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Abstract
Federated Learning (FL) is widely favoured in the
training of machine learning models due to its
privacy-preserving and data diversity benefits. In
this research paper, we investigate an extension of
FL referred to as Personalized Federated Learning
(PFL) for the purpose of training diffusion models.
We explore the personalization technique of Trans-
fer Learning (TL) and analyse evaluation metrics to
capture personalization scores. Transfer Learning
has been proven to produce good personalization
results under IID and non-IID data distributions.
We explore the impact of specific hyperparameters
and data distribution techniques and examine how
the personalization results can be improved even
further. We demonstrate that the learning rate and
the number of base layers of the convolutional neu-
ral network (CNN) form a normal distribution in
terms of per-user improvement results. Increasing
the number of users introduces variance in the con-
vergence process, with the per-user personalization
scores experiencing an overall improvement over
the pre-trained model independent of the number
of users. Our evaluations show that tuning to the
optimal hyperparameter values for specific non-IID
data distributions produces better personalization
scores than other PFL methods.

1 Introduction
There is a significant amount of decentralized data generated
on a growing number of users’ devices. A machine learn-
ing approach that can use this data to train machine learning
models with reduced communication costs and in a privacy-
preserving manner is Federated Learning (FL).

The field of FL has garnered significant attention in the
past few years due to its capability of using multiple clients
in coordination to train machine learning models in a decen-
tralized setting. This approach has brought substantial advan-
tages to the domain of machine learning by enhancing privacy
measures and reducing the need for the transfer of sensitive
data [22]. Applications of this methodology can be found in
technologies of paramount significance like Google’s GBoard
mobile keyboard and Apple’s vocal classifier for ı́ts virtual
assistant [13].

Personalized Federated Learning (PFL) is an extension
of FL that aims to achieve personalization for each indi-
vidual user while maintaining a decentralized training ap-
proach. The field of PFL has been heavily studied lately
and there exists a vast quantity of research on different tech-
niques and approaches to training models in a personalized
manner [15, 17, 19].

Conversely, training diffusion models using PFL remains
relatively unexplored and requires further investigation. Dif-
fusion models are probabilistic generative models that can
capture the characteristics of data by diffusing information.
The benefits of such research would significantly aid the field
of machine learning as they will give new insights into the

architectural designs of PFL algorithms and contribute to the
advancement of more accurate personalized diffusion mod-
els.

In this study, we concentrate on the implementation of dif-
fusion models using PFL in the PyTorch framework. The con-
tributions of this study can be summarized as follows.

We study the personalization method of Transfer Learn-
ing (TL) and focus on tuning specific hyperparameters. We
analyse the evaluation methodology to capture personaliza-
tion results and the concluding remarks after the application
of the penalization strategies [8]. The goal of this research is
to investigate the impact of different hyperparameters of TL
on the personalization score of diffusion models.

The main contributions of this work can be summarized as
follows:

• Tuning specific hyperparameters to observe the differ-
ence in personalization scores for TL

• Comparing the personalization scores on IID and non-
IID datasets

• Comparing the evaluation results with those of other per-
sonalization techniques.

• Evaluating the results of the global pre-trained model
and the fine-tuned model.

The rest of the paper is constructed as follows: Section 2
introduces the pre-requisite background information on diffu-
sion models, FL and PFL. Section 3 summarizes the relevant
work that exists in the field of PFL and Section 4 describes
the research methodology employed, including the algorithm
for Transfer Learning, the selection of hyperparameters used
to investigate and the personalization metrics. Section 5 rep-
resents the findings of the study, with statistical and perfor-
mance analysis of the effect of the different hyperparameters
on the personalization results. Section 6 provides a compre-
hensive analysis of the results and Section 7 analyses the re-
sponsible and ethical practices throughout the research pro-
cess. Finally, Section 8 summarizes the conclusions of the
study and suggests ideas for future research.

