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Abstract

In this thesis the CRISPR-Cas9 mechanism, a promising mechanism for gene-
editing, is considered. Closed form expressions are derived for the probability
and time to cleave or unbind for the associated Cas9 protein. The mechan-
ism can be modelled mathematically by a birth and death process, therefore
the expressions could be derived using Markov chains and semigroups. The
expressions are compared to simulations and interpreted using the model of hy-
bridization kinetics. Finally the moment generating function of the stopping
time is derived for two special Markov processes, i.e. a random walk and a
Brownian motion with drift. This was done using martingales.
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1 Introduction

Organisms are regularly intruded by phages and viruses. Such intrusion could
have negative effects on the hosting organism. Therefore many of them have
found a way to protect themselves from these intruders. In many prokaryotes1

this protection is organised by the CRISPR2 immunity mechanism and its Cas9
(CRISPR-associated) proteins. This system integrates parts of the genome of in-
truding phages in the bacterial DNA, creating a record of infection [6]. Further-
more it creates Cas9 proteins which contain a piece of this record. Such a piece
is called CRISPR RNA (crRNA). These Cas9 proteins search for DNA comple-
mentary with the crRNA. Once found, the protein breaks down or ’cleaves’ this
DNA to disable it [7].

However, the intruding phages have found a way to get around this security
system: by evolution their DNA changes regularly, which makes the record of
the CRISPR-Cas system outdated. Therefore the Cas9 proteins must also cleave
DNA which is nearly complementary to the crRNA to prevent infections from
evolved phages. One could wonder when the protein decides that such strands
match sufficiently and cleaves. Klein et al. [7] describe a model which explains
the physics behind this decision: the model is able to foretell whether a DNA
sequence is likely to be cleaved, given the crRNA. However, it cannot predict
the expected time it takes to make this decision.

As techniques have developed lately, it has become possible for humans to
produce crRNA ourselves, called guide RNA (gRNA), and embed it in a Cas9
protein such that the protein cleaves a strand of DNA of our choice [3]. This
technique allows us to experiment with gene editing and in fact it is a widely used
technique in the lab already [12]. This makes CRISPR-Cas9 a very promising
tool for medical applications such as prevention of genetic diseases. Once it is
known which sequence of DNA is responsible for such a genetic disease, scientists
can produce complementary gRNA and embed it in a Cas9 protein. After that,
the protein is inserted into a cell or embryo and it cleaves the desired sequence.

One might imagine that the physics behind Cas9’s decision to cleave must
be understood before it can be used for medical applications. While hunting
for a DNA sequence which causes disease, it might cleave another sufficiently
complementary DNA sequence which is responsible for vital functions. Then the
patient is healed from the disease but he is lumbered with a worse malfunction.

This thesis investigates the expected time it takes the CRISPR-Cas system
to cleave or not to cleave, assuming the model described in [7]. It does so by
deriving expressions for general birth and death processes and applying them to
the model. First the model is described in section 2. Then the expressions are
derived using the mathematical theories of Markov chains and semigroups. This
theory is described in section 3 and the derivations are done in section 4. After
that, the expressions are interpreted in terms of the model in section 5. Finally,
the moment generating function of the stopping time is derived for two special
Markov processes; a random walk and a Brownian motion, using martingales.
This is done in section 6.

1Prokaryotes are single-celled organisms without a membrane-bound nucleus.
2CRISPR is an abbreviation of Clustered Regularly Interspaced Short Palindromic Re-

peats.

1



2 Hybridization kinetics: a model for selection
rules

In the lab several phenomena have been observed which seem to cause cleavage
or unbinding of Cas9 proteins. Klein et al. describe a model to explain these
targeting rules by physics in [7]. This section gives an introduction to a slightly
modified version of this model.

In three steps, the Cas9 protein checks whether a part of a DNA sequence
matches with the gRNA it possesses:

1) PAM binding. Initially, the protein is unbound from the DNA. By a
random walk it searches a suitable place to bind, called a PAM (Protospacer
Adjacent Motif). Only when it is bound to a PAM, a Cas9 protein is able to
rip the DNA-helix and start the next step. These PAMs are spread throughout
the DNA and they are a sequence of 3-4 nucleotides3 (nt) [1].

2) R-loop. After being bound, Cas9 starts what is called an R-loop. In this
R-loop it compares the DNA with the gRNA it possesses. For that purpose it
separates the double helix of the DNA and tries to bind the nucleotides of the
gRNA to it one by one, starting with the nucleotides at the PAM (see fig. 1).
When a nucleotide of the gRNA and the DNA form a correct Watson-Crick
base pair4, the two will bind and energy is rewarded. However if the two do
not match, they do not fit together chemically. Therefore once two nucleotides
are bound, it costs less energy to unbind the two again if they are a mismatch
compared to when they are a match. It can be said that non-matching gRNA
and DNA tend to unbind again.

3) Cleavage. In the end Cas9 cleaves or unbinds depending on the progress of
the R-loop. If the DNA and gRNA sequences are not sufficiently complement-
ary, the R-loop will not be finished since the gRNA and DNA tend to unbind.
Then Cas9 unbinds from the DNA and will try to find a new PAM to bind to.
In contrast, if the protein is able to finish the R-loop, the two sequences are
sufficiently complementary. Then Cas9 is able to cleave the DNA.

3DNA and RNA are built up of a sequence of four different nucleotides, labelled by the
letters A, C, G, T and A, C, G, U respectively.

4The different nucleotides of DNA and RNA can make certain pairs only: C binds to G
only and A binds to T or U only, and vice versa. These combinations are called Watson-Crick
base pairs.

Figure 1: A sketch of the decision making process. First the Cas9 protein to
the PAM. Then it starts an R-loop by binding the nucleotides one by one. If
the DNA and gRNA are sufficiently complementary the DNA strand can be

cleaved, else the protein will unbind. [7]
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Figure 2: An example of an energy landscape [1]. In this example the gRNA
length is 8 nt. There are mismatches at positions 5 and 8.

In general the system drifts towards cleavage, especially when a state
matches. Therefore the barrier to the next state is ∆C lower than the
barrier to the previous state. However, the system prefers to unbind a

mismatch. Therefore the free energy of a state with a mismatch is ∆I higher
than the previous one with a match.

A Cas9 protein has to bind to a PAM before it starts the R-loop. The
degree of (dis-)favour to bind to such a PAM is given by ∆PAM. A positive

value for ∆PAM implies that the Cas9 protein prefers to bind to a PAM;
then barrier towards the R-loop is lower than towards unbinding.

Finally cleavage costs energy. These costs are given by ∆clv.
In general, the height of the barrier of moving backwards is modelled by

∆G− and of moving forwards by ∆G+.
All these parameters are in units of kBT .

2.1 The minimal model

As discussed, non-matching DNA and gRNA unbind more easily than a match-
ing combination. Therefore, since a system prefers a state with the least energy,
it can be said that the energy level lower when a non-matching base pair is
bound than when it is unbound. With this information it is possible to draw an
energy landscape for a given combination of DNA and gRNA. The energy gain
or loss when Cas9 moves from one nucleotide (or state) to another during the
R-loop can be modelled by several parameters as shown in fig. 2.

Let us define these parameters formally. First the zero energy level should
be defined. The system has zero energy when the Cas9 protein is unbound from
the PAM as this is its intial position.

During the R-loop the system hops from state to state using single nucleotide
steps. However when it hops forward, the double helix of the DNA has to be
separated, which costs energy, before the DNA and gRNA are bound, which
might release some energy. On the other hand, when taking a step backward
the gRNA and DNA have to be separated, which costs energy, before the DNA
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helix is bound together, which releases energy. Therefore, intially, the system
has to pay energy to move to another state before energy is released. This
implies that there is an energy hill between every two subsequent states. Let us
therefore define ∆G−i and ∆G+

i , which are the height of the hill which is passed
when moving to state i− 1 and state i+ 1 respectively. They are a measure for
how much free energy the system must have such that it can step to the next
state.

One can imagine that the difference in the height of two barriers surrounding
any state plays an important role: it tells whether the Cas protein is more
probable to move to the next or to the previous state. Therefore, for any state
i, the difference between these heights is given by ∆(i) = ∆G−i − ∆G+

i . The
value for ∆(i) depends on the position i, however, in a minimal model, there
are four different possible values for ∆(i).

First of all, the protein has to bind to a PAM before starting an R-loop.
Different types of Cas proteins have a different preference or distaste to be
bound to such a PAM. If it prefers to be bound, unbinding from the PAM costs
more energy than starting an R-loop. This implies a difference in height between
the two energy barriers surrounding the PAM state. This energy difference is
given by the parameter ∆PAM and it gives the degree of preference to bind
to a PAM. A positive value implies a preference for binding, a negative value
implies that it rather unbinds. In this thesis, only positive values of ∆PAM are
considered.

After that the system runs through the R-loop. In general, the system drifts
towards cleavage. Therefore, in general, the barrier to a state forward is lower
than the barrier to a state backwards. This energy difference is given by the
parameter ∆C. However when there is an off-target, (a mismatch), the system
prefers to unbind such combination. Therefore, in case of a mismatch, the
barrier to the next state is higher than the barrier to the previous state. The
appearing energy barrier is given by the parameter ∆I. Due to the drift towards
cleavage, it follows that the barrier due to a mismatch is ∆C −∆I higher than
its previous barrier.

Finally, at the last state, it costs energy to cleave the strand of DNA. This
energy cost is given by ∆clv. The complementarity of the last base pair plays a
role now. When the last base pair is a mismatch, the energy cost for cleavage
is ∆(N − 1) = ∆C −∆I −∆clv. Else the energy cost is ∆(N − 1) = ∆C −∆clv.

2.2 Decision rule

Having defined all parameters of the model, the decision rule of the CRISPR-
Cas system can be introduced. The model of Klein et al. [7] gives the following
physical rule to decide whether the Cas9 probably cleaves or unbinds:

The CRISPR associated protein is more likely to unbind if the
highest energy barrier is higher than the initial energy. On the other
hand, it is more likely to cleave if the highest barrier is lower than
the initial energy.

An example is shown in fig. 3. Three phenomena that have been observed in
the lab cause us to observe this rule [7]:
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Figure 3: Two energy landscapes displayed. Cas9 is more likely to cleave in
the green, dotted energy landscape than in the blue energy landscape since

its highest energy barrier is below the initial free energy level.

i) Seed region. First of all lab experiments show that there is a specific region
in which an off-target almost surely implies that Cas9 unbinds. This region is
called the seed region. The last state in this seed region is given by nseed and it
can be calculated by

nseed = 1 +
∆I −∆PAM

∆C
. (2.1)

This seed region can be explained using the model developed in [7]. If there is
an off-target close to the PAM, the system has not gained enough free energy to
compensate for the energy penalty. Therefore an energy barrier appears which
is higher than the initial energy of the system. Due to the high energy costs
towards cleavage, it will cause Cas9 to unbind.

However if the first off-target is outside the seed region, the system has
gained some free energy already by binding the preceding matching base pairs.
Therefore the energy barrier caused by the mismatch can be compensated by
this free energy. This means that the barrier is not higher than the barrier to
be passed for unbinding, so the system is likely to cleave (see fig. 4a).

ii) Mismatch spread. Secondly it appears that a block of mismatches re-
duces the probability of cleavage significantly, compared to the same number
of mismatches being spread throughout the DNA. This can be explained by
the model. A block of mismatches causes multiple subsequent energy penalties.
Therefore a very high barrier appears in the energy landscape. Such a high
energy barrier makes that the system prefers unbinding above cleavage.

However, when the mismatches are spread, several lower energy barriers
appear. These individual barriers are not higher than the barrier towards un-
binding. Therefore the system cleaves. (see fig. 4b)
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iii) Cleavage costs. The energy cost to cleave a strand of DNA is modelled by
the parameter ∆clv. If cleavage costs a lot of energy, the barrier towards cleavage
becomes higher than the barrier to unbinding. Therefore such a system has a
higher probability of unbinding. This phenomenon can be observed in fig. 4c.

(a) Three energy landscapes with different
locations of a mismatch. The blue line has

a mismatch before nseed, the green,
dashed, dotted one at nseed, the dashed

cyan one behind nseed. Cas9 is very likely
to unbind in the blue landscape while it

will probably cleave in the cyan landscape.

(b) Two energy landscapes with three
mismatches. A block of mismatches

appears in the green, dashed landscape,
while they are spread out in the blue line.
The protein is very likely to unbind in the

green energy landscape, while it will
probably cleave in the blue energy

landscape.

