
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Master thesis for the Industrial Ecology program 
Leiden University 

Delft University of Technology 
 

Nils Boonstra 
August 22, 2023 

Monthly hydropower prediction  
at plant scale in data-scarce regions 

 
 
 



 

 

2 

Monthly hydropower prediction  
at plant scale in data-scarce regions 

 
 

 
 

Master thesis for the Industrial Ecology program 
Leiden University 

Delft University of Technology 
 
 
 

Supervisors: 
dr. V. Barbarossa 
dr. S.J. Pfenninger 

dr. S. Galelli 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

  
 

Cover Image: Grand Coulee Dam, created using http://maps.stamen.com and GIMP by the author. 

 



 

 

3 

Acknowledgments 
 
I would like to thank my first supervisor, Valerio Barbarossa, for his guidance and support throughout the 
research and writing of this thesis. It would not have been possible to conclude this sometimes challenging 
project without his feedback during our regular meetings. He was able to guide the project when it needed 
direction. 
Next, I would like to thank Stefano Galelli as external supervisor for his feedback on modeling and the field of 
hydropower, without which I would not have been able to finish this project. Our regular meetings were great 
for solving minor issues, to more general questions on what parts should be included and what not. 
I am also thankful to my second supervisor Stefan Pfenninger for his feedback, keeping an eye on the broader 
picture and the project's usefulness. This made me step back at crucial moments to see if the project was still 
heading in the right direction.  
I appreciate my family and friends' encouragement, patience, and understanding during the ups and downs of 
this journey.  
 
In conclusion, this thesis would not have been possible without the abovementioned persons support, 
guidance, and encouragement. Thank you all for being a part of this project. 
 
Nils Boonstra 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

4 

Summary 
 
Hydropower is currently the largest renewable energy generation method worldwide, being the third overall 
after coal and natural gas, and providing 15% of global electricity. However, generation data regarding 
hydropower is scarce. If available, it mostly exists at national and annual level. Only limited generation data is 
available at plant scale. For research on power grid decarbonization, electricity grid expansion development 
and electricity grid optimization, more data on hydropower generation is wanted at plant scale. Hydropower 
generation differs significantly throughout the year following weather patterns, which means monthly 
generation data would be beneficial for research. To fill in data gaps, two models were created for the 
prediction of hydropower, using plant capacity, discharge, and reservoir area as predictor variables for the 
monthly model. For the yearly model, reservoir area was not included in the final model. A linear mixed-effects 
regression model and a mixed-effects random forest model were fitted and compared to the Hydro Plant 
Generation Estimation Model. The models were created using data from the United States (US) and used for 
predictions with hydropower plants from the US and the European Union (EU). The median KGE for the 
monthly LMER model was -0.08 in the US. For the monthly MERF model, the median KGE was 0.12 in the US. In 
the EU the models were evaluated at an annual time step due to data limitations, resulting in the LMER model 
scoring better (-0.16) than the MERF model (-0.68) on median KGE. The prediction errors of the annual US 
model were comparable to the Hydro Plant Generation Estimation Model. Discharge and plant capacity were 
found to be important predictor variables, followed by reservoir area for the monthly model. The models were 
able to predict at plant scale in data-scarce regions and at a monthly time step, although they can produce 
large outliers. A purpose for the model could be to not use it at plant scale but at a larger scale, as the median 
KGE scores were around zero, showing that predictions over multiple HPPs are usable. 
 
Keywords: Hydropower prediction, energy data scarcity, mixed-effects model 
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1. Introduction 
Hydropower is currently the largest renewable energy generation method worldwide, contributing 15% of the 
global electricity supply in 2022 (Ember, 2023). Many countries have plans to expand their hydropower 
capacity, which gives hydropower an important role in the energy transition to a low-carbon energy system 
(IEA, 2021). Hydropower functions as a relative flexible energy generation method, which becomes 
increasingly important as more intermittent renewable energy is added to electricity grids worldwide (Stoll et 
al., 2017). For many regions of the world, there is little publicly available data on hydropower generation 
(Larsen et al., 2019). If data is available on hydropower generation, it is at national and annual levels (Zhou et 
al., 2020). Data available at the power plant level are often found to be annually, with many years missing (Yin 
et al., 2020). 
Hydropower electricity generation data at a sub-annual time step is wanted for power grid planning and 
analysis, as hydropower generation fluctuates throughout the year and is highly correlated with weather 
patterns (Turner & Voisin, 2022). More data on electricity generated from hydropower at sub-national level is 
important for research on the decarbonization of the power grid and grid expansion planning (Liu et al., 2019). 
Not knowing the amount of hydropower generated can lead to uneconomic electricity grid usage and 
development (Wei et al., 2023).  
North America is seen as a relatively data-rich region regarding hydropower generation data, while Southern 
Africa and Central Asia are cited as regions with little data (Le et al., 2022). This is also reflected in data from 
the World Resource Institute, which tracks global data availability of electricity generation at the power plant 
level (see Table A1) (Yin et al., 2020). 
To fill in existing data gaps, predictive models can be used. For hydropower, these predictive models can be 
divided into two main categories: short-term models, which can be used for managing power plants in the 
power grid, and long-term models, which can be used for electricity grid expansion planning (Chowdhurry et 
al., 2019). Hydropower models are underrepresented in the broader literature on renewable energy modeling, 
with most studies being on the topic of solar or wind, and 2% of the studies in this field being on the topic of 
hydropower (Lai et al., 2020). Of the examined studies using machine learning to predict renewable energy 
generation by Krechowicz, Krechowicz & Poczeta (2022), about 5% were on the topic of hydropower 
(Krechowicz, Krechowicz & Poczeta, 2022). 
 
Existing hydropower models can be divided into four main types, distinguished by Turner & Voisin (2022). In 
the next section these four model types will be introduced, illustrated with hydropower models operating in a 
data-scarce region. The first type is a Surface water to hydropower model. This type of model uses a land 
surface model to convert climate data (precipitation, temperature or wind speeds for example) into runoff, 
which is then converted into hydropower. An example of a type one model is the pioneering study by Lehner, 
Czisch & Vassolo (2005). They created a model which calculated a country's gross hydropower potential (GHP) 
based on runoff. GHP is the total potential energy available in an area's hydrological system. Hydropower 
potential models are a subset of hydropower models, which evaluate the potential of hydropower in places 
where no HPP is realized yet (Hoes et al., 2017).  
Besides a type one model, Lehner, Czisch & Vassolo (2005) created a type two model (natural river flow to 
hydro), which is an extended version of a type one model. In a type two model, runoff is converted into 
streamflow, which is converted into hydropower. Other examples of studies on hydropower potential type 2 
models are from Hoes et al. (2017), who use the slope and discharge of rivers to assess the global hydropower 
potential, and Coskun et al. (2010), who combine remotely sensed precipitation, slope and elevation to assess 
the hydropower potential of a Turkish river basin with no gauged streamflow data. Existing models of type one 
and two currently do not solve data scarcity, as they often assess the hydropower potential in a situation with 
no realized hydropower. The time step of this type of model is commonly at annual interval, which means the 
variation in generation induced by weather patterns is not captured. Furthermore, these models need specific 
power plant characteristics such as hydraulic head to function, which might not be known in a data-scarce 
region. 
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Type three models (reservoir storage and release) are extended type two models, where reservoir storage and 
release characteristics are added to a type two model. An example of this type of model would be the study by 
Liu et al. (2019). They present a model which can predict hydropower generation at basin scale, using runoff, 
upstream basin area, reservoir inflow, and historical generation. The model is applicable worldwide due to 
their usage of globally available datasets. Due to the limited available data on reservoir storage and release, 
this model type was not found in the context hydropower data scarcity. 
Type four models, statistical and machine learning models, directly model the relationship between climate 
data, streamflow, or reservoir discharge and hydropower. These models are commonly used for short-term 
forecasting, a subsection of hydropower models where historical electricity generation is combined with other 
features, such as precipitation, to predict future electricity generation from existing hydropower plants (HPPs) 
(Turner & Voisin, 2022). An example of a type four model is developed by Wei et al. (2023). They use a neural 
network model to predict short-term hydropower production in data-scarce regions. Wei et al. (2023) use 
historical power generation data, meteorological data, and environmental data as input. Statistical ARIMA & 
ARIMAX models are used by Barzola-Monteses et al. (2019) to create a short-term hydropower generation 
forecast. A limitation of this approach to prediction in data-scarce regions, is that these types of models 
require historical generation as model input. The models only function when data scarcity is defined as a lack 
of real-time generation data. These models cannot function independently if data scarcity is defined as having 
no historical generation data.  
A model predicting hydropower in data-scarce regions is made by Falchetta, Kasamba & Parkinson (2019). 
They assess hydropower production in Malawi based on satellite data. Hydrological measurements from 
satellites are combined with nighttime light images to make predictions on hydropower generation without 
using historical generation data, showing the use case of remotely sensed data for filling data gaps. 
Another instance of a type four model is the Hydro Plant Generation Estimation Model (HPGEM) developed by 
Yin et al. (2020). They applied a gradient boosting tree regressor model to predict annual hydropower at 
power plant level, based on plant characteristics such as capacity and local runoff, in a situation with limited or 
no generation data. The HPGEM is able to make predictions for power plants worldwide, as long as they are 
included in the Global Power Plant Database, which the model uses as input data (Global Energy Observatory, 
2021). In a statistical model like the HPGEM from Yin et al. (2020), characteristics of a power plant, such as its 
type and capacity, are used to estimate correlations between these characteristics and known electricity 
generation data (Yin et al., 2020). 
 