2 Background
In this section, we introduce some of the fundamental terms
and methodologies needed to comprehend the rest of the re-
search paper. In the ensuing steps, we provide a foundational
description of Diffusion models, Federated Learning and Per-
sonalized Federated Learning.

2.1 Diffusion Models
Diffusion models are probabilistic models that can generate
new samples of data using a diffusion process. This process
is done through a series of iterative updates, where a grad-
ual diffusion process is applied to a Markov chain model (a
sequence of states where the next state depends only on the
previous state). The Markov chained transitions initially fol-
low a process called noise injection where Gaussian noise is
injected into every state of the data. In Figure 1 the reverse
sampling process is displayed where the diffusion process is
reversed on each state of the Markov chain model and the
original data is recovered. This is based on the theorem that
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the true reverse process will have the same functional form as
the forward process [10]. During training, Bayesian inference
is applied to the model to capture the dynamics of data that
simulate best the data distribution. These dynamics simulate
the likely distribution of the true state of the data given the
noisy observations. Through this process, the model learns to
produce samples that resemble the original data after a finite
time. It has been shown that diffusion models are efficient to
train and capable of producing high-quality samples [12].

Figure 1: During the Denoising process, the previous and
next states are used to calculate the posterior probability of
the true state of the data, given a noisy sample. Calculating
the posterior probability of the forward step is done through
Bayesian inference.

2.2 Federated Learning
FL is a collaborative method where different devices work to-
gether to train a machine-learning model. This procedure is
overseen by a central server which then receives the model
updates from each device and proceeds to aggregate the data
into a new global model. FL is a machine learning methodol-
ogy that allows users to benefit from a global model trained
on a vast amount of data without the requirement of storing
them centrally [18]. The goal of FL is to train a global model
that uniformly achieves good performance over the majority
of clients while preserving the privacy of the client’s data.

Due to the large number of devices a central server inter-
acts with as well as the diversity of data that each device holds
FL faces several challenges. The number of communication
rounds as well as the size of transmitted messages at each
round can be a critical factor in how expensive the commu-
nication is. In addition, each device may differ in terms of
hardware and reliability leading to system heterogeneity chal-
lenges with some common examples being that of straggler
mitigation and fault tolerance [16].

2.3 Personalized Federated Learning
A methodology that is used to mitigate some of these chal-
lenges is an extension of FL called Personalized Federated
Learning (PFL). PFL is a layer on top of FL that aims to
learn a personalized model for each client which is an op-
timal combination of a local model trained in isolation by a
client and a global model trained in a collaborated fashion by
all the clients. The challenges that PFL is designed to miti-
gate are the lack of personalization and the poor convergence
on heterogeneous data [19]. Lack of personalization relates to
the scenario where the global model does not generalize well
for the distribution of a specific client’s data. Optimizing for
the global model accuracy may result in a lower performance

level for a client’s local model due to the very different dis-
tributions that the two models have. PFL aims to identify the
diverging patterns among each client and customize a model
that fits the user’s needs. The second challenge which PFL
strives to alleviate is that of statistical heterogeneity. Devices
may generate data in a non independently and identically dis-
tributed manner (Non-IID) [3] that may lead to potential vari-
ations in the number of data points [16]. These variations
may add complexity to the process of modelling and evalua-
tion along with convergence issues. To address this challenge,
PFL aims to enhance learning stability through the utilization
of hyper-parameter tuning techniques. [19]. The overall ob-
jective of PFL is to mitigate these challenges by balancing the
exchange between the clients’ collaboration and the diversity
in statistical patterns among user domains [5].

3 Related Work
Two common subcategories of PFL methodologies are the
data-based and the model-based approach [19].

Data-Based
Some examples of the data-based approach include the data
augmentation and client selection techniques which both
come with their own challenges. Data augmentation relies on
the concept of enhancing the statistical heterogeneity of the
data of each client. That can be achieved using over-sampling
and under-sampling techniques. Unfortunately, augmenting
the private dataset of each client requires a formulation of
a data-sharing structure or the availability of a global proxy
dataset [19]. Data-based approaches require the modification
of the data distribution. As a result, the diversity of informa-
tion formed by each individual user is undermined, indicating
subpar personalization results.

