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Summary

This thesis explores the use of Bayesian Deep Learning to improve uncertainty quantifi-
cation in Reynolds-Averaged Navier-Stokes (RANS) turbulence models. While RANS
models are commonly used in computational fluid dynamics due to their efficiency, they
are often criticized for inaccuracies in certain flow conditions, primarily due to the chal-
lenges in modeling the Reynolds stress term. The thesis acknowledges the limitations of
traditional turbulence models, which rely heavily on empirical parameters and often fail
to generalize across different flow scenarios, leading to significant uncertainties.

To address these issues, the research introduces a data-driven approach, leveraging
Bayesian Neural Networks (BNNs). BNNs are particularly suitable for this task because
they not only improve prediction accuracy but also provide a mechanism to quantify
uncertainties arising from both the model and the data. This dual uncertainty quan-
tification is critical, as it helps to address the inherent ”black box” nature of machine
learning models, which can introduce additional uncertainties into the predictions.

The methodology involves correcting traditional turbulence models and integrating them
with BNNs to capture both aleatoric (data-driven) and epistemic (model-driven) uncer-
tainties. The thesis demonstrates the effectiveness of this approach through various
flow case studies, comparing the results against more accurate but computationally ex-
pensive methods like Large Eddy Simulations (LES) and Direct Numerical Simulations
(DNS).

The research concludes that the integration of Bayesian Neural Networks into RANS
turbulence models not only enhances predictive accuracy but also provides a more com-
prehensive uncertainty quantification, making it a promising direction for future work
in turbulence modeling.
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1
Introduction

Computational fluid dynamics (CFD) has become a more popular method for fluid flow
analysis in recent years because of the quick progress achieved in computer technology,
particularly in the industrial area. The Reynolds-Averaged Navier-Stokes (RANS) equa-
tion is still a popular CFD method because it is effective in estimating time-averaged tur-
bulent flow quantities. However, because of the Reynolds stress term modeling, RANS
simulations are frequently criticized for being inaccurate in specific flow conditions [1].
Even while more precise techniques like Direct Numerical Simulations (DNS) and Large
Eddy Simulations (LES) are now more widely available, their high processing costs make
them impractical for use in engineering applications, particularly in design and optimiza-
tion jobs that call for many iterations. Thus, it is imperative to increase the predictive
power and accuracy of RANS simulations.

Despite significant advancements in the field of RANS methods, the core issue of turbu-
lence modeling theory has seen minimal theoretical progress over the past two decades.
Traditional turbulence models largely rely on the Boussinesq assumption and a set of
empirically-based parameters, encapsulated within either one-equation or two-equation
frameworks, such as the k-epsilon and k-omega models. These models often perform well
for specific flow scenarios but fail to generalize across diverse conditions, highlighting a
major source of model form uncertainty in RANS simulations.

The rise of machine learning has led to new research methods for improving RANS turbu-
lence modeling. Broadly, these approaches can be classified into three categories: direct
modeling of the anisotropic terms of the Reynolds stress, adjustment of the coefficients
in existing turbulence models, and the introduction of new terms to the turbulence equa-
tions. However, the inherent ”black box” nature of machine learning models introduces
another layer of uncertainty, which remains a critical challenge for RANS models. Fur-
thermore, the dependency of machine learning outcomes on the quality of training data
adds an additional dimension of uncertainty that needs to be carefully managed.

A promising direction that seeks to enhance prediction quality while also quantifying
uncertainties is the application of Bayesian Neural Networks (BNNs). Pioneering studies
by Geneva et al. [2] and Tang et al[3] have utilized BNNs to develop new turbulence mod-
els that incorporate model-driven uncertainty. Nevertheless, these approaches have not

1



1.1. Outline of the thesis 2

fully considered the uncertainties arising from the data itself. Building on their ground-
work, this thesis proposes a novel framework employing BNNs that aims to quantify
uncertainties originating both from the model and the data.

This research seeks to investigate the following question:

Can the integration of the Bayesian Neural Network framework in data-driven turbu-
lence modeling not only improve the accuracy of RANS results but also capture the dual
uncertainties inherent in both the model and the data, surpassing current methods?

1.1. Outline of the thesis
This thesis has mainly six chapters. The text provides an initial introduction to the
fundamentals of CFD, encompassing the mathematical formulation and the pros and
cons of several RANS models. Additionally, a brief overview of both DNS and LES
methods is included. Chapter 2 provides a thorough explanation of the necessity of tur-
bulence models in Reynolds-averaged Navier-Stokes (RANS) simulations. This chapter
also examines the current body of work on data-driven turbulence modeling and the
measurement of uncertainty in turbulence modeling. The concluding section of Chapter
2 centers on an exhaustive examination of the thesis’s aim.

The methodology is covered in Chapter 3, where the applied turbulence model modifi-
cations are described. The BNN framework’s operation is also described, along with the
steps needed to train it. Additionally, the discussion includes the new appropriate neural
network topology for the uncertainty quantified turbulence modeling problem.

Chapter 4 addresses the experimental setup and the hyperparameter optimization pro-
cess essential for enhancing the neural network’s performance. This chapter also iden-
tifies the most effective training methods selected based on their performance during
testing phases.

In Chapter 5, the application of the BNN to derive improved turbulence models and their
uncertainty ranges is presented. The results include a priori tests and comparisons with
LES/DNS results. Moreover, to evaluate the neural network’s generalization capabilities,
various flow cases are tested, and the outcomes are thoroughly discussed.

Finally, Chapter 6 offers suggestions for further investigation as well as a summary of
the results.



2
Background and literature review

2.1. Introduction to computational fluid dynamics
CFD analyzes fluid flows using numerical methods to examine interactions between
fluids, solids, and gases. It is widely used in fields like aerodynamics and hydrodynamics
to study lift, drag, pressure, and velocity distributions. Governed by physical laws as
partial differential equations, CFD solvers convert these into algebraic equations for
efficient numerical solutions.

CFD encompasses various methodologies, including DNS, les, and RANS. DNS resolves
all scales of turbulent motion, providing highly accurate results but at a significant
computational cost, making it suitable for fundamental studies rather than practical en-
gineering applications. LES offers a balance by resolving large-scale turbulent structures
while modeling smaller scales, reducing computational demands compared to DNS while
still capturing essential flow features. RANS, on the other hand, averages all effects of
turbulence, leading to substantial simplifications and lower computational costs, mak-
ing it ideal for industrial applications despite its reduced accuracy in capturing detailed
turbulence structures[4]. This section will briefly discussed about the application and
limitation of this method which is mainly come from Pope[1].

2.1.1. Laminar flow and turbulence flow
In laminar flow, fluid particles traverse in orderly, parallel layers with negligible inter-
layer mixing. The flow exhibits a smooth and predictable behavior, with each layer
gliding past its neighboring layers with minimal disturbance. This flow regime is typi-
cally associated with low fluid velocities and high viscosities. The transition from laminar
to turbulent flow is governed by the dimensionless Reynolds number, which encapsulates
the ratio of inertial forces to viscous forces within the fluid system. When the Reynolds
number exceeds a critical threshold, the flow becomes unstable and transitions to tur-
bulence

Re = ρLU

µ
. (2.1)

Upon reaching a critical Reynolds number, fluid flows undergo a transition from laminar

3



2.1. Introduction to computational fluid dynamics 4

to turbulent behavior. Turbulent flows are characterized by their unsteady, irregular,
and seemingly random and chaotic nature.

Figure 2.1: An energy cascade schematic diagram at for the CFD method at high Reynolds
numbers[1].

Due to the intricate nature of turbulence, scientists have found that describing it in
terms of energy is a particularly effective approach. Turbulent flows are frequently
characterized by the concept of the energy cascade, initially introduced by Richardson
[5] and later mathematically formalized by Kolmogorov [6]. The energy cascade describes
the hierarchical process in turbulent flows wherein large vortices, referred to as eddies,
break-down into progressively smaller eddies. This phenomenon facilitates the transfer
of kinetic energy from macroscopic scales to microscopic scales. As eddies fragment
into increasingly smaller structures, the kinetic energy they harbor is transferred down
the cascade until the eddies reach a scale where viscous forces dominate, leading to the
dissipation of kinetic energy as heat. This entire process can be visualized in Figure 2.1,
which illustrates the multi-scale energy transfer in turbulent flows.

Additionally, the Kolmogorov hypothesis postulates that at sufficiently high Reynolds
numbers, the small-scale statistics of turbulence become universal and are predominantly
determined by the rate of energy dissipation and the viscosity of the fluid. This univer-
sality suggests that, despite the chaotic appearance of turbulence, underlying statistical
properties remain consistent across different turbulent systems.

Given the inherent complexity of turbulence, addressing turbulence problems becomes
critically important in the field of CFD. This importance is particularly evident in the
context of RANS turbulence modeling. The following sections will explore the details of
turbulence modeling and its significance in capturing the intricate nature of turbulent
flows.

2.1.2. DNS and LES
In the process of averaging the Navier-Stokes equations, turbulent fluctuations are elim-
inated, with all turbulence effects on the flow being represented through turbulence
models. Alternatively, turbulence can be directly modeled, though this approach incurs
a high computational cost.

The Navier-Stokes equations may be numerically solved without the need for turbulence
models is called the DNS method[7]. This method requires the resolution of the whole
range of temporal and spatial turbulence scales. The computational mesh must capture
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all spatial scales, ranging from the lowest dissipative scales (Kolmogorov microscales, η)
to the integral scale L, which includes the majority of the kinetic energy. DNS thus
has very high computing requirements. The number of mesh points and time steps
determines how many floating-point operations are needed.

Thus, even at low Reynolds values, the computing cost of DNS remains unaffordable.
DNS would require computing resources greater than even the most sophisticated super-
computers, especially for Reynolds numbers common of most high applications.

Figure 2.2: Velocity field from a DNS
simulation of homogeneous decaying turbulence
in a periodic box. DNS data is from Lu and
Rutland.[8]

Figure 2.3: Velocity field from a LES
simulation of homogeneous decaying turbulence
in a periodic box with a LES filter [9]

Large-Eddy Simulation (LES), first introduced by Joseph Smagorinsky in 1963 [10], is
a more realistic simulation technique. Like DNS, the biggest turbulent scales in LES
are resolved immediately. Nevertheless, the impacts of the lowest turbulent scales are
represented by simplified models rather than being calculated explicitly. As opposed
to DNS, this method drastically lowers computing requirements by avoiding the direct
resolution of the tiniest turbulence scales. Low-pass filtering the Navier-Stokes equations
effectively eliminates small-scale turbulence information from the numerical solution,
resulting in this decrease. Figures 2.2 and 2.3 show the differences between the DNS
and LES results. It is obviously that results from LES show lower resolution status
compared to DNS.

Although this small-scale information is not negligible, its impact on the flow field must
be modeled, which remains an active research area, particularly for cases where small
scales are significant. Despite this reduction in computational cost compared to DNS,
LES still entails considerable computational expense relative to RANS methods. Con-
sequently, RANS continues to be the predominant approach for flow analysis, and en-
hancing the accuracy of RANS models remains an ongoing area of research.