All model types from one to four can be physical models or statistical models. Physical models use equations 
that convert physical features such as precipitation and hydraulic head into hydropower output. Statistical 
models estimate the relationship between predictor and response variables. Type three and four models are 
also found as a combination of both, hybrid models (Yildiz & Açikgöz, 2021). An overview of the mentioned 
hydropower models can be found in Table 1, which summarizes the discussed models, their model type and 
model characteristics. 
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Table 1 
Overview of related hydropower models.  

Model type Reference Geographic 
location 

Spatio-
temporal scale 

Hydropower 
plant type 

Variable(s) used Model 
approach 

1: Surface water 
to hydropower. 
 
Climate à runoff 
à hydropower 
 

Lehner, Czisch 
& Vassolo 
(2005) 

EU Country-level, 
yearly 

Reservoir & 
ROR 

Runoff Physical 
model, gross 
hydropower 
potential 

2: Natural river 
flow to hydro. 
 
Climate à runoff 
à streamflow à 
hydropower 

Lehner, Czisch 
& Vassolo 
(2005) 

EU Country-level, 
yearly 

Reservoir & 
ROR 

Streamflow Physical 
model, 
hydropower 
potential 

Hoes et al. 
(2017) 

Global Country-level, 
yearly 

All River slope, discharge Physical 
model, 
hydropower 
potential 

3: Reservoir 
storage and 
release 
 
Climate à runoff 
à streamflow à 
storage and 
release à 
hydropower 

Van Vliet et al. 
(2016) 

Global Plant-level, 
yearly 

All Streamflow, water 
temperature, reservoir 
regulation, 
hydropower 

Physical 
model 

Coskun et al. 
(2010) 

Eastern 
Turkey 

River basin-
level, yearly 

All Elevation, slope, 
rainfall 

Regression, 
hydropower 
potential 

Liu et al. 
(2019) 

Global (with 
validation in 
China) 

Provincial level, 
monthly 

Reservoir Reservoir inflow Physical 
model 

4: Statistical/ 
machine learning 
 
Climate à 
hydropower 
 
Streamflow à 
hydropower 
 
Storage and 
release à 
Hydropower 

Barzola-
Monteses et 
al. (2019) 

Ecuador River basin-
level, Monthly 

 All Hydroelectric power 
production (historical), 
precipitation 

ARIMA/ 
ARIMAX 

Dabare et al. 
(2020) 

Sri Lanka Plant-level, 
monthly/yearly 

Reservoir Rainfall Regression 

Falchetta, 
Kasamba & 
Parkinson 
(2019) 

Malawi River basin 
level, Monthly 

All Precipitation, 
temperature, 
nighttime light 
radiance 

Regression, 
random 
forest 

Wei et al. 
(2023) 

China Plant scale, 
daily 

ROR Historical generation, 
meteorological data, 
environmental data 

CNN-Bi 
LSTM, short 
term 
forecasting 

Yin, Byers, 
Valeri & 
Friedrich 
(2020) 
 

Global Plant level, 
yearly 

Reservoir and 
ROR 

Capacity, runoff, River 
size, annual capacity 
factor per country 

Gradient 
boosting 
tree 
regressor 

Note. Partly sourced from Barzola-Monteses et al. (2022) and Turner & Voisin (2022), extended with studies relevant to hydropower modeling in 
data-scarce regions. 

 
Related studies show that most hydropower models function on annual time step, such as the HPGEM model 
from Yin et al. (2020). Models operating at shorter temporal time steps are found to be mostly forecasting 
models, using historical generation to predict future hydropower generation or hydropower potential models. 
An example is the model from Wei et al. (2023), predicting daily generation.  
 
The spatial prediction resolution of the discussed hydropower models is mostly at global, national or river 
basin scale. The model van Vliet et al. (2016) developed is at plant scale, but uses an annual time step. Models 
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on finer resolution, such as the plant level, are found to be hydropower potential models or forecasting 
models. The HPGEM model from Yin et al. (2020) was the only model found to predict at plant scale in a data-
scarce situation. 
Few researchers have addressed the issue of hydropower modeling in data-scarce regions. Falchetta, Kasamba 
& Parkinson (2019) used remotely sensed data to estimate hydropower generation in Malawi. Hydropower 
models applicable in data-scarce regions were only found at annual time step (HPGEM), or were forecasting on 
the very short term (Wei et al., 2023). The HPGEM model is the closest to a model which can predict 
hydropower generation at plant scale in a data-scarce region, but it operates at an annual time step, which 
means the model is not capable of reproducing the hydropower generation fluctuations throughout the year. 
Furthermore, the HPGEM model can only predict using input data specifically provided by the GPPD, such as a 
GPPD capacity factor and a GPPD provided ID, limiting the model's usage to hydropower plants in this 
database. Only a selection of the complete set of hydropower plants worldwide is included in this database. 
The last version is from 2021, with no updates planned at this moment (Global Energy Observatory, 2021). This 
means a model currently capable of predicting at plant scale in data-scarce regions and using a monthly time 
step does not exist. 
 
This study aims at investigating how accurately hydropower can be predicted at the power plant level, using a 
monthly time step, in data-scarce regions. Based on related studies and the research aim, the following sub-
research aims were formulated: 

I. What explanatory variables are important for explaining hydropower generation? 
II. How does the performance of a linear model compare to a nonlinear model? 

III. How does the model perform on a monthly time step compared to a yearly one? 
IV. How does the model perform when applied to an independent dataset? 
V. How does the model compare to an existing model? 

 
In the next chapter, the materials and methods used to answer these questions will be presented. 

2. Material and methods 
A linear and a nonlinear statistical (type four) model were developed to answer the research questions, 
predicting hydropower generation at a monthly and yearly time step at plant scale in data-scarce regions. This 
means a total of four models were created. The input data was taken primarily from global spanning datasets, 
making the models generalizable to many regions.  
For model training, a dataset was created with HPP data from the United States (US), as this region has the 
most hydropower-related data available (Table A1) (Yin et al., 2020). Next to the US dataset, an independent 
dataset was made containing HPPs from the European Union (EU), as this region has a relatively large amount 
of HPPs while having few HPPs with generation data (Yin et al., 2020). Both datasets were created on monthly 
and annual time steps, resulting in a total of four datasets. 
The models were used for prediction on datasets with HPPs for the US and from the EU. The assumption was 
that a model trained on US data was generalizable to other regions, due to the US's heterogeneous climate 
and terrain characteristics. For the models, predictor variables had to be chosen. Each one will be introduced 
in the next section. 
 
2.1. Predictor variables 
Predictor variables were selected based on variables used in related studies and their availability in data- 
scarce regions. All related hydropower modes use a predictor variable related to hydrology in some form, like 
precipitation, runoff or discharge. Since the model needs to predict at the plant scale, a predictor variable for 
the water flow at the plant location was needed, with data globally available. This led to the decision to use 
river discharge as a predictor variable, which is defined as the volume of water flowing through a river channel.  
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In an ideal situation, river discharge data should represent the volume of water flow available to an HPP 
(reservoir outflow), but this data was not available globally. If data were available on the reservoir inflow 
related to the specific HPP, that would have been the second-best option, but this was not found at a global 
scale. There was globally available data on river discharge (hereafter called discharge), as it would have been 
without anthropogenic changes to the water flow, like reservoirs, dams, or other infrastructure interfering 
with the water flow. Therefore, discharge was used as a predictor variable. 
 