Model based
Model-based techniques focus on the implementation of in-
dividual models for each client by adapting a global model to
the characteristics of each individual user. Common model-
based techniques include Regularized Local Loss [19] , Meta-
Learning [20] and Transfer Learning [19]. Meta-Learning
focuses on developing a learning strategy that improves its
performance with experience. It is designed to combine its
existing knowledge with the limited amount of new input in-
formation while avoiding the risk of overfitting. With tra-
ditional base-learning techniques, learning quality improves
with more examples from a single task and the continuous
application of the same data over the learner always produces
the same hypothesis. Conversely, Meta-Learning is not lim-
ited to refining a hypothesis based on examples related to
only one task but it continuously adapts across diverse tasks.
Therefore, in the case where the learner performs poorly on a
task, the learning mechanisms will adapt when the same task
is presented again.

Regularized Local Loss is a loss function that combines
techniques for minimizing the error for the local sample while
promoting the generalization of the global model. This tech-
nique is based on penalizing the loss function and adjusting
the parameter importance, mitigating the issue of weight di-
vergence between the local and global model while alleviat-
ing the model from overfitting to the local data.
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Transfer Learning
One of the main benefits of TL over Meta-Learning and Reg-
ularized Local Loss is that it does not require training a model
from scratch and as a result, personalized model training be-
comes less resource-intensive. There has been extensive re-
search in the field of Transfer Learning that shows promising
results [1]. Arivazhagan et al. compare the Transfer Learning
algorithm consisting of base and personalization layers with
the traditional Federated Learning algorithm FedAvg [18].
When tested on a CNN model with an unbalanced image clas-
sification dataset and 210 users, the results showed that the
TL model obtains significantly better results in convergence
speed and the client’s average test accuracy scores compared
to the FedAvg model. An important result in this study is that
the personalized model’s performance becomes more identi-
cal to that of FedAvg, when the data partition becomes more
identical.

Taking into consideration the importance of evaluating the
performance of Transfer Learning it is crucial that we apply
personalized metrics to compare the final results. To the best
of our knowledge, there is only one study that introduces per-
sonalized metrics thus far [8]. Instead of using the traditional
method of comparing the individual user’s generative model
quality, this study introduces new types of metrics that re-
semble a general image for the overall user personalization
performance. In the same study, TL is compared with other
personalization techniques based on these metrics. The re-
sults show that the TL algorithm was the second-best algo-
rithm out of 4 on a non-IID data distribution with every user
having the same number of samples but a different number
of classes and samples per class. On the other hand, the TL
algorithm performed the worst on a non-IID data distribution
where each user has samples from all classes but a different
number of total samples and samples per class.

4 Methodology
In this section, we describe in more detail the approach to-
wards the implementation of a structure to train the diffu-
sion model. First, we describe the U-shaped network (UNet)
model that characterizes the diffusion model and the features
that it carries. Secondly, we will go into detail regarding the
diffusion process of the model including the loss function and
the propagation step. Furthermore, we will elucidate the PFL
methodology that we choose to train the diffusion model with
and finally explain the evaluation strategy that we follow to
assess the quality of the results.

4.1 The UNet Model Architecture
The model that we chose to be trained is based on the UNet
architecture that consists of an encoder-decoder structure for
image segmentation tasks. The model consists of contracting
and expanding paths. Contracting paths are responsible for
capturing the contextual information of the input image and
learning a high-level representation of the input. They do so
by gradually decreasing the spatial resolution of the image
and increasing the feature channels of the image.

Conversely, the expanding paths recover the spatial resolu-
tion lost in the encoding process. They consist of gradually

increasing the spatial resolution of the features and reducing
the number of channels. Using the contracting paths com-
bined with the recovered spatial details it creates the image
segmentation. In between the two paths, skip connections are
employed to alter the flow of information in order to capture
both local and global information.

