
Offline Digital
Euro

a Minimum Viable CBDC using Groth-Sahai
proofs

by

L. M. Kempen
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Thursday July 4, 2024 at 10:00 AM.

Student number: 4847288
Thesis committee: Dr.ir. J.A. Pouwelse, TU Delft, supervisor

Dr. Z. Erkin, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Offline Digital Euro: a Minimum Viable CBDC using Groth-Sahai proofs
— Master’s Thesis —

Leon Kempen
Delft University of Technology

Delft, The Netherlands

Abstract— Current digital payment solutions are fragile and
offer less privacy than traditional cash. Their critical depen-
dency on an online service used to perform and validate transac-
tions makes them void if this service is unreachable. Moreover,
no transaction can be executed during server malfunctions
or power outages. Due to climate change, the likelihood of
extreme weather increases. As extreme weather is a major
cause of power outages, the frequency of power outages is
expected to increase. The lack of privacy is an inherent result
of their account-based design or the use of a public ledger.
The critical dependency and lack of privacy can be resolved
with a Central Bank Digital Currency that can be used offline.
This thesis proposes a design and a first implementation for an
offline-first digital euro. The protocol offers complete privacy
during transactions using zero-knowledge proofs. Furthermore,
transactions can be executed offline without third parties and
retroactive double-spending detection is facilitated. To protect
the users’ privacy, but also guard against money laundering,
we have added the following privacy-guarding mechanism. The
bank and trusted third parties for law enforcement must collab-
orate to decrypt transactions, revealing the digital pseudonym
used in the transaction. Importantly, the transaction can be
decrypted without decrypting prior transactions attached to the
digital euro. The protocol has a working initial implementation
showcasing its usability and demonstrating functionality.

I. INTRODUCTION

The current infrastructure for digital payment systems is
fragile because of their design to support instant payments or
to obtain global consensus. However this infrastructure has
two main concerns: it is required to be online and allows third
parties, other than the payer and payee, to observe balance
transfers. A lesser-known digital payment system, electronic
cash (e-cash), mitigates these problems. Moreover, e-cash
also provides instant payments without requiring a global
consensus. Central banks around the world are attempting
to use e-cash as a foundation for their Central Bank Digital
Currencies (CBDCs). This thesis proposes a protocol for the
digital euro, the CBDC of the European Central Bank.

For the past decade, the share of digital payments has
increased and the number of cash payments has declined
[1]. With that, the dependency on a connection to an
online infrastructure during a transaction (digital payment)
has increased, as these digital payment systems require a
connection to such an infrastructure to complete the payment.
For example, when you pay at a store with a debit or
credit card, a connection to your bank is needed to verify
whether you have enough balance to pay for the products or
services you want to buy. Additionally, the balance must be

transferred from the payer’s account to the one of the payee.
The dependency on an online infrastructure leads to the first
main concern that the digital payment system is unusable
whenever its online infrastructure cannot be contacted. The
infrastructure could for example be unreachable in regions
with no internet coverage, when the bank’s servers are down
or during a power outage. The latter is increasingly becoming
a challenge as the number of power outages has increased
for the past years [2] and is expected to increase further [3,
4].

The critical dependency on an online infrastructure for
digital payments is not limited to banks, as cryptocurrencies
have the same dependency. For example, in the case of
Bitcoin [5], payments are stored in a data structure that
is maintained by all participants that maintain the online
infrastructure, a blockchain. This blockchain is used to verify
if payments are valid and completed or not. If this blockchain
cannot be reached, the receiver cannot verify if he correctly
received the payment.

Cryptocurrencies that support offline digital payments, like
Zcash [6], still require the spender to prepare the transaction
online to be signed later. This requires spenders to know
the exact transaction details up-front. These details include
the receiver’s account number (a ”wallet address”) and the
value of the transaction. This makes the payment method
impossible to use for unexpected transactions or transactions
where the value cannot be determined up-front.

The second main concern for digital payment systems
is that third parties can observe balance transfers. Current
mainstream digital payment methods offer less privacy than
cash payments. We consider digital payments through banks,
cryptocurrencies and e-cash. Banks have a complete list of all
transactions involving the account holders and their balances.
In case of a breach, a full list of transactions could be
found and potentially abused. However, when using cash,
the bank only knows who withdrew cash when or deposited
cash when.

For most cryptocurrencies, the second type of digital
payment system that we consider, payments are stored in a
blockchain, using a wallet address as a pseudonym. A wallet
address is a unique identifier of a cryptocurrency wallet that
is used to retrieve and send cryptocurrencies. The wallet
addresses of users may change or remain the same. For
instance, in Ethereum [7], users have a fixed wallet address,
whereas in Bitcoin [8] users can change the wallet addresses

with every transaction. If you know which address belongs
to someone, the payment executed with that wallet address
can be traced and linked to their identity. Even with changing
wallet addresses, payments and identities can be traced. By
marking outgoing payments of a wallet address and any
subsequent payments from the wallet address that received
the payment, flows of payments between wallet addresses can
be constructed. This flow of payments exposes links between
payments and wallet addresses owned by a single identity.
The method of marking payments is called taint analysis [9].

The last digital payment option that we consider is e-cash.
e-cash offers users more privacy, compared to bank payments
and cryptocurrencies. Similar to regular cash, a user must
first withdraw e-cash from the bank, before it can be used.
e-cash is represented as a digital token and can be stored
on a device. At a later stage, the holder uses the token(s)
to pay by transferring the tokens to the receiver. Finally, the
receiver can deposit the tokens at the bank to redeem the
value of the tokens.

The goal of e-cash is to provide properties similar to
physical cash. There are three key properties: anonymity,
unforgeability and unlinkability. In e-cash, anonymity is said
to be provided when an attacker cannot link an identity
to a payment [10]. Unforgeability states that it should be
impossible for users to create fake tokens, that appear valid,
in the issuer’s name. Unlinkability states that it should be
impossible to link any payment to a user, even if the user’s
identity is known.

In contrast to digital payment systems based on banking
infrastructure or cryptocurrencies, some e-cash protocols also
support offline payments. In a fully offline e-cash scheme,
no bank, ledger, or other third party is involved in the
payment between the spender and the receiver. Because
e-cash provides fully offline privacy-preserving payments,
it satisfies both main concerns (online infrastructure and
exposed payments) of the current digital payment infrastruc-
ture. Therefore we explore it further in this work.

Many central banks have expressed their interest in e-
cash and some central banks are already using e-cash as
a digital version of their currency. These digital versions
of currencies backed by a central bank are named Central
Bank Digital Currencies (CBDCs). In December 2023, 130
countries, contributing to 98% of the global GDP, have
expressed their interest in a CBDC, are researching and
developing it, or have a CBDC in circulation [11]. A survey
from the International Monetary Fund (IMF) [12] found
that most CBDCs in development can only be used online.
This implies that they have the same critical dependency
on an online infrastructure as most other digital payment
systems. Moreover, compared to online CBDCs, offline-
capable CBDCs promote financial inclusion, have lower
transaction costs and improve the user experience [13].

