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Abstract: Remote sensing and satellite imagery have become commonplace in efforts to monitor
and model various biological and physical characteristics of the Earth. The land/water interface is
a continually evolving landscape of high scientific and societal interest, making the mapping and
monitoring thereof particularly important. This paper aims at describing a new automated method
of shoreline position detection through the utilization of Synthetic Aperture Radar (SAR) images
derived from European Space Agency satellites, specifically the operational SENTINEL Series. The
resultant delineated shorelines are validated against those derived from video monitoring systems
and in situ monitoring; a mean distance of 1 and a maximum of 3.5 pixels is found.

Keywords: coastal monitoring; shoreline detection; remote sensing; Copernicus; SAR

1. Introduction

Coastal areas represent complex and highly dynamic environmental systems contin-
uously facing undergoing changes due to natural as well as anthropogenic factors. The
monitoring of their evolution is crucial for the safeguarding thereof. Wind, waves, coastal
storms, and sea level rise represent some of the natural coastal threats that have been
shaping the coastal zones and the consequences of which have been exacerbated in the last
century [1,2]. Sea hazards and extreme storm surges are increasingly threatening coastal
areas causing among others flooding, coastal erosion, and damages to ecosystems and
infrastructures [3]. Urban pressure, shifting land use, and variations in dunes and sea
bed stability [4–6] have and are also contributing to a further exacerbation of these hazards.
Many coasts throughout Europe, and specifically in the Mediterranean [7], are expected to
experience increased flooding in response to current coastal and dune management strategies.

In this context, effective management is of paramount importance to address the
effect of the high concentration of human population and activities along the coasts. The
assessments of coastal vulnerability and hazards can provide decision makers and policy
with diagnostic management tools to support sustainable development of coastal zones and
face the negative effects of both human activities and extreme events [8,9]. Environmentally
friendly interventions and nature based solutions may help in this direction promoting the
restoration of the environment and the ecosystem [10,11].

Information on long-term shoreline variability and periodic surveys of emerged and
submerged beaches [12] help to quantify erosion or accretion processes. Among the several
physical indicators used to assess beach erosion/accretion is the delineation of shoreline
trends [13,14].
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An idealized definition of shoreline is the physical interface between land and wa-
ter [15], identified by means of [16] (i) visually discerning coastal features, (ii) the evaluation
of the intersection between beach profile and the local tidal datum, and (iii) specific image
processing techniques.

For a specific study area, the employed shoreline indicator is often related to the data
availability. Common data sources used to monitor coastlines are historical land-based pho-
tographs, coastal maps and charts, aerial photographs [17], beach surveys [18], LiDAR [19],
remote sensing techniques [20–27], video imaging systems [28–31], and GPS [32–34].

Traditionally, the coastline has been detected by manual visual comparison and inter-
pretation of different sources and images derived from all manner of Earth Observation
(EO). However, by using subjective visually discernible features, shoreline position may
be strongly influenced by the operator as the boundary between water and land can be
difficult to identify due to operational constraints and can vary depending on tidal cycle
information. Moreover, such manual delineation is time-consuming, resulting in a high
degree of inefficiency.

To overcome such limits, several techniques have been proposed to semi-automatically
and automatically extract coastline from images acquired by both remote sensing [22,35]
and video monitoring systems [28,36]. Remote sensing systems provide a repetitive and
consistent view of the Earth, useful for monitoring short- and long-term changes of coastal
zones and specifically shoreline position on a global scale with minimal individual user
infrastructure requirements. Video monitoring systems generally consist of more than
one camera to cover multiple view angles on the area of interest and typically provide
data at very high spatial as well temporal resolution. Usually, the spatial scales of such
systems vary from decimeters to kilometers based on the distance of the target from the
camera. Images are acquired on a specified time sampling period varying from minutes to
hours and are generally automatically collected and processed with low operating costs.
A further benefit of such systems is their indifference to most atmospheric obstructions,
mainly weather features and events such as clouds, allowing for data to be collected contin-
uously. Camera systems also offer a higher degree of customization per local monitoring
objective, as different types of images can be collected to obtain information. For example,
an averaged image is useful for the submerged and bar topography [37], while other sophis-
ticated operational video analysis techniques enable the quantification of detailed coastal
features such as shoreline evolution and wave run-up [38,39]. Moreover, the evaluation of
waves, flow, and rip currents empowers the management of dynamic navigational chan-
nels [40–42], whereas visitor density detection allows the monitoring of defining stressing
factor for zones having an important ecological role [43,44]. Hyperspecific features or
data requirements from satellites are not as easily customized, though a wide portfolio of
private purchasable data series complements the readily and publicly available data.

Satellites are more sensitive to weather conditions than video systems (particularly for
passive and optical data acquisition, while radar and active sensors are limited to a lesser
degree) and provide imagery on a lower temporal frequency than video camera systems.
However, when considering large temporal time frames, the persistence of satellite imagery
provides a powerful resource; whereas video monitoring campaigns last years, and satellite
imagery spans decades and continues to grow.

