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A B S T R A C T   

To be commercially viable, wave energy converters (WECs) will need to be deployed in arrays or “wave farms” to 
generate significant amounts of energy and to have the costs of these farms minimised. However, when designing 
a wave farm, there are a number of trade-offs to be made between competing objectives; for example, between 
the power production potential and installation costs, with the optimal design for one objective not necessarily 
favourable for the other. In this study, we developed a multi-objective optimisation methodology to allow 
rigorous evaluation of the trade-offs amongst multiple objectives. We demonstrate the methodology for four 
objectives: (1) maximising power production, (2) minimising the foundation loads, (3) minimising the number of 
foundations and (4) minimising the total export cable length required. However, the method is flexible and can 
be used for optimising a range of other parameters. A case study examining multi-objective optimisation of a 
wave farm using the developed probability-based evolutionary strategy was conducted for a proposed devel
opment site in Albany, Western Australia. The wave farms were composed of 5, 10 and 20 fully submerged 
cylindrical point-absorber type WECs similar to Carnegie Clean Energy’s CETO-6 device. Simulations show that 
the optimal layouts preferring maximum power formed a single line perpendicular to the predominant wave 
direction; the optimal layouts preferring minimum cable length and a minimum number of foundations form 
multiple lines; whereas the optimal layouts preferring minimum foundation loads formed multiple lines in line 
with the predominant wave direction. By applying a cost model and non-dominated sorting, the methodology 
allowed us to quantify the trade-offs between power production and cost.   

1. Introduction 

Global energy demand is predicted to increase by a further 25% by 
2040 compared to 2017 (Ghasemian et al., 2020). To satisfy this de
mand, while also reducing carbon emissions, renewable energy tech
nologies will become increasingly important to the global energy mix. 
Due to the high energy density of ocean waves, and their consistency, 
wave energy technology has drawn increased attention. As a result, 
several wave energy technologies have been developed over the years. 
Regardless of the category, all wave energy converters (WECs) will have 
to be deployed in arrays or “wave farms” to generate electricity on a 
commercial scale. 

Several theoretical studies considering regular waves (e.g., Budal 
1977, Evans 1980, Falnes 1980, Thomas and Evans 1981) have shown 

that, for certain wave frequencies, the power generated by an array can 
be more than that from the same number of WECs in isolation (quanti
fied by the interaction factor, q (Budal, 1977), which is > 1 for positive 
interactions). Conversely, the opposite (q < 1) can occur for other wave 
frequencies, causing the array power to be lower than the power from 
the same number of isolated WECs. These responses are due to regions of 
constructive and destructive interactions within WEC arrays. To un
derstand how constructive and destructive interactions can impact the 
power generated by arrays, numerous studies have focussed on array 
interactions with different farm parameters such as inter-WEC spacing, 
wave direction, number of WECs in the array, or a combination of these 
(e.g., Babarit 2013, Fitzgerald and Thomas 2016, McIver 1994, Wolga
mot et al. 2012, Zhong and Yeung 2019). Although it is beneficial to 
achieve optimum power generation by exploiting constructive in
teractions within the array, this is sometimes beyond the capabilities of 
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Nomenclature 

Term/Notation Definition 
A incident wave amplitude 
Am added mass matrix 
bpto damping coefficients 
B matrix of radiation damping coefficients 
Bpto damping coefficient matrix 
BA buoyant actuator 
c mutation coefficient 
C cluster 
costf foundation cost 
costpi pile installation cost 
costpm pile manufacturing cost 
costst steel unit cost 
costvessel vessel operation day cost 
D diameter of Buoyant Actuator 
dc distance between clusters 
E undirected weighted graph edges 
f objective functions 
F̂e vector of complex excitation forces 
fk(ϑi) map of the decision variable (ϑ) i 
fmax
k maximum function values 

fmin
k minimum function values 

Fl,n load transfer function (n = 1,2,3) 
G cost metric 
Gn normalized cost 
GA genetic algorithm 
GAM grid array model 
h depth below seabed 
ht height above pile tip 
Hs significant wave height 
i imaginary unit 
J iteration number 
k̂ unit vector in the vertical direction 
kpto spring coefficients 
Kpto spring coefficient matrix 
L total number of sea states 
LAM linear array model 
Lc cable length 
ls least square 
ls normal line normal to least square axis 
LCoE levelized Cost of Energy 
M mass matrix 
Md distance between foundations 
MOEA evolutionary multi-objective optimisation 
n number of objective functions 
N total number of WECs 
Na number of anchors 
Nn

a normalised number of anchors 
Nblow number of driving blows for per metre penetration 
Nc number of cycles 
Ol probability of occurrence of the lth sea state 
PopSize population size 
P time-averaged power 
Pcons mean power absorbed in constrained case 
Puncons mean power absorbed in the unconstrained case 
PD pile diameter 
PDi inner diameter of the pile 
Piso isolated WEC power 
Pl power absorbed in the lth sea state 
PL pile length 
Pmax maximum power 
Pmean mean Power 

P(R) long term probability not exceeding the return load R 
PTO power take-off 
q interaction factor 
qc cone tip resistance profile 
Q probability level 
rk number of rows in an array ‘k’ (LAM) 
rmax pre-selected radius 
R return load 
R20 20-year return load 
R20,cons 20-year return load in constrained case 
R20,uncons 20-year return load in the unconstrained case 
Rn

20 normalised 20-year return load 
RAM random array model 
RAO response amplitude operator 
Rmax short-term load 
s source wave energy converter 
S wave energy converter spacing 
Sg grid spacing (GAM) 
Sij spacing between WEC i and j (RAM) 
Sk inter-device spacing of WECs for an array ‘k’ (LAM) 
Sp,l power spectral density of the lth sea state 
Srk spacing of rows (LAM) 
t target wave energy converter 
ts sea-state duration 
Thammer hammer blow period 
Tinstall installation duration (in days) 
Tm mean wave period 
Tn instantaneous tether vector (n = 1,2,3) 
Tp peak wave period 
Tpd driving duration (in seconds) for each pile 
Tpp preparation duration of each pile 
Tp,wa probability-weighted average wave period 
Û vector of complex velocity amplitudes 
Ûopt optimal complex velocity amplitudes 
V undirected weighted graph vertices 
w undirected weighted graph weights 
wsteel total weight of steel 
WEC wave energy converter 
xi, yi cartesian coordinates of WEC i 
αap tether’s attachment point angle 
αH tether’s horizontal angle 
αi contingency factor 
αf pile fabrication factor 
αv tether’s vertical angle 
αx and αy grid coordinates (GAM) 
β wave direction 
βm mean wave direction 
βWA weighted average mean wave direction 
γ peak enhancement factor 
γm material factor 
δ angle between αx and αy (GAM) 
δf constant volume interface angle 
ΔLn change in the tether length 
ΔL̇n rate of change in tether length 
θg farm orientation (GAM) 
θk orientation of the array ‘k’ (LAM) 
ϑ decision variable 
ξheave heave amplitude 
σ standard deviation 
σ2

r variance of the load 
σξheave standard deviation of the heave displacement 
τf local shaft friction 
ω angular frequency 
* complex conjugate transpose  
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the practical design of WECs in realistic seas. Therefore, it is more 
practical to design array systems that can reduce destructive interactions 
(McIver, 1994; Weller et al., 2010). 

Several studies have utilized different optimisation algorithms to 
identify the constructive interaction regimes in a wave farm to maximize 
power production (e.g., Child and Venugopal 2010, Giassi and Göteman 
2018, Mercadé Ruiz et al. 2017, Neshat et al. 2020). Recently, Göteman 
et al. (2020) presented a comprehensive review of existing wave farm 
optimisation approaches that used different hydrodynamic modelling 
methods, power take-off (PTO) modelling and highlighted the associ
ated challenges. This review indicated that a majority of existing studies 
have used only one objective, namely to maximise power generation. 
They also found that to maximise power production WECs in an array 
should generally align perpendicular to the wave direction, especially 
for long-crested waves. 

One of the key challenges faced by the wave energy industry is cost 
competitiveness with other renewables. For energy projects, cost is 
generally quantified using the levelized cost of energy (LCoE), which is 
defined as the ratio between the total cost (including the capital, oper
ational and maintenance costs) and the discounted present-day value of 
the energy produced throughout the operational life. While some studies 
have evaluated the LCoE of arrays after optimising for power production 
(e.g., Giassi et al. 2020, Sharp and DuPont 2018), optimisation should 
ideally concurrently consider power production and cost. This is due to 
the fact that some factors that maximise the power produced will in
crease cost, potentially more than offsetting the increase in power 
output. Therefore, it is important for WEC array developers to have tools 
to consider the array design in a multi-objective sense, using more 
comprehensive objective functions to aid in designing a wave farm. 
Existing studies have applied the multi-objective optimisation to many 
fields (e.g., Birk 2009, Fox et al. 2019, Karimi et al. 2017, Rodrigues 
et al. 2016) with only a few studies focussing on wave farms (Arbonès 
et al., 2018, 2016). 

In this work, we develop a multi-objective optimisation framework 
that can be applied to optimise WEC arrays considering power output as 
well as a range of factors that impact cost. To demonstrate the 

methodology, a case study is conducted for Albany, Western Australia, 
with wave farms composed of several shallowly-submerged cylindrical 
WECs resembling Carnegie Clean Energy’s CETO-6 device (Fig. 1). We 
consider some of the major cost components of wave energy projects, for 
example, foundations and cabling, using values from the available 
literature. However, the cost model for a particular wave energy project 
will vary with the WEC design and location (De Andres et al., 2017; 
Sergiienko et al., 2018), and thus our focus is primarily on demon
strating the multi-objective methodology that can subsequently be 
applied by wave energy developers using their own more complete, 
bespoke cost models. 

