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Tools: Two forms of software:

LibraryApplication
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Application

src: 3D bag viewer

src: QGIS
src: cjval

src: Model Lab

Applications:

- End users

- Interaction
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Libraries
City3D

PolyFit

val3dity

cgval

cjio

PROJ

GEOS

GDAL

(CGAL)

(OpenCV)

Libraries:

- Reusable tools for 

applications (& other libraries)

- Cannot directly be used

In GIS:

- Transformation

- Analysis (Validation)

“Core” GIS
Libraries

3D 
Geoinformation

Libraries
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UsageLibrary

Usability: Libraries are not directly usable
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Problem:
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End Users

GIS Library

Indirection

- Only indirect access

- Dependent

- Exact?

- New research?

Developers

Developers

Developers
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Dependent on multiple layers of 
developers End Users

Bindings layer /
Intermediate users

Application layer

Maintain bindings

Maintain 
plugins

GIS Library

*.exe custom
App

Maintain
app
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App

AppLib

Lib

Lib

Usage

Usage

Functionality: capabilities may get lost at every step
Moreover:

Composability: apps are not further composable
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Conundrum:

AppLib

 Adopted from Elliott C. (2007). 
Tangible Functional Programming

Given this divide, how to achieve Functionality, 
Composability, & Usability at the same time?

Usability
Composability

Functionality
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Problem statement
End users only have Indirect access of GIS libraries, leading to disadvantages…

… for end users:

- At the mercy of in-between software

- Non-composable applications

- Features getting lost in translation

… for library developers: 

- Synchronizing bindings, plugins, applications.

…for society:

- reduced impact of research
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2. Objective
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Goal of this study:

Allow GIS practitioners without a background in software development, 
to access the full potential of core transformation and analysis
capabilities found in native GIS libraries.
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End Users

Core
GIS Library

Goal:

more direct access
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Some Lib capabilities get lost when used in an app

apps are an endpoint: Not further composable

A lib must be turned into an app before utilization.

A lib offers no visualization or GUI. Add usability and GUI to libs

Add composability and automation to apps

Goal:

AppLib
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How: 

Presenting and prototyping a novel method:

A Web-based Visual Programming Language (VPL) using 
WebAssembly
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Research question: 
Is a web based VPL a viable method for 
directly accessing native GIS libraries 

with a composable interface?
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- What GUI features are required to facilitate this method, and to what extent does the web platform aid or hurt these 

features?

- To what extent does this method intent to address the discrepancies between software applications and libraries, as 

described by Elliott (2007)? Does it succeed in doing so?

- What are the differences between compiling a GIS library written in C++ to WebAssembly, compared to compiling a GIS 

library written in Rust?

- What measures are taken to make this VPL scalable to large geo-datasets, and how effective are these measures?

- How does this method compare to existing, alternative VPLs and browser-based geocomputation methods, regarding the 

properties relevant to the goal of direct accessibility?

Sub Questions
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3. Background
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“Web-based VPL using WebAssembly”:

1. Web Application
2. Visual Programming
3. WebAssembly



Grafiek

Possible solution for direct access

Web Application → distribution

- No Installation

- Cross-platform 

Static Web Application

- No active backend

- Cheap

- More portable

1. Web Applications
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Possible solution for Composable applications

- Visual Programming Language (VPL)

- Both a scripting language and application

- ‘programming’ by using GUI

- Composable GUI

2. Visual Programming 

src: Blender Geometry Nodes
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VPL within GIS

▪  
09-10-2020 3

1Src: GrasshopperSrc: QGIS Src: Geoflow

Src: ArgGIS Model BuilderSrc: FME
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2. Visual Programming: GIS
requirement: Scalability

Cloud

Scalability

CLI
Runtime 

Use in
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3. WebAssembly

 wasm rendered at `.wat` 
src: author

Possible solution for more direct access

- Exchangeable binaries

- Binary compilation target `library.wasm` 

- From multiple languages 

- To multiple runtimes

- Since 2017 (Haas, 2017)

