
Titelpagina + Beeld

Please wait for the presentation to start…

Titelpagina + Beeld

 Geofront:
Directly accessible GIS tools

using

a web-based visual programming language

Master Thesis Geomatics | Final Presentation
Jos Feenstra | November 4th 2022

Tekst

1. Introduction

2. Objective

3. Background

4. Method

5. Results

6. Conclusion

Hoofdstuk

1. Introduction

Grafiek

Land

Cities

Sea

Air

Climate

Climatology

Infrastructure

Urban planning

Agriculture

Governance

Navigation

Military

(…)

End Users

GIS:

Geographical

Information

Science

Grafiek

Land

Cities

Sea

Air

ClimateGeographical

Information

Science

Environmental studies

Infrastructure

Urban planning

Governance

Navigation

The military

Argiculture

End Users

Tools

Grafiek

Land

Cities

Sea

Air

ClimateGeographical

Information

Science

Environmental studies

Infrastructure

Urban planning

Governance

Navigation

The military

Argiculture

End Users

Tools

Grafiek

Tools: Two forms of software:

LibraryApplication

Grafiek

Application

src: 3D bag viewer

src: QGIS
src: cjval

src: Model Lab

Applications:

- End users

- Interaction

Grafiek

Libraries
City3D

PolyFit

val3dity

cgval

cjio

PROJ

GEOS

GDAL

(CGAL)

(OpenCV)

Libraries:

- Reusable tools for

applications (& other libraries)

- Cannot directly be used

In GIS:

- Transformation

- Analysis (Validation)

“Core” GIS
Libraries

3D
Geoinformation

Libraries

Grafiek

UsageLibrary

Usability: Libraries are not directly usable

Grafiek

Usage
(developer)Library Application

Grafiek

Problem:

Environmental studies

Infrastructure

Urban planning

Governance

Navigation

The military

Argiculture

End Users(core)
GIS Library

?

- Transformation

- Analysis

- Validation

Grafiek

End Users

GIS Library

Indirection

- Only indirect access

- Dependent

- Exact?

- New research?

Developers

Developers

Developers

Grafiek

Dependent on multiple layers of
developers End Users

Bindings layer /
Intermediate users

Application layer

Maintain bindings

Maintain
plugins

GIS Library

*.exe custom
App

Maintain
app

Grafiek

App

AppLib

Lib

Lib

Usage

Usage

Moreover:

Grafiek

App

AppLib

Lib

Lib

Usage

Usage

Functionality: capabilities may get lost at every step
Moreover:

Composability: apps are not further composable

Grafiek

Conundrum:

AppLib

 Adopted from Elliott C. (2007).
Tangible Functional Programming

Given this divide, how to achieve Functionality,
Composability, & Usability at the same time?

Usability
Composability

Functionality

Grafiek

Problem statement
End users only have Indirect access of GIS libraries, leading to disadvantages…

… for end users:

- At the mercy of in-between software

- Non-composable applications

- Features getting lost in translation

… for library developers:

- Synchronizing bindings, plugins, applications.

…for society:

- reduced impact of research

Hoofdstuk

2. Objective

Grafiek

Goal of this study:

Allow GIS practitioners without a background in software development,
to access the full potential of core transformation and analysis
capabilities found in native GIS libraries.

Grafiek

End Users

Core
GIS Library

Goal:

more direct access

Grafiek

Some Lib capabilities get lost when used in an app

apps are an endpoint: Not further composable

A lib must be turned into an app before utilization.

A lib offers no visualization or GUI. Add usability and GUI to libs

Add composability and automation to apps

Goal:

AppLib

Grafiek

How:

Presenting and prototyping a novel method:

A Web-based Visual Programming Language (VPL) using
WebAssembly

Tekst (Wit)

Research question:
Is a web based VPL a viable method for
directly accessing native GIS libraries

with a composable interface?

Grafiek

- What GUI features are required to facilitate this method, and to what extent does the web platform aid or hurt these

features?

- To what extent does this method intent to address the discrepancies between software applications and libraries, as

described by Elliott (2007)? Does it succeed in doing so?

- What are the differences between compiling a GIS library written in C++ to WebAssembly, compared to compiling a GIS

library written in Rust?

- What measures are taken to make this VPL scalable to large geo-datasets, and how effective are these measures?

- How does this method compare to existing, alternative VPLs and browser-based geocomputation methods, regarding the

properties relevant to the goal of direct accessibility?