Remote sensing instruments fall into two categories: passive and active. Passive
sensors measure various radiation naturally reflected or emitted from Earth’s surfaces:
atmosphere and clouds. Passive sensors are primarily employed in the monitoring of
morphological changes of the near-shore zone and for the monitoring of water quality.
ESA, NASA, and other national and international agencies operate an array of satellite
missions providing large amounts of data on key physical and environmental indicators
including total suspended matter concentration, algal pigment concentration, chlorophyll-
a [45,46], and sea surface temperature. Furthermore, postprocessing techniques can derive
currents [47], alongshore and offshore significant waves and tides. New ocean color sensors,
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such as the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) sensor, will enable the
tracking of new ecological indicators and thus contribute to water quality monitoring.

Active remote sensing, which generates its own signals and records the amount of
energy backscattered from the terrain, is capable of passing through gases and clouds
collecting clear data regardless of any light availability and weather conditions, a great
advantage when compared to passive sensors.

The most common methods to detect the shoreline from active sensors are based on
segmentation and edge detection. Segmentation is a process of grouping objects (or pixels)
having similar characteristics to later be assigned to a specific class. Several methods have
been developed for image segmentation, mainly belonging to a supervised or unsupervised
method. Supervised segmentation uses a priori training dataset (or input classes) selected
based on the experts’ knowledge, while unsupervised segmentation is trained during
the segmentation process allowing for a fully automatic recognition of the classes. Post-
segmentation processes might be required to merge regions that may derived from an
over-segmentation [48].

To overcome these limits, Dellepiane et al. [35] proposed the adaptation of fuzzy
sets in defining the shoreline contour. Coherence information extracted by the European
Remote sensing Satellite (ERS)-1 and ERS-2 with a spatial resolution 20 × 20 m are used as
input of the segmentation process. An accuracy of about 3.5 pixels mean offset resulted by
a comparison with the shoreline position detected from aerial images.

Edge detection is a process of finding boundaries between different regions and it
is generally simpler than segmentation. When pursing edge detection, locally adaptive
thresholding algorithms can be employed. Thresholds are analytically determined by
fitting a bimodal Gaussian curve, and the accuracy of the results depends upon their
reliability and correctness [48].

Previous studies [49–51] used an edge detection method to determine the boundary
area between land and water. Niederman et al. [51] apply an edge detection method [52,53]
on ERS satellites images. At first, all edges above a certain threshold are recognized and
then, a local edge selection is performed to refine the determined land/water boundary.
Compared with shoreline extracted by visual decision, the authors found a mean offset of
2.5 pixels.

In general, edge detection methods are simpler than segmentation, however edges may
be discontinuous leading to an erroneous definition of the shoreline [49,50], a drawback
that may require additional postprocessing.

The present work shows a new automatic method based on edge detection aiming at
retrieving shoreline position from Synthetic Aperture Radar (SAR) images. To extract the
contour on land/water boundary, the method relies on a global threshold value derived by
means of Otsu method [54]. This is a key component of the method since determines its
simplicity in comparison to locally adaptive thresholding algorithm as it does not require
the partitioning of the whole image in sub-imaged or statistic examination of the intensity
values of the local neighborhood of each pixel [55]. The method allows for a fully automatic
detection of the coastlines in a short amount of time. Sentinel 1 SAR images with a spatial
resolution of 20 m are used as input.

Understanding and quantifying the positional accuracy of the satellite-derived shore-
line positions is essential. For this reason, the method is tested along Apulian beach in
Southern Italy, Torre Canne (Brindisi), facing the Mediterranean Sea, where spatial and
temporal variations of shoreline derived from a video system are available. The accuracy
of the method in detecting the shoreline position (Satellite Derived Shoreline (SDS)) is
quantified with respect to shoreline data collected by a video system. The comparison is
quantified and reported in terms of average offset and root mean square difference.

The following Section 1.1 describes the morphological characteristics of the study area.
The data employed in this study and the methodology steps are described in Section 2. The
results, actual validation, and main findings are discussed in Section 3, while a summary
of the main outcomes with a recommendation for further study is addressed in Section 4.
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1.1. Study Area

The algorithm is tested along Torre Canne beach (Figure 1), in the south of Italy.
Located in Apulia region and facing the Adriatic Sea, Torre Canne beaches are characterized
by medium grain size. The emerged shore width may vary from a minimum of about
20 m to a maximum of about 50 m with a gentle foreshore and a steep berm, periodically
covered by organic deposits of Posidonia oceanica. During the last decades, despite the
mean wave climate is moderate (mostly propagating from N-NW and E-SE with an annual
significant wave height comprised between 0.5 and 1.4 m and peak period ranging between
3 to 7 s), the study area has suffered remarkable erosive processes. Human activities and
overexploitation of the coastal area, mainly due to touristic activities, combined with the
increase of extreme storms occurrences have been negatively affecting the sedimentary
balance of the area. The long-term erosive trend has imposed an extensive monitoring
program of the area, including topographic and bathymetric surveys. In December 2015, a
new video coastal monitoring system was deployed and integrated into the Apulian Region
Monitoring Network, managed by the local Basin Authority to study both morphodynamic
and hydrodynamic processes [28]. Further detail of the system is reported in Section 2.1.2.