(c) Two energy landscapes with different
values for ∆clv. Cas9 is likely to cleave in
the blue energy landscape as the cleavage
barrier is lower than the barrier towards
unbinding. The protein is more likely to

unbind in the green, dashed energy
landscape due to the high energy costs of

cleavage.

Figure 4
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2.3 CRISPR-Cas as a birth and death process

Klein et al [7] are also able to describe the cleavage process mathematically: the
system can be seen as a birth and death process. In such a process, one should
see the R-loop as a discrete and finite state space S := {0, 1, . . . , N −1, N} with
a walker (the Cas9 protein) on it which hops through the space continuously in
time. This walker steps to the right with rate px and to the left with rate qx,
until it reaches the one of the boundaries of S: then the process stops. These
boundaries 0 and N are called absorbers and there qN = p0 = 0. Physically one
could say that position 0 is the unbound state, position 1 is the PAM state and
that the DNA is cleaved at position N . The state space is displayed in fig. 5

Figure 5: The state space of a birth and death process with which the
system can be described. States 0 and N are absorbers and are the unbound
and cleaved state respectively. State 1 is the PAM and therefore the initial
positions of the walkers. They move left and right with position dependent

rates qx and px respectively.

The rates px and qx can be related to the five parameters as defined in fig. 2
using the Arrhenius equation [1]. According to these equations, the rates are of
the following form for a certain k0 ∈ R+:

px = k0e
−∆G+

x = k0e
−(∆G−x −∆(x)) (2.2)

qx = k0e
−∆G−x (2.3)

In the minimal model, ∆(x) can take four values which can be deduced from
fig. 2. For x = 1, ∆(1) = ∆PAM. For the other states ∆(x) = ∆C, however
when there is a mismatch at state x, ∆(x) = ∆C −∆I. Finally at x = N − 1,
∆(N−1) = ∆C−∆clv or ∆(N−1) = ∆C−∆I−∆clv, depending on the presence
of a mismatch at the last state. By taking ∆G−, and therefore qx constant, the
rates reduce to the following:

px =



k0e
−(∆G−−∆PAM) for x = 1

k0e
−(∆G−−∆C) for a state with a match

k0e
−(∆G−−∆C+∆I) for a state with a mismatch

k0e
−(∆G−−∆C+∆clv) for x = N − 1 with a match

k0e
−(∆G−−∆C+∆I+∆clv) for x = N − 1 with a mismatch

(2.4)

qx = k0e
−∆G− (2.5)

The above expressions make it possible to rewrite expressions for general
birth and death processes into expressions suitable for the energy landscape of
the CRISPR-Cas system.

Notice that a general birth and death processes allows the walkers to start
anywhere on the state space. In the setting of CRISPR-Cas, however, the only
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start position is x = 1 as Cas9 always starts from the PAM. Therefore we are
specifically interested in expressions for birth and death processes that take
x = 1 as the initial position of the walkers.

In the lab however it sometimes is interesting to have the Cas9 protein start
at position x = N−1, the state before cleavage. However, in that case the state
space can be mirrored for the calculations. Then the walker starts at x = 1
again and the aforementioned expressions can be used.
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3 Markov chains and semigroups

In section 4, expressions for birth and death processes will be derived using the
theory of Markov chains and semigroups. Therefore, an introduction to this
theory is given in this section. The aim is to derive the generator of a birth and
death process, which will be used frequently in the next section.

Let us consider a discrete, finite, one-dimensional state space S = {0, 1, . . . , N}
and let {Xt, t ≥ 0} be a continuous-time Markov process on S. At every position
x the process moves to position y in time t with probability px,y(t) := P[Xt = y|X0 = x].
In this section several properties of such a process are discovered.

Figure 6: The discrete and finite state space S of a general, continuous-time
Markov process. For every x, y ∈ S, the probability to move from x to y

within time t is given by px,y(t).

A similar way to describe the probability to move from x to y is by using
rates. At every position the process moves from position x to y with rate rx,y.
These rates are related to the probabilities by

ri,j = lim
t→0

pi,j(t)

t
. (3.1)

First a Markov process needs to be defined. Several definitions are used in
literature and the following will be used here [11]

Definition 3.1 (Markov). A process {Xt} on S is said to be Markovian if
∀k ∈ N,∀s0 < s1 < . . . < sk−1 < t,

P(Xt = j|Xs0 = i0, Xs1 = i1, . . . , Xsk−1
= ik−1) = P(Xt = j|Xsk−1

= ik−1)

For a Markov process, given the present, future and past are independent.
Due to this property the transition matrix St of a Markov process can be defined.
It displays the probability with which the process moves from a position x ∈ S
to a position y ∈ S within a time t:

St =


p0,0(t) p0,1(t) · · · p0,N (t)
p1,0(t) p1,1(t) · · · p1,N (t)

...
...

. . .
...

pN,0(t) pN,1(t) · · · pN,N (t)

 .
This matrix is called the (transition) semigroup of the Markov process {Xt} [9].

It is possible to define a function f : S → R on the state space; such a
function assigns a value to every possible position of the walker in S. Since
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discrete and finite state spaces are considered only, a finite number of positions
needs to be assigned to a value. That is why such a function f can be identified
with the column vector

f =


f(0)
f(1)

...
f(N)

 =
[
f(j)

]
j∈S.

Furthermore let us introduce the following notation:

Px(.) = P[.|X0 = x]

Ex(.) = E[.|X0 = x]

Proposition 3.2. For a function f : S → R defined on the state space of a
Markov process, the expectation of the function can be calculated as follows:

Ex[f(Xt)] = (Stf)(x)

PROOF. Since f is defined on S which is discrete and finite, it can be considered
a column vector [f(j)]j∈S. Then Stf can be seen as a matrix-vector product,
which is written as the following column vector:

Stf =

∑
j∈S

pi,j(t) · f(j)


i∈S

Using this result and the definition of the expectation value one can rewrite:

Ex[f(Xt)] =
∑
j∈S

f(j)Px[Xt = j]

=
∑
j∈S

f(j)px,j(t)

= Stf(x) (3.2)

This last step follows from the aforementioned matrix-vector multiplication.

Furthermore let us derive the following lemma [9]:

Lemma 3.3. Given two random variables X,Y , the following holds:

E
[
E[X|Y ]

]
= E[X]

10



PROOF. Assume that X,Y are two random variables, then

E
[
E[X|Y ]

]
=

∞∑
k=−∞

E[X|Y = k]P(Y = k)

=

∞∑
n=−∞

∞∑
k=−∞

nE[X = n|Y = k]P(Y = k)

=

∞∑
n=−∞

n

∞∑
k=−∞

P[X = n|Y = k]P(Y = k)

=

∞∑
n=−∞

n

∞∑
k=−∞

P(X = n ∩ Y = k)

∗
=

∞∑
n=−∞

nP(X = n)

= E[X]

In the step marked with ∗ the following property was used:

P(X = n) =

∞∑
k=−∞

P(X = n ∩ Y = k).

This is true by the law of total probability.

Now a useful property of semigroups can be derived: the semigroup property
[11]:

Proposition 3.4 (Semigroup property). For any points in time s, t ≥ 0

St+s = StSs. (3.3)

As a consequence S0 = I.

PROOF. Using proposition 3.2 one finds

St+sf(x) = Ex[f(Xt+s)]

Then by lemma 3.3:

= Ex
[
E[f(Xt+s)|Xs]

]
The Markov property allows us to make a time shift and set X0 = Xs:

= Ex
[
EXs [f(Xt)]

]
Using proposition 3.2 twice one finds

= Ex[Stf(Xs)]

= (Ss(Stf))(x)

= StSsf(x)

11



This last step follows because the role of s and t can be reversed to obtain
St+sf = StSsf .

Notice that the following follows from the semigroup property: ISt = St =
S0+t = S0St. Therefore S0 = I.

From the semigroup property, one can also derive the Chapman-Kolmogorov
equations:

pi,j(t+ s) =
∑
k∈S

pi,k(t)pk,j(s). (3.4)

This equation states that the process moves from states i to j in time t+ s by
moving from state i to any state k in time t and then moving from k to j in the
remaining time s.

Given the semigroup property, the semigroup can be expressed in terms of
a generator. Differentiating the semigroup with respect to t:

S′t = lim
h→0

St+h − St
h

= lim
h→0

StSh − St
h

= St lim
h→0

Sh − I
h

= StL (3.5)

Where L := lim
h→0

Sh−I
h . This matrix L is called the generator of the Markov

process. The differential equation in eq. (3.5) gives the following result:

St = S0e
tL = etL. (3.6)

Assuming t� 1, this expression for St can be simplified by the definition of the
matrix exponential:

Stf(x) = etLf(x) =

∞∑
n=0

1

n!
(tL)nf(x)

= f(x) + tLf(x) +O(t2) (3.7)

3.1 Birth and death processes

Semigroups can be applied to birth and death processes as they are a special
type of Markov processes. As defined in section 2.3, a birth and death process
{Xt, t ≥ 0} is a continuous-time process defined on a discrete state space. At
every position x the process moves right with rate px and left with rate qx.
For t � 1 the walker will make one step at most with probability close to 1.
Therefore within a time t, the process has either taken one step to the right,
one to the left or it has not moved yet. The probabilities of these options are

Px(Xt = x+ 1) = tpx +O(t2)

Px(Xt = x− 1) = tqx +O(t2)

Px(Xt = x) = 1− tpx − tqx +O(t2)

12



Figure 7: A scheme of the state space of a birth and death process. A finite,
discrete state space S is considered. At every position i, the walkers move

left with rate qi and right with rate pi.

Then for a function f : S→ R the expected value for f(Xt) can be deduced:

Ex[f(Xt)] =
∑
j∈S

Px(Xt = j)f(j) (3.8)

= tpxf(x+ 1) + tqxf(x− 1) + (1− tpx − tqx)f(x) +O(t2)

= f(x) + t

(
px
(
f(x+ 1)− f(x)

)
+ qx

(
f(x− 1)− f(x)

))
+O(t2)

(3.9)

Note that according to proposition 3.2 this result is equal to Stf(x). Therefore
this expression can be seen as the semigroup of a birth and death process. By
the definition of a generator, an expression for the generator of a birth and death
process can be found:

Lf(x) = lim
t→0

Stf(x)− f(x)

t

= lim
t→0

{
px
(
f(x+ 1)− f(x)

)
+ qx

(
f(x− 1)− f(x)

)
+O(t)

}
= px

(
f(x+ 1)− f(x)

)
+ qx

(
f(x− 1)− f(x)

)
. (3.10)

This generator plays an important role in the derivations in the next chapter.
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4 Expressions for stopping times of birth and
death processes

Recall the birth and death process defined in section 2.3. A finite state space
S = {0, 1, 2, . . . , N} is considered and {Xt, t ≥ 0} is a birth and death process
defined on S. For every x ∈ S, the process moves to the right with rate px and
to the left with qx. Absorbers can be found at positions x = 0 and x = N ,
which are physically interpreted as the unbound state and the cleavage state.
Furthermore let us define the following:

T0 = inf{t ≥ 0 : Xt = 0} i.e. the unbinding time.

TN = inf{t ≥ 0 : Xt = N} i.e. the cleavage time.

T0,N = inf
{
t ≥ 0 : Xt ∈ {0, N}

}
i.e. the time to cleave or unbind.

In this section closed expressions for the following functions are derived:

1. Pclv(x) := Px(TN < T0). The probability of arriving at N before arriving
at 0, starting from x;

2. T (x) := Ex(T0,N ). The expected time taken to arrive at either position 0
or N , starting from x;

3. T ub(x) := Ex(T0,N |T0 < TN ). The expected time taken to arrive at 0
before arriving at N , starting from x;

4. T clv(x) := Ex(T0,N |TN < T0). The expected time taken to arrive at N
before arriving at 0, starting from x.

First the following lemmas will be proved:

Lemma 4.1. For every function f(x) the following equivalence holds:

(a) f is harmonic, i.e. Stf = f , ∀t ≥ 0

(b) Lf=0

PROOF. Starting by proving (a)⇒(b), it is assumed that Stf = f one can find:

Stf = f ⇒ (St − I)f = 0⇒ St − I
t

f = 0

Then in the limit of t→ 0 the following is found by the definition of the generator
L:

lim
t→0

St − I
t

f = Lf = 0

In proving (b) ⇒ (a), Lf = 0 can be rewritten as follows by multiplying both
sides by St and using eq. (3.5):

StLf =
d

dt
Stf = 0.

This implies that Stf is independent of time. Therefore, using that S0 = I, the
following can be written:

Stf = S0f = f.