The CBDCs that can be used offline typically rely on
tamper-resistant hardware to maintain the integrity of the CB-
DCs stored on a device [12]. However, as Liu et al. [14] and
Lee et al. [15] have shown, even the current state-of-the-art
hardware can be breached and thus fails to achieve integrity

through tamper-resistance. Relying solely on hardware to
prevent users from misusing the e-cash, is thus not sufficient.
Therefore, the CBDC should guarantee integrity through
software. This can be done using cryptographic protocols,
such as proofs and signatures, to maintain the protocol’s
integrity, as is done in [16, 17, 18, 19, 20, 21, 22, 23]. This
approach makes it possible to detect fraud retrospectively
and to revoke malicious users their anonymity.

The European Central Bank (ECB) is currently in the
’preparation stage’ of designing the (offline) digital euro
[24]. Two of the main design goals of the digital euro
are protecting privacy as much as possible and support for
offline transactions [25]. This thesis will look at a software
implementation of the digital euro, that fulfils the two design
goals set by the ECB.

Following the approach of the Office of Science and
Technology Policy [26] for a digital U.S. Dollar and the
recommendation of the European Data Protection Supervisor
[27], our implementation will use digital pseudonyms and
zero-knowledge proofs. A zero-knowledge proof is a type
of cryptographic proof used to prove knowledge of a secret,
without revealing the secret. In our proposed protocol for
the digital euro, zero-knowledge proofs are used as payment
proofs. This way other users and banks can verify the
proofs and the transaction without being able to identify
the previous spenders when they receive a token. To further
protect the users’ privacy, participants in our system operate
under digital pseudonyms.

This thesis proposes a design for the payment protocol of
the digital euro that supports fully offline payments, whilst
protecting the users’ privacy. The protocol relies on zero-
knowledge proofs and signatures to protect its integrity and
to provide retrospective fraud detection. To demonstrate the
protocol’s correctness and functionality, the protocol is also
implemented in an open-source minimum viable product.
More specifically our contributions are as follows:

1) We propose a payment protocol that supports fully
offline privacy-preserving payments and could be used
by the ECB as implementation for the digital euro. The
protocol uses zero-knowledge proofs and signatures
providing privacy and retrospective fraud detection
(Section VI).

2) We provide an open-source minimum viable product
of the protocol to demonstrate the correctness and
functionality (Section VII).

II. PROBLEM DESCRIPTION

There are three major problems regarding e-cash: bal-
ancing privacy and fraud prevention, double spending and
token transferability. The first major problem is the trade-
off between privacy and fraud prevention. Fraud can be
trivially detected and prevented by making the transactions
traceable and fully linkable to users. This would, however,
require all participants in the system to give up their privacy
and reveal sensitive information regarding their spending
behaviour. When the architecture requires traceability and
full linkability, the e-cash has the same concern regarding

privacy preservation as banking payments and payments done
with cryptocurrencies.

The second problem, double-spending [21, 22], results
from having too much privacy. Receivers of an e-cash token
cannot check if the same token was used in an earlier
payment. The spender could thus copy a single token and
spend the copy at multiple places. In an analogy to cash,
this would mean copying a banknote and spending that
forged banknote at different locations. In a fully anonymous
setting, a third party cannot link an identity to the fraudulent
payment. This makes the e-cash scheme more vulnerable
when too much privacy is given to the users.

Currently available solutions to the problem of double-
spending, show a necessary restriction to our system’s imple-
mentation. As mentioned earlier, the secured hardware can be
breached, thus the implementation is restricted to retrospec-
tive double-spending detection and anonymity revocation. As
an additional restriction, it should be possible to complete
fully offline transactions. This means that the double spend-
ing detection cannot rely on third parties involved in the
transaction.

The third problem is token transferability. Token transfer-
ability is a property of e-cash that allows users to reuse a
token they received in an earlier payment. This means that
a token can have multiple holders, and be used in multiple
transactions, before being deposited. To satisfy unlinkability,
token holders should not be able to find any information
regarding the identity of previous holders in the token.

Combining token transferability with anonymity revoca-
tion introduces a new challenge as tokens can have multiple
holders. To find the correct identity that committed double
spending, details of every transaction must be included with
the token. This is because the transaction details include the
identity of the spender. As a result, the size of the token
grows with every transaction [28].

III. RELATED WORK

Since the introduction of blind signatures in 1983 by
Chaum [29] and the first offline e-cash protocol by Brands
[16], there has been little (recent) research on offline e-cash
schemes that do not rely on hardware or trusted software to
prevent double-spending. Relying on such hard- or software
to avoid double-spending, such as is done in [30, 31, 32, 33,
34], is an unrealistic assumption and breaking this hard- or
software’s integrity would also invalidate the entire e-cash
scheme.

The other method to prevent double-spending is to rely
on cryptographic principles to detect double spending and
revoke the anonymity of the malicious user. This occurs
when the tokens are deposited at the bank [16, 17, 18, 19, 20,
21, 22, 23]. Whenever the bank detects two tokens with the
same identifier, the transaction details can be used to revoke
the identity of the double-spender.

A subset of the protocols that rely on cryptography is
unpractical as it allows shops to mint tokens ([35]) or non-
functional in a fully offline scenario ([36]), especially when
intended to be used as a basis of a CBDC (Section III-A).

Moreover, other research regarding offline e-cash introduces
functionality (token expiration [18, 20, 19]), which does not
solve and potentially worsens the problem it was intended to
solve (Section III-B).

To fully benefit from the offline functionality, token trans-
ferability (Section III-C) is highly desirable. With transfer-
able tokens, it is not required to withdraw and deposit a token
for each payment. Having the possibility to spend tokens
multiple times without the bank’s involvement would thus
reduce the communication costs between the bank and the
users [21]. A prototype of an offline transferable digital euro,
EuroToken, was proposed earlier [37, 38] (Section III-D).
However, this proposed scheme is fully traceable and offers
little privacy to the users and thus conflicts with one of the
main design goals (preserving privacy) set by the European
Central Bank [25].

A. Real world (un)useabilty

Besides the integrity of the e-cash scheme, its useability
must be considered. Some proposed e-cash schemes make as-
sumptions or functionality that are infeasible or undesirable.
For instance, Osipkov et al. [36] claim to prevent double-
spending without trusted hard- or software in an offline
setting. However, they make use of the assumption that the
merchants (receivers) have a functional peer-to-peer network.
This scenario, where the network is partially offline, does not
offer a solution to pay in areas without network coverage.
Furthermore, the peer-to-peer network does not satisfy our
fully offline constraint.

Another example is the scheme proposed by Batten et al.
[35], which provides spare change by giving reputable shops,
such as Target, the authority to mint cash. Given that our
protocol is intended to be used for a CBDC, it is undesirable
that shops can mint tokens.

B. Expiring e-cash

Eslami and Talebi [18] introduced expiring e-cash by
attaching an expiration date to the e-cash description. This
scheme was later improved by [19] and [20]. The main
reason for this expiration date is a storage reduction for the
bank.