Figure 1. Torre Canne location along Apulia region coasts in the southern of Italy.

2. Materials and Methods

To support decision-makers and policy with a management tool for coastal zones
defense, this study proposes a new methodology for shoreline detection using Copernicus
Sentinel-1 data. This Section describes the datasets used to develop and validate the
method as well as the methodological steps employed in this research.

2.1. Materials
2.1.1. COPERNICUS Sentinel-1 Satellite Data

Sentinel-1 is the first satellite mission developed by European Space Agency (ESA)
for the Copernicus Programme, the European Union’s Earth observation programme,
previously known as GMES (Global Monitoring for Environment and Security). This
program aims to serve as Europe’s eyes on the Earth and to provide high-quality and
high-resolution EO data to public and private industries to aid in the monitoring and
strategic planning of activities. The Sentinel-1 carries a C-band Synthetic Aperture Radar
(SAR) instrument capable of collecting data regardless of weather conditions or light
availability. These data are freely available and downloadable via the Copernicus Open
Access Hub web portal (https://scihub.copernicus.eu/, accessed on 25 May 2021) or the
five European Data and Information Access Services (DIAS) platforms that allow users
to discover, manipulate, process, and download Copernicus data and information. In the

https://scihub.copernicus.eu/
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present work, Sentinel-1 products acquired on Interferometric Wide swath (IW) mode
are elected to test the developed methodology. IW mode combines large swath width
(250 km) with high geometric resolution (5 × 20 m on the ground) and is implemented
as Terrain Observation with Progressive Scans SAR (TOP-SAR) mode [56]. Depending
on the electromagnetic wave transmission and reception directions, data are available in
single or dual polarization. Partial dual polarization vertical+horizontal (VH) is tested
here. Dual polarization HV and VH have been proved to be adequate for the mapping
of flood water [57] and to be less sensitive to wind-induced surface roughness that can
influence the backscattering coefficient, especially for VV polarization [58,59]. Moreover,
VH polarization generally yields to highest contrast between land and open water and
thus is suitable for the purpose of this study.

IW products are acquired at Level-0, the raw data, and processed to Level-1 and Level-
2 products through filtering techniques and processing algorithms to obtain higher level
information. Level-1 Data (L1D) preprocesses include radiometric normalization, terrain
correction, and geolocation. L1D products are available at single look complex (SLC) or
ground range detected (GRD). SLC products are provided in slant-range geometry where
coordinates are defined as the line-of-sight from the radar to each reflecting object and with
variable pixel resolution. GRD products are SLC projected using an Earth ellipsoid model.
The resulting pixels have approximately square resolutions and square pixel spacing.
Depending on the level of multi-look applied, GRD files are available in Full (FR), High
(HR), and Medium (MR) Resolutions. Sentinel-1 GRD HR products acquired on IW mode
are suitable to test the proposed algorithm for shoreline detection, due to the easy and
low-cost data accessibility and usability. Products have a pixel size equal to 10× 10 m and a
spatial resolution of 20 × 22 m as a result of the aggregation of pixels in the postprocessing
phase. An example of the downloaded images is shown in Figure 2.

Figure 2. High resolution images Level-1 Ground Range Detected product acquired in interferometric
wide swath mode by Sentinel-1 platform on the 7 June 2017.

2.1.2. Validation Data

In order to obtain accuracy and precision metrics, optical images acquired by a video
monitoring system installed in 2015 at Torre Canne, Italy (Apulia, South Italy) [28,36,60]
are used to compare satellite versus in situ monitoring strategies. Video-derived images
spatial resolution varies from decimeters to around 13 m, based on the distance of the
near-alongshore footprint from the camera (Figure 3).
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Figure 3. Example of the image acquired by IP camera placed on-site along Torre Canne beaches.

The camera system is configured to acquire images with a sampling interval of 30 min.
The acquisition cycle is of 10 min with a frequency of 1 Hz, thus resulting in 600 images.
Those images are automatically processed to extract the shoreline position. The averaged
shoreline is then returned every 30 min as a collection of points geolocated into a specific
UTM projection identified with the code EPSG:6708. Those points can be transformed into
a continuous element defining the shoreline. Results have been validated in a previous
work [28] by a comparison with shoreline manually recognized by an operator. A mean
difference of 1.17 pixels was found out.