Now the equivalence has been proved.
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Lemma 4.2. For all functions f(x), g(x), the following implication holds:

∀t ≥ 0, Stf − f = tg =⇒ Lf = g

PROOF. Let us assume Stf − f = tg. This is equivalent to St−I
t f = g. Since

f and g are functions of x, taking the limit t ↓ 0 gives

lim
t↓0

St − I
t

f(x) = Lf(x) = g(x)

which proves the implication.

Finally the following definition plays an important role in the desired ex-
pressions:

Definition 4.3. The function ϕ(x) is defined as

ϕ(x) =

{∏x
j=1

qj
pj

if x ≥ 1

1 if x = 0
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4.1 Probability to cleave

In this subsection a closed expression for the probability to cleave, Pclv(x), is
derived. Recall the definition Pclv(x) := Px(TN < T0). Using the partition
theorem, this can be written as:

Pclv(x) =
∑
y∈S

Px(TN < T0|Xt = y)Px(Xt = y)

By the Markov property, the information {Xs : s < t} can be ignored. Therefore
one can say that X0 = y:

=
∑
y∈S

Py(TN < T0)Px(Xt = y)

=
∑
y∈S
Pclv(y)Px(Xt = y).

Then according to eq. (3.2) we find

Pclv(x) = StPclv(x)

One can conclude that Pclv is harmonic, hence, according to lemma 4.1

LPclv = 0. (4.1)

This is a difference equation for Pclv(x) which can be solved using the expression
for L given in eq. (3.9). This is done in appendix A.1 and the result is

Pclv(y) =

∑y−1
x=0 ϕ(x)∑N−1
x=0 ϕ(x)

(4.2)

with y the starting position of the walker and ϕ(x) given in definition 4.3.
As described in section 2.3, the only start position of interest is y = 1. Then

this expression reduces to

Pclv(1) =
1∑N−1

x=0 ϕ(x)
. (4.3)

Note that this expression coincides with the expression found by Klein et al. in
[7] with other methods.

Probability in terms of deltas

Now the derived expression can be rewritten in terms of the deltas described
in section 2. First the expression for ϕ(x) is rewritten. Recall its definition in
definition 4.3 and that ∆(i) = ∆G−i − ∆G+

i for every position i in the state
space. Using these definitions and eqs. (2.2) and (2.3), the following can be
seen:

ϕ(x) =

x∏
j=1

qj
pj

=

x∏
j=1

e−(∆G−j −∆G+
j ) = e−

∑x
j=1 ∆(j) (4.4)
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Then

Pclv(y) =
1 +

∑y−1
x=1 e

−
∑x
j=1 ∆(j)

1 +
∑N−1
x=1 e−

∑x
j=1 ∆(j)

(4.5)

and

Pclv(1) =

(
N−1∑
x=0

ϕ(x)

)−1

=

(
1 +

N−1∑
x=1

e−
∑x
j=1 ∆(j)

)−1

. (4.6)

As described in section 2.3, ∆(j) can take five values in the minimal model:

∆(j) =



∆PAM for j = 1

∆C for a state j /∈ {1, N − 1} with a match

∆C −∆I for a state j /∈ {1, N − 1} with a mismatch

∆C −∆clv for j = N − 1 with a match

∆C −∆I −∆clv for j = N − 1 with a mismatch

Using this information, the sum in the exponent of eq. (4.6) can be rewritten
into

x∑
j=1

∆(j) = ∆PAM + (x− 1)∆C − cx∆I − δx,N−1∆clv. (4.7)

In this expression δi,j is the Kronecker delta, defined as

δi,j =

{
1 if i = j

0 if i 6= j

and cx is a count function: it counts the number of mismatches between states
1 and x. Notice that (x − 1) appears in front of ∆C because all states contain
the parameter ∆C, except the PAM state. Combining eq. (4.7) with eqs. (4.5)
and (4.6) gives an expression for Pclv and Pclv(1) respectively for the minimal
model.
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4.2 Expected time to cleave or unbind

In this section a closed expression for the expected time to either unbind or
cleave, T (x), is derived. Recall the definition T (x) := Ex(T0,N ). Using the
partition theorem, this can be written as follows:

T (x) =
∑
y∈S

Ex(T0,N |Xt = y)Px(Xt = y)

By the Markov property, the past can be forgotten and the expectation can be
shifted by a time t. However, it should not be forgotten that the walker has
already run a time t. That is why t is added to T0,N .

=
∑
y∈S

Ey(t+ T0,N )Px(Xt = y)

Since the expectation operator is linear and t
∑
y∈S Px(Xt = y) = t (the walker

must be somewhere in the state space) one finds

= t+
∑
y∈S

Ey(T0,N )Px(Xt = y)

= t+
∑
y∈S
T (y)Px(Xt = y)

Using eq. (3.2) the following equation is found.

T (x) = t+ StT (x)

This can be rewritten as
StT − T = −t.

Now use lemma 4.2 to obtain a difference equation for T (x):

LT (x) = −1. (4.8)

This difference equation can be solved using eq. (3.10) and this is done in ap-
pendix A.2. The result is given here:

T (y) =

y−1∑
x=0


∑N−1
ξ=0

∑ξ−1
j=0

1
pξ−j

ϕ(ξ)
ϕ(ξ−j)∑N−1

ξ=0 ϕ(ξ)
ϕ(x)−

x−1∑
i=0

1

px−i

ϕ(x)

ϕ(x− i)

 . (4.9)

For initial position y = 1, this expression can be reduced to:

T (1) =

∑N−1
ξ=0

∑ξ−1
j=0

1
pξ−j

ϕ(ξ)
ϕ(ξ−j)∑N−1

ξ=0 ϕ(ξ)
(4.10)

Stopping time in terms of deltas

The expressions for T (1) can be rewritten in the terms of the model as well.
First observe the following, using eq. (4.4):

1

px−i

ϕ(x)

ϕ(x− i)
=

1

qx−i

ϕ(x)

ϕ(x− i− 1)
=

1

qx−i
e−(

∑x
j=1 ∆(j)−

∑x−i−1
j=1 ∆(j))

=
1

qx−i
e−

∑x
j=x−i ∆(j) (4.11)
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Furthermore notice that the denominator of T (1) is equivalent to 1/Pclv(1)
according to eq. (4.3). Using these two equivalences the following expression
can be found:

T (1) = Pclv(1)

N−1∑
x=1

x−1∑
i=0

1

qx−i
e−

∑x
j=x−i ∆(j).

By substituting ` = x− i, the expression can be written as

T (1) = Pclv(1)

N−1∑
x=1

x∑
`=1

1

q`
e−

∑x
j=` ∆(j).

Since q` = q is constant in the minimal model, an expression for the minimal
model is:

T (1) =
Pclv(1)

q

N−1∑
x=1

x∑
`=1

e−
∑x
j=` ∆(j) (4.12)

with

x∑
j=`

∆(j) = δ`,1(∆PAM −∆C) + (x− `+ 1)∆C − c`,x∆I − δx,N−1∆clv. (4.13)

In this expression δi,j is the Kronecker delta and c`,x is a function which counts
the number of mismatches between states ` and x. Notice that if the PAM state
is in the range [`, x], one value of ∆C has to be subtracted since ∆(1) does not
contain the parameter ∆C. This explains the first term of the sum.
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4.3 Expected time to cleave

A closed expressions for T clv(x) is derived in this section. The following three
quantities are defined:

1. T clv(x) := Ex(T0,N |TN < T0);

2. κ(x) := Ex(T0,NI(TN < T0));

3. Pclv(x) := Px(TN < T0)

in which I(.) is the indicator function. The following identity is used to derive
an expression for T clv(x):

T clv(x) =
Ex (T0,NI(TN < T0))

Px(TN < T0)
=

κ(x)

Pclv(x)
. (4.14)

An expression for Pclv(x) has been derived in section 4.1, therefore an expression
for κ(x) only needs to be found. Using the partition theorem, κ(x) can be
written as follows:

κ(x) =
∑
y∈S

Ex
[
T0,NI(TN < T0)|Xt = y

]
Px(Xt = y)

Using the Markov property, the past can be forgotten and the time can be
shifted with t:

=
∑
y∈S

Ey
[
(t+ T0,N )I(TN < T0)

]
Px(Xt = y)

By the linearity of the expectation operator the result can be rewritten:

= t
∑
y∈S

Ey
[
I(TN < T0)

]
Px(Xt = y) +

∑
y∈S

Ey
[
T0,NI(TN < T0)

]
Px(Xt = y)

In the right term, the definition of κ(x) appears. Therefore it can be substituted
again. In the term on the left, the identity E

[
I(A)

]
= P(A) is used. Then the

expression reduces to

= t
∑
y∈S

Py(TN < T0)Px(Xt = y) +
∑
y∈S

κ(y)Px(Xt = y)

Finally using the partition theorem and the definition of Pclv, one finds

= tPx(TN < T0) + Stκ(x)

κ(x) = tPclv(x) + Stκ(x)

This expression for κ(x) can be rewritten such that:

Stκ− κ = −tPclv

Now use lemma 4.2 to obtain

Lκ(x) = −Pclv(x). (4.15)
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This difference equation for κ is solved in appendix A.3. Combining this
result for κ(x) with eq. (4.14) one finds

T clv(y) =
1

Pclv(y)

y−1∑
x=0


∑N−1
ξ=0

∑ξ−1
j=0

ϕ(ξ)
ϕ(ξ−j)

1
pξ−j
Pclv(ξ − j)∑N−1

ξ=0 ϕ(ξ)
ϕ(x)−

x−1∑
i=0

ϕ(x)

ϕ(x− i)
1

px−i
Pclv(x− i)


(4.16)

with y the start location of the walker and Pclv given by eq. (4.2).
Then for start location y = 1 one finds

T clv(1) =
1

Pclv(1)

∑N−1
ξ=0

∑ξ−1
j=0

ϕ(ξ)
ϕ(ξ−j)

1
pξ−j
Pclv(ξ − j)∑N−1

ξ=0 ϕ(ξ)
.

Notice that the denominator of this expression is equivalent to 1/Pclv(1). There-
fore the equation reduces to

T clv(1) =

N−1∑
ξ=0

ξ−1∑
j=0

ϕ(ξ)

ϕ(ξ − j)
1

pξ−j
Pclv(ξ − j). (4.17)

Cleavage time in terms of deltas

Using the result obtained in eq. (4.11), one finds

T clv(1) =

N−1∑
x=0

x−1∑
i=0

1

qx−i
e−

∑x
j=x−i ∆(j)Pclv(x− i)

The substitution ` = x− i gives the following expression:

T clv(1) =

N−1∑
x=0

x∑
`=1

1

q`
e−

∑x
j=` ∆(j)Pclv(`) (4.18)

In the minimal model, q` is a constant. Therefore the expression reduces to

T clv(1) =
1

q

N−1∑
x=0

x∑
`=1

e−
∑x
j=` ∆(j) · Pclv(`). (4.19)

The sum in the exponent is given by eq. (4.13) and Pclv(`) by eq. (4.5).
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4.4 Expected time to unbind

The derivation for the expected unbinding time T ub is similar to the derivation
of T clv. Some important steps in the derivation are described in this section.
The following three expressions are defined:

1. T ub(x) := Ex(T0,N |T0 < TN );

2. ν(x) := Ex(T0,NI(T0 < TN ));

3. Pub(x) := Px(T0 < TN ).

Then the following identity can be used to derive an expression for T ub:

T ub(x) =
ν(x)

Pub(x)
(4.20)

Since there is no other option for a walker than cleavage or unbinding, it can be
seen that Pub = 1 − Pclv. Therefore an expression for Pub(x) can be derived
from the results of section 4.1 and an expression for ν(x) has to be derived only.
This derivation is similar to the one of κ(x) in the previous subsection. Then
one finds that

Stν − ν = −tPub.

Lemma 4.2 can be used to obtain

Lν(x) = −Pub(x) (4.21)

which is a difference equation for ν(x). This difference equation is solved in
appendix A.4. Then using eq. (4.20) a closed expression for T ub is found:

T ub(y) =
1

Pub(y)

y−1∑
x=0


∑N−1
ξ=0

∑ξ−1
j=0

ϕ(ξ)
ϕ(ξ−j)

1
pξ−j
Pub(ξ − j)∑N−1

ξ=0 ϕ(ξ)
ϕ(x)−

x−1∑
i=0

ϕ(x)

ϕ(x− i)
1

px−i
Pub(x− i)

 .