Reservoir storage and release behavior are important for a hydropower model at a sub-annual time step, as 
water can be stored throughout multiple months, but in most cases not for longer than a year (Turner & 
Voisin, 2022). Actual reservoir storage and release patterns are bound by regulations and often impossible to 
model globally due to unknown regulations. As a proxy for reservoir storage and release, reservoir area was 
selected as a predictor variable. 
 
Plant capacity was used as predictor variable in comparable models as the HPGEM model from Yin et al. 
(2020), which is similar in model scope (globally applicable) and purpose (predicting power generation at plant 
level in a data-scarce situation). Plant capacity is a predictor variable that is assumed to be known for all HPPs, 
thus was not limiting the model with data availability, and was therefore chosen as a predictor variable.  
 
Hydropower plants show significant differences between types of plants, such as reservoir or run of river 
(Levasseur et al., 2021). The broad availability of data on the plant type led to the selection of the plant type as 
a predictor variable. 
 
Dam height was selected as a predictor variable, due to the inclusion of this variable in related hydropower 
studies. In physical models, the hydraulic head is one of the main parts of model equations, as it drives 
hydropower generation together with discharge. Hydraulic head data was unavailable for the EU and many 
HPPs in the US. To include the hydraulic head variable in the model, dam height was chosen as a proxy, as dam 
height is generally possible to obtain for most HPPs. In the next section, a dataset to use as a source for each 
of the chosen variables is presented. 
 
2.2. Data sources 
Discharge, reservoir area, dam height, capacity, type and historical hydropower generation were used for 
modeling and for each a dataset was selected to use as source. If possible, the data was taken from datasets 
globally available. Only when a global dataset was not available, a dataset on a finer spatial scale was used. 
 
There are several global discharge datasets, which can be roughly grouped into grid-based datasets and 
vector-based datasets. According to Lehner & Grill (2013), vector-based hydrology models can be preferable 
over grid-based models at finer spatial scales. To accurately model a river network in a grid-based model, the 
resolution needs to be high, with a single grid cell being able to differentiate between rivers. A vector-based 
network implements rivers as lines that connect, which leads to a more precise representation of the river 
network. The selected discharge dataset Global Reach-level Flood Reanalysis (GRFR) consists of 3-hourly 
discharge data for over 2.94 million river reaches worldwide from 1979-2019 (Yang et al., 2021). GRFR takes 
the river reach vectors from MERIT, which is a vector-based globally spanning dataset, with a median length of 
6.8 kilometers for each river reach (Lin et al., 2019; Yang et al., 2021). The GRFR assumes no anthropogenic 
changes were made to the water flow, meaning dams, reservoirs, and other infrastructure that changes the 
water flow are not modeled. The discharge is calculated at the most downstream point of a river reach, and 
assigned to the whole river reach. 
 
Remotely sensed reservoir area was used as a proxy for reservoir behavior. The reservoir area Global Reservoir 
Surface Area Dataset (GRSAD) was selected since it consists of data on reservoirs globally (Gao & Zhao, 2019). 
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This dataset contains the monthly reservoir surface area of 6817 reservoirs worldwide, from 1984 to 2018. The 
reservoirs represented in GRSAD are taken from the Global Reservoir and Dam Database (GRanD) (Lehner et 
al., 2011). 
 
For plant locations in the US, the Hydropower Infrastructure - LAkes, Reservoirs, and RIvers (HILARRI) dataset 
was used, which has data on 1652 HPPs (Hansen & Matson, 2023). The dataset was created to link different 
datasets related to hydropower together, and contains the most important plant identifiers for that reason. 
The European HPP locations are taken from the JRC PBBD OPEN dataset, which contains locations of 1526 
HPPs (Kanellopoulos et al., 2019).  
 
Historical hydropower generation in the US (2001-2020) for 1505 HPPs was taken from RectifHyd (Turner, 
Voisin & Nelson, 2022). RectifHyd contains monthly reported data from the EIA. Hydropower generation data 
in the EU is taken from the Global Power Plant Database (GPPD) (Global Energy Observatory, 2021). This 
dataset contains data on 7156 HPPs worldwide, of which 372 can be linked to HPPs in the EU. The GPPD 
generation data is available at a yearly time step, meaning that the validation of the model on EU data can only 
occur yearly. 
 
Dam height data was taken from the Global Reservoir and Dam Database (GRanD) (Lehner et al., 2011). The 
GRanD dataset contains 6862 dams and reservoirs worldwide, with 1902 in the US and 914 in the EU. For the 
US, dam height data from GRanD was combined with dam height data from the National Inventory of Dams 
(NID, 2023). 
 
Capacity data was taken from the Existing Hydropower Assets Capacity Plant dataset in the US, for the years 
2005-2022, and includes 1480 power plants, with a minimum of 1 MW in capacity (Johnson, 2023). Because 
hydropower plant capacity can change over the years due to plant modifications, plant capacity for the US was 
implemented as a value that can differ from year to year. 
For the EU, capacity data was taken from the GPPD (Global Energy Observatory, 2021), and missing values 
were filled in by capacity data from JRC PBBD OPEN and JRC Hydro-power dataset (JRC Hydro-power database, 
2019). For the EU no data was found on the yearly historical development of the capacity, which meant 
capacity was implemented as a fixed value. 
 
For the US, the Hydropower Energy Storage Capacity dataset (HESC) was used as the source for the Type 
(Hansen, Ghimire & Gangrade, 2021). The type was taken from the JRC PBBD OPEN dataset for the EU dataset. 
All datasets had to be combined, to create input data for model fitting and predictions. The preprocessing 
steps taken will now be introduced. 
 

2.3. Data preprocessing 
In the US, the HILARRI dataset was used as starting point. This dataset contains the location, EIA ID, GRanD ID, 
and NID ID of each HPP in the dataset, and is therefore ideal for linking other datasets together. 
The EIA ID of an HPP was chosen as the main identifier and was used to distinguish a single HPP unit, as the EIA 
and RectifHyd present their generation data based on EIA IDs. There can be multiple HPPs with their own EIA 
ID belonging to the same infrastructural complex, since it is common for a large HPP to consist of multiple 
units with their own EIA ID and their generation data. These were kept as separate plants, as in some cases, 
they can be separated by a considerable distance and may have different plant characteristics such as capacity 
and dam height. Figure 1 shows all preprocessing steps taken, starting at the HILARRI dataset. 
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Figure 1. 
Preprocessing steps US. 

123 
a HPP locations from Hydropower Infrastructure - LAkes, Reservoirs, and Rivers (HILARRI), Hansen & Matson (2023) 
b Hydraulic head from Global Reservoir and Dam Database (GRanD), Lehner et al. (2011) 
c River reaches taken from MERIT, Lin et al. (2019) 
Footnotes continue on the next page. 

 
1 HPPs are linked to a NID id (dam identifier), but NID id’s are not unique. If they belong to the same reservoir, multiple dams can have the same 
NID id. To select the correct dam, the distance between each NID dam sharing the same ID, and the linked HPP is calculated. The NID dam with the 
smallest distance to the HPP is chosen as the correct match. 
2 See Figure 2 
3 See Appendix B1 
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d River catchments taken from MERIT, Lin et al. (2019) 

e Global Power Plant Database (GPPD), Global Energy Observatory (2021) 
f National Inventory of Dams, NID (2023) 
g Historical generation from RectifHyd, Turner, Voisin & Nelson (2022) 
h Capacity from Existing Hydropower Assets Capacity Plant (Johnson, 2023) 
I  Reservoir area from Global Reservoir Surface Area Dataset (GRSAD), Gao & Zhao (2019) 
j HPP type from hydropower energy storage capacity dataset (HESC) (Hansen, Ghimire & Gangrade, 2021) 
k Discharge data from Global Reach-level Flood Reanalysis (GRFR), Yang et al. (2021) 

 

 
HPPs had to be linked to the river reach which would most closely represent their actual source of water. This 
was done based on the similarity of the upstream drainage area reported by an HPP and the nearby river 
reach.  
The river reaches included in MERIT are for some complex river systems not representative. When a river splits 
into multiple parts, only one of the branches is represented in MERIT (Figure 2, top left). If a river branch is not 
represented in MERIT and hosts an HPP, this HPP still needs to be matched to a river reach. 
The first step for the matching process was adding a buffer of 1500 meter around each HPP, based on visual 
inspection in QGIS of the maximum distance from an HPP to the correct river reach (Figure 2). 
After the buffer was added, a spatial join was applied between the buffered HPP locations, and the river 
catchment area related to a river reach. 
 