- In browsers since 2019 (W3C, 2019)
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3. WebAssembly 
Use case 1: Run native code in a browser

src: audacity

src: author

src: Milica Mihajlija
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3. WebAssembly 
Use case 2: Generic library binding

- Interface Types

- “run anything anywhere”

Clark, L. (2019)
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4. Method
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End Users

Core
GIS Library

Web VPL

One Binding

Core
GIS LibraryCore
GIS Library

General Binding:
WebAssembly

One binding to maintain

Zero boilerplate 

ComposabilityDirect Access

Scalable in 
principle

Method proposed:
Combine all three: 
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Two components

1. Web VPL

2. Library Plugin system

- Plugin loader

- Plugin model
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1. Web VPL: Design

- Essentially, a programming language

- “syntax tree”

- Model View Controller
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Regular case:

- Maintain separate project

- Explicitly state interface

- ‘boilerplate’

2. Plugin System

App

Plugin

Library



Grafiek

2. Plugin System

Our case: 

- Leverage wasm compilers

- Mimic normal language

- Interprete bindings implicitly

Leads to:

- No boilerplate

- Connect to existing 

infrastructure

Core
GIS Library

Web-based VPL

One Binding

Core
GIS LibraryCore
GIS Library

WebAssembly

Auto-generate

interface with 
wasm-bindings

interface with 
wasm-bindings
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2. Plugin System

Three elements:

- Direct utilization→ Zero boilerplate

- Leverage generic interface properties of WebAssembly 

- Portability

- Same behavior within this VPL as in python, C#, JavaScript, etc.  

- Scalability 

- Zero-cost abstraction
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Core
GIS Library

Web-based VPL

One Binding

Core
GIS LibraryCore
GIS Library

WebAssembly

One binding to maintain

Zero boilerplate 

no-GUI Runtime
Compile 
to plain 
JS

Use 
without 
reference 
to VPL

Cloud

Scalability

2. Plugin System

Zero-cost abstraction
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05 Results

 

time?
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1. Web VPL implementation

2. Library Plugin System 
implementation
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1. Web VPL implementation: 
Geofront
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Web VPL: Geofront

Custom implementation needed to meet all aspects of the method.

- Application framework
- VPL model implementation
- renderer, Interaction, UI, etc.
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Node

Computation | Function 

Main components
Widget

GUI | Input Output

Cables

Variable | edges
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1. Add a node or widget 
from ‘add’ dropdown or fuzzy 
finder

Workflow
2. Connect nodes by dragging 
input to output sockets, to form 
graphs

3. To perform calculations, manipulate the 
input widgets using the canvas GUI, or a 
side menu
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Widgets: Composable GUI

- “Applet”
- Boolean input
- Text field
- Number slider
- Boolean output
- Text output
- Image output
- Renderer

- File save as Blob | String
- File load as Blob | String
- File fetch as Blob | String
- Print to console
- Create list 
- Get all properties from object
- Create object from properties
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Applet widget: sub-application support
Use output of one application, as input 
for Geofront
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Visualization
- Custom WebGL implementation

Support for:

- Mesh
- Pointcloud
- Textures (images)
- Plane
- Bezier curve 
- Bezier surface
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Calculation → Dependency sorting (kahn’s algorithm)
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Usage 1: Basic interaction

https://thegeofront.github.io/present
ation/videos/geofront-1.mp4

https://thegeofront.github.io/presentation/videos/geofront-1.mp4
https://thegeofront.github.io/presentation/videos/geofront-1.mp4
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Usage 2: Basic composition & data inspection

https://thegeofront.github.io/present
ation/videos/geofront-2.mp4

https://thegeofront.github.io/presentation/videos/geofront-2.mp4
https://thegeofront.github.io/presentation/videos/geofront-2.mp4
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Usage 3: A larger setup & parametrization

https://thegeofront.github.io/present
ation/videos/geofront-3.mp4

https://thegeofront.github.io/presentation/videos/geofront-3.mp4
https://thegeofront.github.io/presentation/videos/geofront-3.mp4
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Usage 4: Geodata input → Obj output

https://thegeofront.github.io/present
ation/videos/geofront-4.mp4

https://thegeofront.github.io/presentation/videos/geofront-4.mp4
https://thegeofront.github.io/presentation/videos/geofront-4.mp4
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Implementation: results