(4.22)
For start location y = 1 this expression reduces to

T ub(1) =
1

Pub(1)

∑N−1
ξ=0

∑ξ−1
j=0

ϕ(ξ)
ϕ(ξ−j)

1
pξ−j
Pub(ξ − j)∑N−1

ξ=0 ϕ(ξ)
. (4.23)

Unbinding time in terms of deltas

Notice that again, the denominator of eq. (4.23) is equivalent to 1/Pclv(1). In
combination with eq. (4.11) and the substitution ` = x− i one finds

T ub(1) =
Pclv(1)

Pub(1)

N−1∑
x=0

x∑
`=1

1

q`
e−

∑x
j=` ∆(j)Pub(`). (4.24)

Assuming that q` = q is constant in the minimal model, this equation reduces
to

T ub(1) =
Pclv(1)

qPub(1)

N−1∑
x=0

x∑
`=1

e−
∑x
j=` ∆(j)Pub(`) (4.25)

which, in combination with eqs. (4.5) and (4.13) gives the expression for T ub(1)
in terms of the parameters of the minimal model.
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5 Analysis of the expressions

In the previous chapter closed-form expressions for the following four quantities
were derived:

1. Pclv(x) := Px(TN < T0). The probability of arriving at N before arriving
at 0, starting from x;

2. T (x) := Ex(T0,N ). The expected time taken to arrive at either position 0
or N , starting from x;

3. T ub(x) := Ex(T0,N |T0 < TN ). The expected time taken to arrive at 0
before arriving at N , starting from x;

4. T clv(x) := Ex(T0,N |TN < T0). The expected time taken to arrive at N
before arriving at 0, starting from x.

Let us analyse these four expressions by comparing them to Gillespie simulations
and interpreting them physically.

5.1 General expressions for birth and death processes

Initially, the expressions were derived for general birth and death processes. Let
us compare these expressions with Gillespie simulations. For now constant rates
are assumed throughout the state space which sum to 1 at every position, i.e.
px = p and qx = q = 1− p.

Consider the expressions for Pclv, T and T ub in eqs. (4.2), (4.9) and (4.22).
Their values are calculated and simulated as a function of y for two different
values of p. The results are displayed in fig. 8.

First of all it can be seen in figs. 8a and 8b that the exact and simulated
results for Pclv perfectly overlap. Therefore, for both values of (p, q) the exact
result in eq. (4.2) appears to be a very accurate expression for the probability
of cleavage for any value of y.

However in figs. 8c and 8e the exact results for T and T ub deviate substan-
tially from the simulations. This deviation starts from a certain value of y,
defined as ydev. It can be seen in figs. 8d and 8f that ydev is larger or not visible
for (p, q) = (0.4; 0.6), which implies a very small error. It can be hypothesised
that the position of ydev decreases, and therefore the error increases, for an in-
creasing value of (q− p). Multiple tests confirm this and fig. 9b shows that ydev

is very small for (p, q) = (0.1; 0.9).
However there is no deviation for a negative value of (q−p). Figure 9 shows

this phenomenon by comparing the results of (p, q) = (0.9; 0.1) and (p, q) =
(0.1; 0.9). It can be seen that the first combination does not show a difference
between the exact and the simulated result, while the second combination does.

One could hypothesise that this deviation is a numerical error. Let us con-
sider for example the expression for T and compare the cases (p, q) = (0.1; 0.9)
and (p, q) = (0.9; 0.1). For constant rates p and q, eq. (4.9) can be reduced to

T (y + 1)− T (y) = c

(
q

p

)y
︸ ︷︷ ︸

(a)

−
y∑
i=0

1

p

(
q

p

)i
︸ ︷︷ ︸

(b)

(5.1)
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(a) (b)

(c) (d)

(e) (f)

Figure 8: The exact results of eqs. (4.2), (4.9) and (4.22) and the Gillespie
simulations in one plot. The value for y is varied, which is plotted on the
x-axis. The plots are made for two different combinations of constant p, q:

The left column has values p = 0.3, q = 0.7 and on the right p = 0.4, q = 0.6.
For all situations the length of the state space was N = 80 and the Gillespie

simulations were performed with M = 10000 walkers.
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(a) (b)

Figure 9: The exact results of eq. (4.9) and the Gillespie simulation in one
plot. The value for y was varied, which is plotted on the x-axis. The plots
are made for constant rates p = 0.9 on the left and p = 0.1 on the right.

q = 1− p.
The exact results for fig. 9b is not displayed from a certain value of y. This

is because the exact times are negative for these values of y due to a
numerical error. Such values cannot be displayed in a logarithmic plot.

However, the plot serves its aim by showing that the equation works well for
p = 0.9, in contrast to p = 0.1.

For both situations the length of the state space is N = 80 and the Gillespie
simulation is performed with M = 1000 walkers.

with c a constant given by

c =

∑N−1
ξ=0

∑ξ−1
j=0

1
p

(
q
p

)j
∑N−1
ξ=0

(
q
p

)ξ . (5.2)

Note the indication of parts (a) and (b) in eq. (5.1). In figs. 9a and 9b it can
be seen that for all y ∈ [0, 80] the order of T (y + 1)− T (y) has an upper limit
of 10, denoted as O(10). Therefore (a)− (b) = O(10) for all y ∈ [0, 80].

Now the orders of (a) and (b) are considered individually, starting with

(q − p) > 0. This implies that q
p > 1. Therefore

(
q
p

)y
blows up for large values

of y, so (a) and (b) blow up as well. For example for (p, q) = (0.1; 0.9), y = 20
and a state space of length 80 (N = 80) we find that (a) = (b) = O(1019).
Remember that subtracting (a) and (b) from each other must give a result of
maximum order ten. Therefore the values of (a) and (b) must be known with a
precision of O(10). Such precision requires special software which was not used
in generating these plots and this caused the numerical errors.

However if (q − p) < 0, then q
p < 1. Therefore

(
q
p

)y
→ 0 for large y and

(a) and (b) do not blow up. For y = 20, N = 80 and (p, q) = (0.9; 0.1) one
finds that (a) = O(10−18) and (b) = O(1). Now (a) − (b) = O(1) which is the
desired order. It can be seen that in this case, the values need not be known
with such precision, since (a) is negligible with respect to (b). Therefore there
is no numerical error for q < p.

A similar reasoning can be used to explain the deviation in the results of

25



T ub. Therefore derived expressions in eqs. (4.9) and (4.22) can be used for any
value of y if p > q, however they should be used carefully for large values of y
if p < q.

5.2 General expressions with fixed initial position

However as described in section 2.3, the only initial position of interest for the
application to the CRISPR-Cas system is y = 1. Therefore the focus is the
expressions for Pclv(1), T (1) and T ub(1) given in eqs. (4.3), (4.10) and (4.23).
These reduced expressions are verified by Gillespie simulation. Again the rates
are assumed to be constant throughout the state space which sum to one for all
positions, i.e. px = p and qx = q = 1 − p. The simulated and exact values are
displayed as a function of p in fig. 10.

(a) (b)

(c)

Figure 10: The exact results of eqs. (4.3), (4.10) and (4.23) and the Gillespie
simulations in one plot. The plots are made for constant rates p and

q = 1− p. The value for p was varied, which is plotted on the x-axis. The
initial position of the walkers was kept constant at 1.
Data points are p = 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 0.9, 0.99.

For all calculations the length of the state space was N = 200 and the
Gillespie simulation was performed with M = 10000 walkers.

It can be seen that the results of the Gillespie simulations and the exact
expressions overlap very well for all three quantities. According to the results
of section 5.1, one could expect that for q � p an error might appear. However
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even for (p, q) = (0.1; 0.9), the derived expressions give the expected results.
This justifies the application of these expressions to the CRISPR-Cas system,
in which the initial position is y = 1.

5.3 Single mismatch

In this section a state space with a single mismatch is considered. This mismatch
is placed at varying locations in the state space and the effects on the unbinding
and cleavage times are studied. The expression for T is left out of the analysis
as it is not of practical use for the application to the CRISPR-Cas system.

Let us consider the state spaces with the energy landscapes as displayed in
fig. 11b. The corresponding curves for Pclv(1), T ub(1), T clv(1) are displayed in
fig. 11a.

(a) The values for Pclv(1), T clv(1), T ub(1)
displayed as a function of the location of a

single mismatch in the state space. The
values for Pclv are displayed on the right
vertical axis, the values for the times on

the left vertical axis.
The maximum for T ub is at position

nmax = 8.

(b) Energy landscapes for the given
parameters of fig. 11a with varying

positions of the mismatch. The unbinding
and cleavage times of the blue curve are

relatively short. The cyan, dotted
landscape has a short unbinding and long

cleavage time. The green, dashed
landscape has the maximum unbinding

time. The red, dashed-dotted curve gives
the energy landscape with a mismatch at
nseed. The dotted red line gives the initial

free energy of the system.
nseed was calculated with eq. (2.1), nmax

was derived from fig. 11a.

Figure 11

Consider the cleavage time first. It can be seen that this time increases with
an increasing location of the mismatch. This can be explained intuitively by
referring to the energy landscape. If the mismatch is located close to the PAM,
the Cas9 protein is not likely to pass the energy barrier of the mismatch since
it is much higher than the barrier towards unbinding. However, if the protein
passes this energy barrier, it will almost surely walk directly towards cleavage
as the cleaved state is in an energy valley. Therefore the cleavage time is very
low.
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If the mismatch is located near the end of the R-loop, the energy landscape
looks like the blue one in fig. 11b. In this landscape, the protein is very likely
to cleave since the energy barrier to cleavage is much lower than the barrier to
unbinding. The walker will, however, probably hop a long time in the energy
valley just before the cleaved state before passing this barrier, as it is very high.
Therefore the cleavage time grows with an increasing location of the mismatch.

Finally, if the mismatch is located at the last nucleotide, the barrier towards
cleavage is extra high due to ∆clv. Therefore it will take a longer time before
Cas9 passed the single barrier and the cleavage time increases even further.

Now consider the unbinding time. First, if the mismatch is close to the
PAM, the unbinding time is very low. This follows naturally from the cyan
energy landscape in fig. 11b: the protein starts at the PAM and is very unlikely
to pass the energy barrier. Therefore it will probably unbind. However it does
not have a lot of space to move freely as the energy barrier is very close to the
PAM. This implies that it cannot make a lot of steps before returning to the
unbinding state. This causes a very low unbinding time.

Furthermore the unbinding time is very low if the mismatch is near the
cleavage state. Let us consider the blue energy landscape in fig. 11b, which
corresponds with a mismatch near the cleavage state. The walkers all start at
the PAM, however the further the walkers move to the right, the less probable
they are to return to the unbinding state. Therefore, the most probable way to
arrive at the unbinding state is by starting at the PAM taking one step to the
left to the unbound state immediately. Therefore it usually takes a short time
to unbind if the mismatch is far from the PAM.

Now consider the maximum of the curve of the unbinding time in fig. 11a.
According to the preceding paragraphs, the unbinding time increases by putting
a mismatch far from the PAM such that the walkers have space to move, however
it should not be too far away from the PAM else the walkers will not return
to the unbound state. Therefore there must be a location which is a middle
way of these two requirements, i.e. a mismatch at that location gives a longer
unbinding time than a mismatch anywhere else on the state space. Let us define
this location as nmax. One can see in fig. 11b that nmax 6= nseed, as one might
expect.

Consider the energy landscape in fig. 12a with a mismatch at nmax. One
can see that the energy barrier is higher than the energy level right after the
PAM. H is defined as the difference between the initial energy of the system
and the height of the energy barrier due to a mismatch at nmax. Then H can
be calculated by

H = ∆PAM + (nmax − 1)∆C −∆I.

Notice H < ∆PAM in fig. 12a. In that case the above expression can be rewritten
to obtain

nmax < 1 +
∆I

∆C
. (5.3)

Figure 12b shows that this is not a coincidence; each dot in this scatter plot
stands for a random combination of ∆PAM,∆C and ∆I. For each combination,
nmax was found by calculating the unbinding time for all possible positions of
the mismatch and searching which location gave the maximum unbinding time.

nmax was plotted versus the value of 1 +
∆I
∆C

and it clearly shows that this last

value is an upper limit for nmax.
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(a) (b)

Figure 12: (a) The quantities H and ∆PAM displayed in an energy
landscape. The red, dotted line indicates the initial energy of the system.

nmax was derived from fig. 11a
(b) The quantities of eq. (5.3) in a scatter plot. Each dot represents a

random combination of ∆PAM,∆C,∆I. ∆PAM is a random integer between 1
and 9, ∆C ∈ [0.2; 1] and ∆I ∈ [2, 7]. 1083 combination were drawn, hence

1083 dots are displayed.
The line y = x is displayed, which represents the line at which nmax and

1 + ∆I/∆C are equal. It can be seen that eq. (5.3) holds.
∆clv,∆G

−, k0 are kept constant at 0, 0, 1 respectively.