2.1.3. RANS Governing Equations
Since this work is mainly discussed about the RANS turbulence modeling, a short in-
troduction of this method will be first discussed here. The Navier-Stokes equations for
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incompressible Newtonian viscous flows are

∂ui
∂xi

= 0, (2.2)

ρ
∂ui
∂t

+ ρ
∂

∂xj
(uiuj) = − ∂p

∂xi
+ ∂τij
∂xj

. (2.3)

Figure 2.4: Time averaging for stationary turbulence. Although not evident due to the scale of the
graph, the instantaneous velocity u′i (x, t) possesses continuous derivatives of all orders.[11].

The conservation of mass equation is found in equation 2.2, whereas the conservation of
momentum equation is found in equation 2.3. The velocity vector in this case is denoted
by ui, the density by ρ, the pressure by p, and the viscous stress tensor by τij. Given
that τij is proportional to both the dynamic viscosity µ and the strain rate Sij, the strain
rate tensor may be computed using velocity gradients as follow

τij = 2µSij, (2.4)

Sij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
. (2.5)

Derivation of the Reynolds-Averaged Navier-Stokes (RANS) equations presupposes that
the fluid flow can be represented as the sum of a mean component and a fluctuating com-
ponent, a concept known as Reynolds decomposition. And the Reynolds decomposition
of velocity is

u = u+ u′. (2.6)
The fluctuation term is u′, while the mean term is u. Additionally, it is presumable that
u′ has an average of zero and that u has an average of itself

u = u, u′ = 0. (2.7)

By substituting the decomposition of the velocity field into its mean and fluctuating
components, as described by equation 2.6, into the Navier-Stokes equations, and sub-
sequently applying the operator rules outlined in Appendix A, the Reynolds-Averaged
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Navier-Stokes (RANS) equations can be systematically derived as

∂ui
∂xi

= 0, (2.8)

ρ
∂ui
∂t

+ ρ
∂

∂xj
(uiuj) = − ∂p

∂xi
+ ∂

∂xj

(
τ ij − ρu′

iu
′
j

)
. (2.9)

The resulting equations are nearly identical to the original momentum equations for
the velocity component u, with the exception of an additional term u′

iu
′
j. This term is

referred to as the Reynolds stress tensor, as it functions similarly to an apparent stress
within the fluid. The value of the Reynolds stress tensor is not inherently known and
must be modeled or calculated, presenting what is known as the closure problem in the
context of RANS equations. Specifically, the introduction of the Reynolds stress term
introduces additional unknowns, leading to a situation where there are more unknowns
than equations—five unknowns in four equations. To resolve this discrepancy, turbulence
models are employed. These models approximate the Reynolds stress tensor in terms
of known parameters, thereby closing the system and allowing for a solvable set of
equations.

2.1.4. RANS Turbulence Modeling
Fortunately a conservation law for the Reynolds stress tensor can be easily derived which
is called Reynolds Stress Transport equation (RST). The general form for this equation
is

u′
iu

′
j

∂t
+ Kij︸︷︷︸

Advection

= Pij︸︷︷︸
Production

+Tij +Dv
ij +Dp

ij︸ ︷︷ ︸
Diffusion

+ Φij︸︷︷︸
Pressure strain correlation

− εij︸︷︷︸
Dissipation

. (2.10)

The Reynolds stress transport (RST) equation is fundamental in turbulence modeling
but inherently complex due to the inclusion of unknown correlations like u′

ip
′ and u′

iu
′
ju

′
k.

For each unknown correlation, one can derive a corresponding conservation law. However,
this process introduces additional unknown quantities, creating a cascade of higher-order
terms. For instance, the transport equation for the triple correlation u′

iu
′
ju

′
k involves a

fourth-order tensor, complicating the equation further. This phenomenon, known as
the closure problem, implies that there will always be more unknowns than equations,
making direct solutions mathematically infeasible.

Empirical approximations, namely turbulence models, have been created to overcome
this difficulty. These models use assumptions taken from theory or observation to fin-
ish the system of equations, simplifying the complicated reality of turbulence. A broad
variety of turbulence models are available, the most popular of which are one- or two-
equation linear eddy viscosity models (LEVM). Because of their ease of use and compu-
tational efficiency, these models are expected to be popular for some time to come [12].
Ludwig Prandtl established the idea of the mixing length in 1925 [13], which laid the
groundwork for contemporary turbulence theories and gave rise to the field of turbulence
modeling. Since two-equation turbulence models are the most common in data-driven
turbulence research, they will be the main topic of discussion in this section.
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The turbulent viscosity theory, initially formulated by Boussinesq [14], posits a repre-
sentation of the Reynolds stress that is mathematically analogous to the stress-strain
relationship in a Newtonian fluid

u′
iu

′
j = 2

3
δijk + aij, (2.11)

k = 1
2
u′
ku

′
k, (2.12)

aij ≈ −vt
(
ui
∂xj

+ uj
∂xi
− 2

3
δij

uk
∂xk

)
. (2.13)

The variables k and νt represent the turbulent kinetic energy (TKE) and turbulent vis-
cosity, respectively. By assuming that the flow is incompressible, the following outcomes
for the Reynolds stress tensor are obtained

u′
iu

′
j ≈

2
3
δijk − vt

(
ui
∂xj

+ uj
∂xi

)
. (2.14)

The method known as Boussinesq’s eddy-viscosity model is used to express the Reynolds
stress tensor as the result of multiplying the mean strain-rate tensor by the eddy vis-
cosity. Nevertheless, the model presents two unknowns: the eddy viscosity (νt) and the
turbulent kinetic energy (k). The two-equation turbulence models are meant to help
identify these unknowns so that the system of equations may be solved. Two turbulence-
related parameters in these models are obtained by solving two transport equations.
One equation is usually solved for k, and the other one is usually solved for some other
variable.Once �t are determined, the system of RANS equations is closed and can be
solved. Different models use various second variables, with some of the most well-known
models listed below in chronological order.

The k − ϵ Model
The k − ϵ model is a widely utilized RANS turbulence model, originally developed by
Jones and Launder [15] in their seminal work on turbulence prediction. This model
comprises two transport equations: one governing the turbulent kinetic energy, k, and
another describing the rate of dissipation, ϵ. These governing equations are represented
in Equation 2.15 and Equation 2.16 respectively. The k−ϵ model has been instrumental
in advancing CFD by providing a robust framework for simulating turbulence in a wide
range of engineering applications, from aerodynamic flows to process engineering.

∂k

∂t
+ ⟨uj⟩

∂k

∂xj
= τij

∂ ⟨ui⟩
∂xj

+ ∂

∂xj

([ 1
Re

+ vt
Prk

]
∂k

∂xj

)
− ε, (2.15)

∂ε

∂t
+ ⟨uj⟩

∂ε

∂xj
= Cε1

ε

k
τij
∂ ⟨ui⟩
∂xj

+ ∂

∂xj

([ 1
Re

+ vt
Prε

]
∂ε

∂xj

)
− Cε2

ε

k
ε. (2.16)
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The eddy viscosity νt is then calculated as follows

νt = CD
k2

ε
. (2.17)

The widely used constant of this model transport equation are

CD = 0.09, Prk = 1, Prε = 1.3, Cε1 = 1, 44, , Cε2 = 1, 92. (2.18)

These parameter values have been determined by analyzing simple reference flows, where
many terms in the transport equations for k and ϵ cancel out, allowing for the isolated
calibration of individual parameters.

The k − ϵ model is widely used due to its relatively low computational cost, requiring
only two additional transport equations. This model is particularly suitable for external
aerodynamic flows. However, it is best applied to scenarios without strong pressure
gradients, significant streamline curvature, or flow separation. One of the challenges
with this model is the complex formulation of numerical boundary conditions for ϵ.
Eddy viscosity models, such as the k − ϵ model, are based on the assumption that the
Reynolds stress is proportional to the mean strain rate, which restricts their ability
to capture the distinct components of the Reynolds stress tensor. As a result, the
k − ϵ model struggles to accurately account for anisotropic effects, including streamline
curvature and directional volume forces like gravity[16][17].

The k − ω Model
Another popular Reynolds-RANS turbulence model is the k − ω model, which was first
put forth by Wilcox [18]. It is predicated on the solution of a transport equation for
the specific turbulence dissipation rate ω and the transport equation for the turbulent
kinetic energy k. The following are the transport equations for the specific dissipation
rate and kinetic energy of turbulence

∂k

∂t
+ ⟨uj⟩

∂k

∂xj
= τij

∂ ⟨ui⟩
∂xj

+ ∂

∂xj

([ 1
Re

+ vt
Prk

]
∂k

∂xj

)
− CDkω, (2.19)

∂ω

∂t
+ ⟨uj⟩

∂ω

∂xj
= α

ω

k
τij
∂ ⟨ui⟩
∂xj

+ ∂

∂xj

([ 1
Re

+ vt
Prω

]
∂ω

∂xj

)
− βω2. (2.20)

And the turbulent viscosity can be written as

νT = k

ω
, ω = 1

CD

ε

k
. (2.21)

The model constants in the k − ω model are

CD = 0.09, Prk = 2, Prω = 2, α = 5
9

, β = 3
40
. (2.22)

Because it requires only two new transport equations and has a low computing overhead,
the k−ω model is preferred. It performs exceptionally well in flows with pressure gradi-
ents and separation as well as boundary layer flows. The model also includes basic wall
boundary requirements for ω. Nevertheless, the k − ϵ model is better suited for exter-
nal aerodynamics because of its extreme sensitivity to inflow and freestream boundary
conditions. The k − ω model has been found to have a propensity to overestimate the
creation of turbulence at stagnation points[19].
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The k − ω SST Model
Menter [20] created the SST k − ω turbulence model, a popular two-equation eddy-
viscosity model. The k − ω and k − ϵ models’ beneficial features are combined in the
shear stress transfer (SST) formulation. The model may be applied right down to the
wall via the viscous sub-layer by using a k−ω formulation inside the inner regions of the
boundary layer. As a result, extra damping functions are not required for the SST k−ω
model to perform as an efficient low-Reynolds number turbulence model. Moreover, the
SST formulation shifts to a k − ϵ behavior in the free-stream, avoiding the problem
of high sensitivity to the inlet free-stream turbulence conditions that is typical of the
k − ω model[21]. Moreover, the following two transport equations relate to the specific
dissipation rate and turbulent kinetic energy

∂k

∂t
+ Uj

∂k

∂xj
= Pk − β∗kω + ∂

∂xj

[
(ν + σkνT ) ∂k

∂xj

]
, (2.23)

∂ω

∂t
+ Uj

∂ω

∂xj
= αS2 − βω2 + ∂

∂xj

[
(ν + σωνT ) ∂ω

∂xj

]
+ 2 (1− F1)σω2

1
ω

∂k

∂xi

∂ω

∂xi
. (2.24)

And the model constants in the model are

α1 = 5
9
, α2 = 0.44, β1 = 3

40
, β2 = 0.0828, β∗ = 9

100
σk1 = 0.85, σk2 = 1, σω1 = 0.5, σω2 = 0.856.