Figure 2.  

 
 

 
 
If a final match resulted in more than 50% difference in the upstream drainage area between the HPP and the 
river reach, the HPP was removed from the dataset. 
 
Not all HPPs had the same number of measurements of historical generation data from RectifHyd. To find a 
balance between including as many HPPs as possible and removing time series with too few data points to be 
useful for modeling, a histogram was made of the number of data points for each HPP (Figure B2). This 
revealed that the most common number of data points for the monthly dataset was 168 months. An upward 
trend started around 60 months, which was chosen as the minimum number of data points for an HPP to be 

Matching of a HPP to a MERIT river reach

A buffer of 1500 meter is added around the HPP

Each MERIT river reach has a related 
catchment area

All catchments overlapping with the 
buffer are spatially joined to the HPP

The spatially joined catchments are 
ranked based on the percentage 
difference in upstream drainage area 
between NID and MERIT

The river reach linked to the catchment with 
the smallest percentage difference in 
upstream drainage area is used as final match

HPP

River reach

MERIT river reach
 matched to HPP

River reach (dark red)

Related 
catchment 
area (light 
red)
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included in the dataset. The same procedure was applied for the yearly dataset, resulting in a cutoff point of 
10 years of data, below which the HPPs were removed from the dataset. HPPs with the type of reservoir and 
run of river (ROR) were kept in the dataset, while pumped storage, lock & dam, and HPPs with an unknown 
type were removed from the dataset. 
 
For the US, two datasets were created, one with a monthly and one with an annual temporal resolution. The 
monthly dataset for the US had a summed capacity of 27.5 GW for the year 2018. This was 34% of the total 
capacity of the US, as reported by the Department of Energy (Uría-Martínez et al., 2021). The summed average 
reservoir area included in the dataset for the year 2018 was 38% of the total reservoir area in the US, or about 
14,916 km2, as reported by GeoDAR (Wang et al., 2022). Table 2 presents a summary of data on all variables in 
the dataset. The table shows that the variables are skewed, which can lead to problems with 
heteroscedasticity during the modeling stage. The same preprocessing steps were performed for the monthly 
and annual datasets, as models created with both datasets were compared with each other and should have 
similar input data. 
 
Table 2.  
Summary statistics of the explanatory and response variables of HPPs in the period 2006-2018. The table is for the monthly dataset (346 HPPs), a 
similar table for the annual dataset can be found in Table B1. 

Variable Unit Mean Median SDa Mina Maxa Skew Source 

Hydropower net 
generation MWh 1.88E+04 5.10E+03 4.25E+04 0.00E+00 7.38E+05 5.67 RectifHydb 

Discharge m3/s 9.95E+01 3.39E+01 2.19E+02 0.00E+00 7.24E+03 7.67 GRFRc 

Capacity MW 7.99E+01 2.62E+01 1.57E+02 1.00E+00 1.31E+03 4.47 EHAd 

Dam Height meter 4.91E+01 3.78E+01 4.18E+01 0.00E+00 2.23E+02 1.44 GRanDe 

Reservoir area km2 4.19E+01 9.46E+00 1.16E+02 1.00E-02 1.30E+03 6.85 GRSADf 
aSD = Standard deviation; Min = minimum; Max = maximum 

bTurner, Voisin & Nelson, 2022 

c Yang et al., 2021 

d Johnson, 2021 

e Lehner et al., 2011 

f  Global Reservoir Surface Area Dataset (GRSAD), Gao & Zhao, 2019 

 
For the EU, the JRC PBBD OPEN dataset was used as the starting dataset to which other datasets were linked. 
The EIC ID (Energy Identification Code, from ENTSO-E), was used to define a single HPP. The same procedure as 
for the US dataset was followed where possible. An exception was that matching based on the upstream 
drainage area was impossible due to a lack of data. The HPP to river reach match was done by a spatial join to 
the nearest river reach (Figure 3). Very few HPPs (57) could be linked to a GRanD ID. As the GRanD id was used 
for linking with the GRSAD reservoir area dataset and for dam height data, only 57 HPPs could be used for the 
EU dataset. Due to removing of pumped storage and other missing data, 48 HPPs remained in the EU dataset 
for the monthly dataset, of which 16 had generation data from GPPD (Figure 3). For the annual dataset, only 
capacity and discharge were included, due to the choices explained in Chapter 3.1 (model fitting). This meant 
no missing data for reservoir area had to be removed, resulting in 914 HPPs with capacity and discharge data, 
of which 64 had historical generation data. Predictions were created for all 914 (annual) and 48 (monthly) 
HPPs, while performance could only be calculated for the 64 (annual) and 16 (monthly) HPPs with generation 
data in the EU. Table 3 shows the summary statistics of the EU dataset, with skewed distributions for all 
variables, although considerably less than for the US dataset. The spatial distribution of the HPPs is evenly 
throughout the EU, as can be seen in Figure B3. 
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Figure 3. 
Preprocessing steps for EU monthly and yearly datasets. 

 
a JRC PBBD OPEN dataset, Kanellopoulos et al. (2019) 
b River reaches from MERIT, Lin et al. (2019) 
c Dam height from Global Reservoir and Dam Database (GRanD) (Lehner et al., 2011) 
d JRC PBBD OPEN LINKAGES, Kanellopoulos et al. (2019) 
e JRC Hydro-power database (2019) 
f Global Power Plant Database (GPPD), Global Energy Observatory (2021) 
g Discharge data from Global Reach-level Flood Reanalysis (GRFR), Yang et al. (2021) 
h Reservoir area from Global Reservoir Surface Area Dataset (GRSAD), Gao & Zhao (2019) 
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Table 3.  
Summary statistics of the EU dataset of hydropower plants in the period 2005-2018. The Table shows the summary for the monthly dataset 
containing 48 individual HPPs, of which 16 had generation data. A similar table for the annual dataset can be found in Table B2. 

Variable Unit Mean Median SDa Mina Maxa Skew Source 

Hydropower net 
generation 

MWh 5.48E+02 3.61E+02 5.29E+02 1.20E+02 2.35E+03 2.11 GPPDb 

Discharge m3/s 5.34E+02 2.47E+01 1.79E+03 0.00E+00 1.96E+04 4.44 GRFRb 

Capacity MW 2.59E+02 1.91E+02 2.31E+02 1.20E+01 1.16E+03 2.28 JRCd 

Dam Height meter 9.01E+01 8.90E+01 3.45E+01 2.10E+01 1.68E+02 0.32 JRCd 

Reservoir area km2 1.72E+01 4.83E+00 2.70E+01 3.00E-02 1.08E+02 2.16 GRSADe 

a SD = Standard deviation; Min = minimum; Max = maximum 
b Global Power Plant Database (GPPD), Global Energy Observatory (2021) 
c Yang et al. (2021) 
d Kanellopoulos et al. (2019); JRC Hydro-power database (2019) 
e Gao et al. (2019) 

 
2.4. Model fitting 
Two types of models were created, a linear model and a nonlinear model. A linear least square regression 
model was created, due to the relatively simple structure and the interpretable nature of the model. Linear 
least square regression is a well-known technique to evaluate the relationship between explanatory and 
dependent variables (Sharma et al., 2011). 
The datasets for the US and EU exist out of longitudinal data, with a time series for each HPP. There are several 
methods to model longitudinal data. A simple solution would be to ignore the longitudinal structure of the 
data, which would remove the information that some data points belong to the same HPP. To use the fact that 
some data in the dataset belongs to the same individual unit (the HPP), a mixed-effects model was used 
(Bates, 2010). This allowed the model to learn general regression coefficients for the fixed effects (the chosen 
predictor variables), while learning a different random effect for each HPP, to account for unknown differences 
between HPPs. Each HPP in the dataset is seen as an individual unit and as a sample from a larger population 
of worldwide HPPs. The set of predictor variables was selected by calculating the Akaike Information Criterion 
(AIC) for each set of variables, and selecting the model with the lowest score. Due to the skewed nature of 
hydropower generation data, the models use a capacity factor as the dependent variable, an approach taken 
similar to the HPGEM model (Yin et al., 2020). The capacity factor is the ratio of the actual generation to the 
theoretically possible generation in a given timeframe. Would an HPP produce at maximum capacity during a 
whole period, the capacity factor for that period would be one. After predictions are made, the predicted 
capacity factors are converted to hydropower using the capacity of the HPP. 
 