If H < ∆PAM, the energy costs of reaching the PAM are lower than the costs
of passing the barrier seen from the energy valley. Therefore a walker is more
likely to reach the PAM instead of passing the mismatch. Apparently this is
the optimum between giving the walkers enough space to walk and making sure
enough walkers return to the unbinding state. This optimum results in a high
expected unbinding time.

In general one can say that the cleavage time increases if the mismatch moves
further away from the PAM. The unbinding time has a maximum for a mismatch

at a certain location nmax. This nmax is bounded from above by 1 +
∆I
∆C

.

5.4 Double mismatch

Consider a state space with two mismatches. It is possible to display the un-
binding time and cleavage time in a heatmap as a function of the locations of
the two mismatches. They are displayed in fig. 13.

First the cleavage time is considered. It can be observed from fig. 13b that
the closer two mismatches are, the longer it takes for a walker to cleave. This
also follows from the energy landscape displayed in fig. 14. Looking at the
green energy landscape in which the mismatches are placed at nearly subsequent
locations, one can see that once a walker passed the first mismatch, it is very
unlikely to directly pass the second mismatch. Instead the walker is very likely
to fall back into the valley again and it has to start all over. Following this
reasoning, it is expected to take a long time before the walker is able to pass both
mismatches. In contrast, if two mismatches are placed far apart as displayed in
the red energy landscape, the walker has some free space to move between two
mismatches. Therefore it is less likely to fall back into the valley once it passed
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(a) (b)

Figure 13: Heatmaps of T ub(1), T clv(1) as a function of the location of two
mismatches on the state space. If the two mismatches are at the same
position, it is seen as one mismatch. That is why the diagonal has a

relatively low unbinding and cleavage time.

the first mismatch, which reduces the cleavage time significantly. In the end,
it is clear that a block of mismatches increases the cleavage time compared to
spread mismatches.

Figure 14: Energy landscapes with two mismatches. There is a block of two
mismatches in the green, dotted and the blue landscapes. The red dashed

curve has two spread mismatches.

Similarly, fig. 13a shows that the unbinding time increases significantly if
two mismatches are close together. However, this only occurs when this block
of mismatches is at the right distance from the PAM. This can be explained by
the same reasoning as used for a single mismatch. If this block is too close to
the PAM, the walkers do not have any space to move. Therefore the unbinding
time is short. However, if the block is placed too far away, walkers are less likely
to unbind. Therefore the only walkers that unbind are those that move from
the PAM to the unbound state directly; otherwise it costs too much energy to
reach the unbound state.

An upper limit for the location of a double mismatch for which T ub(1) has a
maximum, can be found in the case of a double mismatch as well. Clearly, the
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unbinding time is greatest in case of two subsequent mismatches so only these
situations are considered. nmax is defined as the location of the last mismatch
and H is defined as the energy level due to two subsequent mismatches as
displayed in fig. 15a. H can be calculated by:

H = ∆PAM + (nmax − 1)∆C − 2∆I.

One can see in fig. 15b that H < ∆PAM. Plugging this into the definition of H
gives

nmax < 1 +
2∆I

∆C
. (5.4)

This expression gives an upper limit for nmax with two mismatches. It can be
seen in the scatter plot in fig. 15b that this upper limit holds for a random
choice of parameters.

This result can be generalised to an energy landscape with a block of B
subsequent mismatches. Then the following upper limit for nmax holds:

nmax < 1 +
B∆I

∆C
. (5.5)

It can be concluded that a block of mismatches increases the unbinding time
only if the block is at the right distance from the PAM. A general expression
for this upper limit, for any size of the block, is given by eq. (5.5).

(a) (b)

Figure 15: (a) The quantities H and ∆PAM displayed in an energy
landscape. The red, dotted line indicates the initial energy of the system.

nmax was derived from fig. 13a
(b) The quantities of eq. (5.4) in a scatter plot. Each dot represents a

random combination of ∆PAM,∆C,∆I. ∆PAM is a random integer between 1
and 9, ∆C ∈ [0.2; 1] and ∆I ∈ [2, 7]. nmax was found by calculating the

unbinding time for every position of two subsequent mismatches with these
parameters and taking the position of the maximum. 400 combination were

drawn, hence 400 dots are displayed.
The line y = x is displayed, which represents the line at which nmax and

1 + 2∆I/∆C are equal. It can be seen that eq. (5.4) holds.
∆clv,∆G

−, k0 are kept constant at 0, 0, 1 respectively.
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5.5 Influence of cleavage costs

Finally the influence of the parameter ∆clv on the unbinding time is considered.
The times are studied on a state space with a single mismatch of which its
position is varied.

Figures 16a and 16b show that the unbinding time is significantly influenced
by ∆clv if the energy barrier towards cleavage approximates the value of the
initial energy. One can see that the curves for ∆clv = 0.1 and ∆clv = 3 are
very similar. These curves follow the shape as described in section 5.3. The
curves for ∆clv = 7 and ∆clv = 100, however, differ significantly from the other
two. For this combination of parameters, the energy barrier towards cleavage is
higher than the energy barrier towards unbinding as one can observe in fig. 16b.
Therefore walkers are more likely to unbind for any position of the mismatch.
In that case the unbinding time still has a significant value for a mismatch close
to cleavage because the walker is still likely to unbind.

It is remarkable that the first two curves are closer together than the latter
two. This shows that the value of ∆clv only influences the value of the unbinding
time significantly if it causes the energy barrier to cleavage to be higher than
the energy barrier to unbinding.

(a) (b)

Figure 16: Figure (a) shows T ub(1) as a function of the location of a single
mismatch for four different values of ∆clv and constant values for the other
parameters. Figure (b) shows the accompanying energy landscapes for the

four different cases. It shows that the function is mainly influenced by
whether the energy barrier to cleavage is lower or higher than the initial

energy due to the value of ∆clv.
The energy landscape for ∆clv = 100 is not shown due to the scaling.

However, the landscape of ∆clv = 10 gives a good indication of the shape of
the landscape.
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6 Moment generating functions of stopping times

Up to now the main interest has been the expected stopping time of birth and
death processes, i.e. the first moment. This first moment gives information
about how long it usually takes a Cas9 protein to either cleave or unbind.
However one could also be interested in higher moments of this stopping time,
for example the variance and the kurtosis. All these moments are contained in
the moment generating function which is often denoted as E[eθτ ]. This moment
generating function provides full information on the distribution of the stopping
time.

In this section two processes are considered:

1. A random walk with constant, equal rates: px = qx = p = 0.5;

2. Brownian motion with drift.

For these cases the moment generating functions of the stopping time are
found using martingales. First a short introduction to martingales is given.
Next, the moment generating functions for the two cases are derived. Finally the
full moment generating functions are verified using an inverse Laplace transform.

6.1 An introduction to martingales

There are two ways to classify random processes, being Markov chains and
martingales [9]. Up to now all derivations have been done using the Markov
property. This property states that the future of a Markov process is, given its
present, independent of its past.

Martingales contrast this property as their future does depend on the past.
Before introducing the definition of a martingale the following notation is intro-
duced:

Definition 6.1. Given the random process Xn and its outcomes on times
0, 1, . . . , n, denoted as i0, i1, . . . , in respectively. Then the set Fn is defined as
follows:

Fn := σ{Xn = in, Xn−1 = in−1, . . . , X0 = i0}

This set Fn is a short way to write down the sigma algebra of all past
outcomes of the process Xn. Informally one could say that Fn describes the
information contained in X0, . . . , Xn.

If some other random variable, let us say Mn, is dependent on this inform-
ation Fn, then Mn is called Fn-adapted [9]. This means that for each n ∈ N,
there is some deterministic function gn such that Mn = gn(X0, . . . , Xn).

Now the definition of a martingale is given [14]:

Definition 6.2 (Martingale). A random process Mn is called a martingale if:

1. Mn is Fn-adapted;

2. ∀n ∈ N0,E[Mn] <∞;

3. ∀n ∈ N0,E[Mn|Fn−1] = Mn−1

From the third property one could say that the expected outcome of a mar-
tingale’s future is its present state. Let us introduce the tower property [2].
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Lemma 6.3 (Tower property). Given a σ-algebra G and a random variable X,
the following holds:

E[E[X|G]] = E[X]

Using this tower property, an important property of a martingale can be
derived:

Proposition 6.4. Let Mn be a martingale, then the following holds:

E[Mn] = E[M0]

PROOF. Assume Mn to be a martingale. Using the tower property (lemma 6.3)
in step (1) and the definition of a martingale in (2) one can write:

E[Mn]
(1)
= E

[
E[Mn|Fn−1]

] (2)
= E[Mn−1]

Iterating this result gives:

E[Mn] = E[Mn−1] = . . . = E[M0]

This proposition 6.4 will play an important role in the remainder of this
chapter.

Furthermore the following property of martingales can be shown:

Proposition 6.5. Let Mn, Nn be two Fn-adapted martingales, then (Mn+Nn)
is an Fn-adapted martingale.

PROOF. The three defining properties of a martingale from definition 6.2 are
proved:

1. Since Mn and Nn are Fn-adapted, there exist some functions gn, hn such
that Mn = gn(X0, . . . , Xn) and Nn = hn(X0, . . . , Xn) for all n ∈ N0.
Define fn = gn + hn. Then Mn + Nn = (gn + hn)(X0, . . . , Xn) =
fn(X0, . . . , Xn). So indeed (Mn +Nn) is Fn-adapted.

2. By the definition of a martingale, E[Mn],E[Nn] <∞ for all n ∈ N0. Since
the expectation operator is linear one finds E[Mn+Nn] = E[Mn]+E[Nn] <
∞.

3. By the linearity of the conditional expectation operator and since Mn and
Nn are martingales, one can see that

E[Mn +Nn|Fn−1] = E[Mn|Fn−1] + E[Nn|Fn−1] = Mn−1 +Nn−1

Finally the Dominated Convergence Theorem [5] is introduced, which will
be used in the next sections to stop the martingales.

Theorem 6.6 (Dominated Convergence Theorem (DCT)). Suppose that lim
n→∞

Xn =

X and there exists a random variable Y such that E[Y ] <∞ and |Xn| ≤ Y for
n ≥ 0. Then

lim
n→∞

E[Xn] = E[X].
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6.2 Application to a random walk

This theory can be applied to a special case of the random walk to find the
moment generating function of its stopping time. Assume a discrete state space
{−a,−a+ 1, . . . ,−1, 0, 1, . . . , b} with a walker that starts at 0 (see fig. 17).

Figure 17: A scheme of the state space of this random walk. The walker
starts at position 0 and has a probability p = 0.5 to move left and an equal

probability to move right. The absorbers are positioned at −a, b.

At every time n ∈ N the walker has a probability of p = 0.5 to move left
and an equal probability p to move right. This step is denoted as Xn, and this
random variable can be summarised as follows:

Xn =

{
+1 with probability p = 0.5

−1 with probability p = 0.5.
(6.1)

Furthermore Sn is defined. It gives the position of the walker at time n:

Sn =

n∑
i=0

Xi. (6.2)

The random walk stops as soon as it reaches one of the absorbers at positions
−a and b. The length of time it took the walker to reach one of these absorbers
is called the stopping time, which is denoted as

τ := inf
{
n ∈ N : Sn ∈ {−a, b}

}
(6.3)

Finally for any λ, α, β ∈ R the following random variable is defined [8]:

Mn = exp

{
λ(Sn − α)− n log

[
coshλ

]}
+ exp

{
− λ(Sn − β)− n log

[
coshλ

]}
(6.4)

It can be shown that Mn is a martingale. A brief proof is given here, however
the interested reader may want to read the detailed derivation in appendix B.1.

First one should notice that Mn is a deterministic function of the random
variable Sn. Therefore Mn is Fn-adapted with Fn = σ{S0, . . . , Sn}. Let us
define

N±,n := exp

{
± λSn − n log

[
coshλ

]}
.

This random variable is Fn-adapted as well. Notice that:

Mn = e−λαN+,n + eλβN−,n. (6.5)
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Therefore, by proposition 6.5, Mn is a martingale if N+,n and N−,n are martin-
gales. Using the definitions of Xn and Sn (eqs. (6.1) and (6.2)) it can be shown
that

E[N±,n|Fn] : = E
[
e±λSn−n log[coshλ]

∣∣Fn]
=
(
pe∓λ + pe±λ

)
e±λSn−1−n log[coshλ]

= e±λSn−1−(n−1) log[coshλ] = N±,n−1

Therefore N±,n is a martingale, and so is Mn.
This martingale Mn will allow us to find the moment generating function

of the stopping time for this special case of the random walk. This is done in
three steps:

1) Proof that E[Mτ ] = E[M0]. Since the stopping time τ is not bounded,
there is a probability that the walker moves on the state space for ever. In
that case it cannot just be assumed that E[Mτ ] = E[M0], even though Mn

is a martingale. It is proved that this equality can be assumed by using the
Dominated Convergence Theorem in theorem 6.6.