This paper is organised as follows. Section 2 provides a detailed 
description of the method along with the objective functions and con
straints used in the optimisation. In Section 3, we present the results for 
a few different array sizes. Some of the uncertainties associated with the 
optimisation are discussed in Section 4. Finally, we summarize our 
findings in Section 5. 

2. Methodology 

2.1. Wave energy converter 

In this work, we consider a shallowly-submerged nearshore point 
absorber type WEC similar to Carnegie’s CETO-6 device (Fig. 1). The 
geometric parameters of the WEC, including the diameter and height of 
the ‘buoyant actuator’ (BA) were kept constant throughout the study as 
25 m and 5 m, respectively. The device was moored to the sea bed in 
34 m of water and the BA submergence fixed at 3 m. The BA is moored 
using three taut tethers connected to distinct power take-offs (PTOs) 
capable of behaving as a spring-damper and allowing power generation 
from multiple modes of motion. Each tether’s vertical (αv) and hori
zontal (αH) angles were fixed at 60◦ and 120◦, respectively. 

2.2. Multi-objective optimisation 

Unlike single-objective optimisation, multi-objective optimisation 
deals with a set f = {f1, f2,…, fn} of n objective functions (f) simulta
neously, with the aim of finding a set of non-dominated (also called 
Pareto optimal) solutions subject to constraints. For more details on non- 
dominated solutions and sorting, readers are referred to Birk (2009) and 
Deb et al. (2000). The concept of multi-objective optimisation is not 
new, with several existing studies having applied the framework in 
different fields, including WEC geometries (Kurniawan and Moan, 
2013), offshore structures (Birk, 2009), wind farms (Karimi et al., 2017; 
Rodrigues et al., 2016) and wave farms (Arbonès et al., 2018, 2016). The 
work on wave farms (Arbonès et al., 2018, 2016) had a focus on max
imising power absorption, minimising the transmission cable lengths 
and minimising the wave farm area. The study demonstrated an increase 
in power absorption of roughly 1% (on average), with reduced trans
mission cables and farm area over the initial best-structured arrange
ment of WECs. Here we expand on the existing approaches by including 
different array layout models (Section 2.3) with a different evolution 
strategy of arrays (Section 2.8) and a larger set of objective functions 
including minimising foundation loads and the number of anchors 
(Section 2.7). Furthermore, by using a representative cost model we 
demonstrate the potential trade-offs between the converged wave farms. 

Wave farm optimisation becomes increasingly complex as the num
ber of objective functions and parameters increases. For a wave farm, 
the number of WECs in the farm, moorings or anchors (loads when 
shared or unshared), PTO capacity and control settings, electrical sys
tems, transmission cables, sub-stations and grid connections could be 
considered. Omitting or approximating some of the important aspects of 
the farm might result in sub-optimal wave farm configurations. On the 
other hand, considering the full spectrum of variables involved in wave 
farm optimisation will increase the computational expense of any study 
(and complicate the interpretation of the output). To demonstrate the 

Fig. 1. Sketch of the shallowly submerged cylindrical point absorber with three 
taut tethers. 
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method, in this paper we choose to focus on a subset of the most 
important possible objective functions, but note that the method can 
accommodate additional parameters if sufficient computational re
sources are available. 

The objective functions considered here are broadly fixed to maxi
mise the power generation and minimise the capital cost. For the latter, 
we considered three variables (objective functions) that strongly influ
ence the overall capital cost and vary with WEC farm configuration, 
specifically: the length of transmission cables, the number of founda
tions, and the design load for the foundations (which dictates their size). 
It is important to highlight here that we include in our optimisation costs 
that are likely to be dependant on WEC farm configurations rather than 
‘fixed costs’ such as WEC manufacturing, contingencies and mobi
lisation. Although the costs associated with the BAs and PTOs account 
for a major proportion of the WEC farm cost, we assumed that each WEC 
in the array was of identical design and thus that the PTO costs are fixed 
(based on the best design). 

In total, four objective functions are considered in this work with 
some conflicting with each other. For example, increasing the power 
generation typically increases the design load on the foundations and 
thereby cost. Also, to reduce the transmission cable lengths and to 
reduce the number of foundations (by using shared foundations), the 
WEC spacing must be reduced, which may impact the WEC-WEC in
teractions and alters the power generation in a nontrivial way. In such 
scenarios, multi-objective optimisation can provide a quantitative 
insight into the trade-off between multiple optimal solutions, in a way 
that a single-objective optimisation cannot. The benefits of multi- 
objective optimisation, as compared to single objective, have been 
demonstrated in different applications (e.g., Mahrach et al. 2020, 
Schulze-Riegert et al. 2007, Zakaria et al. 2012). 

Our approach is based on the evolutionary multi-objective optimi
sation framework (also referred to as the MOEA approach, Deb 2011). 
The MOEA is a stochastic optimisation method and a population based 
computation similar to other evolutionary algorithms (e.g., Genetic Al
gorithm, Differential Evolution). In the MOEA and other evolutionary 
algorithms, the population size (PopSize) is one important component 
that can greatly influence the computational time and the converged 
solutions. Here, we refer to PopSize as the number of different arrays 

evaluated at each iteration. Reducing the PopSize may sometimes lead to 
sub-optimal solutions (Koumousis and Katsaras, 2006; Pelikan et al., 
2000), conversely, increasing the PopSize could result in the algorithm 
expending more time finding the optimal solutions (Lobo and Goldberg, 
2004; Roeva et al., 2013). There is a trade-off between computational 
time and the accuracy of the converged solutions. In this work, the 
PopSize is fixed as 75, based on our initial trials with 5- and 7-WEC farms 
and found to be efficient in terms of both computational time and 
convergence rate. 

The optimisation procedure involves 5 broad steps: (i) initializing the 
wave farms (arrays), (ii) evaluating each objective function for each 
array, (iii) non-dominated sorting to identify the Pareto optimal solu
tions, (iv) generating new wave farms by variation of the non-dominated 
solutions and (v) repeating steps (ii) to (iv) until the specified stopping 
time. 

2.3. Array models 

The first step in the optimisation is to initialize arrays; here the 
number of arrays is dictated by PopSize (75). Existing studies have used 
different approaches to design arrays, ranging from structured ar
rangements of WECs (López-Ruiz et al., 2018; Mercadé Ruiz et al., 2017) 
to random placements (Neshat et al., 2020) and random gridded ar
rangements (Giassi and Göteman, 2018; Sharp and DuPont, 2018), with 
several early studies focussed on linear arrangements of WECs (e.g., 
Kagemoto and Yue 1986, Thomas and Evans 1981). A recent study 
showed that regular line arrays optimised for a given wave spectrum 
generally outperform the best random arrays of the same size for that 
spectrum (Tokić and Yue, 2021). However, it is still not clear how the 
different array approaches perform in the multi-objective space. 
Therefore, in this study, we used three different array layout models; the 
linear array model (LAM), the random array model (RAM) and the grid 
array model (GAM). Each array model has different default arrangements 
and is described briefly here. 

In the LAM, we considered linear rows and arrays, and reduced the 
number of design variables associated with the layout of the array to 
four. For an array k, the variables are inter-device spacing of WECs (Sk), 
the orientation of the farm, defined by the angle the tangent to the rows 
makes with the x-axis (θk), number of rows (rk) and spacing of rows (Srk). 
The variables are subject to the following constraints (see also Fig. 2): 
⎧
⎪⎪⎨

⎪⎪⎩

97 m ≤ Sk ≤ 300 m
0∘ ≤ θk < 360∘

50 m ≤ Srk ≤ 300 m
rk = 1, 2, 3 rows

∀ k = 1, 2, …, PopSize. (1) 

In addition to the above constraint, we also ensured that layouts 
satisfied the following constraint, 

Sij =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
xi − xj

)2
+
(
yi − yj

)2
√

≥ 97 m, (2)  

where xi, yi are the Cartesian coordinates of WEC i. 
The limits applied to inter-WEC spacing are: a minimum limit of 

97 m, which is as the spacing suitable for adjacent WECs in the array to 
share foundations (based on a 60-degree angle of the mooring line to the 
WEC and a depth of 34 m), and a maximum limit of 300 m, based on 
practical considerations to limit the area occupied by the array. 
Although the minimum row spacing is fixed as 50 m, a wave farm layout 
with minimum inter-WEC spacing along a row (= 97 m) and minimum 
row spacing (= 50 m) is not feasible as it would violate the minimum 
distance between any two WECs in the array, Eq. (2). Nevertheless, the 
minimum row spacing of 50 m was found to be useful in reducing the 
transmission cable length for layouts with inter-WEC spacing above 
125 m. 

The tether orientation is another important parameter that can have 
a major influence on foundation sharing. For a three-tethered CETO-like 
design, it is possible to share foundations with suitable spacing and 

Fig. 2. Schematics of an example linear array setup for 5-WEC array arranged 
in 2 rows with orientation θk set as 0

◦

. Sk is the inter-device spacing, Srk is the 
row spacing, Md is the distance between moorings and β is the wave direction. 
The grey dotted line indicates the major axis of the wave farm. 
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orientation. In the LAM, the tether orientation is fixed by the array 
orientation (θk). To effectively share foundations between WECs, a 
tether arrangement in which one tether points exactly normal to the row 
in the downwave direction is considered. Furthermore, for every array, 
we also calculated the distance between foundations (Md). For arrays 
with Md  ≤ 3 m, we modify Sk/Srk such that WECs share anchors. Fig. 2 
shows the schematics of the linear array arrangement for an illustrative 
array arranged in 2 rows with θk set to 0

◦

. 
As the positions of individual WECs in the LAM arrays are signifi

cantly constrained (i.e. Sk, θk and Srk are constant), we consider the 
random array model (RAM) as our second array model. In the RAM, each 
WEC within the array is placed independently and subject to the 
constraint given in Eq. (2). In addition, for the RAM, we imposed a 
domain size limit, beyond which WECs cannot be placed. This constraint 
was expressed as, 
{

0 ≤ xi ≤ xmax
0 ≤ yi ≤ ymax

∀ i = 1, 2, …, N, (3)  

where xmax = ymax (square domain) and N is the total number of WECs in 
the array. Therefore, in the RAM, the array is described by 2 N variables. 