Besides a linear regression model, a nonlinear random forest model was selected as second model type. A 
second model was tried, as the assumption was that a linear model might be too simple to learn the 
relationship between predictor and response variables, and that the highly skewed nature of the dataset 
would lead to modeling problems for a linear model. Random forest models do not make any assumptions on 
normality of residuals and can therefore be widely used to learn nonlinear relationships between predictor 
and response variables (Schonlau & Zou, 2020). A mixed-effects random forest is used to account for the 
longitudinal structure of the dataset (Hajjem, Bellavance & Larocque, 2014).  
 

2.4.1. Linear mixed-effects regression 
The linear mixed-effects regression (LMER) model is implemented using the lme4 library for R (Bates et al., 
2014; R Development Core Team, 2005). Each HPP was modeled as an individual unit and is treated as the 
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random effect (Bates et al., 2014). Multicollinearity was assessed by calculating the Variance Inflation Factor 
(VIF) values for each variable. These were between 1.01 and 1.26 for all predictor variables, well below the 
commonly used threshold of 5, which indicates no problem with multicollinearity should be expected 
(Menard, 2001).  
 
The model formula used for the LMER model was in matrix notation: 
 

𝑦! = 𝑋!𝛽 + 𝑍!𝑏! +	𝜀! 
 

(1) 

where: 
𝑦! is the 𝑛! × 1	response vector for the i-th HPP. 
𝑋! is the 𝑛! × 𝑝	model matrix for the fixed effects for observations in HPP i. 
𝛽 is the  𝑝 × 1 vector of fixed-effect coefficients. 
𝑍!	is the 𝑛! × 𝑞 model matrix for the random effects for observations in HPP i. 
𝑏! is the 𝑞 × 1 random effect coefficients vector for HPP i, which is different for each HPP, but assumed to 
come from the same distribution. 
𝜀! is the 𝑛! × 1 vector of residuals for HPP i. 
i is the HPP index. 
p is the number of fixed effects variables. 
q is the number of random effects variables. 
𝑛! is the length of the time series belonging to HPP i. 
 
A 5-fold cross-validation was performed to assess the model's performance on data for the US. The LMER 
model used for predictions in the EU was fitted using the complete dataset of the US. The model was then 
used to predict the hydropower generation for the EU. 
 

2.4.2. Mixed-effects random forest 
Beside the linear mixed-effects regression, a mixed-effects random forest (MERF) model was created. For this 
model, the Python package merf was used (Van Rossum & Drake, 2009; Breiman, 2001; Merf, 2023). The 
default model parameters were used. The following formula can describe the MERF model: 
 

𝑦! = 𝑓(𝑋!) + 𝑍!𝑏! +	𝜀! 
 

(1) 

where: 
𝑦! is the 𝑛! × 1	response vector for the i -th HPP. 
𝑋! is the 𝑛! × 𝑝	model matrix for the fixed effects for observations in HPP i. 
𝑓(𝑋!) is a nonlinear function, estimated using a random forest model. 
𝑍!	is the 𝑛! × 𝑞 model matrix for the random effects for observations in HPP i. 
𝑏! is the 𝑞 × 1 random effect coefficients vector for HPP i, which is different for each HPP, but assumed to 
come from the same distribution. 
𝜀! is the 𝑛! × 1 vector of residuals for HPP i. 
i is the HPP index. 
p is the number of fixed effects variables. 
q is the number of random effects variables. 
𝑛! is the length of the time series belonging to HPP i. 
 
For the US MERF model a 5-fold cross validation was performed. The EU predictions were created using a 
model fitted on the complete US dataset. Predictions were performed on both monthly and yearly time step, 
while evaluation was done at a yearly time step due to data limitations. 



 

 

18 

 
To assess model performance, a feature permutation importance algorithm was used. Feature permutation 
importance can be applied to any model, as it assesses the model performance of a baseline (unaltered) model 
versus the model performance when one of the features is permutated by randomizing all data for the 
selected feature. This process was repeated for all features. The feature permutation importance algorithm 
was implemented as outlined by scikit-learn (Scikit-learn permutation importance, 2023). 
 
A prediction ceiling was implemented as the plant capacity multiplied by 0.9 (the assumed efficiency of an 
average HPP), multiplied by the number of hours in a given period (month or year), to make sure no 
predictions were made which were physically impossible. Each HPP was assumed to have similar efficiency, as 
exact data were not available at the power plant level. In the case of negative predictions, these were set to 
zero. All other values were kept as they were predicted by the model. This means that predictions ranged from 
zero, to the physically maximum a HPP could generate. 
 

2.5. Model evaluation 
The evaluation metrics Kling-Gupta Efficiency (KGE) and Normalized Root Mean Square Error (NRMSE) were 
used. The advantage of KGE is that it is scale independent and can easily be compared across different HPPs. It 
is commonly used in hydrology (Gupta et al., 2009). KGE is dimensionless and falls on the interval of negative 
infinity to one, with a score of one being optimal. KGE is used outside of hydrology as well as a prediction 
metric, for example by Zhang et al. (2019) for evaluating a solar PV model (Zhang et al., 2019). The formula to 
calculate KGE is as follows: 
 

𝐾𝐺𝐸 = 1 − 6(𝑟 − 1)# + (𝛼 − 1)# + (𝛽 − 1)# 
 

(2) 
 

 

𝑟 =
𝑐𝑜𝑣(𝑦, 𝑦=)
σ(𝑦) ∙ 	σ(y=)

 

 
(3) 

 

𝛼 =	
σ(y=)
σ(𝑦) 

 
(4) 

 

𝛽 =
µ(y=)
µ(𝑦) 

 
(5) 

 
where 𝑦 is the observed time series, y= is the predicted time series, cov is the covariance, σ is the standard 
deviation, and μ is the mean. 
 
RMSE is another well-known metric to evaluate predictive models (Hyndman & Koehler, 2006). RMSE is in the 
unit of the response variable, which would be MWh (hydropower generation). Due to large differences in 
electricity generation between HPPs, large differences in RMSE between HPPs occur. To account for these 
differences the RMSE was normalized (NRMSE) using the mean of observations, which is a common normalizer 
(Ssekulima et al., 2016). NRMSE ranges from zero to infinity, where zero would be the optimal score. NRMSE 
can be calculated in the following way: 
 

𝑅𝑀𝑆𝐸 = E∑ (𝑦=! − 𝑦!)#$
!%&

𝑛  
(6) 

 

𝑁𝑅𝑀𝑆𝐸 =	
𝑅𝑀𝑆𝐸
µ(𝑦)  

 
(7) 
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Where 𝑦! is the i-th observation of time series 𝑦, 𝑦'H  is the i-th prediction of time series 𝑦= and μ is the mean. 
 
The resulting distribution of KGE and NRMSE values (one for each HPP) were visually and quantitively 
evaluated by plotting the histogram of the scores for individual HPPs, with the median and mean KGE and 
NRMSE added. Based on these measures, the model performance was evaluated. 

3. Results 
3.1. Model fitting 
To determine the ability of a model to predict hydropower on a plant scale, on a monthly time step in data-
scarce regions, first the chosen predictor variables will be examined on importance and significance. 
To select the final model predictor variables from the set of chosen predictor variables, AIC scores were 
calculated for each set of variables. The monthly LMER regression model with discharge, capacity and reservoir 
area had the lowest AIC (Table C1), although differences were relatively small. For the annual LMER model the 
model with discharge and capacity had the lowest AIC score. The model with the lowest AIC scores had the 
best trade-off between complexity and accuracy, so these were chosen as final prediction variables. All 
regression coefficients for the chosen predictor variables were significant. (Table C2 and C3).  
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After evaluating the chosen predictor variables and selecting the predictor variables, the feature importance 
was examined. The feature importance of the LMER model revealed that for the monthly model, discharge 
was the most important variable with a distance, followed by reservoir area and at last capacity (Figure 4). The 
yearly model showed the same order as the monthly feature importance, but without the reservoir area as this 
predictor variable was removed from the final model. For the yearly model, capacity was relatively more 
important compared to the monthly model. There were no differences in the order of importance between 
the evaluation on KGE and on NRMSE. 
 