(2.25)

The k − ω and k − ϵ models can be adjusted between each other by the F1 which is the
blending function. In the viscous sublayer and the boundary layer’s logarithmic region,
the blending function F1 equals one; in the other regions of the domain, it gradually
decreases to zero. This suggests that the last part in equation 2.24 is removed in the
inner region of the boundary layer, leading to the use of the k − ω model. In contrast,
the k− ϵ model is used when F1 equals zero in the domain’s outer regions. The blending
function F1 depends on how far away the closest wall is.

The eddy viscosity can be written as follow

νt = a1k

max (a1ω, SF2)
. (2.26)

When S =
√

2SijSij and a1 = 0.31 are found. It is observed by Mentor that the
excessively high values of νt in the inner boundary layer caused by the above model still
led to overestimations of wall shear stress. As a result, he limited the eddy viscosity
νt using a different blending function F2. Additionally, the following equation defines
F2:

F2 = tanh

[max
(

2
√
k

β∗ωy
,
500ν
y2ω

)]2 . (2.27)
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2.2. Discuss for machine learning
Computers can learn and make judgments based on data according to a subset of artificial
intelligence(AI) called machine learning (ML), which eliminates the need for explicit task
programming. Large datasets are used to train algorithms so they can recognize patterns,
draw conclusions, and forecast results on newly collected data. The fundamental function
of machine learning is its capacity to extrapolate from training data and apply previously
acquired knowledge to new contexts.

Three primary categories of machine learning approaches exist: reinforcement learning,
unsupervised learning, and supervised learning. In supervised learning, algorithms are
trained to predict results for fresh inputs using labeled data, where the desired output is
known. Neural networks, decision trees, and linear regression are examples of common
algorithms.

Figure 2.5: Toy example showing how the neural network regress the simple 1D data y = x2

Figure 2.5 shows a simple results for supervised learning by neural network. The regress
target is a very simple case :y = x2, and the performance of the model is evaluated by
the root mean square (RMS) function

RMS = arg min
θ

√√√√ 1
n

n∑
m=1

(f(x|θ)− y)2. (2.28)

where θ is the parameter of the neural networks, n is the number of the data , f(x|θ) is
the prediction by the networks.

Fitting a polynomial is a widely recognized statistical technique, and this example is
simple. But there is much more to the process of training a model and applying it to
forecasts than this straightforward scenario. Learning very complicated representations
is made possible by its ability to handle high-dimensional input and wide range of model
applicability. This adaptability makes it possible to apply machine learning techniques
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to a wide range of complex datasets, making it easier to extract insightful patterns and
information.

Unsupervised learning, on the other hand, deals with unlabeled data and focuses on
uncovering hidden patterns or intrinsic structures within the data. Techniques such
as clustering and dimensionality reduction fall into this category. Reinforcement learn-
ing involves training algorithms to make sequences of decisions by rewarding them for
desirable actions, commonly used in robotics and game playing.

2.2.1. Neural networks
Neural networks have emerged as a powerful and versatile tool for approximating a wide
range of target functions, whether they are real-valued, discrete-valued, or vector-valued.
Their strength lies particularly in their ability to handle complex and high-dimensional
input data, which can be challenging to interpret and process using traditional methods.
This makes them particularly well-suited for applications where the underlying patterns
in the data are intricate and not easily captured by simpler models. In recent years,
neural networks have achieved significant breakthroughs across various domains, partic-
ularly in natural language processing (NLP), where they have revolutionized tasks such
as machine translation, sentiment analysis, and text generation. Similarly, they have
shown remarkable success in fields such as handwritten character recognition, where
they can accurately identify and classify digits and letters, and in audio recognition,
where they have enhanced the ability to recognize and interpret spoken language. Fur-
thermore, neural networks have made substantial contributions to object identification
in computer vision, enabling systems to detect and classify objects within images and
videos with unprecedented accuracy.

Among the many types of neural networks that have been developed, the feedforward
neural network (FNN), also known as a multilayer perceptron (MLP), stands out as one
of the most fundamental architectures. An FNN is a type of artificial neural network
where the connections between the nodes do not form a cycle. This network structure
is specifically designed to approximate a function f that maps input data X to corre-
sponding output data Y :

NN : X → Y, (2.29)
where X can be a continuous space of a discrete space. Neural networks were named
after and inspired by biological systems, specifically the neural structures found in the
human brain. Despite this inspiration, there is actually very little resemblance between
the architecture of artificial neural networks and the complex workings of biological
neural systems, which we still do not fully understand. In essence, a neural network is a
machine learning algorithm characterized by its unique architecture. This architecture
consists of layers of interconnected nodes, or neurons, which process input data and
learn to make predictions or decisions based on that data.



2.2. Discuss for machine learning 13

Figure 2.6: A diagram for a three-layer feedforward neural network (a), the hidden layer has h
activation functions, the output layer has q nodes, and the input layer has p input nodes (b) Node
unit diagram of neural network[22].

Multiple layers make up a neural network, as Figure 2.6 illustrates. The network is fed
input data x into the input layer, which is followed by one or more hidden layers and
an output layer that produces the final output y. The number of hidden layers within a
network is referred to as its ”depth”. Nodes are the basic computational units of a neural
network, and they make up each layer. A weight (w) is assigned to each input to a node,
indicating its importance in relation to the other inputs. A node’s output, youtput, is
computed by adding the weighted sum of its inputs from the nodes in the layer before it.
Each node’s weighted sum is subjected to a non-linear activation function, enabling the
network to simulate non-linear processes. Reversed linear unit (ReLU), sigmoid, and
hyperbolic tangent functions are examples of common activation functions [23].

The primary objective of a neural network’s training process is to decrease prediction
error by adjusting the weights linking the neurons. These weights are often initialized
with tiny, arbitrary values. During training, the dataset is iterated over repeatedly, with
each iteration consisting of a forward pass and a backward pass. The input data is sent
through the network during the forward pass, producing an output that is compared
to the real target values using a loss function that calculates the prediction error. Us-
ing the chain rule, the backward pass, sometimes referred to as backpropagation [24],
determines the gradient of the loss function with regard to each weight. These gradi-
ents lead the update of weights in an error-reducing direction, usually via the use of
optimization methods like Adam’s adaptive moment estimation and stochastic gradient
descent (SGD). The weights eventually converge to values that minimize the loss func-
tion over repeated iterations, improving the accuracy of the network on fresh, unknown
input.

The functions of neural networks can be broadly categorized into classification and re-
gression tasks. However, for classification tasks, these models may encounter limitations
in their generalization ability. For instance, a neural network trained to distinguish be-
tween apples and oranges can achieve high performance on this specific task. However,
when presented with an image of a banana, the network will still provide probabilities for
it being an apple or an orange, reflecting its training scope. This highlights that, despite
their impressive classification capabilities, neural networks often fall short of a human’s



2.3. Data Driven Turbulence Modelling 14

ability to understand and interpret diverse and unfamiliar inputs. On the other hand, for
regression tasks, neural networks excel at processing large datasets to uncover underly-
ing patterns. It has been mathematically proven that neural networks can approximate
any continuous function, given that the activation function is bounded, continuous, and
non-constant [25]. This universal approximation capability allows neural networks to
model complex relationships within data effectively, making them powerful tools for
regression analysis.

Beyond the standard feedforward neural networks, various specialized architectures have
been developed to address specific types of data and tasks. One notable example is the
Convolutional Neural Network (CNN), which is particularly effective for image and spa-
tial data. CNNs utilize convolutional layers that apply filters to the input data, enabling
the network to detect local patterns such as edges, textures, and shapes. This hierar-
chical feature extraction makes CNNs highly proficient in tasks like image classification,
object detection, and segmentation. Other advanced structures include Recurrent Neu-
ral Networks (RNNs), designed to handle sequential data by maintaining hidden states
that capture temporal dependencies, making them suitable for time series analysis and
natural language processing. Additionally, Transformer networks, which is the most pop-
ular research area, with their self-attention mechanisms, have revolutionized the field of
NLP by allowing for parallel processing and capturing long-range dependencies within
the data, leading to significant advancements in language modeling and translation tasks
[26]. Furthermore, for uncertainty quantification, Bayesian neural networks (BNNs) are
another important tool. BNNs extend traditional neural networks by incorporating
Bayesian inference principles, allowing them to provide probabilistic interpretations of
model parameters and predictions. This approach enables the estimation of uncertainty
in both the model weights and the outputs, which is particularly valuable in applications
where understanding the confidence of predictions is crucial.

2.3. Data Driven Turbulence Modelling
In recent years, the field of CFD has witnessed significant advancements with the integra-
tion of machine learning techniques to enhance the precision and predictive reliability of
RANS simulations. Initially, approaches in this domain concentrated on the calibration
of turbulence model parameters by treating them as random variables, employing Monte
Carlo sampling methods to obtain a predictive distribution of outcomes[27], which facili-
tated a more nuanced understanding of underlying uncertainties. This foundational work
set the stage for the direct manipulation of anisotropy components within the Reynolds
stress, thereby refining turbulence modeling and enhancing simulation accuracy.

As the application of machine learning in CFD has evolved, several innovative methodolo-
gies have emerged. For instance, Edeling et al. [28] utilized Bayesian calibration for mul-
tiple turbulence models across diverse flow scenarios, illustrating that model coefficients
exhibited considerable variability, underscoring the importance of adaptive, condition-
specific calibration strategies. This adaptation ensures that models remain robust across
varying operational contexts, thereby enhancing their applicative value.

Simultaneously, Ling et al. [29] developed tensor basis neural networks (TBNNs),
which integrate invariance principles to accurately predict the anisotropic tensors of



2.3. Data Driven Turbulence Modelling 15

the Reynolds stress. This method represents a significant shift towards embedding ma-
chine learning deeply within the fabric of turbulence modeling, leading to more accurate
and dynamically responsive CFD simulations.

Further extending the capabilities of machine learning in this area, Kaandorp and Dwight
[30] introduced a Tensor Basis Random Forest (TBRF) approach. This methodology,
inspired by TBNNs, utilizes random forests—a simpler and potentially more robust
machine learning technique compared to deep neural networks—for the prediction of
anisotropy tensors. The use of random forests facilitates easier training processes and
enhances stability when integrated into CFD solvers. This approach not only streamlines
the computational process but also mitigates some of the challenges associated with the
high computational costs of deep learning models.

2.3.1. Uncertainty quantification analysis of RANS simulations
There are two primary types of uncertainty that can be modeled in the uncertainty
quantification problem: epistemic uncertainty and aleatoric uncertainty [31] [32].

The aleatoric uncertainty refers to the intrinsic noise present in the observations. This
includes, for example, sensor noise or motion noise, which engenders uncertainty that
cannot be reduced even by gathering supplementary data. In contrast, epistemic uncer-
tainty refers to the uncertainty in the parameters of a model, which represents our limited
understanding of the model responsible for producing the observed data. This particular
form of uncertainty, sometimes referred to as model uncertainty, can be diminished with
adequate data. Aleatoric uncertainty may be also categorised as homoscedastic uncer-
tainty, which remains consistent across various inputs, and heteroscedastic uncertainty,
which fluctuates based on the inputs to the model, potentially leading to outputs that
are noisier than others.