The following constant k > 0 and the notation (a ∧ b) := inf{a, b} are
introduced. Then it can be shown by the DCT that the step marked by * in
the following equation is allowed.

E[Mτ ]
(1)
= E

[
lim
k→∞

Mτ∧k

]
∗
= lim
k→∞

E[Mτ∧k]
(2)
= lim

k→∞
E[M0] = E[M0]. (6.6)

Step (1) is allowed by the definition of the infimum. Step (2) is valid due to
proposition 6.4 and since (τ ∧ k) is finite.

In order to use the DCT it must be shown that |Mτ∧k| is bounded. First of
all it must be noticed that Sn is bounded. The walker is absorbed at positions
−a ≤ 0 or b ≥ 0 and it starts at position 0, therefore it is clear that Sn ∈
[−a, b] ∩ Z and since this set is a bounded set, Sn is bounded as well. Now the
following can be defined for any given λ, α, β ∈ R:

C = max
Sn∈[−a,b]

{
eλ(Sn−α) + e−λ(Sn−β)

}
≥ 0 (6.7)

Furthermore, since p = 0.5 and 0 < 1
cosh(x) ≤ 1 for all x ∈ R, the following

inequalities hold:

|Mτ∧k| =
∣∣∣[eλ(Sτ∧k−α) + e−λ(Sτ∧k−β)

]
e−(τ∧k) log(coshλ)

∣∣∣
=
∣∣∣[eλ(Sτ∧k−α) + e−λ(Sτ∧k−β)

]
(coshλ)−(τ∧k)

∣∣∣
≤
∣∣∣[eλ(Sτ∧k−α) + e−λ(Sτ∧k−β)

]
· 1(τ∧k)

∣∣∣
≤ C

From this it is clear that |Mτ∧k| is bounded. Furthermore since C is determin-
istic, E[C] = C < ∞. This implies that the DCT can be applied to Mτ∧k and
that the step marked with * in eq. (6.6) is valid.
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2) Calculation of E[M0]. The derivation of the moment generating function
will make use of eq. (6.6). Therefore E[M0] should be calculated.

First consider S0. Since the walker starts at position 0 and the walker has
not moved at time 0, it can be said that S0 = 0. Since λ, α, β are deterministic,
one finds

E[M0] = e−λα + eλβ . (6.8)

3) Stopping the martingale. Combining eqs. (6.6) and (6.8) gives the fol-
lowing equation:

E[Mτ ] = e−λα + eλβ (6.9)

Solving this equation gives the desired moment generating function. Some steps
of this derivation are displayed here, however the full derivation is given in
appendix B.2.

First of all, by the definition of τ , the walker must have arrived at one of
the two absorbers at the stopping time τ . This implies that Sτ = −a or Sτ = b.
Furthermore α, β are chosen such that α = β = b−a

2 . This information can be
used to rewrite eq. (6.9) to

E
[
e−τ log[coshλ]

]
· 2 cosh

(
λ
a+ b

2

)
= 2 cosh

(
λ
b− a

2

)
.

Since the desired expression is of the form E[e−θτ ], θ is defined by θ = log(coshλ).
Then the desired moment generating function is given by:

E
[
e−θτ

]
=

cosh
(
b−a

2 λ(θ)
)

cosh
(
a+b

2 λ(θ)
) (6.10)

with

λ(θ) = θ + log
[
1 +

√
1− e−2θ

]
. (6.11)

Validation by inverse Laplace transformation

Another way to derive the moment generating function of a random variable
is by performing a Laplace transform to its probability density function (pdf)
as these two are equivalent. This fact can be used to verify the derived MGF
in this section. By applying an inverse Laplace transformation to the MGF,
the pdf should be found. In fig. 18 the moment generating function was trans-
formed numerically. Furthermore the random walk was simulated by Gillespie
simulation.

It is clear that the two lines overlap very well in both situations. Therefore
this moment generating function of the stopping time seems to be correct.
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(a) (b)

Figure 18: Two plots verifying the moment generating function of the
stopping time for different combinations of the parameters a and b. The

inverse Laplace transform of the moment generating function is given by the
blue dashed line, the simulation of the pdf by the red line. The inverse
Laplace transform shows some oscillatory behaviour around 0 due to its

complex nature.

6.3 Application to a Brownian motion with drift

Another limit case which is considered is a Brownian motion with drift. The
theory of martingales can also be applied in this case to find the moment gen-
erating function of its stopping time.

A standard Brownian motion is defined as follows [10].

Definition 6.7. A stochastic process Wt is called a standard Brownian motion
if it has the following properties:

1. W0 = 0;

2. The process has stationary increments, independent of time t;

3. For any time 0 ≤ s < t, (Wt −Ws) is normally distributed with mean 0
and variance (t− s).

Consider the stochastic process Xt = Wt+µt, with Wt a standard Brownian
motion. Then Xt is a Brownian motion with drif, the drift given by the coeffi-
cient µ ∈ R. Xt adheres to the first two properties described above. The third
property changes as follows [13]:

3. For any time 0 ≤ s < t, (Xt − Xs) is normally distributed with mean
µ · (t− s) and variance t− s.

In contrast to the random walk a Brownian motion is defined on a continuous
state space [−a, b] with absorber at −a and b. The stopping time τ is defined
as the first time that one of the absorbers is reached:

τ := inf
{
t : Xt ∈ {−a, b}

}
(6.12)

Of interested is the moment generating function of this stopping time, E
[
eθτ
]
.

In order to derive this function, the following random variable is defined for any
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α, λ ∈ R [8]:

Mt = exp

{
− 1

2
(λ2 − µ2)t− µXt

}
sinh(λXt − α) (6.13)

This random variable is a martingale. A detailed proof of this statement is
given in appendix C.1. This martingale allows us to find the moment generating
function of the stopping time for a Brownian motion with drift using the same
steps as in the previous subsection.

1) Proof that E[Mτ ] = E[M0] Similar to the case of the random walk, the
stopping time τ is not necessarily bounded. Therefore it cannot be assumed that
E[Mτ ] = E[M0]. The following equation needs to be proved by the Dominated
Convergence theorem (theorem 6.6):

E[Mτ ]
(1)
= E

[
lim
k→∞

Mτ∧k

]
∗
= lim
k→∞

E[Mτ∧k]
(2)
= lim

k→∞
E[M0] = E[M0]. (6.14)

In this equation the step marked by (1) holds by the definition of the infimum.
Step (2) is valid due to proposition 6.4 and since (τ ∧ k) is finite. The step
marked with * needs to be proved with the DCT by showing that |Mτ∧k| is
bounded.

First of all Xt is bounded by −a < 0 and b > 0. Furthermore, since λ, α ∈ R,
the following can be defined:

C = max
Xt∈[−a,b]

{
e−µXt sinh(λXt − α)

}
. (6.15)

Finally, since τ ∧ k ≥ 0 and by assuming |λ| > |µ|, the following holds:

|Mτ∧k| =
∣∣∣e− 1

2 (λ2−µ2)(τ∧k)−µXt sinh(λXt − α)
∣∣∣

≤
∣∣∣e− 1

2 (λ2−µ2)0 · C
∣∣∣

≤ |C|

From this it follows that |Mτ∧k| is bounded if |λ| > |µ|. Therefore the step
marked with * in eq. (6.14) is allowed by the Dominated Convergence Theorem.
Therefore The equation E[Mτ ] = E[M0] holds.

2) Calculation of E[M0] In order to use proposition 6.4, the initial expecta-
tion of M0 has to be found. According to the first property of Brownian motion
X0 = 0. Therefore

E[M0] = E
[
e0 sinh(−α)

]
= sinh(−α). (6.16)

3) Stopping the martingale From eq. (6.14) it follows that the equation

E[Mτ ] = sinh(−α) (6.17)

is valid. Solving this gives the desired moment generating function. A full
derivation is given in appendix C.2, however a few steps are given here.
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By the definition of τ , the walker must be at the positions Xτ = −a or
Xτ = b at time τ . Using this, and by choosing α smartly, the following equation
is found from eq. (6.17):

E
[
e−

1
2 (λ2−µ2)t

]
=
e−µa sinh(−α)

sinh(−λa− α)
.

Since an expression for E[e−xτ ] is to be found, the substitution x = 1
2 (λ2 − µ2)

needs to be done. Recall from the assumptions of step 2) that |λ| > |µ|, therefore
x > 0. By substituting this expression and inserting the expression for α that
was chosen, the desired moment generating function of the stopping time of a
Brownian motion with drift is found:

E[e−xτ ] =
eµb sinh(aλ(x)) + e−µa sinh(bλ(x))

sinh((a+ b)λ(x))
(6.18)

with λ(x) =
√

2x+ µ2 in which x > 0.

Validation by inverse Laplace transformation

Analogous to the moment generating function of the random walk, the MGF of
a Brownian motion with drift can be validated by an inverse Laplace transform.
A simulated probability distribution function and the inverse Laplace transform
of the derived MGF are plotted in fig. 19 for two combinations of a, b and µ.

(a) (b)

Figure 19: Two plots verifying the moment generating function of the
stopping time for different combinations of a, b and µ. The inverse Laplace
transform of the moment generating function is given by the blue dashed

line, the simulation of the pdf by the red line.
The simulations were done with 10000 walkers and a time step of 0.01.

Again it can be seen that the inverse Laplace transform of the moment gener-
ating function fits very well through the simulated probability density functions.
Therefore the MGF seems to be correct.
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7 Conclusion

In this thesis closed form expressions for the cleavage probability and the cleav-
age and unbinding times were found for the CRISPR associated protein Cas9.
Since such an R-loop is modelled by a birth and death process, the derivations
could be done using Markov theory and semigroups.

Initially these expressions were derived for general birth and death processes.
The expression for the probability was consistent with the simulations, however
the expressions for the stopping times showed great deviations if the rates were
chosen such that q > p. It was shown that these deviations were caused by a
numerical error.

The derived expressions were reduced to a form useful for the application to
the CRISPR-Cas system. They were analysed as a function of the location of
one mismatch and it was shown that the unbinding time reaches a maximum.
Moreover, it was noted that the cleavage time increases if the mismatch is
positioned closer the cleaved state. Using the language of free-energy landscapes,
these findings were rationalised and an upper limit for the position at which the
unbinding time has a maximum was found.

Furthermore the expressions were analysed as a function of the location
of two mismatches. It was shown that a block of two mismatches causes an
increase of the cleavage time, compared to two mismatches spread throughout
the state space. Similar to the observations in the analysis with one mismatch,
the unbinding time reaches a maximum if the block of mismatches is placed at
the right distance from the PAM. Again an upper limit for this distance was
found for a general number of subsequent mismatches.

It was shown that the unbinding time as a function of the energy costs to
cleave has two possible behaviours, depending on whether the energy barrier
towards unbinding is higher or lower than the initial energy of the system. Any
variations of these energy costs within the two possibilities did not influence the
resulting unbinding time significantly.

Finally the moment generating functions of the stopping time were derived
for two special Markov processes; a random walk and a Brownian motion with
drift. These were derived using martingales. They were validated by applying a
numerical inverse Laplace transform to them and comparing them with a sim-
ulated probability density function. This comparison showed that the method
results in correct moment generating functions.
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8 Outlook

This thesis contains closed form expressions for the cleavage and unbinding
times of a CRISPR associated protein. The temporal information given by these
expressions could be very useful in lab experiments and medical applications. It
might take a long time before the protein cleaves or unbinds and a result can be
seen in the experiment. Therefore one might want to know what time it takes
before cleavage or unbinding is done and set up his lab experiment accordingly.

Furthermore the expressions could be very useful to test the validity of the
model presented by Klein et al. In their paper, the expressions for the cleav-
age probability have been fitted to the data from lab experiments. These fits
matched the data and therefore it provided a validity check of the model. Fitting
the derived equations to times obtained from the lab serves as a second validity
check of the model. If the equations fit the data, it gives a double confirmation
of the assumed model.

The expressions could also be used to derive a more generalised model, com-
pared to the minimal model presented in this thesis. The parameters of the
minimal model are merely based on whether the base pair is a match or a mis-
match. The parameters of a generalised model are also position dependent and
lab experiments show that this is indeed the case. Mismatches at certain pos-
itions have a smaller effect on the cleavage probability than other. This is not
coherent with the minimal model. Since the expressions are also derived for
a general set of ∆(j), they could be fitted to a dataset to study the position
dependency of the influence of mismatches.