 
Figure 4. 
Feature importance results for the LMER model. Top row shows monthly model feature importance, bottom row shows yearly. Left shows feature 
importance based on KGE, right is based on NRMSE. 
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The feature importance of the MERF models showed that the discharge was for both the monthly and yearly 
MERF model the most important feature, followed by capacity (Figure 5). Reservoir area was the least 
important for the monthly MERF model, while being second for the LMER model. 
 
 
Figure 5. 
Feature importance results for the MERF model. Top row shows monthly model feature importance, bottom row shows yearly. Left shows feature 
importance based on KGE, right is based on NRMSE. 
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3.2. Model prediction 
To test the predictive accuracy of the monthly LMER and MERF models, both models were compared to each 
other on KGE and NRMSE scores. 
This resulted in only minor differences between both models on predictive accuracy (Figure 6). Figure 6 shows 
the KGE and NRMSE results at plant scale, for all HPPs. A single KGE and NRMSE score were calculated for each 
HPP, by using the predicted time series and the historical generation time series from RectifHyd. All calculated 
KGE and NRMSE scores are shown in the histogram below, giving an overview of model performance on all 
HPPs in the dataset. The MERF model had a slightly better median and mean score when evaluated on KGE 
(median KGE of 0.12, while the LMER model had a median KGE of -0.08), while when evaluated on NRMSE 
both models performed almost exactly similar (the MERF model had a NRMSE score of 0.68 while the LMER 
model had a NRMSE score of 0.64). The distribution of the LMER model had a higher peak (higher kurtosis), 
while the distribution of the MERF model was more evenly spread (lower kurtosis). 
 

 
Figure 6.  
Left: LMER, right: MERF. The (m) denotes the monthly time step of the model. The US dataset is used for prediction. The KGE and NRMSE scores are 
calculated using the whole predicted and measured time series (from RectifHyd), and are at plant scale. The figures show the histogram of all KGE 
or NRSME scores for all HPPs in the dataset. 
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To assess the model performance of a model on a monthly time step compared to a model at an annual time 
step, KGE and NRMSE scores for both models were evaluated using the US models (Figure 7). 
Differences were minor when the monthly LMER model was compared to the yearly LMER model. The median 
KGE and NRMSE score of the yearly model was overall a fraction better than that of the monthly model (KGE 
yearly was -0.05, while -0.08 for the monthly model). 
 
 
Figure 7. 
Monthly LMER model compared to yearly for the US. Between brackets the time step is given, monthly or annual. The KGE and NRMSE scores are 
calculated using the whole predicted and measured time series (from RectifHyd), and are at plant scale. The figures show the histogram of all KGE 
or NRSME scores for all HPPs in the dataset. 
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For the MERF model the annual model performs slightly better on median NRMSE, while the monthly model 
performs better on median KGE (Figure 8).  
 
 
Figure 8. 
Monthly MERF model compared to yearly for the US. Between brackets the time step is given, (m) for monthly and (a) for annual. The KGE and 
NRMSE scores are calculated using the whole predicted and measured time series (from RectifHyd), and are at plant scale. The figures show the 
histogram of all KGE or NRSME scores for all HPPs in the dataset. 
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The LMER and MERF models were examined on an independent dataset data from the EU. This was done for 
models with an annual time step, due to historical generation data only being available on this temporal 
interval on a large scale for the EU. The model predictions for US and EU were compared to each other. This 
was done for LMER and MERF models (Figure 9). The LMER model performed better on median KGE and 
median NRMSE, with minor differences on median NRMSE. When evaluated on median KGE, the LMER model 
improved over the MERF model (-0.16 for LMER and -0.68 for MERF). 
 
 
Figure 9.  
Prediction results evaluated on KGE using the LMER model (left) and MERF model (right). The top row shows the KGE results, while the bottom 
rows show NRMSE results. The KGE and NRMSE scores are calculated using the whole predicted and measured time series (from GPPD), and are at 
plant scale. The figures show the histogram of all KGE or NRSME scores for all HPPs in the dataset. 
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The LMER and MERF model performance was compared to HPGEM, which is the most closely related model. In 
the US, the models performed similarly, with the MERF model scoring best (KGE 0.02) when evaluated on 
median KGE, and the HPGEM model when evaluated on median NRMSE (0.38). The comparison was made 
with data from the US. The results show that no major differences are noticeable (Figure 10). The median KGE 
score of the HPGEM (-0.12) model was slightly worse than the MERF (0.02) and LMER (-0.01) model, while the 
HPGEM model scored the best on median NRMSE. 
 
Figure 10.  
Comparing the LMER, MERF and HPGEM models. Left: LMER, middle MERF, right: HPGEM. Results are for both KGE and NRSME. The KGE and 
NRMSE scores are calculated using the whole predicted and measured time series (from RectifHyd), and are at plant scale. The figures show the 
histogram of all KGE or NRSME scores for all HPPs in the dataset. 
 

   

   
 
 
To gain insight into how accurate the model predictions are for an individual HPP, two HPPs from the US were 
investigated in more detail (Figure 11). Both predicted time series are median scoring on KGE, on the left for 
the monthly LMER model, and on the right for the monthly MERF model. The LMER model can capture the 
trend of the hydropower generation, but not the peaks. The MERF model can reproduce the historical 
generation relatively accurately. This shows that while KGE scores are relatively similar, the underlying 
patterns can differ, and it differs between HPPS and between models how accurate predictions are on plant 
scale. The next chapter will discuss how these results can answer the research questions. 
 
Figure 11. 
Time series for two HPPs from the monthly US dataset. Left: prediction using the monthly LMER model, performance was KGE 0.16. On the right, 
created with the monthly MERF model, performance was KGE 0.18. 
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4. Discussion 
The main research question, which was to evaluate the accuracy of a model predicting monthly hydropower 
generation at the power plant level in data-scarce regions, will be discussed using above-mentioned results. 
The LMER and MERF models showed consistent predictive results, with some outliers. The median KGE 
accuracy in the US was -0.08 for the monthly LMER model and 0.12 for the monthly MERF model, which is in 
both cases around zero, a commonly used threshold above which predictions are usable. In a data-scarce 
region, with no data available, this rate of error might be preferable above having no data at all, but it should 
be noted that model results can produce unreliable predictions.  
When comparing to the HPGEM model, both LMER and MERF models performed relatively equal. Yin et al. 
(2020) mention that their HPGEM model shows large prediction errors, which were comparable to the LMER 
and MERF models. 
 
When looking at the predictor variables, discharge followed by capacity were found to be the most important. 
Reservoir area was found to be useful for the monthly model, while this was not the case for the annual 
model. This confirms the hypothesis that reservoir behavior becomes more important when moving from an 
annual time step to a monthly time step, which was described by Turner & Voisin (2022). 
Dam height was not found to be improving the model, while it was assumed that due to the large influence of 
hydraulic head on hydropower generation, and therefore dam height as well, it would be an important 
variable. This was not the case, which could be caused by the fact that dam height was not a good proxy for 
hydraulic head, or by the fact that hydraulic head is not needed as a predictor variable for a statistical model. 
Besides dam height, type was assumed to be an important variable due to significant differences between 
HPPs of different types (reservoir/ROR), but this was found not to be the case for the examined models. This 
could be explained by the fact that reservoir area already indirectly informs the model on the type. ROR plants 
will have a small reservoir area compared to reservoir HPPs. The HPGEM model showed similar feature 
importance results, with runoff and plant capacity as the most important variables (Yin et al., 2020). 
The linear (LMER) and nonlinear (MERF) models performed similarly, with no overall better model. The 
average KGE and NRMSE scores for the monthly MERF model were better than for the monthly LMER model in 
the US, while the MERF model produced larger outliers. In the EU, the monthly LMER model performed better 
than the monthly MERF model. This went against the expectation that a nonlinear model would be more 
accurate than a linear model when predicting hydropower. The analysis by Dabare et al. (2020) showed that a 
linear regression between rainfall and hydropower showed a positive correlation, while a nonlinear analysis 
proved to be better fitting. The LMER and MERF models only partly confirm their results, as the MERF model 
was slightly better performing than the LMER model in the US. The Hydro Plant Generation Estimation Model 
(HPGEM) uses a tree-based model, and a random forest model was used by Falchetta, Kasamba & Parkinson 
(2020), showing the potential of a random forest for prediction in data-scarce regions. A reason for the 
relatively worse performance of the MERF model compared to the expected result might have been that the 
dataset's quality did not allow the random forest to learn a better model than a linear regression model. The 
discharge data from GRFR assumed no anthropogenic changes were made to the water flow, which might 
explain prediction errors. 
 
