain Randomization,” 2018, pp. 969–977. [Online]. Avail-
able: http://openaccess.thecvf.com/content_cvpr_2018_workshops/w14/
html/Tremblay_Training_Deep_Networks_CVPR_2018_paper.html

[66] G. C. H. E. de Croon, H. W. Ho, C. De Wagter, E. van
Kampen, B. Remes, and Q. P. Chu, “Optic-Flow Based Slope
Estimation for Autonomous Landing,” International Journal of Micro
Air Vehicles, vol. 5, no. 4, pp. 287–297, Dec. 2013. [Online]. Available:
https://doi.org/10.1260/1756-8293.5.4.287

[67] H. C. Longuet-Higgins and K. Prazdny, “The interpretation of a
moving retinal image,” Proceedings of the Royal Society of London.
Series B. Biological Sciences, vol. 208, no. 1173, pp. 385–397, Jul.
1980. [Online]. Available: https://royalsocietypublishing.org/doi/abs/10.
1098/rspb.1980.0057

[68] F. Paredes-Vallés, “Neuromorphic Computing of Event-Based Data for
High-Speed Vision-Based Navigation,” Master’s thesis, Delft University
of Technology, Delft, The Netherlands, 2018. [Online]. Available:
http://resolver.tudelft.nl/uuid:aa13959b-79b9-4dfc-b5e0-7c501d9d3e2f

[69] E. Rosten and T. Drummond, “Machine Learning for High-Speed Corner
Detection,” in Computer Vision – ECCV 2006, ser. Lecture Notes
in Computer Science, A. Leonardis, H. Bischof, and A. Pinz, Eds.
Springer Berlin Heidelberg, 2006, pp. 430–443.

[70] B. D. Lucas and T. Kanade, “An Iterative Image Registration Technique
with an Application to Stereo Vision,” in Proceedings of the 7th
International Joint Conference on Artificial Intelligence, ser. IJCAI’81,
vol. 2. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1981, pp. 674–679, event-place: Vancouver, BC, Canada. [Online].
Available: http://dl.acm.org/citation.cfm?id=1623264.1623280

[71] J.-Y. Bouguet, “Pyramidal Implementation of the Affine Lucas Kanade
Feature Tracker,” 2000. [Online]. Available: http://robots.stanford.edu/
cs223b04/algo_tracking.pdf

[72] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu,
“Conversion of Continuous-Valued Deep Networks to Efficient Event-
Driven Networks for Image Classification,” Frontiers in Neuroscience,
vol. 11, Dec. 2017. [Online]. Available: https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC5770641/

[73] D. Zambrano and S. M. Bohte, “Fast and Efficient Asynchronous
Neural Computation with Adapting Spiking Neural Networks,”
arXiv:1609.02053 [cs], Sep. 2016, arXiv: 1609.02053. [Online].
Available: http://arxiv.org/abs/1609.02053

[74] S. J. Thorpe, A. Delorme, and R. Van Rullen, “Spike-based strategies
for rapid processing,” Neural Networks, vol. 14, no. 6, pp. 715–725,
Jul. 2001. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0893608001000831

[75] A. L. Hodgkin and A. F. Huxley, “A quantitative description of
membrane current and its application to conduction and excitation
in nerve,” The Journal of Physiology, vol. 117, no. 4, pp. 500–544,
1952. [Online]. Available: https://physoc.onlinelibrary.wiley.com/doi/
abs/10.1113/jphysiol.1952.sp004764

[76] R. B. Stein, “A Theoretical Analysis of Neuronal Variability,” Biophys-
ical Journal, vol. 5, no. 2, pp. 173–194, Mar. 1965. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0006349565867091

[77] W. M. Kistler, W. Gerstner, and J. L. v. Hemmen, “Reduction of
the Hodgkin-Huxley Equations to a Single-Variable Threshold Model,”
Neural Computation, vol. 9, no. 5, pp. 1015–1045, Jul. 1997. [Online].
Available: https://doi.org/10.1162/neco.1997.9.5.1015

[78] G. Haessig, X. Berthelon, S.-H. Ieng, and R. Benosman, “A
Spiking Neural Network Model of Depth from Defocus for Event-
based Neuromorphic Vision,” Scientific Reports, vol. 9, no. 1, p.
3744, Mar. 2019. [Online]. Available: https://www.nature.com/articles/
s41598-019-40064-0

[79] K. Stewart, E. Neftci, G. Orchard, and S. B. Shrestha, “On-chip Few-
shot Learning with Surrogate Gradient Descent on a Neuromorphic
Processor,” arXiv:1910.04972 [cs], Oct. 2019, arXiv: 1910.04972.
[Online]. Available: http://arxiv.org/abs/1910.04972

[80] P. U. Diehl, D. Neil, J. Binas, M. Cook, S. Liu, and M. Pfeiffer, “Fast-
classifying, high-accuracy spiking deep networks through weight and
threshold balancing,” in 2015 International Joint Conference on Neural
Networks (IJCNN), Jul. 2015, pp. 1–8.

[81] A. Borst and M. Helmstaedter, “Common circuit design in fly
and mammalian motion vision,” Nature Neuroscience, vol. 18,
no. 8, pp. 1067–1076, Aug. 2015. [Online]. Available: https:
//www.nature.com/articles/nn.4050

[82] J. O’Keefe and J. Dostrovsky, “The hippocampus as a spatial map:
Preliminary evidence from unit activity in the freely-moving rat,” Brain
Research, vol. 34, pp. 171–175, 1971.

[83] Y. Jin, R. Wen, and B. Sendhoff, “Evolutionary Multi-objective Op-
timization of Spiking Neural Networks,” in Artificial Neural Networks –
ICANN 2007, ser. Lecture Notes in Computer Science, J. M. de Sá, L. A.
Alexandre, W. Duch, and D. Mandic, Eds. Springer Berlin Heidelberg,
2007, pp. 370–379.

[84] N. G. Pavlidis, O. K. Tasoulis, V. P. Plagianakos, G. Nikiforidis, and
M. N. Vrahatis, “Spiking neural network training using evolutionary
algorithms,” in Proceedings. 2005 IEEE International Joint Conference
on Neural Networks, 2005., vol. 4, Jul. 2005, pp. 2190–2194 vol. 4.

[85] A. Belatreche, L. P. Maguire, M. Mcginnity, and Q. X. Wu,
“Evolutionary design of spiking neural networks,” New Mathematics
and Natural Computation, vol. 02, no. 03, pp. 237–253, Nov. 2006.
[Online]. Available: https://www.worldscientific.com/doi/abs/10.1142/
S179300570600049X

[86] G. López-Vázquez, M. Ornelas-Rodriguez, A. Espinal, J. A. Soria-
Alcaraz, A. Rojas-Domínguez, H. J. Puga-Soberanes, J. M. Carpio,
and H. Rostro-Gonzalez, “Evolutionary Spiking Neural Networks for
Solving Supervised Classification Problems,” 2019. [Online]. Available:
https://www.hindawi.com/journals/cin/2019/4182639/abs/

[87] X. Yao, “Evolving artificial neural networks,” Proceedings of the IEEE,
vol. 87, no. 9, pp. 1423–1447, Sep. 1999.

[88] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, Apr. 2002.

[89] C. Igel, N. Hansen, and S. Roth, “Covariance Matrix Adaptation
for Multi-objective Optimization,” Evolutionary Computation, vol. 15,
no. 1, pp. 1–28, Mar. 2007. [Online]. Available: https://doi.org/10.1162/
evco.2007.15.1.1

[90] Q. Zhang and H. Li, “MOEA/D: A Multiobjective Evolutionary Al-
gorithm Based on Decomposition,” IEEE Transactions on Evolutionary
Computation, vol. 11, no. 6, pp. 712–731, Dec. 2007.

[91] H. Li and Q. Zhang, “Multiobjective Optimization Problems With
Complicated Pareto Sets, MOEA/D and NSGA-II,” IEEE Transactions
on Evolutionary Computation, vol. 13, no. 2, pp. 284–302, Apr. 2009.

[92] F.-A. Fortin, F.-M. D. Rainville, M.-A. Gardner, M. Parizeau, and
C. Gagné, “DEAP: Evolutionary Algorithms Made Easy,” Journal of
Machine Learning Research, vol. 13, no. Jul, pp. 2171–2175, 2012.
[Online]. Available: http://www.jmlr.org/papers/v13/fortin12a.html

[93] D. Neil, M. Pfeiffer, and S.-C. Liu, “Learning to be efficient:
algorithms for training low-latency, low-compute deep spiking neural
networks,” in Proceedings of the 31st Annual ACM Symposium
on Applied Computing, ser. SAC ’16. Pisa, Italy: Association for

17

Computing Machinery, Apr. 2016, pp. 293–298. [Online]. Available:
https://doi.org/10.1145/2851613.2851724

[94] I. Flügge-Lotz, Discontinuous Automatic Control. Princeton University
Press, 1953, google-Books-ID: aSzWCgAAQBAJ.

[95] A. Gidon, T. A. Zolnik, P. Fidzinski, F. Bolduan, A. Papoutsi,
P. Poirazi, M. Holtkamp, I. Vida, and M. E. Larkum, “Dendritic
action potentials and computation in human layer 2/3 cortical neurons,”
Science, vol. 367, no. 6473, pp. 83–87, Jan. 2020. [Online]. Available:
https://science.sciencemag.org/content/367/6473/83

18

APPENDIX A
CASE CONFIGURATIONS

Table III lists the baseline configuration, denoted by 20-
base used during the simulations. SNN hyperparameters that
are listed as genes are mutated during evolution, with the given
values as initial values. If parameters differ per layer, they are
stated separately. As mentioned before, θi is only mutated for
non-adaptive LIF neurons, i.e., the output layer.

Table III
BASELINE CONFIGURATION (20-BASE)

Parameter Value

Ngen 400

µ 100

λ 100

Pmut 0.3

Objectives f1, f2, f3

Genes wij , αui , αθi , αxi , τui , τθi , τxi , θi

g 9.81 ms−2

h0 [2, 4, 6, 8] m

Environment bounds [0.05, h0 + 5] m, 30 s

Hidden layer 20 neurons

Neuron type (hidden, output) Adaptive LIF, LIF

θi 0.2

αui 0.2

αθi 0.2

αxi 1.0

τui 0.8

τθi 0.8

τxi 0.8

Encoding Neuron pairs for D̂ and ∆D̂

η 1.0

Output bounds [−0.8, 0.5] g

Table IV states the variations per case with respect to the
baseline configuration. 20-sm looks at the effect of minim-
ising spiking, while 20-sm-pu and 20-sm-pc study the use of
place cell encodings for divergence (uniformly and cubically
distributed centres, respectively). 1-sm and 0-sm investigate
redundancy in terms of hidden neurons, and try to quantify the
effect of limiting the mutation of addition and decay constants
to a smaller range. The adjusted distributions from which these
parameters are sampled can be found in Table V. 20-sm-wt
and 20-sm-w consist of multiple subcases that test the effect
of changes in non-mutated hyperparameters. The values of
these parameters in 20-sm-wt-eq and 20-sm-w-eq are taken
from an evolved baseline individual (see Fig. 4). 20-sm-wt-l/h
and 20-sm-w-l/h then vary these parameters to see whether
the changes can be compensated by mutating weights and
thresholds or weights only, respectively. For 20-sm-wt-l and
20-sm-w-l, αvi of the output neuron was decreased by only

0.03 to prevent a ‘dead’ neuron. Additionally, θi of the output
neuron was decreased by only 0.02 for 20-sm-w-l to prevent
a continuously spiking neuron.

Table IV
CONFIGURATION VARIATIONS PER CASE

Case Parameter Value

20-sm Objectives f1, f2, f3, f4

20-sm-pu,
20-sm-pc

Objectives f1, f2, f3, f4

Encoding Place cells for D̂

Observation bounds [−10, 10] s−1

Place cell centres 11

Place cell spacing uniform, cubic

Place cell width 2 s−1

1-sm,
0-sm

Objectives f1, f2, f3, f4

Hidden layer 1, 0 neuron(s)

20-sm-wt-l,
20-sm-wt-eq,
20-sm-wt-h

Objectives f1, f2, f3, f4

Genes wij , θi

αui , αθi , αxi −0.3, =, +0.3

τui , τθi , τxi −0.2, =, +0.2

20-sm-w-l,
20-sm-w-eq,
20-sm-w-h

Objectives f1, f2, f3, f4

Genes wij

θi output −0.02, =, +0.2

αui , αθi , αxi −0.3, =, +0.3

τui , τθi , τxi −0.2, =, +0.2

Table V
SAMPLING DISTRIBUTIONS OF MUTATED PARAMETERS FOR 1/0-SM

Parameter Distribution

αui , αθi , αxi U(α− 1/3, α+ 1/3), clamped to [0, 1]

τui , τθi , τxi U(τ − 1/3, τ + 1/3), clamped to [0.3, 1]

19

APPENDIX B
FLIGHT TEST CONFIGURATION

Table VI gives the configuration used for the real-world
flight tests of selected individuals from 20-base, 20-sm and
1/0-sm. The lower altitude bound is increased by 0.05 m com-
pared to the simulations to account for the offset created by the
MAV’s landing legs at initialisation. Thrust effectiveness scales
the output command of the PI controller to motor commands.

Table VI
FLIGHT TEST CONFIGURATION

Parameter Value

h0 4 m

Altitude bounds [0.1,→) m

Controller gains (P, I) 0.7, 0.3

Thrust effectiveness 0.05

ND 100 pairs

20

APPENDIX C
20-BASE AND 20-SM: NEURON SPIKE TRACES

Fig. 17 displays the spike activity of each (active) neuron in the networks from 20-base and 20-sm during the five simulated
runs given in Fig. 5. Each line is the result of a 20-step moving average over a neuron’s emitted spikes. The red graphs indicate
the activity of a ‘responsible’ neuron in the hidden layer and the output neuron, which correlate with R2 = 1. Despite the
spike minimisation taking place for 20-sm, there still are some neurons whose firing contributes little to nothing. It is believed
that this can be eliminated through further optimisation.

0 1 2 3 4 5

i = 20

i = 17

i = 15

i = 14

i = 13

i = 12

i = 11

i = 9

i = 8

i = 7

i = 6

i = 5

i = 1

i = 0

t [s]

(a) 20-base: not optimising for spike rate.

0 1 2 3 4 5

i = 20

i = 19

i = 18

i = 17

i = 12

i = 11

i = 7

i = 3

t [s]

(b) 20-sm: optimising for minimal spike rate.

Figure 17. Spike trace (moving average over 20 steps) of active neurons in the hidden layer and output layer of selected individuals from 20-base and 20-sm
for the five simulated runs displayed in Fig. 5. Neurons are counted downwards from the top of the hidden layer, with neuron i = 20 indicating the output
neuron (see Fig. 6). Red traces correspond to the responsible hidden neuron and the output neuron that correlate with R2 = 1.

21

APPENDIX D
20-SM-PU/PC AND 1/0-SM: NETWORKS

Fig. 18 gives the network structure and activity of selected individuals from 20-sm-pu/pc and 1/0-sm for the five simulated
runs displayed in Figs. 10 and 13, respectively. The labels next to the input neurons indicate the thing they encode: a specific
value of divergence in the case of 20-sm-pu and 20-sm-pc, and positive/negative (derivative of) divergence for 1-sm and 0-sm.
The given values of αxi and τxi represent the addition and decay constants of the spike trace of each output neuron (following
Eq. (12)).

−10
−8
−6
−4
−2
0
2
4
6
8
10

αxi
= 1.76

τxi
= 0.34

(a) 20-sm-pu: uniformly distributed place cell encoding.

0

10

20

30

Sp
ik

e
ra

te
[H

z]

−10.0
−5.12
−2.16
−0.64
−0.08
0.0
0.08
0.64
2.16
5.12
10.0

αxi
= 0.94

τxi
= 0.61

(b) 20-sm-pc: cubically distributed place cell encoding.

+D
+∆D
−D
−∆D

αxi
= 0.82

τxi
= 0.88

(c) 1-sm: a single hidden neuron.

0

10

20

30

Sp
ik

e
ra

te
[H

z]

+D
+∆D
−D
−∆D

αxi
= 0.92

τxi
= 0.37

(d) 0-sm: no hidden neuron.

Figure 18. Average firing rates (in Hz) and synaptic weights of selected individuals from 20-sm-pu/pc and 1/0-sm for the five simulated runs displayed in
Figs. 10 and 13, respectively. Vertex colour is proportional to neuron firing rate, while synaptic weight is directly proportional to edge weight in points. Edge
colours indicate inhibitory (purple) or excitatory (yellow) synapses. Synaptic connections with a weight |wij | < 0.05 are not shown. The labels indicate the
centres (in terms of divergence) of each place cell (20-sm-pu/pc), or the quantity encoded by each neuron (1/0-sm).

22

APPENDIX E
20-SM, 20-SM-PU/PC AND 1/0-SM: RESPONSES

Fig. 19 visualises the transient response (red lines, blue dots) and steady state response (surface plots) of selected individuals
from 20-sm, 20-sm-pu/pc and 1/0-sm.

−0.5

0

0.5

T
s
p

[g
]

−10 0 10
−20

0

20

D [s−1]

∆
D

[s
−
2

]

−10 0 10

D [s−1]

−10 0 10

D [s−1]

−0.5

0

0.5

T
s
p

[g
]

(a) 20-sm (left), 20-sm-pu (middle) and 20-sm-pc (right).

−0.5

0

0.5

T
s
p

[g
]

−10 0 10
−20

0

20

D [s−1]

∆
D

[s
−
2

]

−10 0 10

D [s−1]

−0.5

0

0.5

T
s
p

[g
]

(b) 1-sm (left) and 0-sm (right).

Figure 19. Steady-state and transient response of selected individuals from 20-sm, 20-sm-pu/pc and 1/0-sm as given in Figs. 9 and 12. Steady-state response
is obtained by subjecting the SNNs to 100 time steps of the same observation and subsequently averaging the last 50 steps. The transient response is made
up of 100 simulated landings during which observed divergence D and thrust setpoint Tsp are recorded (blue dots), which are then sorted by increasing
divergence and passed through a 40-step moving average (red lines).

23

II
Literature Study

31

2
Optical Flow Control of MAVs

When the eye moves relative to the visible environment, a moving pattern of light hits the retina.
The resulting distribution of apparent velocities of these patterns is called optical flow, and it supplies
crucial information about the ego-motion of the observer, but also about the 3D structure of the visual
scene (Gibson, 1950). For instance, a high-motion patch surrounded by a low-motion region would
indicate a nearby obstacle, and an expanding flow with the point of expansion in front would result
from forward motion (Borst, Haag & Reiff, 2010). Replacing the eye with an artificial vision sensor,
the concept remains the same, except the information about ego-motion could now be used for the
control of MAVs when other information such as the global positioning system (GPS) is unavailable
or too inaccurate. This chapter serves as an introduction to optical flow modelling and its application
for control of MAVs. Section 2.1 presents the mathematical foundations of optical flow modelling, and
introduces various methods for estimating optical flow with conventional cameras. Next, Section 2.2
lists some biologically-inspired applications of optical flow techniques with the goal of navigating some
environment.

2.1 Optical flow modelling and estimation

This work uses the formulation by Longuet-Higgins and Prazdny (1980) to describe the mathematical
model of optical flow. This description is based on the pinhole camera model for perspective projection,
which assumes that 1) the camera aperture (opening that controls the amount of light entering the
camera) can be characterised as a pinhole (point), and 2) the retina can be seen as a plane (the so-called
image plane). These assumptions greatly simplify the equations for perspective projection, but note that
they are invalid for cameras with a wide field-of-view, which need more advanced models (Scaramuzza
& Fraundorfer, 2011).

2.1.1 The pinhole camera model

Figure 2.1 presents the optical flow formulation by Longuet-Higgins and Prazdny (1980). World point
A, which has coordinates (X, Y, Z)⊤ in the observer’s reference frame OXY Z, is projected onto the
focal/image plane (x, y)⊤ as point a. The origin O defines the location of the aperture of the visual
sensor, and the Z-axis is the optical axis or line-of-sight. The intersection o between this optical axis
and the image plane is called the principal point, and it is exactly one focal length f away from the
aperture O, such that o = (0, 0, f)⊤ = (0, 0, 1)⊤ (where we have taken f = 1 for convenience).

Consider a monocular observer (such as a camera) moving through a static environment. In this
arbitrary ego-motion, the observer’s reference frame is subject to translational velocities (U, V, W) and
rotational velocities (p, q, r) along and around its axes, respectively. The velocity components of A
relative to the frame of the moving observer are then as follows:

33

34 Optical Flow Control of MAVs

Z

X

Y

O

W

U

V

a
y

x
o

A

q

r

p

Figure 2.1: Pinhole camera model. Adapted from Longuet-Higgins and Prazdny (1980).

Ẋ = −U − qZ + rY

Ẏ = −V − rX + pZ

Ż = −W − pY + qX

(2.1)

Obviously, the velocities of A are opposite to those of the observer, hence the minuses. The retinal
position of A, a, can be derived from Figure 2.1 as (x, y)⊤ = (X/Z, Y/Z)⊤. The ego-motion of the
observer causes this point to move across the image plane (retina) with velocity (u, v)⊤ = (ẋ, ẏ)⊤.
Subsequently, u and v can be computed from the time derivative of x and y respectively, expressed in
terms of the velocity components of A:

u = Ẋ/Z −XŻ/Z2 = (−U/Z − q + ry)− x (−W/Z − py + qx)
v = Ẏ /Z − Y Ż/Z2 = (−V/Z − rx + p)− y (−W/Z − py + qx)

(2.2)

Or, written in another form:

u = uT + uR v = vT + vR (2.3)
uT = (−U + xW) /Z vT = (−V + yW) /Z (2.4)
uR = −q + ry + pxy − qx2 vR = −rx + p + py2 − qxy (2.5)

Which implies that the optical flow of a point on the image plane can be split up into a translational
and a rotational component.

2.1.2 Derivation of visual observables

With the optical flow of a point on the image plane now related to the ego-motion of an observer in a
static environment, the next step is to determine this ego-motion and the structure of the environment.
The assumption of a static environment implies that the observer’s ego-motion states (p, q, r, U, V, W)

2.1 Optical flow modelling and estimation 35

are equal for all world points, while depth Z varies for each of those points. Hence, by combining multiple
world points, we could solve for depths and ego-motion. Because this is a complex and expensive
computation, it is as of now irrelevant for high-speed visual navigation where on-board hardware is
limited. Instead, summarising quantities regarding the observer’s motion can be extracted by making
use of a set of simplifying assumptions. These so-called visual observables are described and derived in
the remainder of this section.

Derotation

If the observer has access, through other sensors, to its rotational rates (p, q, r), the rotational compon-
ents of the optical flow can be corrected for. This process is called derotation, and the regular availability
of rotational rate sensors (e.g., gyroscopes as part of the inertial measurement unit (IMU)) in MAVs
means that it is common practice in applications like vision-based navigation (e.g., de Croon et al.,
2013; Herissé, Hamel, Mahony & Russotto, 2012; Ho & de Croon, 2016; Ho, de Croon, van Kampen,
Chu & Mulder, 2018; Izzo & de Croon, 2012; Pijnacker Hordijk, Scheper & de Croon, 2018).

Longuet-Higgins and Prazdny (1980) show that we can characterise the observer’s ego-motion when
the motion is either purely translational, or when the rotational component is small compared to the
translational component (such as after derotation). To this end, the intersection of the observer’s line
of motion with the image plane is defined as:

x0 = U/W y0 = V/W (2.6)

Assuming derotated flow and substituting Equation (2.6) into Equation (2.4), we may write the optical
flow components as:

u = (x− x0) W/Z v = (y − y0) W/Z (2.7)

From which follows that:

u/v = (y − y0) / (x− x0) (2.8)

Looking at Equation (2.8), we can see that the point (x0, y0)⊤ on the image plane acts as a vanishing
point of the optical flow field, having a null flow irrespective of the corresponding world point’s depth.
Because of the increasing magnitude of the flow vectors further away from this point, it is often referred
to as the focus of expansion (FoE) in case of +W , or focus of contraction (FoC) otherwise. The
location of this point on the image plane gives the observer a sense of motion direction. Furthermore,
Equation (2.7) implies that the relative depth Z/W of all world points can be estimated with knowledge
of the FoE’s location. In case we have knowledge of the absolute depth of the FoE, we can compute
the observer’s time-to-contact (TTC) τ = Z/W , which provides a measure of how fast the observer is
approaching the FoE.

Planar flow

If, in addition to the assumption of a static scene, we consider it to be planar, the optical flow equations
can be simplified even further. The derivation by de Croon et al. (2013), which is in turn based on
the work by Longuet-Higgins and Prazdny (1980), results in expressions for the velocity components
of this planar flow field in terms of the plane’s slopes and the observer’s normalised velocities. Let h
define the distance to the planar surface along the observer’s optical axis, and (α, β) the plane’s slopes
along the X and Y -axis of the observer, respectively. Along with the observer’s depth-scaled velocities,
u0 = U/h, v0 = V/h and w0 = W/h, the planar flow field’s velocity components can be defined as:

u = −u0 + (αu0 + w0) x + βu0y − αw0x2 − βw0xy

v = −v0 + αv0x + (βv0 + w0) y − βw0y2 − αw0xy
(2.9)

36 Optical Flow Control of MAVs

Which reduces to the following for negligible slopes of the planar surface (i.e., in case the surface is
perpendicular to the optical axis):

u = −u0 + w0x

v = −v0 + w0y
(2.10)

As is apparent from these equations, the normalised velocities (u0, v0, w0) are essential visual cues in
the perception of motion. Also known as visual observables, these cues are used for visual navigation
and for the derivation of other observables, such as the already introduced TTC. Recalling the definition
of TTC, we see that τ = Z/W = 1/w0. Next, following the mathematical definition of divergence:

∇ · (x, y) = ∂u

∂x
(x, y) + ∂v

∂y
(x, y) (2.11)

Which, together with Equation (2.10), leads to the definition of optical flow divergence D as:

D = 2w0 = 2
τ

(2.12)

Finally, the remaining visual observables u0 and v0 are the opposites of the ventral flows of the planar
surface along its X and Y -axis, respectively: ωx = −u0 and ωy = −v0.

2.1.3 Estimation methods

As noted in the introduction to this chapter, optical flow is defined as the distribution of velocities of
moving patterns of light hitting the eye’s retina or a camera’s sensor. In order to detect these velo-
cities, brightness has to be measured at certain spatio-temporal intervals. In this section, we consider
frame-based cameras that measure brightness periodically at all locations in their field-of-view.

The estimation of optical flow, according to Horn and Schunck (1981), is based on the so-called brightness
constancy constraint, which assumes that the brightness of a local region in the image plane remains
approximately constant under motion over short periods of time:

∇I · u + It = 0 (2.13)
where I (x, y, t) denotes the image intensity function, ∇I = (Ix, Iy)⊤ and It its first-order derivatives,
and u = (u, v)⊤ the velocity of the image. As shown by Beauchemin and Barron (1995), this constraint
leads to the aperture problem defined by Ullman (1979), which implies that only the motion component
in the direction of the local image gradient may be estimated. This, in turn, may lead to ambiguities in
the perceived flow if the gradient is not aligned with the direction of motion. Only at image locations
with sufficient gradient structure, such as corners, can the flow be fully estimated. Figure 2.2 illustrates
this phenomenon.

The various methods of optical flow estimation deal with the aperture problem in different ways. The
remainder of this section will discuss the major classes to which these methods belong, following the
distinction made by Beauchemin and Barron (1995). See Baker et al. (2011) for an extensive benchmark
of many of these methods.

Gradient-based

Gradient-based estimation methods make use of the derivatives of the image intensity function (Ix, Iy, It)
together with the brightness constancy constraint. The resulting aperture problem can be solved with a
local approach, which uses a corner detector such as Harris or FAST (Harris & Stephens, 1988; Rosten
& Drummond, 2006) to determine locations for which optical flow can be estimated reliably, or with a
global approach, where dense optical flow is computed for the entire image and some other additional
constraint, such as a smoothness constraint (e.g., Horn & Schunck, 1981), is imposed. The well-known
local estimation method proposed by Lucas and Kanade (1981) is, despite its age, still the most-used
approach for real-time optical flow estimation. Not surprisingly, its simplicity also makes it a very com-
mon choice for MAV-related applications (e.g., de Croon, 2016; de Croon et al., 2013; Ho & de Croon,
2016; Ho et al., 2018).

2.2 Bio-inspired navigation with optical flow 37

B

C

A

Figure 2.2: The aperture problem: a corner (aperture B) allows optical flow to be fully estimated, while edges
(apertures A and C) only get you normal flows.

Correlation-based

As opposed to using sparse image features such as corners, correlation-based methods try to fit spatial
shifts (dx, dy) such that the motion of contiguous image regions is best described. This approach has
the advantage that, even in situations where good features are sparse, flow can be estimated. Camus
(1997) found a way to decrease the rate of growth of the matching search space from quadratic to linear
by searching in the time dimension instead of the spatial dimensions, which allowed for a real-time
implementation. Kendoul, Fantoni and Nonami (2009) demonstrate that a similar improvement can
be achieved through predicting pixel displacements with IMU data available on an MAV, allowing for
vision-based navigation.

Frequency-based

Frequency-based methods employ velocity-tuned filters to estimate optical flow. By using orientation-
sensitive filters in the Fourier domain, the motion of patterns seemingly random in the time domain may
be extracted more readily from the frequency domain. Examples of frequency-based methods are the
works by Adelson and Bergen (1985), Fleet and Jepson (1990). However, to the author’s best knowledge,
no frequency-based methods have been used in MAV-related applications due to their computational
complexity.

2.2 Bio-inspired navigation with optical flow
Several authors have derived mathematical models from biological experiments that link the previously
identified visual observables to vision-based manoeuvres performed by insects (e.g., Baird et al., 2013;
Chahl, Srinivasan & Zhang, 2004; Srinivasan, Zhang, Lehrer & Collett, 1996). The remainder of this
section introduces various navigation strategies implemented successfully in MAVs. In doing this, we
follow the distinction made by Serres and Ruffier (2017) between navigation in the horizontal and
vertical plane, and between the use of ventral flows, divergence and TTC for the latter.

2.2.1 Controlling flight speed and lateral position in corridors

Honeybees visually control their flight speed by means of optical flow (Baird, Srinivasan, Zhang &
Cowling, 2005; Srinivasan et al., 1996). As they fly through a tapered tunnel, they decelerate when the
tunnel narrows, and accelerate when it widens, in such a way that the bilateral optical flow (sum of the
flows caused by the walls) stays constant. Keshavan, Gremillion, Escobar-Alvarez and Humbert (2014)

38 Optical Flow Control of MAVs

demonstrated this behaviour on a quadrotor MAV flying through various types of corridors.

In addition to this, bees have been observed to balance optical flows from the left and right part of
their field-of-view, in order to control their lateral position in corridors. Known as the optical flow
balance hypothesis (Srinivasan, Lehrer, Kirchner & Zhang, 1991), this way of navigating corridors has
been implemented on a quadcopter MAV equipped with a 360-degree camera (Conroy, Gremillion,
Ranganathan & Humbert, 2009) or a ring of optical flow sensors (Keshavan et al., 2014).

2.2.2 Terrain following and landing

Ventral flow

Honeybees were observed by Srinivasan et al. (1996) to perform grazing landings during which they
keep the ventral flow, i.e., the velocity of the ground plane on the retina, constant. Chahl et al. (2004)
have shown that results in a linear relation between forward and descent velocity, which causes the
height above the surface to change over time as follows:

h (t) = h (t0) exp (−cωx (t− t0)) (2.14)

While Chahl et al. (2004) implemented this solution using a fixed-wing MAV equipped with a down-
wards frame-based camera, Expert and Ruffier (2015), Ruffier and Franceschini (2005, 2015) employed
a tethered rotorcraft MAV equipped with a neuromimetic EMD (see Section 3.1) to complete a variety
of landing scenarios, including dealing with vertically oscillating and uneven terrain and landing on a
moving platform.

However, as can be inferred from Equation (2.14), the ventral flow ωx has to be nonzero to allow height
control, which means that control of vertical dynamics and forward motion are coupled. MAVs that
can control these two independently, such as quadcopters, cannot employ these strategies for hover and
vertical landings, which are their main advantages over fixed-wing MAVs. To this end, the remainder
of this section will deal with the visual observables that do allow this uncoupled vertical control.

Divergence

Baird et al. (2013) looked at the strategies used by honeybees when landing on vertical surfaces, and
discovered that they keep divergence constant when approaching these surfaces. Recalling the definition
of divergence, D = 2w0 = 2/τ , we can see that this strategy can indeed be used without any horizontal
motion. Note, however, that a true constant-divergence landing will never lead to actually reaching the
surface (h→ 0 would make D →∞), and some kind of landing procedure will have to be triggered in
order to land.

Herissé et al. (2012) made a quadcopter MAV land on a moving platform using the constant-divergence
strategy. Optical flow was estimated with a downward-looking, frame-based camera and the Lucas-
Kanade algorithm (Lucas & Kanade, 1981). Meanwhile, de Croon (2016), Ho and de Croon (2016), Ho et
al. (2018), Pijnacker Hordijk et al. (2018) look at the vertical oscillations that arise from using divergence
for vertical control of MAVs. For a certain fixed control gain, performing a constant-divergence landing
will lead to self-induced oscillations at a certain height above the surface. Thus by detecting these
oscillations, the height above the surface can be inferred, and the control gain can be tuned during
descent in order to ensure a smooth landing.

Time-to-contact

While the case of constant divergence is equivalent to keeping TTC τ constant, landing can also be
achieved by constantly decreasing TTC. This strategy is actually applied by many animals, as has been
demonstrated by Lee (1976), Lee, Davies, Green and van der Weel (1993): pigeons keep the rate-of-
change of TTC, τ̇ , constant during landing, and human drivers do the same when performing braking
manoeuvres. This strategy results in a slightly different landing trajectory than the one described by

2.2 Bio-inspired navigation with optical flow 39

Equation (2.14) for constant divergence. Setting k as the desired −τ̇ , the height above the surface
evolves as follows (Izzo & de Croon, 2012):

h (t) = h (t0)
(

k
t

τ (t0)
+ 1

)1/k

(2.15)

Alkowatly, Becerra and Holderbaum (2014) used this relation to perform vertical landings using a
quadrotor MAV equipped with a downwards frame-based camera. Furthermore, Armendariz, Becerra
and Bausch (2019) performed vertical landings on moving platforms using a constantly decreasing TTC
for vertical control. However, their experiments were only carried out in simulation.