In the RAM, the spacing Sij is evaluated at each iteration and modi
fied to facilitate sharing when Sij ≤ 102 m. This constraint is to maintain 
a minimum distance between the foundations and to increase the 
capability to share foundations in the RAM. Unlike the LAM, in the RAM, 
the tether orientation may be different for each WEC, depending on the 
arrangement necessary to enable foundation sharing. Due to the equi
angular (in the horizontal plane) tether arrangement for the CETO-6 

device, the mooring coordinates can be easily identified by knowing 
the coordinates of one mooring point (foundation sharing coordinate). 
Once all the three mooring points are fixed, the tether orientation of 
each WEC with respect to the x axis can be easily calculated. In the RAM, 
adjusting Sij between two WECs may alter the inter-device spacing with 
other WECs in the array, which in turn may or may not further share 
foundations with the neighbouring WECs. Furthermore, Sij adjustment 
may also re-orientate the tether arrangements of neighbouring WECs if 
additional WECs share foundations. Therefore, the modification (of Sij) 
and re-orientation (of tether arrangement) are forced in a “repeat-until” 
loop with the stopping criteria set as “no change” in the Cartesian co
ordinates and mooring points of all WECs compared to the previous 
evaluation, or the maximum number of evaluations (105) being reached. 
The modified Cartesian coordinates are subjected to the spacing and 
domain size constraints, Eqs (2) and (3), inside the “repeat-until” loop. 
For WECs that are not sharing a foundation, the mooring arrangement is 
fixed with one tether pointing in the x direction and the other two 
tethers obliquely pointing in the opposite direction (see Fig. 3). Note 
that for the linear analysis used here to calculate the power production 
(see Section 2.3 below), the tether arrangement does not influence the 
absorbed power. 

With the LAM and the RAM, foundation sharing of WECs is not al
ways possible due to the spacing constraint for foundation sharing. 
Therefore, to consider foundation sharing effectively, we used the grid 
array model (GAM). In the GAM, the WECs are represented based on grid 
coordinates, αx and αy (Fig. 4). 

The angle (δ) between αx and αy is fixed as 60◦ and grid points are 
spaced equally such that the WECs in adjacent grid points share at least 
one foundation. Furthermore, to include the wave farm orientation we 
introduced another variable referred to as the “farm orientation”, θg, 
which applies to the entire array and not for individual WECs. Therefore, 
in the GAM, a wave farm is described by three variables: αx, αy and θg. 
Like the LAM and the RAM, the GAM is also subject to constraints as 
follows: 
{
− αx,max ≤ αx,i ≤ αx,max

− αy,max ≤ αy,i ≤ αy,max
∀ i = 1, 2, …, N,

0 ≤ θg ≤ 2π θg ∈ R,

(4)  

where αx,max = αy,max, and are fixed based on the number of WECs. The 
Cartesian coordinates are related to the corresponding grid coordinates 
as 

[
xi
yi

]

=

[
cosθg − sinθg
sinθg cosθg

]
⎡

⎢
⎣

αy,i

2
− αx,i

(
αy,i

) ̅̅̅
3

√ /
2

⎤

⎥
⎦Sg. (5)  

where Sg is the grid spacing (fixed as 97 m to allow foundation sharing 
for the chosen tether inclination and water depth). 

Once the array is initialized using one of these methods, i.e. the LAM, 
the RAM or the GAM, we apply the optimisation procedure described in 
Fig. 5. The optimisation was carried out for each array model inde
pendently. The objective functions, viz. power generation, transmission 
cable length, number of foundations and loads, were subsequently 
evaluated. We describe the method employed to compute each of the 
objective function values in the next sections. 

2.4. Array power 

The total time-average power produced by an array of N WECs 
oscillating in six degrees of freedom, following linear wave theory, is 
calculated as (Budal, 1977; Falnes and Budal, 1982; Thomas and Evans, 
1981) 

P =
1
4
[Û

∗
F̂e + F̂e

∗

Û ] −
1
2
[Û

∗
BÛ], (6) 

Fig. 3. Orientation of the tethers for WECs that are not sharing a foundation in 
the random array model (RAM). β is the wave direction. 

Fig. 4. Grid array description.  
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where Û is the vector of complex velocity amplitudes, F̂e is the vector of 
complex excitation forces, B is the matrix of radiation damping co
efficients and the asterisk in the superscript implies the complex con
jugate transpose. Û is a frequency domain solution to the linear equation 
of motion given by (Falnes, 2002) 

F̂e (ω) =
[

iω(M +Am)+
(
B+Bpto

)
+

Kpto

iω

]

Û(ω), (7)  

where Am(ω) and B(ω) are the frequency-dependant added mass and 
radiation damping matrices, M is the mass matrix, Kpto and Bpto are the 
linearized PTO spring and damping coefficient matrices. For the case of 
a three-tether WEC considered here, Orszaghova et al. (2020) developed 
solutions for Eq. (7) by assuming the PTO coefficients were identical for 
all three PTOs (refer to that study for further details). The hydrodynamic 
coefficients were obtained from a linear potential flow model (McCau
ley et al., 2018) which also accounts for array interactions. For the fully 
submerged device, the hydrostatic stiffness is zero and the restoring 
force is achieved mechanically through the PTO. 

Apart from the placement of each WEC in the array, the PTO co
efficients are another set of design variables to be optimised. In this 
study, for a given array, the PTO coefficients for each WEC may differ 
but are constant across all sea states, and are optimised to maximise the 
array power output. To optimise the PTO coefficients, we utilized the 
MATLAB (The Mathworks, Inc. MATLAB, Version 9.6, 2019) built-in 
global optimisation toolbox (Pattern Search algorithm). In order to 
validate the PTO coefficient optimisation, we first considered an array of 
5 WECs with 3 oscillating modes (i.e. surge, sway and heave) and in
dependent PTO settings for each mode, for which a theoretical optimal 
solution exists. The WECs were arranged in a single row (see Fig. 6a), 
exposed to long-crested regular waves. To include the influence of the 

sway mode, the WECs were exposed to waves at an angle of 45◦. The 
maximum power (Pmax), given as, 

Pmax =
1
8
[
F̂e

∗

B− 1 F̂e
]
, (8)  

occurs when 

Ûopt =
1
2
[
B− 1 F̂e

]
. (9) 

Eq. (7) can then be rewritten as 
[

Bpto +
Kpto

iω

]

Ûopt = F̂e − [iω(M +Am)+B]Ûopt (10)  

by replacing Û with Ûopt and by restricting Bpto and Kpto to be diagonal 
matrices. Solving each row independently, the theoretical optimal PTO 
coefficients for each individual WEC mode can be obtained. Fig. 5b–d 
show the validation of the PTO optimisation. The optimisation function 
locates the correct solution, providing confidence in the methodology. 
Depending on the initial guess, the optimisation took about 100 to 400 
iterations and approximately 180 to 370 s of runtime on a quad-core 
desktop PC to find the theoretical optimum. For the theoretical valida
tion, no constraints on the individual device PTO coefficients, namely 
stiffness (kpto) and damping (bpto) were imposed. However, in the 
remainder of the paper, for multi-objective optimisation, the coefficients 
were restricted to 
{

5 × 105 ≤ kpto,i ≤ 107 N
/

m
106 ≤ bpto,i ≤ 107 N

/
(m/s)

∀i = 1, 2,…, N. (11) 

This imposed range of kpto and bpto was found to be sufficient, as the 
optimised coefficients were found to be well within the lower and upper 

Fig. 5. Flow chart of the multi-objective optimisation.  
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bounds. For example, for the isolated WEC, the kpto and bpto were opti
mised as 4.2 × 106 N m − 1 and 2.3 × 106 N m − 1 s, respectively. Each 
WEC can move in all 6 degrees of freedom (surge, sway, heave, roll, 
pitch and yaw); however, in the linearized system, all modes apart from 
yaw contribute to power production (Orszaghova et al., 2020). 

We used wave data from Torbay near Albany in Western Australia 
(Fig. 7) to define the input wave climate (Fig. 8). Being exposed to 
consistent swells from the Southern Ocean, the site is recognized as a 
promising site for wave energy development. For more details on the 
seasonal and interannual variability of the site’s wave climate, refer to 

Fig. 6. Validation of PTO optimisation for 5 WECs in 3 modes (surge, sway and heave) arranged in a single row exposed to a regular wave of 1 m amplitude and 10 s 
period. The layout is shown in (a), the optimum damping coefficients and stiffness coefficients from both theoretical solution and PTO optimiser for surge, sway and 
heave modes are shown in panels (b), (c) and (d) respectively. 

Fig. 7. Torbay in the Albany region of Western Australia. The inset image on the top left shows the map of Australia with the red square marking Albany. The red 
circle marks the Torbay wave energy development site and the location of the wave buoy. 
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Cuttler et al. (2020). The Torbay wave climate (as derived from a 
directional wave buoy, see Fig. 8 and Cuttler et al. 2020) was used to 
calculate the mean power output as, 

Pmean =
∑L

l=1

(
Pl
(
Hs, Tp, βm

)
Ol
(
Hs,Tp, βm

))
, (12)  

where Hs, Tp, and βm are the significant wave height, peak wave period 
and mean wave direction. L represents the total number of sea states 
considered, Ol represents the probability of occurrence of the lth sea state 
and Pl represents the power absorbed in the lth sea state: 

Pl =

∫∞

0

2Sp,l
(
βm,l,ω

)P
(
βm,l,ω

)

A2 dω, (13)  

where A is the incident wave amplitude and Sp,l the power spectral 
density of the lth sea state, here defined by a JONSWAP spectrum with 
peak enhancement factor γ = 3.3. In this work, we focused only on long- 
crested waves because the directional spreading at the Torbay site is 
rather low (mean directional spreading at the peak frequency of 17.5◦); 
however, the methodology can be easily extended to study short-crested 
waves by integrating Eq. (13) over a range of wave directions, with Sp,l 
being the directional spectrum. For more details on the incorporation of 
short-crested waves, readers are referred to Göteman et al. (2018). 