These types of uncertainties play a crucial role in various modeling and simulation dis-
ciplines, including computational fluid dynamics (CFD). In recent years, there has been
a growing interest in leveraging machine learning techniques to better quantify and
manage these uncertainties, particularly in Reynolds-Averaged Navier-Stokes (RANS)
simulations.

In the field of computational fluid dynamics, the integration of machine learning tech-
niques for uncertainty quantification in RANS simulations has seen substantial advance-
ments. Notably, Xiao et al. [33] developed a Bayesian data-driven methodology that
leverages high-fidelity observations to iteratively refine Reynolds-stress fields, demon-
strating effectiveness even with limited data. However, this approach is constrained to
specific flow configurations for which the model was explicitly trained.

Further extending the capability of machine learning in this domain, Wu et al. [34]
implemented a method using Mahalanobis distance and kernel density estimation to
estimate model confidence. While this technique enables the identification of regions
with lower confidence post-training, it is limited to predicting the anisotropic stress and
does not provide true probabilistic bounds.

Building on these methods, Geneva et al. [2] employed an invariant Bayesian deep
neural network, trained via Stein variational gradient descent, to predict the anisotropic
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tensor components of Reynolds stress. This model not only enhances the accuracy
of RANS predictions but also quantifies uncertainties systematically, capturing both
aleatoric and epistemic sources. Despite its advancements, the framework’s reliance on
comprehensive training data and the computational demands of deep neural networks
highlight persistent limitations.

Recent contributions by Tang et al. [3] and Cherroud et al. [35] have further refined this
approach, addressing challenges related to complex flow scenarios and sparse data envi-
ronments, respectively. However, issues with model generalization remain, particularly
in cases involving high Reynolds numbers or significant flow separations.

The latest study by Graham et al. [36] introduces BNNs to model both data and
uncertainty in predicting closure models for reacting turbulence, showcasing improved
generalization capabilities. This work will be used as a reference point for developing
our study, aiming to enhance model reliability across diverse flow conditions.

2.4. Research Objective
The linear eddy viscosity theory is the main source of errors in standard RANS turbu-
lence models. The mean strain rate and the Reynolds stress anisotropy tensor are said
to be directly correlated under this idea; however, experimental data has shown that
this link is not always true. As such, a large amount of data-driven turbulence modeling
research is devoted to improving and resolving this assumption.

Nowadays in turbulence modeling problem combine with neural network become more
and more popular. However, uncertainty quantification is a larger problem especially
for the uncertainty from both the data and model.

Bayesian Neural Networks (BNNs) present a promising approach to estimate and predict
modeling uncertainties. They leverage large data volumes, offer fast inference times (rel-
ative to Gaussian processes), provide rigorous uncertainty assessments, and demonstrate
high expressivity.

This study will build upon Geneva’s framework to extend BNNs’ capacity to encompass
both aleatoric and epistemic uncertainties. The central research question is:

Can the integration of the Bayesian Neural Network framework in data-driven turbu-
lence modeling not only improve the accuracy of RANS results but also capture the dual
uncertainties inherent in both the model and the data, surpassing current methods?

The two primary study areas related to this challenge are data-driven turbulence mod-
eling and the Bayiesan neural network architecture. The performance of uncertainty
quantification for BNNs will be the primary emphasis, and the outcomes will be evalu-
ated in a data-driven turbulence scenario. In order to address the research issue, several
related questions come up:

• Can BNNs both capture the uncertainty from the model and the uncertainty from
the data?

• Does predicting uncertainty reduce the prediction accuracy of the mean?
• Does the BNN model have a good results apply to different flow case?



3
Methodology

3.1. Bayesian neural network
In contrast to simple neural networks, Bayesian neural networks provide a probability
distribution to its weights rather than a single value or point estimate. These prob-
ability distributions can be used to evaluate prediction uncertainty and represent the
uncertainty in weights. This is accomplished by using the Bayes theorem to create a
posterior distribution by updating the prior distribution of the weights with the data’s
information. In order to approximate the intractable posterior distribution, training
BNNs often includes techniques like variational inference or Markov Chain Monte Carlo
(MCMC)[37].

Figure 3.1: Left: each weight has a fixed value, as provided by classical neural network. Right: each
weight is assigned a distribution, as provided by Basyian neural network[38]

Consider a deterministic neural net y = f(x,w) with input x, output y, and all parame-
ters w including the weights and biases. The final output for a Bayesian can be viewed
as probabilistic model p(y|x,w). For classification, y is a set of classes and p(y|x,w) is
a categorical distribution. For regression, y is a continuous variable and p(y|x,w) is a
Gaussian distribution. Considering the prior on the weight as a distribution:p(w).Given
a training dataset sampled distribution:D = {x(i), y(i)},The likelihood function can be

17
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written as
p(D|w) =

N∏
i=1

p(y(i)|x(i), w). (3.1)

Multiplying the likelihood with a prior distribution p(w) is, by Bayes theorem, propor-
tional to the posterior distribution

p(w|D) ∝ p(D|w)p(w). (3.2)

Maximizing p(D|w)p(w) gives the maximum a posteriori (MAP) estimate of w. The
usual optimization objective during training is the negative log likelihood. The posterior
predictive distribution can be calculated by

p(y|x,D) =
∫
p(y|x,w)p(w|D)dw. (3.3)

3.1.1. Kullback-Leibler divergence
Unfortunately, it is impossible to solve the posterior p(w|D) analytically in neural net-
works. Consequently, it has to use a variational distribution q(w|θ) to approximate the
actual posterior, where θ denotes the BNN’s parameters, which have a known functional
form and whose parameters need to be estimated. Minimizing the Kullback-Leibler
divergence is one way to do this [39].

The KL divergence between the variational distribution q(w|θ) and the true posterior
p(w|D) is defined as the following equation

KL(q(w|θ) || p(w|D)) =
∫
q(w|θ) log q(w|θ)

p(w|D)
dw,

= Eq(w|θ) log q(w|θ)
p(w|D)

.

(3.4)

Since it is difficult to write the posterior equation explicitly, the final objective is to
minimize the previously specified loss function 3.4. Two variational methods, the Evi-
dence Lower Bound (ELBO) method and the Stein Variational Gradient Descent (SVGD)
method separately, will be covered in the next section.

3.1.2. Stein Variational Gradient Descent
In contemporary research on variational inference, the common practice involves confin-
ing the approximate posterior within a designated parametric variational family. This
approach, while standard, often encounters significant drawbacks, particularly in the con-
text of sampling-based methods, which are notorious for their slow convergence rates and
operational challenges. In light of these limitations, this study proposes the adoption
of a cutting-edge, non-parametric approach to variational inference, termed Stochastic
Variational Gradient Descent (SVGD)[40]. This innovative methodology merges the
foundational principles of traditional gradient descent with the advanced efficiency of
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particle methods, presenting a novel pathway in the optimization of variational infer-
ence.

The foundational premise of SVGD is anchored in the utilization of an extensive ensem-
ble of particles, each represented through neural network architectures, to effectively
minimize the Kullback-Leibler (KL) divergence. This strategic approach facilitates a
more accurate approximation of the target distribution. The ensuing sections of this
document are dedicated to a comprehensive exposition of SVGD, delineating its theo-
retical underpinnings and operational mechanisms in detail, thereby demonstrating its
potential as an effective tool in variational inference.

In this case, an initial feasible distribution (e.g., the prior) represented by samples is the
source of the variational family, which are distributions produced by performing smooth
transformations. Each particle’s transformations are stated as follows

Trans(θ) = θ + ηψ(θ), (3.5)
where ψ(θ) ∈ F is the perturbation direction within a function space F, η is the step
size, and θ denotes the neural network’s parameters. The transformation term Trans
changed the starting density q(θ) to a density near the ultimate goal density if ϵ is small.
This can be expressed as follows

q[Trans](θ) = q
(
Trans−1(θ)

) ∣∣∣det
(
∇Trans−1(θ)

)∣∣∣ . (3.6)

The variational posterior is approximated using a particle approximation, which is given
by a collection of samples {θi}Si=1 with the empirical measure instead of a parametric
form. µS(dθ) = 1

S

∑S
i=1 δ

(
θ − θi

)
dθ. The goal is to guarantee that the measure of

the genuine posterior νp(dθ) = p(θ)dθ weakly converges to µ. These samples are trans-
formed using Trans, and the push-forward measure of µ is indicated as Transµ.

The intension is to solve the functional optimization issue that follows by identifying the
direction that minimizes the KL divergence between the variational approximation and
the target distribution

max
ψ∈F
{− d

dϵ
KL(Transµ||νp)|ϵ=0}. (3.7)

And then it can be derived that [40]

− d

dϵ
KL(Transµ||νp)|ϵ=0 = Eµ[Apψ], (3.8)

where Ap is called the Stein operator, and it is defined as the following equation

Ap = ∇ · (pψ)
p

= (∇p) · ψ + p(∇ · ψ)
p

= (∇ log p) · ψ +∇ · ψ. (3.9)

And the expectation Eµ [Apϕ] evaluates the difference between p and µ, and its maximum
is defined as the Stein discrepancy,

S(µ, p) = max
ψ∈F

Eµ [Apψ] . (3.10)
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According to Liu [41], the optimal perturbation direction (also known as the Stein dis-
crepancy) has a closed-form solution that is the following equation when the functional
space F is selected to be the unit ball in a product reproducing kernel Hilbert space H
with the positive kernel k(θ,θ′)

ψ∗(θ) ∝ Eθ′∼µ

[
Aθ′

p k (θ,θ′)
]

= Eθ′∼µ [∇θ′ log p (θ′) k (θ,θ′) +∇θ′k (θ,θ′)] . (3.11)

Here ψ∗(θ) means the optimized direction. And finally the algorithm to transform an
initial distribution q to the target posterior distribution is written as following algo-
rithm:

Algorithm 1 Bayesian Inference via Stein Variational Gradient Descent

Require:
{
θ0
i

}n
i=1

, a target distribution with density function p(θ), and an initial par-
ticle set {θi}ni=1, a collection of particles that approximates the target distribution

1: for iteration l do
2: θℓ+1

i ← θℓi + ηℓψ
∗
(
θℓi
)

3: where ψ∗(θ) = 1
n

∑n
j=1

[
k
(
θℓj,θ

)
∇θℓ

j
log p

(
θℓj
)

+∇θℓ
j
k
(
θℓj,θ

)]
and ηℓ is the step

size at the ℓ-th iteration.
4: end for

In this online algorithm, the repulsive force term∇k(θ,θ′) maintains a degree of diversity
while the gradient ψ∗(θ) pushes the samples towards the high posterior region by kernel
smoothed gradient term k(·, ·)∇ log p. The procedure reduces to the Maximums posterior
estimation (MAP) estimate of the posterior when the number of samples reaches 1.
Appendix B contains a thorough proof and derivation for the SVGD approach.

Figure 3.2: Consider a toy example involving a 1D Gaussian mixture. The red dashed lines
represent the target density function, while the solid green lines depict the particle densities at various
iterations of our algorithm. It is important to note that the initial distribution is intentionally set up
with minimal overlap with the target distribution. This example demonstrates how SVGD effectively
escapes from the local mode nearby and successfully identifies the more distant mode on the left.