The question remains if schemes, that support token
expiration, solve the problem of storage required to detect
double-spending. The option to recover expired e-cash will
not lead to a decrease in transactions, given that users
withdraw e-cash intending to spend it. Whether or not the
e-cash has an expiration date, users would need to pay for
the same amount of goods or services, the same number of
times. Therefore, the number of deposits does not change.
This means that the storage size needed to store all deposited
tokens will not be reduced by adding an expiration date.
Tokens that have been deposited and expired after can not
be removed from the storage, because they are needed to
check if a token has been spent when it is sent for exchange,
as is designed in [18, 19, 20]. Furthermore, by offering an
exchange service for expired tokens, the bank should store
the exchanged tokens leading to a larger required storage to

detect double-spending. Given that adding an expiration date
to tokens increases the storage size required, our protocol
does not include token expiration.

C. Transferable e-cash

Transferability is a highly desired property that e-cash
should have. Transferable e-cash makes it possible to spend
the e-cash received by other users without depositing and
withdrawing new e-cash first. This reduces the dependency
on reaching the bank even further and does not limit the
number of transactions to the number of withdrawals.

The downside of transferability is that it requires the e-
cash to grow in size with each transaction. This is because
storing information about every transaction is needed to
reveal the double spender’s identity [28].

Sarkar [39] tried to achieve this property using bitwise
XORs. However, the protocol uses an unspecified distributive
operator over XOR to detect double-spending [40]. Further-
more, Barguil [40] also proves that the security claims made
by Sarkar do not hold.

Baldimtsi et al. [21] proposed a transferable e-cash scheme
using malleable signatures. This type of signature is used to
sign transactions whilst keeping the bank’s signature valid.
Double-spending is detected by making use of cryptographic
tags. For each transaction, a double spending (DS) tag and
a serial number (SN) tag are created and added to the
token during a transaction. The SN tag is used in the next
transactions as the identifier of the token and is computed
using the DS tag of the previous transaction. The DS tag is
constructed using the SN tag used in the transaction and is
used by the bank to detect double-spending. A bank could
detect double spending upon deposit when it receives two
tokens, having the same SN tag with a different DS tag.

The protocol of Baldimtsi et al. is improved by Bauer
et al. [22] by replacing the inefficient malleable signatures
with a commit-and-proof scheme. With this scheme, the
tags to detect double spending are also randomized in each
transaction. Our protocol has a similar approach with a
commit-and-proof scheme. However rather than using two
tags, proofs are added to the token to detect double-spending.

Jianbing et al. [23] tried to take the transferability one
step further by proposing a transferable e-cash scheme that
allows the receiver to be anonymous and thus provides
dual anonymity. However, they used a different definition
of transferable, as the protocol requires users to contact the
bank to re-randomize a received token after each transaction.
Having to re-randomize a token at the bank before you can
reuse it, removes the benefits (reducing the dependency on
the bank) of transferable e-cash.

D. EuroToken

Blokzijl [37] and Koning [38] of the Tribler Lab 1 and the
Delft University of Technology did earlier work regarding a
CBDC for the ECB, named EuroToken. This work was done

1https://github.com/Tribler/tribler/wiki#current-items-under-active-
development

in collaboration with the Nederlandsche Bank. This thesis
serves as a continuation of their research.

In the scheme of Blokzijl and Koning, the bank mints a
token by defining a serial number, a face value and a nonce.
Upon withdrawal, the bank sends the user the minted token,
a tuple of the receiver’s public key and a signature of the
bank on the minted token and the receiver’s public key.

The signature tuple is the start of a chain of proofs of
ownership. This chain of ownership is sent with the token and
is extended with each transaction. As the bank’s signature
includes the withdrawer’s public key, the withdrawer can
prove he owns the token. When the user spends the token, the
user will send the token and extend the chain of ownership
with a tuple of the receiver’s public key and a signature,
singing the previous proof of ownership and the recipient’s
public key. The deposit of the token is similar to a transaction
between users. However, now the bank is the receiver of the
token. After the bank has received the token it can verify the
proof chain and check for double-spending.

Token holders can verify the chain of ownership after k
transactions starting from the bank’s signature. This signature
can be used to find the public key of the first receiver.
The found public key can then be used to validate the next
proof and to find the next recipient’s public key. After k
transactions the last found public key maps to the current
holder of the token.

The bank can detect double spending upon deposit of the
tokens. Whenever the bank has received two tokens with the
same first proof double spending must have occurred. The
bank can then compare the chain of proofs of ownership to
find the double spender. After some i proofs there must be
two proofs where proof i+1 from the first chain differs from
proof i+1 from the second chain. This implies that proof i is
used in two transactions and thus doubly spent. The identity
of the double spender can then easily be found, as that is the
receiver’s public key used to create proof i.

The problem with this proposal is that it offers no privacy
and the token’s history is fully traceable. Whenever someone
receives a token, all the public keys of the previous holders
can be found. Malicious people who know which public keys
map to which identity could use and abuse that information
to obtain sensitive personal information when receiving a
token.

Privacy is an important factor in why people use cash for
payments [41]. The current implementation of EuroToken
offers less privacy than the online payment infrastructure of
banks. This combined will have a detrimental effect on the
adoption rate of the CBDC, as the option of paying offline
will come at the cost of user privacy. Moreover, the provided
protocol does not align with the main design goal of the ECB,
namely privacy protection [42].

IV. SECURITY ASSUMPTIONS

The protocol proposed by this thesis relies mainly on
two security assumptions to guarantee unforgeability and
anonymity.

These assumptions are the Discrete logarithm problem and
the Computational Diffie-Hellman assumption. The Discrete
logarithm problem states that given a finite cyclic group G,
generator ⟨g⟩ of G and h ∈ G, it is hard to find an integer
a, such that ga = h. This hardness will be used to create
unforgeable signatures and proofs of ownership.

The Computational Diffie-Hellman assumption states that
given a finite cyclic group G, generator ⟨g⟩ of G, ga and gb,
it is computationally hard to compute gab, without knowing
the values of a and b. This assumption is used to verify
knowledge of the private key and as a basis for the security
of bilinear pairing cryptography.

V. SIGNATURES AND GROTH-SAHAI PROOFS

Our system has two main cryptographic components, blind
signatures and Groth-Sahai proofs. The blind signature is
applied to prevent the bank from linking the withdrawn
digital euro to the first holder. The Groth-Sahai proofs are
used to create a zero-knowledge proof of a transaction, to
provide anonymity between transactions. These proofs are
constructed with bilinear pairings.

A. Blind signatures

Chaum [29] first introduced blind signatures in 1983. A
blind signature scheme can be used to obtain a valid signature
on a message M , without the signer knowing the exact
content of M . This makes it possible for e-cash to have a
valid signature of a bank for an unknown token. When this
token is deposited later, the bank cannot recognize which
user has withdrawn the token. This makes it impossible for
the bank to link the user who withdrew the token to the
user who deposited it, proving anonymity. In this thesis,
an implementation of a hash-based blind Schnorr signature
(BSS) is used.