2.5. Displacement constraint 

In this work, the PTO is modelled as a linear spring-damper. Opti
mising the PTO coefficients to maximise the power absorption based on 
the frequency-domain solutions to the linear equation of motions may 

result in large displacement amplitudes of the WECs. Sometimes, the 
resulting displacement amplitudes can be unrealistic and, from a design 
and manufacturing point of view, very large displacements are costly to 
accommodate. In time-domain modelling, the displacements of each 
WEC (or the PTO stroke) can be limited using a hard-stop mechanism 
that exerts an additional force by adding a large spring stiffness coeffi
cient (e.g., Babarit et al. 2012). In the frequency-domain modelling 
conducted here, we imposed this limit in a statistical sense. As the 
submergence depth is fixed at 3 m and the device generates much of its 
power from the heave motion, we imposed the following heave 
constraint: 

max
(⃒
⃒
⃒
⃒
ξheave

A

⃒
⃒
⃒
⃒

)

≤
3 × 2

̅̅̅
2

√

max(Hs)
, (14)  

where max(Hs) is the largest Hs of all the sea states and | ξheave
A | is the 

heave response amplitude operator (RAO). This constraint is derived by 
assuming that the standard deviation of the heave displacement is al

ways less than max
(
|

ξheave
A |
)

Hs
4 , since σ2

ξheave
=

∫∞

0

|
ξheave

A
|
2Sp(ω)dω. Tak

ing 3/
̅̅̅
2

√
m as the nominal limit of the standard deviation, we arrive at 

Eq. (14). This constraint does not guarantee that the instantaneous 
heave displacement will never be greater than 3 m, but it is simple and 
sufficient for our purpose, as we are interested not in individual events 
but in the effects of limiting the displacement on statistical quantities 
such as mean power output and most probable maximum loads, which 
we use in our objective functions. 

As the displacement of each WEC depends on the PTO coefficients, 
we incorporated the displacement constraint inside the PTO 

Fig. 8. Wave climate at Torbay, Albany site in Western Australia. The joint occurrence distributions of Hs and (a) Tp; (b) βm (◦).  

Fig. 9. Heave RAOs for 5-WECs arranged in a single row (a), when the PTO coefficients are optimised for a sea state with Hs = 4 m, Tp = 15 s, in constrained (b) and 
unconstrained (c) cases. 
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optimisation. Therefore, during the PTO optimisation, the optimiser 
searches for the PTO combinations that generate the maximum power 
given the displacement constraint in Eq. (14). In order to test the 
displacement constraint used in this work, we considered the same wave 
farm shown in Fig. 6a and subjected it to Hs = 4 m and Tp = 15 s. The 
heave RAOs with PTO coefficients optimised under constrained and 
unconstrained conditions are compared in Fig. 9b and c, respectively. 

The mean (across the 5 WECs) standard deviation of the heave mo
tion is about 0.61 m for the constrained case, whereas for the uncon
strained case it is about 1.83 m. To quantify the difference in power 
absorption between the constrained and unconstrained cases, we 
compared the power absorption from the two cases in Fig. 10 for the 
same wave farm and PTO coefficients optimised under the same wave 
condition described in Fig. 9. In the unconstrained case, the mean 
absorbed power for Hs = 4 m and Tp = 15 s is about 770 kW, reducing to 
530 kW (≈ 25% reduction) for the constrained case. This is expected and 
similar to existing studies, (e.g., Falnes and Budal 1982, Thomas and 
Evans 1981), that showed constraining the WEC motion resulted in 
reduced power absorption. 

2.6. Load calculation 

In a wave farm, moorings and foundations represent a significant 
proportion of the total capital cost of the project, (e.g., Neary et al. 
2014). The foundation design must be adequate to withstand structural 
loading from extreme events. For the CETO-6 device, we considered a 
20-year return load (R20) as the design load for the pile anchor foun
dation. To estimate R20 we used linear wave-structure interaction theory 
and an approach given in Faltinsen (1990). Note that we are interested 
in how R20 changes as the array changes – we do not expect linear theory 
to give accurate predictions of extreme loads, but expect that it will give 
an indication of these changes. To calculate the load on each foundation, 
we first calculated the dynamic vertical load transfer function, Fl,n 
(n = 1,2,3), considering linear spring and damping force, as 

Fl,n =
(
kptoΔLn + bptoΔL̇n

) Tn

|Tn|
.k̂, (15)  

where Tn is the instantaneous n-th tether vector from the attachment 
point to the seabed and ̂k is the unit vector in the vertical direction. Here 
ΔLn and ΔL̇n are the change in tether length and the rate of change in 
tether length, both of which are a function of the displacements of the 
body (Orszaghova et al., 2020). Once Fl is obtained, the variance of the 
load σ2

r for different sea states are calculated from 

σ2
r =

∫∞

0

Sp(ω)
⃒
⃒
⃒
⃒
Fl

A
(ω)

⃒
⃒
⃒
⃒

2

dω. (16) 

We assume that the load amplitudes follow a Rayleigh distribution 
(like the wave amplitudes). With the joint probability distribution of 
significant wave height, peak wave period, and mean wave direction, 
the long-term probability that the peak value of the load does not exceed 
R is given in Faltinsen (1990) as 

P(R) = 1 −
∑I

i=1

∑J

j=1

∑K

k=1
exp

(

−
0.5R2

(
σijk

r
)2

)

pijk, (17)  

where σijk
r is the standard deviation of the load for the sea state defined 

by significant wave height index i, peak wave period index j, and mean 
wave direction index k, and pijk is the probability of occurrence for the 
sea state. 

To estimate R20, the number of cycles, Nc (for 20 years), is calculated 
from the probability-weighted average wave period (Tp,wa), i.e. Nc =

20×365×24×3600
Tp,wa

. The probability level Q (= 1-P(R)) and the number of 
cycles Nc are related as Q = 1/Nc. Once Q is obtained based on Nc, the 
most probable maximum load R for the given probability level Q can be 
obtained from Eq. (17). The static pretension force, which is a function 
only of net buoyancy, is then added. 

2.7. Objective functions 

Maximising power generation was the first objective considered in 
this study. For convenience, we framed optimisation as the minimisation 
of objective functions. We used the interaction factor, also called the ‘q’ 
factor (Budal, 1977), which is the ratio of the power absorbed by the 
array to N times that produced by an isolated WEC (Piso): 

q =
Pmean

NPiso
. (18)  

As we focused on minimising the objective functions, we used 1/q as the 
first objective function. 

Minimising the export cable length (Lc) connecting all WECs in the 
farm to a sub-station was the second objective. For this, we utilized 
Prim’s algorithm (Prim, 1957). Given the undirected weighted graph (V, 
E, w), where V, E, w are the vertices, edges and weights (distance) 
connecting the source s and target t WECs, the length of cable is:  

Lc = min
∑

st ∈Ewst . (19)  

We normalised Lc by N times the minimum spacing (S) and used it as 
the second objective function. 

Minimising the number of anchors in the wave farm (to reduce the 
capital and installation cost) was the third objective considered in this 
work. We first calculated the number of anchors (Na) in the wave farm 
based on shared and unshared conditions and normalised it by N times 
the number of isolated WEC anchors: 

Nn
a =

(Na)farm

3N
, (20)  

where Nn
a is the normalised number of anchors. 

The fourth and final objective was to minimise the design load of the 
anchors. For the CETO-6 device, the R20 estimate for each foundation 
can be slightly different as it is supported by 3 taut tethers, the loads in 
which depend on the orientation of the tethers with respect to the 
incoming wave directions. In practice, the maximum R20 (amongst the 
three anchors) is used as the design load and applied for all three an
chors. For the final objective function, we used the normalised load, Rn

20, 
which is the ratio of maximum R20 estimated for the farm to the 

Fig. 10. Power absorption function of each WEC in the array corresponding to 
the constrained and unconstrained cases of Fig. 9 with Hs = 4 m, Tp = 15 s. 
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maximum R20 of an isolated WEC with specific tether orientation that 
does not vary with iteration: 

Rn
20 =

max
(
R20,farm

)

max
(
R20,iso

) . (21) 

Note that, for the shared foundation case, we sum the loads from the 
corresponding tethers which share a foundation. As the load transfer 
function is complex, the in-phase and out-of-phase loads are directly 
accounted for in the current methodology. 