During the encoding and decoding processes, up-sampling
and down-sampling are used to alter the resolution of the fea-
ture map while residual blocks extract the features and detect
distant relationships. The final convolution layer transforms
the extracted features into the desired output dimension

4.2 The Training Process
The training process of TL begins with each client retrieving
images and labels from their own dataset. Instead of com-
paring the predicted output with the respectable labels, in dif-
fusion models noise images and predicting noise images are
produced. The goal of this process is to acquire the loss value
by measuring the difference between the two sets of images.
The optimiser then updates the weights of the model to catch
the underlying patterns by adjusting the model’s parameters
accordingly.

This process is repeated for a number of iteration steps be-
fore the new model is returned to the server to undergo the
aggregation process.

4.3 PFL Approach
The traditional FL setting generates a common model for all
users without considering personalization. However, when
data heterogeneity is present, the global model will have sub-
optimal performance [19]. On the other hand, training the
local model strictly on the local dataset and without any col-
laboration with other clients may lead to poor generalisation
performance. With the goal of achieving a balance between
generalization and personalization performance, PFL is posi-
tioned in between the conventional FL setting and the local
approach.

Despite the enhancement of convergence in the global FL
model, data-based approaches often need to adjust the local
data distributions. This may have as a result the loss of valu-
able information related to the diversity of each client’s be-
haviour. As a result, this may affect negatively the personal-
ization of the global model for each client.

Transfer Learning
A more promising methodology for PFL is Transfer Learn-
ing (TL). Transfer Learning (also known as Fine-Tuning) falls
under the category of Model-Based techniques [19] where the
knowledge acquired from a pre-trained model is used to im-
prove the performance of a different but similar task. In the
deep learning and machine learning settings, TL is respon-
sible for adjusting some parameters of the pre-trained global
model. This allows the model to benefit from the knowledge
extracted from the global model without the need for training
the model from scratch. By using a pre-trained model, the
computational cost of training the new personalized model
is reduced. The algorithm that we use is inspired by Ari-
vazhagan et al. [1] and is described in Algorithm 1 and Algo-
rithm 2. In the same paper, the algorithm is constructed with
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each client saving locally their personalization layers. The
base layers are trained in a federated way and the aggregated
model is then fine-tuned by each client using the personal-
ization layers. PerFT works in an alternative way. The base
layers are frozen and each client trains the personalized layers
of the model locally. The aggregated step involves the averag-
ing of the personalized weights of the clients while the base
layers are left intact. For each client, the number of Local
epochs (N) and the learning rate (α) are kept the same.

The architecture of TL requires a neural network that can
be split into two components: base layers and personaliza-
tion layers. The concept behind this architecture is for the
lower layers of the convolutional base to learn the general
characteristics, while the personalization layers specialize in
learning specific features. This can be achieved by freezing
the convolutional base and proceeding to train only the per-
sonalized layers. This indicates that the model utilizes the
weights of the lower layers that contain the general features
while simultaneously learning dataset-specific features.

Algorithm 1 PerFT - Server Side

1: Input:
2: pre-trained model weights Wpre,
3: number of clients C,
4: dataset Dj
5: for user j = 1 to C, Learning rate α, Number of epochs E,

Number of base(Frozen) layers N
6: Output: fine-tuned model weights Wfine
7:
8: Initialize model weights Wfine ←Wpre
9: for User j = 1 to C do

10: Compute γj ← |Dj|∑C
k=1 |Dk|

11: end for
12:
13: Freeze base layers: Wfine ←Wpre.keys()[Nfrozen :]
14: for e = 1 to E do
15: Receive Wpers,j from each Client j=1 to C

16: Aggregate Wfine ←
∑C

j=1 Wpers,j · γj

17: Send Wfine to each Client
18: end for
19: Return Wfine

Algorithm 2 PerFT - Client Side

1: Input:
2: aggregated model weights Wfine,
3: number of local epochs K,
4: fine-tuning dataset Dfine,
5: learning rate α

6: Output: personalized model weights W (t)
fine

7:
8: Initialize model weights Wpers ←Wfine
9: for k = 1 to K do

10: for each batch B in Dfine do
11: Compute loss L using batch B and current model

weights

W (k)
pers = W (k−1)

pers − α · ∇persL(W
(k−1)
pers )

12: end for
13: end for
14: Return W

(k)
pers

Hyperparameter Optimization
The hyperparameters are various network structural elements
that govern the process by which the network is trained.
These elements are common for the FL architecture, with the
most important ones being the learning rate, batch size and
number of epochs.