3
Event-Based Vision Sensors & Optical

Flow
So far, the discussed optical flow estimation methods and applications mainly involved conventional
frame-based cameras. Therefore, this chapter will introduce event-based vision sensors and optical flow
estimation methods. Section 3.1 will deal with the former, while Section 3.2 will discuss the latter,
along with some applications. For a comprehensive overview of the entire field of event-based vision,
refer to Gallego et al. (2019).

3.1 Event-based vision sensors
Conventional cameras operate in a frame-based manner: by periodically measuring brightness at all
pixel locations, the world is perceived as a sequence of static images. Because the rate at which these
frames are acquired is independent of the actual motion perceived, we will end up with a lot of re-
dundant information in regions where motion is small, while we would prefer a higher frame rate in
fast-changing regions.

Event-based vision sensors deal with these problems by reacting asynchronously to brightness changes
and registering them as events, where asynchronous refers to the fact that these the time periods
between consecutive events can be different across the field-of-view. The output of these sensors is then
essentially a stream of events encoding image intensity variations at a particular time and location in
the pixel array. This event-based manner of operation has actually been inspired by biological vision
systems, which operate analogously by quantifying changes in the visual scene’s brightness through
spiking neurons in the retina (Posch et al., 2014).

Prior to understanding how event-based vision sensors work, we should have a look at arguably the
simplest way of modelling the biological retina: the EMD. Conceived by Hassenstein and Reichardt
(1956), these sensors work by multiplying input signals from two neighbouring photoreceptors after one
of the incoming signals has been delayed by a low-pass filter. By performing this operation symmet-
rically and subtracting the outputs of both, a direction selectivity is achieved. A different model was
proposed by Franceschini, Riehle and Le Nestour (1989), which prevents interactions between signals
of opposite sign, so no cancellation can happen. This model has actually proven to be quite efficient at
estimating optical flow with decent accuracy (Ruffier & Franceschini, 2005, 2015). See Figure 3.1 for a
visual comparison of both models, and refer to the work by Eichner, Joesch, Schnell, Reiff and Borst
(2011) for a more in-depth comparison.

Whereas a single EMD only has two photoreceptor cells, and can thus only quantify motion in a single
direction, event-based vision sensors are comprised of much more of these photoreceptors, allowing, in
principle, for a much more detailed motion estimate. The remainder of this section will further discuss
the working principle of the event-based vision sensors, and compare some of their variants.

41

42 Event-Based Vision Sensors & Optical Flow

Σ

Σ Σ
+ +

+ − + −

(a) Franceschini detector model.

Σ

LP LP

M M
+ −

(b) Reichardt detector model.

Figure 3.1: Schematic overview of the EMD models covered by Eichner, Joesch, Schnell, Reiff and Borst (2011).
Each having two photoreceptor cells on top, the signal goes through various low-pass filters (squares) and

multiplications (circles) before it is summed to provide a notion of motion.

3.1.1 Working principle

The working principle of event-based vision sensors will be discussed on the basis of the Dynamic Vision
Sensor (DVS), developed by iniVation1 and described in the works by Lichtsteiner, Posch and Delbruck
(2008), Posch et al. (2014).

Each DVS pixel produces a continuous-time spatio-temporal representation of the visual dynamics in its
field-of-view by detecting relative changes in brightness. This is achieved through photoreceptors, which
generate a voltage proportional to the logarithm of the perceived brightness. Whenever the brightness
change in a pixel exceeds a predefined threshold C, a signed asynchronous event is generated, as is
illustrated by the following equation:

|∆ log (I (x, y, t)) | > CON/OFF (3.1)

Depending on whether the relative brightness change, with the reference set to the brightness level at
the last event, is positive or negative, the polarity of the generated event is ON (+1) or OFF (−1),
respectively. Figure 3.2 shows how brightness changes over time lead to generated events. Following
the address-event representation (AER) protocol (see, e.g., Lichtsteiner et al., 2008; Posch et al., 2014),
each event consists of its location on the pixel array (x, y)⊤, its time stamp t, and its polarity P .

Apart from its asynchronous pixel readout, the DVS has several other advantages over conventional
frame-based cameras. The nature of the photoreceptors acting as pixels means that brightness changes
can be quantified at a very high temporal resolution (1 µs) and with a very low latency (12 µs). Also,
the sparse activity of these pixels greatly reduces power consumption to an average of 23 mW, much
less than comparable frame-based cameras (Lichtsteiner et al., 2008).

3.1.2 Variants and comparison

However, the DVS obviously also comes with its limitations. For instance, it lacks knowledge of absolute
brightness levels, and its pixel array, at 128 × 128, is rather limited. To deal with this, several other
event-based vision sensors have been developed in previous years. Following the overview by Posch
et al. (2014):
1https://inivation.com/

https://inivation.com/

3.2 Event-based optical flow 43

• Asynchronous Time-based Image Sensor (ATIS): Described by Posch, Matolin and Wohlgenannt
(2011), ATIS has a larger pixel array of 304× 240 and the ability to measure absolute brightness,
which allows for capturing conventional images with very high dynamic range.

• Dynamic and Active-pixel Vision Sensor (DAVIS): Combines an improved version of the DVS with
a frame-based camera, which would be compatible with conventional computer-vision techniques,
but also reintroduces the problem of data redundancy (Brandli, Berner, Yang, Liu & Delbruck,
2014; Posch et al., 2014).

• (Miniature) Embedded DVS (eDVS and meDVS): The eDVS and the miniature meDVS version
were developed to allow use in cases where weight constraints are tight. As opposed to the 120-
gram DVS, the 16-gram eDVS and 2.2-gram meDVS (Conradt, 2015) would be ideal for event-
based navigation of lightweight MAVs, such as the DelFly (e.g., de Croon et al., 2009; Karásek
et al., 2018).

Time t

Vo
lta

ge
V

Vp

Reference

Time t

Po
lar

ity
P

ON OFF
Reset Vdiff

Figure 3.2: Working principle of a DVS pixel. If voltage Vp of a pixel changes more than a predefined threshold C
relative to the previous reference, an event is generated, with its polarity dependent on the direction of the voltage

change. Adapted from Lichtsteiner, Posch and Delbruck (2008).

3.2 Event-based optical flow
Analogous to frame-based cameras, the event-based cameras described in the previous section can be
used to perceive ego-motion through optical flow. However, where frame-based approaches compare
brightness levels in subsequent frames, the events registered by event-based cameras already include
information on local brightness changes. The remainder of this section will introduce event-based
optical flow estimation methods that can benefit from this, as well as some of their applications. The
comparison of the various algorithms follows in part from the overview and benchmark by Rueckauer
and Delbruck (2016).

3.2.1 Estimation methods

Event-based Lucas Kanade

Recall from Section 2.1.3 that gradient-based methods, such as the Lucas-Kanade algorithm (Lucas &
Kanade, 1981), use the spatio-temporal derivatives of the image intensity function (Ix, Iy, It) together
with the brightness constancy constraint (Horn & Schunck, 1981) for optical flow estimation. Benos-
man, Ieng, Clercq, Bartolozzi and Srinivasan (2012) accommodated this approach for event-based use

44 Event-Based Vision Sensors & Optical Flow

by computing the derivatives with a backward finite difference method, due to the fact that absolute
brightness levels are absent.

A slightly different approach was taken in the more recent work by Brosch, Tschechne and Neumann
(2015). Here, it is shown that the approach by Benosman et al. (2012) mixes first- and second-order
derivatives due to the fact that generated events already represent the temporal derivative It. By rewrit-
ing the brightness constancy constraint in terms of the second-order partial derivatives (Itx, Ity, Itt),
and employing a central difference scheme for the spatial derivatives, a more consistent estimation of
optical flow could be obtained.

However, after experiments carried out by Brosch et al. (2015), Rueckauer and Delbruck (2016), it
seems that gradient-based approaches in general suffer severely from the fact that events generated in a
single location are sparse. They conclude that these approaches are not suited for use with event-based
cameras.

Spatio-temporal plane fitting

An alternative to the event-based Lucas-Kanade algorithm was proposed by Benosman, Clercq, Lagorce,
Ieng and Bartolozzi (2014). Considering that a sequence of registered events makes up a 3D point cloud
in spatio-temporal space, a surface could be fitted to any number of these points, the gradient of which
can be used to compute optical flow. Thus, by fitting a plane to an incoming event’s neighbours, its
optical flow components can be estimated. Benosman et al. (2014) performs this fit using linear least-
squares, and only considering events of equal polarity. Assuming constant local velocity makes the flow
estimation robust against noise and compensates for absent events in the neighbourhood.

Experiments by Benosman et al. (2014) demonstrated decent accuracy when estimating optical flow.
However, Brosch et al. (2015), Rueckauer and Delbruck (2016) argue that this approach can lead
to inaccuracies for moving horizontal or vertical edges, because the threshold used to deal with the
vanishing x- or y-gradient that is present in this case results in an angular quantisation. The adaptation
proposed by Rueckauer and Delbruck (2016) produces more accurate velocity estimates, even in the
case of horizontal or vertical edges.

Direction-selective filters

Similar to the frequency-based estimation methods introduced in Section 2.1.3, the approach presented
by Tschechne, Sailer and Neumann (2014) employs spatio-temporal filters that are direction-selective
and built from combinations of simpler spatial and temporal filters. By tuning the parameters of these
filters using experimental data from cells in the human visual cortex, and building up an extensive
filter bank that allows to detect different orientations and magnitudes, optical flow can be estimated.
Brosch et al. (2015) reduced the ambiguity caused by the aperture problem by carrying out a response
normalisation. Nevertheless, although these methods are able to robustly quantify the direction of
motion, they have problems determining the optical flow magnitude (Brosch et al., 2015; Tschechne
et al., 2014), since precision is very dependent on the extent of the filter bank.

ANN-based approaches

More recently, ANNs have been used to process event-based optical flow. Zhu, Yuan, Chaney and
Daniilidis (2018) developed EV-FlowNet, an encoder-decoder architecture which allows learning of
dense optical flow (meaning for each point in the field-of-view). It does this in a self-supervised manner,
making use of a pair of greyscale images generated by the DAVIS camera immediately before and after
an event to give a prediction of its local flow, allowing a loss function to be constructed. Zhu, Yuan,
Chaney and Daniilidis (2019), on the other hand, learn event-based optical flow, ego-motion and depth
from the event stream only. By processing a sequence of events and predicting their motion in time,
they are able to remove blur, ending up with a robust set of events representing optical flow. Like Zhu
et al. (2018), an encoder-decoder architecture is used, but here the encoder tries to create a meaningful
representation of the set of input events, and the decoder uses this representation to reconstruct the
deblurred set of events. The method presented by Ye, Mitrokhin, Fermüller, Yorke and Aloimonos

3.2 Event-based optical flow 45

(2018) is very similar (also in performance), except for the fact that they make use of two separate
networks for optical flow estimation, and that they assume a rigid scene.

3.2.2 Applications

Using the plane-fitting algorithm proposed by Benosman et al. (2014) and improved by Brosch et al.
(2015) as a basis, Pijnacker Hordijk et al. (2018) presented two more improvements aimed at boosting
the efficiency of the method, as well as its sensitivity to a larger range of optical flow magnitudes. This
was achieved through 1) reducing the number of parameters of the fitted plane, and 2) achieve adaptive
time windows by clustering recent events. Furthermore, the authors developed a procedure for determ-
ining flow divergence based on grouping optical flow components with similar orientations together, thus
circumventing the aperture problem. They consequently used this estimation in a constant-divergence
landing control loop implemented on board a quadcopter MAV equipped with a DVS.

Instead of grouping similarly oriented flow vectors, Akolkar, Ieng and Benosman (2018) deal with the
aperture problem by performing spatial pooling of erroneous local flows, and mathematically prove
that this approach can correctly estimate the true optical flow orientation. They demonstrate the per-
formance of their algorithm using a car-mounted ATIS, and show that it can be used to capture flow
direction more accurately compared to Benosman et al. (2014). Furthermore, the algorithm was applied
to predict future poses of pedestrians, again showing improved performance.

Somewhat similar to this, the experiments conducted by Conradt (2015) include a simple optical flow
estimation method that tries to fit patterns corresponding to three motions of an MAV (pan, tilt and
yaw) to the first-order spatial derivatives of perceived events (computed similarly to Benosman et al.
(2012)). The results obtained by implementing this algorithm on board a quadcopter MAV equipped
with two meDVSs are, unfortunately, only evaluated qualitatively, and no control is performed what-
soever.

An ANN-based application can be found in the work by Sanket et al. (2019), which focuses on learn-
ing event-based optical flow for dynamic obstacle avoidance with MAVs. The authors present vari-
ous encoder-decoder ANNs each with their own task in the processing pipeline, such as deblurring
and denoising, estimating background motion and performing segmentation. Especially the deblur-
ring/denoising network draws the attention, given that it allows relatively shallow networks trained in
simulation to perform well in the real world, which is blurry and noisy.

4
Reinforcement Learning

The idea of learning by interacting with the environment seems to underlie most forms of learning and
intelligence in the world around us. Exploring the connection between ourselves and world provides
us with a wealth of information about achieving goals and the consequences of actions. RL is a com-
putational approach to this kind of learning, which is aimed at accumulating some notion of reward
by trying actions in a complex and uncertain environment, and discovering which ones are the most
profitable. First, Section 4.1 will explore the biological foundation and application of RL, both from a
psychological and a neuroscientific perspective. Next, Section 4.2 will largely follow the structure of the
book by Sutton and Barto (2018), which can be regarded as the defining text for the field of RL, and
highlight some of the most important aspects and distinctions of RL. After this, Section 4.3 will look
at the implications of using RL in robotics, as well as some of the applications specifically relevant to
this thesis.

4.1 Reinforcement learning in biology

Although RL, as described in this thesis, is an abstract computational framework that explores idealised
situations, many of its fundamentals were inspired by biological theories of behaviour. Furthermore, as
Sutton and Barto (2018) note, RL algorithms have contributed to the understanding of experimental
data and even the development of new models of animal learning, both on the organism-level (psycho-
logy), as well as the neuron-level (neuroscience). The remainder of this section will explore each of
these in turn.

4.1.1 Psychology

Throughout the 20th century, thousands of experiments on animal learning were conducted, and it is
mainly here that the fields of RL and psychology touch. For instance, RL makes a distinction between
algorithms for prediction and algorithms for control, where prediction is concerned with predicting
quantities (such as reward) that depend on how an agent’s environment is expected to change in the
future, while control consists of actually adjusting behaviour as to produce reward (or avoid punish-
ment) more frequently. These definitions show striking similarities with those of classical/Pavlovian
conditioning, and instrumental/operant conditioning, respectively, of which prominent examples are
the works by Pavlov (1927), Skinner (1938, 1963), Thorndike (1898). The temporal-difference (TD)
algorithm for prediction (see Section 4.2.4 for an explanation of it) is actually a generalisation of the
influential Rescorla-Wagner model (Rescorla & Wagner, 1972), and can account for some details of
animal learning behaviour. As far as the control aspect is concerned, learning by trial-and-error is at
the very base of both RL and Thorndike’s law of effect (Thorndike, 1911), where we note that, for both
animals and algorithms, this process does not have to be a merely blind one of just randomly trying
out actions (exploration), but also consists of finding rewarding actions and connecting them to certain
situations or states, and consequently exploiting these more often. Skinner (1958) explored a mechan-
ism he called shaping, which involved progressively altering reward contingencies (making the problem

47

48 Reinforcement Learning

increasingly difficult) to approximate a certain desired behaviour. As we will see in Section 4.2.8, this
approach is very effective for training RL agents.

The law of effect requires the ability to reinforce past actions based on current rewards, something
which is very much related to the credit-assignment problem for learning systems (Minsky, 1961): how
to distribute credit for success among the many decisions that may have been involved in producing it?
The RL algorithms presented in Section 4.2 have two basic mechanisms for addressing this problem,
namely the use of eligibility traces and the use of TD methods to learn value functions (see Section 4.2.4
for an explanation of both) that provide near-immediate evaluations of actions (in control) or immediate
prediction targets (in prediction). Both these methods correspond to mechanisms of animal learning,
namely stimulus traces (Hull, 1932, 1943; Pavlov, 1927) and secondary reinforcement (Hull, 1943), the
latter of which may even have inspired the development of its artificial counterpart (Minsky, 1961).

While there are many more examples of the touching points between psychology, or animal learning in
particular, and RL, these are of less relevance to this thesis. They can be found, however, in the book
by Sutton and Barto (2018).

4.1.2 Neuroscience

As researchers are progressing in their understanding of the animal nervous system, they find more and
more evidence that these systems implement algorithms that are remarkably similar to RL algorithms.
One of these correspondences involves dopamine, one of the chemicals responsible for reward processing
in animal brains, and which appears to convey reinforcement signals to parts of the brain responsible for
learning and decision-making. These reinforcement signals are different from reward signals, as their
function is to direct changes in an agent’s valuations or decision-making (value function and policy,
see Section 4.2.1), instead of simply classifying the desirability of some environmental state or action.
This is very similar to the case of TD learning, where this reinforcement signal is called the TD error
(discussed in Section 4.2.4). Based on experiments by neuroscientist Wolfram Schultz (e.g., Romo &
Schultz, 1990; Schultz & Romo, 1990), Montague, Dayan and Sejnowski (1996) proposed the so-called
reward prediction error (RPE) hypothesis of dopamine neuron activity, which states that one of the
functions of dopamine is to encode the difference between old and new estimates of expected future
reward, and to deliver this error to relevant areas of the brain, for example, when an animal is not
expecting a certain rewarding event. See Schultz (1998, 2002), Schultz, Dayan and Montague (1997),
Sutton and Barto (2018) for more details on dopamine and how it encodes the RPE. Dopamine and its
role in learning are further discussed in Sections 5.2.1 and 5.2.4.

Experiments by O’Doherty et al. (2004), Takahashi, Schoenbaum and Niv (2008) demonstrate that
parts of the animal brain implements something like an actor-critic structure, where the actor decides
which actions to take based on valuations made by the critic. Both actor and critic would then use
the TD error as a reinforcement signal, something that fits well with the above-mentioned function
of dopamine. These actor-critic structures could also be implemented with ANNs, which are used to
generalise in difficult learning problems. See Sections 4.2.6 and 4.2.7 for more about this.

Like in psychology, eligibility traces (or similar mechanisms) are also present in neuroscience. According
to Klopf (1972), Klopf (1982), neurons that contribute to the firing of another neuron are temporarily
marked, such that, in the case of a received reward, the neurons whose firing contributed to obtaining
that reward can be made more likely to fire again in similar situations, in turn leading to more reward.

Again, more touching points between neuroscience and RL can be found in the book by Sutton and
Barto (2018). A more detailed explanation of the various components of the nervous system and the
terms used to describe them is given in Section 5.1.1.

4.2 Reinforcement learning basics 49

4.2 Reinforcement learning basics
After initially introducing the elements underlying all of RL, this section will look at some important
distinctions that can be made within the field of RL, and introduce many of its concepts and techniques
in the process. In this, we heavily follow the book by Sutton and Barto (2018).

4.2.1 Elements

Problem definition

Finite Markov decision processes (MDPs) characterise the problem which RL is trying to solve: one
of sequential decision making, where actions influence both immediate and future rewards. In this
framework of learning from interaction to achieve a goal, the learner or decision maker is called the
agent, while the thing it interacts with, encompassing everything that is not the agent, is called the
environment. The continuous interaction between the two can be illustrated with the diagram given in
Figure 4.1.

At

St+1

Rt+1

St Rt

Agent

Environment

Figure 4.1: Interaction between agent and environment. Adapted from Sutton and Barto (2018).

At each discrete time step t, the agent perceives the environment’s state St ∈ S and, based on this, takes
an action At ∈ A (s). Consequentially, the next time step the agent receives a scalar reward Rt+1 ∈ R

from the environment, and finds itself in a new state St+1. Because of the finite nature of the MDP,
the sets of states, actions and rewards (S, A, R) all have a finite number of choices. Furthermore, the
transition between subsequent states is probabilistic, such that:

p (s′, r | s, a) .= Pr {St+1 = s′, Rt+1 = r | St = s, At = a } ∀ s′, s ∈ S, r ∈ R, a ∈ A (s) (4.1)

In addition to this, MDPs have the so-called Markov property, which says that the transition to the
next state St+1 (and the received reward Rt+1) is completely determined by the preceding state and
action, St and At, and not by any earlier states and actions.

Policy

A policy π defines the agent’s behaviour at any given time step t. Put differently, it is a mapping from
perceived states to probabilities of selecting each possible action to be taken in those states, denoted by
π (a | s), or, in case of deterministic choices, π (s). This mapping can be represented in multiple ways,
such as a lookup table or a search process.

Reward signal

The purpose or goal of an agent is formalised by means of the reward signal. At any time step t, the
agent receives a scalar reward Rt from the environment. The sole objective of the agent is to maxim-
ise the total accumulated reward. And even though representing a complex goal by a scalar number

50 Reinforcement Learning

seems limiting, it has actually proved to be widely applicable and flexible (Sutton & Barto, 2018). For
instance, in making an agent learn to escape a maze, we could simply let reward be −1 each time step,
in order to stimulate fast escapes. The only thing we need to be concerned with is that the rewards we
specify actually comply with the goal we want the agent to pursue.

The example described above uses a reward signal or function where reward depends only on time.
Other forms are also possible: reward could be depending on the current state St, for example. Addi-
tionally, rewards can be dense or sparse, where the former gives back reward based on, e.g., the distance
from a goal at each time step, while the latter only gives back reward when the goal or certain important
milestones are reached. In general, sparse rewards lead to more difficult learning problems than dense
rewards. This will be discussed in more detail in Section 4.2.8.

More formally, when speaking of maximising accumulated reward, we actually mean maximising expected
return, which is some function of the reward sequence, such as the sum:

Gt
.= Rt+1 + Rt+2 + . . . + RT (4.2)

with T the final time step. While this makes sense in so-called episodic problems, where there is a
natural final time step (such as solving the maze in the above example), this may be problematic in
case there is no such terminal state. These continuing tasks need another definition of return Gt, since
there is little sense in maximising something that could be infinite. Luckily, discounting comes to the
rescue. By discounting future rewards, we can bound the return Gt for a discount rate γ < 1. Or, more
formally:

Gt
.=

T∑
k=0

γkRt+k+1 = Rt+1 + γGt+1 (4.3)

where either T =∞ or γ = 1, but not both. Note the recursive nature of Gt. Different discount rates
result in agents with different characteristics: for γ = 0, we end up with an agent that is only con-
cerned with maximising immediate rewards, while the agent becomes more farsighted as γ approaches 1.

From a biological perspective, reward may be seen as pleasure or pain. Analogous to a dog slowly
changing its behaviour when receiving reward in the form of a treat, the reward signal forms the basis
for changing the policy π: if a selected action is followed by a low or negative reward, the policy may
be changed in order to select some other action in that state next time.

Value function

Whereas rewards give an indication of what is good in an immediate sense, the value function specifies
what is good in the long run, and therefore presents a way to deal with the credit assignment problem
mentioned in Section 4.1.1. The value of a state is the return an agent can expect to obtain over all
future states, starting from that state. Thus, rewards can be seen as the immediate, intrinsic desirab-
ility of states, while values indicate their long-term desirability, taking into account states (and thus
rewards) that are likely to follow. Maximising value will thus ultimately get you maximum return, and
therefore we are most concerned with values when making and evaluating decisions.

More formally, the value function of a state s under a policy π is defined as the expected return when
starting in s and following π afterwards:

vπ (s) .= Eπ [Gt | St = s] = Eπ

[∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s

]
∀ s ∈ S (4.4)

In a similar way, we can define the value of an action a in state s under policy π as the expected return
when starting from s, taking a and following π afterwards:

qπ (s, a) .= Eπ [Gt | St = s, At = a] = Eπ

[∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s, At = a

]
∀ s ∈ S, a ∈ A (s) (4.5)

4.2 Reinforcement learning basics 51

From now on, we will refer to vπ as the state-value function, and to qπ as the action-value function.
Note that both can be written in a recursive way, due to the recursive nature of the return Gt (see
Equation (4.3). For vπ, we would end up with:

vπ (s) .= Eπ [Gt | St = s]
= Eπ [Rt+1 + γGt+1 | St = s]

=
∑

a

π (a | s)
∑

s′

∑
r

p (s′, r | s, a)
[

r + γEπ [Gt+1 | St+1 = s′]
]

=
∑

a

π (a | s)
∑
s′,r

p (s′, r | s, a) [r + γvπ (s′)] ∀ s′, s ∈ S

(4.6)

which is known as the Bellman equation for vπ. Its variant for qπ can be derived similarly.

In solving an RL task, we are trying to maximise the agent’s return, which implies choosing the actions
that maximise value. The actions leading to this notion of maximum return are contained in the
optimal policy π∗. There may be more than one π∗, but they all share the same optimal state-value
and action-value functions:

v∗ (s) .= max
π

vπ (s) ∀ s ∈ S q∗ (s, a) .= max
π

qπ (s, a) ∀ s ∈ S, a ∈ A (s) (4.7)

which must both satisfy their Bellman equation variants. Verifying this for v∗ will result in its Bellman
optimality equation:

v∗ (s) = max
a∈A(s)

q∗ (s, a)

= max
a

E [Rt+1 + γv∗ (St+1) | St = s, At = a]

= max
a

∑
s′,r

p (s′, r | s, a) [r + γv∗ (s′)]
(4.8)

where we have used that v∗ (s) is equivalent to q∗ (s, a) when taking the value-maximising action.
Similarly, the Bellman optimality equation for q∗ is:

q∗ (s, a) = max
a

E
[

Rt+1 + γ max
a′

q∗ (St+1, a′)
∣∣∣St = s, At = a

]
=
∑
s′,r

p (s′, r | s, a)
[

r + γ max
a′

q∗ (s′, a′)
] (4.9)

4.2.2 Exploration versus exploitation

To accumulate as much reward as possible, an agent must prefer actions it has tried previously and
found to be effective in producing reward. But to discover such actions, it has to try actions that
were not selected before. In other words, the agent has to exploit what it already knows in order to
accumulate reward, but it also has to explore in order to choose better actions next time. This trade-off,
known as the exploration versus exploitation dilemma, is both central and unique to RL (as opposed
to other kinds of learning) because of its trial-and-error nature. Going all-out on either exploration or
exploitation will lead to failure for any RL problem, and thus a balance will have to be found.

While balancing exploration and exploitation in a sophisticated way is beyond the scope of this thesis,
there is a simple approach to achieving a balance. First, consider a so-called greedy policy, where the
chosen action always has the highest value, thus exploiting maximally:

π (s) .= arg max
a

qπ (s, a) (4.10)

52 Reinforcement Learning

Exploration is then equivalent to choosing non-greedy actions, as this improves the agent’s estimate
of the non-greedy action’s value. We can balance the two by considering, at each time step, to take a
random non-greedy action with probability ε. This is called an ε-greedy policy, and it comes with the
nice theoretical guarantee that all qπ will converge to q∗ for T =∞. Obviously, ε needs to be selected
by the user, its optimal value depending on the problem.

A slightly more sophisticated way of balancing exploration and exploitation is upper confidence bound
(UCB) action selection, where the uncertainty of an action’s currently estimated value, which may
be high due to the fact that it has only been selected once, is also taken into account. A detailed
explanation of the UCB approach can be found in the book by Sutton and Barto (2018).

4.2.3 Model-free versus model-based

Approximating optimal policies can be done in two ways: having a model of the environment and using
this to evaluate certain policies and improving them, or generating experience within an environment and
using it to estimate value functions and extract policies. The former is called a model-based approach,
while the latter is known as model-free. We will discuss examples of each of them in turn below.

Model-based: dynamic programming

Dynamic programming (DP) refers to algorithms that can be employed to compute optimal policies
given a perfect model of the environment as an MDP. This makes DP of limited utility for approach-
ing actual RL problems, but it is still useful in the theoretical sense1. Given a finite MDP, whose
dynamics are given through p (s′, r | s, a), and the Bellman optimality equations for v∗ and q∗ (given
by Equations (4.8) and (4.9), respectively), DP is aimed at two things: evaluating policies (computing
the value function) and, based on these evaluations, improving them. This approach is called policy
iteration, and unfortunately it is an expensive computation, partly because policy evaluation is in itself
an iterative computation. Value iteration, where one sweep of both policy evaluation and improvement
are effectively combined in an iteration over the value function, often achieves faster convergence to an
optimal policy.

Note that DP estimates the value of states based on estimates of the value of successor states. This
updating of estimates based on other estimates is called bootstrapping, and it allows for very sample-
efficient and reduced-variance learning at the cost of a slight bias (because state values are estimated
based on partial instead of complete episodes). The full importance of bootstrapping will become clear
in Section 4.2.4, but more background on DP can be found in Sutton and Barto (2018).

Model-free: Monte Carlo methods

As opposed to DP, Monte Carlo approaches can estimate value functions and discover optimal policies
without perfect knowledge of the environment. It requires only experience in the form of sequences of
states, actions and rewards from interactions (actual or simulated) with the environment. After each
episode (we will only discuss Monte Carlo methods in terms of episodic tasks, i.e., those which have a
natural final timestep or terminal state), action-value estimates are updated according to the experience
just obtained. Estimating a state’s value is done by averaging its returns over many episodes, and by
keeping separate averages for each action taken in each state, we end up with an estimate of qπ instead
of vπ, which is beneficial because we can extract the policy from it using Equation (4.10). The fact
that Monte Carlo methods update action-value estimates only after an episode has finished means that
no bootstrapping is going on, and that the estimates are unbiased. The downside of this is that these
methods tend to experience high variance, which can only be countered by averaging over many episodes.

The process of trying to approximate optimal policies π∗ by estimating q∗ is called Monte Carlo control.
One problem in these methods however, is that of maintaining sufficient exploration, since following
1The fact that DP is of limited use for solving real-world RL problems does not mean this holds for all model-based
approaches. On the contrary, these methods are believed to be one of the key solutions to RL’s sample inefficiency
(meaning large amounts of experience are needed to achieve any kind of meaningful performance). See the work by
Kaiser et al. (2019) for a comparison of model-free and model-based approaches for Atari games.

4.2 Reinforcement learning basics 53

a deterministic policy will only get you experience for the states it visits. One solution is the use of
exploring starts, or starting off with randomly sampled state-action pairs, but this might be difficult
in problems where we work with real instead of simulated experience. Other solutions include using
the ε-greedy approach from Section 4.2.2 in combination with on-policy learning, or off-policy learning.
Both these concepts will be explained in Section 4.2.5.

4.2.4 Temporal-difference learning

TD learning is central to RL, and it forms a unifying framework that combines Monte Carlo ideas
with DP ideas. TD methods can learn directly from experience, and have no need for a model of
the environment’s dynamics, just like Monte Carlo methods. TD methods update estimates based on
other estimates, which is known as bootstrapping, just like DP does. The result of this is much lower
variance compared to Monte Carlo methods, at the cost of a slight bias. As was already mentioned in
Section 4.1, TD learning shows striking similarities with mechanisms found in the fields of psychology
and neuroscience, and was partially inspired by those fields. This section will deal with TD prediction,
or evaluating policies, only. TD control (approximating optimal policies) is introduced in Section 4.2.5.

Instead of waiting for an entire episode to finish and then updating the estimate of the value function,
like Monte Carlo methods do, TD prediction can update this estimate every time step, while still
converging to vπ in the mean if α is sufficiently small2. This method is called TD(0), or one-step TD,
and comparing its update to the Monte Carlo update looks as follows:

TD(0) : V (St)← V (St) + α [Rt+1 + γV (St+1)− V (St)] (4.11)
Monte Carlo : V (St)← V (St) + α [Gt − V (St)] (4.12)

with V the estimate of vπ and α ∈ (0, 1] the step size (sometimes called learning rate). Effectively, the
target for the Monte Carlo update is the return Gt, while that for the TD update is Rt+1 + γV (St+1),
which includes an estimate V (St+1) of vπ (St+1), and can thus be considered bootstrapping. The quant-
ity within the square brackets of Equation (4.11) is called the TD error, denoted as δt, as it gives the
error between the current and better estimate (target) of the value of St. Note that the TD error can
be seen as a reinforcement signal, instead of a reward signal, as was discussed in Section 4.1.2.

In the spectrum between TD(0) and Monte Carlo methods there are those that make use of multiple
steps to update value estimates. One such method is TD(λ), where λ refers to the use of an eligibility
trace. Instead of basing the target on the next step only, as in TD(0), or on an entire episode, as with
Monte Carlo methods, we take an exponentially weighted average of all steps, such that our target, now
called the λ-return looks as follows:

Gλ
t

.= (1− λ)
∞∑

n=1
λn−1Gt:t+n (4.13)

where Gt:t+n is the expected return for the next n steps. According to this, the one-step return is given
the largest weight, namely 1 − λ; the two-step return is given the next largest weight, (1− λ) λ, etc.
For λ = 1 we would then end up with a Monte Carlo method, while λ = 0 would result in TD(0). It
turns out that using multiple steps often achieves much faster convergence than TD(0), while being
much less computationally complex than Monte Carlo methods. This is mainly due to the fact that
bootstrapping works best if a significant state change has occurred. The way in which eligibility traces
are formulated ensures that this is achieved at a minimum increase in computational complexity.

Figure 4.2 illustrates an eligibility trace, and suggests that it can be used in two ways. One way would
be to use them to update current states based on future rewards and states. This is the so-called
forward view employed by Equation (4.13) (and n-step TD, see Sutton and Barto (2018)). Another
would be to consider them as a way to propagate the current TD error back in time and assign it to
2Or with probability 1 if α satisfies

∑∞
n=1 αn = ∞ and

∑∞
n=1 α2

n < ∞, i.e., large enough to deal with initial conditions
and noise and small enough to eventually converge.