2.8. Evolution of arrays 

Once the objective functions were evaluated for the wave farms 
generated in the first iteration, the solutions were subjected to a non- 
dominated sorting to identify the Pareto fronts, which were then used 
to generate the new offspring arrays. The evolutionary strategy to 
generate new offspring arrays is a crucial part of the optimisation as it 
influences the convergence rate of the optimal solutions. A recent study 
(Neshat et al., 2020) presents a comprehensive comparison of different 
evolutionary strategies and convergence rates of the optimal solution for 
a single-objective optimisation. In this study, we used a 

probability-based evolutionary strategy. The new array parameters in 
the offspring are generated based on a combination of normal and 
uniform distributions. In the random array model (RAM), the offset 
distance of WECi from its previous location is obtained from a normal 
distribution with mean 0 and standard deviation (σ), which varies with 
each iteration as 

σ =
1

Jc rmax, (22)  

where J is the iteration number, rmax is a pre-selected radius of 250 m 
and c is a mutation coefficient chosen as 0.7. Further, the direction of the 
offset (0

◦

to 360
◦

) is obtained from a uniform distribution. Eq. (22) in 
combination with the non-dominated sorting is a simple but effective 
adaptive, robust approach that ensures quicker convergence of the 
Pareto solutions. Similar to the RAM, in the linear array model (LAM), 
the inter-device spacing Sk and row spacing Srk are obtained from a 
normal distribution with mean 0 and σ which changes with each itera
tion. Here the mutation coefficient c is fixed as 0.2, Sk and Srk are subject 
to the constraints given in Eq. (1). Further, θk is obtained from a 
continuous uniform distribution, whereas rk is obtained from a discrete 
uniform distribution subject to the constraint in Eq. (1). Finally, for the 

Fig. 11. Wave farm optimisation for 5-WECs under constrained (panel a) and unconstrained (panel b) cases considering 2 objectives (maximising power and 
minimising load) using the LAM. Pareto fronts from both cases are compared in panel c). The solutions highlighted (green triangles) in panel (a) and (b) are shown in 
panels (d)–(i). 
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grid array model (GAM), the grid coordinates αx and αy are obtained 
from a normal distribution with mean 0 and σ based on Eq. (22), but 
rounded to the nearest integer to align with the grid (see the grid axis in 
Fig. 3). For the GAM, the rmax is fixed as 4 for 5-WEC farm optimisation 
(rmax = 5 and 6 for 10 and 20 WECs, respectively). The mutation coef
ficient c is fixed as 0.4 and kept the same for different numbers of WECs. 
Similar to the RAM and the LAM, the orientation of the farm (θg) is 
obtained from a continuous uniform distribution subject to the 
constraint in Eq. (4). The choice of parameters (c, rmax) for different 
array approaches were based on a number of trials with 5-WEC opti
misations and found to influence the rate of convergence. 

During our initial trials, some solutions in the Pareto front were close 
to each other and clustered at the objective space. Furthermore, during 
the non-dominated sorting of solutions (after the first iteration), the 
number of non-dominated solutions sometimes exceeded PopSize. This is 
due to the non-dominated sorting of the combined parent and offspring 
solutions. When the number of non-dominated solutions exceeds Pop
Size, only a limited subset of solutions (= PopSize) is transferred to the 
next iteration. To ensure that the solutions are well spread without 
discarding useful solutions and to avoid clustering of solutions, we used 
a clustering algorithm (Kurniawan and Ma, 2009). The clustering al
gorithm becomes active only when the number of non-dominated so
lutions is at least 80% of the PopSize or greater. The clustering algorithm 
first clusters the solutions based on the number of clusters assigned. For 
a PopSize of 75, the number of clusters was fixed as 60. The next step 
involves calculating the distance (dc) between each cluster (e.g., Ci, Cj) in 
the objective space based on 

dc(i,j) =
1

|Ci|
⃒
⃒Cj
⃒
⃒

∑

i ∈Ci ,j ∈Cj

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n

k=1

(
fk(ϑi) − fk(ϑj)

f max
k (ϑ) − f min

k (ϑ)

)2
√
√
√
√ , (23)  

where ϑi denotes the decision variable and fk(ϑi) denotes the map of the 
decision variable in the objective space. The |…| implies the size of the 
clusters. The superscripts max and min denote the maximum and min
imum function values, respectively. 

If the number of clusters formed is greater than the number of 
clusters assigned, the clusters with minimum dc(i,j) are combined to form 
one cluster until the number of clusters equals the number assigned. The 
next step is calculating the centroid (e) of each cluster: 

ei =
1

|Ci|

∑

j ∈Ci

(
f1
(
ϑj),…, fn

(
ϑj)). (24) 

Solutions with a minimum distance to each centroid are retained and 
the rest of the solutions are discarded. Once the required number of 
solutions (arrays) are obtained, new offspring (arrays) are generated. 
The new individuals are further evaluated, and the optimisation pro
cedure described in Fig. 5 is repeated until the assigned stop time. In our 
optimisation runs, due to the clock limit in the computing resources, we 
fixed a stop time rather than specifying the number of iterations as the 
stopping criterion. The stop time (varying with the number of WECs) 
was fixed based on multiple runs and by analysing the final Pareto front 
being stable for at least the last 20 iterations. 

3. Results 

3.1. Constrained vs unconstrained body motion 

To understand the influence of our displacement constraint on both 
power absorption and load (R20), optimisation runs were carried out 
with the LAM for 5 WECs using two objective functions (power and load) 
(Fig. 11). To highlight the range of PTO coefficients given by the opti
miser in constrained and unconstrained cases, we fixed the stiffness 
coefficient range to that shown in Eq. (11), whereas the damping coef
ficient range was fixed to between 1 × 105 and 1 × 107 Ns/m. Further
more, to understand the significance of array interactions in both cases, 
we first calculated the ratio of the mean powers absorbed by an isolated 
WEC in constrained (Pcons) and unconstrained (Puncons) cases. As a result 
of optimising PTO coefficients that are constant for all sea-states, the 
ratio of Pcons/Puncons was found to be 0.99. This is possible as the mean 
power absorption calculation also involves the probability of occurrence 

Fig. 12. Optimised PTO coefficients in the Pareto optimal solutions at different iterations for 5-WEC array in constrained and unconstrained cases with the LAM. 
Panel (a) and (b) correspond to the stiffness coefficients, kpto N/m and panel (c) and (d) correspond to damping coefficients bpto Ns/m. 
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of each sea state (see Section 2.3). Similar to power absorption, the ratio 
of maximum R20 for an isolated WEC under constrained and uncon
strained cases, max(R20,cons)/max(R20,uncons), was found to be 0.95. 

As we fixed both objective functions to work towards minimisation, 
the convergence of the Pareto front from the initial solutions (red tri
angles) to the optimal front (black triangles) can be distinguished using 
the colours representing the number of iterations (Fig. 11a, b). Although 
we achieved the optimal Pareto front in about 10–20 iterations (based on 
multiple trials), the optimisation was further extended to about 200 it
erations to provide a further check on convergence. The Pareto fronts 
from the constrained and unconstrained cases are compared in Fig. 11c). 
Unlike the isolated WEC case, the difference between constrained and 
unconstrained cases in arrays is substantial. The constrained Pareto front 
resulted in reduced power absorption and also reduced R20 compared to 
the unconstrained front (Fig. 11c). This indicates the relative impor
tance of array interactions under constrained and unconstrained cases. 

As it is not feasible to show the array layouts of all the candidates in 
the Pareto optimal fronts, we show the farms favouring each objective 
function and one farm close to favouring both functions, (Fig. 11d–f) for 
the constrained case and (Fig. 11g–i) for the unconstrained case. To 
understand the influence of wave direction on the converged solutions, 
we plot the least square (ls) axis of the wave farms, the line normal to the 
ls axis (ls normal) and the weighted average wave angle (βWA), which is 
based on the probability of occurrence at Torbay (Fig. 8b). 

As might be anticipated, the farms generating maximum power 
mostly formed a single line with the ls axis close to perpendicular to the 
predominant wave direction. Farms with minimum load also formed a 
single row, but the ls axis was close to parallel to the predominant wave 
direction (Fig. 11d, g). Despite imposing the displacement constraint, we 
found a striking resemblance in some wave farms between the con
strained and unconstrained cases e.g., Fig. 11f, h and 11d, g. Both farms 
were comparable in power generation and estimated maximum load. 
Another interesting result is the converged spacing S of 169 m for the 
maximum power generating wave farm in the unconstrained case is 
reduced to about 124 m in the constrained case. Despite having a larger 
domain and a significant range for spacing S between WECs, the average 
S in the Pareto optimal solutions in the constrained case ranged between 
100 and 130 m (based on multiple trials). Constraining the WEC motion 
slightly modifies the power curve towards the higher frequency region 
(Fig. 10). This influences the distance for optimum WEC-WEC interac
tion, which in turn is reflected in the converged spacing. 

In our study, the PTO stiffness and damping coefficients were opti
mised for the entire wave climate rather than for each sea state. In 
practice, the PTO coefficients can be optimised for each sea state or for a 
shorter duration. This indeed increased the mean power output, for 

which a considerable difference was observed between the varying PTO 
and uniform PTO cases, but the difference in terms of the ‘q’ factor was 
small (figure not shown). In both the unconstrained and constrained 
cases, PTO coefficients play a significant role in determining the power 
generation as well as the load R20. To check the differences in the 
optimised PTO coefficients in both cases, we extracted the optimised 
coefficients for all wave farms in the non-dominated front at each iter
ation (Fig. 12). 

For the isolated WEC, in the constrained scenario, the stiffness co
efficient increased to about 1.07 times the unconstrained case, and the 
damping coefficient to 1.35 times the unconstrained case (Fig. 12). For 
the wave farms (with the LAM), the stiffness coefficient follows this 
trend with a small difference between constrained and unconstrained 
cases. The standard deviation was smaller for the constrained case 
compared to the unconstrained case. The damping coefficients were 
found to be widely spread for the unconstrained case, whereas the range 
was smaller in the constrained case (Fig. 12c, d). This is a result of the 
damping coefficients restricting the motion of WECs and the power 
generation which in turn also influences the R20. As having constrained 
motions is more realistic for WEC deployments we focus on the con
strained motions in the remainder of the paper. 

3.2. Multi-objective optimisation – an illustrative example 

The benefit of multi-objective optimisation is that we obtain a set of 
optimal trade-off solutions without requiring a priori knowledge of the 
relative importance of the objectives. From this set of optimal solutions, 
we can learn about the trade-off behaviour of the solutions on the Pareto 
front. In this study, we choose to explore the design space of nearshore 
submerged wave farms using four objective functions (Section 2.6) that 
are important in designing a wave farm. We consider three different 
array models (LAM, RAM and GAM) and carry out the optimisation runs 
independently; however, in this section, the result pertaining to 5-WEC 
optimisation using the GAM is discussed first. As the optimisation in
volves four equally weighted objective functions, the solutions are 
plotted with varying marker sizes (number of anchors) and colours (Rn

20) 
to differentiate in the objective space (Fig. 13). 