In the case of TL the hyperparameter optimization that we
will test encompasses the following hyperparameters:

• Number of base layers

• Learning rate

• Number of users

The number of base layers is the fundamental hyperparam-
eter for Transfer Learning. An increasing number of base
layers indicates a smaller number of personalization layers
applied to the model. We investigate the effect of changing
the number of base layers on the personalization metrics.

A lower learning rate will initiate smaller-grained updates,
helping the model prevent overfitting on the training data
[11]. In the same paper, the author proposes a fine-tuning
architecture that utilizes a ’slow start, fast decay’ learning
rate strategy where the learning rate is initially small, and
then gradually increases throughout the epochs of the Fed-
erated Learning process. The idea behind this strategy is
initially to prevent the model from catastrophically forget-
ting the previously learned distributions when exposed to new
samples. Subsequently, the learning rate is increased to allow
the model to reach a stable performance without exposing it
to excessive overfitting on the training data. This algorithm
has been shown to reduce the training time by 10 times and
offer higher robustness.

In a PFL setting the goal is to personalize a model for ev-
ery client. Therefore, we will investigate whether the number
of users during the Fine-Tuning procedure plays a significant
role in the model’s performance.
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4.4 Evaluation Metrics
Diffusion Score
The Frechet Inception Distance (FID) [21] is a commonly
used evaluation metric in the field of generative models. The
FID metric evaluates the quality of generated samples by
mapping them to a feature space. It calculates the mean and
covariance of the generated and real data. The distance met-
ric it uses to assess the quality of the generated samples is the
dissimilarity between the two Gaussian distributions.

Personalization Score
A personalization model with the highest accuracy results
may not necessarily be the fairest [8]. In an experiment con-
structed in the same research paper, a different local, global
and personalised model was created for each user. The re-
sults showed that the personalized model that achieved the
highest average accuracy across all clients, only had 2 out
of 9 users experience an increase in accuracy. This leads to
the conclusion that a personalization method that yields the
best accuracy results on average, may not necessarily yield
the best results in terms of per-user personalized accuracy.

For the performance metrics, we will use the Percentage of
User-models Improved (PUI) metric. It consists of the per-
centage of users with a personalized model that produces bet-
ter results than the global model. The mean shows to be the
best metric when the data forms a normal distribution [8].
However, it is impossible to know whether the performance
of the users will form a normal distribution and therefore
we will also apply the Median Percentage of Improvement
(MPI) and Average Percentage of Improvement (API) met-
rics that show accordingly the median and average percentage
improvement of the users who had an increased performance
over their global model. The MPI and API metrics provide
information about the central tendency and average improve-
ment in the FID scores of the users who have an enhanced
local model compared to the global model. By considering
both the median and average improvement, we obtain a bet-
ter understanding of the distribution of users who obtained a
better model.

5 Experimental Setup and Results
We evaluate the personalized algorithm of Transfer Learning
to observe its performance results after fine-tuning. We also
show the penalization results of the algorithm after tuning the
base layers, learning rate and number of users.

5.1 Experimental setting
We test the TL algorithm on the FMNIST dataset which con-
sists of 60,000 training images and 10,000 testing images of
various clothing items. It contains 10 different classes and
every image is of size 28x28 pixels.

The UNet model we are training consists of 260 connected
hidden layers. We have pre-trained our model under the Fe-
dAvg algorithm, using the Adam optimizer [14] with 5 local
epochs, 100 global aggregations and 5 users. The pre-trained
model generates a total of 1000 samples and gives an FID
score of 31.33.