The demonstration illustrated in Figure 3.2 begins with 50 samples drawn from a Nor-
mal distribution, specifically N (−10, 1). The objective is to iteratively transform these
samples to conform to a specified target distribution, which in this case is a Gaussian
mixture model defined as 1

3N (−2, 1) + 2
3N (2, 1). This transformation process follows

the steps outlined in Algorithm 1.
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SVGD method used in turbulence modeling
In the section 3.1.2, the mathematical foundations of the SVGD methond have been
discussed. However, to use this method in the turbulence modeling, the prior and
likelihood distribution forms need to be discussed in this section. The choice ofthe
distribution is inspired by the work by [2] and [42].

To set up the network, it is necessary to initially define a prior for the weights. Given
the extensive quantity of weights in a fully-connected neural network, we postulate that
these weights follow a probability density function characterized by a fully-factorizable
zero mean Gaussian, along with a precision scalar α that adheres to a Gamma distribu-
tion

p(w | α) = N
(
w | 0, α−1IK

)
, p(α) = Γ (α | m0, n0) , (3.12)

where the form parameters are n0 = 0.03 and the rate is m0 = 1. Moreover, the identity
matrix inRn·n is indicated by In. The density of a small Student’s T distribution centered
at zero may be found in the resultant prior. This mitigates the risk of over-fitting and
encourages sparsity [43]. Such a prior places minimal limitation on the network’s final
functional shape because of the very non-linear nature of the neural network and the
application of a significant number of weights [44].

To get the final distribution, the output of the neural network should include both the
mean and the variance. And for the final output structure, it include both of them. The
details of such neural network output can be found in the following section in section
3.4.1 and the section 3.1.4. Therefore, the output of the network can be written as

output = [f(x,w), σ2(x,w)], (3.13)

where y = f(x,w) + ϵ is the system’s output, with ϵ ∈ N (0, σ2(xi, w)). To capture the
aleatoric uncertainty for each input and coefficient, consider the situation σ2(x,w). In
order to impose the positive variance requirement in practice, the second component of
the neural net output needs be transformed using a softplus algorithm: σ2 = log(1 +
exp(·)) + eps, with numerical stability provided by eps = 104. The likelihood equation
can be expressed as follows if the likelihood has a normal distribution.

p(D|w) =
M∏
i=1

[
N
(
yi | f (xi,w) , σ2(xi, w)

)]
. (3.14)

Multiply equation 3.14 with the prior equation 3.12 (using the Bayes theorem), the
posterior equation can be written as

p(w,D) =
M∏
i=1

[
N
(
yi | f (xi,w) , σ2(xi, w)

)]
N
(
w | 0, α−1IK

)
Γ (α | m0, n0) . (3.15)

In practice, it is often more convenient to use the negative log-likelihood (NLL) as the
final optimization objective. By taking the logarithm of both sides of equation 3.15,
the multiplication terms are converted into addition, simplifying the expression. This
transformation can significantly accelerate the training process of neural networks. The
negative log-likelihood is then expressed as

log p(D|w) =
M∑
i=1

(log 1
σ(xi, w) ·

√
2π
− 1

2
(f(xi, w)− yi

σ(xi, w)
)2). (3.16)
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The typical radial basis function kernels are selected for k(θ, θ′) in this work. This
formulation yields a straightforward updating process where algorithm 1 computes and
updates the optimal decent direction for all particles. Next, the predicted mean can be
estimated using Monte Carlo approximations

E (y | x,D) = Ep(w,β|D) (E (y | x,w, β))

= Ep(w|D) (f (x,w)) ≈ 1
N

N∑
i=1
f (x,wi) .

(3.17)

Furthermore, the variance is calculated similarly as the equation 3.22:

Var(y) = Ep(w|D)[σ(xi, w)] + Var
(
Ep(w|D)[y | x,D]

)
. (3.18)

3.1.3. Evidence lower bound (ELBO) objective function
As stated in the preceding section 3.1.1, the objective of training BNNs is to reduce
the KL divergence between the weight distribution and the actual Bayesian posterior,
contingent upon the dataset D. In addition to the SVGD approach, the expansion
and rearrangement equation 3.4 provides the evidence lower bound (ELBO) objective
function[45]. This objective function can serve as an alternative cost function to minimise
the KL divergence. The ELBO function can be written as

KL(q(w|θ) || p(w|D)) = Eq(w|θ) log q(w|θ)
p(D|w)p(w)

,

= Eq(w|θ) [log q(w|θ)− log p(D|w)− log p(w)] .
(3.19)

And function 3.19 can be formally rewritten as

θ∗ = arg min
θ

KL[q(w|θ)∥p(w|D)] = arg min
θ

KL[q(w|θ)∥p(w)]︸ ︷︷ ︸
prior-informed

−Eq(wθ)[log p(D|w)]︸ ︷︷ ︸
data-informed

.

(3.20)

The initial component of equation 3.20 represents the KL divergence between the prior
distribution and the learnt distribution of the BNN parameters. The second part in
the equation denotes the data misfit, which is measured by the anticipated negative log-
likelihood of the data across the distribution of credible models, as determined by the
weight assignment. Thus, the objective function may be estimated by selecting samples
w(i) from the set q(w|θ)

ELBO ≈ 1
N

N∑
i=1

[
log q(w(i)|θ)− log p(w(i))− log p(D|w(i))

]
. (3.21)

3.1.4. Uncertainty quantification
As mentioned in section 2.3.1, the uncertainty needed to be calculated is aleatoric and
epistemic uncertainty. While the main emphasis of authors using closure models in CFD
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solvers is on epistemic uncertainty, it is equally important to assess aleatoric uncertainty.
Since BNNs ultimately train a collection of neural networks, the epistemic uncertainty
can be easily calculated from variance of the expected outputs of the networks. To
calculate the aleatoric uncertainty, an effective strategy to do this is by adjusting the
parameters of each output dimension to account for heteroscedastic uncertainty present
in the data [46] [47]. In this work, the output random variable is modelled using the
Gaussian form derived from [48].

Figure 3.3: (a) A BNN that only accounts for epistemic uncertainty, and (b) a BNN that accounts
for both epistemic and aleatoric uncertainty[36].

Figure 3.4: The left part of this dataset is characterised by the epistemic uncertainty with few data.
And the right part of the dataset is characterised by the aleatoric uncertainty with large amount data.
This kind of dataset can show the ability of the method to capture such two uncertainty.

The structural difference between a neural network that can describe epistemic uncer-
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tainty and one that can model both epistemic and aleatoric uncertainty is demonstrated
in Figure 3.3. In the case of [48] type architecture, the last layer of the output is mapped
to (yµ,yσ)T ∈ R2do in order to capture the aleatoric uncertainty. The final output vari-
able is then parameterised as y ∈ Rdo ∼ N (yµ, diag (yσ)) by yµ,yσ. The law of total
variance [49] may be used to break down the overall variance (uncertainty) in the pre-
dictions into its epistemic and aleatoric components within the context of such a neural
network. The following equation [50] represents this division

Var(y) = Eq(w|θ)[Var(y | x,D)] + Var
(
Eq(w|θ)[y | x,D]

)
. (3.22)

The predictive variance Var(y) is divided into an aleatoric component Eq(w|θ)[Var(y |
x,D)] and an epistemic component Var

(
Eq(w|θ)[y | x,D]

)
. The aleatoric uncertainty is

calculated by the mean of all the standard deviation outputed by each neural netowr.
And the epistemic uncertainty is easily equals to the variability of the model’s mean
predictions. For a given w ∼ q(w | θ), the predictive mean is given by the first network
output, yµ. The methods for calculating this two kind of uncertainties are detailed and
discussed in the Appendix C.

Figure 3.5: Model with only epistemic
uncertainty

Figure 3.6: Models with both aleatoric and
epistemic uncertainty

As an illustration, consider Figures 3.5 and 3.6, which display the magnitudes of the
uncertainties for the one-dimensional example (Figure 3.4). The following equations are
used to create the training data

y = x5 + 0.1(1.6 + x)ε, (3.23)
where ε is a function defined as normal distribution N with mean equals to 0 and stan-
dard deviation equals to σ2. Within this particular framework, the level of noise in the
data escalates in correlation with the variable x. In contrast to the 600 data points in
the region on the right, only 60 data points are retained in the left zone. The blue line in
figure 3.5illustrates the model’s predictions only from an epistemic uncertainty perspec-
tive, which specifically accounts for the uncertainty arising from the model’s parameters.
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Greyscale representations of the training data points are displayed. The proposed model
well represents the fundamental function, but its level of uncertainty is negligible in ar-
eas with ample data and rises in places with little data, such as those located to the
left of the origin. Furthermore, picture 3.6 introduces a model that incorporates both
epistemic and aleatoric uncertainties. The red line denotes the forecasts made by the
model, while the shaded region represents the collective uncertainty. The aleatoric un-
certainty, which considers the intrinsic noise in the data, broadens as the variable x rises,
as shown by the expansion of the shaded region. The data points used for training are
once again displayed in grey. This design incorporates both the uncertainty caused by
model parameters and the intrinsic variability in the data, leading to a wider range of
uncertainty, particularly in areas with significant data noise.

3.1.5. Discussion on the selection of prior distribution for weights
Since the first term of the ELBO 3.20 represents the prior distribution over the weights,
which significantly influences the loss function, it is crucial to select an appropriate prior
distribution. An improper prior can severely impact model performance, particularly
when the data is limited. In extreme cases, prior misspecification can only be mitigated
in the asymptotic limit of an infinitely large dataset, where the model’s posterior distri-
bution will eventually converge to the true distribution. However, in practical scenarios
with finite data, the choice of prior remains a critical factor in ensuring robust and
accurate model inference [51].

3.2. Introduction to Extreme learning machine
Extreme learning machines offer a potentially useful approach to mitigate the uncertainty
of results that is exacerbated by an excessive number of neural network parameters. In
the ELM algorithm, the hidden nodes are initially defined randomly and then fixed
without undergoing iterative tweaking. It is sufficient to learn only the weights between
the hidden layer and the output layer, resulting in a significant reduction in the amount
of variable parameters that impact the final outcome[52]. Figure 3.7 illustrated structure
of ELM.

Figure 3.7: Diagram of the basic ELM architecture. A variety of computational node types may be
combined to form the hidden nodes in ELM [52].