As the (blinded) Schnorr signature scheme is based on
groups, there should be a group g with order q known by
both the client (a user) and the signing party (the bank).
Furthermore, the signing party chooses a random private
key x ∈R Z∗

q and shares the public key y = gx and a
cryptographic hash function H with the clients. A BSS on
message M can then be obtained as follows:

1) The signing party chooses a random k ∈R Z∗
q and

sends r = gk to the client.
2) The client picks random blinding factors α, β ∈R Z∗

q

and calculates r′ as r′ = rg−αy−β .
3) With that the client computes the challenge c for

message M : c = H(r′||M) mod q, and sends blinded
challenge c′ = c+ β to the signing party.

4) The signing party then signs the blinded message as:
σ′ = k − c′x and returns σ′.

5) To obtain the signature on message M the client
computes: σ = σ′ − α. The Schnorr signature is then
defined as (σ, c)

6) Other parties can verify the validity of the signature on
message M by computing rv = gσyc and checking:
c

?
= H(rv||M).

A mathematical protocol description of the BSS protocol
can be found in Figure 1.

Client Signing party
k ∈R Z∗

q

r ← gk
r←−

α, β ∈R Z∗
q

r′ ← rg−αy−β

c← H(r′||M)
c′ ← c+ β

c−→
σ′ ← k − c′x

σ′

←−
σ ← σ′ − α

Fig. 1: Blind Schnorr signature protocol to obtain a blind
signature (σ, c) on message M

The blind signature is done over the hash of the message to
prevent malicious clients from creating more valid signatures
from an earlier received signature. Due to the multiplicative
homomorphic property, malicious clients could also compute
valid signatures on multiples of message M without the hash.

Given that the hash function is collision-resistant, it is
hard for a malicious client to find the message corresponding
to the malled signature. Therefore it is impossible to create
more valid signatures, based on an earlier received signature.

B. Bilinear pairings

A bilinear map e is an operation that takes two elements
from, potentially, different elliptic curve groups of order p
and maps them to an element of a third group, the target
group. More formally, given source groups G, H and target
group GT , a bilinear map is denoted as:

e : G×H → GT

Additionally, the pairing must satisfy the following three
properties:

• Bilinearity: For all items P,Q ∈ G and R,S ∈ H , the
following holds:

e(P +Q,R) = e(P,R) · e(Q,R)

e(P,R+ S) = e(P,R) · e(P, S)

Moreover, given generators g, h such that G = ⟨g⟩ and
H = ⟨h⟩, for all a, b ∈ Zp the following holds:

e(ga, hb) = e(g, h)ab

• Non-degeneracy: e(P,R) ̸= 1.
• Efficient computability: There must be an efficient

method to calculate the pairing efficiently.

An extended bilinear map E is a mapping of two elements
of G and two elements of H to four elements of GT :

E : G2 ×H2 → G4
T

As an example, given g1, g2 ∈ G and h1, h2 ∈ H:

E

((
g1
g2

)
,
(
h1 h2

))
=

(
e(g1, h1) e(g1, h2)
e(g2, h1) e(g2, h2)

)
(1)

Similarly to regular bilinear maps, the extended bilinear maps
are also bilinear, using entry-wise product operations for the
vectors and matrices. Given g1, g2, g3, g4 ∈ G and h1, h2 ∈
H:

E

((
g1
g2

)(
g3
g4

)
,
(
h1 h2

))
= E

((
g1
g2

)
,
(
h1 h2

))
E

((
g3
g4

)
,
(
h1 h2

))
C. Groth-Sahai proofs

In 2008, Groth and Sahai [43] presented a proof frame-
work that can be used to efficiently create non-interactive
zero-knowledge (NIZK) proofs and non-interactive witness-
indistinguishable (NIWI) proofs. Before this, NIZK proofs
were inefficient and thus not useable. The Groth-Sahai (GS)
proofs are designed to prove statements in pairing-based
equations.

As a setup, a (trusted) party must publish a bilinear pairing
description and a Common Reference String (CRS).

The bilinear pairing description is defined as:

(G1, G2, GT , e, g1, g2)

in which G1 and G2 are two bilinear groups. These groups
have a mapping e to target group GT . g1 and g2 are genera-
tors of respectively G1 and G2. When G1 ≡ G2 the pairing
is symmetric and if G1 ̸= G2 the pairing is asymmetric.
Functionally, both types of pairings would work for our
protocol. Symmetric pairings allow for an easier protocol
description [44]. However, asymmetric implementations tend
to perform better on higher security levels.

The CRS is constructed with two pairs of four random
group elements, four from G1 and four from G2 and is
defined as:

CRS = (g, u, g′, u′, h, v, h′, v′)

Depending on the structure of the GS proofs, the CRS
can be used in a trapdoor function. In some proof structures,
this will reveal the input and can thus be used to find the
values used to create the committed value (the value to be
proven). In our protocol (Section VII) this is used to find the
public key of the spender. The setup can be done with public
randomness and multiple parties to fully remove the trust
needed in a (central) party. Each proof consists of three parts,
namely the target T , the commitment values c1, c2, d1, d2 and
proof elements θ1, θ2, π1, π2. The target represents the value
that the prover wants to prove. The commitment values are
used to randomized encryptions of values with which the
proof is constructed. Elements from G1 are encrypted in c1
and c2, whereas elements from G2 are encrypted in d1 and
d2. Lastly, the proof elements are used to derandomize the
commitment values without revealing the exact values.

In our protocol, the implementation of the Groth-Sahai
proofs is as follows. The equation to prove is e(X,Y) = T
in which X ∈ G1 and Y ∈ G2 and T is the target of the
proof. The commitment values are randomized with values
r, s ∈ Zp, and computed as:

c1 = gr1 d1 = gs2
c2 = urX d2 = vsY

The prover now picks a random value t ∈ Zp and computes
the proof elements as:

θ1 = g−t
1 π1 = dr1g

t
2

θ2 = Xsu−t π2 = dr2v
t

The full proof is now defined as (c1, c2, d1, d2, π1, π2, θ1, θ2)
and can be verified by others with Equation 2.

E

((
c1
c2

)
,
(
d1, d2

)) ?
= E

((
g1
u

)
,
(
π1, π2

))
E

((
θ1
θ2

)
,
(
g2, v

))(
1 1
1 T

)
(2)

The verification can be done elementwise after expanding
the extended bilinear maps as in Equation 1. For example,
to verify e(c1, d1), the following must hold:

e(c1, d1)
?
= e(g1, π1) · e(θ1, g2) · 1

If someone knows the exponents used to create u and v
from the CRS, one could find the committed values of X
and Y . Let u = gα1 and v = gβ2 , the committed values can
be retrieved with the equations 3a and 3b.