From Fig. 13, we can learn about the trade-off behaviour of the 
optimal solutions. As the power absorption increases, the corresponding 
maximum load also increases (darker colours occur lower down on the 
plot). As the inter-WEC spacing decreases, the WECs move closer to
wards the anchor sharing grid points. This can be seen by the decrease in 
the number of anchors occurring with a decrease in the inter-WEC 
spacings (smaller markers at the left of the plot). Due to the presence 
of multiple objective functions (>2) in Fig. 13a, the convergence of 

Fig. 13. Multi-objective optimisation for 5-WECs using the GAM. The axes represent 2 objective functions i.e. x – normalised cable length, y – inverted q factor. The 
marker size represents the third objective function, the number of foundations in the array (see scale in b) and the colours represent the fourth objective function, 
normalised load. The final Pareto solutions are shown in panel (b). 
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Pareto solutions is more difficult to visualise than in the 2 objective 
optimisation e.g., Fig. 11a, b. Therefore, the final non-dominated Pareto 
solutions are shown in Fig. 13b separately. From this figure, we see that 
it is possible to get high power absorption with small inter-WEC spacing 
(and shared foundations), but not without increasing the loads. We also 
see that it is possible to reduce inter-WEC spacing without increasing the 
loads, but only up to a certain spacing, below which the loads increase. 
The number of anchors, on the other hand, do not have any effects on the 
absorbed power. Fig. 13 also shows, at least approximately, the mini
mum limits to the objective function values possible for the given 
problem, e.g., the minimum number of anchors possible for a 5-WEC 
array is 9. When the maximum power and minimum cable length is of 
interest, some of the converged solutions here are close to the converged 
layouts reached in existing studies (Arbonès et al., 2018; Giassi et al., 
2020). 

Once we identify the set of optimal solutions, the next step is to 
choose amongst these based on higher level information on the relative 
importance of the objectives. As a possible intermediate step, the design 
load, transmission cable length and number of anchors can be combined 
into a cost metric G, since they are related to the capital and installation 
costs. For this purpose, we utilized a method and cost parameters given 
by Gaudin et al. (2021). Noting that our primary focus is to demonstrate 
the methodology, we do not attempt to account for all costs or 
complexity in the cost model. For simplicity, only the cost factors 
associated with the objective functions are considered and the factors 
related to fixed costs (those that will not change based on array layout, 
including the BA and PTO in our example) are not considered. The 
design of the foundation pile is one critical step to calculate the cost of 
pile (both manufacturing and installation). We used the UWA-05 
method (Lehane et al., 2007) to design the pile; for that, the cone tip 
resistance profile for a representative seabed condition was adopted 
from Cai et al. (2021), which is based on random field theory. Finally, by 

applying linear regression for a range of loads and the estimated cost, we 
arrived at Eq. (25) (see Appendix A for more details). The three objective 
function values (dimensional) from the multi-objective (four) optimi
sation runs are used to calculate G as, 

G =
∑Na

i

( (
5.65× 104)R20,i + 2.9× 105)+

(
0.4× 103)Lc + 4.5 × 106, (25)  

where Na represents the total number of anchors (i = 1,2,…, Na). For an 
isolated WEC, Na and Lc are 3 and 0. The total cost of the farm is then 
normalised with N times the isolated WEC cost which we call Gn. 

As we conducted the optimisation runs with different array models 
(LAM, RAM and GAM) independently, the Pareto front from each array 
model is extracted to calculate G. However, for comparison, the solu
tions are plotted together in Fig. 14. 

Fig. 14 shows the post-processed Pareto solutions obtained from the 
three array models. By post-processing we mean collapsing the three 
cost-related objective function values into one, by applying the cost 
model in Eq. (25). As the wave farm layouts favouring power and cost 
were of primary interest, non-dominated sorting was performed for all 
the post-processed solutions to get the combined Pareto front from the 
three array models (Fig. 14a). Solutions from each of the three array 
models were present in the Pareto front. For illustrative purposes, three 
representative layouts are shown in Fig. 14b–d. The wave farm gener
ating maximum power (Fig. 14d) formed a single row of WECs close to 
normal to the incident wave direction (βWA). In contrast, the minimum 
Gn layout (Fig. 14b) formed 2 rows of WECs with a reduced number of 
anchors and reduced inter-WEC spacings. The farm close to favouring 
both objective functions (14c) formed nearly a single row of WECs with 
fewer anchors than Fig. 14d. As a result of anchor sharing, the maximum 
R20 increased compared to R20 without sharing (Fig. 14c, d). Further
more, although the array shown in Fig. 14b shares multiple anchors, due 

Fig. 14. Multi-objective optimisation for 5-WECs using three array models. Panel a) shows the post-processed solutions obtained from different array models and the 
Pareto front sorted by combining all solutions. The highlighted green triangles in the Pareto front are presented in panel b, c, d respectively, with colorbar indicating 
the mean power absorption and the black circle representing the WEC diameter (25 m). 
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to the arrangement of WECs and cancellation of out-of-phase loads, the 
maximum R20 is less than the arrays shown in Fig. 14c, d. amongst the 
Pareto front solutions, the variation of q is relatively small compared to 
the variations of Gn. 

It is worth mentioning that the sub-station was fixed close to the 
centroid of the wave farm with at least 50 m separation from any WEC in 
the farm as an additional constraint to avoid any intersections. 
Furthermore, the sub-station does not influence the array hydrody
namics and thereby power absorption or the loads. 

The PTO coefficients play an important role in the conflicting 
objective functions as they impact power absorption and R20. To explore 

potential trade-offs between power generation and R20, we calculated 
the power generation and R20 for a range of PTO coefficients. We nor
malised the power obtained from a range of coefficients with the 
maximum power and call this normalised power Pn. Similarly, we nor
malised the R20 calculated for a range of PTO coefficients with the R20 
estimated for the maximum power. We call this normalised load Rn

20,iso. 
Finally, we calculated the ratio of Pn over Rn

20,iso for a range of PTO co
efficients, as shown in Fig. 15 (a ratio greater than 1 is beneficial). 

The PTO coefficient combinations violating the statistical displace
ment constraint are shown in white. Fig. 15 is calculated for a single 
WEC, but we expect similar trade-offs for WECs in a wave farm. 
Therefore, we completed additional optimisations where, in addition to 
searching for PTO coefficients that generate maximum power, we 
broadened the search space by calculating the power and loads for 9 
additional unique combinations of PTO coefficients (which are picked 
randomly but within the range shown in Eq. (11)). Therefore, for a single 
wave farm layout, 10 different solutions are generated. As a result, for 
the total PopSize of 75 unique wave farm layouts, 750 solutions are 
generated. The solutions are further sorted using non-dominated sort
ing. The optimisation procedure described in Fig. 5 is applied and 
repeated until the assigned stop time. 

Fig. 16 shows the post-processed Pareto solutions obtained from the 
three array models using PTO optimised to maximise mean power and 
random PTO search to explore the trade-offs. The structure of Fig. 16a is 
necessarily very similar to Fig. 14a when the power is close to maximum, 
but Fig. 16a has a significantly larger range of solutions with lower cost 
(and lower power). On comparing the solutions from three array models 
(Fig. 16a), the GAM appears to be dominating in the low-cost area of the 
Pareto front. In the GAM, the WECs in the neighbouring grids always 
share at least one anchor and this reduces the total number of anchors. 
As a result of the subsequent (random) PTO search, the load was also 
reduced and thereby the Gn, compared to Fig. 14a. 

To address the effects of randomness in the optimisation at each 

Fig. 15. The ratio of normalised power (Pn) over the normalised R20 (Rn
20,iso) for 

a range of PTO coefficients. 

Fig. 16. Multi-objective optimisation for 5-WECs using three array models with PTO optimised to maximise mean power and random PTO search. Panel a) shows the 
post-processed solutions obtained from different array models and the Pareto front sorted by combining all solutions. The highlighted green triangles in the Pareto 
front are presented in panel b, c, d respectively, with colorbar indicating the mean power absorption and the black circle representing the WEC diameter (25 m). 
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Fig. 17. As in Fig. 16 for 10-WECs.  

Fig. 18. As in Fig. 16 for 20 WECs.  
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iteration, the optimisation was repeated 3 times and similar fronts 
found, with minor variations in the wave farm parameters (e.g., spacing 
and orientation). As the inclusion of the random PTO search in the 
optimisation expands the range of solutions, we carried out further 
simulations for larger arrays including the random PTO search method. 

3.3. Multi-objective optimisation for 10 and 20-WECs 

To understand the array model’s capabilities for an increased num
ber of WECs, we carried out optimisation runs for 10 and 20 WECs with 
the three array models independently. Similar to Fig. 16, the Pareto 
fronts from each array model are extracted and post-processed to 
calculate Gn. The solutions from the three different models are further 
subjected to non-dominated sorting to identify the combined Pareto 
front for 10 WECs and 20 WECs, as shown in Figs. 17 and 18 
respectively. 

Unlike the 5-WEC optimisation, for 10 WECs, the LAM solutions 
populated the Pareto front. Although the GAM has an advantage of an
chor sharing when WECs are present in neighbouring grid cells, due to 
an increased number of WECs and individual WEC evolution during 
each iteration, the possibility of anchor sharing for all WECs at all it
erations also reduced, whereas for the LAM, a certain amount of anchor 
sharing is guaranteed due to the row arrangement. Note, for all the array 
models, the duration of optimisation runs was kept equal (e.g., 48 h for 
10 WECs); however, due to the differences in array evolution, the 
number of iterations completed was slightly different for the different 
array models. 