Based on the diagram shows in figure 3.7 and the mathematical formulation for neural
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networks, the output function of ELM can be written as the following equation

fL(x) =
L∑
i=1
αihi(x) = h(x)α. (3.24)

Consider the set α = [α1, ..., αL]T . The production weight vector between the hidden
layer of L nodes and the m ≥ 1 output nodes is denoted as h(x) = [h1(x), ..., hL(x)].
represents the row-wise output vector of the hidden layer in relation to the input x. An
output of the ith hidden node is denoted as hi(x). Specifically, in practical scenarios,
hi(x) can take form

hi(x) = G (ai, bi,x) , ai ∈ Rd, bi ∈ R, (3.25)
The activation function for each hidden layer, such as the sigmoid function, is denoted
as G(a, b, x. Moreover, a, b represents the weights and bias parameter associated with
each layer. Inside the ELM framework, the hidden node parameters (a, b) are produced
randomly, regardless of the training data, based on a continuous probability distribution
rather than being explicitly taught. Initially setting all the hidden layer settings is the
first step of the ELM process. Given that, obtaining the learnable parameter α becomes
a straightforward linear inverse task. Using the linear algebra knowledge, Problem can
be set as follows

Hα = Y, (3.26)
where H is the hidden layer output matrix

H =


h1 (x1) · · · hL (x1)

... ... ...
h1 (xN) · · · hL (xN)

 , (3.27)

and Y is the training data target matrix

Y =


yT1
...

yTN

 =


y11 · · · y1m
... ... ...
yN1 · · · yNm

 . (3.28)

And the optimal solution to α is simplified given by using the Moore–Penrose generalized
inverse of matrix method

α = H†T, H† =
(
HTH

)−1
HT . (3.29)

Figure 3.8: Regression from the sinusoidal data with added noise . And the neural network only have
one hidden layer and using the noraml distribution N (0, 1) to initially get the weights for hidden layer.
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Employing the previously outlined approach, a simplified example was calculated. This
neural network design consists of a single input layer, one hidden layer, and one output
layer. Initialisation of all weights and biases was performed using a normal distribution
N (0, 1). Finally, the hidden layer parameters were set to a constant value, and the ReLU
function was chosen as the activation function. An equation denoted as 3.29 was used
to establish the parameter connecting the hidden layer to the output layer. Finally, the
training data is computed using the following equation

y = 3sin(x) + ε, (3.30)

where x ∈ (−1, 1) and ε ∈ N (0, 0.5). The outcomes are presented in Figure 3.8. The
figure visually confirms that the ELM model effectively captures the underlying pattern
of the noisy sinusoidal data, as evidenced by the close alignment between the predicted
values and the original data points.

The next phase involves adapting the ELM concept to SVGD-BNN. A challenge is en-
countered because equation 3.29 is unsuitable for obtaining the parameter α, as it does
not provide information regarding uncertainty. The proposed approach is to fix all pa-
rameters in the neural network’s hidden layer during the training phase, while employing
the SVGD method exclusively to update the parameters between the hidden layer and
the output layers. This implies that θ in algorithm 1 includes only the parameters for
the final layer, which means

{θi}Ni=1 ,θi = {αi}, (3.31)
where N is the number of the neural networks.

3.2.1. Extreme learning machine combine with Bayesian neural net-
work

The detailed mathematical formulation to integrate the ELM with the SVGD method
will be elaborated in the subsequent section, aligning the formulation with the discussions
in section 3.1.2. Given that this scenario involves quantifying uncertainty, the output
function, as defined in equation 3.24, will incorporate data noise as follows

T = h(x)α + ε. (3.32)

Here ε is from the following distribution

p(ε) = N
(
ε | 0, β−1I9

)
,

p(β) = Gamma (β | a1, b1) .
(3.33)

And then the likelihood can be written as

p(D|w) =
M∏
i=1

[
N
(
ti | h (x)α, β−1

)]
Γ (β | a1, b1) . (3.34)

With the same prior written in equation 3.12, the posterior can be written as

p(α | D) =
M∏
i=1

[
N
(
ti | h (x)α, β−1

)]
N
(
α | 0, η−1IK

)
Γ (η | a0, b0) Γ (β | a1, b1) . (3.35)
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The reason for using such prior is for comparison with the results from BNN svgd
method. Futhermore, the inital weight for the hidden layer’s parameters is come from
the normal distribution N (0, 1). After getting the above posterior formulation, SVGD
can be used to update the α. And the results of this intergated method will discuss in
section 4.1.1.

Training from the same data as figure 3.7, the results are given by figure 4.3. It can be
concluded that the the new combine method demonstrates commendable efficiency in
data regression. Furthermore, the analysis reveals a notable expansion in the uncertainty
region in the absence of data, corroborating the anticipated theoretical predictions.

3.3. Corrections for turbulence model
In this study, the k−ω SST model, as outlined in Section 2.1.4, is selected for applica-
tions. Nevertheless, in order to address the constraints of this model, two correction
terms will be included, as outlined in SpaRTA by Schmeltzer[53]. The approach im-
plemented an additional correction term to the conventional anisotropy tensor. An
enhanced constitutive relation is formed by equating the residual for the constitutive
relation to an additive term b∆

ij

bij = −νt
k
Sij + b∆

ij . (3.36)

Editing the anisotropy tensor will impact the generation of turbulent kinetic energy.
Therefore, a second correction term, denoted as R, is included to account for this modi-
fication. The equations that regulate the variables k and ω in this improved k−ω SST
model are as specified below

∂tk + Uj∂jk = ∂j [(ν + σkvt) ∂jk] + Pk +R− β∗ωk, (3.37)

∂tω + Uj∂jω = ∂j [(ν + σωνt) ∂jω] + CDkω + γ

νt
(Pk +R)− βω2. (3.38)

Equations 3.37 and 3.38 utilize bij, k, and u from LES or DNS to acquire values of ω
and R. The k-corrective frozen RANS technique is used to calculate the magnitude of
b∆
ij and R. With the use of the LES or DNS data and the value of νt obtained via this

freezing method, the required adjustment b∆
ij is found.

3.3.1. Non-linear eddy viscosity model
A modeling strategy needs to be chosen in order to find adjustments for the model-
form errors b∆

ij and R. Additionally, the Bayesian neural network will simulate both
the term and the uncertainty. Numerous prior works [29] [33] have employed a similar
methodology. The underlying premise is that the anisotropy of the Reynolds stress bij
relies on both the rotation rate tensor Ωij = 1

2ω (∂jUi − ∂iUj) and the strain rate tensor
Sij = 1

2ω (∂jUi + ∂iUj). According to the Cayley-Hamilton theorem, the anisotropic
component of the Reynolds stress may be written in the following general form

bij (Sij,Ωij) =
N∑
n=1

T
(n)
ij αn (I1, . . . , I5) . (3.39)
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Composed of five interconnected invariant Im and ten nonlinear base tensors T (n)
ij . Ad-

ditionally, this method’s specifics are covered in [54]. Furthermore, this research exclu-
sively considers two-dimensional flow scenarios, where the first three base tensors consti-
tute a linearly independent basis and only the first two invariants are non-zero.Duraisamy
(2019) Turbulence. Thus, the collection of invariants and base tensors may be formulated
as

T
(1)
ij = Sij, T

(2)
ij = SikΩkj − ΩikSkj,

T
(3)
ij = SikSkj −

1
3
δijSmnSnm,

I1 = SmnSnm, I2 = ΩmnΩnm.

(3.40)

The method may be operationalized by substituting equations 3.40 into equation 3.39.
Only the coefficient functions αn requires investigation at this juncture. According to
Leschziner [55], the transport equations for turbulent quantities incorporating convection
and diffusion components can only consider nonlocal effects when considering the normal
stresses 2

3kδij. This limitation arises from the restrictions imposed by the local closure
hypothesis. The term R contributes local information to rectify the transport equations.
Dependent on the local sign of R, it either increases or decreases the net production Pk
locally. Consequently, it functions as an additional term for production or dissipation
that aids in minimizing the error in k. Moreover, it may be modeled in a related manner
to the development of turbulence

R = 2kb∆
ij∂jUi + α4ϵ, (3.41)

where ϵ = ωk, α4 = f(I1, I2). Adding this term to correct R is justified by equation
3.37, as ωk significantly influences R. With equation 3.41, the nonlinear eddy viscosity
framework can also model R. Furthermore, by applying the base tensor and invariants
as described in equation 3.40, the remaining task involves using a neural network to
determine the appropriate functions αn(I1, I2) for n = 1, . . . , 4 to correct the model-
form error. This approach leverages the neural network’s capability to learn complex
mappings, thereby improving the accuracy of the turbulence model by addressing the
discrepancies in the predicted turbulent stresses.

3.4. Tensor basis neural network
Tensor-based neural networks may be created based on the theoretical component on
non-linear eddy viscosity found in section 3.3.1. Furthermore, [29] is the first to propose
this concept. Using the symmetric and antisymmetric tensor components of the velocity
gradient tensor, this neural network predicts the anisotropic tensor of the Reynolds stress.
The neural network accomplishes both Galilean invariance and transformation coordina-
tion invariance by using tensor invariants. As a result, this model works quite well for
forecasting flows whose geometries are different from those in the training dataset.
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Figure 3.9: Invariant, fully-connected neural network architecture proposed by [29], with some
connections omitted for clarity. Scalar values are represented by circles, while 3 × 3 second-order
tensors are represented by rectangles.

The anisotropic term in the neural network model is modeled by using the linear combina-
tion found in Equation 3.39. The tensor basis functions and invariants in Equations 3.40
are employed in place of the components of the symmetric and antisymmetric tensors
(s and ω), as shown in Figure 3.9 (all ten tensors and invariants are depicted). Because
of the neural network’s structure, the model may be (a) Galilean invariant, which is
accomplished by using the rotation tensor and rate-of-strain functions of the velocity
gradient. (b) By using the invariant inputs Ii, invariance to coordinate transformations
is preserved (c) Since every variable is nondimensionlized, any activation function and
scaling technique may be applied. In addition, this model of eddy viscosity is the most
generic formulation; that is, it is not bound by the restrictions of simpler models that
dictate the anisotropic term’s shape. However, a fundamental premise of this model is
that the invariants Ii can provide a thorough representation of the mapping between the
RANS and LES physical domains. More input characteristics may jeopardize coordinate
system invariance, which would limit the model’s capacity to generalize, however this is
not guaranteed.

3.4.1. Tensor basis Bayesian neural network
In this work, the final prediction target is R as described in Equation 3.41. Integrating
the discussion from Section 3.4 on the tensor basis neural network and Section 3.1.4
on capturing both epistemic and aleatoric uncertainty through the neural network, the
structure for the tensor basis Bayesian neural network is developed to obtain the final
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R. For the 2D flow case, Equation 3.41 can be reformulated as

R = Dk

Dt
= 2kbij∂iUj + ϵ = 2k

3∑
n=1

T
(n)
ij αn (I1, I2) ∂iUj + α4(I1, I2)ϵ. (3.42)

Figure 3.10: Invariant, fully-connected Bayesian neural network architecture with output aleatoric
uncertainty for 2D flow case. Circles denote scalar values, while rectangles represent 3× 3
second-order tensors.

To model the aleatoric uncertainty, the neural network architecture is extended by adding
an additional unit for each coefficient αn in the final layer, which corresponds to the
standard deviation σαn of each coefficient. Figure 3.10 shows the fully neural network
structure in 2D flow case. The structure can be divided into two parts. The first part
utilizes the invariants as the input layer to obtain both the tensor coefficients and their
respective variances. The second part involves a tensor and scalar input layer, which
multiplies the coefficients to derive the final bij. Finally, bij is multipled by the the
velocity gradient and added to the turbulence kinetic energy to yield the final R.