54 Reinforcement Learning

Path taken Eligibility trace

G G

Figure 4.2: Illustration of an eligibility trace. The decreasing size of the arrows illustrates that the discovery of goal
G affects values of recent states more, and those of earlier states less. Adapted from Sutton and Barto (2018).

prior states proportionally to how much they contributed to the current eligibility trace. Known as
the backward view, this is the approach taken by TD(λ), and its way of using eligibility traces will be
further discussed in Section 4.2.5. Like value functions, eligibility traces provide a way of dealing with
the credit assignment problem that was mentioned in Section 4.1, with similar mechanisms found in
both psychology and neuroscience.

4.2.5 On-policy versus off-policy control

As mentioned before, control can be defined as trying to approximate optimal policies based on estim-
ated value functions. In this, we can make a distinction between on-policy and off-policy control. This
distinction springs from the following dilemma: while control methods try to learn actions that can
be seen as optimal behaviour, in order to discover these actions it has to behave non-optimally. The
on-policy approach actually is a compromise to this dilemma: as discussed, it makes use of an ε-greedy
policy where non-greedy actions are chosen with probability ε, and as such it actually approximates a
near-optimal policy that still explores a bit. Off-policy learning, on the other hand, uses two policies:
one that is learnt about and improved and which becomes the optimal policy, and one that is more
exploratory and is used to generate experience. Respectively, these two are called the target policy and
the behaviour policy. Because the experience from which off-policy methods learn is due to a differ-
ent policy, learning is often characterised by greater variance and slower convergence than on-policy
methods. However, off-policy methods are more general, and more powerful in the sense that they get
stuck in local minima less often. As a matter of fact, on-policy methods are a special case of off-policy
methods where the target and behaviour policy are the same (Sutton & Barto, 2018).

On-policy learning

An example of on-policy TD control is Sarsa3. It turns out that the convergence guarantees of TD(0)
for the state-value function (see Section 4.2.4) carry over to the action-value function, and as such we
can describe the Sarsa algorithm in Algorithm 1. By adding an eligibility trace to the Sarsa algorithm,
we can increase convergence speed for many problems. This method, called Sarsa(λ), is given in
Algorithm 2.

Off-policy learning

On the other hand, Q-learning is an example of off-policy TD control, where the learnt action-value
function Q directly approximates q∗ independent of the followed policy. Its outline is given in Al-
gorithm 3. Analogous to Sarsa(λ), this can be extended with eligibility traces to Q(λ), which we will
not show here. Another interesting extension that deserves a mention is the double Q-learning method
by van Hasselt (2010), van Hasselt, Guez and Silver (2016), which aims to solve the overestimation
3Sarsa got its name from the quintuple of events (St, At, Rt+1, St+1, At+1) it uses to update the value function.

4.2 Reinforcement learning basics 55

Algorithm 1 Sarsa: an on-policy TD control algorithm (Sutton & Barto, 2018).
Require:

Algorithm parameters: step size α ∈ (0, 1], small ε > 0
Initialise Q (s, a) arbitrarily ∀ s ∈ S, a ∈ A (s)

1: loop for each episode
2: Initialise S
3: Choose A from S using policy derived from Q (e.g., ε-greedy)
4: while S is not terminal do
5: Take action A; observe R, S′

6: Choose A′ from S′ using policy derived from Q (e.g., ε-greedy)
7: Q (S, A)← Q (S, A) + α [R + γQ (S′, A′)−Q (S, A)]
8: S ← S′; A← A′

9: end while
10: end loop

Algorithm 2 Sarsa(λ) (Sutton & Barto, 1998).
Require:

Algorithm parameters: step size α ∈ (0, 1], small ε > 0, trace-decay rate λ ∈ [0, 1]
Initialise Q (s, a) arbitrarily and e (s, a) = 0 ∀ s ∈ S, a ∈ A (s)

1: loop for each episode
2: Initialise S, A
3: while S is not terminal do
4: Take action A; observe R, S′

5: Choose A′ from S′ using policy derived from Q (e.g., ε-greedy)
6: δ ← R + γQ (S′, A′)−Q (S, A)
7: e (S, A)← e (S, A) + 1
8: for all S, A do:
9: Q (S, A)← Q (S, A) + αδe (S, A)

10: e (S, A)← γλe (S, A)
11: end for
12: S ← S′; A← A′

13: end while
14: end loop

problem (or maximisation bias) of Q-learning that springs from it using the same action values for
both selecting and evaluating an action. By learning two separate action-value functions, assigning
experiences randomly to one of the two each time, we can decouple the selection from the evaluation,
resulting in a more realistic estimate of the true action-value function and improved performance.

4.2.6 Tabular representation versus function approximation

So far, all introduced RL methods relied on tabular representations for their value function estimates.
In this case, the methods can often find exact optimal value functions and policies, because all states
can be visited enough times for learning. However, most of the real-world tasks for which we would like
to apply RL involve such enormous state spaces, that these tabular representations become intractably
large, not only in terms of memory needed to store them, but also in terms of filling them: almost
every state encountered will never have been seen before. In cases like this we cannot expect to learn
an optimal policy or value function even for infinite experience, and instead the goal becomes to find a
good-enough approximate solution using limited computational expense.

Achieving this is a matter of generalisation: finding similarities between unvisited and visited states,
and using this knowledge to improve our decision-making in these unvisited states. Combining existing

56 Reinforcement Learning

Algorithm 3 Q-learning: an off-policy TD control algorithm (Sutton & Barto, 2018).
Require:

Algorithm parameters: step size α ∈ (0, 1], small ε > 0
Initialise Q (s, a) arbitrarily ∀ s ∈ S, a ∈ A (s)

1: loop for each episode
2: Initialise S
3: while S is not terminal do
4: Choose A from S using policy derived from Q (e.g., ε-greedy)
5: Take action A; observe R, S′

6: Q (S, A)← Q (S, A) + α [R + γ maxa Q (S′, a)−Q (S, A)]
7: S ← S′

8: end while
9: end loop

methods of generalisation, such as ANNs, with RL methods in order to achieve generalisation is called
function approximation. Also in problems where only part of the state is observable, so-called partially
observable problems, these function approximators provide a way to still attempt to solve them (by just
leaving unobservable state variables out of the parametrisation).

To illustrate these methods, we will introduce an on-policy control method with function approximation.
Furthermore, the dangers and limitations of function approximation are discussed.

On-policy control with function approximation

The goal of on-policy control is learning a parametric approximation of the optimal action-value func-
tion, such that q̂ (s, a, w) ≈ q∗ (s, a), where w ∈ Rd is a finite-dimensional weight vector. Improving
this approximation becomes a matter of updating w using gradient descent on the approximated value
function (refer to Sutton and Barto (2018) for more information on gradient descent and its use here,
or to Goodfellow, Bengio and Courville (2016) for the concept of gradient descent in general). As such,
the weight update becomes:

wt+1
.= wt + α [Ht − q̂ (St, At, wt)]∇q̂ (St, At, wt) (4.14)

where ∇ is the gradient operator, α > 0 the learning rate (called step size for tabular methods, but
named learning rate here to stay consistent with gradient descent usage) and Ht the update target.
In case of one-step Sarsa, this becomes Rt+1 + γq̂ (St+1, At+1, wt), and we end up with the outline
described by Algorithm 4.

The deadly triad

It turns out that the extension to function approximation is significantly harder for off-policy learning
than it is for on-policy learning, leading to less robust convergence due to higher variance in many cases.
According to Sutton and Barto (2018), off-policy learning and function approximation are part of the
so-called deadly triad of RL, with the third component being bootstrapping. Combining all three, as is
for instance done in Q-learning with function approximation, raises a significant challenge in terms of
maintaining stability due to the loss of stability and convergence guarantees, and should be avoided if
possible.

Despite this somewhat gloomy view, there is a glimmer of hope on the horizon. As is noted correctly
by van Hasselt et al. (2018), the deep Q-network (DQN) by Mnih et al. (2013), Mnih et al. (2015)
successfully learnt to play many Atari games while combining all three elements of the deadly triad.
It is shown that improvements made to the Q-learning algorithm, such as bootstrapping on a separate
network (Mnih et al., 2015) or correcting overestimation biases (van Hasselt et al., 2016), greatly reduce
the chance of instability.

4.2 Reinforcement learning basics 57

Algorithm 4 Sarsa with function approximation (Sutton & Barto, 2018).
Require:

Input: a differentiable action-value function parametrisation q̂ (s, a, w)
Algorithm parameters: learning rate α > 0, small ε > 0
Initialise action-value weights w ∈ Rd arbitrarily (e.g., w = 0)

1: loop for each episode
2: Initialise S, A
3: loop for each step of episode
4: Take action A; observe R, S′

5: if S′ is terminal then
6: w← w + α [R− q̂ (S, A, w)]∇q̂ (S, A, w)
7: break
8: end if
9: Choose A′ from S′ using policy derived from q̂ (S′, ·, w) (e.g., ε-greedy)

10: w← w + α [R + γq̂ (S′, A′, w)− q̂ (S, A, w)]∇q̂ (S, A, w)
11: S ← S′; A← A′

12: end loop
13: end loop

4.2.7 Direct policy search: policy gradient and actor-critic methods

So far, all discussed methods tried to learn the action-value function and selected actions based on their
estimate of it. However, there are also methods that instead learn a parametrised policy that needs
no value function estimate to select actions, although it might still be used in learning the policy’s
parameters. This approach of searching in the policy space directly is called direct policy search. If
the parametrised policy is learnt using gradient ascent on some scalar performance measure J (θ), with
θ ∈ Rd′ the policy’s parameter vector, we speak of policy gradient methods4. Methods that learn
approximations to both policy and value functions are often called actor-critic methods, where actor
refers to the learnt policy, and critic to the learnt value function.

Policy gradient methods have various advantages over action-value methods. First, a parametrised
policy can inherently approach a deterministic policy, whereas with ε-greedy selection over action val-
ues there is always a probability of selecting a random action. And while this could be mitigated by
decreasing ε over time, choosing a suitable schedule for this decay requires quite some prior knowledge of
the problem. Second, policy gradient methods have a natural way of approximating stochastic policies,
where the optimal behaviour is to alternate multiple actions, because they allow learning probabilities
with which to select certain actions. Action-value methods, which, in the case of ε-greedy, either select
the action corresponding to the maximum value or a totally random one, lack this ability5. Third,
in some problems the policy may simply be an easier function to approximate and parametrise than
the action-value function. This ties in to findings by de Croon, Dartel and Postma (2005), who show
that for a certain partially-observable MDP, the optimal policy may only be approximated by selecting
certain combinations of state-action pairs, and that simply selecting the maximum value in each state
(as action-value methods do) results in suboptimal performance. Fourth, policy gradient methods can
naturally handle continuous action spaces by learning the statistics of the action probability distribution
instead of probabilities for each action. And apart from all these practical advantages, there is also
one important theoretical advantage: because the action values change smoothly as a function of the
learnt policy parameter vector θ, there are much stronger convergence guarantees than there are for
action-value methods.

Actor-critic methods are another way of extending TD approaches to control. In these methods, the
value function is used as a bootstrapping critic, introducing bias but greatly reducing variance and
accelerating learning. In other words: the actor decides on which actions to take based on the valuations
4Gradient-free policy search methods exist as well, and evolutionary algorithms could be considered an example of this.
5Example 13.1 in the book by Sutton and Barto (2018) perfectly illustrates this.

58 Reinforcement Learning

it receives from the critic. Like with TD(λ), adding eligibility traces allows us to determine the degree
of bootstrapping. As was discussed in Section 4.1.2, actor-critic-like structures are also present in the
animal brain. Algorithm 5 outlines an actor-critic method with eligibility traces. In addition to the
value function parametrisation we already encountered in Algorithm 4, there is policy parametrisation
π (a | s, θ) as well, whose output is the probability of selecting each possible action a in state s (in case of
a discrete action space) or a continuous action (in case of a continuous action space whose statistics are
represented by the policy parametrisation). Also note that two eligibility traces are involved, one for each
parametrisation, and that these are updated with the gradient of the value function parametrisation
and the gradient of the natural logarithm of the policy parametrisation6. The eligibility traces, in
combination with the TD error, are then used to update the parameters in the value function and
policy parametrisation.

Algorithm 5 Actor-critic with eligibility traces (Sutton & Barto, 2018).
Require:

Input: a differentiable policy parametrisation π (a | s, θ)
Input: a differentiable state-value function parametrisation v̂ (s, w)
Algorithm parameters: learning rates αθ > 0, αw > 0; trace-decay rates λθ ∈ [0, 1], λw ∈ [0, 1]
Initialise policy parameter vector θ ∈ Rd′ and state-value weights w ∈ Rd arbitrarily (e.g., to 0)

1: loop for each episode
2: Initialise S
3: eθ ← 0 (eligibility trace vector for θ)
4: ew ← 0 (eligibility trace vector for w)
5: I ← 1
6: while S is not terminal do
7: A ∼ π (· | S, θ) (sample action from stochastic policy)
8: Take action A; observe R, S′

9: if S′ is terminal then
10: δ ← R− v̂ (S, w)
11: else
12: δ ← R + γv̂ (S′, w)− v̂ (S, w)
13: end if
14: eθ ← γλθeθ + I∇ ln π (A | S, θ)
15: ew ← γλwew +∇v̂ (S, w)
16: θ ← θ + αθδeθ

17: w← w + αwδew

18: I ← γI
19: S ← S′

20: end while
21: end loop

4.2.8 Reward signal design

The fact that the goal of an RL system can be defined as a scalar reward signal is both a blessing and
a curse. While, as opposed to supervised learning, RL does not rely on detailed knowledge of what an
agent’s correct actions should be, it does depend strongly on how well the goal of the system’s designer
can be represented by such a signal, and how well the signal assesses progress in reaching this goal.
Designing a reward signal is thus a critical part of any RL application, and should not be overlooked.

While in some applications, such as playing a well-defined game, goals may be easily translated into
reward signals, this can be much more difficult in other problems, for example designing a useful house-
hold robot. And even in cases where the goal is clearly identifiable, the problem of sparse rewards can
6The natural logarithm is used to condense the expression for the policy eligibility trace update: ∇ ln π (A | S, θ) =

∇π(A|S,θ)
π(A|S,θ) . This update stems from the REINFORCE algorithm, see Section 13.3 of Sutton and Barto (2018).

4.2 Reinforcement learning basics 59

still arise. For in order to improve its estimated value function or policy effectively, the agent needs to
frequently encounter nonzero rewards that steer it towards its goal.

In practice, this often leads to a trial-and-error search for a reward signal that produces acceptable
results. One solution might be the administering of intermediate goal-directed rewards, as to make the
reward function less sparse. This process of augmenting the reward structure, known as reward shap-
ing, has been demonstrated to accelerate learning significantly (Kober, Bagnell & Peters, 2013; Laud
& DeJong, 2002, 2003; Mataric, 1994; Ng, Harada & Russell, 1999). Ng et al. (1999) suggest shaping
functions that involve a distance-based heuristic and a subgoal-based heuristic, and explain that reward
shaping works because it provides a notion of closeness to the desired behaviour, instead of relying on
a signal that only encodes success or failure.

Other solutions to the problem of sparse rewards include augmenting the approximated value function
instead of the reward signal, for instance with guesses of what (parts of) the final function should be.
This decreases the chance of the agent learning unintended behaviour (Sutton & Barto, 2018). Yet
another approach would be to apply shaping in a gradual sense, as to make the problem increasingly
harder (which is the shaping explored by Skinner (1958), as was explained in Section 4.1.1)7.

In cases where an expert agent, such as a human, is present, observations of its behaviour may be used
to augment the reward signal or value function (Smart & Kaelbling, 2002). This learning by observing
an expert is called apprenticeship learning (Abbeel & Ng, 2004), and while it can be applied in the
supervised sense as mentioned above, it can also be employed to extract a reward function from expert
behaviour, a process called inverse reinforcement learning (Abbeel & Ng, 2004; Ng & Russell, 2000).
This method turns out to be especially helpful in problems where manually constructing a reward func-
tion is too tedious and complex, such as autonomous driving.

Still other approaches include an automated trial-and-error search for acceptable reward signals, which
involves defining a space of feasible candidates and applying an optimisation algorithm that evaluates
the candidates according to some high-level scoring function that intends to encode the designer’s true
goal. Sorg, Lewis and Singh (2010) demonstrate that reward signals may even be improved in an online
sense via gradient ascent, where the gradient is that of the high-level objective function.

4.2.9 Continuous time and space

Many interesting real-world tasks require smooth, continuous actions taken in response to high-dimensional
observations. So far, the way to go has been to discretise time, state and action a priori, which allowed
the application of a conventional RL algorithm8. However, this approach can have multiple undesirable
consequences, such as rough control outputs due to coarse discretisation, or intractable learning due
to fine discretisation. While function approximation can solve these problems for some applications,
it might be insufficient for others. With this in mind, Doya (2000) formulated several RL algorithms
suitable for continuous time and state problems based on the Hamilton-Jacobi-Bellman (HJB) equation,
which is the continuous-time counterpart of the Bellman equation.

Learning the state-value function vπ (s (t)) of a certain policy π and with state s (t) in continuous time
can be achieved by adjusting its estimate according to the continuous TD error:

δ (t) .= R (t)− 1
τδ

v̂ (t) + ˙̂v (t) (4.15)

where v̂ (t) = v̂ (s (t) , w) ≈ vπ (s (t)) is the current parametrised estimate of the state-value function
and τδ the TD error time constant. The corrections can be carried out using an exponential eligibility
7Another term for this approach to shaping could be curriculum learning (Bengio, Louradour, Collobert & Weston, 2009),
where the learner is first presented easy examples of the task at hand, and the difficulty of the examples is increased
gradually afterwards.

8RL algorithms solve finite MDP problems, meaning the state, action and reward space consist of a finite number of
elements (Sutton & Barto, 2018). This implies that these spaces are discrete in nature, even though that may not be
apparent at first sight.

60 Reinforcement Learning

trace, which will get us a continuous-time version of TD(λ). For an instantaneous TD error δ (t0), this
correction should be:

∆v̂ (t) =

{
δ (t0) exp

(
t0−t

τδ

)
if t ≤ t0

0 if t > t0
(4.16)

The dynamics of the parameter and eligibility trace updates can then be given by:

ẇi = αδ (t) ei (t) (4.17)

ėi (t) = − 1
τe

ei (t) + ∂v (s (t) , w)
∂wi

(4.18)

where α is the parameter learning rate and 0 < τe ≤ τδ the time constant of the eligibility trace. Now
that we have a way to estimate the state-value function given a certain policy, we want to be able to
improve that policy (control). One such way, described by Doya (2000), is a continuous actor-critic
approach. Consider the policy implemented by the actor as:

π (t) = s
(

A
(
s (t) , wA

)
+ σn (t)

)
(4.19)

where A
(
s (t) , wA

)
∈ Rm is a function approximator with parameter vector wA, n (t) ∈ Rm is noise,

and s (·) is a monotonically increasing output function. We then update the parameters according to
the stochastic real-valued (SRV) unit algorithm (Gullapalli, 1990):

ẇA
i = αAδ (t) n (t)

∂A
(
s (t) , wA

)
∂wA

i

(4.20)

4.2.10 Game playing

As mentioned before, games represent the perfect problem for RL to solve, as their dynamics and goal
are usually well-defined. Because of this, some of RL’s largest breakthroughs have been achieved in
game playing, some of the most interesting being:

• Learning to play many different Atari games at beyond-human level using a single architecture
and configuration consisting of a deep convolutional ANN (CNN) acting as function approximator
and a heavily modified Q-learning algorithm (together called DQN) to deal with the deadly triad
from Section 4.2.6 (Mnih et al., 2013; Mnih et al., 2015).

• Mastering the game of Go using two different networks to evaluate board positions and moves, and
combining these networks in a Monte Carlo search algortihm to select the best moves. By learning
from either human experts and self-play (Silver et al., 2016) or self-play only (Silver et al., 2017),
the algorithm was capable of beating the Go world champion, and could later be generalised to
achieve a similar state-of-the-art performance in chess and shogi (Silver et al., 2018).

• Learning to play Montezuma’s Revenge, an Atari game notorious for its sparse rewards and explor-
ation and which proved too hard for DQN, by using proximal policy optimisation (PPO) (Schul-
man, Wolski, Dhariwal, Radford & Klimov, 2017) in combination with an exploration bonus.
PPO’s capability of handling two differently discounted reward streams (one for episodic and one
for non-episodic9 returns) together with a curiosity in the form of the exploration bonus made the
agent capable of long-term decisions, achieving human-level performance (Burda et al., 2018).

9In this setting, an episode ends if the agent ‘dies’, meaning that non-episodic returns are those that carry over between
game-overs. Burda, Edwards, Storkey and Klimov (2018) argue that providing these returns next to the episodic ones is
a good way of stimulating exploratory behaviour, since encountering the end of an episode implies that future episodic
rewards are zero, which might make agents overly risk-averse.

4.3 Reinforcement learning in robot control 61

4.3 Reinforcement learning in robot control
At first sight, RL seems like a natural fit for robotics: it enables a robot to autonomously discover
optimal behaviours by solely interacting with its environment. Instead of explicitly designing desired
behaviours, engineers would only have to specify their goals in terms of a scalar reward signal. However,
several aspects of robotics pose hard-to-overcome challenges to the application of RL in the field. This
section will discuss some of these challenges (along with potential solutions), and highlight some relevant
applications that were successful despite these difficulties.

4.3.1 Difficulties

Kober et al. (2013) have provided an excellent overview of the challenges of applying RL in robotics,
and the remainder of this section will largely follow their distinctions.

Curse of dimensionality

While high-dimensional spaces are not confined to the field of robotics, the fact that robots operate
in the real world makes it that these spaces are often continuous instead of discrete, posing an even
greater challenge of generalisation. This curse of dimensionality (Bellman, 1957), where the number of
dimensions leads to an exponential explosion of the number of states and actions, can be lifted in some
problems through the use of function approximation, as was discussed in Section 4.2.6). Additional
solutions include the use of preprogrammed actions that achieve some simple task (e.g., lift this leg) or
structuring tasks into a hierarchical set of problems to be solved (Barto & Mahadevan, 2003).

Curse of real-world samples

Obtaining enough high-quality real-world experience to facilitate learning can be a difficult process
because of the fact that operating in the physical world entails all kinds of external factors: wear and
tear may change the dynamics of the robot over time (Sutton, Koop & Silver, 2007), environment
settings such as light and temperature may not be constant, and so on. Ensuring safe exploration
becomes a key issue because of hardware limitations (Moldovan & Abbeel, 2012), and operating in real-
time means that accumulating experience cannot be sped up. Additionally, real-world sensors suffer
from noise and delay, making the learning problem only partially observable. Solutions to difficulties
like this include accurate simulated environments, function approximation, apprenticeship learning (see
Section 4.2.8) and sample-efficient model-based learning methods.

Curse of under-modelling and model uncertainty

The previous part mentioned simulation as a possible solution to the difficult process of obtaining enough
high-quality real-world data. Unfortunately, building an accurate simulator usually requires building
an accurate model of the robot and its environment, which often needs very many real-world samples.
Simplified or inaccurate models, as it turns out, often lead to policies that need heavy modification to
be transferred to the real world successfully, unless the task is inherently stable (Kober & Peters, 2009).
Still, approximate models may fulfil roles in, e.g., verification and unit testing.

Curse of goal specification

Perhaps the biggest challenge in applying RL to robotics is the specification of goals. While often
dramatically simpler than specifying behaviour itself, translating poorly quantifiable goals to a scalar
reward signal still requires a lot of work. Bing, Meschede, Röhrbein, Huang and Knoll (2018) make
a distinction between three different approaches for specifying rewards: rewarding/punishing specific
events (sparse rewards, see, e.g., Faghihi, Moustafa, Heinrich & Wörgötter, 2017), control error minim-
isation (e.g., error with another controller, see Clawson et al., 2016) or global metric minimisation (e.g.,
error with target angles, see Spüler, Nagel & Rosenstiel, 2015). Apart from this, the challenges and their
solutions in terms of goal specification for robotics are very similar to those for general RL problems,
which were already discussed in Section 4.2.8.

62 Reinforcement Learning

4.3.2 MAV control

To give an idea of the state-of-the-art of RL applied to MAV control, some recent work on this is
collected here. Note that the focus is mainly on MAV landing, as this manoeuvre has proven to be the
most tractable for RL to solve, and also seems to be the most relevant for this thesis.

Rodriguez-Ramos, Sampedro, Bavle, de la Puente and Campoy (2019) make use of a deep deterministic
policy gradient (DDPG) algorithm, which is especially suited to the continuous spaces involved in robot
control (Lillicrap et al., 2015), to smoothly land an MAV on a moving platform. Training was performed
in the realistic robot simulator Gazebo10 in order to allow smooth transfer to real-world testing. The
authors also propose a Gazebo-based RL framework that allows the use of many algorithms, robots
and environments, not unlike the work by Zamora, Lopez, Vilches and Cordero (2016). Unfortunately,
MAV state is either provided directly by the simulation environment or OptiTrack11, a precision motion
capture and 3D tracking system, which poses a far smaller challenge than inferring altitude from visual
sensors.

The work by Polvara et al. (2018), on the other hand, does make use of only visual sensors. Their
controller, consisting of conventional and double DQNs, is capable of detecting a landing marker using
a downwards-facing camera, navigating towards it, and landing on top of it. Training was performed in
simulation, and the performance of the method carried over to real-world tests. However, flight control
consisted of only seven discrete actions (such as forward, left, right, down), which greatly reduces the
difficulty of the learning problem.

Rodriguez-Ramos, Sampedro, Bavle, Moreno and Campoy (2018) nevertheless demonstrate the ability
to perform vision-based MAV landings on a marked moving platform with continuous control, allowed
through the use of the DDPG algorithm. They also introduce a reward function that encourages smooth
actions, and includes a shaping component, which informs the agent about its instantaneous progress
(see Section 4.2.8).

10http://gazebosim.org
11https://optitrack.com/

http://gazebosim.org
https://optitrack.com/

5
Reward-Modulated Neuromorphic

Computing
Coined by Carver Mead in the 1990s, the term neuromorphic computing refers to the use of very-
large-scale integration (VLSI) of analog electronic circuits, which have the advantage of being orders
of magnitudes more power-efficient than their digital counterparts (Mead, 1990), to mimic neurological
architectures in biological nervous systems (Mead, 1989). More recently, neuromorphic computing has
been used to describe the implementation of any system that aims to mimic the biological nervous
system and its mechanisms for processing, learning and memorising.

The sections of this chapter will describe the components needed for such a system. SNNs are a type
of ANN that more closely mimics networks of biological neurons, making them an ideal fit for neur-
omorphic computing. Section 5.1 will cover SNNs and their biological inspiration in detail. Learning in
these networks can be achieved in multiple ways, some more biologically accurate than others. Given
RL’s biological foundation, the focus of Section 5.2 will be on reward-modulated learning, as inspired by
the role of dopamine in the animal brain (see Section 4.1.2). Actual applications of neuromorphic com-
puting, involving either hardware implementations or software simulations of SNNs, will be described
in Section 5.3, with a focus on applications relevant to this thesis.

5.1 Spiking neural networks

Proposed by Maass (1997) as the third generation of ANNs, SNNs most closely mimic the biological
networks of neurons found in the animal brain. Like their biological counterparts, data is sent through
these networks as sparse sets of spikes, a characteristic which makes them computationally more power-
ful (Bouvier et al., 2019; Maass, 1997) as well as more energy efficient (Olshausen & Field, 2004;
Pfeiffer & Pfeil, 2018; Rueckauer, Lungu, Hu, Pfeiffer & Liu, 2017; Tavanaei et al., 2019; Zambrano &
Bohte, 2016) than the dense, non-spiking second generation (conventional ANNs, extensively described
by Goodfellow et al. (2016)). These sparse sets of spikes allow (biological) spiking neurons to encode
information temporally, which in turn gives them the ability to carry out high-speed computations that
rapidly adapt to changes in input (Maass, 1997; Thorpe, Delorme & Van Rullen, 2001). The remainder
of this section will look at the biological foundation of SNNs and the terms used to describe their
architecture and functioning, as well as some of the neuron models that are in use.

5.1.1 Biological background

The book by Gerstner, Kistler, Naud and Paninski (2014) gives a selective description of the biological
foundation of SNNs, perfectly fitting in the scope of this thesis. Therefore, we will largely follow their
account here.

63

64 Reward-Modulated Neuromorphic Computing

Neurons, the nervous system’s specialised cells for processing and transmitting information, come in
many different forms and shapes. Typically, however, they are made up of three functionally distinct
parts: dendrites, soma (cell body) and axon, as illustrated in Figure 5.1. Dendrites branch from the
soma and collect electric input signals, also called action potentials or spikes, coming from other neurons.
The soma acts as a central processing unit and keeps track of the neuron’s membrane potential: if the
sum of input spikes coming from the dendrites exceeds some threshold, an output spike is generated.
The neuron is then said to be firing. The axon delivers this output spike to other neurons.

Soma

Dendrite

Axon

Figure 5.1: Schematic image of a biological neuron. Outline adapted from Wikimedia1.

The junction between two neurons is called a synapse. In case a neuron sends an action potential across
the synapse, we refer to the sending neuron as the presynaptic neuron, and to the receiving one as the
postsynaptic neuron. Most synapses in the animal brain are of a chemical kind, where the electrical
pulses on the presynaptic side are transferred to the postsynaptic side using a chemical called a neuro-
transmitter. The strength or effectiveness by which these pulses are transferred is the synapse’s efficacy.
This efficacy can be modified in certain ways, which is what allows learning (see Section 5.2.1). More
details about the synapse and the transfer of spikes can be found in (Gerstner et al., 2014).

As said, an action potential is nothing more than a short electrical pulse. A sequence of these pulses
emitted by a single neuron is called a spike train. Regulating the intervals between subsequent spikes is
what allows these networks to encode information in the temporal domain. Little information in carried
in the actual shape of the spike, since these are mostly constant. In case a neuron does not receive
any incoming spikes, its membrane potential u (t) remains at the rest potential urest . The arrival of
a spike can have two effects on the membrane potential: a positive change (the synapse is said to be
excitatory) or a negative change (the synapse is said to be inhibitory). Whether excitation or inhibition
occurs depends on the neurotransmitter used. After this change, the membrane potential slowly decays
back to its rest value. In case incoming spikes cause the neuron to fire, it enters into a refractory
period of a few milliseconds, during which it is impossible to make the neuron fire again. This period of
absolute refractoriness is followed by a period of relative refractoriness, during which it is difficult, but
not impossible, to trigger another spike. Figure 5.2 shows the typical build-up of membrane potential
as a result of presynaptic spikes by two input neurons.

5.1.2 Neuron models

The very nature of modelling implies that there are different possible models that can represent the
same observed phenomenon, often with different levels of abstraction. The modelling of the biological
neuron and its membrane potential in Figure 5.2 is no exception, and so various neuron models have
been developed over the years.

The very first model of a biological neuron was developed by McCulloch and Pitts (1943) under the
name threshold logic unit (TLU), although the term perceptron is more often used today. Non-spiking
1https://commons.wikimedia.org/wiki/File:Neuron_Hand-tuned.svg

https://commons.wikimedia.org/wiki/File:Neuron_Hand-tuned.svg

5.1 Spiking neural networks 65

Time t
M

em
br

an
e

po
te

nt
ial

u

ui
urest
θ

Time t

Sp
ike

sX
j Neuron 1

Neuron 2

Figure 5.2: Build-up of postsynaptic membrane potential over time due to presynaptic spikes coming from two
neurons. Adapted from Gerstner and Kistler (2002).

in nature and only taking in boolean values, the TLU could represent various logic gates such as AND
or OR. And even though this is, obviously, not at all an accurate representation of a biological neuron,
these neurons (in an adapted form) make up the ANNs that dominate much of machine learning today.

On the opposite end of the realism spectrum there is the spiking neuron model proposed by Hodgkin
and Huxley (1952), who, after experimenting with axons of a squid, identified a set of differential
equations that described the dynamics of a biological neuron. Furthermore, they put forward the idea
that these differential equations could be represented as electrical circuits of a certain configuration.
Notorious for its computational complexity, however, this model is not very usable in simulations of
large SNNs, and we will not discuss it any further. Nevertheless, it served as inspiration for more
tractable neuron models, of which the most prominent ones will be covered here, mostly following the
descriptions by (Gerstner & Kistler, 2002; Gerstner et al., 2014).

LIF

Leaky integrate-and-fire (LIF) models, of which the first variants were proposed by Stein (1965, 1967),
simplify the Hodgkin-Huxley model by assuming that action potentials always have the same shape,
which implies that spike trains only carry information in the intervals between spikes, and can thus be
reduced to sequences of events. Integrating these events over time then gives the membrane potential
u (t). This process can actually be modelled by a basic circuit consisting of a parallel capacitor C and
resistor R driven by an input current I (t). Defining τm = RC as the time constant of the membrane
potential, representing the leaky integration that causes the potential to slowly decay, we end up with
a first-order linear differential equation that looks like a low-pass filter:

u̇ (t) = − 1
τm

[u (t)− urest] + R

τm
I (t) (5.1)

where I (t), the input current, represents incoming presynaptic spikes. In case of multiple presynaptic
neurons, however, it would be more convenient to write this current as a sum over presynaptic spike
trains. The membrane potential of postsynaptic neuron i would then be expressed as follows:

u̇i (t) = − 1
τm

[ui (t)− urest] + R

τm

∑
j

wij

∑
f

ε
(
t− t

(f)
j

)
(5.2)

where wij is the synaptic efficacy (strength of the connection, excitatory or inhibitory) between presyn-
aptic neuron j and postsynaptic neuron i, t

(f)
j < t are the presynaptic firing times with f = 1, 2, . . . and

66 Reward-Modulated Neuromorphic Computing

ε
(
t− t

(f)
j

)
the shape of these presynaptic spikes. For LIF models, this shape is usually neglected, i.e.,

ε (s) = δ (s), with δ the Dirac delta function, δ (s) = 0 for t ̸= 0 and
∫∞

−∞ δ (s) ds = 1. More realistically,
however, the presynaptic spikes should have an effect of finite duration on the postsynaptic potential
(PSP), i.e., they should decay over time. This can be achieved with, e.g., ε (s) = 1

τs
exp (−s/τs).