Similar to Fig. 16, the maximum power generating 10-WEC wave 
farm converged as a single row of WECs with the ls axis normal to βWA. 
The wave farm close to favouring both objective functions formed two 
rows of WECs with a small difference between ls and βWA. The row of 
WECs facing the incoming waves generated approximately 15% more 
power than WECs in the shadow (Fig. 17c). On the other hand, the wave 
farm favouring Gn formed multiple rows with ls nearly parallel to βWA, 
similar to the 5-WEC optimisation (Fig. 16b). As a result of the subse
quent random PTO search, the difference in power generation amongst 
the WECs in the farm (Fig. 17b) did not exhibit variations as smooth as 
seen in Fig. 17c, d. 

Multi-objective optimisation for 20-WECs using three array models 
along with some Pareto candidates are shown in Fig. 18. Since similar 
results are obtained for 20-WEC optimisation, the discussions above are 
not repeated. However, in order to understand any trends in the 
converged solutions across different number of WECs, we computed the 
ratio of Gn/q for the combined Pareto front solutions (not shown). Min
imal Gn/q can be related to the optimal trade-off solutions. Interestingly, 
the minimal Gn/q is obtained for the wave farm arranged in two or three 
rows with a small difference between the ls axis and βWA (e.g., Fig. 17c) 
and (apart from the power-optimum arrays) seems to fall as the number 
of WECs in the array increases. Although we have no means of proving 
that the converged solutions are the true optimum, as our simulations 
resulted in consistent patterns across multiple trials and also for 
different numbers of WECs, we believe that the converged solutions are 
close to the true optimum. 

4. Discussion 

When comparing the wave farm layouts from all the array models, 
and for different numbers of WECs, the wave farms generating 
maximum power were mostly aligned as a single row with the ls axis 
perpendicular to the predominant wave direction. Some existing studies 
(e.g., Giassi and Göteman 2018, Sharp and DuPont 2018) using 
single-objective optimisation have also reported WECs being aligned 
close to a line with the ls axis perpendicular to the predominant wave 
direction for long-crested waves. Although q > 1 is yet to be demon
strated in the field, q > 1 in the linear modelling paradigm employed in 
the present study is plausible for the farms generating maximum power. 

The layouts favouring the lowest cost (Gn) objective function were 
mostly aligned either as 2 or 3 rows of WECs (e.g., Figs. 16b and 18b) 
with the ls axis close to parallel to the predominant wave direction. In 
contrast, the wave farm layouts close to favouring both objective func
tions were aligned as 2 rows with the converged spacing between the 
WEC rows (≈85 m) much smaller than the spacing between WECs 
(≈125 m) in each row. This is consistent for both 10 and 20 WEC arrays. 
Despite considering larger domains for the optimisation with different 
array models, the overall converged inter-device spacing ranged be
tween 97 m and 145 m (based on multiple runs) providing insights into 
optimum spacing. As most of the Pareto front solutions in our simula
tions that generated maximum power were aligned perpendicular to the 
βWA, this confirms that the wave direction is one of the key factors to be 
considered when designing a wave farm for maximum power 
generation. 

For wave farms with less than 20 WECs, mooring cost accounts for a 
significant portion of the total capital cost (e.g., Neary et al. 2014). In the 
present study, due to computational limitations, a maximum farm size of 
20 WECs is considered. The design loads were estimated based on a 
long-term probability load (Faltinsen, 1990) and thus are “passive-
loads”. With PTO control in addition to wave prediction at the WEC 
location, the maximum load may be able to be maintained within a 
certain limit. This may reduce the design load which in turn reduces the 
total capital costs. To understand the potential difference in design load, 
power generation and the associated mooring costs if the maximum load 
is capped, we carried out additional runs by capping the maximum load. 
For this purpose, we first estimated the short-term load (Eq. (26)) rather 
than the long-term load (Eq. (17)), using 

Rmax =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2σ2
r log

(
ts

Tm

)√

, (26)  

where ts is the sea-state duration (assumed to be 3 h) and Tm is the mean 
wave period. Furthermore, instead of Tm, we used Tp for calculating the 
short-term load. This load capping method is referred to as “active- 
load”. 

For the active-load method, Rmax is capped at 50% of max(R20) of an 
isolated WEC. If Rmax ≥ 50% of R20, power generation for the corre
sponding sea state was made zero (assuming the WEC would switch to a 
no power generation mode). Interestingly, despite restricting the 
maximum load, the mean power generation was reduced by only about 
12.5% compared to the mean power from the case with no maximum 
load. The reduction in power absorption is due to excluded sea states (as 
well as the probability of occurrence of the excluded sea states) that 
measured Rmax ≥ 50% of R20. In addition, the foundation cost was 
calculated using Eq. (25) for the loads obtained from both active-load 
and passive load methods. As expected, the mooring cost was reduced 
(by 37%) in the active-load case compared to the passive-load case due 
to the reduced loads and relatively smaller foundations. This comparison 
was also made for some of the converged wave farm layouts from the 5 
WEC optimisation and a similar result was found. 

It is important to highlight some of the uncertainties associated with 
the methods used in this work. The load and mean power calculations 
adopted in this study involve several assumptions: (i) the hydrodynamic 
coefficients were obtained assuming linear potential theory; (ii) the 
PTOs were modelled as a linear spring-damper and the coefficients were 
optimised for the entire wave climate rather than individual sea states; 
(iii) the long-term load was estimated assuming Rayleigh distribution of 
load amplitudes; (iv) viscous drag effects were ignored and no losses 
were incorporated; (v) only constant flat bathymetry was considered; 
(vii) cylindrical buoy shape was assumed and (vi) only long-crested sea 
states were considered (although the sea states did have different mean 
directions). Uncertainties associated with some assumptions, for 
example, linear modelling and viscous drag effects could be quantified 
by conducting an experimental study or using computational fluid dy
namics simulations. Our future work aims to address this using a WEC 
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incorporated in the non-hydrostatic model SWASH (e.g., Rijnsdorp et al. 
2018). For the effects of some assumptions, we refer to existing studies. 
For example, the effect of different buoy shapes (e.g., sphere, ellipsoid, 
cylinder and chamfered cylinder) on power absorption for a different 
size device was investigated by Sergiienko et al. (2017) who showed that 
the differences were relatively small, at least for the wave conditions 
considered in this study. For assumptions related to directional 
spreading of waves, a recent study comparing the power absorption in 
short-crested and long-crested sea states (Göteman et al., 2018) reported 
only about a 1.6% variation in power absorption. Although not verified 
in our present work, we expect a similar conclusion. 

Like all existing optimisation methodologies, computational con
siderations ultimately limited our ability to investigate larger arrays (in 
this case, >20 WECs). Although the use of a semi-analytical approach to 
obtain the hydrodynamic coefficients reduces computation time 
compared to boundary element methods, it is still computationally 
demanding. For example, for a 20-WEC array, it took 72 h to complete 
50 iterations on a supercomputer (our simulations utilized the Magnus 
system at the Pawsey Supercomputing Centre in Western Australia) with 
24 cores. Reducing computational time for a larger number of devices 
can make use of methods previously published in the literature such as 
the Fast Multipole Algorithm (Borgarino et al., 2012) or by neglecting 
the scattered waves (Göteman et al., 2015). In the present work, we did 
not explore any strategies to reduce computational time; this will be 
considered in future work. 

5. Conclusions 

In this paper, a probability-based evolutionary multi-objective opti
misation framework for submerged wave farms has been developed. The 
focus in demonstrating this method was on four objective functions 
including power generation, design load, number of anchors and length 
of transmission cables, with the latter three being large costs in the 
construction of a wave farm. Multi-objective optimisation allows opti
misation to be completed without knowing the weighting that should be 
applied to each objective. As a result, the collection of non-dominated 
solutions can be used to quickly find new optimal solutions in the 
event that a weighting changes (for example, the anchor type, cost of 
cable installation, etc.). In this work, an example cost model, which 
assigns specific weightings to the objective function values, was pre
sented to illustrate how optimal solutions could be further narrowed 
down in decision making. Results in the objective space have been 
presented to weigh the cost against power production for a range of 
array layouts. Multi-objective optimisation runs were carried out for 
different numbers of WECs (5, 10 and 20) with three different array 
models (grid array, linear array and random array) using site-specific 
wave conditions. 

Optimisation results showed that the converged layouts in the 
combined Pareto optimal front (from all three array approaches) 
favouring maximum power generation were mostly aligned as a single 
row of WECs. The least-square axis of these layouts was close to 
perpendicular to the predominant wave direction (e.g., Fig. 16d) and 
was consistent for 10 and 20 WECs (e.g., Figs. 17d, 18d). This finding 
agreed with existing optimisation studies where maximising power ab
sorption was used as the single objective (Giassi and Göteman, 2018; 
Neshat et al., 2020; Tokić and Yue, 2021). The three array models 
performed similarly with a small number of WECs (5). However, with an 
increasing number of WECs, the linear array appears to outperform both 
grid and random array models (based on the duration of simulations 

considered in this study). We also found a consistent pattern in the 
optimal wave farm layouts as the number of WECs was increased 
(Figs. 16–18). In this work, the presence of multiple objectives (with 
objectives competing with each other) results in optimal layouts not 
forming a single line, depending on the relative importance of the ob
jectives (Fig. 17b, c). This approach offers insight into cost versus rev
enue in the frame of competing objectives, which is important when 
designing arrays with minimal LCoE (as opposed to arrays maximising 
power absorption). While we did not develop an LCoE model, the 
method can be easily extended to rank the optimum solutions according 
to their LCoE if a full cost model is known. 