The time of acquisition of both satellite and video system is a key element when com-
paring the two methods as shoreline detection from image processing is highly influenced
by both tide and wave run-up levels. Those can indeed influence the water content and
thus the saturation degree of the emerged beach and, consequently, the colors and the
reflection proprieties of the sand, based on which the land/water interface is distinguished.
Video derived shorelines are already processed by considering the effect of the tide but not
satellite images. For this reason, in order to ensure a reliable validation of the algorithm
developed within this research, only the images acquired with a maximum lapse of time
of 20 min are compared (e.g., on the 29th of September, the image acquired at 16:48 by
Sentinel-1 is compared with the image acquired at 16:30 by the video system), namely, the
shoreline position variations are assumed to be negligible within the time laps of 20 min.

2.2. Methods

The algorithm is based on edge detection techniques, mainly consisting of finding
the boundary which separates two different regions. Figure 4 below reports the block
diagram of the method. It consists of four main processes: despeckling, binarization,
morphological operations, and edge detection. Those processes aim to (i) reduce the speckle
effects (despeckling), (ii) recognize water/land boundary by intensity values (binarization,
morphological operations), and (iii) automatically extract the shoreline (edge detection).
The procedural architecture for automatic shoreline edge extraction from preprocessed
Level-1 GRD satellite images obtained from Copernicus Services is built on Python Open
Source Computer Vision (OpenCV) library [61] and Scikit-image processing toolbox [62]
for SciPy.
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Figure 4. Block diagram of the processes composing the algorithm.

2.2.1. Despeckling

Due to the constructive/destructive interferences of backscattered electromagnetic
waves, a speckling appears as a salt–pepper noise in the image. The first operation aims
at reducing speckle effects on SAR images to obtain an image characterized by lower
noises, making the output easier to be processed in subsequent functions. Without this
step, such disturbances preclude the further recognition of the water/land boundary by
intensity values.

The reduction of speckle noise can be obtained by applying a multi-look integration
or a post-image formation method [63]. Multi-look processing technique averages, pixel
by pixel, several independent or dependent images, corresponding here to different looks
of the same image [64]. Each look is obtained by dividing the signal bandwidth into
parts and processing each part as a single look image of the same scene [65]. Post-image
formation methods are based on the application of standard filters, such as Huang [66],
Kuan [67], Frost [68], and Gamma Filter [69]. Usually, those filters perform well on most
SAR images even though spatial resolution is often lost [63]. Due to its low computational
cost, simplicity, and good performance in preserving edges [70], a median filtering approach
is used in the present work to Sentinel-1 images. Median filtering replaces the intensity of
each image pixel y(m, n) with the median of the intensities in a defined neighborhood w
around the pixel location (m, n) as defined in the following Equation (1):

y[m, n] = median{x[i, j], (i, j) ∈ w} (1)

The neighborhood is defined by the user. The median filtering approach is imple-
mented by means of a structuring element, also called kernel, with a size of 5 × 5.

2.2.2. Binarization

Pixels classification is then applied to the denoised image via the Otsu’s method [54]
to allow the creation of a binary image. The Otsu’s method is one of the best-known
thresholding methods and has been proved to obtain satisfactory results when applied
to satellite images for the land/water classification [71–73]. The Otsu’s method is an
unsupervised and nonparametric method based on the zeroth and first moment of the
grayscale histograms.

The binarization automatically calculates the optimal threshold at level k value by
using discriminant criterion measures. Pixels are divided into two classes C0 and C1 with
levels [1, 2, . . . , k] and [k + 1, k + 2, . . . , L], respectively, where L is the grayscale level.

The probability of occurrence ω (4), class means levels µ (5), and class variance σ
(6) are calculated from the histogram of the pixels values distribution for the two classes.
Then, to evaluate the threshold goodness, the class separability is evaluated using specific
discriminant criteria. The adopted criterium η (2) is defined as the product between
the probability of occurrence and the first- and second-order cumulative moments of the
histogram. The aim is to find the threshold that minimizes η (2), or equivalent, the weighted
within class variance given by σB (3):
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η =
σ2

B
σ2

T
, (2)

where

σ2
B = ω0(µ0 − µt)

2 = ω1(µ1 − µt)
2 = ωoω1(µ1 − µ0)

2, (3)

ω0 = Pr(C0) =
k

∑
i=1

pi, ω1 = Pr(C1) =
L

∑
i=k+1

pi = 1−ω0, (4)

µ0 =
k

∑
i=1

ipi
ω0

, µ1 =
L

∑
i=k+1

ipi
ω1

, µT = µ(L) =
L

∑
i=1

pi = ω0µ0 + ω1µ1, (5)

σ2
0 =

k

∑
i=1

(1− µ0)
2 pi

ω0
, σ2

1 =
L

∑
i=k+1

(1− µ1)
2 pi

ω1
σ2

T =
L

∑
i=1

(i− µt)
2 pi, (6)

Otsu’s method can be easily implemented on the denoised images by means of a
Python OpenCv function. In the present work, the binary image is obtained by settings the
values of the minimum and maximum pixels based on the gray levels and to be assigned,
respectively, to classes C0 and C1. The described classification relies on the founded global
threshold value which may therefore strongly influence the position of the satellite derived
shoreline. Threshold values estimated using a global thresholding method can be, indeed,
arbitrary values in the middle of two peaks. Kittler and Illingworth [74] identified a good
performance of the Otsu’s method when the pixel distribution histogram is bimodal with a
sharp valley. In this study, we assess the impact of the size of the despeckling kernel size
on the pixel distribution by analyzing the pixel distribution of the despeckled image.