Yearly model prediction results score slightly better than monthly model predictions, but show that the model 
can predict on a monthly timescale without losing substantial predictive accuracy.  
The model result shows that the model does produce inaccurate predictions in about half of the cases (a 
median KGE of around zero). Comparing the monthly and yearly LMER and MERF models showed that both 
models perform equally. 
 
The EU dataset contained less historical generation than the US dataset (1443 data points for the US yearly 
dataset and 171 for the EU yearly dataset). This limits the possibility of basing conclusions on the EU results. 
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The results showed that the model could produce substantial errors and some outliers in the EU. The average 
scores for EU models were lower than the score of the comparable model results in the US.  
The predictive results using the EU dataset showed a decrease in model performance between the EU annual 
MERF and US annual MERF models. This decrease was not seen for the LMER models of the US and the EU. 
This could mean that the MERF model is overfitting on US data. If this is the case, that would mean that the 
MERF model is not generalizable to regions outside of the US. This model behavior could be resolved using 
different parameters or a different type of nonlinear model than a default MERF model. For the LMER model, 
the US and the EU performance was relatively similar, suggesting that the issue is rather with the MERF model 
configuration than with the datasets used. The results show that there are differences between KGE and 
NRMSE, which shows that it is important for these models to include multiple evaluation measures to gain 
more insight into actual model performance.  
 
The existing HPGEM model produced similar results to the LMER and MERF models at an annual time step. 
HPGEM scored best when evaluated on NRMSE, while MERF scored the best when evaluated on KGE, 
indicating the models are similar in performance without a clear best model.  
The next section will present limitations related to the performed research. 
 
4.1. Limitations 
Hydropower modeling can be challenging due to complex relationships between hydrology and hydropower 
infrastructure, which is mentioned by Hansen, Ghimire & Kao (2022). The limitations will be presented in the 
following section, starting with limitations related to general modeling of hydropower infrastructure.  
HPPs can be in a cascading system, directly influencing each other’s generation. In the models, all power plants 
are seen as individual units, without influence on downstream HPPs. Furthermore, not all data could be 
checked, and some hydropower plants may be incorrectly linked to other data such as discharge or reservoir 
area. There are difficulties in linking hydropower plants and reservoirs due to differences in data sets. For 
example, of the dams in the US with hydropower facilities in the NID and GRanD, about 25% cannot be linked 
to a hydropower plant (Hansen, Ghimire, & Gangrade, 2021). About 6% of US dams linked to an existing 
hydropower plant are not marked as hydropower in the NID or GRanD (Hansen, Ghimire, & Gangrade, 2021). 
Some datasets disagreed with each other, with different data for the same HPP. This happened for example 
with capacity data, which was available from multiple sources, in the US from EHA and GPPD, which did show 
some disagreements. If possible, data that differed above a certain level was removed, as was done with data 
with a larger than 50% difference in the upstream area from the NID dataset and the MERIT river reach 
dataset. The upstream area of each river reach is calculated at the downstream point of each river reach, 
which can be a different location than that of the linked HPP. This means the matching between an HPP and a 
river reach, which was done based on the similarity between the upstream area of both, might be wrong in 
some cases. For EU, matching HPPs to river reaches was done to the nearest river reach, which is not always 
correct (Figure 2). It was not possible to match HPPs to river reaches using a buffer for the EU dataset, as the 
upstream area which was used for matching an HPP to the river reach in the US was unavailable in the EU. 
 
The discharge taken from the GRFR dataset is calculated at the most downstream point of each river reach, 
while the HPP might be at any point of the river reach it is matched to. This means the reported discharge will 
not exactly match the discharge at the location of the HPP unless the HPP is at the convolution point of the 
river reach. Discharge data (from GRFR) is from a reanalysis dataset, not from real measurements. The GRFR 
does assume a river flows uninterrupted, which means reservoir characteristics and other anthropogenic 
changes to discharge are not accounted for. The discharge data must thus be seen as an approximation. 
 
Moving on to the other datasets, there was a low availability of reservoir area data in the US, as many data 
points in HILARRI have no linked GRanD id, which was needed for linking with the reservoir area dataset. Dam 
height is used as a proxy for the hydraulic head, due to little available data on the actual hydraulic head. Dam 
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height and actual hydraulic head might differ substantially from each other, as the hydraulic head depends on 
the reservoir level. While dam height was not included in the final model, the fact that it was excluded could 
be caused by incorrect data used for model assessment.  
 
The RectifHyd generation dataset is based on EIA-923 data, which is measured at an annual time step, and for 
some power plants at a monthly time step (Turner, Voisin & Nelson, 2022). The power plants with 
observations at an annual scale have been imputed following the method described by Turner, Voisin & Nelson 
(2022). This means that RectifHyd does not solely includes actual measurements. Some RectifHyd generation 
data was negative, and was removed from the dataset based on a recommendation from the dataset's author. 
For calculations of the maximal possible generation in a given timeframe, the HPP efficiency was assumed to 
be 90% in the LMER and MERF models.  
The inspection of individual predictions made on the power plant level instead of evaluating a histogram 
shows that model KGE and NRMSE scores are not always representative of actual performance and that it is 
necessary to inspect individual predicted time series of the model, next to more general evaluation methods 
such as KGE and NRMSE (Figure 11). In Figure 11, the left panel shows a median scoring HPP, where the 
predicted trend is correct, but actual predictions are far removed from the actual generation range. This will 
be more severe for about half of the power plants since the showed HPP was median scoring, indicating large 
differences between actual generation and predictions. Therefore, KGE and NRMSE give insight into model 
accuracy but are not completely informative. KGE scores can be above zero, while the actual predictions are 
far removed from actual generation. 
In the next section, recommendations for future research will be given, based on the presented research. 
 

4.2. Recommendations for future research 
A first recommendation is that a future iteration of the monthly model could use the reservoir area as an 
optional predictor variable, increasing the data available and thus the number of HPPs for which the model can 
be used. Since reservoir area was the second or third most important variable (out of three), it could be 
removed without decreasing model performance drastically. The current models depend on a GRanD id, to link 
an HPP to a reservoir. The reservoir area dataset uses the GRanD id, and dam height data is taken from the 
GRanD dataset. The GRanD id was often found missing in the EU dataset and was the limiting factor for data 
availability. 
 
Secondly, creating a new dataset for the US with more HPPs included would be possible, only for prediction. 
The dataset currently used was constrained by the need for historical generation data for model fitting, but 
historical generation would not be needed for a dataset used for model prediction. For the presented US 
results, the US dataset for model fitting and prediction was the same. Creating a larger dataset only for 
predictions using the same input datasets would be possible. A downside of this approach would be that HPPs 
without generation data cannot be evaluated, which is why the approach of having two different datasets for 
model fitting and model prediction was not taken in this research. 
 
Thirdly, the merf package allows the implementation of other model types besides a random forest, which 
could be implemented. The model parameters of the MERF model could be further optimized for increased 
performance, as the MERF results between the US and EU could suggest the model was overfitted on US data, 
and performing worse on EU data. The model could furthermore be validated in another region outside of the 
US and EU, to check if the model can be used worldwide and if results differ from EU results.  
 