Furthermore it might be interesting to find the full distribution of the cleav-
age and unbinding times. This could be done by finding the moment generating
function of the stopping time of a general birth and death process. This provides
multiple layers to test the model and it gives the variance that might be useful
for lab experiments and medical applications. To that end, a suitable martingale
needs to be found.
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A Solving the difference equations

A.1 Probability to cleave

In this section a closed expression for the probability to cleave given the initial
position y. Consider a discrete state space with an absorbers at x = 0 and
x = N . Recall the definitions of Pclv and the generator L from section 4 and
eq. (3.10):

Pclv(y) : = Py(TN < T0) (A.1)

Lf(x) = px(f(x+ 1)− f(x))− qx(f(x)− f(x− 1)) (A.2)

From the definition of Pclv it is clear that the boundary conditions are Pclv(0) =
0 and Pclv(N) = 1; after all when starting at x = N the time to reach x = N
is surely smaller than the time to reach x = 0. In section 4.1 it was derived
that the difference equation LPclv(x) = 0 holds. In this appendix this difference
equation is solved.

The first step is to plug in the definition of L into the difference equation:

Pclv(x+ 1)− Pclv(x) =
q(x)

p(x)
[Pclv(x)− Pclv(x− 1)] .

Plugging this result in itself one finds

Pclv(x+ 1)− Pclv(x) =
q(x)

p(x)

q(x− 1)

p(x− 1)
[Pclv(x− 1)− Pclv(x− 2)]

which, by iterating, eventually gives

Pclv(x+ 1)− Pclv(x) =
q(x)

p(x)

q(x− 1)

p(x− 1)
· · · q(1)

p(1)
[Pclv(1)− Pclv(0)]

=

x∏
η=1

(
qη
pη

)
· [Pclv(1)− Pclv(0)] (A.3)

Assuming y is the walker’s starting point, we are interested in Pclv(y). Therefore
eq. (A.3) is summed over x from 0 to y − 1 to obtain Pclv(y) in the equation.
This results in a telescope series on the left hand side:

y−1∑
x=0

(Pclv(x+ 1)− Pclv(x)) =

y−1∑
x=0

(
x∏
η=1

qη
pη

)
· [Pclv(1)− Pclv(0)] (A.4)

Pclv(y)− Pclv(0) =

y−1∑
x=0

(
x∏
η=1

qη
pη

)
· [Pclv(1)− Pclv(0)] (A.5)

Using the boundary conditions Pclv(0) = 0 and Pclv(N) = 1, an expression for
Pclv(1) can be found. By plugging this expression into eq. (A.5) it follows that

Pclv(y) =

∑y−1
x=0

(∏x
η=1

qη
pη

)
∑N−1
x=0

(∏x
η=1

qη
pη

)
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Using the definition of ϕ(x) given in definition 4.3, this expression can be reduced
to

Pclv(y) =

∑y−1
x=0 ϕ(x)∑N−1
x=0 ϕ(x)

. (A.6)

Hence a closed expression for Pclv(y) was found.

A.2 Expected time to cleave or unbind

Consider a birth and death process on a discrete state space with absorbers at
x = 0 and x = N . A closed expression for the expected time it takes a walker
to reach one of its absorbers, given its initial position y is derived. Recall the
definition of T from section 4:

T (y) = E(T0,N ) (A.7)

It follows naturally that the boundary conditions are T (0) = T (N) = 0: if the
walker starts at x = 0 or N , the time to reach x = 0 or x = N is zero. In
section 4.2 it was derived that the difference equation LT = −1 holds. In this
appendix this difference equation is solved.

Using definition of the generator L given in eq. (A.2), it can be seen that:

T (x+ 1)− T (x) =
qx
px

[T (x)− T (x− 1)]− 1

px
(A.8)

Notice that this equation can be plugged in itself as was done in the previous
section. Writing out two iterations gives:

T (x+ 1)− T (x) =
qx
px

(
qx−1

px−1
[T (x− 1)− T (x− 2)]− 1

px−1

)
− 1

px

=
qxqx−1

pxpx−1
[T (x− 1)− T (x− 2)]− qx

pxpx−1
− 1

px
...

=
qxqx−1qx−2

pxpx−1px−2
[T (x− 2)− T (x− 3)]− qxqx−1

pxpx−1px−2
− qx
pxpx−1

− 1

px

Generalizing the result and using definition 4.3, one finds:

T (x+ 1)− T (x) = ϕ(x)[T (1)− T (0)]−
x−1∑
i=0

{
1

px−i

ϕ(x)

ϕ(x− i)

}
(A.9)

Since an expression for T (y) is of interest, eq. (A.9) is summed over x from 0
to y − 1. This gives a telescope series on the left hand side and one finds:

T (y)− T (0) =

y−1∑
x=0

{
ϕ(x) [T (1)− T (0)]−

x−1∑
i=0

(
1

px−i

ϕ(x)

ϕ(x− i)

)}
(A.10)

Using the boundary conditions T (0) = T (N) = 0, eq. (A.10) can be rewrit-
ten to find a closed expression for T (y):

T (y) =

y−1∑
x=0


∑N−1
ξ=0

∑ξ−1
j=0

1
pξ−j

ϕ(ξ)
ϕ(ξ−j)∑N−1

ξ=0 ϕ(ξ)
ϕ(x)−

x−1∑
i=0

1

px−i

ϕ(x)

ϕ(x− i)

 . (A.11)
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A.3 Expected time to cleave

A closed expression for the time to cleave, given the initial position y can be
derived. Consider a discrete state space with absorbers at x = 0 and x = N .
Recall the definition of T clv(y) from section 4:

T clv(y) = Ey(T0,N |TN < T0) (A.12)

To derive an expression for T clv(y), the following identity is used:

Ey(T0,N |TN < T0) =
Ey (T0,NI(TN < T0))

Py(TN < T0)
.

in which I(.) is the indicator function. Let us define κy := Ey(T0,NI(TN < T0)),
this identity can be rewritten as

T clv(y) =
κy

Pclv(y)
(A.13)

An expression for Pclv(y) was derived in appendix A.1, therefore an expression
for κ(y) needs to be found only. The boundary conditions for κ follow from its
definition: they are κ0 = κN = 0 as T0,N = 0 for these two positions.

In section 4.3 the difference equation Lκx = −Pclv(x) was derived. This
difference equation is solved in this appendix. First use the definition of L given
in eq. (A.2):

κx+1 − κx =
qx
px

[κx − κx−1]− 1

px
Pclv(x)

Analogous to the previous appendices, this equation can be plugged into itself.
Two iterations are worked out:

κx+1 − κx =
qx
px

[
qx−1

px−1
[κx−1 − κx−2]− 1

px−1
Pclv(x− 1)

]
− 1

px
Pclv(x)

=
qxqx−1

pxpx−1
[κx−1 − κx−2]− qx

pxpx−1
Pclv(x− 1)− 1

px
Pclv(x)

=
qxqx−1qx−2

pxpx−1px−2
[κx−2 − κx−3]− qxqx−1

pxpx−1px−2
Pclv(x− 2)− qx

pxpx−1
Pclv(x− 1)− 1

px
Pclv(x)

Iterating this, the following general result is found:

κx+1 − κx = ϕ(x)[κ1 − κ0]−
x−1∑
i=0

ϕ(x)

ϕ(x− i)
1

px−i
Pclv(x− i) (A.14)

Since we are interested in κy, eq. (A.14) should be summed over x from 0 to
y − 1. This results in a telescope series on the left hand side.

κy − κ0 =

y−1∑
x=0

{
ϕ(x)[κ1 − κ0]−

x−1∑
i=0

ϕ(x)

ϕ(x− i)
1

px−i
Pclv(x− i)

}
.

Using the boundary conditions κ0 = κN = 0, the equation can be rewritten into
a closed expression for κy:

κy =

y−1∑
x=0


∑N−1
ξ=0

∑ξ−1
j=0

ϕ(ξ)
ϕ(ξ−j)

1
pξ−j
Pclv(ξ − j)∑N−1

ξ=0 ϕ(ξ)
ϕ(x)−

x−1∑
i=0

ϕ(x)

ϕ(x− i)
1

px−i
Pclv(x− i)

 .

(A.15)
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Then from eq. (A.13) one finds that the expression for the expected cleavage
time is

T clv(y) =
1

Pclv(y)

y−1∑
x=0


∑N−1
ξ=0

∑ξ−1
j=0

ϕ(ξ)
ϕ(ξ−j)

1
pξ−j
Pclv(ξ − j)∑N−1

ξ=0 ϕ(ξ)
ϕ(x)−

x−1∑
i=0

ϕ(x)

ϕ(x− i)
1

px−i
Pclv(x− i)

 .

(A.16)

A.4 Expected time to unbind

The expected unbinding time T ub can be found by a similar approach as used
for T clv. Recall the definition for T ub(y) from section 4:

T ub(y) = Ey(T0,N |T0 < TN ). (A.17)

Then, similar to eq. (A.13) the following identity holds for T ub(y) :

T ub(y) =
νy

Pub(y)
(A.18)

with νy := Ey(T0,NI(T0 < TN )). It is known that Pub(y) = 1 − Pclv(y) since,
in the end, a walker will reach one of the absorbers. Therefore an expression
for νy is to be found only. In section 4.4 the following difference equation was
derived for ν:

Lνx = −Pub(x).

This difference equation is similar to the equation for κx and therefore gives a
similar result. It can be deduced that a closed expression for νy is:

νy =

y−1∑
x=0


∑N−1
ξ=0

∑ξ−1
j=0

ϕ(ξ)
ϕ(ξ−j)

1
pξ−j
Pub(ξ − j)∑N−1

ξ=0 ϕ(ξ)
ϕ(x)−

x−1∑
i=0

ϕ(x)

ϕ(x− i)
1

px−i
Pub(x− i)

 .

Then from eq. (A.18) it follows that

T ub(y) =
1

Pub(y)

y−1∑
x=0


∑N−1
ξ=0

∑ξ−1
j=0

ϕ(ξ)
ϕ(ξ−j)

1
pξ−j
Pub(ξ − j)∑N−1

ξ=0 ϕ(ξ)
ϕ(x)−

x−1∑
i=0

ϕ(x)

ϕ(x− i)
1

px−i
Pub(x− i)


(A.19)

with y the initial position of the walker.
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B The moment generating function for the ran-
dom walk

In section 6.2 the moment generating function of the stopping time of a special
case of the random walk is derived. Two proofs are given in detail here. First
it is proved that the used martingale is indeed a martingale. Secondly the
derivation of the moment generating function is given.

B.1 Proof that Mn is a martingale

Recall the definition of Mn and N±,n:

Mn := exp

{
λ(Sn − α)− n log

[
coshλ

]}
+ exp

{
− λ(Sn − β)− n log

[
coshλ

]}
N±,n := exp

{
± λSn − n log

[
coshλ

]}
From these definitions it can be seen that Mn = e−λαN+,n + eλβN−,n. Since
bothMn andN±,n are deterministic functions dependent on the random variable
Sn, it can be said that they are all Fn-adapted with Fn = σ{S0, . . . , Sn}.
Therefore, using proposition 6.5, Mn is a martingale if N+,n and N−,n are
martingales. To show that these are martingales, the three defining properties
of a martingale are verified.

First, it was already explained that N±,n is Fn-adapted. Second E[Sn] is
finite since the state space is finite. Therefore, since α, β and λ are finite con-
stants, it is clear that E[N±,n] <∞.

Finally it must be shown that E[N±,n|Fn] = N±,n−1. One can see that

E[N±,n|Fn] = E
[

exp
{
± λSn − n log [coshλ]

}∣∣Fn].
Using the definition of Sn in eq. (6.2) one finds

= E
[

exp
{
± λ(Sn−1 −Xn)− n log

[
coshλ

]}∣∣Fn].
Since Sn−1 and Xn are independent, the expectation values can be split. Fur-
thermore, as Sn−1 ∈ Fn, the second expectation value is deterministic:

= E
[

exp
{
∓ λXn

}
|Fn
]

exp
{
± λSn−1 − n log [coshλ]

}
Xn has outcomes ±1 with probability p (see eq. (6.1)). Therefore using the law
of the subconscious statiscian [4], one can write this as:

=
(
pe∓λ+ pe±λ

)
· exp {±λSn−1 − n log [coshλ]}

= cosh(λ) · exp {±λSn−1 − n log [coshλ]}
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Using several calculus rules one finds:

= exp {log [coshλ]} · exp {±λSn−1 − n log [coshλ]}
= exp {±λSn−1 − (n− 1) log [coshλ]}
= N±,n−1

Therefore N±,n is a martingale. From this it follows that Mn is a martingale.