2.2.3. Morphological Operation

Two morphological operations are then applied to the binary image to distinguish
meaningful shape information (water/land) from irrelevant elements present in the satellite
image, such as ships or small isolated areas. Morphological operations are widely used in
image processing as they clarify the image by eliminating irrelevancies and by preserving
objects shape.

Mathematical morphologies are based on set theory [75,76]. Operations such as union,
intersection, translation, and subtraction can be performed on each image. Dilation and
erosion processes are two of the basic morphological operations. Dilation combines two
vectors using addition, whereas erosion uses subtraction [76]. Applying iterative dilation
and erosion, it is possible to remove details smaller than the kernel size without causing
geometric distortion of the objects [77]. The composition of dilation and erosion results in
opening and closing processes. Opening smooths contours by removing sharp peaks and
small areas, whereas closing operation helps in filling holes and fusing narrow breaks [78].
If A is the binary image and B is the structuring elements (both set in Euclidean N-space),
the opening of A by B is defined as follows:

O(A, B) = E(D(A, B),−B) = (A	 (−B))⊕ B (7)

whereas the closing of A by B is defined as follow:

C(A, B) = E(D(A, B),−B) = (A⊕ (−B))	 B (8)

where Dilation (D) and Erosion (E) are defined respectively as:

D(A, B) = A⊕ (−B) (9)

E(A, B) = A	 (−B) (10)
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The defined morphological operations are employed in the method here proposed by
means of a structuring element with a size 7 × 7. The binary image obtained from Otsu’s
method is used as input in the opening operation. The resulting image is then used as
input for the closing operation.

2.2.4. Canny Edge Detector

The recognition of the objects and their boundaries is obtained through Edge Detection
Techniques (EDTs). EDTs convolve the image with an operator sensitive to discontinuities
in grayscale level from one pixel to another.

Operators mainly belong to a gradient-based or Laplacian-based algorithm. Gradient
methods look for the maximum and minimum of the first derivative of the image. The
Laplacian-based methods search, instead, for the zero crossing of the second derivate of
the image. Based on its geometry, each operator recognizes edges along a fixed direction
(vertical, horizontal, or diagonal). Local operators can be used to estimate vertical and
horizontal edges. Among the local operators, the most used are the Sobel’s and Prewitt’s
ones that consist of two 3 × 3 convolution kernels. However, the latter as well as the
Laplacian operators are sensitive to image noises [79]. To overcome these limits, Marr-
Hildreth [80] proposed an algorithm based on the convolution of the image with the
Laplacian of the Gaussian function able to smooth the image and, consequently, reduce the
noises influence on the edges extraction.

The Canny edge detector algorithm [81] also allows for the reduction of noises, local-
ization of edges, and suppressing of false edges. The Canny edge detector includes three
steps: smoothing, differentiation, and labeling, and shows good performance when com-
pared to other filters [82]. The Canny method recognizes edges by convolving the image
with an operator which is the first derivative of a two-dimensional Gaussian. Edges are
determined by an optimization process and marked at the maxima in gradient magnitude
of a Gaussian-smoothed image [81].

In the present work, in the beginning, the Sobel operator with a default size of 3 × 3 is
used to find gradient values in both x and y direction (11). If A is the binary image set in
Euclidean N-space, the gradients in each direction are defined by the convolution of A and
Sobel operators (Sx, Sy). The edge gradient magnitude (G) and direction (θ) are then found
as in (12, 13):

Sx =


−1 0 +1

−2 0 +2

−1 0 +1

Sy =


+1 +2 +1

0 0 0

−1 −2 −1

 (11)

G =
√

G2
x + G2

y (12)

θ = arctan
(Gy

Gx

)
(13)

where:

Gx = A ∗ Sx = A ∗


−1 0 +1

−2 0 +2

−1 0 +1

Gy = A ∗ Sy = A ∗


+1 +2 +1

0 0 0

−1 −2 −1

 (14)

Then, by using a minimum and a maximum threshold values, here set, respectively,
as 100 and 200, pixels are treated as edges if their intensity gradient is higher than the
maximum threshold and discarded if lower.
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3. Results
3.1. Sentinel-1 Retrieved Shoreline

Figure 5 shows the outcomes of each of the aforementioned methodology steps.

(a) (b) (c)

(d) (e) (f)

Figure 5. Example of automatic shoreline extraction by Sentinel-1 Synthetic Aperture Radar image.
(a) original S1 image; (b) denoised image; (c) binary image; (d) image resulting by the opening process,
by applying the Canny edge filter; (e) image resulting by the closing process; (f) shoreline extraction.