Sub Questions

Hoofdstuk

3. Background

Grafiek

“Web-based VPL using WebAssembly”:

1. Web Application
2. Visual Programming
3. WebAssembly

Grafiek

Possible solution for direct access

Web Application → distribution

- No Installation

- Cross-platform

Static Web Application

- No active backend

- Cheap

- More portable

1. Web Applications

Grafiek

Possible solution for Composable applications

- Visual Programming Language (VPL)

- Both a scripting language and application

- ‘programming’ by using GUI

- Composable GUI

2. Visual Programming

src: Blender Geometry Nodes

Foto

VPL within GIS

▪
09-10-2020 3

1Src: GrasshopperSrc: QGIS Src: Geoflow

Src: ArgGIS Model BuilderSrc: FME

Grafiek

2. Visual Programming: GIS
requirement: Scalability

Cloud

Scalability

CLI
Runtime

Use in

Grafiek

3. WebAssembly

 wasm rendered at `.wat`
src: author

Possible solution for more direct access

- Exchangeable binaries

- Binary compilation target `library.wasm`

- From multiple languages

- To multiple runtimes

- Since 2017 (Haas, 2017)

- In browsers since 2019 (W3C, 2019)

Grafiek

3. WebAssembly
Use case 1: Run native code in a browser

src: audacity

src: author

src: Milica Mihajlija

Grafiek

3. WebAssembly
Use case 2: Generic library binding

- Interface Types

- “run anything anywhere”

Clark, L. (2019)

Hoofdstuk

4. Method

Grafiek

End Users

Core
GIS Library

Web VPL

One Binding

Core
GIS LibraryCore
GIS Library

General Binding:
WebAssembly

One binding to maintain

Zero boilerplate

ComposabilityDirect Access

Scalable in
principle

Method proposed:
Combine all three:

Grafiek

Two components

1. Web VPL

2. Library Plugin system

- Plugin loader

- Plugin model

Grafiek

1. Web VPL: Design

- Essentially, a programming language

- “syntax tree”

- Model View Controller

Grafiek

Regular case:

- Maintain separate project

- Explicitly state interface

- ‘boilerplate’

2. Plugin System

App

Plugin

Library

Grafiek

2. Plugin System

Our case:

- Leverage wasm compilers

- Mimic normal language

- Interprete bindings implicitly

Leads to:

- No boilerplate

- Connect to existing

infrastructure

Core
GIS Library

Web-based VPL

One Binding

Core
GIS LibraryCore
GIS Library

WebAssembly

Auto-generate

interface with
wasm-bindings

interface with
wasm-bindings

Grafiek

2. Plugin System

Three elements:

- Direct utilization→ Zero boilerplate

- Leverage generic interface properties of WebAssembly

- Portability

- Same behavior within this VPL as in python, C#, JavaScript, etc.

- Scalability

- Zero-cost abstraction

Grafiek

Core
GIS Library

Web-based VPL

One Binding

Core
GIS LibraryCore
GIS Library

WebAssembly

One binding to maintain

Zero boilerplate

no-GUI Runtime
Compile
to plain
JS

Use
without
reference
to VPL

Cloud

Scalability

2. Plugin System

Zero-cost abstraction

Hoofdstuk

05 Results

time?

Tekst (Wit)

1. Web VPL implementation

2. Library Plugin System
implementation

Tekst (Wit)

1. Web VPL implementation:
Geofront

Grafiek

Web VPL: Geofront

Custom implementation needed to meet all aspects of the method.

- Application framework
- VPL model implementation
- renderer, Interaction, UI, etc.

Foto

Foto

Node

Computation | Function

Main components
Widget

GUI | Input Output

Cables

Variable | edges

Foto

1. Add a node or widget
from ‘add’ dropdown or fuzzy
finder

Workflow
2. Connect nodes by dragging
input to output sockets, to form
graphs

3. To perform calculations, manipulate the
input widgets using the canvas GUI, or a
side menu

Foto

Widgets: Composable GUI

- “Applet”
- Boolean input
- Text field
- Number slider
- Boolean output
- Text output
- Image output
- Renderer

- File save as Blob | String
- File load as Blob | String
- File fetch as Blob | String
- Print to console
- Create list
- Get all properties from object
- Create object from properties

Foto

Applet widget: sub-application support
Use output of one application, as input
for Geofront

Foto

Visualization
- Custom WebGL implementation

Support for:

- Mesh
- Pointcloud
- Textures (images)
- Plane
- Bezier curve
- Bezier surface

Foto

Calculation → Dependency sorting (kahn’s algorithm)
31

2 4

5

6

7

9 10

8

11

12

13

14

Foto

Usage 1: Basic interaction

https://thegeofront.github.io/present
ation/videos/geofront-1.mp4

https://thegeofront.github.io/presentation/videos/geofront-1.mp4
https://thegeofront.github.io/presentation/videos/geofront-1.mp4

Foto

Usage 2: Basic composition & data inspection

https://thegeofront.github.io/present
ation/videos/geofront-2.mp4

https://thegeofront.github.io/presentation/videos/geofront-2.mp4
https://thegeofront.github.io/presentation/videos/geofront-2.mp4

Foto

Usage 3: A larger setup & parametrization

https://thegeofront.github.io/present
ation/videos/geofront-3.mp4

https://thegeofront.github.io/presentation/videos/geofront-3.mp4
https://thegeofront.github.io/presentation/videos/geofront-3.mp4

Foto

Usage 4: Geodata input → Obj output

https://thegeofront.github.io/present
ation/videos/geofront-4.mp4

https://thegeofront.github.io/presentation/videos/geofront-4.mp4
https://thegeofront.github.io/presentation/videos/geofront-4.mp4

Grafiek

Implementation: results

+ All major requirements able to be
implemented on the web.