X = c−α
1 c2 (3a)

Y = d−β
1 d2 (3b)

VI. DIGITAL EURO PROTOCOL

Our protocol is divided into four phases: initialization,
withdrawal, transactions and deposit. The initialization phase
is executed only once by a trusted third party (TTP), the bank
and the users. The other three phases are related to the cycle
of a single digital euro.

A. Initialization

In the initialization phase, the TTP responsible for manag-
ing identification publishes a bilinear pairing description and
a common reference string (CRS), as found in Section V-C.
The exponents used to generate the group elements are stored
for later use by the TTP but remain private. The participants
in the protocol will use the bilinear pairing description and
CRS.

Every participant has to register at the TTP as well. Upon
registering the user picks a random private key x, calculates
the public key X = gx1 and registers X at the TTP. The user
can register at a bank with the public key, certified by the
TTP. The bank can use this public key to keep track of the
user’s balance.

B. Withdrawal

At the start of the withdrawal phase, the user can prove
his identity to the bank in the same way as during the
initialization phase. After that, the BSS protocol (Section
V-A) is used with the generator g1 of order p of the bilinear
group description provided by the TTP.

The message to be signed consists of the serial number
and a random group element. The withdrawer can gener-
ate a serial number randomly. This serial number is used
for tracking but does not need to be unique however the
combination with the random element should be unique. For
the random group element, the user picks a value t ∈R Z∗

p

and computes θ1 = g−t
1 . This t will be later used in a

transaction to demonstrate knowledge of randomization. The
serial number and θ1 can then be converted to bytes and
concatenated to be blindly signed by the bank. When the
protocol is completed the digital euro is described as:

(SN, θ1, σ,GS)

in which, SN is the serial number of the digital euro, θ1, σ is
the blind signature of the bank on SN and θ1 and GS is an
ordered list of Groth-Sahai proofs of previous transactions.
Upon withdrawal GS is empty.

C. Transactions

Every transaction a digital euro has undergone must be
stored with the euro to combat double-spending. To find the
user that double-spent a euro, the details of the malicious
transaction must be known to retrieve the identity of the
double-spender, as shown in [28]. This scheme stores the re-
quired information as a GS proof. By storing the information
in a zero-knowledge proof, participants in later transactions,
or the bank, cannot deduce any information related to the
transaction from the proof. They can, however, verify if
the proofs and thus the transactions are valid. During a
transaction, the spender and the receiver collaborate to create
a GS proof, which is stored with the digital euro.

To start a transaction the receiver generates a random
t and sends the randomization elements gt2, vt, g−t

1 and
u−t to the spender, whilst keeping t secret. This prevents
the spender from deciding on all randomness and trying to
obfuscate double-spending by using the same randomness
for two transactions with the same digital euro. When the
same randomization is used in two transactions with the
same token, the proofs for those transactions are the same,
hiding the double-spending. The spender will use these
randomization elements given by the receiver when creating
the GS proof for the transaction.

The target of the proof for transaction i, Ti, depends on
whether the digital euro is spent earlier. When the euro
has not been spent before, the target is T0 = e(g1, g2)

σ .
Otherwise, after i transactions the target can be computed
as Ti = e(g1, g2)

Ti−1 . This way, the targets of the proofs
can be used to describe a chain of transactions, in which the
current proof links to the previous proof.

With this target, the spender can compute y = Ti

x and
Y = gy2 , in which x is the spender’s private key. The spender

can now use the GS proof, to prove e(gx1 , g
y
2). Note that

gx1 is equal to the spender’s public key. Additionally, due
to the property of bilinearity, e(gx1 , g

y
2) = e(g1, g2)

xy =
e(g1, g2)

Ti .
The value of s in the proof is set to the inverse of

tprev , the t used in the previous transaction to provide the
randomization elements. This implies that the spender must
know the value of t used during the last transaction and
cannot generate a valid proof if he does not. For the first
transaction, no tprev is available. However, the spender in
the first transaction can use the t used in the withdrawal
phase as he is the withdrawer.

To prevent the receiver from creating valid proofs by
changing the values of t after the transaction, the spender
also computes an additional signature. This is a Schnorr
signature constructed with signing key r used to create GS
proof and signs the value of g−t

1 . This signature only has
to be shown in the next transaction. The next receiver can
verify this signature as the decryption key gr is provided in
the GS of the current transaction as c1.

The spender sends the values of vs and Y together with
the proof elements, the signature received in the previous
transaction and the signature of the current transaction to
the receiver. With these, the receiver can verify the proof, if
e(X,Y) = T , check if d2 is constructed correctly and verify
the signatures.

Additionally, the receiver must check if the previous proofs
included with the digital euro are correct and verify the links
between the proofs. Given the proofs for transaction i−1 = j
and i as:

(c1j , c2j , d1j , d2j , θ1j , θ2j , π1j , π2j , Tj)

and

(c1i, c2i, d1i, d2i, θ1i, θ2i, π1i, π2i, Ti)

the equations 4a and 4b must hold:

Ti
?
= e(g1, g2)

Tj (4a)

e(θ1j , d1i)
?
= e(g1, g2)

1 (4b)

Equation 4b must hold to verify that every spender knew
the randomization element t in the previous transaction. As
g1 and g2 are part of the bilinear pairing description and thus
constant, the equation expands to e(g

−tj
1 , gsi2), which is equal

to e(g1, g2)
−tjsi . For the transaction to be valid s should be

the inverse of t of the previous transaction, implying that
−tjsi = 1. This results in the verification form e(g1, g2)

1.

D. Deposit

A digital euro can be deposited to the bank in the same
way as a digital euro is transferred between users in Section
VI-C. However, in this case, the bank is the receiver. As the
user that wants to deposit the euro has to share their public
key, the bank knows to which account the balance should
be added. The bank also checks if the digital euro is doubly
spent or not.

E. Double spending detection

The bank detects double spending when two digital euros
DE and DE′ with the same signature σsn are deposited.
There are two possible scenarios in this case.

The first trivial case is when GS of DE equals GS of
DE′, excluding the last proof created in Section VI-D. This
occurs if, and only if, the same user tries to deposit the
same digital euro twice. To deposit the euro the user must
identify himself, therefore the identity of the double spender
is revealed.

In the second scenario, when GS of DE does not equal
GS of DE′, the bank must take additional actions to reveal
the identity of the double spender. Given that the two lists
of proofs are different, there must be an index i, such
that GSDE [i] ̸= GSDE′ [i]. Assuming that the odds that
the double spender retrieved the randomization elements
generated by the same t are extremely unlikely, the proofs
have, at least, different values for the θ1 and θ2 proof
elements.

The bank can then send both proofs to the TTP. The TTP
can extract the public key X with Equation 3a, for both
proofs and check if X is the same for both proofs sent by
the bank. If they are the same, the TTP can retrieve the legal
identity, registered with this public key, and return it to the
bank. Otherwise, this transaction is no occurrence of double-
spending. This could for example occur when the double
spender did receive the same randomization parameters.