The membrane potential of a neuron not receiving any presynaptic spikes (I (t) = 0) decays to urest ,
which can be seen by solving Equation (5.1) with initial condition ui (t0) = urest + ∆ui (meaning any
potential above the resting state):

ui (t) = urest + ∆ui exp
(
− t− t0

τm

)
for t > t0 (5.3)

However, if presynaptic spikes cause the potential threshold θ to be reached, i.e., ui

(
t
(f)
i

)
= θ, a

postsynaptic spike is emitted at time t
(f)
i . Immediately after, the membrane potential is reset to urest,

and the neuron may enter into a refractory period, interrupting the dynamics for a few milliseconds.
Because the actual shape of the action potentials is neglected in the LIF model, a postsynaptic spike
train Yi (t) of neuron i, firing at t

(f)
i < t with f = 1, 2, . . ., can be denoted as:

Yi (t) =
∑

f

δ
(
t− t

(f)
i

)
(5.4)

Due to its simplicity, the LIF model is frequently used in applications that involve large amounts of
neurons (e.g., Bichler, Querlioz, Thorpe, Bourgoin & Gamrat, 2012; Diehl & Cook, 2015; Haessig,
Berthelon, Ieng & Benosman, 2019).

SRM

Instead of describing the membrane potential with differential equations, the spike response model
(SRM) by Kistler, Gerstner and Hemmen (1997) makes use of an integration over past presynaptic
spikes. Suppose that postsynaptic neuron i last fired at time t̂i. Then, its membrane potential ui (t)
evolves as follows, according to the SRM:

ui (t) = urest + η
(
t− t̂i

)
+
∑

j

wij

∑
f

ε
(
t− t̂i, t− t

(f)
j

)
+
∫ ∞

0
κ
(
t− t̂i, s

)
Iext (t− s) ds (5.5)

where the behaviour of the neuron is mainly determined by three (usually exponential) kernels: η (s),
ε (s) and κ (s). η (s) describes the time course of the membrane potential once it reaches the threshold
θ (sometimes also called the afterpotential). Note that only the time of the last postsynaptic spike
is important here. Other models, such as the cumulative SRM, make use of all past postsynaptic
spikes (Gerstner, van Hemmen & Cowan, 1996), such that

∑
f η
(
t − t

(f)
i

)
would represent the second

term of Equation (5.5). ε (s) corresponds to the response of the membrane potential to an incoming
presynaptic spike. κ (s) describes the variation in membrane potential due to an external input current
Iext . If there is no such current (which will mostly be the case in this thesis), this term vanishes.

An SRM neuron is said to fire when it crosses the threshold θ from below, since the afterpotential η (s)
causes it to cross the threshold value twice. So, firing occurs when ui (t) = θ and u̇i (t) > 0.

A simpler version of the SRM, called SRM0, removes the dependence of ε (s) and κ (s) upon the
argument t− t̂i:

ui (t) = urest + η
(
t− t̂i

)
+
∑

j

wij

∑
f

ε
(
t− t

(f)
j

)
+
∫ ∞

0
κ (s) Iext (t− s) ds (5.6)

Thus, each presynaptic spike evokes an identical PSP, independent of the presynaptic neuron or last
postsynaptic firing time.

5.2 Learning in spiking neural networks 67

The generality of the SRM (and the SRM0) allows it to represent the LIF model as well, given the right
kernels. See Gerstner and Kistler (2002) for more on this.

Instead of having a sharp, deterministic threshold, as was the case with the LIF model, the firing
threshold can be made stochastic. Also known as escape noise, this represents synaptic noise generated
by presynaptic neurons in proximity of the neuron in consideration. An often-used solution is to let
spikes be generated by an inhomogeneous Poisson point process with stochastic intensity (also called
instantaneous firing rate):

ρ (ui (t)) = ρ0 exp
(

ui (t)− θ

∆θ

)
(5.7)

with ρ0 the stochastic intensity at the threshold, θ the formal threshold and ∆θ the width of the
threshold region. Integrating this expression, i.e.,

∫ t+∆t

t
ρ (ui (t′)) dt′ ≈ ρ (ui (t)) ∆t, will give the prob-

ability of firing.2 However, this will lead to numerical instability for large ∆t. To deal with this, we
calculate the probability that the neuron does not fire, leading to an expression that remains bounded
between zero and one:

Pr { spike in [t, t + ∆t] | ui (t) } = 1− exp

(
−
∫ t+∆t

t

ρ (ui (t′)) dt′

)
≈ 1− exp (−ρ (ui (t)) ∆t) (5.8)

Several learning rules discussed in the next section require this stochastic firing threshold to compute
the probability density of a spike train (which would otherwise be non-differentiable) required for their
derivation (e.g., Bohte et al., 2002; Florian, 2007; Frémaux et al., 2013; Pfister, Toyoizumi, Barber &
Gerstner, 2006; Vasilaki et al., 2009).

5.2 Learning in spiking neural networks
Analogous to ANNs, learning in SNNs happens through modification of the connections between differ-
ent neurons, in such a way as to improve some notion of performance or accuracy. Various approaches
to learning exist for this, namely unsupervised, supervised and reinforcement learning, which we will
all treat here. Unfortunately, the discrete spiking nature of SNNs severely limits the application of
the highly-successful gradient-based optimisation algorithms that dominate learning in ANNs, such as
backpropagation (Goodfellow et al., 2016). Instead, most learning in SNNs happens in an unsuper-
vised way. Although this approach works (to a certain extent) for recognising patterns of spikes, it has
no mechanism to specify desired behaviour or goals (Frémaux & Gerstner, 2016). Reward-modulated
learning rules inspired by RL aim to solve this problem. Before going into more detail on the different
types of learning in SNNs, however, we will first discuss the basics of learning in biological neurons.

5.2.1 Synaptic plasticity

Defined as the ability to modify synaptic efficacies, synaptic plasticity is one of the primary mechanisms
underlying learning and memory in biological nervous systems (Martin, Grimwood & Morris, 2000;
Sutton & Barto, 2018). Changing the efficacies, represented by the weights wij in the SRM and LIF
model (see Equations (5.1) and (5.5), respectively), can be done through various mechanisms, portrayed
by the different learning rules in the remainder of this section. For instance, one of the most promin-
ent learning mechanisms in the nervous system, STDP (covered in Section 5.2.2), employs the relative
timing of presynaptic and postsynaptic spikes for synaptic plasticity.

Another way would be through the presence of a neuromodulator, which is a neurotransmitter that
has many other functions besides the direct, fast excitation or inhibition of targeted neurons. Dopam-
ine, for example, is a neuromodulator associated with reward, and its presence can influence synaptic
2As Gerstner and Kistler (2002) explain in Section 5.3.1, ρ (ui (t)) can take on large values for ui (t) ≫ θ, making it,
strictly speaking, unsuitable for representing probability. However, because ui (t) is reset for each spike, and assuming
the integration time is taken sufficiently small, such an overshoot is prevented.

68 Reward-Modulated Neuromorphic Computing

plasticity (Sutton & Barto, 2018). The reward-modulated learning rules in Section 5.2.4 represent this
phenomenon.

5.2.2 Unsupervised learning

In the context of SNNs, unsupervised learning is often referred to as Hebbian learning, due to the fact
that the employed mechanisms stem from Hebb’s postulate (Hebb, 1949):

‘When an axon of cell A is near enough to excite a cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic change takes place in one or both
cells such that A’s efficiency, as one of the cells firing B, is increased.’

The postulate is often summarised as ‘cells that fire together, wire together’, although this neglects the
causality implied by Hebb. More specifically, the synaptic efficacy of a connection is only increased in
case cell A ‘takes part in firing’ cell B, i.e., if cell A fires just before cell B. It may be this temporal
specificity of synaptic plasticity that is especially relevant to learning and memory (Bi & Poo, 2001).
Several techniques implementing Hebbian learning have been developed over the years, and two will be
mentioned here.

STDP

STDP is by far the most popular learning rule for SNNs, and it has a very intuitive interpretation. If a
presynaptic neuron fires briefly before a postsynaptic neuron does so (∆t < 0), the connection between
them is strengthened, in accordance with Hebb’s postulate. However, if a presynaptic neuron fires
shortly after a postsynaptic neuron (∆t > 0), the causal relationship between these events is spurious,
and the efficacy of their connection is decreased. In case spikes are distant in time, the synaptic efficacy
remains unchanged. The strengthening of a synapse is called long-term potentiation (LTP), whereas
weakening is called long-term depression (LTD) (Bi & Poo, 1998).

−100 −75 −50 −25 0 25 50 75 100
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Relative spike timing ∆t [ms]

Re
lat

ive
sy

na
pt

ic
ch

an
ge

ẇ
ij

[-]

LTP
LTD

Figure 5.3: STDP windows based on experimental data. Adapted from Bi and Poo (2001). Note that they invert
the definition of ∆t, defining positive as pre-before-post firing.

In this form, STDP was observed in various types of neurons by Bi and Poo (1998), Markram, Lübke,
Frotscher and Sakmann (1997), after which a formal model was developed by Song, Miller and Abbott
(2000). The most common temporal windows, used to determine the amount of LTP/LTD, originate
from the experimental data by Bi and Poo (1998, 2001) and the model by Song et al. (2000), and are
shown in Figure 5.3. With ∆t = t

(f)
j − t

(f)
i the relative firing of presynaptic neuron j and postsynaptic

neuron i, the synaptic plasticity induced by STDP can be mathematically formulated as (Song et al.,
2000):

5.2 Learning in spiking neural networks 69

ẇij =

A+ exp
(

∆t
τ+

)
if ∆t < 0

A− exp
(

−∆t
τ−

)
if ∆t ≥ 0

(5.9)

with constants A+ > 0, A− < 0 determining the magnitudes of changes in synaptic efficacy, and time
constants τ+, τ− setting the decay of the windows. However, this formulation allows synaptic efficacy
to increase indefinitely under continued LTP, which is biologically not very accurate (and not very
stable). Indeed, Rossum, Bi and Turrigiano (2000) observed that stronger synapses undergo relatively
less potentiation than weak ones, whereas depression is more or less independent of synaptic strength.
Gerstner and Kistler (2002) formulated the following adaptation to Equation (5.9) for this:

A+ = a+ (wmax − wij) A− = a−wij (5.10)

with constants a+ > 0, a− < 0. STDP-variants that incorporate the current synaptic efficacy in updates
are referred to as multiplicative rules, whereas Equation (5.9) would fall under additive STDP. Also
note that, so far, we have only considered excitatory synapses in discussing STDP. In case of inhibitory
synapses, whose weights wij are negative, the effects of STDP are inversed.

Despite the added stability offered by these multiplicative STDP rules, they nevertheless lead to bimodal
weight distributions (see, e.g., Diehl & Cook, 2015; Kheradpisheh, Ganjtabesh, Thorpe & Masquelier,
2018), with weights either being equal to the lower or upper limit (wmax in Equation (5.10)). To enforce a
more natural, i.e., balanced and unimodal, distribution of weights, Paredes-Vallés et al. (2019) proposed
an inherently stable multiplicative STDP implementation based on the weight-dependent exponential
rule by Shrestha, Ahmed, Wang and Qiu (2017) and the so-called presynaptic trace of which each synapse
keeps track, containing the recent history of transmitted spikes (Morrison, Aertsen & Diesmann, 2007).

BCM

Predating STDP, the Bienenstock-Cooper-Munro (BCM) rule was modelled by Bienenstock, Cooper and
Munro (1982) after their experimental results and those of others. Whereas STDP imposes LTP/LTD
based on the relative timing of spikes, the BCM rule characterises synaptic changes as a product of
presynaptic activity νj and a non-linear function ϕ (νj , νθ) of postsynaptic activity νi =

∑
j wijνj

and a threshold νθ = E [νi]. By allowing this threshold to vary, different LTP/LTD windows can be
achieved, with a typical one depicted in Figure 5.4. The BCM rule can be represented mathematically
as (Bienenstock et al., 1982; Gerstner & Kistler, 2002):

ẇij = −wij

τw
+ ϕ (νi − νθ) νj (5.11)

with −wij

τw
representing a uniform weight decay. Though different at first sight, the BCM rule and STDP

actually appear to be closely related: Izhikevich and Desai (2003) showed that the BCM rule follows
directly from STDP when the pre- and postsynaptic firing patterns comply with certain requirements,
something which was confirmed by Baras and Meir (2007).

5.2.3 Supervised learning

Supervised learning makes use of labels of some kind, thus allowing the specification of desired beha-
viour. Almost all ANNs make use of a supervised training method called backpropagation, which uses
chained derivatives to propagate each error backwards through the network, updating its weights in
such a way as to not make that error again (Goodfellow et al., 2016). Unfortunately, the discrete spike
trains that make up the signals within SNNs are not differentiable, meaning supervised methods will
either have to come up with a completely different way to steer the network in the right direction, or
find a substitute for the use of derivatives. Apart from this, considerable scepticism concerning the
biological plausibility of backpropagation exists (Tavanaei et al., 2019).

Before going over two backpropagation methods for SNNs, we have to take note of another approach to
achieving supervised learning in SNNs, namely by converting ANNs to SNNs, as is done by, e.g., Diehl

70 Reward-Modulated Neuromorphic Computing

LTD

LTP

νθ

Postsynaptic activity νi

Sy
na

pt
ic

ch
an

ge
ẇ

ij

Figure 5.4: BCM windows for LTD and LTP. Adapted from Gerstner and Kistler (2002).

et al. (2015). However, as this method is even less biologically plausible than just using ANNs, it will
not be considered further.

Bohte et al. (2002) appear to have been the first to introduce a method that allows training SNNs by
backpropagating errors. The method, SpikeProp, considers spike timing in its cost function and was
able to solve a temporally encoded XOR problem as well as some other simple classification problems.
By using SRM neurons (discussed in Section 5.1.2) and linearising the relation between spike times
and PSPs, the problem of non-differentiable spike trains was circumvented. However, SpikeProp only
works with neurons that each fire a single spike to encode information temporally. This poses limit-
ations on the temporal encodings that can be used, and excludes mechanisms such as rate-based coding.

Spike layer error reassignment (SLAYER), a more recent backpropagation method developed by Shrestha
and Orchard (2018), does allow for information encoding using both precise spike times as well as fir-
ing rates by letting its cost function represent either of those. The method produced state-of-the-art
results on the N-MNIST dataset, the event-based version of the famous MNIST dataset, developed by
Orchard, Jayawant, Cohen and Thakor (2015). Furthermore, SLAYER was able to correctly classify
human gestures recorded by a DVS, outperforming a previous implementation using IBM’s TrueNorth
neuromorphic chip (Amir et al., 2017), while using significantly less neurons.

Apart from these, many more supervised learning methods for SNNs exist. Refer to Tavanaei et al.
(2019) for a comprehensive overview.

5.2.4 Reinforcement learning

Classical Hebbian learning protocols, such as STDP, implement synaptic plasticity (and thus learning)
based on joint pre- and postsynaptic activity. And while heavily supported by experimental data (e.g.,
Bi & Poo, 1998; Markram et al., 1997), these methods neglect the influence of neuromodulators, such as
dopamine, on plasticity, something for which also extensive experimental evidence exists (see Frémaux
& Gerstner, 2016; Gerstner, Lehmann, Liakoni, Corneil & Brea, 2018, for an overview).

As was first discussed in Section 4.1.2, the role of dopamine involves signalling some notion of reward,
most likely in the form of a reinforcement signal that directs learning (Sutton & Barto, 2018). Gerstner
et al. (2018) argue that neuromodulators encoding reward or novelty, in combination with eligibility
traces, are necessary to bridge the gap in time scale between elementary behaviours (seconds) and
neuronal action potentials (milliseconds). And although the effect of neuromodulators could also be
explained in terms of supervised learning (encoding a high-dimensional, neuron-specific error signal)
instead of RL (encoding a scalar, global error signal), the latter seems more intuitive and simple, and

5.2 Learning in spiking neural networks 71

has been implemented much more often (e.g., Florian, 2007; Frémaux, Sprekeler & Gerstner, 2010,
2013; Vasilaki et al., 2009).

Frémaux and Gerstner (2016) made a distinction between different types of these reward-modulated
learning rules (sometimes called neo-Hebbian or three-factor rules, with the first two factors being pre-
and postsynaptic activity, and the third a neuromodulator). We will now go over each category in turn.
Figure 5.5 already shows a schematic overview of the differences between the shapes of the learning
rules in those categories.

pre
post

⟨post⟩
∆t

ε

t
×

R

ẇij

R-max

pre
post

pre-post
coincidence

∆t

W

eligibility
trace

t
×

R − R̄

neuro-
modulation

ẇij

R-STDP

pre
post

∆t

W

t
×

δ

ẇij

TD-STDP

pre
post

∆t

ε

t
×

δ

ẇij

TD-LTP

Figure 5.5: Overview of reward-modulated learning rules. Each rule can be broken down into three steps:
correlating pre- and postsynaptic activity, updating the eligibility trace and performing neuromodulation. R and R̄
represent reward and mean reward (e.g., based on a certain number of past episodes or steps), respectively, and δ

indicates the TD error (as covered in Section 4.2.4). Adapted from Frémaux and Gerstner (2016).

R-STDP

Probably the most straightforward way of introducing a neuromodulatory effect would be to extend
STDP with a third factor, as is done for R-STDP. With STDP being a phenomenological model (based
on experimental data), there are no theoretical guarantees on whether adding a third, reward-related
factor will actually lead to maximisation of accumulated reward, something which is the case for classical
RL methods (Sutton & Barto, 2018). However, Legenstein, Pecevski and Maass (2008) develop analyt-
ical tools which can be used to analyse for which problems R-STDP does display reward-maximising
behaviour, while Frémaux et al. (2010) derive theoretical conditions for R-STDP to demonstrate suc-
cessful learning. Together with the fact that, for many typical RL problems, significant learning is

72 Reward-Modulated Neuromorphic Computing

demonstrated (e.g. Farries & Fairhall, 2007; Florian, 2007; Frémaux et al., 2010; Legenstein et al.,
2008; Vasilaki et al., 2009), this makes it seem worthwhile to cover R-STDP in detail here.

Combining the notations by Florian (2007), Frémaux et al. (2010), R-STDP can be represented math-
ematically as:

ẇij = αS (R (t)) eij (t) (5.12)

ėij (t) = −eij (t)
τe

+ Uij (t) (5.13)

Uij (t) = Yi (t) A+
∑

f

exp

(
−

t− t
(f)
j

τ+

)
+ Xj (t) A−

∑
f

exp

(
− t− t

(f)
i

τ−

)
(5.14)

with α the learning rate, S (R (t)) the success signal, which is a monotonic function of reward R (t),
eij (t) the eligibility trace as low-pass filter, Uij (t) the term representing the unsupervised part of the
learning rule, the various τs representing time constants and Xj (t) and Yi (t) the pre- and postsyn-
aptic spike trains with spikes at t

(f)
j and t

(f)
i up to t, respectively. Just as with regular STDP, A±

can be taken as constant to achieve additive STDP, or be made dependent upon the weight to get
multiplicative STDP (see Equation (5.10)). Note that the sum in the terms of Uij (t) is nothing more
than a convolution, i.e., the integral (running from t = 0 to t =∞) of the product between the pre- or
postsynaptic spike train (sum of Dirac pulses) and the corresponding LTP/LTD window. Furthermore,
the learning rate α can also be put in front of the unsupervised term Uij (t), however we put it in the
weight update for generality purposes. The same goes for the eligibility trace time constant τe, which
we put in the first term on the right-hand side of Equation (5.13) (following the convention by Frémaux
and Gerstner (2016), Vasilaki et al. (2009)) instead of on the left-hand side (as Florian (2007), Frémaux
et al. (2010) do), making the spikes contribute more to the weight updates.

An interesting note by Frémaux and Gerstner (2016), Frémaux et al. (2010) is the fact that the post-
before-pre (LTD) part of the STDP window, represented by the second term of Equation (5.14), does
not contribute significantly to reward-maximising behaviour, and can even hamper performance. By
setting A− = 0, the LTD portion of the window can be removed.

Averaging the weight updates implemented by Equation (5.12) over multiple episodes and splitting it
into two parts, we end up with:

⟨∆wij ⟩ = ⟨S (R (t)) eij (t) ⟩ = Cov [S (R (t)) , eij (t)] + ⟨S (R (t)) ⟩⟨ eij (t) ⟩ (5.15)

where the first term reflects the reward-sensitive component of learning that can potentially detect
rewarding behaviours, and the second term the mean behaviour of the unsupervised part of the learning,
Uij (t), introducing an unsupervised bias in the weight updates (Frémaux et al., 2010). To cancel this
bias, the average success signal ⟨S (R (t))⟩ has to be made zero, which can be done by writing success
as a sort of RPE:

S (R (t)) = R (t)− R̄ (5.16)

where R̄ is, for example, an exponentially weighted moving average over past rewards, updated every so
many learning episodes. So, analogous to the role of dopamine as discussed in Section 4.1.2, the success
signal is positive if the received reward is above the mean/expected reward, and negative when below.
Note that this expected reward has to be task-specific, as both Frémaux and Gerstner (2016), Frémaux
et al. (2010) point out. Because the other term in Equation (5.15) correlates candidate weight changes
with the success signal through the covariance, R-STDP is a so-called covariance-based learning rule.

Izhikevich (2007) instead uses sparse, positive rewards to ‘gate’ STDP, strengthening a specific connec-
tion and depressing all others. However, given the limited use of sparse rewards in the robotic problem
considered in this thesis, we will not look into this method further.

5.2 Learning in spiking neural networks 73

R-max

Another covariance-based learning rule is R-max, with ‘max’ indicating this rule was not based on
experimental data, but was derived directly from reward maximisation principles (see, e.g., Florian,
2007; Pfister et al., 2006; Vasilaki et al., 2009, for a derivation). This derivation relies on using SRM
neurons with stochastic thresholds (escape noise) to deal with the non-differentiable spike trains, which
causes the unsupervised term of the learning rule to look as follows (with equations for weight update
and eligibility trace dynamics the same as Equations (5.12) and (5.13), respectively):

Uij (t) =
(

Yi (t)− ρi (t)
1 + τcρi (t)

)∑
f

ε
(
t− t

(f)
j

)
(5.17)

where ρi (t) the instantaneous firing rate (see Equation (5.7)) and ε (s) the shape of the PSP. τc is a
parameter introduced by Vasilaki et al. (2009), which allows a family of rules: for τc = 0 it becomes
a strict policy gradient method (purely reward maximisation), while a naive Hebbian model can be
achieved with τc → ∞. The authors go on to show that pure policy gradient methods fail to learn for
several problems and architectures, implying that some Hebbian learning is useful for learning in those
problems. Frémaux et al. (2010) claim that this is the case because the coding scheme used (higher
neuron activity→ higher probability of choosing an action) is in agreement with the unsupervised bias.

Like the success signal S (R (t)) for R-STDP, τc can seen as a trade-off parameter that determines the
balance between the reward-sensitive component of learning, and the unsupervised/Hebbian bias. With
τc = 0, the rule becomes unbiased (LTP and LTD in balance), and there is no need for a success signal
encoding RPE. Nevertheless, R-max with τc = 0 can benefit from using RPE, because this reduces the
trial-to-trial variability of the weight changes (as it uses the average reward over multiple episodes),
allowing the weights to stay closer to the optimum (Frémaux et al., 2010).

So far, the suggested way of implementing RPE as the success signal has been a moving average over
several episodes. However, there are more sophisticated ways of doing this, as the next learning rule
will show.

TD-LTP and TD-STDP

Building upon the continuous TD learning approach by Doya (2000) (discussed in Section 4.2.9),
Frémaux et al. (2013) developed two learning rules that implement actor-critic learning for SNNs,
and which show much more learning potential than any of the covariance-based rules. As explained in
Section 4.2.7, these consist of two networks, actor and critic, where the critic learns to predict expected
future reward, and the actor decides on which actions to take based on these predictions. The TD error
from the critic acts as a reinforcement signal for both actor and critic, encoding RPE, and perfectly
fitting in with the role of dopamine as mentioned in Section 4.1.2. With the critic now serving as a
predictor of expected future reward, there is no need for a modified success signal as was the case for
R-STDP.

Starting from the weight update and TD error for continuous time derived by Doya (2000), Frémaux
et al. (2013) arrive at TD-LTP, whose name comes from the fact that its shape is similar to the LTP
window of STDP (see Figure 5.5). Adapting the mathematical formulation to fit with the previously
mentioned learning rules, TD-LTP’s weight update (for both actor and critic) is defined as follows:

ẇij = αδ (t) eij (t) (5.18)

ėij (t) = −eij (t)
τe

+ Yi (t)
∑

f

ε
(
t− t

(f)
j

)
(5.19)

δ (t) = Vscale

Ncritic

Ncritic∑
i=1

∑
f

(
κ̇
(
t− t

(f)
i

)
−

κ
(
t− t

(f)
i

)
τr

)
− V0

τr
+ R (t) (5.20)

74 Reward-Modulated Neuromorphic Computing

where δ (t) is the critic’s TD error, Ncritic the number of critic neurons, κ (s) a causal smoothing kernel
to determine the firing rate of neurons and τr a time constant. Vscale and V0 specify the value scaling
factor and the value for no spiking activity, respectively, and seem to be very dependent on the problem
the learning rule is used for. Frémaux et al. (2013) do not explicitly write out the differential equation
for the eligibility trace eij (t), and instead perform a convolution between the second term of Equa-
tion (5.19) and the kernel κ(s)

τr
, which has the shape κ (s) = exp(−s/τk)−exp(−s/τq)

τk−τq
. Furthermore, they

limit the sum over presynaptic spikes in the second term of Equation (5.19) to those spikes arriving
after the last postsynaptic spike. Even though this conflicts with the use of presynaptic spike trains
in similar papers (e.g., Florian, 2007; Frémaux et al., 2010; Vasilaki et al., 2009), the impact of this is
most likely limited given the exponentially decaying nature of ε (s).

Instead of deriving a TD-based learning rule from reward-maximisation principles, as is the case with
TD-LTP, the TD error δ (t) can also be used as critic to cancel the unsupervised bias in R-STDP,
taking over this role from the modified success signal S (R (t)) = R (t)− R̄. The resulting learning rule,
called TD-STDP, is identical to the R-STDP rule defined by Equations (5.12) to (5.14), except for
S (R (t)) being replaced by δ (t) from Equation (5.20). As with R-STDP, the LTD portion of the STDP
window does not contribute significantly to reward-maximising behaviour (Frémaux & Gerstner, 2016;
Frémaux et al., 2013). While experimental evidence has been found for the bi-phasic learning window
of regular, unsupervised STDP (Bi & Poo, 1998; Markram et al., 1997), this is not the case for the
reward-modulated version of STDP.

Other variants of TD-based learning rules were developed by di Castro, Volkinshtein and Meir (2009),
Potjans, Morrison and Diesmann (2009), and while the latter looks similar to the definition by Frémaux
et al. (2013), the former did not seem make use of eligibility traces, which allow for faster learn-
ing (Frémaux & Gerstner, 2016).

Comparing rules

The overview papers by Frémaux and Gerstner (2016), Frémaux et al. (2010) allow to make a comparison
between the different types of reward-modulated learning rules on different aspects, namely:

• Is a reward-predicting critic or RPE crucial for learning reward-maximising behaviour, and how
do the implementations vary per rule?

• Are there differences in convergence speed between the various rules?

• Does the rule require a compact representation of state/action spaces?

An overview of the answers to these questions is given in Table 5.1. From this comparison, it seems
that TD-based learning rules show the most potential for learning, even though they might require a
complexity reduction (finding a low-dimensional manifold in the state/action space) for learning to be
tractable.

Table 5.1: Comparison of reward-modulated learning rules for SNNs. Based on Frémaux and Gerstner (2016),
Frémaux, Sprekeler and Gerstner (2010).

Covariance-based TD-based

R-STDP R-max TD-STDP + TD-LTP

Critic / RPE Task-specific moving average Improves performance Actor-critic architecture
Convergence Slow: many trials Slow: many trials Fast: few trials

Representation Can be high-dimensional Can be high-dimensional Requires compactness

5.3 Neuromorphic applications 75

5.3 Neuromorphic applications

Most advantages of SNNs, such as their increased computational power and power efficiency, stem from
hardware implementations using neuromorphic chips, as conventional computer architectures currently
require large amounts of computational expense to simulate them (Bouvier et al., 2019). Nevertheless,
simulation of SNNs on conventional hardware is crucial in the fast development of improved learning
techniques and the search for potential applications, as neuromorphic chips are not yet mainstream. This
section will therefore explore several of the most prominent neuromorphic hardware implementations,
as well as some commonly used simulation frameworks. Refer to Bouvier et al. (2019), Pfeiffer and Pfeil
(2018) for a more complete overview of the various hardware implementations. Finally, applications
(software or hardware) of SNNs in problems relevant to this thesis will be covered.

5.3.1 Hardware implementations

Bouvier et al. (2019) perform an excellent up-to-date comparison of neuromorphic chips capable of emu-
lating large-scale SNNs, with SpiNNaker (Furber, Galluppi, Temple & Plana, 2014), TrueNorth (Merolla
et al., 2014) and Loihi (Davies et al., 2018) being the most prominent ones. We will succinctly review
their characteristics here.

SpiNNaker makes use of a single chip consisting of a network of central processing units (CPUs) tightly
connected to local memory. While this probably makes it the most configurable chip (allowing, e.g.,
on-chip learning and many different neuron models), it leaves the chip lacking in energy efficiency
and processing speed compared to others. Implementations of STDP (Diehl & Cook, 2014) and R-
STDP (Mikaitis, Pineda García, Knight & Furber, 2018) have already been demonstrated on SpiNNaker.
IBM’s TrueNorth, on the other hand, is aimed at ultra-low power consumption at the cost of flexibility,
allowing no on-chip learning and only a single neuron model (LIF). The most recently developed chip,
Intel’s Loihi, aims to achieve a balance between power efficiency and flexibility, with a slightly higher
power consumption than TrueNorth, but all the flexibility of the SpiNNaker platform. It seems the
most promising chip for applications related to this thesis. Researchers at Intel, having developed a
toolkit (with Python application programming interface (API)) for programming SNNs on Loihi, show
that it allows for the implementation of STDP (Lin et al., 2018). So far, however, no implementations
involving neuromodulated learning rules have been developed.

5.3.2 Simulation frameworks

Flexible, easy-to-use simulation frameworks are crucial to advancing the state-of-the-art in terms of
learning in SNNs, but also in terms of potential applications. For quite some time, simulation packages
with varying characteristics have been available, some more capable than others. Here, we will review
several of them, with the goal of finding candidates for carrying out experiments as part of this thesis.

Some frameworks, such as NEST3 (Eppler, Helias, Muller, Diesmann & Gewaltig, 2009; Gewaltig &
Diesmann, 2007), Brian4 (Goodman & Brette, 2008; Stimberg, Goodman, Benichoux & Brette, 2013)
and ANNarchy5 (Vitay, Dinkelbach & Hamker, 2015), focus on biologically realistic simulations of
SNNs, and allow the user to specify the details of different parts of each neuron. A major benefit of
these packages is that, besides the built-in modules for neurons and connections, the dynamics of these
parts can be specified using ordinary differential equations (ODEs) that can be taken straight from
neuroscientific literature. However, the fact that these frameworks are written in a combination of low-
and high-level programming languages (e.g., C with an interface in Python) limits flexibility in terms
of modifying existing objects or adding new ones, such as reward-modulated learning rules. Apart from
this, networks are required to be homogeneous, meaning that only one type of neuron/synapse can be
used. These limitations make the mentioned frameworks unlikely candidates for this thesis.

3https://www.nest-simulator.org/
4https://github.com/brian-team/brian2
5https://github.com/ANNarchy/ANNarchy

https://www.nest-simulator.org/
https://github.com/brian-team/brian2
https://github.com/ANNarchy/ANNarchy

76 Reward-Modulated Neuromorphic Computing

More recently developed packages, like SpykeTorch6 (Mozafari, Ganjtabesh, Nowzari-Dalini & Masque-
lier, 2019) or BindsNET7 (Hazan et al., 2018), aim to be flexible at the cost of biological accuracy.
For example, BindsNET is built on the popular deep-learning framework PyTorch8 (which can harness
the compute power offered by GPUs) and includes many different types of neurons, connections and
learning rules, including reward-modulated rules such as R-STDP. Even though BindsNET does not
explicitly support ODEs, we can convert the ODEs representing the dynamics of neurons and learning
rules into difference equations ourselves and let BindsNET solve for them at regular time steps (which
is of course what the above-mentioned packages that can deal with ODEs do under the hood). Further-
more, the way BindsNET is structured allows users to easily add their own objects to the framework, as
well as existing RL environments through its interface with OpenAI Gym9. SpykeTorch, on the other
hand, seems more limited in the number of neuron models and learning rules available, despite it also
being built on top of PyTorch. Apart from this, SpykeTorch can only simulate single-spike SNNs (at
most one spike per neuron), which could potentially limit its applications.

Whereas all the above-mentioned frameworks have an interface in the popular programming language
Python10, cuSNN, developed by Paredes-Vallés et al. (2019) is written completely in C++ to enable
GPU acceleration with CUDA. While the package includes various neuron models and synapses, the
learning rules are limited to variants of unsupervised STDP. With C++ being much less flexible than
Python, resulting in slower prototyping, and with BindsNET also offering GPU acceleration, this pack-
age does not seem particularly suited for this thesis.

5.3.3 Applications in optical flow estimation

Instead of applying the event-based methods covered in Section 3.2.1 to estimate optical flow, SNNs
can be used to perform this task. Several examples will be given here.

Most work using SNNs for optical flow estimation tries to mimic some of the filter-based estimation
methods mentioned in Sections 2.1.3 and 3.2.1 by configuring the SNN architecture in smart ways. For
example, Orchard, Benosman, Etienne-Cummings and Thakor (2013) implements spatio-temporally-
oriented filters consisting of multiple non-plastic synapses with different delays to capture motion,
however the large number of neurons needed prevents this method from running in real time. To deal
with this, Brosch and Neumann (2016), Haessig, Cassidy, Alvarez, Benosman and Orchard (2018) imple-
ment these filters on IBM’s TrueNorth chip (Merolla et al., 2014), but still no actual learning is going on.