Assuming that each αn (n = 1, ..., 4) is independent, the principle of uncertainty propa-
gation can be applied to compute the final aleatoric uncertainty for R. This calculation
is based on the propagation of variances through the model, as detailed in [56]. The
resulting equation for the final aleatoric uncertainty is presented as follows

σR =

√√√√4k2
3∑

n=1
(T (n)

ij )2σαn(∂iUj)2 + σα4ϵ
2. (3.43)

Utilizing the neural network structure described in this section, it is possible to effectively
retain the benefits of the tensor basis neural network presented in Section 3.4, while
also accurately calculating the epistemic and aleatoric uncertainty of R. Such a neural
network structure is also one of the innovations of this thesis.



4
Experimental Setup

In this chapter, the selection of the optimal method for enhancing the performance
of the Bayesian neural network will be examined. This evaluation will consider both
one-dimensional (1D) data and turbulence datasets to ascertain which method performs
more effectively under varying conditions. Following the determination of the most suit-
able optimization method, an extensive hyperparameter search will be conducted. This
process will involve a comprehensive exploration of the hyperparameter space to identify
the optimal configuration, ultimately defining the final neural network architecture. The
objective is to achieve an optimal balance between model complexity and generalization
capability, thereby ensuring robust and precise predictive performance across different
data types.

4.1. Method selection
The optimization objective for Bayesian neural networks is to minimize the KL diver-
gence, as demonstrated in Equation 3.4. Two methods for achieving this have been
introduced in Section 3.1.2 and Section 3.1.3. This section focuses on determining which
method is most effective for minimizing KL divergence. Additionally, one-dimensional
data and turbulence data are utilized to validate the accuracy of the final predictions
and the precision of the uncertainty estimations.

4.1.1. Test on one-dimensional data
The simple one-dimensional data is created by the following equation

y = x3 + 0.1(1.5 + x)ε, (4.1)

where ε ∼ N (0, σ2) and σ = 0.25. This equation closely resembles the data example in
Section 3.1.4, with the substitution of x5 by x3. This modification is motivated by the
need for reduced computational time and enhanced contrast effects. Similarly, only 60
data points are retained in the left region, in contrast to 600 data points in the right
region. This configuration ensures that both epistemic and aleatoric uncertainties can be
effectively evaluated. Additionally, it facilitates the assessment of model performance in

32
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the transition area, thereby providing a comprehensive evaluation of the neural network’s
predictive capabilities under varying data densities. This setup is designed to challenge
the model’s ability to generalize and accurately capture uncertainty across different
regions, ensuring robust performance in practical applications.

Figure 4.1: Models with both aleatoric and
epistemic uncertainty using ELBO method

Figure 4.2: Models with both aleatoric and
epistemic uncertainty using SVGD method

The figures illustrate the modeling of both aleatoric and epistemic uncertainty using
two distinct methods: ELBO (Figure 4.1) and SVGD (Figure 4.2). Both methods were
applied to the same training and prediction datasets, utilizing an identical network
structure. The two approaches effectively capture data uncertainty, as indicated by the
shaded regions surrounding the predictive means. The ELBO method, however, presents
a more narrowly bounded uncertainty region compared to the SVGD method, suggesting
potentially higher confidence in its predictions. Conversely, the SVGD method exhibits
a broader uncertainty range, particularly noticeable in the interval between -0.5 and
0.5, reflecting a more conservative stance in accounting for model uncertainty. This is
especially evident in the region devoid of training data, where large epistemic uncertainty
is present. The SVGD method’s larger uncertainty region than the ELBO method
indicates a tendency to assign greater uncertainty to areas lacking data. Both methods
demonstrate predictive means that closely align with the training data trend, with slight
variations in uncertainty expression. Overall, while both techniques are effective in
uncertainty modeling, the ELBO method appears to provide more precise estimates,
whereas the SVGD method offers a more cautious representation.

1-D Results for extreme learning machine
Training from the same data as Figure 3.8, the first simple results are given by Figure
4.3. It can be concluded that the the new combine method demonstrates commendable
efficiency in data regression. Furthermore, the analysis reveals a notable expansion in
the uncertainty region in the absence of data, corroborating the anticipated theoretical
predictions.
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Figure 4.3: Outcomes from Regression of Simplified Training Data Utilizing ELM Combined with
SVGD Method.

Figure 4.4: Regression by ELM-SVGD with
more training data( a more complex data
conidition and 5000 nodes for each layer)

Figure 4.5: Regression by BNN-SVGD with
more training data( a more complex data
conidition)

Figure 4.6: Regression from the same training data as figure 4.4 with one hidden layer and using the
uniform distribution U(−1.5, 1.5) to initially get the weights for hidden layer.

To further assess the efficacy of the ELM-SVGD method, the training data was made
more complex by introducing an additional sin cycle, which displayed higher volatility,
as depicted in Figure 4.4. The outcomes did not show improvement in regression, even
after increasing the number of nodes in both hidden and output layers, compared to
those shown in Figure 4.3. Additionally, when compared to Figure 4.5, which represents
results computed using the original BNN-SVGD method, the regression capability of
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ELM-SVGD was found to be inferior. This can be attributed to the inherent simplicity
of ELM, which becomes a limitation when processing complex, high-dimensional data
patterns or intricate non-linear relationships that demand a more sophisticated analysis.
An experiment with a single hidden layer, where weights for the hidden layer were drawn
from a uniform distribution, is shown in Figure 4.6. Regrettably, this approach yielded
even poorer results. Given the increased complexity inherent in turbulence data, the
ELM-SVGD method combined with BNN is no longer considered a viable option.

4.1.2. Test on turbulence data
The turbulence scenario used to assess the approach is the Periodic Hills (PH) flow,
characterized by the movement of fluid through a channel with uniformly distributed
hills on the lower surface, as seen in Figure 4.7. This instance is widely used to evaluate
the effectiveness of RANS turbulence modeling. The high-fidelity data for this scenario
is obtained from a Large Eddy Simulation (LES) carried out by Breuer et al.[57] at a
Reynolds number of 10,595. A revised mesh consisting of 120 x 130 cells is used to
conduct the related RANS simulations. Cyclic boundary conditions are implemented at
both the entrance and exit to replicate a channel of indefinite length, therefore guarantee-
ing the presence of periodicity in the turbulent flow. An extensive comparison between
LES and RANS findings is facilitated by this configuration, therefore confirming the
accuracy and resilience of the approach in forecasting turbulence properties.

Figure 4.7: The flow domain of the PH10595 case is illustrated with streamlines, colored according to
the magnitude of velocity in the x-direction and y-direction, based on LES data.

SVGD set up
In section 3.1.2, the mathematical foundation for turbulence modeling question have
been discussed. Here, y is the TKE correction term R and the x are different feature to
input. The invariant inputs to the neural network tended to vary strongly in magnitude
including very large values near fixed boundaries. To increase training performance and
efficiency, there two techniques are included:

• At the beginning of each epoch, training points are randomly permuted and then
partitioned into mini-batches. This allows for the data from many flows to be
integrated into a single mini-batch. The use of this method reduces the likelihood
of the model being overly tailored to a certain flow, hence improving the precision
of the forecasts.
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• The inputs to the neural network had a tendency to fluctuate greatly in amplitude,
specifically, they included values that were very large and near to set boundaries.
Therefore, this approach normalizes the strain and rotation tensor by the mean
flow time scale.

Given the preceding detailed mathematical basis, the architecture of the neural network
employed in the study for the PH scenario is outlined in the following table.

Name Value
Number of units in hidden layer 20
Number of hidden layers 5
Batch size 64
Weight decay 0.01
Learning rate 5e-4�with learning rate decay on plateau
Nonlinear activation function Leaky ReLu
SVGD Particles 15
Optimizer ADAM [58]

Table 4.1: Neural network architecture for SVGD BNN

ELBO set up
Following the preceding detailed mathematical basis in section 3.1.4, and the algorithm
is Appendix C the architecture of the neural network employed in the study for the
PH scenario is outlined in the following table. After several experiments, it was deter-
mined that the Sigmoid function as the activation function yields more stable outcomes.
Hence, the Sigmoid function was adopted in the ELBO method. Furthermore, the two
techniques that can improved performance also applied in the ELBO method.

Name Value
Number of units in hidden layer 20
Number of hidden layers 4
Batch size 64
Learning rate 5e-4�with learning rate decay on plateau
Nonlinear activation function Sigmoid
Optimizer ADAM

Table 4.2: Neural network architecture for ELBO BNN

The above table shows the neural network structure for the ELBO method. And the re-
sults of first attempt for this two method will be discussed in the following section.

Results comparison
The R results shaded with the total uncertainty(Aleatoric + Epistemic) with ELBO and
SVGD method are shown in Figure 4.8 and 4.9. The green line is the y = x line which
shows the difference between predicted and actual values�
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In this evaluation, both techniques yield predictions that align well with the selected
training data at the low value part. With the increase of the r, both of the prediction
will for away from the straight line but the results calculated by the SVGD further away.
It is obviously that the prediction by the SVGD method is less accurate than the results
calculated by ELBO. The rrms for the evidence lower bound (ELBO) approach is 0.020,
whereas for the Stein variational gradient descent (SVGD) method it is 0.044. This
indicates that the ELBO method achieves a 54% improvement in accuracy compared to
the SVGD method.

Figure 4.8: Models Incorporating Total
uncertainty(epistemic + aleatoric) Using SVGD
Methods in Turbulence Data Analysis

Figure 4.9: Models Incorporating Total
uncertainty(epistemic + aleatoric) Using ELBO
Methods in Turbulence Data Analysis

The difference in uncertainty scales highlights the contrasting behavior of the two meth-
ods. The ELBO methods shows a suitable uncertainty change that uncertainty increases
as error increases. This means that the uncertainty obtained by this method is as ex-
pected. In contrast, the SVGD method, show almost a constant value in the uncertainty
prediction with a little difference on finite point. The method fail to fully capture the
variability in the data which the same uncertainty for every data point. Given these find-
ings, the ELBO method is ultimately chosen as the preferred approach for turbulence
data analysis, offering a more robust and reliable framework for uncertainty quantifica-
tion in complex data.

Following the selection of the method, the subsequent step involves hyperparameter op-
timization. This process is a critical and empirically driven aspect of neural network
development. Given the multitude of influencing parameters, it is essential to systemat-
ically explore various combinations to identify the optimal configuration that minimizes
loss and enhances generalization performance. The primary objective is to determine the
set of hyperparameters that achieves the lowest possible loss function value while simul-
taneously ensuring robust generalization to unseen data and preventing overfitting.
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4.2. Hyperparameter search

Name Value
Number of units in hidden layer 25
Number of hidden layers 4
Batch size 32
Learning rate 5e-4, with learning rate decay on plateau
Nonlinear activation function Sigmoid
Epochs 400
Optimizer ADAM

Table 4.3: Neural network architecture and training details

The architecture of the model is detailed in Table 4.3. This configuration was estab-
lished through a grid search process for hyper-parameter optimization, considering hid-
den dimensions Nh ∈ {5, 10, 15, 20}, the number of hidden layers Nl ∈ {2, 3, 4}, batch
sizes M ∈ {32, 64, 128, 256, 512, 1024, 2048, 4096}, and learning rates η ∈ {5× 10−3, 1×
10−4, 5 × 10−4, 1 × 10−5, 5 × 10−5, 5 × 10−6}. Each candidate model was trained over a
span of 400 epochs. The selected model was implemented using TensorFlow Probability
in Python [59] [60]. Training was conducted on an NVIDIA GeForce RTX 3060 graphics
card, requiring approximately one hour per training session of 400 epochs.