F. Efficiency analysis

As mentioned earlier, the size of the digital euro must grow
to detect double spending and revoke the anonymity of the
double-spender. As seen in Section VI-C, every transaction
included in the digital euro is defined in a GS-proof. This
means that the size of the digital euro grows with 8 or 9
group elements for each transaction. The number of group
elements depends on whether the value of T is explicitly
included in the proofs. Given that the target T can be
calculated from the proof elements of the previous proof,
it can be omitted for size optimizations. This means that
the size of the digital euro after n transactions (using a
symmetric pairing) can be computed as:

size = |SN |+ |G|+ |σ|+ n · 9|G| (5)

in which |SN | denotes the size of the serial number, |σ|
the size of the signature of the bank and |G| the size of a
group element.

VII. IMPLEMENTATION AND EXPERIMENTS

The described protocol is implemented in Kotlin as a proof
of concept. The open-source implementation can be found
on GitHub 2. The Java Pairing Based Cryptography (JPBC)
library [45] is used for group and bilinear map operations.
As this is a proof of concept, it is not a fully implemented
financial system and users can freely withdraw and deposit

2https://github.com/LeonKempen/trustchain-
superapp/tree/master/offlineeuro

Curve |G1| |G2| |GT | |GS|
Type A 128 128 128 1152
Type E 256 256 256 2304
Type F 40 80 240 720

TABLE I: Size of group elements and a single GS proof in
bytes per curve type (r = 160).

digital euros without affecting their balances. This does not
affect the results as the balance of the user’s bank account
does not influence the digital euro protocol. This prototype
was used to test the protocol for correctness, growth size
and verification performance. The tests were performed on
a desktop with an Intel Core i5-4590 (3.30GHz) processor
and 8 GB of RAM.

A. Prototype

The prototype is built as a mobile application, in which
participants can select their role (TTP/Bank/User). Screen-
shots of the running application can be seen in Figure 2. For
demonstration purposes, users (Figure 2c) can easily double-
spend digital euros.

The device communication is implemented using the
Kotlin implementation of the peer-to-peer communication
protocol IPv83. This library is also used during the transac-
tion between users. Even though this library uses an internet
connection, the (authenticated) messaging is done directly
between two peers without a third party involved. As the
library is solely used to transfer bytes between devices,
the prototype can be extended with offline communication
protocols, such as QR codes, Bluetooth or NFC. As our fully
offline constraint required transaction verification without
needing a third party, the constraint is still satisfied and
guaranteed this way.

B. Different curves using JPBC

JPBC can be configured to use different types of under-
lying elliptic curves. This difference is the equation used to
generate the bilinear map. Moreover, with JPBC it is also
possible to set the security parameter giving more flexibility
regarding the size of the group elements. The curves and
their properties are listed in [46]. The implementation has
been tested with multiple underlying elliptic curves, both
symmetric and asymmetric, and security parameters. For the
different tested parameters, the protocol remained functional.
This shows that the protocol is not tied to a specific curve
type or security parameter.

C. Growth in size

As mentioned earlier, the size of the primary data structure
to describe the digital euro must grow for each transaction.
The growth size depends on the elliptic curve and security
parameter used. To test the difference in growth, a test is
done to measure the size of a serialized digital euro after
each transaction, used in 50 transactions.

Three elliptic curves, A, E and F, were used for the test.
To construct those curves, the curve generator of JPBC was

3https://github.com/Tribler/kotlin-ipv8

(a) Trusted Third Party (b) Bank (c) User

Fig. 2: Screenshot of the application per role

Curve Initial size (kB) 50 transactions (kB) Growth (kB)
Type A 0.567 63.217 1.248
Type E 0.823 114.673 2.272
Type F 0.391 41.441 0.816

TABLE II: Digital euro growth with transactions measured
in serialized bytes (r = 160).

used, with the default settings 4. Pairings of Type A and E are
symmetric and the ones of Type F are asymmetric. Curves
of Type A are used in Charm [47] and curves of Type F
are BN-curves, introduced in [48]. BN-curves are used in
Ethereum and Zcash [49]. As curves of Type E have larger
elements, compared to Type A, and are less optimized, they
are used less often [50]. The sizes of the group elements
[50] can be found in Table I. The size of the GS proof is
computed as 4 · |G1|+ 4 · |G2|+ |GT |. During the test, the
prime order used (r) remained constant (r = 160).

Table II shows that the growth rate of the digital euro
significantly depends on the elliptic curve. The asymmetric
pairing (Type F) has the lowest growth rate, resulting from
the smaller element sizes as found in Table I. Due to the
size of the elements, the digital euro will grow faster when
elliptic curves of Type E are used, compared to curves of
Type A.

The growth of the digital euro is constant for each transac-
tion, hence the growth is linear to the number of transactions.

4http://gas.dia.unisa.it/projects/jpbc/docs/ecpg.html

In Figure 3, the size of the digital euro is plotted after
each transaction. The plot shows that the digital euro grows
linearly with each transaction as expected from Equation 5.

Comparing the size of the expected growth (|GS| from
Table I) and the actual growth per transaction (Growth in
Table II), are similar in byte sizes. The difference between
the expected and actual growth can result from serialization,
overhead of the used list structure or how group elements
are converted into bytes by JPBC. The first transaction,
however, has a slightly larger growth (+250 bytes) due to the
initialization of the list structure for the transaction proofs.

D. Transaction verification performance
The time it takes to verify a transaction is a major

factor in adopting digital currencies and their usability in
everyday transactions. For example, on average, a Bitcoin
transaction takes 10 minutes to confirm and waiting for more
confirmation blocks for larger transactions is recommended.
As financial transactions are expected to be completed nearly
instantly [51], this payment option is unusable in most
scenarios.

To test the transaction verification performance, a test
measures the time it takes to verify a transaction using a
digital euro for up to 50 transactions. To verify the final
transaction the user must check three Schnorr signatures and
the chain of 50 proofs.

The test is set to measure the time it takes to verify
a transaction. The digital euro is then used to create the
next transaction details. This experiment is done using the

Fig. 3: Serialized digital euro growth per transaction (r =
160).

Fig. 4: Transaction verification time (r = 160).

same curves as mentioned in Section VII-C. Furthermore, the
experiment is executed 10 times for each curve. The results
of this experiment are listed in Table III and visualized in
Figure 4. In the figure, the minimum and maximum time
needed to verify the transactions is also shown.

It is clear from the results that the verification of the proofs
is the major part of the verification process. Similar to the
growth of the digital euro, the time it takes to verify increases
linearly with the number of transactions. The elliptic curve
used in the protocol significantly impacts the performance of
the transaction verification.

With the current implementation, the Type A curves out-
perform the other two curve types. Combining that with the
results from the growth rate (Table II), the curves of Type A
seems to be the most favourable option. Even though proofs
created with the curves of Type F are more compact, the
time it takes to compute the pairings makes them less usable
after multiple transactions.