We test the algorithm’s performance on non-IID data. In
the non-IID setting, every user gets assigned randomly an

unequal number of samples from the total distribution, with
samples from an unequal number of classes.

Metrics PersFL FedPer pFedMe perFed
PUI(%) 100 100 100 100
MPI(%) 11.23 6.59 10.81 8.55
API(%) 10.83 6.41 10.47 8.85

Table 1: The personalization metrics applied to different per-
sonalized FL methods on CIFAR-10 dataset with a non-IID
data distribution from the paper Divi et al [2].

The baseline that we are comparing against is shown in Ta-
ble 1. It consists of 4 different methodologies of PFL that
include PersFL [7], FedPer [1], pFedMe [6], and PerFed [9].
The non-IID data structure that was used involves users ac-
quiring samples from every class with the total number of
samples being different for each client.

5.2 Experimental Results
We evaluate the result of the TL model by tuning the different
hyperparameters. The evaluation focuses on the personaliza-
tion metrics PUI, MPI and API.

User 1 User 2 User 3 User 4 User 5
IID data 141.13 131.84 126.70 152.20 119.54

non-IID data 189.81 274.24 202.21 184.39 190.41

Table 2: Per-User FID score using the traditional global
model trained with FedAvg

When the global model is tested on the entire dataset, it
shows an FID score of 31.33. As shown in Table 2, the per-
user score results are more than 4X lower when the global
model is applied to each user’s limited dataset on IID data
and 6X lower when applied to non-IID data. The non-IID
data distribution shows clearly that data heterogeneity has a
significant role in the performance score of the algorithm.

Number of Base-Layers API(%) MPI(%) PUI(%)
0 0.83 4.19 20

50 2.38 5.95 40
100 2.65 6.63 40
150 6.19 5.36 100
200 1.92 3.00 60
250 1.38 3.47 40

Table 3: Personalization results for each user, using a 0.0001
learning rate with a different number of base layers on a non-
IID data distribution.

As shown in Table 3, the PUI score and API score achieve
the highest scores when the number of base layers is 150.
The number of PUI improvements compared to API and
MPI is significantly higher, indicating that a big proportion
of users experience an increase of performance compared to
their global model, but the performance they experience is
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not significant. The best PUI and API score is reached when
the number of base layers is 150. This indicates that 5 out of
5 users experience an increase of 6.19% on average in their
FID scores when the number of base layers is 150. Consid-
ering that the total number of connected layers in the utilised
UNet model is 260, this shows that the number of base layers
and the accuracy scores form a normal distribution. For the
rest of the experiments, we are using 150 base layers, as it
provides the best results.

Learning rate API(%) MPI(%) PUI(%)
0.01 0.0 0.0 0
0.001 13.66 20 100

0.0001 6.19 5.36 100
0.00001 3.06 15.30 20
SSFD 1 2.24 11.21 20
SSFD 2 0.0 0.0 0
SSFD 3 0.0 0.0 0

Table 4: Personalization results for each user, using 150 base
layers on non-IID dataset with a different number of learning
rates

Figure 2: The slow start-fast decay algorithm gradually in-
creases the learning rate and then it decreases exponentially.
We try 3 different implementations of this algorithm with dif-
ferent start values.

As shown in Table 4, the learning rate forms a uniform
distribution where the best personalization results are reached
when the learning rate is 0.001. This shows that the learning
rates below that value are suffering from underfitting whereas
the learning rates above this value suffer from overfitting.

The ‘slow start-fast decay’ algorithms shown in Figure 2
perform the worst. This shows that this learning rate method-
ology is not effective for this algorithm. For the rest of the
experiments, we use a learning rate of 0.001 as this produces
the best personalization results.