Paredes-Vallés et al. (2019), on the other hand, present a convolutional SNN which, in combination
with a novel STDP rule, allows for motion selectivity to emerge in an unsupervised manner from the
events generated by an event-based camera. The hierarchical feature extraction that this SNN learns
to perform, from capturing geometric features to identifying their local motion and integrating this
into a global ego-motion estimate, results in strong correlations between the activity of neurons in the
output layer and the magnitudes of visual optical flow observables (ventral flows and divergence, see
Section 2.1.2). To be suitable for vision-based navigation of MAVs, a method for 1) identifying which
neurons encode which visual observables, and 2) creating a mapping to control inputs would need to
be developed, which is where an SNN trained with reward-modulated learning rules would come in.
Implementation on a neuromorphic chip would increase the potential of this approach even further.

5.3.4 Applications in vision-based navigation

Several authors have so far employed SNNs for vision-based navigation of MAVs and other vehicles.
Clawson et al. (2016) train an SNN in flight using an R-STDP-variant (Foderaro, Henriquez & Ferrari,
2010) to perform lateral control of a simulated RoboBee (Ma et al., 2013). One of the sensory inputs
to the SNN comes from a rudimentary visual sensor that can estimate pitch and roll rates by measur-
6https://github.com/miladmozafari/SpykeTorch
7https://github.com/Hananel-Hazan/bindsnet
8https://pytorch.org/
9https://gym.openai.com/
10https://www.python.org/

https://github.com/miladmozafari/SpykeTorch
https://github.com/Hananel-Hazan/bindsnet
https://pytorch.org/
https://gym.openai.com/
https://www.python.org/

5.3 Neuromorphic applications 77

ing changes in intensity, making navigation partially dependent on vision. The authors demonstrate
that R-STDP is capable of learning MAV control, however instead of letting reward be defined as a
global metric (e.g., hover at a certain altitude), it follows from the control error with respect to a linear
quadratic regulator (LQR), implying learning is more supervised than actual RL. Still, this application
shows promise for other MAV controllers based on SNNs.

Zhao et al. (2018), on the other hand, approach the problem of performing vision-based control of MAVs
from a more bio-inspired perspective, trying to mimic the actor-critic structure found in the human
brain. Instead of performing flight control directly, the SNN decides on which action to take (up, down,
left right) in order to avoid obstacles and fly through windows. Visual inputs from a conventional,
frame-based camera are preprocessed to locate the obstacle in the field-of-view, after which the corres-
ponding input neuron is stimulated. This means that no actual optical flow control is going on, making
the learning problem significantly simpler for the SNN. Nevertheless, successful learning of real-world
control is demonstrated with a variant of neuromodulated STDP.

Evidently, SNNs can also be applied to vision-based control of ground-based vehicles, as was shown by
Bing, Meschede, Huang et al. (2018), Bing et al. (2019), Nichols, McDaid and Siddique (2013). While
these implementations did make use of R-STDP and TD-based methods, respectively, to train their
networks successfully in following lanes or walls, something related to actual optical flow control was
learnt only by the network of Bing, Meschede, Huang et al. (2018), which takes aggregated events from
a DVS to decide on the motion direction. The authors made reward dependent on the distance from
the lane’s centre, which makes for a true RL problem, but did not implement RPE yet, leaving room
for improvement. Furthermore, these SNN controllers were not tested in the real world.

6
Synthesis of Literature

This chapter aims to provide a synthesis of the literature study conducted in this thesis. The goal
of this study has been to collect relevant literature on reward-modulated neuromorphic computing
for vision-based navigation of MAVs, and three areas were covered in particular. First, bio-inspired
control of MAVs using visual observables was explored. Valuable insights regarding the advantages
and feasibility of event-based optical flow approaches were obtained. Second, RL was introduced as
a biologically plausible way of learning, with foundations in both psychology and neuroscience. Rel-
evant implementations of RL in both simulated and real-world environments, along with some of the
challenges encountered in robot control, were listed. Third, SNNs were presented as efficient compu-
tational frameworks derived from biological neurons, that allow to exploit the benefits of event-based
data. Reward-modulated learning rules, inspired by RL and biological approaches to modifying neur-
ons, were found to be able to train these networks in performing various navigational tasks. A plethora
of implementations in both soft- and hardware demonstrated the activity and progression in this field
of computing.

6.1 Vision-based navigation for MAVs

Optical flow (Gibson, 1950) was presented as a source of information about an observer’s ego-motion
and the 3D structure of the visual scene. Various methods for the estimation of this optical flow were
discussed, with (adaptations of) the gradient-based method by Lucas and Kanade (1981) still the most-
used due to its simplicity, especially for MAV-related purposes (e.g., de Croon, 2016; Ho et al., 2018). In
an effort to summarise the optical flow field and, through this, further relaxing the demands on compu-
tational power, visual observables were introduced (de Croon et al., 2013). Ways in which flying insects
make use of these observables, such as balancing lateral flows for horizontal control (e.g., Baird et al.,
2005; Srinivasan et al., 1991) and divergence for landing (Baird et al., 2013), were successfully trans-
lated to bio-inspired navigation methods for MAVs (e.g., Expert & Ruffier, 2015; Herissé et al., 2012;
Ruffier & Franceschini, 2015). Self-induced oscillations emerging from divergence-based vertical control
were shown by, e.g., de Croon (2016), Ho and de Croon (2016), Ho et al. (2018) to be both a blessing
and a curse, imposing limitations on control accuracy, but also allowing the inference of absolute height.

Inspired by the sparse, asynchronous nature of biological vision systems when quantifying motion,
event-based cameras were introduced as a high-temporal-resolution and low-latency alternative to their
frame-based counterparts (Gallego et al., 2019; Posch et al., 2014). Registering brightness changes as
they occur, instead of at fixed intervals, allows these cameras to deal with variant visual dynamics
in different parts of their field-of-view. The sparsity of these registered events ensures that energy
consumption is greatly decreased (Lichtsteiner et al., 2008), whereas the inclusion of information on
local brightness changes makes them ideal for optical flow estimation. Various event-based estimation
methods were developed to exploit this feat (Rueckauer & Delbruck, 2016), and implementations of
event-based cameras for vertical MAV control showed their ability to guide high-speed vision-based
manoeuvres (Pijnacker Hordijk et al., 2018).

79

80 Synthesis of Literature

6.2 Reinforcement learning

RL was introduced as a computational framework for learning from interacting with the environment,
i.e., an agent must discover rewarding actions through trial-and-error, with the goal of maximising cu-
mulative reward (Sutton & Barto, 2018). Contrary to unsupervised learning, which is mainly useful for
learning patterns in data, or supervised learning, where an agent is being told which actions to take, RL
provides a biologically plausible way of learning desirable behaviours (Neftci & Averbeck, 2019), and
its fundamentals were found to have many touching points with both psychology (e.g., Pavlov, 1927;
Skinner, 1938, 1963; Thorndike, 1898) and neuroscience (e.g., Schultz & Romo, 1990; Schultz, 2002).
For instance, Thorndike’s law of effect (Thorndike, 1911) shows great overlap with the trial-and-error
learning in RL, which is not a blind process of just trying out actions, but actually consists of finding
rewarding actions and connecting them to certain states. The credit assignment problem described by
Minsky (1961) was introduced as one of the core problems in RL, requiring learning systems to have
methods of reinforcing past actions based on current rewards. Eligibility traces and value functions
learnt through TD methods demonstrated the ability to cope with this difficulty, again both having
their foundations in biology (e.g., Hull, 1943; Klopf, 1982). Dopamine, one of the chemicals responsible
for reward processing in animal brains, was shown by Montague et al. (1996) to encode RPE, which acts
as a reinforcement signal for directing changes in an agent’s valuations and decision-making (Schultz,
1998; Schultz et al., 1997).

The TD learning mentioned previously was discussed in depth and found to be one of the most influen-
tial methods in RL, forming a unifying framework that combines the best of Monte Carlo and DP ideas,
namely learning from pure experience and bootstrapping, respectively. Eligibility traces and function
approximation were put forward as extensions that could enhance the learning potential of TD learning
even further, while the TD error acting as the reinforcement signal in these methods was shown to
closely correspond to the afore-mentioned RPE and dopamine (Sutton & Barto, 2018). Methods for
directly learning policies (actions) instead of value functions (desirability of states), such as actor-critic
methods (where an actor decides on actions based on valuations by a critic), were also covered, not in
the least because these also have biological counterparts in animal brains (e.g., O’Doherty et al., 2004).

Multiple well-known successes of RL in game playing (e.g., Mnih et al., 2015; Silver et al., 2016) were
discussed to illustrate the generality of the framework, but the hardships faced in applying RL to robot
control were touched upon (Kober et al., 2013), since these are especially relevant to this thesis. For
instance, real-world environments bring about uncertainties and noise, which could lead to difficulties in
obtaining enough high-quality training experience (e.g., Sutton et al., 2007). Furthermore, the fact that
the agent’s goals can only be specified in terms of a scalar signal might seem appealing at first sight,
but often turns out to be immensely difficult for poorly quantifiable behaviours. Luckily, deviations of
an MAV from a desired flying path do not suffer from this, and smart reward functions can be created
based on this deviation (e.g., Rodriguez-Ramos et al., 2018; Rodriguez-Ramos et al., 2019). Together
with extensions of RL methods to continuous time and actions (Doya, 2000), this allowed the successful
application to vision-based MAV landings (Rodriguez-Ramos et al., 2018).

6.3 Reward-modulated neuromorphic computing

Neuromorphic computing refers to the use of VLSI of analog electronics, which have the advantage of
orders of magnitude more power-efficient than their digital counterparts, to mimic neurological archi-
tectures (Mead, 1990). SNNs, proposed by Maass (1997) as a way of implementing these architectures,
were found to be computationally more powerful than conventional ANNs (Bouvier et al., 2019), while
being more energy efficient (e.g., Pfeiffer & Pfeil, 2018; Tavanaei et al., 2019). These characteristics stem
from the fact that, analogous to event-based cameras and biological neurons, these networks process
data in a sparse and asynchronous manner using sets of spikes, making them a natural fit for working
with event-based vision inputs (Orchard & Etienne-Cummings, 2014). The temporal aspect of these
spikes furthermore allows SNNs to cope with rapidly changing inputs (Thorpe et al., 2001). Several
neuromorphic chips demonstrating these advantages, such as Intel’s Loihi (Davies et al., 2018), were
covered, as well as some of the applications for which these have been used (e.g., Brosch & Neumann,

6.3 Reward-modulated neuromorphic computing 81

2016; Haessig et al., 2018). Software simulators for SNNs, of which BindsNET (Hazan et al., 2018)
seemed the most promising, were also covered. While these do not benefit from any of the energy-related
advantages mentioned above, they do allow fast prototyping and the comparison of many architectures.

Unfortunately, implementing SNNs also comes with a price: the discrete spiking nature of these net-
works imposes severe restrictions on the learning methods that can be used, and almost none of the
successful gradient-based optimisation algorithms translate well from conventional ANNs to SNNs. In-
stead, most learning was found to be unsupervised and based on the relative timing of spikes between
two neurons (STDP) (e.g., Markram et al., 1997; Song et al., 2000). As mentioned before, this works
well for extracting patterns from data, and Paredes-Vallés et al. (2019) demonstrated an SNN capable
of correlating event-based camera inputs and visual observables. Reasonably, this method could be
extended to neuromorphic vision-based navigation of an MAV using another SNN to correlate these
visual observables with control inputs.

Reward-modulated learning rules, taking inspiration from RL and neuroscience (Gerstner et al., 2018),
allow for the learning of desired behaviours (Frémaux & Gerstner, 2016), and were deemed to be
most suitable for this task. To this end, several neuron models and reward-modulated rules were
introduced, each with their own strengths and weaknesses. For instance, covariance-based rules such as
R-STDP (e.g., Florian, 2007) and R-max (e.g., Vasilaki et al., 2009) can deal with high-dimensional state
spaces (Frémaux et al., 2010), but their learning potential stays behind TD-based methods (Frémaux
et al., 2013) like TD-STDP and TD-LTP, which employ an actor-critic structure to optimally exploit
experience. RPE (linked to dopamine) was shown to be of crucial importance to successful learning
in some of these rules, while improving performance in others (Frémaux & Gerstner, 2016). Several
applications of SNNs to robot control were discussed, however most were found to be lacking in some
aspects. For instance, Clawson et al. (2016) successfully learnt vision-assisted flight control of a flapping
MAV in flight using R-STDP, but this was performed in simulation and the learning signal originated
from an LQR, making it more supervised learning than RL. Zhao et al. (2018) do perform real-world
visual control of an MAV learnt using SNNs and a reward-modulated rule, but still rely on algorithmic
methods for detecting obstacles and motion, instead of optical flow. Bing, Meschede, Huang et al. (2018),
however, do make use of something resembling event-based optical flow, using aggregated events to
decide on the motion direction, and to subsequently learn to follow a lane using R-STDP. With reward
dependent on the deviation from the lane’s centre, this makes for a true RL problem, and a great
example of a benchmark for the various reward-modulated learning rules. Part III will carry out such
a benchmark, with the goal of analysing the potential of the various rules for a simple MAV-related
control problem.

III
Preliminary Evaluation of

Reward-Modulated Neuromorphic
Computing for Vertical Control

83

7
Methodology

These preliminary experiments aim to give an indication of the learning performance of reward-modulated
SNNs for optical flow control of MAVs, a task for which they have not been employed before. Different
reward-modulated learning rules will almost certainly perform differently, and it is crucial to the success
of this thesis to find out each rule’s strengths and weaknesses, and to gain a better understanding of
what composes a well-performing rule. To this end, a simple simulator has been devised that can serve
as a benchmark for these rules.

This chapter will first present an outline of the performed analysis in Section 7.1, after which the SNN
simulation framework of choice and the simulation environment for benchmarking the learning rules are
discussed in turn in Sections 7.2 and 7.3, respectively. The following chapters will provide an in-depth
account of the procedures and the outcome of the learning rule comparison. Chapter 8 covers the
implementation of the different reward-modulated learning rules and the configuration of the SNN, and
lists the results for each tested variant. These results and their implications are subsequently discussed
in Chapter 9, along with the simulation set-up.

7.1 Outline of the analysis

As a heuristic for real-world optical flow control of an MAV, these preliminary experiments aim to
benchmark reward-modulated learning rules for SNNs in their ability to learn vertical control of an
MAV1 in a simple simulated environment, in order to make it hover. The idea is that the performance
of various learning rules could serve as an indicator as to what would work when training an SNN to
perform vertical optical flow control in a real-world environment (possibly using an event-based camera
and a neuromorphic chip), a task for which these networks have not been applied so far.

Starting from the highest level of abstraction, vertical control of an MAV is nothing more than control
of a second-order integrator under influence of gravity, where lifting forces of varying magnitude can
be applied to either decrease or increase its altitude. This is the main idea behind the vertical simu-
lator used in these preliminary experiments, and the task of the SNN controller will be to select the
appropriate force in order to keep the MAV at a constant altitude, based on an observation of either
altitude and vertical speed or divergence (see Section 2.1.2). A capable reward-modulated learning
rule, in combination with a well-thought-out reward function, will be crucial in learning these desirable
behaviours.

Different configurations in terms of learning rule, neural architecture and hyperparameters will be tested.
A comparison based on these results will then give an indication as to which configuration shows the
most potential for learning real-world optical flow control.

1From here on, we define ‘MAV’ as a quadrotor MAV that can ascend/descend in a vertical line, and ‘vertical control’ as
control of this ascent/descent.

85

86 Methodology

7.2 Spiking neural network simulator

The SNN simulator of choice for this preliminary evaluation is BindsNET (Hazan et al., 2018), which
was already discussed in Section 5.3.2. The flexibility of BindsNET in terms of adding and tweaking
neuron models and learning rules, along with the fact that it has been written in Python, allows for
fast prototyping and the testing of many different configurations, which is what these experiments are
all about. Apart from this, BindsNET is being actively developed2, and its developers are keen to
help with any problems and open to suggestions. To demonstrate BindsNET’s functioning, Listing 7.1
shows a minimal working example of an SNN of LIF neurons that receives spike trains generated by a
Poisson process as input. Note that the default simulation time step (at which the difference equations
describing, e.g., neuron dynamics, are calculated) is set to ∆t = 1 ms.

Another advantage of BindsNET is its seamless integration with OpenAI Gym3 environments, which,
apart from covering many classic RL problems, allow users to easily create their own environments.
The next section will illustrate this further.

Listing 7.1: A minimal working example of an SNN simulated with BindsNET.

1 import torch
2
3 from binsnet.encoding import poisson
4 from bindsnet.network import Network
5 from bindsnet.network.nodes import Input, LIFNodes
6 from bindsnet.network.topology import Connection
7
8
9 # Instantiate network.
10 network = Network(dt=1.0)
11
12 # Create layers.
13 X = Input(100) # Input layer.
14 Y = LIFNodes(100) # Layer of LIF neurons.
15 C = Connection(source=X, target=Y) # Connection from X to Y.
16
17 # Add everything to the network.
18 network.add_layer(layer=X, name='X')
19 network.add_layer(layer=Y, name='Y')
20 network.add_connection(connection=C, source='X', target='Y')
21
22 # Create Poisson-distributed spike trains.
23 rates = 15 * torch.rand(100) # Random Poisson firing rates for 100 input neurons.
24 spikes = poisson(datum=rates, time=500.0) # Create 500 ms Poisson spike trains.
25
26 # Simulate network on the generated spike trains.
27 network.run(inpts={'X' : spikes}, time=500.0)

7.3 Vertical control simulation environment
To get an idea of their ability to train an SNN to perform optical flow control, different configurations
of each learning rule will be tested on a problem that is similar in some regards, but heavily simplified
in others, namely vertical control of a second-order integrator (which is to represent an MAV) with the
goal of keeping it at a constant altitude. The remainder of this section will illustrate the various aspects
of the simulator implementing this problem.
2https://github.com/Hananel-Hazan/bindsnet
3https://gym.openai.com/

https://github.com/Hananel-Hazan/bindsnet
https://gym.openai.com/

7.3 Vertical control simulation environment 87

7.3.1 Environment characteristics

Figure 7.1 shows the forces acting on the ‘MAV’ of mass m. In order to hover, the thrust T provided
by the propellers, which is the action chosen by the SNN controller, has to balance gravity (or weight)
W = mg. There are two goal settings for which this task can be carried out: 1) achieve hover at any
altitude h, such that we are only concerned with ḣ = 0 ms−1, or 2) achieve hover at a certain goal alti-
tude hgoal . Learning rules will be tested in both settings, but for the explanation of the environment’s
characteristics we will focus on the latter. The former will be treated in Section 7.3.2.

T

W

hgoal

h

ḣ

Figure 7.1: Schematic overview of the vertical simulation environment.

The goal altitude hgoal is set beforehand, and the starting position h0 and vertical speed ḣ0 are chosen
randomly within a certain range. By default,

(
h0, ḣ0

)
= (10, 0) with variations of 1 m and 0.1 ms−1,

respectively. Therefore, the SNN will have to figure out that, in case it starts off below the goal altitude,
it first has to increase T to ascend, and decrease it to match W as soon as hgoal is reached. Each time
the MAV flies goes out of bounds, which we define as h > 20 m, h ≤ 0 m or | ḣ | > 10 ms−1, the problem
restarts, giving it an episodic setting (recall from Section 4.2.1). The environment will also reset if t
reaches T = 10.0 s, with steps of ∆t = 0.01 s.

7.3.2 State observation

The MAV can perceive its state St ∈ S in one of two predefined ways: 1) as a scalar value of divergence4

D = −2ḣ/h, which only allows the learning of hover (D = 0 s−1) in general, or 2) as a tuple
(
h, ḣ

)
of altitude and vertical speed, allowing the SNN controller to learn to hover at a goal altitude hgoal .
Even though both make use of the same information, the former, while seemingly simpler, may be
more similar to actual optical flow control. From now on, we will refer to both goal settings as the
zero-divergence problem and the goal altitude problem. As mentioned, we will test the performance of
learning rules for both. The way in which the SNN encodes the state into spike trains will be covered
in Section 8.2.2.

7.3.3 Action selection

The action At ∈ A (indicating available actions are independent of state) selected by the SNN controller
determines the lifting force T . The selected force is bounded to prevent it from becoming unrealistically
large or negative (which of course is impossible in the case of a lifting force provided by propellers).
Recall that the action space A can be discrete or continuous, meaning that the SNN can either choose
from a distinct number of different forces, or can select any force within the action bounds. The

4To prevent D → ∞ s−1 for h → 0 m, we shift the altitude bounds mentioned previously upwards by 0.1 m, resulting in
allowed altitudes 0.1 < h ≤ 20.1 m.

88 Methodology

implications of these different spaces, as well as the mechanism used by the SNN to decode its spike
trains into actions, is further discussed in Section 8.2.3.

7.3.4 Reward function

A well-designed reward function is critical for learning desired behaviour. Not only does the reward
function have to capture the goal that has to be reached within a problem, it also has to provide the
agent (SNN controller in our case) with a sense of what actions are desirable. The most effective way
to do this is through a dense reward function, as was mentioned in Section 4.2.8.

For the problem of vertical control presented here, the goal for each of the two settings mentioned in
Section 7.3.2 is clear:

• Zero-divergence problem: Achieve and keep D = 0 s−1 within the defined state bounds and
allotted time.

• Goal altitude problem: Achieve and keep h = hgoal and ḣ = 0 ms−1 within the defined state
bounds and allotted time.

Obviously, these problems each require different reward functions. Before suggesting some for both of
them in turn, we look at some general considerations. For instance, apart from the dense reward func-
tions specific to each setting, there can be rewards/punishments for specific events (see Section 4.3.1),
such as punishment for crashing into the ground or flying out of bounds. However, the use of eligibility
traces in reward-modulated learning rules implies that the actions taken slightly before this punishment
will be affected most (see Section 5.2.4), whereas it is very likely that things went south quite some time
before that. Because of this, and to keep everything as simple as possible, event-specific rewards will
not be considered here. By doing so, we follow Rodriguez-Ramos et al. (2018), Rodriguez-Ramos et al.
(2019), who successfully learnt vision-based control of an MAV using a reward function based on the
minimisation of some global metric, such as the magnitude of divergence or the difference in altitude
with hgoal . The globality and simplicity of this approach make it biologically more plausible, which is
appealing.

Zero-divergence problem

With the goal of D = 0 s−1, several reward functions can be defined based on the magnitude of the
current divergence and some relationship, e.g., linear or quadratic. Figure 7.2 proposes some of the
general shape:

R (D) = Rgoal − β1

[√
D2
]β2

(7.1)

with the βs defining constants to allow different variants. Higher βs give functions that punish deviations
from the goal more severely, leading to a reward space where most states correspond to punishment.
For instance, setting β2 = 2 makes R decrease quickly, resulting in almost a ‘hard’ bound on the values
of divergence that are preferred. Note that, when taking the reward for D = 0 s−1 (the maximum
reward in the goal state) as Rgoal = 10, the maximum accumulated reward obtained at the end of an
episode is Rsum =

∑N
t=1 Rt = 1000 · 10 = 10000. Another possibility would be to set it Rgoal = 0, such

that there is only punishment, and the reward signal would corresponding to the error with the goal.

Goal altitude problem

Similarly, we can define rewards for the goal altitude problem, with the function consisting of separate
terms for altitude errors and vertical speed errors. Figure 7.3 illustrates several candidates, which follow
the general shape:

R
(
h, ḣ

)
= Rgoal − β1

[√
(h− hgoal)2 + β3ḣ2

]β2

(7.2)

7.3 Vertical control simulation environment 89

−10 −7.5 −5 −2.5 0 2.5 5 7.5 10
−5

0

5

10

15

Divergence D [s−1]

Re
wa

rd
R

[-]

Rgoal = 10, β1 = 1, β2 = 1
Rgoal = 10, β1 = 2, β2 = 1
Rgoal = 10, β1 = 1, β2 = 2

Figure 7.2: Possible reward functions for the zero-divergence problem.

The same things mentioned about the βs in Equation (7.1) apply here: increasing β1 and β2 makes
that deviations are punished more heavily. Additionally, however, we can balance the importance of
altitude and vertical speed errors through β3. Setting β3 = 0 means that reward is not dependent on
ḣ, which could result in a more difficult learning problem, given that less information is incorporated
in the reward function.

0
5

10
15

20−10

0

10

−5

0

5

10

Altitude h [m]

Vertical speed ḣ [ms−1]

Re
wa

rd
R

[-]

Rgoal = 10, hgoal = 10, β1 = 1, β2 = 1, β3 = 1

Figure 7.3: Possible reward function for the goal altitude problem.

8
Vertical control with reward-modulated

neuromorphic computing

With the simulation environment, serving as a proxy for real-world optical flow control, well-defined,
we can focus on the actual evaluation of the various reward-modulated learning rules and their ability
to train an SNN to solve the simulated problem of vertical control. To avoid any ambiguity, it is
imperative that all components of the SNN controller or agent (the used learning rule, the SNN itself
and the way it interacts with the environment) are also defined properly. This chapter will see to that.

First, the learning rules in question and their implementations are treated in Section 8.1. Second,
Section 8.2 goes over the configuration of the SNN, including neuron models and its interface with the
environment. Finally, Section 8.3 covers the settings and details involved in the performed simulations,
of which the results are presented in Section 8.4.

8.1 Reward-modulated learning

Reward-modulated learning rules were already discussed in their continuous form in Section 5.2.4,
however they need to be discretised in order to be used in BindsNET. This discretisation, as well as
possible variations of each rule, is described here. Mechanisms for reward prediction, which is needed
to update weights based on RPE (see Section 5.2.4), are also given. Note that for this preliminary
analysis, only covariance-based learning rules will be considered. Because these learn slower than the
TD-based rules (Frémaux & Gerstner, 2016; Frémaux et al., 2013), they are well-suited for getting a
sense of the tractability of the problem. If we can demonstrate learning for the covariance-based rules,
their TD-based counterparts will certainly be capable of learning. Another reason for leaving out the
TD-based rules is their critic network, which severely complicates implementation.

8.1.1 R-STDP

A well-explained discretisation of R-STDP is given by Florian (2007). He remarks that, in simulation,
it is useful to introduce variables P pre

j and P post
i to keep track of the influence of pre- and postsynaptic

spikes, respectively, instead of keeping sums of these spikes in memory (as is implied by Equation (5.14)).
This simplification, along with writing the eligibility trace decay as an exponential function, leads to:

91

92 Vertical control with reward-modulated neuromorphic computing

wij (t + ∆t) = wij (t) + αS (R (t + ∆t)) eij (t + ∆t) (8.1)

eij (t + ∆t) = eij (t) exp
(
−∆t

τe

)
+ Uij (t + ∆t) (8.2)

Uij (t + ∆t) = P pre
j (t + ∆t) yi (t + ∆t) + P post

i (t + ∆t) xj (t + ∆t) (8.3)

P pre
j (t + ∆t) = P pre

j (t) exp
(
−∆t

τpre

)
+ Aprexj (t + ∆t) (8.4)

P post
i (t + ∆t) = P post

i (t) exp
(
−∆t

τpost

)
+ Apostyi (t + ∆t) (8.5)

where ∆t is the simulation time step, and xj and yi are binary variables indicating pre- and postsynaptic
spikes, respectively. Note that Florian (2007) did not strictly follow any discretisation method, such as
forward Euler, in particular in his approach. The result is, however, very similar. He does put ∆t as a
factor in the weight update, but we let this be absorbed by the learning rate α. The variables Apre and
Apost determine the contribution of pre- and postsynaptic spike traces, respectively (analogous to A+
and A− in Equation (5.14)), and can again be set to differentiate between additive and multiplicative
STDP (see Section 5.2.2).

8.1.2 R-max

Vasilaki et al. (2009) present a discretisation of their R-max rule, which makes use of the SRM neuron
(whose discretisation will be covered in Section 8.2.1). Again, discretisation is not performed according
to any one method. Note that we introduce, as with R-STDP, a variable to keep track of spikes:

wij (t + ∆t) = wij (t) + αS (R (t + ∆t)) eij (t + ∆t) (8.6)

eij (t + ∆t) =
(

1− ∆t

τe

)
eij (t) + Uij (t + ∆t) (8.7)

Uij (t + ∆t) =
(

yi (t + ∆t)− ρ̂i (t + ∆t)
1 + τc

∆t ρ̂i (t + ∆t)

)
P pre

j (t + ∆t) (8.8)

P pre
j (t + ∆t) = P pre

j (t) exp
(
−∆t

τpre

)
+ Aprexj (t) (8.9)

where P pre
j takes the role of the sum of presynaptic spikes in Equation (5.17) (identical to Equa-

tion (8.4)), with Apre exp (−∆t/τpre) functioning as the kernel ε (s) of the SRM (see Equation (5.5)).
Furthermore, ρ̂i is the discrete version of the escape noise ρ (ui (t)), which was already given by Equa-
tion (5.8). Also note that the decay term of the eligibility trace, (1−∆t/τe), is almost identical in value
to exp (−∆t/τe), and that τc can be used to balance reward-sensitive learning and Hebbian learning.
Vasilaki et al. (2009) remarked that both have their use, and so we will test different values of τc.

8.1.3 Reward prediction

The success signal S (R (t + ∆t)) in Equations (8.1) and (8.6) needs to encode RPE in order to achieve
the best learning performance (as discussed in Section 5.2.4). Equation (5.16) suggested that this could
be done with a sparsely updated moving average of past rewards, which Vasilaki et al. (2009) defines
as:

S (R (t + ∆t)) = R (t + ∆t) + R̄ (n) (8.10)

R̄ (n) =
(

1− 1
σr

)
R̄ (n− 1) + 1

σr
Rstep (n) (8.11)

where R̄ (n) indicates that the moving average is updated after every episode n, σr is the width of the
averaging window and Rstep (n) = Rsum(n)

Nsteps
is the average reward per step in episode n.

8.2 Network configuration 93

As mentioned, other methods of doing reward prediction, such as a second SNN serving as critic network,
are possible, but these will not be implemented as of now.

8.2 Network configuration
With synaptic plasticity out of the way, the neuron and synapse models from Section 5.1.2 have to
be adapted for use in discrete-time simulation. Furthermore, the interface between the SNN and the
simulation environment has to be defined. State St has to be encoded in spike trains that are fed to the
input layer of the SNN, and spike trains coming from the output layer have to be decoded to an action
At. This section looks into these issues.

8.2.1 Neuron models and synapses

Before going over the discretisation of some of the most-used neuron models, we have to discuss the
synaptic efficacy or weight wij of the connections between these neurons. Judging from any of the above-
mentioned learning rules, weights will continue to increase indefinitely if positive rewards keep coming
in. The simplest solution to this would be to bound weights within an interval [wmin, wmax], however this
would lead to a bimodal weight distribution where most weights end up near the bounds. Multiplicative
learning rules (see Section 5.2.2) can slow this process somewhat, but ultimately also lead to bimodal
distributions (e.g., Diehl & Cook, 2015; Kheradpisheh et al., 2018). The homeostasis mechanism devised
by Paredes-Vallés et al. (2019) does lead to a unimodal and balanced weight distribution, but is more
elaborate to implement. For this preliminary evaluation, we will therefore stick with simply bounding
weights within an interval. This still leaves the choice between allowing only excitatory synapses
(positive weights) or also inhibitory synapses (negative weights).

LIF

The LIF neuron represented by Equation (5.2) is discretised by Florian (2007), where he again makes
use of an exponential decay instead of following the forward Euler method:

ui (t) = urest + [ui (t−∆t)− urest] exp
(
−∆t

τm

)
+ Apre

∑
j

wijxj (t) (8.12)

where, compared to Equation (5.2), we replace R/τm with Apre to set the magnitude of the contribu-
tion by presynaptic spikes. As opposed to Florian (2007), we define the contribution of spikes to be
immediate, such that the binary variable indicating a spike is xj (t) instead of xj (t−∆t), and in this
follow the definition by Vasilaki et al. (2009) more closely.

When a neuron’s membrane potential ui (t) reaches the threshold θ, it emits a spike, and ui (t) is reset
to urest . A refractory period can be implemented by a simple counter, which prevents the neuron from
firing/building up membrane potential for a certain number of time steps.

SRM0

The derivation of the R-max learning rule depends on the stochastic firing threshold of the SRM neuron,
which means that a discretised form of its dynamics is needed for simulation. As was shown by Gerstner
and Kistler (2002), the SRM is more general than the LIF model, and can represent it given the right
kernels. To make sure learning rules are compared on an even playing field, we let the SRM0 (the simpler
version which removes the dependence of the kernels on the last postsynaptic spike, see Section 5.1.2)
model the LIF neuron using exponential kernels of the form exp (−∆t/τ). This results in the same
membrane potential equation as the discretised LIF model (defined by Equation (8.12)). The remaining
difference lies in the spiking, which is governed by a stochastic threshold that can be formulated by
combining Equations (5.7) and (5.8):

ρ̂i (t) .= 1− exp (−ρ (ui (t)) ∆t) = 1− exp
(
−ρ0 exp

(
ui (t)− θ

∆θ

)
∆t

)
(8.13)

94 Vertical control with reward-modulated neuromorphic computing

In case the neuron fires, its membrane potential is reset to urest and a possible refractory period can be
started based on a counter of time steps.

8.2.2 Encoding state

As Section 7.3.2 explained, the state of the environment St is represented by either a scalar value of
divergence D, or a tuple

(
h, ḣ

)
of altitude and vertical speed. Frémaux et al. (2013), Vasilaki et al.

(2009) come up with a solution in the form of neurons whose firing rate is dependent on the current
state, taking inspiration from place cells and grid cells in the animal brain. A short explanation of both
types of cells will illustrate that neither exactly corresponds to the implementation by these authors.
See Moser, Kropff and Moser (2008) for more on the difference between place and grid cells.