It is important to note that the implementation is not

optimized for the best performance of the protocol. Therefore
several steps can be taken to reduce the verification time of
the transaction. The authors of JPBC mention that pairings
in JPBC without preprocessing are roughly 5.5 times slower
than the PBC 5 framework they ported to Java. Furthermore,
the verification process is now single-threaded but could
be parallelized as verifying the proofs themselves is not
dependent on the other proofs. Other performance boosts
could be preprocessing elements of the CRS or storing
digital euros (partly) precomputed. However, more research
is needed for this.

VIII. LIMITATIONS AND FUTURE WORK

The current protocol relies on a TTP to revoke the
anonymity of users in case double spending is detected.
However, the TTP can revoke anyone’s identity based on
a single transaction. This makes it possible for a malicious
TTP to fully trace transactions when it receives a digital
euro with the full list of proofs. In most literature, the TTP
requires two proofs of the double-spend transaction to revoke
the user’s anonymity. Even though this protocol offers more
privacy and anonymity than the traditional banking system,
a ’once concealed twice revealed’ approach might be more
desirable. Such an approach might be feasible by using a
different type of GS-proof. For example, by changing how
the targets of the proofs are constructed. If it is possible
to create the proofs such that two targets generated for the
double-spending transaction would reveal the identity of the
double-spender a commitment scheme that always hides the
spender’s identity can be used.

The ability to revoke the anonymity from one transaction
has a legal advantage. When a perpetrator would only spend
e-cash obtained through theft or a forced money transfer
once, the perpetrator can be identified. Without this possi-
bility, the perpetrator would not be identifiable from a valid
transaction.

To further protect users’ privacy, the CRS used in the
protocol can be constructed by a collaboration of multiple
parties. The ability of a single party to revoke the anonymity
of all users is then removed. To revoke the anonymity of
users all parties are needed.

Another limitation is that users can recognize e-cash,
which they had before. The signature and transaction proofs
are not randomized with each transaction. Therefore if a user
notices that it had the same e-cash before, it is possible to
gain some knowledge regarding the traceability of the e-
cash. This knowledge allows the user to link the receiver
of the earlier transaction to the spender from whom the
user received the e-cash and the number of transactions in
between. This linkability could be avoided by randomizing
both the signature and transaction proofs for every transfer
as is done in [21] and [22].

More research is needed to determine which curve type is
most optimal. This curve must balance the growth per trans-
action, the verification performance and the application’s

5https://crypto.stanford.edu/pbc/

Curve First transaction (ms) 50th transaction Average time increase per transaction (ms)
Type A 165 4545 91
Type E 485 14470 292
Type F 1530 62255 1259

TABLE III: Digital euro verification performance (r = 160).

security. A more optimized version of the protocol is needed
for this. This optimization could be achieved by implement-
ing the pairing in a more efficient framework. Moreover,
other improvements could be preprocessing, parallelization
and (partial) precomputation.

IX. CONCLUSION

This thesis proposes an offline transferable e-cash scheme
that could be used for the offline digital euro. Furthermore,
this thesis introduces an open-source implementation of this
scheme. The protocol offers fully offline transactions with
transferable tokens and more privacy than current digital
payment options or the earlier proposed EuroToken.

Our implementation and tests show that the protocol is
correct and that the number of transactions, in which the
digital euro is used, affects the size of the digital euro and
the transaction verification time in a linear manner. However,
more research and optimizations are needed to find the best
curve to use in the final implementation of the digital euro.

In conclusion, our implementation of the digital euro will
enhance the digital payment ecosystem and solve the two
main concerns with the current digital payment systems,
namely the dependency on an online infrastructure and the
fact that third parties can observe transactions. Our digital
euro can make the economic system more durable and stable
in areas with low coverage or during power outages, whilst
providing more privacy than the current alternatives.

REFERENCES

[1] DNB. “Use of cash lower in Euro Area Countries”. In:
De Nederlandsche Bank (Dec. 2022). URL: https:
/ / www . dnb . nl / en / general - news /
dnbulletin-2022/use-of-cash-lower-
in-euro-area-countries.

[2] Narayan Bhusal et al. “Power system resilience: Cur-
rent practices, challenges, and future directions”. In:
Ieee Access 8 (2020), pp. 18064–18086.

[3] Adam X Andresen et al. “Understanding the social
impacts of power outages in North America: a sys-
tematic review”. In: Environmental Research Letters
18.5 (2023), p. 053004.

[4] ATD Perera et al. “Quantifying the impacts of cli-
mate change and extreme climate events on energy
systems”. In: Nature Energy 5.2 (2020), pp. 150–159.

[5] Satoshi Nakamoto. “Bitcoin whitepaper”. In: URL:
https://bitcoin. org/bitcoin. pdf-(: 17.07. 2019) (2008).

[6] Zcash. Accessed: 2024-06-05. URL: https://z.
cash/learn/.

[7] Ethereum. Accessed: 2024-03-04. URL: https://
ethereum.org/en/.

[8] bitcoin.org. Protect your privacy. Accessed: 2024-
03-04. URL: https : / / bitcoin . org / en /
protect-your-privacy.

[9] Tin Tironsakkul et al. “Context matters: Methods for
Bitcoin tracking”. In: Forensic Science International:
Digital Investigation 42 (2022), p. 301475.

[10] Jannik Dreier, Ali Kassem, and Pascal Lafourcade.
“Formal analysis of e-cash protocols”. In: 2015 12th
International Joint Conference on e-Business and
Telecommunications (ICETE). Vol. 04. 2015, pp. 65–
75.

[11] Atlantic Council. Central Bank Digital Currency
Tracker. Accessed: 2024-03-04. URL: https : / /
www.atlanticcouncil.org/cbdctracker/.

[12] John Kiff. Taking digital currencies offline. July
2022. URL: https : / / www . imf . org / en /
Publications/fandd/issues/2022/09/
kiff - taking - digital - currencies -
offline.

[13] Panagiotis chalopoulos et al. “Compliance Design
Options for Offline CBDCs: Balancing Privacy and
AML/CFT”. In: 2024 IEEE International Conference
on Blockchain and Cryptocurrency (ICBC) (2024).

[14] Weijie Liu et al. “Understanding TEE containers,
easy to use? Hard to trust”. In: arXiv preprint
arXiv:2109.01923 (2021).

[15] Jaehyuk Lee et al. “Hacking in darkness: Return-
oriented programming against secure enclaves”. In:
26th USENIX Security Symposium (USENIX Security
17). 2017, pp. 523–539.

[16] Stefan Brands. “Untraceable off-line cash in wal-
let with observers”. In: Advances in Cryptol-
ogy—CRYPTO’93: 13th Annual International Cryp-
tology Conference Santa Barbara, California, USA
August 22–26, 1993 Proceedings 13. Springer. 1994,
pp. 302–318.

[17] Joseph K Liu, Patrick P Tsang, and Duncan S Wong.
“Recoverable and untraceable e-cash”. In: Public Key
Infrastructure: Second European PKI Workshop: Re-
search and Applications, EuroPKI 2005, Canterbury,
UK, June 30-July 1, 2005, Revised Selected Papers 2.
Springer. 2005, pp. 206–214.