Figure 5a shows an example of the input images used for testing the proposed method-
ology. At first, the salt-pepper noise effect visible in the image is reduced by a median-
filtering approach executed with a kernel of 5× 5 size, thus allowing for a better recognition
of the water/land boundary (Figure 5b). The image binarization, namely, the classification
of the pixels for water and land, is automatically executed on the denoised image by means
of the Otsu’s method which allows for the calculation of the optimal threshold value for
water/land recognition. The output is a binary image (Figure 5c) where 0 is assigned to
the pixels below the threshold, namely, water, whereas 1 is assigned to those pixels in
exceedance, corresponding to land.

It is observed that the application of both opening (Figure 5d) and closing (Figure 5e)
operations contributes in reducing uncertainties and improving the edges detection.
Figure 5e reports an example of the effects of such operations, showing the reduction
of the number of black dots visible in the mainland comparing with Figure 5c.

Figure 5f shows that by applying the Canny edge filter, edges in the binary image are
successfully recognized. The pixels ranging between the two thresholds are considered
edges only if connected to pixels above the maximum threshold. Figure 5f also shows that
the Canny method ensures the filtering of other small pixels noises, under the assumption
that edges are long lines.

3.2. Shoreline Position Validated against Video Monitoring System-Derived Shoreline

Satellite-Derived Shorelines (SDSs) are here extracted for the year 2017, and the
comparison with Video-Derived Shorelines (VDSs) is performed on a total of 11 satellites
images. For each point composing the VDS, the distance with respect to the SDS is
automatically calculated to evaluate the accuracy of the proposed model in extracting the
shoreline position and the influence of the employed filters in model performance. Figure 6
shows an example of the SDS (red line) and VDS (blue line) acquired on 15 January 2017 at
Torre Canne overlapped on the Sentinel-1 image. The average offset is about 10 m, whereas
the Root Mean Square Difference (RMSD) is equal to 12.48 m. Both metrics indicate a
sub-pixel accuracy. The measured pixel spacing of the processed images is, indeed, 12.75 m.
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The maximum distance is equal to 44.74 m, which corresponds to an accuracy of 3.51 pixels
(Table 1).

Figure 6. Example of the shoreline extracted along Torre Canne beaches and overlapped on the
corresponding Sentinel-1 image. Shoreline extracted by VMS is shown with a blue line whereas SDS
is represents by a red line.

Table 1. Results of the validation measures estimated for each image.

Date
Time Time Minimum Maximum RMSE

Sentinel-1 Webcam Distance [m] Distance [m] [m]

19 February
2017 04:55 05:00 0.001 23.381 8.373

27 March
2017 04:55 05:00 0.026 36.172 9.601

15 May 2017 16:40 17:00 2.401 31.482 15.329
26 May 2017 04:55 05:00 0.005 35.565 13.065
27 May 2017 16:40 16:30 0.008 31.010 11.285
7 June 2017 04:55 05:00 0.012 18.638 6.132
8 June 2017 16:40 17:00 0.002 27.671 10.061
6 October

2017 16:40 17:00 11.108 44.737 23.206

18 October
2017 16:40 17:00 0.002 33.328 12.615

30 October
2017 16:40 17:00 0.706 37.797 14.049

16 December
2017 04:55 05:00 0.045 32.315 13.454

average 12.479

3.3. The Effect of the Despeckling Kernel Size on the Shoreline Position

In order to study the effect of different despeckling kernel sizes on the final threshold
based on which the shoreline position is defined, different kernel sizes have been applied
to the same images and the variation of the threshold has been evaluated.

Figure 7 shows an example of the variation of the pixels distribution histogram
obtained by increasing the kernel size from 5 × 5 to 25 × 25. It can be observed that
the distribution is characterized by a bimodal distribution, which varies with the kernel
size. In fact, by replacing the pixel with the median of it and its adjacent neighboring
values, the despeckling filters influence the histogram distribution and, thus, the threshold.
Particularly, it can be seen that by increasing the kernel size, two different picks and a
sharp valley are better recognized. The calculated threshold value for each kernel size
varies in a range of 10 pixels. In the meantime, as shown in Figure 8, it is observed that the
spatial resolution decreases as despeckling kernel size increases. Smaller kernels preserve
better spatial resolution, even if the roughness of the extracted shoreline increases and
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several edges far from the shoreline are detected close to the coasts. On the contrary, the
use of bigger kernel sizes results in a smooth and discontinuous line. For this reason and
considering that the final shoreline position does not change by varying threshold on such
a range of 10 pixels, the 5× 5 structural element was chosen as the optimal kernel to reduce
the speckle effects.

Figure 7. Pixel values distribution of the image denoised by means of kernel with different size.

(a) (b)

(c) (d)

Figure 8. Example of the influence of the despeckling kernel size in the final retrieval of the edges.
Result obtained by using a median-filtering approach by varying the kernel size in order to reduce
speckle noise: (a) kernel size 3 × 3; (b) kernel size 5 × 5; (c) kernel size 7 × 7; (d) kernel size 9 × 9.