+ All major requirements able to be 
implemented on the web.

+ Does provide application composability

- Limited STD
- Types not interoperable
- Limited performance
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Geofront: Feature comparison

Unique combination
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2. Library Plugin System 
implementation
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Plugin System: Implementation

Automated extraction of:
- A list of all functions present in the library
- A list of all custom types (structs / classes) present in the library
- Per function:

- A list of all input parameters, name and type
- An output type
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Plugin System: Results

wasm-pack
wasm-bindgen

Geofront

Point
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Plugin System: Comparison
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C++ → emscripten → WebAssembly

Plugin System: Tests

Rust → wasm-pack → WebAssembly
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Plugin System: Tests

Interfacing the C++ 
binary from JavaScript 
was around six times as 
slow compared to the 
rust equivalent.
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Plugin System: Tests

the C / C++ emscripten 
compiler produced a 
binary which requires 
more than three times the 
size of the same 
functionality compiled with 
Rusts wasm-pack.
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Plugin System: Test Results

Rust

Worked almost immediately for almost any library

+ Expressive bindings allow complex data types to be exchanged in a simple manner.
- Still some runtime overhead due to wrappers

C++

Multiple workarounds eventually allowed some parts of CGAL to be run in geofront, if included in the source code

- Requires many workarounds 
- More wrapper overhead than rust
- Larger binaries than rust
- Sub-optimal support for bindings

+ Interface Types will most likely be added in the future to emscripten
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Plugin System: Tests: startin
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Rust Library: copc-rs (Point cloud loader) 
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C++ Library: CGAL

C++

Wasm

Js

VPL Plugin 
loader
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C++ Library: CGAL

C++

Wasm

Js

VPL Plugin 
loader VPL Source Code
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Plugin System: Zero cost abstraction runtime

Currently Incomplete, but promising
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06 Conclusion
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sub Q: library & application divide

+ VPL acts as “a custom GUI for any library”

+ Only dependent on Wasm-bindings

- Exception: C++ 

+ VPL: Use tools in a composable manner
+ Potree demo: further composable web applications

+ Plugin system: Minimum in-between steps 

+ Wasm-bindings only limiting factor

2. Applications are not further composable →

1. Libraries cannot be directly used, end users are 

dependent on in-between applications →

3. Capabilities get lost in in-between steps →

AppLib

- To what extent does this method intent to address the discrepancies between software applications and libraries, as described by Elliott (2007)? 

Does it succeed in doing so?

A: All aspects were able to be addressed 
to a certain extent.
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Main research question:
 

Q: Is a web based VPL a viable method for directly accessing 
native GIS libraries with a composable interface?

No

- More research is required to proof full 

feasibility:

- C++ → Interface Types

- GUI-less runtime → Scalability

A: Yes, but with exceptions

Yes

- Provides solutions for app / lib divide

- Successfully implemented and combined:

- no-boilerplate plugin system

- Composable GUI

- Web-based
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Future work
- Improved VPL model:

- Improved type support

- Validated Dataflow VPL

- Concurrency

- Compile to WebAssembly

- Deployment & scalability 

- Cloud-based execution

- “Deploy as application” 

- Effects of Rust as replacement for C++ in GIS or any scientific endeavor

- Less error-prone, improved library management, improved wasm support → distribution
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Thank you for your attention!