Number of Users API(%) MPI(%) PUI(%)
5 13.66 20.00 100

10 5.95 4.74 70
15 11.32 9.20 100
20 12.53 14.40 90

Table 5: Personalization results for each user using 150 base
layers, 0.001 learning rate on non-IID data and a different
number of participants

Figure 3: Global model performance scores for different
numbers of participants on non-IID dataset

Figure 4: Local model performance score for different num-
ber of participants non-IID dataset

As shown in Table 5, the personalization results show fluc-
tuating results when the number of users increases. Simi-
larly, the FID scores of each user show inconsistent results.
As demonstrated in Figure 3 and Figure 4, the FID scores
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of each user in the scenario with 20 participants are signif-
icantly better than the scenario with 15 participants. Even
though, the personalization metrics experience a similar in-
consistency, the Fine-Tuned model on every scenario outper-
forms the global model for the majority of clients.

API(%) MPI(%) PUI(%)
TL in isolation 5.59 7.53 100

TL in FL setting 13.66 20.00 100

Table 6: Comparison of best personalization results for TL
in isolation and TL in a FL setting. We use 150 base layers,
0.001 learning rate for 5 users on a non-IID data distribution

The results in Table 6 show that training the diffusion
model under a FL setting converges more accurately than
training in isolation. Both API and MPI scores are 2X im-
proved.

Global Model Personalized Model
User 1 189.81 137.14
User 2 274.24 187.08
User 3 202.21 136.29
User 4 184.39 127.33
User 5 190.41 124.08

Table 7: FID score comparison of global pre-trained model
and model after fine-tuning for 5 users, using a non-IID data
distribution.

6 Discussion
We have investigated whether the TL model can improve its
personalization results after tuning its hyperparameters. We
have explored the personalizaton results after tuning the num-
ber of base layers, learning rate and number of participants.

The results show that the number of base layers and the
learning rate form a normal distribution. A probable cause for
this is the fact that a smaller number than the optimal value
may result in the model underfitting the training data and fail-
ing to capture the user-specific characteristics. On the other
hand, a bigger value than the optimal may result in the model
overfitting where the model becomes too personalized and as
a result fails to generalize well on unseen data.

The ‘slow start-fast decay’ algorithm has shown low per-
formance results compared to other learning rate values. Ac-
cording to Jeddi et al. [11], this learning rate methodology
reduces the training time by 10x and outperforms other ad-
versarial training algorithms. A possible reason for the un-
derperformance of the ’slow start-fast decay’ algorithm in our
setting is that the pre-trained model we chose has been trained
with 100 global epochs while the pre-trained model in the pa-
per has been trained with 200 global epochs. Also, the dataset
used for this experiment is the FMNIST while in the research
paper they use the CIFAR-10 dataset.

Compared to previous research [8], our results in Table 7
agree that TL improves the personalization results compared
to the global model. We highlight that out algorithm PerFT

achieves better results on the MPI and API scores in this non-
IID data setting as shown in Table 1.

The number of participants affects both the performance
and personalization scores of the TL model. As shown in
Figure 3 and Figure 4, the FID scores of both the pre-trained
global model and the TL model indicate an unstable perfor-
mance with the addition of more participants in the train-
ing process. A possible reason for this behaviour is that the
amount of training data assigned to each client is decreased
when more users participate in the training process. In the re-
search paper by de Goede [4], it is shown that the generative
model convergence with better FID scores when the number
of local epochs is increased along with the number of partic-
ipants. Overall, the personalization scores were better in all
user scenarios.

7 Responsible Research
The responsible and ethical principles for our research are
expressed in the transparency of the methodologies that we
use. The algorithms and methods used are described with
clarity and the dataset used is publicly accessible so that the
experiments can be easily reproduced.

Further research needs to be done to prevail the existing in-
equalities under PFL methodologies. Users’ limited access to
data and their representation in the training process can create
biased or inaccurate predictions that can lead to the reinforce-
ment of biases and amplify social disparities. Therefore it is
of great importance to mitigate these challenges and use PFL
to promote equity, inclusiveness and unbiased results.