The multi-objective optimisation tool developed and tested here has 
the potential to be applied to a different class of WEC farms with 
different working principles. Furthermore, the outcome of this study is 
likely also transferable to similar classes (point absorbers) of WECs with 
similar working principles. Considering the complexity of the problem, 
the framework developed in this study can be beneficial and will be of 
practical aid in designing wave energy farms using more comprehensive 
and likely conflicting objective functions. 
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Appendix A. Cost model 

To find the total cost related to the objective functions considered in this work, we followed a method similar to Gaudin et al. (2021). For the 
foundation, we first designed a pile based on the R20 estimate (Section 2.5) of each tether. The pile diameter (PD) was fixed as 4 m and the pile wall 
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thickness was fixed as 0.08 m, hence the pile length (PL) was the only variable to calculate to fulfil the axial capacity requirements. The cone tip 
resistance profile (qc) for a representative seabed condition (Fig. A.1) was adopted from Cai et al. (2021), which is based on random field theory. We 
utilized the UWA-05 method (Lehane et al., 2007) to calculate the axial capacity factor of the open-ended pile, where the R20 estimate of each tether 
was fixed as the design load for each pile: 

R20

[
qc(5%)

γm

]

= πPD

∫PL

0

τf dz (A.1)  

τf = 0.0225
qc(5%)

γm
tanδf

[
1 − min

(
1, (PD/1.5)0.2

)
(PDi/PD)

2
]0.3

[max(ht/PD, 2)]− 0.5 (A.2)  

Here, τf is the local shaft friction, γm is the material factor (fixed as 1.25), ht is the height above the pile tip and PDi is the inner diameter of the pile. The 
constant volume interface angle (δf) was fixed as 29◦. 

Once the length of the pile is determined, the pile manufacturing cost (costpm) is approximated based on (refer to Gaudin et al. (2021) for more 
details) 

costpm = αf coststwsteel, (A.3)  

where αf (=1.2) is the pile fabrication factor, costst (=$3500/tonne, all cost in US dollars) is the steel unit cost and wsteel is the total steel weight in 
tonnes. 

In order to account for the number of foundations in the cost model, we calculated the pile installation cost as 

costpi = costvesselTinstallαi, (A.4)  

Tinstall = Tpp +
Tpd(sec)

(3600 × 24)
, (A.5)  

Tpd = NblowPLThammer, (A.6)  

where costpi is the installation cost per pile, costvessel is the vessel operation day rate (= $200,000/day), Tinstall is the installation duration (in days) of 
each pile, αi is the installation downtime/contingency factor fixed as 1.2, Tpp is the preparation duration for each pile fixed as 0.33 day, Tpd is the 
driving duration (in seconds) for each pile, Nblow is the number of driving blows for per metre penetration (fixed as 85) and Thammer is the hammer blow 
period fixed as 6 s/blow. 

Depending on the number of foundations, the cost of mobilisation may increase or decrease and might influence the total cost. For simplicity, the 
mobilisation costs are not considered here. To further simplify the cost model, we considered a range of loads from 5 to 25 MN and calculated the costs 
associated with foundation (costf = costpm + costpi) for each load. Using linear regression, the cost associated with foundation is reduced into 

costf =
(
5.65× 104)R20 + 2.9 × 105. (A.7) 

Fig. A.1. Cone tip resistance, qc, profile based on the random field theory.  
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Similar to Gaudin et al. (2021), the cost of electrical cable connecting all WECs in the array was fixed as $400/m and the cost of the export cable 
from the sub-station to a grid connection (= 1500 m) was fixed as $3000/m. Adding the cable cost to Eq. A.7, we obtained the total cost (Eq. (25)) 
related to the objective functions considered in this work as 

G =
∑Na

i

( (
5.65× 104)R20,i + 2.9× 105)+

(
0.4× 103)Lc + 4.5 × 106, (A.8)  

where Na is the total number of foundations in an array and Lc is the length of the cable connecting each WEC in the array. 
Note, that the cost of individual components is highly volatile and varies significantly between countries, at different times, amongst other factors. 

We compared our costs with some of the existing literature and found similarities and differences. For example, the vessel day rate was found to be in 
the range reported in the literature (e.g., Ahn et al. 2017, Jiang 2021). However, the cost of cable and steel was found to differ compared to existing 
literature (Giassi et al., 2020; Neary et al., 2014; Nieradzinska et al., 2016). A maximum difference of about 30% was observed, however, this is not 
entirely unexpected due to the cost of cable varying with the type and capacity and the variability in steel pricing by location and through time. 
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G. Ochoa, B. Paechter (Edinburgh Springer Int. Publ. 9921 LNCS.  

Arbonès, D.R., Sergiienko, N.Y., Ding, B., Krause, O., Igel, C., Wagner, M., 2018. Sparse 
incomplete LU-decomposition for wave farm designs under realistic conditions. In: 
Proceedings of the parallel problem solving from nature – PPSN XV, pp. 512–524. 
https://doi.org/10.1007/978-3-319-99253-2_41 eds A. Auger, C. M. Fonseca, N. 
Lourenço, P. Machado, L. Paquete, D. Whitley (Coimbra Springer Int. Publ. 11101 
LNCS.  

Babarit, A., 2013. On the park effect in arrays of oscillating wave energy converters. 
Renew. Energy 58, 68–78. https://doi.org/10.1016/j.renene.2013.03.008. 

Babarit, A., Hals, J., Muliawan, M.J., Kurniawan, A., Moan, T., Krokstad, J., 2012. 
Numerical benchmarking study of a selection of wave energy converters. Renew. 
Energy 41, 44–63. https://doi.org/10.1016/j.renene.2011.10.002. 

Birk, L., 2009. Application of constrained multi-objective optimization to the design of 
offshore structure hulls. J. Offshore Mech. Arct. Eng. 131, 1–9. https://doi.org/ 
10.1115/1.2957919. 

Borgarino, B., Babarit, A., Ferrant, P., 2012. Impact of wave interactions effects on 
energy absorption in large arrays of wave energy converters. Ocean Eng. 41, 79–88. 
https://doi.org/10.1016/j.oceaneng.2011.12.025. 

Budal, K., 1977. Theory for absorption of wave power by a system of interacting bodies. 
J. Ship Res. 21, 248–253. https://doi.org/10.5957/jsr.1977.21.4.248. 

Cai, Y., Bransby, F., Gaudin, C., Uzielli, M., 2021. A framework for the design of 
vertically loaded piles in spatially variable soil. Comput. Geotech. 134, 104140 
https://doi.org/10.1016/j.compgeo.2021.104140. 

Child, B.F.M., Venugopal, V., 2010. Optimal configurations of wave energy device 
arrays. Ocean Eng. 37, 1402–1417. https://doi.org/10.1016/j. 
oceaneng.2010.06.010. 

Cuttler, M.V.W., Hansen, J.E., Lowe, R.J., 2020. Seasonal and interannual variability of 
the wave climate at a wave energy hotspot off the southwestern coast of Australia. 
Renew. Energy 146, 2337–2350. https://doi.org/10.1016/j.renene.2019.08.058. 

De Andres, A., Medina-Lopez, E., Crooks, D., Roberts, O., Jeffrey, H., 2017. On the 
reversed LCoE calculation: design constraints for wave energy commercialization. 
Int. J. Mar. Energy 18, 88–108. https://doi.org/10.1016/j.ijome.2017.03.008. 

Deb, K., 2011. Multi-objective optimisation using evolutionary algorithms: an 
introduction. Multi-Objective Evolutionary Optimisation for Product Design and 
Manufacturing. Springer London, London. https://doi.org/10.1007/978-0-85729- 
652-8_1.  

Deb, K., Agrawal, S., Pratap, A., Meyarivan, T., et al., 2000. A fast elitist non-dominated 
sorting genetic algorithm for multi-objective optimization: NSGA-II. In: 
Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., et al. (Eds.), 
Parallel Problem Solving from Nature PPSN VI. Springer Berlin Heidelberg, Berlin, 
Heidelberg, pp. 849–858. 

Evans, D.V., 1980. Some analytic results for two and three dimensional wave-energy 
absorbers. In: Count, B.M. (Ed.), Power From Sea Waves. Academic Press, 
Edinburgh, pp. 213–249. 

Falnes, J., 2002. Ocean Waves and Oscillating Systems: Linear Interaction Including 
Wave Energy Extraction. Cambridge Univ. Press, Cambridge, UK. https://doi.org/ 
10.1007/s13398-014-0173-7.2.  

Falnes, J., 1980. Radiation impedance matrix and optimum power absorption for 
interacting oscillators in surface waves. Appl. Ocean Res. 2, 75–80. https://doi.org/ 
10.1016/0141-1187(80)90032-2. 

Falnes, J., Budal, K., 1982. Wave-power absorption by parallel rows of interacting 
oscillating bodies. Appl. Ocean Res. 4, 194–207. https://doi.org/10.1016/S0141- 
1187(82)80026-6. 

Faltinsen, O.M., 1990. Sea Loads On Ships and Offshore Structures. Cambridge 
University press, 9780521458702.  

Fitzgerald, C., Thomas, G., 2016. A preliminary study on the optimal formation of an 
array of wave power devices. J. Theor. Appl. Mech. 53, 411–421. https://doi.org/ 
10.15632/jtam-pl.54.2.411. 

Fox, A.D., Corne, D.W., Mayorga Adame, C.G., Polton, J.A., Henry, L.A., Roberts, J.M., 
2019. An efficient multi-objective optimization method for use in the design of 
marine protected area networks. Front. Mar. Sci. 6, 1–15. https://doi.org/10.3389/ 
fmars.2019.00017. 

Gaudin, C., David, D.R., Cai, Y., Hansen, J.E., Bransby, F., Rijnsdorp, D.P., Lowe, R.J., 
O’Loughlin, C., Lu, T., O’Neill, M., 2021. From single to multiple wave energy 
converters: Cost reduction through location and configuration optimisation, Final 
Report, The University of Western Australia. https://arena.gov.au/assets/2021 
/10/wave-energy-cost-reduction-resource-assessment-report.pdf. 

Ghasemian, S., Faridzad, A., Abbaszadeh, P., Taklif, A., Ghasemi, A., Hafezi, R., 2020. An 
overview of global energy scenarios by 2040: identifying the driving forces using 
cross-impact analysis method. Int. J. Environ. Sci. Technol. https://doi.org/ 
10.1007/s13762-020-02738-5. 
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