Hippocampal place cells (HPCs) were first described by O’Keefe and Dostrovsky (1971) as neurons that
encode a spatial map in their firing. Different locations in the environment correspond to a different
neuron firing, implying that each place cell corresponds to a specific location. On the other hand,
grid cells, present in the entorhinal cortex and discovered by Hafting, Fyhn, Molden, Moser and Moser
(2005), are laid out as a grid over the spatial environment, and all cells fire each time the current location
coincides with one of them. This means that individual locations are encoded in the firing patters of all
grid cells combined, resulting in a sort of ‘coordinate system’ that also allows for measuring distances.
Other works indicate that grid cells encode many more types of information that are spatial in some
way (e.g., Aronov, Nevers & Tank, 2017; Constantinescu, O’Reilly & Behrens, 2016; Killian, Jutras &
Buffalo, 2012).

0
5

10
15

20−10

0

10
40

60

80

100

Altitude h [m]

Vertical speed ḣ [ms−1]In
sta

nt
an

eo
us

fir
in

g
ra

te
ρ

k
[H

z]

ρPC = 100, βPC = 2, σPC = (2.5, 2.5)⊤

Figure 8.1: Instantaneous firing rates ρk of place cells as a function of state
(
h, ḣ

)
for a possible configuration. sk

is spaced in steps of 5 for both h and ḣ.

The place cells1 implemented Frémaux et al. (2013), Vasilaki et al. (2009) are distributed uniformly
over the state space S. The activity of a place cell k is reflected by its instantaneous firing rate ρk,
which is modelled as an inhomogeneous Poisson process dependent on the distance between the current
state and the centre of the place cell (Frémaux et al., 2013):

ρk (s (t)) = ρPC exp
(
−∥ s (t)− sk ∥2

βPC σ2
PC

)
(8.14)

where ρPC is the maximum firing rate, s (t) the state vector at time t, sk the centre of place cell k and
σPC its width vector (for different states variables) with a scaling constant βPC . Figure 8.1 illustrates
the way place cells are laid out over the state space for

(
h, ḣ

)
. Analogous to the instantaneous firing

1We stick to the naming by Frémaux et al. (2013), Vasilaki et al. (2009) for consistency reasons.

8.3 Simulation settings 95

probability or firing rate ρ (ui (t)) of SRM neurons, the probability that a place cell spikes in [t, t + ∆t]
can be obtained by integration, i.e.,

∫ t+∆t

t
ρk (s (t′)) dt′ ≈ ρk (s (t)) ∆t.

8.2.3 Decoding actions

Recall from Section 7.3.3 that the action At represents the thrust T exerted on the MAV. We prevent
this force from becoming unrealistically large by bounding it within an interval [Tmin, Tmax]. Apart
from this, there are multiple approaches to decoding spike trains coming from the output layer of the
SNN, in order to end up with a scalar force. Here we will present two approaches that are dependent
on the nature of the action space A being discrete or continuous.

Discrete action space

In case of a discrete action space, the agent (SNN) has a discrete number of forces to choose from at
each time step. We model this in the simplest way possible, namely by giving the SNN a single actor
neuron, Nactor = 1, as output layer, and choosing an action At based on whether it spikes:

At =

Tmin+ Tmin +Tmax

2
2 if yh (t) = 0

Tmax+ Tmin +Tmax
2

2 if yh (t) = 1
(8.15)

where yh (t) is a binary variable indicating an output spike by actor neuron h, and the actions are chosen
in such a way that they are balanced around the centre of the action bounds. This means that the SNN
will have to figure out which combinations of actions make the MAV ascend, descend or hover. Note
that different values for the bounds Tmin and Tmax can lead to behaviours that are easier or harder to
learn for the agent: say the force needed for hover is roughly in the middle of the action interval, then
alternating the two actions will lead to something close to hover. If this is not the case, more elaborate
action patterns may have to be learnt.

Continuous action space

Continuous action selection with any amount of output neurons is possible with a method called pop-
ulation vector coding (Georgopoulos, Schwartz & Kettner, 1986), where each of the actor neurons that
make up the SNN output layer ‘vote’ for their preferred action At by spiking. Frémaux et al. (2013),
Vasilaki et al. (2009) implemented this by keeping track of the postsynaptic spike traces of each actor
neuron Yh (t), and deciding on an action by taking a weighted average of a vector of possible actions:

At =
∑

h P act
h (t) Th∑

h P act
h (t)

(8.16)

P act
h (t) = P act

h (t−∆t) exp
(
−∆t

τact

)
+ Aactyh (t) (8.17)

where P act
h is the postsynaptic spike trace of each actor neuron (identical to Equation (8.5), but with act

indicating it belongs only to actor neurons). The action vector is defined based on the action bounds,
i.e., T = (T1, . . . , TNactor)⊤ with Th = Tmin + h Tmax−Tmin

Nactor
.

8.3 Simulation settings

In order to gain insight into the strengths and weaknesses of the various learning rules, and to compare
the difficulty of the zero-divergence and goal altitude problem, we investigate the effect of changing
certain hyperparameters on the learning curve. This is done for the following four cases:

1. Discrete action space + goal altitude problem: Varying Tmin and Tmax to see whether the
rule can learn different action patterns.

96 Vertical control with reward-modulated neuromorphic computing

2. Discrete action space + zero-divergence problem: Varying τe to determine the importance
of eligibility traces in accelerating learning.

3. Continuous action space + goal altitude problem: Varying hgoal to force the agent to first
ascend/descend and then achieve hover, increasing the difficulty of the learning problem.

4. Continuous action space + zero-divergence problem: Varying h0 to investigate whether
the rule allows learning of different gains needed for optical flow control at different heights (de
Croon, 2016).

Both R-STDP and R-max will be compared in each of these cases, and the default configurations are
given in Appendix A. Note that, since the neurons used in each rule differ in spiking nature (determin-
istic versus stochastic), there might be slight differences in the configuration of each rule for a certain
case, in order to ensure at least minimum spiking and thus learning. However, these differences will be
kept to a minimum to allow fair comparison. Table 8.1 gives the precise hyperparameter settings that
will be covered for each case. In the interest of time, no repetitions using different weight initialisations
will be performed, as the nature of these experiments is more exploratory. Any follow-up experiments
must therefore look at the effect of this.

Two pieces of hardware will be used for running all simulations. These are:

• Laptop running Ubuntu 18.04 LTS, equipped with Intel i7-7700HQ quad-core CPU (eight virtual
CPUs) and 16 GB of memory.

• Google Compute Engine2 server running Ubuntu 18.04 LTS, equipped with Intel Xeon scalable
processors (96 virtual CPUs) and 86 GB of memory.

As far as software versions are concerned: Python 3.6 (included by default on Ubuntu 18.04 LTS) is
used as programming language. The to-be-used variants of BindsNET and the vertical simulator can
be found in their respective repositories3.

Table 8.1: Hyperparameter variations for each simulation case, in addition to the default parameters specified in
Appendix A.

Case Hyperparameters

Discrete + goal altitude [Tmin, Tmax] = [0, 30] , [0, 40] , [0, 50] N
Discrete + zero divergence τe = 100, 500, 800 ms
Continuous + goal altitude hgoal = 5, 10, 15 m

Continuous + zero divergence4 h0 = 1, 5, 10, 15 m

8.4 Results

Here, we presents the simulation results for the learning rules and cases described in the previous
sections of this chapter. The specific settings for each case can be found in Section 8.3, with the default
hyperparameters coming from the tables in Appendix A. Learning curves based on a moving average
(100 episodes) of accumulated rewards are compared in order to study the learning capacity, or reward-
maximisation capability, of the various settings. The smoothing of these curves was performed to make
differences in learning more clear. Note that the maximum reward that could be obtained in each case
is Rgoal ·Nsteps = 10 · 1000 = 10 000.
2https://cloud.google.com/compute/
3BindsNET: https://github.com/Huizerd/bindsnet/tree/prelim, vertical simulator: https://github.com/Huizerd/
vertical

4For h0 = 1 m, the usual stochasticity of the starting position is decreased from 1 m to 0.5 m, to prevent starting on the
ground.

https://cloud.google.com/compute/
https://github.com/Huizerd/bindsnet/tree/prelim
https://github.com/Huizerd/vertical
https://github.com/Huizerd/vertical

8.4 Results 97

8.4.1 Discrete action space + goal altitude problem

Figure 8.2 shows the learning curves belonging R-STDP and R-max for the discrete action space +
goal altitude case. Immediately, it becomes obvious that action bounds of [0, 30] N, resulting in discrete
actions of 7.5 N and 22.5 N (see Equation (8.15)), allow the most learning by either rule. Given an
MAV weight of W = mg = 2 · 9.81 = 19.62 N, it seems that the problem is easiest when the force for
a spiking output neuron (22.5 N) is closest to the force needed for hover. This might indicate that the
default hyperparameters do not allow the network to decrease the number of spikes enough, leading to a
very active actor neuron. Allowing inhibitory connections (w < 0) or a higher spiking threshold θ could
solve this. Looking at the final distribution of the synaptic weights in Figure 8.3, we see that indeed
quite some weights are set to 0, with a further decrease being prevented by the weight bounds [0, 2].
However, at the other side of the spectrum (w = 2) there is also a peak, seemingly indicating plenty of
room left to decrease spiking activity. These weights could nonetheless also be the ones connected to
place cells for lower altitudes, in which case they need to cause actor spikes. What can be said for sure,
though, is that a bimodal distribution of weights (as we have, to some extent, here) is less preferable
than a balanced, unimodal one (Paredes-Vallés et al., 2019), due to the fact that bimodality can be
considered unnatural and most likely non-optimal, since otherwise one would only have to be bothered
by setting weights to either of the two weight bounds.

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1
·104

Episode n [-]

Sm
oo

th
ed

ac
cu

m
ul

at
ed

re
wa

rd
R̄

su
m

[-]

R-STDP, [0, 30] N
R-STDP, [0, 40] N
R-STDP, [0, 50] N

R-max, [0, 30] N
R-max, [0, 40] N
R-max, [0, 50] N

Figure 8.2: Accumulated reward moving average (100 episodes) for the discrete action space + goal altitude
problem. [Tmin , Tmax] is varied for both R-STDP and R-max.

Furthermore, it seems odd that that R-STDP slightly outperforms R-max for the edge cases of [0, 30] N
and [0, 50] N, while performing clearly inferior for for [0, 40] N. The answer may lie in the different
nature of the two rules. As discussed by Frémaux et al. (2010), R-STDP is a phenomenological rule,
based on experimental data, while R-max is directly derived from reward-maximising principles related
to RL. In other words, R-STDP might outperform R-max in specific cases, but the generality of R-max
ensures that it will always learn to some extent. Experiments performed by Frémaux et al. (2010) show
that, for R-STDP without a post-before-pre window (Apost = 0, as we have here) and in the presence
of a critic (here implemented as a moving average), can outperform R-max in some cases.

When observing the MAV’s altitude over time in Figure 8.4 for a reward of approximately 8000 (R-
STDP, [0, 30]), it appears that control is still rudimentary, with some drift going on. The fact that this
drift has mostly been eliminated around 8 s with only 300 episodes of training is promising, however,
and more training could very well lead to an elimination of drift for this case.

98 Vertical control with reward-modulated neuromorphic computing

0 0.4 0.8 1.2 1.6 2

0

100

200

300

400

Weight w [-]

Co
un

tN
[-]

R-STDP, [0, 30] N R-max, [0, 30] N
R-STDP, [0, 40] N R-max, [0, 40] N
R-STDP, [0, 50] N R-max, [0, 50] N

Figure 8.3: Final distribution of the synaptic weights for the discrete action space + goal altitude problem.
[Tmin , Tmax] is varied for both R-STDP and R-max. Note that the data points are the centres of the histogram bins,

i.e. point (0.1, 377) indicates 377 weights in the interval [0.0, 0.2].

0 2 4 6 8 10
0

5

10

15

20

Time t [s]

Al
tit

ud
e

h
[m

]

R-STDP, [0, 30] N
R-STDP, [0, 40] N
R-STDP, [0, 50] N

R-max, [0, 30] N
R-max, [0, 40] N
R-max, [0, 50] N

Figure 8.4: Altitude over time for the discrete action space + goal altitude problem. [Tmin , Tmax] is varied for both
R-STDP and R-max. Note that initial state is not randomised for these tests.

8.4.2 Discrete action space + zero-divergence problem

We now move to the case of learning general hover at any altitude, corresponding to a divergence of
D = 0 s−1, with the controller able to choose either an action of 10 N or 30 N. Figure 8.5 shows the
learning curves belonging R-STDP and R-max for this case. While R-STDP learns to accumulate much
more reward than R-max at first, it comes crashing down out of nowhere for all three values of τe

5. This
implicates that there seem to be some very suboptimal weight distributions close to very optimal ones,
and that changing even a single weight slightly could lead to a severe decrease in performance. R-max,
however, does not seem to suffer from this instability, but then again, learning is weak compared to
R-STDP. As with the discrete action space + goal altitude problem, R-max seems more robust, but
inferior to R-STDP for the hyperparameter configurations studied here. The stochastic nature of firing

5We extended training from 300 to 600 episodes to show the ‘crashes’ for τe = 500 ms and 800 ms. The one for 100 ms
happens after 600 episodes.

8.4 Results 99

in the SRM neurons used together with R-max might very well contribute to this, being both a curse
and a blessing: while it prevents crashes, it also impedes learning to some extent, because there is
always some randomness going on.

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1
·104

Episode n [-]

Sm
oo

th
ed

ac
cu

m
ul

at
ed

re
wa

rd
R̄

su
m

[-]

R-STDP, 100 ms
R-STDP, 500 ms
R-STDP, 800 ms

R-max, 100 ms
R-max, 500 ms
R-max, 800 ms

Figure 8.5: Accumulated reward moving average (100 episodes) for the discrete action space + zero-divergence
problem. τe is varied for both R-STDP and R-max.

A conclusion that can be drawn with certainty is that longer eligibility traces (higher τe) lead to faster
learning up to some point: rules with τe = 500 ms learn much more quickly than those with τe = 100 ms,
while the difference between 800 ms and 500 ms is already much smaller.

0 2 4 6 8 10
0

5

10

15

20

Time t [s]

Al
tit

ud
e

h
[m

]

R-STDP, 100 ms
R-STDP, 500 ms
R-STDP, 500 ms

at 550 episodes
R-STDP, 800 ms

R-max, 100 ms
R-max, 500 ms
R-max, 800 ms

Figure 8.6: Altitude over time for the discrete action space + zero-divergence problem. τe is varied for both
R-STDP and R-max. Note that initial state is not randomised for these tests. The dotted line indicates the
performance of R-STDP with τe = 500 ms at 550 episodes, while the plot indicating the performance at 600

episodes is hidden below the line belonging to R-STDP with τe = 800 ms.

Looking at the altitude over time plots in Figure 8.6, it appears that the sudden drops in performance
for R-STDP in the previous figure translate to quick drops in altitude here. R-max does slightly better,
but seems to achieve no significant learning whatsoever. The fact that altitude decreases so quickly
indicates that there is far too less spiking going on. More precisely, the fact that the combination of a
discrete action space (only one actor neuron) and the perception of state as divergence (only a single
state variable) leads to relatively few connections (41 compared to 412 = 1681 for the discrete action

100 Vertical control with reward-modulated neuromorphic computing

space + goal altitude problem) means that setting one of those to zero could result in a significant
decrease in spiking activity. This might partly explain the sudden drops in performance in Figure 8.5.
A solution to this could be the implementation of multiplicative STDP instead of additive, where the
magnitude of a weight change is dependent on the magnitude of the weight (see Section 5.2.2), prevent-
ing weights from drifting too much towards the bounds, possibly keeping spiking activity up.

The performance of R-STDP with τe = 500 ms at the peak of its learning curve (roughly 550 episodes)
is very promising however, as is demonstrated by the dotted line in Figure 8.6. With almost no drift
going on, this configuration so far constitutes the thing closest to hover.

8.4.3 Continuous action space + goal altitude problem

The learning rules’ performance for the continuous action space + goal altitude problem is given in
Figure 8.7. Given that we vary hgoal and that h0 = 10 m, it seems that cases where the goal altitude
is different from the initial altitude are more difficult to learn, as could be expected. Furthermore,
it appears that ascending to 15 m poses less of a challenge than descending to 5 m, even though the
bounds of the environment are equally close to both goals. While there is no explanation for this at
first sight, the fact that a continuous action is selected based on a decaying weighted average makes it
inherently slow to respond (but also more robust), likely contributes to the difficulty of the hgoal = 5 m
and 15 m settings. Still, as was the case with the discrete action space problems, the learning by R-max
is more robust, always learning something for each hyperparameter setting. Note that some of the plots
in Figure 8.7 are still ascending at the 300-episode mark, indicating that more episodes could increase
performance further.

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1
·104

Episode n [-]

Sm
oo

th
ed

ac
cu

m
ul

at
ed

re
wa

rd
R̄

su
m

[-]

R-STDP, 5 m
R-STDP, 10 m
R-STDP, 15 m

R-max, 5 m
R-max, 10 m
R-max, 15 m

Figure 8.7: Accumulated reward moving average (100 episodes) for the continuous action space + goal altitude
problem. hgoal is varied for both R-STDP and R-max.

The altitude over time plots in Figure 8.8 displays a multitude of behaviours, some of which auspicious.
For instance, R-max with hgoal = 15 m first ascends quickly and then oscillates around some final
altitude, which, although being too high, more or less constitutes the behaviour we would like our
controller to demonstrate. The same goes for the dotted line, belonging to R-max with hgoal = 5 m and
a slightly different initial state (caused by the randomisation of initial state also present in training, and
which most likely caused a slight upwards vertical speed here, helping the controller): a quick descent
is followed by an oscillation around a final incorrect altitude. The fact that this behaviour was learnt in
the first place makes it reasonable to assume that more learning episodes would lead to the refinement
of this behaviour, correcting the final altitude to hgoal and decreasing the magnitude of the oscillations.
Unfortunately, R-STDP with hgoal = 5 m does not seem to have learnt anything at all. This could be
caused by the setting of hyperparameters severely impeding learning for some reason, but only extensive

8.4 Results 101

optimisation of these parameters could give an answer to this. Nevertheless, it would be very odd if
R-STDP could not learn in combination with optimised parameters, given that it does in many of the
previous cases.

0 2 4 6 8 10
0

5

10

15

20

Time t [s]

Al
tit

ud
e

h
[m

]

R-STDP, 5 m
R-STDP, 10 m
R-STDP, 15 m

R-max, 5 m
R-max, 5 m

R-max, 10 m
R-max, 15 m

Figure 8.8: Altitude over time for the continuous action space + goal altitude problem. hgoal is varied for both
R-STDP and R-max. Note that initial state is not randomised for these tests. The dotted line, however, indicates a

test from a slightly different initial state.

8.4.4 Continuous action space + zero-divergence problem

A continuous action space in combination with perceiving state as divergence probably resembles real-
world optical flow control the most, which makes this the most interesting benchmark for the various
learning rules. Amazingly, it is also the setting where overall performance is best. Inspecting Figure 8.9,
we see that the almost all combinations of learning rule and h0 achieve final accumulated rewards over
9000, except for R-STDP with h0 = 1 m, which suffers from a sudden drop in performance (as we have
seen before). R-max, on the other hand, is able to perform well for this starting altitude, cementing its
reputation as a robust learning rule.

0 50 100 150 200 250 300

0

0.2

0.4

0.6

0.8

1
·104

Episode n [-]

Sm
oo

th
ed

ac
cu

m
ul

at
ed

re
wa

rd
R̄

su
m

[-]

R-STDP, 1 m
R-STDP, 5 m

R-STDP, 10 m
R-STDP, 15 m

R-max, 1 m
R-max, 5 m

R-max, 10 m
R-max, 15 m

Figure 8.9: Accumulated reward moving average (100 episodes) for the continuous action space + zero-divergence
problem. h0 is varied for both R-STDP and R-max.

102 Vertical control with reward-modulated neuromorphic computing

The final weight distributions in Figure 8.10 give a clue as to why R-STDP performs so badly for a
starting altitude of 1 m: most weights have been set to zero, leading to a loss in spiking activity and
most likely a loss in the ability to select actions corresponding to higher thrust. This is confirmed
by the weight distribution over episodes for this setting in Figure 8.11, showing that the jump in the
weights is just as sudden. As was suggested for the discrete action space + zero-divergence problem in
Section 8.4.2, where R-STDP suffered from similar drops in performance, changing the STDP part of
the learning rule from additive to multiplicative might help in preventing a large portion of the weights
from going to zero.

0 0.4 0.8 1.2 1.6 2

0

200

400

600

800

Weight w [-]

Co
un

tN
[-]

R-STDP, 1 m R-max, 1 m
R-STDP, 5 m R-max, 5 m
R-STDP, 10 m R-max, 10 m
R-STDP, 15 m R-max, 15 m

Figure 8.10: Final distribution of the synaptic weights
for the continuous action space + zero-divergence

problem. h0 is varied for both R-STDP and R-max.
Note that the data points are the centres of the

histogram bins, i.e. point (0.1, 704) indicates 704
weights in the interval [0.0, 0.2].

0 0.4 0.8 1.2 1.6 2 20

40

60
0

200

400

600

800

Weight w [-]

Episode n [-]
Co

un
tN

[-]

20 episodes 30 episodes
40 episodes 50 episodes
60 episodes 70 episodes

Figure 8.11: Distribution of the synaptic weights over
time for R-STDP with h0 = 1 m in combination with

the continuous action space + zero-divergence problem.
Note that the data points are the centres of the

histogram bins, i.e. point (0.1, 133) indicates 133
weights in the interval [0.0, 0.2].

The nature of divergence-based control of altitude implies that, given a constant but nonzero value
of divergence, altitude will continue to change, meaning that drift is almost inherent to this type of
control, whereas direct control of altitude obviously does not suffer from this. Knowing this, the altitude
over time plots in Figure 8.12 make the performance of the learning rules look worse than it actually
is. Although the amount of altitude drift can most likely be decreased through more learning episodes
(and possibly a more punishing reward function, such as a quadratic one), it is to be expected that
some drift will always be there. Something else interesting about the plots is the apparent tendency of
R-max to suffer from downwards drift (apart from h0 = 1 m, where this is clearly a worse idea than
upwards drift), whereas R-STDP consistently drifts upwards. The most probable cause of this is the
fact that the default |urest − θ| = 10 mV in the case of R-max, and 5 mV in the case of R-STDP. These
values were chosen as to ensure enough spiking activity to facilitate learning, but in the case of no
significant difference in accumulated reward (and thus no preference) between upwards and downwards
drift, the initial increased spiking activity of R-STDP compared to R-max would lead to ascent instead
of descent.

8.4 Results 103

0 2 4 6 8 10
0

5

10

15

20

Time t [s]

Al
tit

ud
e

h
[m

]

R-STDP, 1 m
R-STDP, 5 m

R-STDP, 10 m
R-STDP, 15 m

R-max, 1 m
R-max, 5 m

R-max, 10 m
R-max, 15 m

Figure 8.12: Altitude over time for the continuous action space + zero-divergence problem. h0 is varied for both
R-STDP and R-max. Note that initial state is not randomised for these tests.

9
Discussion of Preliminary Experiments

The presented preliminary experiments have given us an idea of the characteristics and learning ca-
pacity of SNNs when combined with two covariance-based learning rules, R-STDP and R-max, and
applied to a simple vertical control problem. Various problem settings, differing in perception of state
and action space, were observed to pose different challenges to the controller, providing us with pointers
concerning the feasibility of this thesis’s goal.

First, Section 9.1 will discuss the simulation set-up, and suggest possible improvements. Next, Sec-
tion 9.2 looks at the learning performance for each problem setting, trying to draw lessons from the
various distinctions that can be made between these settings, and assesses the feasibility of performing
optical flow control with reward-modulated SNNs. Finally, Section 9.3 discusses the relation between
the preliminary results and the paper presented in Part I.

9.1 Simulation set-up
The simulation set-up used in the experiments consisted of the SNN simulation framework by BindsNET
(Hazan et al., 2018) and the vertical control environment discussed in Section 7.3, and implemented
according to the OpenAI Gym environment conventions1. This allowed seamless integration of both
components, and saved a tremendous amount of time compared to developing a bespoke SNN simu-
lator and environment. BindsNET proved to be very flexible in terms of implementing new learning
rules and neuron models, while any difficulties that did arise were quickly resolved with the help of its
developers. The ongoing development of the package means that BindsNET will only become better in
the future, with more people within the computational neuroscience community using it. This makes
it very worthwhile to continue to use BindsNET, as long as constraints related to, e.g., real-time or
embedded implementation do not prevent it. That being said, BindsNET’s performance turned out to
be more than sufficient for experimenting with different settings concurrently, and will therefore most
likely be suitable for future hyperparameter optimisation.

The vertical control simulation environment specifically developed for this thesis suited the performed
experiments well, and served the purpose of getting an idea of the feasibility of the learning problem
and the learning capacity of the various rules. In light of making the simulator more versatile and the
learning problems more realistic, however, some improvements are conceivable:

• Although stochasticity has been introduced in the initial state of the environment, as well as the
firing of certain neuron models (SRM, see Section 8.2.1), state perception is currently nominal.
Introduction of noise here would make the problem more realistic.

• Although the constants in the environment’s reward functions allow for quite some optimisation,
there might be need for a function that is more informative to the agent. For example, the reward

1https://gym.openai.com/

105

https://gym.openai.com/

106 Discussion of Preliminary Experiments

function devised by Rodriguez-Ramos et al. (2018), Rodriguez-Ramos et al. (2019) includes a
shaping component, which informs the agent about its instantaneous progress.

• As of now, the actions selected by the SNN determine the thrust T exerted by the MAV. However,
control could be made more high-level (and possibly easier to learn) by instead letting the SNN
tune the gain values of a PID controller which in turn controls the thrust. Combining this approach
with the perception of state as divergence would give us a control loop very similar to the ones
used in many works on divergence-based control for MAVs (e.g., de Croon, 2016; Ho et al., 2018).

9.2 Performance & feasibility of reward-modulated learning for MAV
control

The performed experiments allow us to make multiple important distinctions which could help us
determine the feasibility of the learning problem presented in this thesis. This section goes over these
distinctions, and summarises the lessons that can be drawn from them.

9.2.1 R-STDP versus R-max

R-STDP and R-max, first introduced in Section 5.2.4, are both covariance-based learning rules, mean-
ing that they correlate candidate weight changes with obtained rewards through the covariance. They
differ, however, in their foundation: whereas R-STDP springs from STDP, an unsupervised learning
method derived from experimental data, R-max has been derived from RL-related reward-maximisation
principles, meaning that there are theoretical guarantees to the way it maximises the accumulation of
reward. While this, at first sight, seems to indicate that R-max is universally superior to R-STDP,
the learning curves in Section 8.4 prove this is not true: for some of the tested hyperparameter val-
ues, neural architectures and problem settings, R-STDP (significantly) outperforms R-max in terms
of learning. Nevertheless, R-max does seem to benefit from its foundation in another way, namely
robustness. Whereas R-STDP suffers from severe learning instability (sudden drops in performance)
for some settings of the zero-divergence problem, and shows practically no learning for two settings of
the goal altitude problem, R-max manages to always learn to some extent, seemingly not suffering from
any sudden drops or instabilities. It is likely that the stochasticity of the SRM neuron contributed to
this at least partially, being both a curse and a blessing: while it might prevent learning instabilities
and sudden crashes in performance, it could also impede learning to some extent, because there is
always some randomness going on. That being said, both learning rules showed significant learning
capacity over a diverse range of problems and configurations, which was one of the primary goals of
these preliminary experiments. The variation of the eligibility trace length showed that this capacity
could be greatly expanded by making the trace longer (up to some length).

9.2.2 Altitude + vertical speed versus divergence perception

The vertical simulation environment implemented two ways of perceiving the MAV’s state: a tuple of
altitude and vertical speed, and a scalar value of divergence. Given that this thesis is aimed at optical
flow control, the second case is the most interesting one. Fortunately, the learning curves for the various
experiments showed that, overall, learning was more successful when state was perceived as divergence.
On the other hand, R-STDP did suffer from learning instability for some hyperparameter settings,
and the final weight distributions belonging to these suggested that this was due to too many weights
approaching zero. This indicates that a solution to the sudden performance drops could be found in
adapting R-STDP to implement multiplicative weight changes, which have their magnitude dependent
on the weight’s magnitude, instead of additive ones, where this is not the case (see Section 5.2.2 for
more details). If more rigorous measures to ensure balanced weight distributions and spiking activity
are needed, the stable STDP rule by Paredes-Vallés et al. (2019), might prove valuable.

9.3 Implications of the analysis 107

9.2.3 Continuous versus discrete actions

The action space from which the SNN selects an action was made to be either discrete, meaning it has to
choose one of two possible actions by letting the single output (actor) neuron spike or not, or continuous,
where the desired action followed from a weighted average of a certain action vector based on the spiking
activity of the actor neurons in the output layer. Based on the number of actions to choose from, one
would expect problems with the discrete action space to be learnt more easily. However, comparing
the learning curves and the final accumulated rewards for both cases gives no definitive verdict on this.
From the perspective of realism this is promising, since a real-world scenario would involve continuous
action selection, and the results indicate that the SNN and learning rule do not experience significantly
more difficulties when dealing with continuous control problems.

9.3 Implications of the analysis
The preliminary analysis conducted in this part has had an effect on the remaining course of this thesis,
and has served as a basis for some of its contributions. We will go over these in this section.

First of all, consider the learning task at hand. Whereas we focused on controlling hover during the
preliminary experiments, this was altered to the task of landing afterwards. There are multiple reasons
for this. The main one is the inherent ‘drift’ that occurs when performing optical-flow-based hover
control in the real world, as demonstrated by Pijnacker Hordijk et al. (2018), where an altitude dif-
ference of 0.5 m has already emerged after 30 s. The likely cause of this is a small initial velocities
that, in the presence of sensor noise, does not lead to significant values of divergence, and thus hardly
triggers any control. Landing, on the other hand, lets the controller experience a much higher diver-
gence, both through larger velocities as well as the approach of the ground. It was therefore believed
that the task of landing would be a more suitable, and also more relevant, demonstration of performance.

The introduction of noise in the simulation environment has been another implication of the prelimin-
ary analysis. As was done in the work of Scheper and de Croon (2020), we augmented the divergence
observed by the SNN with constant and proportional noise, as well as delay, following the model by Ho
and de Croon (2016). Computational jitter was added to simulate the case of a missing divergence
estimate, and vertical wind was used as an external disturbance. Scheper and de Croon (2020) further-
more modelled rotor spin-up and spin-down time through a time constant, leading to non-instantaneous
control. By varying all the above-mentioned quantities (noise, delay, wind, jitter, dynamics) between
evaluations, transferability between simulation and the real world should be improved. For this reason,
we adopted this same approach.

Given the absence of any kind of noise in our preliminary experiments, the lacking performance of the
SNN controllers is likely to be at least partially the result of the employed reward-modulated learning
rules. Judging from these experiments, one could say that these learning methods are currently not
mature enough to solve a complex problem like optical flow control. The fact that applications of these
learning rules either restrict themselves to simulated problems (Bing et al., 2020; Clawson et al., 2016)
or simple discrete mappings (Zhao et al., 2018) seems to confirm this observation. Therefore, the switch
was made to a neuroevolutionary framework similar to that of Scheper and de Croon (2020). The
generality of this approach made for a lot of flexibility in the configuration of the spiking controllers,
and also allowed us to introduce additional objectives like the minimisation of energy.

On the other hand, neuroevolution was not considered earlier because our focus was primarily on meth-
ods that were suited for fast online learning. Though there are online/real-time adaptations of, for
instance, NEAT (rtNEAT, Stanley, Bryant & Miikkulainen, 2005), these have no known implementa-
tions at all for SNNs. Furthermore, some of the adaptations applied to ANNs still include an offline
phase (Agogino, Stanley & Miikkulainen, 2000).

IV
Appendices

109

A
Default Simulation Configurations

Here, the default simulation configurations are listed for both R-STDP and R-max for the following
cases (see Sections 7.3 and 8.3 for more details):

1. Discrete action space + goal altitude problem

2. Discrete action space + zero-divergence problem

3. Continuous action space + goal altitude problem

4. Continuous action space + zero-divergence problem

Tables A.1 and A.2 give the default hyperparameter values for each case.

111

112 Default Simulation Configurations

Table A.1: Default hyperparameter values for the discrete simulation cases. Hyphens indicate no units, blanks
indicate an irrelevant parameter for that case.

Discrete + goal altitude Discrete + zero divergence

Hyperparameter Unit R-STDP R-max R-STDP R-max

∆t ms 10 10 10 10
m kg 2 2 2 2
g ms−2 9.81 9.81 9.81 9.81

h0, ḣ0 m, ms−1 10, 0 10, 0 10, 0 10, 0
hgoal m 10 10

Rgoal , β1, β2, β3 - 10, 1, 1, 1 10, 1, 1, 1 10, 1, 1, 1 10, 1, 1, 1
Nsteps - 1000 1000 1000 1000

Nepisodes - 300 300 600 600
α - 5e−5 5e−5 1e−5 1e−5
τe ms 500 500 500 500

Apre, Apost - 1, 0 1, - 1, 0 1, -
τpre, τpost ms 20, 20 20, - 20, 20 20, -

τc ms 5 5
σr - 10 10 10 10

Neuron model - LIF SRM0 LIF SRM0

∆trefrac ms 0 0 0 0
urest mV −70 −70 −70 −70

θ mV −50 −50 −65 −60
∆θ mV 1 1
ρ0 (ms)−1 1 1
τm ms 20 20 20 20

NPC - 41 41 41 41
σPC m, ms−1 1, 1 1, 1 1, 1 1, 1
ρPC Hz 100 100 100 100
βPC - 2 2 2 2

Nactor - 1 1 1 1
Aact ms
τact ms

Tmin, Tmax N 0, 40 0, 40 0, 40 0, 40
wmin, wmax - 0, 2 0, 2 0, 2 0, 2

113

Table A.2: Default hyperparameter values for the continuous simulation cases. Hyphens indicate no units, blanks
indicate an irrelevant parameter for that case.