8 Conclusions and Future Work
We have demonstrated that Federated Learning can train dif-
fusion models and achieve high converge results on a global
setting but result in low converge scores on a per-user level.
This study has investigated the personalization methodology
of Transfer Learning by implementing the FedTL algorithm
and focused on tuning its hyperparameters to analyse their
effect on the personalization scores. We have introduced per-
sonalization metrics to capture the performance of each indi-
vidual user and we have applied transfer learning in an IID
and non-IID setting.

The results show that the number of base layers and the
learning rate form a normal distribution where any value
above or below the optimal option results in overfitting and
underfitting respectively and a less optimal personalization
score. The number of participants showed unstable perfor-
mance in terms of both converge and personalization scores.
FerFT obtains 100% PUI, 13.66% API and 20% MPI score,
outperforming other Personalized Federated Learning meth-
ods, specifically in non-IID data settings.

Lastly, we identify some remarks for future work. Our im-
plementation is limited to that of the FMNIST dataset. The
personalization metrics of the Transfer Learning algorithm
could be further explored under more variations of datasets.
In addition, personalization methods of Meta-Learning [20]
and Regularized Local Loss [19] could also be explored for
the effect of hyperparameters on the personalized evaluation
metrics.

8



References
[1] Manoj Ghuhan Arivazhagan and Vinay Aggarwal. Fed-

erated learning with personalization layers. Adobe Re-
search, page 5, 2020.

[2] Ali Borji. Pros and cons of gan evaluation measures.
2018.

[3] Bart Cox, Lydia Y Chen, and Jérémie Decouchant. Aer-
gia: leveraging heterogeneity in federated learning sys-
tems. In Proceedings of the 23rd ACM/IFIP Interna-
tional Middleware Conference, pages 107–120, 2022.

[4] Matthijs de Goede. Training diffusion models with fed-
erated learning: A communication-efficient model for
cross-silo federated image generation. page 6, 2023.

[5] Yuyang Deng, Mohammad Mahdi Kamani, and
Mehrdad Mahdavi. Adaptive personalized federated
learning, 2020.

[6] Canh T. Dinh, Nguyen H. Tran, and Tuan Dung Nguyen.
Personalized federated learning with moreau envelopes,
2022.

[7] Siddharth Divi, Habiba Farrukh, and Berkay Celik.
Unifying distillation with personalization in federated
learning, 2021.

[8] Siddharth Divi, Yi-Shan Lin, Habiba Farrukh, and
Z. Berkay Celik. New metrics to evaluate the perfor-
mance and fairness of personalized federated learning.
pages 3–6, 2023.

[9] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar.
Personalized federated learning: A meta-learning ap-
proach, 2020.

[10] W. Feller. On the theory of stochastic processes, with
particular reference to applications. In Neyman and
Jerzy, editors, Berkeley Symposium on Mathematical
Statistics and Probability, pages 403–432, 1949.

[11] Ahmadreza Jeddi, Mohammad Javad Shafiee, and
Alexander Wong. A simple fine-tuning is all you
need: Towards robust deep learning via adversarial fine-
tuning, 2020.

[12] Ho Jonathan, Jain Ajay, and Abbeel Pieter. Denoising
diffusion probabilistic models. In Advances in Neural
Information Processing Systems, page 5, 2020.

[13] Peter Kairouz, H. Brendan McMahan, et al. Advances
and open problems in federated learning. Foundations
and Trends® in Machine Learning, page 44, 2021.

[14] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization, 2017.

[15] Viraj Kulkarni, Milind Kulkarni, and Aniruddha Pant.
Survey of personalization techniques for federated
learning. 2020.

[16] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Vir-
ginia Smith. Federated learning: Challenges, methods,
and future directions. Carnegie Mellon University &
Determined AI, pages 3–4, 2021.

[17] Yishay Mansour, Mehryar Mohri, Jae Ro, and
Ananda Theertha Suresh. Three approaches for person-
alization with applications to federated learning. 2020.

[18] H. Brendan McMahan, Eider Moore, Daniel Ram-
age, Seth Hampson, and Blaise Agüera y Arcas.
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