+ Does provide application composability

- Limited STD
- Types not interoperable
- Limited performance

Grafiek

Geofront: Feature comparison

Unique combination

Tekst (Wit)

2. Library Plugin System
implementation

Grafiek

Plugin System: Implementation

Automated extraction of:
- A list of all functions present in the library
- A list of all custom types (structs / classes) present in the library
- Per function:

- A list of all input parameters, name and type
- An output type

Foto

Plugin System: Results

wasm-pack
wasm-bindgen

Geofront

Point

Grafiek

Plugin System: Comparison

Grafiek

C++ → emscripten → WebAssembly

Plugin System: Tests

Rust → wasm-pack → WebAssembly

Grafiek

Plugin System: Tests

Interfacing the C++
binary from JavaScript
was around six times as
slow compared to the
rust equivalent.

Grafiek

Plugin System: Tests

the C / C++ emscripten
compiler produced a
binary which requires
more than three times the
size of the same
functionality compiled with
Rusts wasm-pack.

Grafiek

Plugin System: Test Results

Rust

Worked almost immediately for almost any library

+ Expressive bindings allow complex data types to be exchanged in a simple manner.
- Still some runtime overhead due to wrappers

C++

Multiple workarounds eventually allowed some parts of CGAL to be run in geofront, if included in the source code

- Requires many workarounds
- More wrapper overhead than rust
- Larger binaries than rust
- Sub-optimal support for bindings

+ Interface Types will most likely be added in the future to emscripten

Foto

07-10-2020 6
9

Plugin System: Tests: startin

Foto

Rust Library: copc-rs (Point cloud loader)

Foto

C++ Library: CGAL

C++

Wasm

Js

VPL Plugin
loader

Foto

C++ Library: CGAL

C++

Wasm

Js

VPL Plugin
loader VPL Source Code

Grafiek

Plugin System: Zero cost abstraction runtime

Currently Incomplete, but promising

Hoofdstuk

06 Conclusion

Grafiek

sub Q: library & application divide

+ VPL acts as “a custom GUI for any library”

+ Only dependent on Wasm-bindings

- Exception: C++

+ VPL: Use tools in a composable manner
+ Potree demo: further composable web applications

+ Plugin system: Minimum in-between steps

+ Wasm-bindings only limiting factor

2. Applications are not further composable →

1. Libraries cannot be directly used, end users are

dependent on in-between applications →

3. Capabilities get lost in in-between steps →

AppLib

- To what extent does this method intent to address the discrepancies between software applications and libraries, as described by Elliott (2007)?

Does it succeed in doing so?

A: All aspects were able to be addressed
to a certain extent.

Grafiek

Main research question:

Q: Is a web based VPL a viable method for directly accessing
native GIS libraries with a composable interface?

No

- More research is required to proof full

feasibility:

- C++ → Interface Types

- GUI-less runtime → Scalability

A: Yes, but with exceptions

Yes

- Provides solutions for app / lib divide

- Successfully implemented and combined:

- no-boilerplate plugin system

- Composable GUI

- Web-based

Grafiek

Future work
- Improved VPL model:

- Improved type support

- Validated Dataflow VPL

- Concurrency

- Compile to WebAssembly

- Deployment & scalability

- Cloud-based execution

- “Deploy as application”

- Effects of Rust as replacement for C++ in GIS or any scientific endeavor

- Less error-prone, improved library management, improved wasm support → distribution

Grafiek

Sources:

- Elliott, C. (2007). Tangible functional programming.
International Conference on Functional Programming.
http://conal.net/papers/Eros/ Accessed 2022-09-27. Related
Talk: https://www.youtube.com/watch?v=faJ8N0giqzw.

- Haas, A., Rossberg, A., Schuff, D. L., Titzer, B. L., Holman,
M., Gohman, D., Wagner, L., Zakai, A., and Bastien, J.
(2017). Bringing the web up to speed with WebAssembly. In
Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI
2017, pages 185–200, New York, NY, USA. Association for
Computing Machinery.

- w3c (2019). World Wide Web Consortium brings a new
language to the Web as WebAssembly becomes a W3C
Recommendation.
https://www.w3.org/2019/12/pressrelease-wasm-rec.html.en

- Clark, L. (2019). WebAssembly Interface Types: Interoperate
with All the Things. Mozilla Hacks: the Web developer blog.
https://hacks.mozilla.org/2019/08/webassembly-interface-typ
es/

- Kuhail, M. A., Farooq, S., Hammad, R., and Bahja, M.
(2021). Characterizing Visual Programming Approaches for
End-User Developers: A Systematic Review. IEEE Access,
9:14181–14202.

- Sousa, T. (2012). Dataflow Programming: Concept,
Languages and Applications. Unpublished.

https://www.youtube.com/watch?v=faJ8N0giqzw
https://hacks.mozilla.org/2019/08/webassembly-interface-types/
https://hacks.mozilla.org/2019/08/webassembly-interface-types/

Logo (Animatie)

Thank you for your attention!