B.2 Derivation of the moment generating function

Consider a random walk on a discrete state space S = {−a,−a+1, . . . , 0, . . . , b}.
At each position the walker has an equal probability p = 0.5 to move left or
right. In this appendix the moment generating function of the stopping time τ
is derived for this situation.

Recall the martingale defined in eq. (6.4) as a function of Sn:

Mn(Sn) = exp

{
λ(Sn − α)− n log

[
coshλ

]}
+ exp

{
− λ(Sn − β)− n log

[
coshλ

]}
.

By stopping the martingales in section 6.2 the following result was found (see
eq. (6.9)):

E[Mτ ] = e−λα + eλβ . (B.1)

At the stopping time τ , the walker is, by the definition of τ , either at position
−a or b. Therefore Sτ ∈ {−a, b}. E[Mτ ] can be written as follows:

E[Mτ ] =
∑

x∈{−a,b}

E[Mτ (Sτ = x) · I(Sτ = x)]

= E
[

exp

{
λ(−a− α)− τ log

[
coshλ

]}
I(Sτ = −a)

]
+ E

[
exp

{
− λ(−a− β)− τ log

[
coshλ

]}
I(Sτ = −a)

]
+ E

[
exp

{
λ(b− α)− τ log

[
coshλ

]}
I(Sτ = b)

]
+ E

[
exp

{
− λ(b− β)− τ log

[
coshλ

]}
I(Sτ = b)

]
(B.2)

α, β ∈ R are constants and they can be chosen freely. The following system
of equations is solved for α, β:{

−a− α = −(b− β)

−(−a− β) = b− α
=⇒ α = β =

−a+ b

2

α, β are chosen as expressed above. Then one finds the following four expres-
sions:

−a− α = −a+ b

2
b− α =

a+ b

2

−(b− β) = −a+ b

2
−(−a− β) =

a+ b

2
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Using these four expressions and plugging them into eq. (B.2), one finds:

E[Mτ ] = E
[

exp

{
− λa+ b

2
− τ log

[
coshλ

]}
I(Sτ = −a)

]
+ E

[
exp

{
λ
a+ b

2
− τ log

[
coshλ

]}
I(Sτ = −a)

]
+ E

[
exp

{
λ
a+ b

2
− τ log

[
coshλ

]}
I(Sτ = b)

]
+ E

[
exp

{
− λa+ b

2
− τ log

[
coshλ

]}
I(Sτ = b)

]
. (B.3)

Since there are no other possibilities than Sτ = −a or Sτ = b, it can be seen
that I(Sτ = −a) + I(Sτ = b) = 1. Using this, eq. (B.3) can be simplified to

E[Mτ ] = E
[
e−λ

a+b
2 −τ log[coshλ] + eλ

a+b
2 −τ log[coshλ]

]
= E

[
e−τ log[coshλ]

]
· 2 cosh

(
λ
a+ b

2

)
. (B.4)

Furthermore, by the choice of α, β and by eq. (B.1) it can be derived that

E[Mτ ] = e−λ
−a+b

2 + eλ
−a+b

2 = 2 cosh

(
λ
−a+ b

2

)
. (B.5)

Combining eqs. (B.4) and (B.5) gives:

E
[
e−τ log[coshλ]

]
=

cosh
(
b−a

2 λ
)

cosh
(
a+b

2 λ
) . (B.6)

This is nearly a moment generating function. Such a function is of the follow-
ing form: E[e−θτ ]. Therefore one must substitute θ = log[coshλ]. λ can be
expressed in terms of θ:

θ = log(coshλ)

eθ = coshλ

Using the expression cosh−1(x) = log
(
x+
√
x2 − 1

)
, one finds:

λ(θ) = log
(
eθ +

√
e2θ − 1

)
= log

(
eθ
(

1 +
√

1− e−2θ
))

= θ + log
(

1 +
√

1− e−2θ
)

(B.7)

for θ ≥ 0.
Therefore, for the special case of the random walk with p = q = 0.5, the

moment generating function of the stopping time τ is

E[e−θτ ] =
cosh

(
b−a

2 λ(θ)
)

cosh
(
a+b

2 λ(θ)
) (B.8)

with λ(θ) given by eq. (B.7).
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C The moment generating function for a Brownian
motion with drift

In section 6.3 the moment generating function of the stopping time of a Brownian
motion with drift is derived using martingales. In this appendix it is proved that
the used martingale is indeed a martingale and the full derivation of the moment
generating function is given.

C.1 Proof that Mt is a martingale

Recall the definitions of the random processes Mt and Xt:

Mt = exp

{
− 1

2
(λ2 − µ2)t− µXt

}
sinh(λXt − α) (C.1)

Xt = Wt + µt (C.2)

with Wt a standard Brownian motion as defined in definition 6.7. First Mt can
be rewritten in terms of Wt:

Mt = exp

{
− 1

2
(λ2 − µ2)t− µWt − µ2t

}
sinh(λWt + λµt− α)

Then using the definition of the hyperbolic sine and several calculus rules this
result can be rewritten:

=
1

2
exp

{
− 1

2
(λ2 − µ2)t− µWt − µ2t

}(
eλWt+λµt−α − e−λWt−λµt+α

)
=

1

2
exp

{
− 1

2
(λ2 − 2λµ+ µ2)t+ (λ− µ)Wt − α

}
− 1

2
exp

{
− 1

2
(λ2 + 2λµ+ µ2)t− (λ+ µ)Wt + α

}
=

1

2
exp

{
− 1

2
(λ− µ)2t+ (λ− µ)Wt − α

}
− 1

2
exp

{
− 1

2
(λ+ µ)2t− (λ+ µ)Wt + α

}
. (C.3)

Now one can observe that Mt = 1
2N+,t − 1

2N−,t with N±,t defined as

N±,t = exp

{
−1

2
(λ∓ µ)2t± (λ∓ µ)Wt ∓ α

}
. (C.4)

Both Mt and N±,t are a function of the random variable Wt. Therefore both
random variables are Ft-adapted with Ft = σ{Ws|0 ≤ s < t}. Then it follows
from proposition 6.5 that Mn is a martingale if N±,t is a martingale. Therefore it
must be proved that the three defining properties of a martingale (definition 6.2)
hold for N±,t.

First we have seen that N±,t is Fn-adapted. Therefore the first property
holds. Secondly, since Wt is bounded by −a and b, and t ≥ 0, one can see that
E[N±,t] <∞, assuming the constants α, λ, µ are finite.
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Finally it must be shown that E[N±,t|Ft] = N±,s for 0 ≤ s < t. It can be
seen that

E[N±,t|Ft] = E
[
exp

{
−1

2
(λ∓ µ)2t± (λ∓ µ)Wt ∓ α

} ∣∣∣∣Ft] .
By adding two cancelling terms with s this can rewritten as

= E
[

exp

{
−1

2
(λ∓ µ)2(t− s)± (λ∓ µ)(Wt −Ws)

}
· exp

{
−1

2
(λ∓ µ)2s± (λ∓ µ)Ws ∓ α

} ∣∣∣∣Ft].
Notice that s and t are deterministic and Ws ∈ Ft. Therefore several terms can
be taken out of the expectation operator:

= e−
1
2 (λ∓µ)2(t−s) · E

[
exp {±(λ∓ µ)(Wt −Ws)}

∣∣∣∣Ft]
· exp

{
−1

2
(λ∓ µ)2s± (λ∓ µ)Ws ∓ α

}
(C.5)

By the third property of definition 6.7, one can find that (Wt − Ws) is
normally distributed with mean 0 and variance (t−s). Furthermore it is known
that for a random variable X which is normally distributed with mean µ0 and
variance σ2, the following holds by its moment generating function: [4]

E[etX ] = eµ0te
1
2σ

2t2

Using this property it can be found that

E
[
exp {±(λ∓ µ)(Wt −Ws)}

∣∣∣∣Ft] = e
1
2 (t−s)(λ∓µ)2 . (C.6)

Combining this result with eq. (C.5), it can be seen that

E[N±,t|Ft] = exp

{
−1

2
(λ∓ µ)2s± (λ∓ µ)Ws ∓ α

}
= N±,s. (C.7)

Having proved the third defining property of a martingale for N±,t, it can
be said that N±,t is a martingale. Therefore, Mt is a martingale as well.
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C.2 Derivation of the moment generating function

In this appendix the moment generating function of the stopping time of a
Brownian motion with drift is derived. Recall the results from section 6.3. The
used martingale is

Mt = exp

{
− 1

2
(λ2 − µ2)t− µXt

}
sinh(λXt − α) (C.8)

and in eq. (6.16) it was found that E[M0] = sinh(−α). The equation E[Mτ ] =
E[M0] needs to be solved to find the moment generating function.

First E[Mτ ] is written out. At time τ the walker is, by the definition of τ ,
either at position −a or b. Therefore Xτ ∈ {−a, b}. It can be seen that

E[Mτ ] = E
[
exp

{
− 1

2
(λ2 − µ2)t+ µa

}
sinh(−λa− α)I(Xτ = −a)

]
+ E

[
exp

{
− 1

2
(λ2 − µ2)t− µb

}
sinh(λb− α)I(Xτ = b)

]
. (C.9)

The parameter α ∈ R can be chosen freely. It is chosen such that

eµa sinh(−λa− α) = e−µb sinh(λb− α). (C.10)

Using the definition of the hyperbolic sine and several calculus rules, eq. (C.10)
can be rewritten into the following form:

e2α =
e(λ−µ)b − e−(λ−µ)a

e−(λ+µ)b − e(λ+µ)a
. (C.11)

Furthermore sinceXτ ∈ {−a, b}, it follows that I(Xτ = −a)+I(Xτ = b) = 1.
Combining this with eq. (C.10), eq. (C.9) can be reduced to the following form:

E[Mτ ] = E
[
exp

{
− 1

2
(λ2 − µ2)t+ µa

}
sinh(−λa− α)

]
Then according to the results from eq. (6.17) one can see that

E
[
exp

{
− 1

2
(λ2 − µ2)t+ µa

}
sinh(−λa− α)

]
= sinh(−α)

⇒ E
[
e−

1
2 (λ2−µ2)t

]
=
e−µa sinh(−α)

sinh(−λa− α)
=

e−µae−α(1− e2α)

e−α(e−λa − eλae2α)
(C.12)

Equation (C.12) can be rewritten into a neater result. First the expression
for α given in eq. (C.11) is substituted into the equation:

E
[
e−

1
2 (λ2−µ2)t

]
=
e−µa(1− e(λ−µ)b−e−(λ−µ)a

e−(λ+µ)b−e(λ+µ)a )

e−λa − eλa e(λ−µ)b−e−(λ−µ)a

e−(λ+µ)b−e(λ+µ)a

Both the numerator and denominator contain a subfraction with equal denomin-
ators. By multiplying both the numerator and denominator of the main fraction
by this denominator, the expression simplifies to

E
[
e−

1
2 (λ2−µ2)t

]
=

e−µa(e−(λ+µ)b − e(λ+µ)a − e(λ−µ)b + e−(λ−µ)a)

e−λa(e−(λ+µ)b − e(λ+µ)a)− eλa(e(λ−µ)b − e−(λ−µ)a)

52



Working out the brackets reduces the expression to the following:

=
−2 sinh(λa)− 2e−µa−µb sinh(bλ)

e−µb(−eλ(a+b) + e−λ(a+b))

Multiplying both the numerator and denominator of the fraction by −eµb results
in a neat expression:

=
eµb sinh(λa) + e−µa sinh(λb)

sinh(λ(a+ b))
(C.13)

The moment generating function is of the form E[e−xτ ], therefore the fol-
lowing substitution should be done:

x =
1

2
(λ2 − µ2)⇒ λ(x) = ±

√
2x+ µ2. (C.14)

Note that, since the hyperbolic sine is an odd function, the sign of λ(x) can be
chosen freely. This can be seen by the following:

eµb sinh(−λa) + e−µa sinh(−λb)
sinh(−λ(a+ b))

=
−eµb sinh(λa)− e−µa sinh(λb)

sinh(−λ(a+ b))

=
eµb sinh(λa) + e−µa sinh(λb)

sinh(λ(a+ b))
.

Therefore choose λ(x) =
√

2x+ µ2.
Then the moment generating function for the stopping time of a Brownian

motion with drift is

E[e−xτ ] =
eµb sinh(aλ(x)) + e−µa sinh(bλ(x))

sinh((a+ b)λ(x))
(C.15)

with λ(x) =
√

2x+ µ2, restricted by x > 0 as derived in section 6.2.
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