Concluding, the new LMER and MERF models can make useful predictions overall (measured by median KGE) 
on a monthly time step for HPPs in data-scarce regions, with substantial model errors and outliers at the 
individual plant scale. The annual model requires discharge and capacity as predictor variables, while the 
monthly model requires reservoir area data next to discharge and capacity. Hydropower prediction in data-
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scarce regions remains difficult, which is a problem the presented models do not solve. On an individual plant 
level, errors remain substantial. 
When no data on hydropower generation is available, the models can provide a monthly generation prediction 
usable for on research for energy grid research, on larger spatial scales than the plant scale. On plant scale the 
model can produce prediction errors of KGE scores up to -2.5 for the US dataset and -13 for the EU. The 
outliers of the KGE and NRSME distributions show that individual predictions can be far removed from the 
actual generation. Therefore, the models should not be expected to predict the plant scale accurately, but 
given that median KGE scores are above or around zero, they are useful on larger scales.  

5. Conclusions 
The main goal was to assess the accuracy of a predictive model for monthly hydropower prediction at the 
power plant level in data-scarce regions. A linear mixed-effects model and a mixed-effects random forest 
model were created for this goal. About half of the predictions were reliable (median KGE around zero), while 
outliers showed predictions up to a KGE of -2.5 for the US dataset, with most predictions between a KGE of 1 
and -1. For the EU dataset, there was an outlier up to a KGE score of -13 on the EU dataset, with most of the 
predictions between a KGE score of 1 and -2. This leads to the conclusion that hydropower can only for some 
HPPs be accurately predicted in data-scarce regions. The model results are usable on a larger spatial scale, as 
median KGE scores are around zero. 
Discharge and capacity were found to be the most important predictor variables, while the type and dam 
height were removed from the final model.  
Monthly models scored similar to models at a yearly time step, showing the model setup using monthly 
discharge and reservoir area is able to predict on a monthly time step. For the US predictions, the MERF model 
scored better than the LMER model, while for the EU predictions the LMER model scored better. This leads to 
the conclusion that in the current configuration, the LMER model performs best on independent data, while 
the MERF model could potentially be improved with different model parameters, as it scored best on the US 
dataset. The model performance on an independent dataset from the EU showed a decrease in model 
performance on KGE for the LMER and MERF models. The sample size was small (64 HPPs in the annual EU 
dataset) due to little generation data available at plant level in the EU. The LMER and MERF models were 
compared against the HPGEM model, resulting in similar performance between LMER, MERF, and HPGEM. The 
model produces unreliable results at the power plant level, at a comparable level to existing models like the 
HPGEM. The models predict at a monthly time step with only a minor decrease in model performance 
compared to a model at an annual time step. In a data-scarce region, the model could provide electricity grid 
researchers with a prediction of hydropower generation for HPPs with unknown hydropower generation, with 
the risk of considerable prediction error. The model cannot be used for accurate predictions at plant scale due 
to these substantial errors. A purpose of the model could be to not use it at plant scale but on a larger spatial 
scale, as the median scores of KGE were around zero, which shows that the median predictions over multiple 
HPPs are usable. 

6. Code and data availability 
Code is made available at Codeberg4. The README file explains how the results can be reproduced. 
Datasets containing hydropower predictions for the US and EU created using the models, can be found in the 
folder prediction_datasets  
 
  

 
4 https://codeberg.org/nilsboonstra/hydropower_monthly_prediction 
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8. Appendix A: dataset information 
 
Table A4.  
Estimating Power Plant Generation in the Global Power Plant Database (Yin et al., 2020). 

 Hydroelectricity 
plants by region 

Hydroelectricity 
plants by region (%) 

Hydroelectricity 
plants with reported 
generation data 

Hydroelectricity plants 
with reported generation 
data (%) 

North America 1,474 39.50% 1,364 77.40% 

South America 633 16.90% 0 0.00% 

Europe 841 22.50% 62 3.50% 

Africa 80 2.10% 25 1.40% 

Asia 690 18.50% 311 17.70% 

Australia/Oceania 18 0.50% 0 0.00% 

Total 3,736 100% 1,762 100% 

 

9. Appendix B: dataset summary statistics 
 
Figure B1 
Figure showing the percentage difference of upstream area reported by HPPs and their matched river reaches. 

 
 Percentage difference between upstream area between NID and 

MERIT right after matching, showing two extreme outliers. 

 
Percentage difference between upstream area between NID and 

MERIT after removal of differences larger than 50%. 
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Figure B2 
Histogram of the number of data points for historical generation per HPP, for the USA monthly dataset (left) and yearly dataset (right). The 
histogram shows that most HPPs have 168 months of historical generation data, and 14 years of historical generation data. 

  
 
 
Figure B3. 
Locations of all HPPs in US (left and EU (right) monthly datasets. 

  
 
 
Table B1.  
Summary of US yearly dataset, containing 338 HPPs 

Variable Symbol Unit Mean Median SDa Mina Maxa Skew Source 

Hydropower net 
generation 

MW h MWh 2.28E+05 7.71E+04 4.66E+05 6.00E+00 6.25E+06 4.83 RectifHydb 

Discharge Q m3/s 1.00E+02 4.55E+01 1.60E+02 1.95E-02 1.86E+03 3.7 GRFRc 

Capacity W MW 8.08E+01 2.79E+01 1.58E+02 1.00E+00 1.31E+03 4.45 EHAd 

Hydraulic head H meter 4.92E+01 3.80E+01 4.19E+01 0.00E+00 2.23E+02 1.44 NIDe 

Reservoir area A km2 4.22E+01 9.52E+00 1.17E+02 2.44E-01 1.28E+03 6.82 GRSADf 

aSD = Standard deviation; Min = minimum; Max = maximum 

bTurner, Voisin & Nelson, 2022 

c Yang et al., 2021 

d Johnson, 2021 

e NID, 2023 



 

 

38 

 
Table B2.  
Summary of EU yearly dataset, containing 914 (64 with generation data) HPPs. 

Variable Symbol Unit Mean Median SDa Mina Maxa Skew Source 

Hydropower net 
generation 

MW h MWh 
6.69E+02 4.61E+02 5.53E+02 1.05E+02 2.49E+03 1.41 

GPPDb 

Discharge Q m3/s 
1.04E+02 1.82E+01 2.87E+02 2.62E-01 2.24E+03 5.00 

GRFRc 

Capacity W MW 
1.63E+02 9.60E+01 2.19E+02 1.00E+00 1.44E+03 3.09 

JRCd 

Hydraulic head H meter 
8.93E+01 9.50E+01 3.91E+01 2.60E+01 1.68E+02 0.05 

JRCd 

Reservoir area A km2 
1.96E+01 1.18E+01 2.23E+01 1.20E+00 8.00E+01 1.42 

GRSADe 

aSD = Standard deviation; Min = minimum; Max = maximum 

b Yin et al., 2020 

c Yang et al., 2021 

d Hildalgo-Gonzalez et al., 2019; JRC Hydro-power database. (2019). 

e Gao et al., 2019 

 

10. Appendix C: Results 
 
Table C1.  
Model AIC performance for incrementally added variables. 
 

Model variables  AIC (monthly) AIC (annual) 

Discharge -13,672.57 -4,378.69 

Discharge + Capacity -13,734.64 -4,469.51 

Discharge + Capacity + Reservoir area -13,854.12 -4,451.33 

Discharge + Capacity + Reservoir area + Dam 
Height  

-13849.68 -4,464.09 

Discharge + Capacity + Reservoir area + Dam 
Height + Type 

-13844.15 -4,437.75 

 
 
Table C2. 
Yearly model performance summary. 

 Estimate Std. Error df t value Pr(>|t|) 

(Intercept) 3.44E-01 9.52E-03 3.51E+02 3.61E+01 2.92E-120 

Discharge 7.18E-04 3.94E-05 2.94E+03 1.82E+01 1.44E-70 

Capacity -6.40E-04 5.87E-05 4.89E+02 -1.09E+01 6.14E-25 
 
Table C3. 
Monthly model performance summary. 

 Estimate Std. Error df t value Pr(>|t|) 

(Intercept) 3.53E-01 1.02E-02 3.16E+02 3.47E+01 6.08E-110 

Discharge 3.68E-04 5.67E-06 5.68E+04 6.50E+01 2.00E-16 

Capacity -6.42E-04 5.61E-05 4.75E+02 -1.14E+01 5.83E-27 

Reservoir Area 6.25E-04 5.14E-05 2.78E+03 1.22E+01 3.34E-33 
 
 