[18] Ziba Eslami and Mehdi Talebi. “A new untrace-
able off-line electronic cash system”. In: Electronic
Commerce Research and Applications 10.1 (2011),
pp. 59–66.

[19] Yaser Baseri, Benyamin Takhtaei, and Javad Mohajeri.
“Secure untraceable off-line electronic cash system”.
In: Scientia Iranica 20.3 (2013), pp. 637–646.

[20] Chun-I Fan, Wei-Zhe Sun, Hoi-Tung Hau, et al. “Date
attachable offline electronic cash scheme”. In: The
Scientific World Journal 2014 (2014).

[21] Foteini Baldimtsi et al. “Anonymous transferable e-
cash”. In: IACR International Workshop on Public Key
Cryptography. Springer. 2015, pp. 101–124.

[22] Balthazar Bauer, Georg Fuchsbauer, and Chen Qian.
“Transferable E-cash: A cleaner model and the first
practical instantiation”. In: IACR International Con-
ference on Public-Key Cryptography. Springer. 2021,
pp. 559–590.

[23] Jianbing Ni et al. “Dual-Anonymous Off-Line Elec-
tronic Cash for Mobile Payment”. In: IEEE Transac-
tions on Mobile Computing 22.6 (2023), pp. 3303–
3317. DOI: 10.1109/TMC.2021.3135301.

[24] European Central Bank. Where does the project stand?
Oct. 2023. URL: https://www.ecb.europa.
eu/paym/digital_euro/timeline/html/
index.en.html.

[25] European Central Bank. “A stocktake on the digital
euro”. In: Eurosystem (Oct. 2023).

[26] Office of Science and Technology Policy. Technical
Evaluation for a U.S. Central Bank Digital Currency
System. 2022.

[27] Stefano Leucci, Massimo Attoresi, and Xabier Lareo.
TechDispatch #1/2023 - Central Bank Digital Cur-
rency. 2023.

[28] David Chaum and Torben Pryds Pedersen. “Trans-
ferred cash grows in size”. In: Workshop on the
Theory and Application of Cryptographic Techniques.
Springer. 1992, pp. 390–407.

[29] David Chaum. “Blind signatures for untraceable pay-
ments”. In: Advances in Cryptology: Proceedings of
Crypto 82. Springer. 1983, pp. 199–203.

[30] Wen-Shenq Juang. “A practical anonymous off-line
multi-authority payment scheme”. In: Electronic Com-
merce Research and Applications 4.3 (2005), pp. 240–
249.

[31] Wen-Shenq Juang. “RO-cash: An efficient and practi-
cal recoverable pre-paid offline e-cash scheme using
bilinear pairings”. In: Journal of Systems and Software
83.4 (2010), pp. 638–645.

[32] Eligijus Sakalauskas et al. “A simple off-line E-cash
system with observers”. In: Information Technology
and Control 47.1 (2018), pp. 107–117.

[33] Jia-Ning Luo and Ming-Hour Yang. “Offline transfer-
able E-cash mechanism”. In: 2018 IEEE Conference
on Dependable and Secure Computing (DSC). Ieee.
2018, pp. 1–2.

[34] Zhexuan Hong and Jiageng Chen. “A Solution for the
Offline Double-Spending Issue of Digital Currencies”.
In: International Conference on Science of Cyber
Security. Springer. 2022, pp. 455–471.

[35] Lynn Batten and Xun Yi. “Off-line digital cash
schemes providing untraceability, anonymity and
change”. In: Electronic Commerce Research 19
(2019), pp. 81–110.

[36] Ivan Osipkov et al. “Combating double-spending
using cooperative P2P systems”. In: 27th interna-
tional conference on distributed computing systems
(ICDCS’07). IEEE. 2007, pp. 41–41.

[37] Wessel Blokzijl. “EuroToken: An offline capable Cen-
tral Bank Digital Currency”. In: (2021).

[38] Robbert Koning. “Performance analysis of an offline
digital Euro prototype”. In: (2023).

[39] Pratik Sarkar. “Multiple-use transferable e-cash”. In:
Cryptology ePrint Archive (2013).

[40] João Marcos de Mattos Barguil and Paulo Sérgio
Licciardi Messeder Barreto. “Efficient methods for
lattice-based cryptography”. In: (2015).

[41] ECB. The role of cash. URL: https : / / www .
ecb . europa . eu / paym / digital _ euro /
timeline/html/index.en.html.

[42] European Central Bank. “The case for a digital euro:
key objectives and design considerations”. In: Eu-
rosystem (July 2022).

[43] Jens Groth and Amit Sahai. “Efficient non-interactive
proof systems for bilinear groups”. In: Advances in
Cryptology–EUROCRYPT 2008: 27th Annual Interna-
tional Conference on the Theory and Applications of
Cryptographic Techniques, Istanbul, Turkey, April 13-
17, 2008. Proceedings 27. Springer. 2008, pp. 415–
432.

[44] Sanjit Chatterjee, Darrel Hankerson, and Alfred
Menezes. “On the efficiency and security of pairing-
based protocols in the type 1 and type 4 settings”.
In: International workshop on the arithmetic of finite
fields. Springer. 2010, pp. 114–134.

[45] Angelo De Caro and Vincenzo Iovino. “jPBC: Java
pairing based cryptography”. In: Proceedings of the
16th IEEE Symposium on Computers and Commu-
nications, ISCC 2011. Kerkyra, Corfu, Greece, June
28 - July 1: IEEE, 2011, pp. 850–855. URL: http:
//gas.dia.unisa.it/projects/jpbc/.

[46] Angelo De Caro and Vincenzo Iovino. “jPBC: Java
Pairing Based Cryptography”. In: June 2011, pp. 850–
855. DOI: 10.1109/ISCC.2011.5983948.

[47] Joseph A. Akinyele, Matthew D. Green, and Avi D.
Rubin. Charm: A framework for Rapidly Prototyp-
ing Cryptosystems. Cryptology ePrint Archive, Paper
2011/617. https://eprint.iacr.org/2011/
617. 2011. URL: https://eprint.iacr.org/
2011/617.

[48] Paulo SLM Barreto and Michael Naehrig. “Pairing-
friendly elliptic curves of prime order”. In: Interna-
tional workshop on selected areas in cryptography.
Springer. 2005, pp. 319–331.

[49] Diego F Aranha, Youssef El Housni, and Aurore
Guillevic. “A survey of elliptic curves for proof sys-
tems”. In: Designs, Codes and Cryptography 91.11
(2023), pp. 3333–3378.

[50] Diptendu M Kar and Indrajit Ray. “Systematization of
knowledge and implementation: Short identity-based

signatures”. In: arXiv preprint arXiv:1908.05366
(2019).

[51] Nicolas T Courtois, Pinar Emirdag, and Daniel A
Nagy. “Could bitcoin transactions be 100x faster?” In:
2014 11th International Conference on Security and
Cryptography (SECRYPT). IEEE. 2014, pp. 1–6.