3.4. Versatility of the Presented Methodology

The validated method is applied on other test sites to investigate its versatility.

3.4.1. Torre Lapillo

Torre Lapillo, hamlet of Porto Cesareo (Lecce), located in Apulian region facing the
Ionian Sea (see Figure 9), is selected for its interesting morphology. It is constituted by the
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typical sub-environment of low-lying coasts and narrow sandy beaches with the emerged
beach width typically ranging from less than 10 m to about 50 m.

Figure 9. Torre Lapillo location along Apulia region coasts in the southern of Italy.

As shown in Figure 10a, the morphology of Torre Lapillo results in a limiting factor
for the method. Within the study area a basin, called “Bacino dell’Uomo Morto”, is situated
just behind the dunes. The basin has a maximum width of about 190 m. Beaches width
comparable to pixel spacing coupled with the proximity of the basin to the sea leads to
some difficulties in detecting the shoreline position. However, the use of VV polarization
on acquired images enables to overpass such a problem (Figure 10b).

(a) (b)

Figure 10. Comparison between the Torre Lapillo shoreline extracted by using (a) VH polarized
image and VV images and a (b) VV polarized image.

3.4.2. Aerial Images: Giovinazzo

The algorithm is also applied to optical aerial images to test its versatility on different
images. Ortho-images are photogrammetric images obtained from cameras fixed on
airplanes. Several images are captured through photogrammetric flights. The resultant
image is then retrieved by overlapping pictures in the orders of 60% forward and 20–
40% in lateral direction. Freely ortho-images with a spatial resolution of 0.5 × 0.5 m and
0.2 × 0.2 m available as Web Map Services (WMS) for Apulian region (http://www.sit.
puglia.it/portal/portale_cartografie_tecniche_tematiche/WMS, accessed on 25 May 2021)
are eligible for our purpose.

The method shows good performances when applied to aerial images. Figures 11
and 12a show the shoreline extracted along Giovinazzo (nothern Apulia) beaches where

http://www.sit.puglia.it/portal/portale_cartografie_tecniche_tematiche/WMS
http://www.sit.puglia.it/portal/portale_cartografie_tecniche_tematiche/WMS
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breakwaters, rocky, and sand beaches come in succession. Nevertheless, beach slopes,
shadows, and wave foam may constitute limiting factors for using this method on images
acquired by using optical sensors as shown in Figure 12b.

Figure 11. Example of the shoreline extracted along Apulian beaches overlapped on ortho-images.
The yellow box delimits the breakwaters zones, the blue box marks the rocky beaches and the black
box delimits sandy beaches limits.

(a) (b)

Figure 12. Comparison between shoreline detected during calm and rough sea. Example of the
influence of waves foam on the shoreline detection. (a) Rocky beaches shoreline extraction along
Apulian region during calm sea. (b) Rocky beaches shoreline extraction along Apulian region during
rough sea.

4. Discussion

In this study, the feasibility of an automated method for shoreline position delineation
is demonstrated. The data sets used are freely available and easily accessible, making the
methodology reproducible in any geographical area; the methodology yields satisfactory
results when applied to Sentinel-1 data. The number of processing steps applied to the
images is relatively small, making the method relatively straightforward and allowing
for a fully automated procedure capable of long-term shoreline evolution assessment.
Sentinel-1 satellite-derived shorelines have been extracted for the year 2017. The retrieved
shorelines have been validated against video monitoring system-derived shorelines at Torre
Canne beaches, and deterministic verification measure such as RMSE have been computed.
Results are very promising with an average RMSE of 12.48 m reported, indicating a
sub-pixel accuracy. The minimum distance suggests a good overlapping between video
monitoring and satellite based shorelines, except for the 6th of October, during which
the maximum distance between the two shorelines also occurs. This suggests a lower
geolocation accuracy, and thus the importance of accurate georeferenced and orthorectified
products for the model.
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Tests have been executed in order to evaluate the influence of the kernel size on pixel
distribution, and thus on the optimum threshold for water/land classification. Significant
improvement of the shoreline position has not been observed; on the contrary a degradation
in the spatial resolution has been observed suggesting a size of 5 × 5 as optimum for
the kernel.

The study also attempted to explore the versatility of the proposed methodology.
To this end, Torre Lapillo, situated along the Apulian coast, has been selected for its
peculiar morphology as constituted by narrow sandy beaches with emerged beach width
typically ranging from from less than 10 m to about 50 m, comparable to the pixel size, and
the presence of a basin behind the dunes. As shown in Figure 10a, the morphology of the
area may represent a limiting factor of the methodology. However, imagery collected using
a different polarization combination can help overcome this issue (see Figure 10b) allowing
a more accurate water/land classification [83].