Continuous + goal altitude Continuous + zero divergence

Hyperparameter Unit R-STDP R-max R-STDP R-max

∆t ms 10 10 10 10
m kg 2 2 2 2
g ms−2 9.81 9.81 9.81 9.81

h0, ḣ0 m, ms−1 10, 0 10, 0 10, 0 10, 0
hgoal m 10 10

Rgoal , β1, β2, β3 - 10, 1, 1, 1 10, 1, 1, 1 10, 1, 1, 1 10, 1, 1, 1
Nsteps - 1000 1000 1000 1000

Nepisodes - 300 300 300 300
α - 5e−5 5e−5 5e−5 5e−5
τe ms 500 500 500 500

Apre, Apost - 1, 0 1, - 1, 0 1, -
τpre, τpost ms 20, 20 20, - 20, 20 20, -

τc ms 5 5
σr - 10 10 10 10

Neuron model - LIF SRM0 LIF SRM0

∆trefrac ms 10 10 10 10
urest mV −70 −70 −70 −70

θ mV −60 −50 −65 −60
∆θ mV 1 1
ρ0 (ms)−1 1 1
τm ms 20 20 20 20

NPC - 41 41 41 41
σPC m, ms−1 1, 1 1, 1 1, 1 1, 1
ρPC Hz 100 100 100 100
βPC - 2 2 2 2

Nactor - 41 41 41 41
Aact ms 1 1 1 1
τact ms 20 20 20 20

Tmin, Tmax N 0, 40 0, 40 0, 40 0, 40
wmin, wmax - −1, 1 −1, 1 0, 2 0, 2

Bibliography
Abbeel, P. & Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement learning. In Proceedings

of the Twenty-first International Conference on Machine Learning (pp. 1–). ICML ’04. doi:10.
1145/1015330.1015430

Adelson, E. H. & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion.
JOSA A, 2(2), 284–299. doi:10.1364/JOSAA.2.000284

Agogino, A., Stanley, K. & Miikkulainen, R. (2000). Online interactive neuro-evolution. Neural Pro-
cessing Letters, 11(1), 29–38. doi:10.1023/A:1009615730125

Akolkar, H., Ieng, S. & Benosman, R. (2018). See before you see: real-time high speed motion prediction
using fast aperture-robust event-driven visual flow. arXiv:1811.11135 [cs]. Retrieved April 25,
2019, from http://arxiv.org/abs/1811.11135

Alkowatly, M. T., Becerra, V. M. & Holderbaum, W. (2014). Bioinspired autonomous visual vertical
control of a quadrotor unmanned aerial vehicle. Journal of Guidance, Control, and Dynamics,
38(2), 249–262. doi:10.2514/1.G000634

Amir, A., Taba, B., Berg, D., Melano, T., McKinstry, J., Di Nolfo, C., … Modha, D. (2017). A low
power, fully event-based gesture recognition system. (pp. 7243–7252). Retrieved May 8, 2019,
from http://openaccess.thecvf.com/content_cvpr_2017/html/Amir_A_Low_Power_
CVPR_2017_paper.html

Armendariz, S., Becerra, V. & Bausch, N. (2019). Bio-inspired autonomous visual vertical and ho-
rizontal control of a quadrotor unmanned aerial vehicle. Electronics, 8(2), 184. doi:10.3390/
electronics8020184

Aronov, D., Nevers, R. & Tank, D. W. (2017). Mapping of a non-spatial dimension by the hippocampal–
entorhinal circuit. Nature, 543(7647), 719–722. doi:10.1038/nature21692

Bäck, T., Fogel, D. B. & Michalewicz, Z. (1997). Handbook of evolutionary computation. doi:10.1201/
9780367802486

Baird, E., Boeddeker, N., Ibbotson, M. R. & Srinivasan, M. V. (2013). A universal strategy for visually
guided landing. Proceedings of the National Academy of Sciences, 110(46), 18686–18691. doi:10.
1073/pnas.1314311110

Baird, E., Srinivasan, M. V., Zhang, S. & Cowling, A. (2005). Visual control of flight speed in honeybees.
Journal of Experimental Biology, 208(20), 3895–3905. doi:10.1242/jeb.01818

Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J. & Szeliski, R. (2011). A database and
evaluation methodology for optical flow. International Journal of Computer Vision, 92(1), 1–31.
doi:10.1007/s11263-010-0390-2

Baras, D. & Meir, R. (2007). Reinforcement learning, spike-time-dependent plasticity, and the BCM
rule. Neural Computation, 19(8), 2245–2279. doi:10.1162/neco.2007.19.8.2245

Barto, A. G. & Mahadevan, S. (2003). Recent advances in hierarchical reinforcement learning. Discrete
Event Dynamic Systems, 13(1), 41–77. doi:10.1023/A:1022140919877

Beauchemin, S. S. & Barron, J. L. (1995). The computation of optical flow. ACM Comput. Surv. 27(3),
433–466. doi:10.1145/212094.212141

Bellman, R. E. (1957). Dynamic programming. Princeton University Press.

115

https://dx.doi.org/10.1145/1015330.1015430
https://dx.doi.org/10.1145/1015330.1015430
https://dx.doi.org/10.1364/JOSAA.2.000284
https://dx.doi.org/10.1023/A:1009615730125
http://arxiv.org/abs/1811.11135
https://dx.doi.org/10.2514/1.G000634
http://openaccess.thecvf.com/content_cvpr_2017/html/Amir_A_Low_Power_CVPR_2017_paper.html
http://openaccess.thecvf.com/content_cvpr_2017/html/Amir_A_Low_Power_CVPR_2017_paper.html
https://dx.doi.org/10.3390/electronics8020184
https://dx.doi.org/10.3390/electronics8020184
https://dx.doi.org/10.1038/nature21692
https://dx.doi.org/10.1201/9780367802486
https://dx.doi.org/10.1201/9780367802486
https://dx.doi.org/10.1073/pnas.1314311110
https://dx.doi.org/10.1073/pnas.1314311110
https://dx.doi.org/10.1242/jeb.01818
https://dx.doi.org/10.1007/s11263-010-0390-2
https://dx.doi.org/10.1162/neco.2007.19.8.2245
https://dx.doi.org/10.1023/A:1022140919877
https://dx.doi.org/10.1145/212094.212141

116 Bibliography

Bengio, Y., Louradour, J., Collobert, R. & Weston, J. (2009). Curriculum learning. In Proceedings of
the 26th Annual International Conference on Machine Learning (pp. 41–48). ICML ’09. doi:10.
1145/1553374.1553380

Benosman, R., Clercq, C., Lagorce, X., Ieng, S. & Bartolozzi, C. (2014). Event-based visual flow. IEEE
Transactions on Neural Networks and Learning Systems, 25(2), 407–417. doi:10.1109/TNNLS.
2013.2273537

Benosman, R., Ieng, S.-H., Clercq, C., Bartolozzi, C. & Srinivasan, M. (2012). Asynchronous frameless
event-based optical flow. Neural Networks, 27, 32–37. doi:10.1016/j.neunet.2011.11.001

Bi, G.-Q. & Poo, M.-M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence
on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 18(24),
10464–10472. doi:10.1523/JNEUROSCI.18-24-10464.1998

Bi, G.-Q. & Poo, M.-M. (2001). Synaptic modification by correlated activity: Hebb’s postulate revisited.
Annual Review of Neuroscience, 24(1), 139–166. doi:10.1146/annurev.neuro.24.1.139

Bichler, O., Querlioz, D., Thorpe, S. J., Bourgoin, J.-P. & Gamrat, C. (2012). Extraction of temporally
correlated features from dynamic vision sensors with spike-timing-dependent plasticity. Neural
Networks. Selected Papers from IJCNN 2011, 32, 339–348. doi:10.1016/j.neunet.2012.02.022

Bienenstock, E. L., Cooper, L. N. & Munro, P. W. (1982). Theory for the development of neuron
selectivity: orientation specificity and binocular interaction in visual cortex. Journal of Neuros-
cience, 2(1), 32–48. doi:10.1523/JNEUROSCI.02-01-00032.1982

Bing, Z., Meschede, C., Huang, K., Chen, G., Rohrbein, F., Akl, M. & Knoll, A. (2018). End to end
learning of spiking neural network based on R-STDP for a lane keeping vehicle. In 2018 IEEE
International Conference on Robotics and Automation (ICRA) (pp. 1–8). doi:10.1109/ICRA.
2018.8460482

Bing, Z., Baumann, I., Jiang, Z., Huang, K., Cai, C. & Knoll, A. (2019). Supervised learning in SNN
via reward-modulated spike-timing-dependent plasticity for a target reaching vehicle. Frontiers in
Neurorobotics, 13. doi:10.3389/fnbot.2019.00018

Bing, Z., Meschede, C., Chen, G., Knoll, A. & Huang, K. (2020). Indirect and direct training of spiking
neural networks for end-to-end control of a lane-keeping vehicle. Neural Networks, 121, 21–36.
doi:10.1016/j.neunet.2019.05.019

Bing, Z., Meschede, C., Röhrbein, F., Huang, K. & Knoll, A. C. (2018). A survey of robotics control
based on learning-inspired spiking neural networks. Frontiers in Neurorobotics, 12. doi:10.3389/
fnbot.2018.00035

Bohte, S. M., Kok, J. N. & La Poutré, H. (2002). Error-backpropagation in temporally encoded networks
of spiking neurons. Neurocomputing, 48(1), 17–37. doi:10.1016/S0925-2312(01)00658-0

Borst, A., Haag, J. & Reiff, D. F. (2010). Fly motion vision. Annual Review of Neuroscience, 33(1),
49–70. doi:10.1146/annurev-neuro-060909-153155

Bouvier, M., Valentian, A., Mesquida, T., Rummens, F., Reyboz, M., Vianello, E. & Beigne, E. (2019).
Spiking neural networks hardware implementations and challenges: a survey. J. Emerg. Technol.
Comput. Syst. 15(2), 22:1–22:35. doi:10.1145/3304103

Brandli, C., Berner, R., Yang, M., Liu, S. & Delbruck, T. (2014). A 240 × 180 130 dB 3 µs latency
global shutter spatiotemporal vision sensor. IEEE Journal of Solid-State Circuits, 49(10), 2333–
2341. doi:10.1109/JSSC.2014.2342715

Brosch, T. & Neumann, H. (2016). Event-based optical flow on neuromorphic hardware. In Proceed-
ings of the 9th EAI International Conference on Bio-inspired Information and Communications
Technologies (Formerly BIONETICS) (pp. 551–558). BICT’15. doi:10.4108/eai.3-12-2015.
2262447

https://dx.doi.org/10.1145/1553374.1553380
https://dx.doi.org/10.1145/1553374.1553380
https://dx.doi.org/10.1109/TNNLS.2013.2273537
https://dx.doi.org/10.1109/TNNLS.2013.2273537
https://dx.doi.org/10.1016/j.neunet.2011.11.001
https://dx.doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://dx.doi.org/10.1146/annurev.neuro.24.1.139
https://dx.doi.org/10.1016/j.neunet.2012.02.022
https://dx.doi.org/10.1523/JNEUROSCI.02-01-00032.1982
https://dx.doi.org/10.1109/ICRA.2018.8460482
https://dx.doi.org/10.1109/ICRA.2018.8460482
https://dx.doi.org/10.3389/fnbot.2019.00018
https://dx.doi.org/10.1016/j.neunet.2019.05.019
https://dx.doi.org/10.3389/fnbot.2018.00035
https://dx.doi.org/10.3389/fnbot.2018.00035
https://dx.doi.org/10.1016/S0925-2312(01)00658-0
https://dx.doi.org/10.1146/annurev-neuro-060909-153155
https://dx.doi.org/10.1145/3304103
https://dx.doi.org/10.1109/JSSC.2014.2342715
https://dx.doi.org/10.4108/eai.3-12-2015.2262447
https://dx.doi.org/10.4108/eai.3-12-2015.2262447

Bibliography 117

Brosch, T., Tschechne, S. & Neumann, H. (2015). On event-based optical flow detection. Frontiers in
Neuroscience, 9. doi:10.3389/fnins.2015.00137

Burda, Y., Edwards, H., Storkey, A. & Klimov, O. (2018). Exploration by random network distillation.
arXiv:1810.12894 [cs, stat]. Retrieved May 2, 2019, from http://arxiv.org/abs/1810.12894

Camus, T. (1997). Real-time quantized optical flow. Real-Time Imaging, 3(2), 71–86. doi:10.1006/
rtim.1996.0048

Caporale, N. & Dan, Y. (2008). Spike timing–dependent plasticity: a Hebbian learning rule. Annual
Review of Neuroscience, 31(1), 25–46. doi:10.1146/annurev.neuro.31.060407.125639

Chahl, J. S., Srinivasan, M. V. & Zhang, S. W. (2004). Landing strategies in honeybees and applications
to uninhabited airborne vehicles. The International Journal of Robotics Research, 23(2), 101–110.
doi:10.1177/0278364904041320

Clawson, T. S., Ferrari, S., Fuller, S. B. & Wood, R. J. (2016). Spiking neural network (SNN) control
of a flapping insect-scale robot. In 2016 IEEE 55th Conference on Decision and Control (CDC)
(pp. 3381–3388). doi:10.1109/CDC.2016.7798778

Conradt, J. (2015). On-board real-time optic-flow for miniature event-based vision sensors. In 2015
IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 1858–1863). doi:10.
1109/ROBIO.2015.7419043

Conroy, J., Gremillion, G., Ranganathan, B. & Humbert, J. S. (2009). Implementation of wide-field
integration of optic flow for autonomous quadrotor navigation. Autonomous Robots, 27(3), 189.
doi:10.1007/s10514-009-9140-0

Constantinescu, A. O., O’Reilly, J. X. & Behrens, T. E. J. (2016). Organizing conceptual knowledge in
humans with a gridlike code. Science, 352(6292), 1464–1468. doi:10.1126/science.aaf0941

Davies, M., Srinivasa, N., Lin, T., Chinya, G., Cao, Y., Choday, S. H., … Wang, H. (2018). Loihi: a
neuromorphic manycore processor with on-chip learning. IEEE Micro, 38(1), 82–99. doi:10.1109/
MM.2018.112130359

de Croon, G. C. H. E. (2016). Monocular distance estimation with optical flow maneuvers and efference
copies: a stability-based strategy. Bioinspiration & Biomimetics, 11(1), 016004. doi:10.1088/
1748-3190/11/1/016004

de Croon, G. C. H. E., Ho, H. W., De Wagter, C., van Kampen, E., Remes, B. & Chu, Q. P. (2013).
Optic-flow based slope estimation for autonomous landing. International Journal of Micro Air
Vehicles, 5(4), 287–297. doi:10.1260/1756-8293.5.4.287

de Croon, G., Dartel, M. F. V. & Postma, E. O. (2005). Evolutionary learning outperforms reinforce-
ment learning on non-Markovian tasks. In Workshop on Memory and Learning Mechanisms in
Autonomous Robots, 8th European Conference on Artificial Life.

de Croon, G., de Clercq, K., Ruijsink, R., Remes, B. & de Wagter, C. (2009). Design, aerodynamics,
and vision-based control of the DelFly. International Journal of Micro Air Vehicles, 1(2), 71–97.
doi:10.1260/175682909789498288

di Castro, D., Volkinshtein, D. & Meir, R. (2009). Temporal difference based actor critic learning -
convergence and neural implementation. In Advances in neural information processing systems 21
(pp. 385–392). Curran Associates, Inc. Retrieved February 25, 2019, from http://papers.nips.
cc/paper/3517-temporal-difference-based-actor-critic-learning-convergence-
and-neural-implementation.pdf

Diehl, P. U. & Cook, M. (2014). Efficient implementation of STDP rules on SpiNNaker neuromorphic
hardware. In 2014 International Joint Conference on Neural Networks (IJCNN) (pp. 4288–4295).
doi:10.1109/IJCNN.2014.6889876

https://dx.doi.org/10.3389/fnins.2015.00137
http://arxiv.org/abs/1810.12894
https://dx.doi.org/10.1006/rtim.1996.0048
https://dx.doi.org/10.1006/rtim.1996.0048
https://dx.doi.org/10.1146/annurev.neuro.31.060407.125639
https://dx.doi.org/10.1177/0278364904041320
https://dx.doi.org/10.1109/CDC.2016.7798778
https://dx.doi.org/10.1109/ROBIO.2015.7419043
https://dx.doi.org/10.1109/ROBIO.2015.7419043
https://dx.doi.org/10.1007/s10514-009-9140-0
https://dx.doi.org/10.1126/science.aaf0941
https://dx.doi.org/10.1109/MM.2018.112130359
https://dx.doi.org/10.1109/MM.2018.112130359
https://dx.doi.org/10.1088/1748-3190/11/1/016004
https://dx.doi.org/10.1088/1748-3190/11/1/016004
https://dx.doi.org/10.1260/1756-8293.5.4.287
https://dx.doi.org/10.1260/175682909789498288
http://papers.nips.cc/paper/3517-temporal-difference-based-actor-critic-learning-convergence-and-neural-implementation.pdf
http://papers.nips.cc/paper/3517-temporal-difference-based-actor-critic-learning-convergence-and-neural-implementation.pdf
http://papers.nips.cc/paper/3517-temporal-difference-based-actor-critic-learning-convergence-and-neural-implementation.pdf
https://dx.doi.org/10.1109/IJCNN.2014.6889876

118 Bibliography

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S. & Pfeiffer, M. (2015). Fast-classifying, high-accuracy
spiking deep networks through weight and threshold balancing. In 2015 International Joint Con-
ference on Neural Networks (IJCNN) (pp. 1–8). doi:10.1109/IJCNN.2015.7280696

Diehl, P. U. & Cook, M. (2015). Unsupervised learning of digit recognition using spike-timing-dependent
plasticity. Frontiers in Computational Neuroscience, 9. doi:10.3389/fncom.2015.00099

Doya, K. (2000). Reinforcement learning in continuous time and space. Neural Computation, 12(1),
219–245. doi:10.1162/089976600300015961

Eichner, H., Joesch, M., Schnell, B., Reiff, D. F. & Borst, A. (2011). Internal structure of the fly
elementary motion detector. Neuron, 70(6), 1155–1164. doi:10.1016/j.neuron.2011.03.028

Eppler, J. M., Helias, M., Muller, E., Diesmann, M. & Gewaltig, M.-O. (2009). PyNEST: a convenient
interface to the NEST simulator. Frontiers in Neuroinformatics, 2. doi:10.3389/neuro.11.012.
2008

Expert, F. & Ruffier, F. (2015). Flying over uneven moving terrain based on optic-flow cues without
any need for reference frames or accelerometers. Bioinspiration & Biomimetics, 10(2), 026003.
doi:10.1088/1748-3182/10/2/026003

Faghihi, F., Moustafa, A. A., Heinrich, R. & Wörgötter, F. (2017). A computational model of condi-
tioning inspired by drosophila olfactory system. Neural Networks, 87, 96–108. doi:10.1016/j.
neunet.2016.11.002

Farries, M. A. & Fairhall, A. L. (2007). Reinforcement learning with modulated spike timing–dependent
synaptic plasticity. Journal of Neurophysiology, 98(6), 3648–3665. doi:10.1152/jn.00364.2007

Fleet, D. J. & Jepson, A. D. (1990). Computation of component image velocity from local phase in-
formation. International Journal of Computer Vision, 5(1), 77–104. doi:10.1007/BF00056772

Floreano, D., Dürr, P. & Mattiussi, C. (2008). Neuroevolution: from architectures to learning. Evolu-
tionary Intelligence, 1(1), 47–62. doi:10.1007/s12065-007-0002-4

Florian, R. V. (2007). Reinforcement learning through modulation of spike-timing-dependent synaptic
plasticity. Neural Computation, 19(6), 1468–1502. doi:10.1162/neco.2007.19.6.1468

Foderaro, G., Henriquez, C. & Ferrari, S. (2010). Indirect training of a spiking neural network for flight
control via spike-timing-dependent synaptic plasticity. In 49th IEEE Conference on Decision and
Control (CDC) (pp. 911–917). doi:10.1109/CDC.2010.5717260

Fogel, D. B. (1997). The advantages of evolutionary computation. In Biocomputing and Emergent Com-
putation: Proceedings of BCEC97 (pp. 1–11). World Scientific Press. Retrieved December 18, 2019,
from http://dl.acm.org/citation.cfm?id=648178.749054

Franceschini, N., Riehle, A. & Le Nestour, A. (1989). Directionally selective motion detection by insect
neurons. In Facets of Vision (pp. 360–390). Springer Berlin Heidelberg.

Frémaux, N. & Gerstner, W. (2016). Neuromodulated spike-timing-dependent plasticity, and theory of
three-factor learning rules. Frontiers in Neural Circuits, 9. doi:10.3389/fncir.2015.00085

Frémaux, N., Sprekeler, H. & Gerstner, W. (2010). Functional requirements for reward-modulated
spike-timing-dependent plasticity. Journal of Neuroscience, 30(40), 13326–13337. doi:10.1523/
JNEUROSCI.6249-09.2010

Frémaux, N., Sprekeler, H. & Gerstner, W. (2013). Reinforcement learning using a continuous time actor-
critic framework with spiking neurons. PLOS Computational Biology, 9(4), e1003024. doi:10.
1371/journal.pcbi.1003024

Furber, S. B., Galluppi, F., Temple, S. & Plana, L. A. (2014). The SpiNNaker project. Proceedings of
the IEEE, 102(5), 652–665. doi:10.1109/JPROC.2014.2304638

https://dx.doi.org/10.1109/IJCNN.2015.7280696
https://dx.doi.org/10.3389/fncom.2015.00099
https://dx.doi.org/10.1162/089976600300015961
https://dx.doi.org/10.1016/j.neuron.2011.03.028
https://dx.doi.org/10.3389/neuro.11.012.2008
https://dx.doi.org/10.3389/neuro.11.012.2008
https://dx.doi.org/10.1088/1748-3182/10/2/026003
https://dx.doi.org/10.1016/j.neunet.2016.11.002
https://dx.doi.org/10.1016/j.neunet.2016.11.002
https://dx.doi.org/10.1152/jn.00364.2007
https://dx.doi.org/10.1007/BF00056772
https://dx.doi.org/10.1007/s12065-007-0002-4
https://dx.doi.org/10.1162/neco.2007.19.6.1468
https://dx.doi.org/10.1109/CDC.2010.5717260
http://dl.acm.org/citation.cfm?id=648178.749054
https://dx.doi.org/10.3389/fncir.2015.00085
https://dx.doi.org/10.1523/JNEUROSCI.6249-09.2010
https://dx.doi.org/10.1523/JNEUROSCI.6249-09.2010
https://dx.doi.org/10.1371/journal.pcbi.1003024
https://dx.doi.org/10.1371/journal.pcbi.1003024
https://dx.doi.org/10.1109/JPROC.2014.2304638

Bibliography 119

Gallego, G., Delbruck, T., Orchard, G., Bartolozzi, C., Taba, B., Censi, A., … Scaramuzza, D. (2019).
Event-based vision: a survey. arXiv:1904.08405 [cs]. Retrieved April 25, 2019, from http://
arxiv.org/abs/1904.08405

Georgopoulos, A. P., Schwartz, A. B. & Kettner, R. E. (1986). Neuronal population coding of movement
direction. Science, 233(4771), 1416–1419. doi:10.1126/science.3749885

Gerstner, W. & Kistler, W. M. (2002). Spiking neuron models: single neurons, populations, plasticity.
Cambridge University Press.

Gerstner, W., Kistler, W. M., Naud, R. & Paninski, L. (2014). Neuronal dynamics: from single neurons
to networks and models of cognition. New York, NY, USA: Cambridge University Press.

Gerstner, W., Lehmann, M., Liakoni, V., Corneil, D. & Brea, J. (2018). Eligibility traces and plasti-
city on behavioral time scales: experimental support of NeoHebbian three-factor learning rules.
Frontiers in Neural Circuits, 12. doi:10.3389/fncir.2018.00053

Gerstner, W., van Hemmen, J. L. & Cowan, J. D. (1996). What matters in neuronal locking? Neural
Computation, 8(8), 1653–1676. doi:10.1162/neco.1996.8.8.1653

Gewaltig, M.-O. & Diesmann, M. (2007). NEST (NEural simulation tool). Scholarpedia, 2(4), 1430.
doi:10.4249/scholarpedia.1430

Gibson, J. J. (1950). The perception of the visual world. Boston: Houghton Mifflin Company.

Goodfellow, I., Bengio, Y. & Courville, A. (2016). Deep learning. MIT Press.

Goodman, D. F. M. & Brette, R. (2008). Brian: a simulator for spiking neural networks in python.
Frontiers in Neuroinformatics, 2. doi:10.3389/neuro.11.005.2008

Gullapalli, V. (1990). A stochastic reinforcement learning algorithm for learning real-valued functions.
Neural Networks, 3(6), 671–692. doi:10.1016/0893-6080(90)90056-Q

Haessig, G., Berthelon, X., Ieng, S.-H. & Benosman, R. (2019). A spiking neural network model of
depth from defocus for event-based neuromorphic vision. Scientific Reports, 9(1), 3744. doi:10.
1038/s41598-019-40064-0

Haessig, G., Cassidy, A., Alvarez, R., Benosman, R. & Orchard, G. (2018). Spiking optical flow for event-
based sensors using IBM’s TrueNorth neurosynaptic system. IEEE Transactions on Biomedical
Circuits and Systems, 12(4), 860–870. doi:10.1109/TBCAS.2018.2834558

Hafting, T., Fyhn, M., Molden, S., Moser, M.-B. & Moser, E. I. (2005). Microstructure of a spatial map
in the entorhinal cortex. Nature, 436(7052), 801. doi:10.1038/nature03721

Harris, C. & Stephens, M. (1988). A combined corner and edge detector. In In Proc. Fourth Alvey
Vision Conference (pp. 147–152).

Hassenstein, B. & Reichardt, W. (1956). Systemtheoretische analyse der zeit-, reihenfolgen- und vorzeichenaus-
wertung bei der bewegungsperzeption des rüsselkäfers chlorophanus. Zeitschrift für Naturforschung
B, 11(9), 513–524. doi:10.1515/znb-1956-9-1004

Hazan, H., Saunders, D. J., Khan, H., Patel, D., Sanghavi, D. T., Siegelmann, H. T. & Kozma, R. (2018).
BindsNET: a machine learning-oriented spiking neural networks library in python. Frontiers in
Neuroinformatics, 12. doi:10.3389/fninf.2018.00089

Hebb, D. O. (1949). The organization of behavior: a neuropsychological theory. New York: John Wiley
& Sons, Inc.

Herissé, B., Hamel, T., Mahony, R. & Russotto, F. (2012). Landing a VTOL unmanned aerial vehicle
on a moving platform using optical flow. IEEE Transactions on Robotics, 28(1), 77–89. doi:10.
1109/TRO.2011.2163435

http://arxiv.org/abs/1904.08405
http://arxiv.org/abs/1904.08405
https://dx.doi.org/10.1126/science.3749885
https://dx.doi.org/10.3389/fncir.2018.00053
https://dx.doi.org/10.1162/neco.1996.8.8.1653
https://dx.doi.org/10.4249/scholarpedia.1430
https://dx.doi.org/10.3389/neuro.11.005.2008
https://dx.doi.org/10.1016/0893-6080(90)90056-Q
https://dx.doi.org/10.1038/s41598-019-40064-0
https://dx.doi.org/10.1038/s41598-019-40064-0
https://dx.doi.org/10.1109/TBCAS.2018.2834558
https://dx.doi.org/10.1038/nature03721
https://dx.doi.org/10.1515/znb-1956-9-1004
https://dx.doi.org/10.3389/fninf.2018.00089
https://dx.doi.org/10.1109/TRO.2011.2163435
https://dx.doi.org/10.1109/TRO.2011.2163435

120 Bibliography

Ho, H. W. & de Croon, G. C. H. E. (2016). Characterization of flow field divergence for MAVs vertical
control landing. In AIAA Guidance, Navigation, and Control Conference. doi:10.2514/6.2016-
0106

Ho, H. W., de Croon, G. C. H. E., van Kampen, E., Chu, Q. P. & Mulder, M. (2018). Adaptive gain
control strategy for constant optical flow divergence landing. IEEE Transactions on Robotics,
34(2), 508–516. doi:10.1109/TRO.2018.2817418

Hodgkin, A. L. & Huxley, A. F. (1952). A quantitative description of membrane current and its ap-
plication to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500–544.
doi:10.1113/jphysiol.1952.sp004764

Horn, B. K. P. & Schunck, B. G. (1981). Determining optical flow. Artificial Intelligence, 17(1), 185–
203. doi:10.1016/0004-3702(81)90024-2

Hull, C. L. (1932). The goal-gradient hypothesis and maze learning. Psychological Review, 39(1), 25–43.
doi:10.1037/h0072640

Hull, C. L. (1943). Principles of behavior: an introduction to behavior theory. New York, USA: Appleton-
Century.

Izhikevich, E. M. (2007). Solving the distal reward problem through linkage of STDP and dopamine
signaling. Cerebral Cortex, 17(10), 2443–2452. doi:10.1093/cercor/bhl152

Izhikevich, E. M. & Desai, N. S. (2003). Relating STDP to BCM. Neural Computation, 15(7), 1511–
1523. doi:10.1162/089976603321891783

Izzo, D. & de Croon, G. C. H. E. (2012). Landing with time-to-contact and ventral optic flow estimates.
Journal of Guidance, Control, and Dynamics, 35(4), 1362–1367. doi:10.2514/1.56598

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Campbell, R. H., Czechowski, K., … Michalewski,
H. (2019). Model-based reinforcement learning for Atari. arXiv:1903.00374 [cs, stat]. Retrieved
November 21, 2019, from http://arxiv.org/abs/1903.00374

Karásek, M., Muijres, F. T., Wagter, C. D., Remes, B. D. W. & de Croon, G. C. H. E. (2018). A
tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns. Science,
361(6407), 1089–1094. doi:10.1126/science.aat0350

Kendoul, F., Fantoni, I. & Nonami, K. (2009). Optic flow-based vision system for autonomous 3d
localization and control of small aerial vehicles. Robotics and Autonomous Systems, 57(6), 591–
602. doi:10.1016/j.robot.2009.02.001

Keshavan, J., Gremillion, G., Escobar-Alvarez, H. & Humbert, J. S. (2014). A � analysis-based, controller-
synthesis framework for robust bioinspired visual navigation in less-structured environments.
Bioinspiration & Biomimetics, 9(2), 025011. doi:10.1088/1748-3182/9/2/025011

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J. & Masquelier, T. (2018). STDP-based spiking deep
convolutional neural networks for object recognition. Neural Networks, 99, 56–67. doi:10.1016/
j.neunet.2017.12.005

Killian, N. J., Jutras, M. J. & Buffalo, E. A. (2012). A map of visual space in the primate entorhinal
cortex. Nature, 491(7426), 761–764. doi:10.1038/nature11587

Kistler, W. M., Gerstner, W. & Hemmen, J. L. v. (1997). Reduction of the Hodgkin-Huxley equations
to a single-variable threshold model. Neural Computation, 9(5), 1015–1045. doi:10.1162/neco.
1997.9.5.1015

Klopf, A. H. (1972). Brain function and adaptive systems: a heterostatic theory (No. AFCRL-SR-133).
AIR FORCE CAMBRIDGE RESEARCH LABS HANSCOM AFB MA. Retrieved May 3, 2019,
from https://apps.dtic.mil/docs/citations/AD0742259

https://dx.doi.org/10.2514/6.2016-0106
https://dx.doi.org/10.2514/6.2016-0106
https://dx.doi.org/10.1109/TRO.2018.2817418
https://dx.doi.org/10.1113/jphysiol.1952.sp004764
https://dx.doi.org/10.1016/0004-3702(81)90024-2
https://dx.doi.org/10.1037/h0072640
https://dx.doi.org/10.1093/cercor/bhl152
https://dx.doi.org/10.1162/089976603321891783
https://dx.doi.org/10.2514/1.56598
http://arxiv.org/abs/1903.00374
https://dx.doi.org/10.1126/science.aat0350
https://dx.doi.org/10.1016/j.robot.2009.02.001
https://dx.doi.org/10.1088/1748-3182/9/2/025011
https://dx.doi.org/10.1016/j.neunet.2017.12.005
https://dx.doi.org/10.1016/j.neunet.2017.12.005
https://dx.doi.org/10.1038/nature11587
https://dx.doi.org/10.1162/neco.1997.9.5.1015
https://dx.doi.org/10.1162/neco.1997.9.5.1015
https://apps.dtic.mil/docs/citations/AD0742259

Bibliography 121

Klopf, A. H. (1982). The hedonistic neuron: a theory of memory, learning, and intelligence. Washington,
DC, USA: Hemisphere Pub. Corp.