Depending on the transmitted and received polarizations, the radiation interacts with
and is back-scattered differently by the surface. Therefore, different polarizations cause
variations in radar response, providing different and complementary information about
the targets in the area. This suggests that the combination of different polarization channels
can be a potential candidate for further investigation.

A first attempt to employ the methodology on optical images has also been successfully
performed. Ortho-images with a spatial resolution of 20 cm have been employed for
this purpose. Preliminary results are promising but also show that parameters such as
wave foam, shadows, and shallow beaches can influence the retrieved edges and thus
the shoreline position. Additional filters may help overcome this issue and need to be
further explored.

Areas of methodological improvements include utilizing segmentation algorithms
such as locally adaptive thresholding algorithms which can enhance the land/water bound-
ary recognition and thus reduce discontinuity of coastal edges that can occur in low contrast
areas in the image [48]. The proposed method of shoreline detection might face difficulties
within inter-tidal areas, where porous medium is characterized by a higher saturation
degree which induces some uncertainties in the detection of the shoreline. Indeed, the
higher the moisture content is, the higher is the probability that its reflectance behavior
is assimilated to the water one. In fact, at saturation, the optical path length in water
is at its maximum and certain wavelengths may be completely absorbed [84]. For these
areas, a multilevel Otsu thresholding algorithm can be used, and three classes may be
defined as suggested in [85]. It is therefore recommended to further explore the method
performances in different type of coastal landform and different hydrodynamic conditions,
and to analyze its dependence on the tide and wave run up and on the different grain sizes
of sandy beaches.

Small changes of the coastal areas over short periods may be difficult to detect due to
the coarse spatial resolution often obtained via satellite imagery. To enhance the spatial
resolution of the employed satellite images, image fusion techniques may be explored.
Shoreline mapping can be indeed performed by using a single satellite sensor, as done in
this study, or by the combination of multiple images derived by different sensors. Image
fusion allows for the combination of different images to enhance the classification accu-
racy [86–88] and has been applied to shoreline mapping studies and to identify dynamic
shoreline trends [89,90].

Additional significant improvements of the spatial and temporal resolution of the satel-
lite imagery are also promised by emerging micro- and nanosatellite constellations (PACE,
Geosynchronous Littoral Imaging and Monitoring Radiometer (GLIMR)) and commercial
satellites (e.g., Radarsat, WorldView, and Pleiades). Those promise to compensate for the
limit imposed by the currently implemented satellite’s temporal and spatial resolution pro-
viding data at a daily temporal resolution and at a higher spatial resolution. The capability
of those satellites to retrieve the shoreline position has already been proved [91–93].



J. Mar. Sci. Eng. 2021, 9, 575 16 of 20

5. Conclusions

This paper presents a new methodology for shoreline detection, based on edge detec-
tion techniques of preprocessed SAR images, freely available from ESA and the Copernicus
program. The developed procedure of land/water boundary recognition is carried out with
a script, which allows to generate both shorelines and error statistics given the availability
of in situ data. When compared to the outcomes from in situ and monitoring programs,
the obtained shorelines provide reliable results given the spatial resolution of the satellite
data. Moreover, in the case of calm sea and high contrast in the imagery, the method shows
good performances in detecting shoreline from aerial images.

Long-term variability of shoreline trends is widely used in risk management and
planning activities on coastal areas and represents one of the most used indicators when ac-
counting for assessing defense strategies for preventing beach erosion or flooding. In such
a context, the availability of data with high both temporal and spatial resolution is crucial.
Shoreline detection from satellite images could represent a valid alternative to the tradi-
tional field survey. The detection method proposed in the present work has the advantage
of using freely-available SAR images which are processed automatically to retrieve shore-
line position. If applied continuously, it could allow for effective and timely monitoring
of long-term changes of coastal area, supporting decision-makers and administrations to
manage defense interventions against beach erosion and flooding. The free and ready
availability of Sentinel-1 images, the functionality of the algorithm, its operationalization,
and its computational efficiency may indeed represent an efficient instrument to store
and process a large number of images and data useful for monitoring coastal zones and
detecting erosion, assisting in the reporting efforts of EU member countries, and potentially
for identifying flooding events.
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Abbreviations
The following abbreviations are used in this manuscript:

ESA European Space Agency
EO Earth Observation
NASA National Aeronautics and Space Administration
PACE Plankton, Aerosol, Cloud, ocean Ecosystem
ERS European Remote Sensing
SAR Synthetic-Aperture Radar
SDS Satellite Derived Shoreline
N-NW North-North-west
E-SE East-South-east
GMES Global Monitoring for Environment and Security
DIAS Data and Information Access Services
IW Interferometric Wide
VH vertical-horizontal
HV horizontal-vertical
VV vertical-vertical
L1D Level-1 Data
GRD ground range detected
SLC single look complex
FR full resolution
HR high resolution
MR medium resolution
OpenCv Python Open Source Computer Vision
EDT Edge Detection Technique
VDS Video-Derived Shoreline
GLIMR Geosynchronous Littoral Imaging and Monitoring Radiometer
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