Kober, J., Bagnell, J. A. & Peters, J. (2013). Reinforcement learning in robotics: a survey. The Inter-
national Journal of Robotics Research, 32(11), 1238–1274. doi:10.1177/0278364913495721

Kober, J. & Peters, J. R. (2009). Policy search for motor primitives in robotics. In Advances in neural
information processing systems 21 (pp. 849–856). Curran Associates, Inc. Retrieved May 4, 2019,
from http://papers.nips.cc/paper/3545-policy-search-for-motor-primitives-in-
robotics.pdf

Laud, A. & DeJong, G. (2002). Reinforcement learning and shaping: encouraging intended behaviors.
In Proceedings of the Nineteenth International Conference on Machine Learning (pp. 355–362).
ICML ’02. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. Retrieved March 12, 2019,
from http://dl.acm.org/citation.cfm?id=645531.656003

Laud, A. & DeJong, G. (2003). The influence of reward on the speed of reinforcement learning: an
analysis of shaping. In Proceedings of the Twentieth International Conference on Machine Learning
(pp. 440–447). ICML’03. AAAI Press. Retrieved March 12, 2019, from http://dl.acm.org/
citation.cfm?id=3041838.3041894

Lee, D. N. (1976). A theory of visual control of braking based on information about time-to-collision.
Perception, 5(4), 437–459. doi:10.1068/p050437

Lee, D. N., Davies, M. N. O., Green, P. R. & van der Weel, F. R. (1993). Visual control of velocity of
approach by pigeons when landing. Journal of Experimental Biology, 180(1), 85–104. Retrieved
March 5, 2019, from http://jeb.biologists.org/content/180/1/85

Legenstein, R., Pecevski, D. & Maass, W. (2008). A learning theory for reward-modulated spike-
timing-dependent plasticity with application to biofeedback. PLOS Computational Biology, 4(10),
e1000180. doi:10.1371/journal.pcbi.1000180

Lichtsteiner, P., Posch, C. & Delbruck, T. (2008). A 128 × 128 120 dB 15 µs latency asynchronous
temporal contrast vision sensor. IEEE Journal of Solid-State Circuits, 43(2), 566–576. doi:10.
1109/JSSC.2007.914337

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., … Wierstra, D. (2015). Continuous
control with deep reinforcement learning. arXiv:1509.02971 [cs, stat]. Retrieved April 26, 2019,
from http://arxiv.org/abs/1509.02971

Lin, C., Wild, A., Chinya, G. N., Cao, Y., Davies, M., Lavery, D. M. & Wang, H. (2018). Program-
ming spiking neural networks on Intel’s Loihi. Computer, 51(3), 52–61. doi:10.1109/MC.2018.
157113521

Longuet-Higgins, H. C. & Prazdny, K. (1980). The interpretation of a moving retinal image. Proceedings
of the Royal Society of London. Series B. Biological Sciences, 208(1173), 385–397. doi:10.1098/
rspb.1980.0057

Lucas, B. D. & Kanade, T. (1981). An iterative image registration technique with an application to
stereo vision. In Proceedings of the 7th International Joint Conference on Artificial Intelligence
(Vol. 2, pp. 674–679). IJCAI’81. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Retrieved March 4, 2019, from http://dl.acm.org/citation.cfm?id=1623264.1623280

Ma, K. Y., Chirarattananon, P., Fuller, S. B. & Wood, R. J. (2013). Controlled flight of a biologically
inspired, insect-scale robot. Science, 340(6132), 603–607. doi:10.1126/science.1231806

Maass, W. (1997). Networks of spiking neurons: the third generation of neural network models. Neural
Networks, 10(9), 1659–1671. doi:10.1016/S0893-6080(97)00011-7

https://dx.doi.org/10.1177/0278364913495721
http://papers.nips.cc/paper/3545-policy-search-for-motor-primitives-in-robotics.pdf
http://papers.nips.cc/paper/3545-policy-search-for-motor-primitives-in-robotics.pdf
http://dl.acm.org/citation.cfm?id=645531.656003
http://dl.acm.org/citation.cfm?id=3041838.3041894
http://dl.acm.org/citation.cfm?id=3041838.3041894
https://dx.doi.org/10.1068/p050437
http://jeb.biologists.org/content/180/1/85
https://dx.doi.org/10.1371/journal.pcbi.1000180
https://dx.doi.org/10.1109/JSSC.2007.914337
https://dx.doi.org/10.1109/JSSC.2007.914337
http://arxiv.org/abs/1509.02971
https://dx.doi.org/10.1109/MC.2018.157113521
https://dx.doi.org/10.1109/MC.2018.157113521
https://dx.doi.org/10.1098/rspb.1980.0057
https://dx.doi.org/10.1098/rspb.1980.0057
http://dl.acm.org/citation.cfm?id=1623264.1623280
https://dx.doi.org/10.1126/science.1231806
https://dx.doi.org/10.1016/S0893-6080(97)00011-7

122 Bibliography

Markram, H., Lübke, J., Frotscher, M. & Sakmann, B. (1997). Regulation of synaptic efficacy by co-
incidence of postsynaptic APs and EPSPs. Science, 275(5297), 213–215. doi:10.1126/science.
275.5297.213

Martin, S. J., Grimwood, P. D. & Morris, R. G. M. (2000). Synaptic plasticity and memory: an evaluation
of the hypothesis. Annual Review of Neuroscience, 23(1), 649–711. doi:10.1146/annurev.neuro.
23.1.649

Mataric, M. J. (1994). Reward functions for accelerated learning. In Machine learning proceedings 1994
(pp. 181–189). doi:10.1016/B978-1-55860-335-6.50030-1

McCulloch, W. S. & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The
bulletin of mathematical biophysics, 5(4), 115–133. doi:10.1007/BF02478259

Mead, C. (1990). Neuromorphic electronic systems. Proceedings of the IEEE, 78(10), 1629–1636. doi:10.
1109/5.58356

Mead, C. (1989). Analog VLSI and neural systems. Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc.

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan, F., … Modha,
D. S. (2014). A million spiking-neuron integrated circuit with a scalable communication network
and interface. Science, 345(6197), 668–673. doi:10.1126/science.1254642

Mikaitis, M., Pineda García, G., Knight, J. C. & Furber, S. B. (2018). Neuromodulated synaptic plasti-
city on the SpiNNaker neuromorphic system. Frontiers in Neuroscience, 12. doi:10.3389/fnins.
2018.00105

Minsky, M. (1961). Steps toward artificial intelligence. Proceedings of the IRE, 49(1), 8–30. doi:10.
1109/JRPROC.1961.287775

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. & Riedmiller, M. (2013).
Playing atari with deep reinforcement learning. arXiv:1312.5602 [cs]. Retrieved April 30, 2019,
from http://arxiv.org/abs/1312.5602

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., … Hassabis, D.
(2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533.
doi:10.1038/nature14236

Moldovan, T. M. & Abbeel, P. (2012). Safe exploration in Markov decision processes. arXiv:1205.4810
[cs]. Retrieved May 4, 2019, from http://arxiv.org/abs/1205.4810

Montague, P. R., Dayan, P. & Sejnowski, T. J. (1996). A framework for mesencephalic dopamine systems
based on predictive Hebbian learning. Journal of Neuroscience, 16(5), 1936–1947. doi:10.1523/
JNEUROSCI.16-05-01936.1996

Morrison, A., Aertsen, A. & Diesmann, M. (2007). Spike-timing-dependent plasticity in balanced random
networks. Neural Computation, 19(6), 1437–1467. doi:10.1162/neco.2007.19.6.1437

Moser, E. I., Kropff, E. & Moser, M.-B. (2008). Place cells, grid cells, and the brain’s spatial represent-
ation system. Annual Review of Neuroscience, 31(1), 69–89. doi:10.1146/annurev.neuro.31.
061307.090723

Mozafari, M., Ganjtabesh, M., Nowzari-Dalini, A. & Masquelier, T. (2019). SpykeTorch: efficient simula-
tion of convolutional spiking neural networks with at most one spike per neuron. arXiv:1903.02440
[cs, q-bio]. Retrieved March 13, 2019, from http://arxiv.org/abs/1903.02440

Neftci, E. O. & Averbeck, B. B. (2019). Reinforcement learning in artificial and biological systems.
Nature Machine Intelligence, 1(3), 133–143. doi:10.1038/s42256-019-0025-4

Ng, A. Y., Harada, D. & Russell, S. J. (1999). Policy invariance under reward transformations: theory
and application to reward shaping. In Proceedings of the Sixteenth International Conference on

https://dx.doi.org/10.1126/science.275.5297.213
https://dx.doi.org/10.1126/science.275.5297.213
https://dx.doi.org/10.1146/annurev.neuro.23.1.649
https://dx.doi.org/10.1146/annurev.neuro.23.1.649
https://dx.doi.org/10.1016/B978-1-55860-335-6.50030-1
https://dx.doi.org/10.1007/BF02478259
https://dx.doi.org/10.1109/5.58356
https://dx.doi.org/10.1109/5.58356
https://dx.doi.org/10.1126/science.1254642
https://dx.doi.org/10.3389/fnins.2018.00105
https://dx.doi.org/10.3389/fnins.2018.00105
https://dx.doi.org/10.1109/JRPROC.1961.287775
https://dx.doi.org/10.1109/JRPROC.1961.287775
http://arxiv.org/abs/1312.5602
https://dx.doi.org/10.1038/nature14236
http://arxiv.org/abs/1205.4810
https://dx.doi.org/10.1523/JNEUROSCI.16-05-01936.1996
https://dx.doi.org/10.1523/JNEUROSCI.16-05-01936.1996
https://dx.doi.org/10.1162/neco.2007.19.6.1437
https://dx.doi.org/10.1146/annurev.neuro.31.061307.090723
https://dx.doi.org/10.1146/annurev.neuro.31.061307.090723
http://arxiv.org/abs/1903.02440
https://dx.doi.org/10.1038/s42256-019-0025-4

Bibliography 123

Machine Learning (pp. 278–287). ICML ’99. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc. Retrieved March 12, 2019, from http://dl.acm.org/citation.cfm?id=645528.
657613

Ng, A. Y. & Russell, S. J. (2000). Algorithms for inverse reinforcement learning. In in Proc. 17th
International Conf. on Machine Learning (pp. 663–670). Morgan Kaufmann.

Nichols, E., McDaid, L. J. & Siddique, N. (2013). Biologically inspired SNN for robot control. IEEE
Transactions on Cybernetics, 43(1), 115–128. doi:10.1109/TSMCB.2012.2200674

O’Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K. & Dolan, R. J. (2004). Dissociable
roles of ventral and dorsal striatum in instrumental conditioning. Science, 304(5669), 452–454.
doi:10.1126/science.1094285

O’Keefe, J. & Dostrovsky, J. (1971). The hippocampus as a spatial map: preliminary evidence from
unit activity in the freely-moving rat. Brain Research, 34, 171–175. doi:10.1016/0006-8993(71)
90358-1

Olshausen, B. A. & Field, D. J. (2004). Sparse coding of sensory inputs. Current Opinion in Neurobio-
logy, 14(4), 481–487. doi:10.1016/j.conb.2004.07.007

Orchard, G., Benosman, R., Etienne-Cummings, R. & Thakor, N. V. (2013). A spiking neural net-
work architecture for visual motion estimation. In 2013 IEEE Biomedical Circuits and Systems
Conference (BioCAS) (pp. 298–301). doi:10.1109/BioCAS.2013.6679698

Orchard, G. & Etienne-Cummings, R. (2014). Bioinspired visual motion estimation. Proceedings of the
IEEE, 102(10), 1520–1536. doi:10.1109/JPROC.2014.2346763

Orchard, G., Jayawant, A., Cohen, G. K. & Thakor, N. (2015). Converting static image datasets to
spiking neuromorphic datasets using saccades. Frontiers in Neuroscience, 9. doi:10.3389/fnins.
2015.00437

Paredes-Vallés, F., Scheper, K. Y. W. & de Croon, G. C. H. E. (2019). Unsupervised learning of
a hierarchical spiking neural network for optical flow estimation: from events to global motion
perception. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. doi:10.1109/
TPAMI.2019.2903179

Pavlov, I. P. (1927). Conditioned reflexes: an investigation of the physiological activity of the cerebral
cortex. London, England: Oxford University Press.

Pfeiffer, M. & Pfeil, T. (2018). Deep learning with spiking neurons: opportunities and challenges. Fron-
tiers in Neuroscience, 12. doi:10.3389/fnins.2018.00774

Pfister, J.-P., Toyoizumi, T., Barber, D. & Gerstner, W. (2006). Optimal spike-timing-dependent plas-
ticity for precise action potential firing in supervised learning. Neural Computation, 18(6), 1318–
1348. doi:10.1162/neco.2006.18.6.1318

Pijnacker Hordijk, B. J., Scheper, K. Y. W. & de Croon, G. C. H. E. (2018). Vertical landing for micro
air vehicles using event-based optical flow. Journal of Field Robotics, 35(1), 69–90. doi:10.1002/
rob.21764

Polvara, R., Patacchiola, M., Sharma, S., Wan, J., Manning, A., Sutton, R. & Cangelosi, A. (2018).
Autonomous quadrotor landing using deep reinforcement learning. arXiv:1709.03339 [cs]. Re-
trieved March 12, 2019, from http://arxiv.org/abs/1709.03339

Posch, C., Matolin, D. & Wohlgenannt, R. (2011). A QVGA 143 dB dynamic range frame-free PWM
image sensor with lossless pixel-level video compression and time-domain CDS. IEEE Journal of
Solid-State Circuits, 46(1), 259–275. doi:10.1109/JSSC.2010.2085952

http://dl.acm.org/citation.cfm?id=645528.657613
http://dl.acm.org/citation.cfm?id=645528.657613
https://dx.doi.org/10.1109/TSMCB.2012.2200674
https://dx.doi.org/10.1126/science.1094285
https://dx.doi.org/10.1016/0006-8993(71)90358-1
https://dx.doi.org/10.1016/0006-8993(71)90358-1
https://dx.doi.org/10.1016/j.conb.2004.07.007
https://dx.doi.org/10.1109/BioCAS.2013.6679698
https://dx.doi.org/10.1109/JPROC.2014.2346763
https://dx.doi.org/10.3389/fnins.2015.00437
https://dx.doi.org/10.3389/fnins.2015.00437
https://dx.doi.org/10.1109/TPAMI.2019.2903179
https://dx.doi.org/10.1109/TPAMI.2019.2903179
https://dx.doi.org/10.3389/fnins.2018.00774
https://dx.doi.org/10.1162/neco.2006.18.6.1318
https://dx.doi.org/10.1002/rob.21764
https://dx.doi.org/10.1002/rob.21764
http://arxiv.org/abs/1709.03339
https://dx.doi.org/10.1109/JSSC.2010.2085952

124 Bibliography

Posch, C., Serrano-Gotarredona, T., Linares-Barranco, B. & Delbruck, T. (2014). Retinomorphic event-
based vision sensors: bioinspired cameras with spiking output. Proceedings of the IEEE, 102(10),
1470–1484. doi:10.1109/JPROC.2014.2346153

Potjans, W., Morrison, A. & Diesmann, M. (2009). A spiking neural network model of an actor-critic
learning agent. Neural Computation, 21(2), 301–339. doi:10.1162/neco.2008.08-07-593

Rescorla, R. A. & Wagner, A. R. (1972). A theory of pavlovian conditioning: variations in the effect-
iveness of reinforcement and nonreinforcement. In Classical conditioning II: current research and
theory (Vol. Vol. 2, pp. 64–99).

Rodriguez-Ramos, A., Sampedro, C., Bavle, H., Moreno, I. G. & Campoy, P. (2018). A deep reinforce-
ment learning technique for vision-based autonomous multirotor landing on a moving platform. In
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1010–
1017). doi:10.1109/IROS.2018.8594472

Rodriguez-Ramos, A., Sampedro, C., Bavle, H., de la Puente, P. & Campoy, P. (2019). A deep re-
inforcement learning strategy for UAV autonomous landing on a moving platform. Journal of
Intelligent & Robotic Systems, 93(1), 351–366. doi:10.1007/s10846-018-0891-8

Romo, R. & Schultz, W. (1990). Dopamine neurons of the monkey midbrain: contingencies of responses
to active touch during self-initiated arm movements. Journal of Neurophysiology, 63(3), 592–606.
doi:10.1152/jn.1990.63.3.592

Rossum, M. C. W. v., Bi, G. Q. & Turrigiano, G. G. (2000). Stable Hebbian learning from spike timing-
dependent plasticity. Journal of Neuroscience, 20(23), 8812–8821. doi:10.1523/JNEUROSCI.20-
23-08812.2000

Rosten, E. & Drummond, T. (2006). Machine learning for high-speed corner detection. In Computer
Vision – ECCV 2006 (pp. 430–443). Lecture Notes in Computer Science. Springer Berlin Heidel-
berg.

Roy, K., Jaiswal, A. & Panda, P. (2019). Towards spike-based machine intelligence with neuromorphic
computing. Nature, 575(7784), 607–617. doi:10.1038/s41586-019-1677-2

Rueckauer, B. & Delbruck, T. (2016). Evaluation of event-based algorithms for optical flow with ground-
truth from inertial measurement sensor. Frontiers in Neuroscience, 10. doi:10.3389/fnins.
2016.00176

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M. & Liu, S.-C. (2017). Conversion of continuous-valued
deep networks to efficient event-driven networks for image classification. Frontiers in Neuroscience,
11. doi:10.3389/fnins.2017.00682

Ruffier, F. & Franceschini, N. (2005). Optic flow regulation: the key to aircraft automatic guidance.
Robotics and Autonomous Systems. Biomimetic Robotics, 50(4), 177–194. doi:10.1016/j.robot.
2004.09.016

Ruffier, F. & Franceschini, N. (2015). Optic flow regulation in unsteady environments: a tethered MAV
achieves terrain following and targeted landing over a moving platform. Journal of Intelligent &
Robotic Systems, 79(2), 275–293. doi:10.1007/s10846-014-0062-5

Sanket, N. J., Parameshwara, C. M., Singh, C. D., Kuruttukulam, A. V., Fermüller, C., Scaramuzza, D.
& Aloimonos, Y. (2019). EVDodge: embodied AI for high-speed dodging on a quadrotor using
event cameras. arXiv:1906.02919 [cs]. Retrieved June 21, 2019, from http://arxiv.org/abs/
1906.02919

Scaramuzza, D. & Fraundorfer, F. (2011). Visual odometry part i: the first 30 years and fundamentals.
IEEE Robotics Automation Magazine, 18(4), 80–92. doi:10.1109/MRA.2011.943233

https://dx.doi.org/10.1109/JPROC.2014.2346153
https://dx.doi.org/10.1162/neco.2008.08-07-593
https://dx.doi.org/10.1109/IROS.2018.8594472
https://dx.doi.org/10.1007/s10846-018-0891-8
https://dx.doi.org/10.1152/jn.1990.63.3.592
https://dx.doi.org/10.1523/JNEUROSCI.20-23-08812.2000
https://dx.doi.org/10.1523/JNEUROSCI.20-23-08812.2000
https://dx.doi.org/10.1038/s41586-019-1677-2
https://dx.doi.org/10.3389/fnins.2016.00176
https://dx.doi.org/10.3389/fnins.2016.00176
https://dx.doi.org/10.3389/fnins.2017.00682
https://dx.doi.org/10.1016/j.robot.2004.09.016
https://dx.doi.org/10.1016/j.robot.2004.09.016
https://dx.doi.org/10.1007/s10846-014-0062-5
http://arxiv.org/abs/1906.02919
http://arxiv.org/abs/1906.02919
https://dx.doi.org/10.1109/MRA.2011.943233

Bibliography 125

Scheper, K. Y. W. & de Croon, G. C. H. E. (2020). Evolution of robust high speed optical-flow-based
landing for autonomous MAVs. Robotics and Autonomous Systems, 124, 103380. doi:10.1016/j.
robot.2019.103380

Schulman, J., Wolski, F., Dhariwal, P., Radford, A. & Klimov, O. (2017). Proximal policy optimization
algorithms. arXiv:1707.06347 [cs]. Retrieved May 2, 2019, from http://arxiv.org/abs/1707.
06347

Schultz, W. & Romo, R. (1990). Dopamine neurons of the monkey midbrain: contingencies of responses
to stimuli eliciting immediate behavioral reactions. Journal of Neurophysiology, 63(3), 607–624.
doi:10.1152/jn.1990.63.3.607

Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80(1),
1–27. doi:10.1152/jn.1998.80.1.1

Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36(2), 241–263. doi:10.1016/
S0896-6273(02)00967-4

Schultz, W., Dayan, P. & Montague, P. R. (1997). A neural substrate of prediction and reward. Science,
275(5306), 1593–1599. doi:10.1126/science.275.5306.1593

Serres, J. R. & Ruffier, F. (2017). Optic flow-based collision-free strategies: from insects to robots.
Arthropod Structure & Development. From Insects to Robots, 46(5), 703–717. doi:10.1016/j.
asd.2017.06.003

Shrestha, A., Ahmed, K., Wang, Y. & Qiu, Q. (2017). Stable spike-timing-dependent plasticity rule
for multilayer unsupervised and supervised learning. In 2017 International Joint Conference on
Neural Networks (IJCNN) (pp. 1999–2006). doi:10.1109/IJCNN.2017.7966096

Shrestha, S. B. & Orchard, G. (2018). SLAYER: spike layer error reassignment in time. In Advances
in neural information processing systems 31 (pp. 1412–1421). Curran Associates, Inc. Retrieved
March 13, 2019, from http://papers.nips.cc/paper/7415-slayer-spike-layer-error-
reassignment-in-time.pdf

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., … Hassabis, D. (2016).
Mastering the game of go with deep neural networks and tree search. Nature, 529(7587), 484–489.
doi:10.1038/nature16961

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., … Hassabis, D. (2018).
A general reinforcement learning algorithm that masters chess, shogi, and go through self-play.
Science, 362(6419), 1140–1144. doi:10.1126/science.aar6404

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., … Hassabis, D. (2017).
Mastering the game of go without human knowledge. Nature, 550(7676), 354–359. doi:10.1038/
nature24270

Skinner, B. F. (1938). The behavior of organisms: an experimental analysis. New York, USA: Appleton-
Century.

Skinner, B. F. (1958). Reinforcement today. American Psychologist, 13(3), 94–99. doi:10 . 1037 /
h0049039

Skinner, B. F. (1963). Operant behavior. American Psychologist, 18(8), 503–515. doi:10.1037/h0045185

Smart, W. D. & Kaelbling, L. P. (2002). Effective reinforcement learning for mobile robots. In Pro-
ceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292)
(Vol. 4, 3404–3410 vol.4). doi:10.1109/ROBOT.2002.1014237

Song, S., Miller, K. D. & Abbott, L. F. (2000). Competitive Hebbian learning through spike-timing-
dependent synaptic plasticity. Nature Neuroscience, 3(9), 919–926. doi:10.1038/78829

https://dx.doi.org/10.1016/j.robot.2019.103380
https://dx.doi.org/10.1016/j.robot.2019.103380
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://dx.doi.org/10.1152/jn.1990.63.3.607
https://dx.doi.org/10.1152/jn.1998.80.1.1
https://dx.doi.org/10.1016/S0896-6273(02)00967-4
https://dx.doi.org/10.1016/S0896-6273(02)00967-4
https://dx.doi.org/10.1126/science.275.5306.1593
https://dx.doi.org/10.1016/j.asd.2017.06.003
https://dx.doi.org/10.1016/j.asd.2017.06.003
https://dx.doi.org/10.1109/IJCNN.2017.7966096
http://papers.nips.cc/paper/7415-slayer-spike-layer-error-reassignment-in-time.pdf
http://papers.nips.cc/paper/7415-slayer-spike-layer-error-reassignment-in-time.pdf
https://dx.doi.org/10.1038/nature16961
https://dx.doi.org/10.1126/science.aar6404
https://dx.doi.org/10.1038/nature24270
https://dx.doi.org/10.1038/nature24270
https://dx.doi.org/10.1037/h0049039
https://dx.doi.org/10.1037/h0049039
https://dx.doi.org/10.1037/h0045185
https://dx.doi.org/10.1109/ROBOT.2002.1014237
https://dx.doi.org/10.1038/78829

126 Bibliography

Sorg, J., Lewis, R. L. & Singh, S. P. (2010). Reward design via online gradient ascent. In Advances
in neural information processing systems 23 (pp. 2190–2198). Curran Associates, Inc. Retrieved
May 1, 2019, from http://papers.nips.cc/paper/4146-reward-design-via-online-
gradient-ascent.pdf

Spüler, M., Nagel, S. & Rosenstiel, W. (2015). A spiking neuronal model learning a motor control task by
reinforcement learning and structural synaptic plasticity. In 2015 International Joint Conference
on Neural Networks (IJCNN) (pp. 1–8). doi:10.1109/IJCNN.2015.7280521

Srinivasan, M. V., Lehrer, M., Kirchner, W. H. & Zhang, S. W. (1991). Range perception through
apparent image speed in freely flying honeybees. Visual Neuroscience, 6(5), 519–535. doi:10.
1017/S095252380000136X

Srinivasan, M., Zhang, S., Lehrer, M. & Collett, T. (1996). Honeybee navigation en route to the goal:
visual flight control and odometry. Journal of Experimental Biology, 199(1), 237–244. Retrieved
March 5, 2019, from http://jeb.biologists.org/content/199/1/237

Stanley, K., Bryant, B. & Miikkulainen, R. (2005). Real-time neuroevolution in the NERO video game.
IEEE Transactions on Evolutionary Computation, 9(6), 653–668. doi:10.1109/TEVC.2005.
856210

Stein, R. B. (1965). A theoretical analysis of neuronal variability. Biophysical Journal, 5(2), 173–194.
doi:10.1016/S0006-3495(65)86709-1

Stein, R. B. (1967). Some models of neuronal variability. Biophysical Journal, 7(1), 37–68. doi:10.
1016/S0006-3495(67)86574-3

Stimberg, M., Goodman, D. F. M., Benichoux, V. & Brette, R. (2013). Brian 2 - the second coming:
spiking neural network simulation in python with code generation. BMC Neuroscience, 14(1),
P38. doi:10.1186/1471-2202-14-S1-P38

Sutton, R. S. & Barto, A. G. (1998). Reinforcement learning: an introduction (1st). Cambridge, MA,
USA: MIT Press.

Sutton, R. S. & Barto, A. G. (2018). Reinforcement learning: an introduction (2nd). Cambridge, MA,
USA: MIT Press.

Sutton, R. S., Koop, A. & Silver, D. (2007). On the role of tracking in stationary environments. (pp. 871–
878). doi:10.1145/1273496.1273606

Takahashi, Y., Schoenbaum, G. & Niv, Y. (2008). Silencing the critics: understanding the effects of
cocaine sensitization on dorsolateral and ventral striatum in the context of an actor/critic model.
Frontiers in Neuroscience, 2. doi:10.3389/neuro.01.014.2008

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T. & Maida, A. (2019). Deep learning in
spiking neural networks. Neural Networks, 111, 47–63. doi:10.1016/j.neunet.2018.12.002

Thorndike, E. L. (1898). Animal intelligence: an experimental study of the associative processes in
animals. The Psychological Review: Monograph Supplements, 2(4), i–109. doi:10.1037/h0092987

Thorndike, E. L. (1911). Animal intelligence: experimental studies. New York, USA: The Macmillan
Company. Retrieved May 2, 2019, from http://archive.org/details/animalintelligen00thor

Thorpe, S. J., Delorme, A. & Van Rullen, R. (2001). Spike-based strategies for rapid processing. Neural
Networks, 14(6), 715–725. doi:10.1016/S0893-6080(01)00083-1

Tschechne, S., Sailer, R. & Neumann, H. (2014). Bio-inspired optic flow from event-based neuromorphic
sensor input. In Artificial Neural Networks in Pattern Recognition (pp. 171–182). Lecture Notes
in Computer Science. Springer International Publishing.

Ullman, S. (1979). The interpretation of visual motion. The interpretation of visual motion. Oxford,
England: MIT Press.

http://papers.nips.cc/paper/4146-reward-design-via-online-gradient-ascent.pdf
http://papers.nips.cc/paper/4146-reward-design-via-online-gradient-ascent.pdf
https://dx.doi.org/10.1109/IJCNN.2015.7280521
https://dx.doi.org/10.1017/S095252380000136X
https://dx.doi.org/10.1017/S095252380000136X
http://jeb.biologists.org/content/199/1/237
https://dx.doi.org/10.1109/TEVC.2005.856210
https://dx.doi.org/10.1109/TEVC.2005.856210
https://dx.doi.org/10.1016/S0006-3495(65)86709-1
https://dx.doi.org/10.1016/S0006-3495(67)86574-3
https://dx.doi.org/10.1016/S0006-3495(67)86574-3
https://dx.doi.org/10.1186/1471-2202-14-S1-P38
https://dx.doi.org/10.1145/1273496.1273606
https://dx.doi.org/10.3389/neuro.01.014.2008
https://dx.doi.org/10.1016/j.neunet.2018.12.002
https://dx.doi.org/10.1037/h0092987
http://archive.org/details/animalintelligen00thor
https://dx.doi.org/10.1016/S0893-6080(01)00083-1

Bibliography 127

van Hasselt, H. (2010). Double Q-learning. In Advances in neural information processing systems 23
(pp. 2613–2621). Curran Associates, Inc. Retrieved April 30, 2019, from http://papers.nips.
cc/paper/3964-double-q-learning.pdf

van Hasselt, H., Doron, Y., Strub, F., Hessel, M., Sonnerat, N. & Modayil, J. (2018). Deep reinforcement
learning and the deadly triad. arXiv:1812.02648 [cs]. Retrieved April 30, 2019, from http://
arxiv.org/abs/1812.02648

van Hasselt, H., Guez, A. & Silver, D. (2016). Deep reinforcement learning with double Q-learning.
In Thirtieth AAAI Conference on Artificial Intelligence. Retrieved April 30, 2019, from https:
//www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389

Vasilaki, E., Frémaux, N., Urbanczik, R., Senn, W. & Gerstner, W. (2009). Spike-based reinforcement
learning in continuous state and action space: when policy gradient methods fail. PLOS Compu-
tational Biology, 5(12), e1000586. doi:10.1371/journal.pcbi.1000586

Vitay, J., Dinkelbach, H. Ü. & Hamker, F. H. (2015). ANNarchy: a code generation approach to neural
simulations on parallel hardware. Frontiers in Neuroinformatics, 9. doi:10.3389/fninf.2015.
00019

Ye, C., Mitrokhin, A., Fermüller, C., Yorke, J. A. & Aloimonos, Y. (2018). Unsupervised learning of
dense optical flow, depth and egomotion from sparse event data. arXiv:1809.08625 [cs]. Retrieved
September 17, 2019, from http://arxiv.org/abs/1809.08625

Zambrano, D. & Bohte, S. M. (2016). Fast and efficient asynchronous neural computation with adapting
spiking neural networks. arXiv:1609.02053 [cs]. Retrieved March 12, 2019, from http://arxiv.
org/abs/1609.02053

Zamora, I., Lopez, N. G., Vilches, V. M. & Cordero, A. H. (2016). Extending the OpenAI gym for robot-
ics: a toolkit for reinforcement learning using ROS and Gazebo. arXiv:1608.05742 [cs]. Retrieved
May 4, 2019, from http://arxiv.org/abs/1608.05742

Zhao, F., Zeng, Y. & Xu, B. (2018). A brain-inspired decision-making spiking neural network and its
application in unmanned aerial vehicle. Frontiers in Neurorobotics, 12. doi:10.3389/fnbot.
2018.00056

Zhu, A. Z., Yuan, L., Chaney, K. & Daniilidis, K. (2018). EV-FlowNet: self-supervised optical flow
estimation for event-based cameras. Robotics: Science and Systems XIV. doi:10.15607/RSS.
2018.XIV.062

Zhu, A. Z., Yuan, L., Chaney, K. & Daniilidis, K. (2019). Unsupervised event-based learning of optical
flow, depth, and egomotion. (pp. 989–997). Retrieved June 21, 2019, from http://openaccess.
thecvf.com/content_CVPR_2019/html/Zhu_Unsupervised_Event-Based_Learning_of_
Optical_Flow_Depth_and_Egomotion_CVPR_2019_paper.html

http://papers.nips.cc/paper/3964-double-q-learning.pdf
http://papers.nips.cc/paper/3964-double-q-learning.pdf
http://arxiv.org/abs/1812.02648
http://arxiv.org/abs/1812.02648
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
https://dx.doi.org/10.1371/journal.pcbi.1000586
https://dx.doi.org/10.3389/fninf.2015.00019
https://dx.doi.org/10.3389/fninf.2015.00019
http://arxiv.org/abs/1809.08625
http://arxiv.org/abs/1609.02053
http://arxiv.org/abs/1609.02053
http://arxiv.org/abs/1608.05742
https://dx.doi.org/10.3389/fnbot.2018.00056
https://dx.doi.org/10.3389/fnbot.2018.00056
https://dx.doi.org/10.15607/RSS.2018.XIV.062
https://dx.doi.org/10.15607/RSS.2018.XIV.062
http://openaccess.thecvf.com/content_CVPR_2019/html/Zhu_Unsupervised_Event-Based_Learning_of_Optical_Flow_Depth_and_Egomotion_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Zhu_Unsupervised_Event-Based_Learning_of_Optical_Flow_Depth_and_Egomotion_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Zhu_Unsupervised_Event-Based_Learning_of_Optical_Flow_Depth_and_Egomotion_CVPR_2019_paper.html

	Acknowledgements
	Abstract
	List of Symbols
	List of Abbreviations
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Motivation and research question
	Structure of this work

	I Scientific Paper
	II Literature Study
	Optical Flow Control of MAVs
	Optical flow modelling and estimation
	The pinhole camera model
	Derivation of visual observables
	Estimation methods

	Bio-inspired navigation with optical flow
	Controlling flight speed and lateral position in corridors
	Terrain following and landing

	Event-Based Vision Sensors & Optical Flow
	Event-based vision sensors
	Working principle
	Variants and comparison

	Event-based optical flow
	Estimation methods
	Applications

	Reinforcement Learning
	Reinforcement learning in biology
	Psychology
	Neuroscience

	Reinforcement learning basics
	Elements
	Exploration versus exploitation
	Model-free versus model-based
	Temporal-difference learning
	On-policy versus off-policy control
	Tabular representation versus function approximation
	Direct policy search: policy gradient and actor-critic methods
	Reward signal design
	Continuous time and space
	Game playing

	Reinforcement learning in robot control
	Difficulties
	MAV control

	Reward-Modulated Neuromorphic Computing
	Spiking neural networks
	Biological background
	Neuron models

	Learning in spiking neural networks
	Synaptic plasticity
	Unsupervised learning
	Supervised learning
	Reinforcement learning

	Neuromorphic applications
	Hardware implementations
	Simulation frameworks
	Applications in optical flow estimation
	Applications in vision-based navigation

	Synthesis of Literature
	Vision-based navigation for MAVs
	Reinforcement learning
	Reward-modulated neuromorphic computing

	III Preliminary Evaluation of Reward-Modulated Neuromorphic Computing for Vertical Control
	Methodology
	Outline of the analysis
	Spiking neural network simulator
	Vertical control simulation environment
	Environment characteristics
	State observation
	Action selection
	Reward function

	Vertical control with reward-modulated neuromorphic computing
	Reward-modulated learning
	R-STDP
	R-max
	Reward prediction

	Network configuration
	Neuron models and synapses
	Encoding state
	Decoding actions

	Simulation settings
	Results
	Discrete action space + goal altitude problem
	Discrete action space + zero-divergence problem
	Continuous action space + goal altitude problem
	Continuous action space + zero-divergence problem

	Discussion of Preliminary Experiments
	Simulation set-up
	Performance & feasibility of reward-modulated learning for MAV control
	R-STDP versus R-max
	Altitude + vertical speed versus divergence perception
	Continuous versus discrete actions

	Implications of the analysis

	IV Appendices
	Default Simulation Configurations