5
Results and discussion

This chapter presents the results of applying Bayesian neural networks to the turbulence
modeling problem and the performance of the BNN model is demonstrated through a
priori testing. The training and evaluation scenarios involve basic two-dimensional ge-
ometries that demonstrate flow separation across a curved boundary. This is one of
the flow conditions where traditional RANS turbulence models make the largest er-
rors. Initially, the outcomes based on the training data are discussed, highlighting the
network’s performance on the established dataset. Subsequently, the trained Bayesian
neural network is applied to different flow cases to assess the model’s generalizability.
In all scenarios, both the predicted values and the associated uncertainties are analyzed,
providing insights into the model’s reliability and robustness. Furthermore, the impli-
cations of uncertainty quantification for practical turbulence modeling applications are
explored, emphasizing the advantages of Bayesian approaches in capturing the inherent
variability and uncertainty in complex flow phenomena. All results are derived using
regression with the correction for the turbulence kinetic energy (R) as the prediction
target.

5.1. Training results
As discussed in Section 4.1.2, the training dataset is derived from periodic hill data
without the incorporation of additional synthetic data. The outcomes are illustrated
in Figures 5.1 and 5.2. Notably, there is a remarkable concordance between the model
predictions and the LES data, particularly in regions densely populated with data points.
However, the model’s performance deteriorates in regimes characterized by high turbu-
lence correction terms. This finding is supported by Figure 5.1, which shows that as
the R value increases, the predicted values deviate farther from the y = x line. Based
on the same figure, it can be inferred that the aleatoric uncertainty rises proportionally
with the increase in inaccuracy in predicted values. Furthermore, this aligns with what
was anticipated in theory. Aleatoric uncertainty quantifies the degree of random vari-
ation present in the data. The presence of significant data noise can readily result in
substantial inaccuracies in data prediction.

Moreover, the regions with sparse data are correlated with elevated epistemic uncertain-
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ties, especially in areas that deviate significantly from the parity line between the model
predictions and the LES data, most notably at R values greater than 0.2. This discrep-
ancy aligns with theoretical expectations, as epistemic uncertainty will increase with
the lack of data. For the periodic hill case, the flow is predominantly gentle, with only
free shear layer regions capable of generating substantial turbulent energy, as indicated
by the streamline patterns in Figure 4.7. And this character explain the relative small
amount of number value in large kinetic region. Under conditions of abundant training
data, the epistemic error is minimized, underscoring the need for comprehensive data
coverage to mitigate uncertainty and improve model fidelity.

Compared with Figures 5.1 and 5.2, it is evident that these two uncertainties exhibit a
close similarity in distribution and trends, differing numerically by at least an order of
magnitude. This numerical difference arises because epistemic uncertainty, which reflects
the model’s lack of knowledge, decreases as the model converges. Naturally, this leads
to a reduction in uncertainty over time. Consequently, aleatoric uncertainty emerges as
the dominant source of uncertainty. The reason for this similarity will be explained in
the next section.

Figure 5.1: A scatter plot visually
representing the average predictions for each
data point, colored based on the calculation of
aleatoric uncertainty by the BNN model.

Figure 5.2: A scatter plot visually
representing the average predictions for each
data point, colored based on the calculation of
epistemic uncertainty by the BNN model.

5.1.1. Explaination for Aleatoric and Epistemic Uncertainties
In contrast to aleatoric uncertainty, the epistemic uncertainty quantified by BNN can be
strategically utilized to refine datasets, thereby enhancing the TKE correction terms and
improving the modeling of turbulence in anisotropic closure parts. This methodological
enhancement is rooted in the principles of Optimal Experimental Design [61], a strategy
that aims to optimize data selection processes to maximize model performance and
minimize uncertainty. This approach is closely associated with Bayesian optimization
[62], which serves to systematically refine predictive models by targeting data that most
effectively constrains model uncertainties.
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Figure 5.3: Aleatoric and epistemic
uncertainty (× 4) with respect to the R region
at the upper boundary

Figure 5.4: Aleatoric and epistemic
uncertainty (× 5) with respect to the R region
at the flow separation region

Figure 5.5: Aleatoric and epistemic
uncertainty (× 4) with respect to the R region
at the lower boundary

Figure 5.6: Aleatoric and epistemic
uncertainty (× 4) with respect to the R region
at the normal flow region

To quantify and visually represent epistemic uncertainty, 100 realizations of the model
weights are generated from w ∼ q(w | θ) the sample variance estimate of the epistemic
uncertainty as Var

(
Eq(w|θ)[y | x,D]

)
is computed. This uncertainty is contrasted with

the aleatoric uncertainty illustrated in Figures 5.4 and 5.3, considering various scaling
dimensions. From the above figures, the structure of the uncertainties show a lot of
spikes. This is due to the ordering of one-dimensional data. The data of the entire 2D
flow field is extracted and spliced layer by layer to obtain one-dimensional data. Then
each layer will have some large values at fixed positions, resulting in the appearance of
periodic spikes in the final figures. Notably, the trends in epistemic uncertainty echo
those observed in aleatoric uncertainty, particularly concerning the conditioning rela-
tive to different regions of the periodic hill. One explanation is because the structure
of the target R in the flow zone is very simplistic, with high values only observed at
the separation point and along the wall. As a result, there is minimal distinction be-
tween the aleatoric and epistemic uncertainty for the model to discern. The similar
conclusion is also reached in the study of Kendall et al. [48]. If the image to be identi-
fied consists of a straightforward arrangement of basic shapes. It may be inferred that
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both aleatoric uncertainty and epistemic uncertainty have an equivalent impact on the
R. This observation suggests that to effectively mitigate epistemic uncertainty, data
collection strategies should focus on regions characterized by high aleatoric uncertainty,
thereby enabling a more comprehensive understanding and modeling of the underlying
physical processes.

5.1.2. Interpretation in Physical Space
In order to better display the results and have a more in-depth discussion, the results
of BNN will be discussed in physical space in this section. Firstly, the predicition of the
BNN and the LES data in the periodic hill flow are shown in Figure 5.7a and Figure
5.7b . It reveals a high degree of similarity in their overall spatial distributions. Both
the BNN prediction and the LES data effectively capture key flow features, including
regions of high TKE in the recirculation zones downstream of the hill and the large value
region near the boundary.

However, there are notable differences, particularly in the region immediately down-
stream of the hill, where the LES data exhibits slightly higher TKE values. Additionally,
the BNN predictions show discrepancies near the boundaries, where the predicted TKE
values are generally lower compared to the LES data. These differences suggest that
while the BNN is effective in approximating the overall flow characteristics, it tends
to underpredict TKE in regions of complex turbulence and near the boundaries. This
highlights areas for potential refinement in the model to improve its accuracy, espe-
cially in capturing the intensity of turbulent structures and boundary effects. n the
studies conducted by [29], [2], and [3], it is noted that the tensor basis neural networks
exhibit limitations in accurately predicting values near boundaries. To address these
discrepancies, hybrid LES/RANS methodologies[63] have been proposed as potential
enhancements for improving boundary value predictions. Nonetheless, due to temporal
constraints, such corrective measures could not be implemented within the scope of this
current work.

Furthermore, the BNN uncertainty predictions for R in the periodic hill flow case was
shown in Figure 5.7d and Figure 5.7c. These two picture reveal distinct patterns in
aleatoric and epistemic uncertainties. Aleatoric uncertainty, which reflects inherent vari-
ability in the data, is higher near boundary layers and turbulent regions, particularly
in the recirculation zones downstream of the hill, where the complex flow interactions
amplify variability. In contrast, epistemic uncertainty, representing the model’s lack
of knowledge, is more localized and prominent around the hill crest and wake regions,
indicating areas where the model is less confident due to limited data or incomplete
understanding. These distinctions highlight that while aleatoric uncertainty is more
uniformly distributed and irreducible, epistemic uncertainty is concentrated in specific
regions, suggesting potential for reduction through additional data or improved model-
ing.

The results delineated in section 5.1.1 illustrate that the magnitude of epistemic uncer-
tainty is consistently lower than that of aleatoric uncertainty, typically by one to two or-
ders of magnitude. Additionally, the spatial distribution patterns of both types of uncer-
tainties display pronounced similarities, as previously elucidated in section 5.1.1.
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(a)

(b)

(c)

(d)

Figure 5.7: Comparison of LES data and BNN prediction for R in physical space with uncertainty
region.
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(a)

(b)

(c)

Figure 5.8: R profiles for high-fidelity LES and Bayesian neural network predictions. (a) Comparison
of LES data and neural network predictions along the plane of symmetry at 9 distinct streamwise
locations. (b) Comparison of LES data and neural network mean predictions with predicted aleatoric
uncertainty. (c) Comparison of LES data and neural network mean predictions with predicted
epistemic uncertainty. The red line represents the LES data, while the blue dotted line denotes the
neural network predictions. In (b) and (c), the blue region represents the uncertainty region.
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Comparative analysis of Figures 5.8a and 5.8b further corroborates that higher values
correspond to elevated levels of uncertainty. The comparison of results along the plane of
symmetry at nine distinct streamwise locations is depicted in Figure 5.8. The comparison
demonstrates generally good concordance, especially within the central regions of the
flow, aligning with observations reported in Figure 5.7b. Notably, deviations become
apparent near the hill region and at the boundaries of the domain, where the BNN
consistently underestimates the R relative to the LES data. The integration of aleatoric
uncertainty within the BNN predictions accentuates these areas of disparity, particularly
proximate to the hill and within the recirculation zones, where the flow’s complexity and
turbulence intensify, as visibly illustrated in Figure 5.8b.

Furthermore, the aleatoric uncertainty envelope encompasses the LES data effectively,
reflecting consistency with one-dimensional data in capturing the inherent uncertainties.
Conversely, Figure 5.8c also delineates a larger region affected by such uncertainties,
albeit to a lesser extent than the aleatoric uncertainty. These observations indicate that
although the BNN proficiently delineates general trends in TKE production corrections,
it manifests heightened uncertainty and diminished accuracy within areas characterized
by complex flow dynamics. This suggests that further model enhancements or additional
data acquisition might be imperative for augmented predictive accuracy.

5.2. Validation analysis
In the subsequent sections, the neural network described in Section 5.1 is applied across
three distinct test cases. The outcomes derived from the model discovery process are
thoroughly analyzed and presented. However, given that the periodic hill represents
a separation flow, the new flow cases, while varying in geometry, embody the same
category of flow dynamics. This setup facilitates a type of cross-validation that evaluates
the efficacy of models trained on specific datasets when applied to novel, yet analogous,
test scenarios [64].

5.2.1. Curved backward-facing step (CBFS) flow case

Figure 5.9: The flow domain of the CBFS13700 case is illustrated with streamlines, colored
according to the magnitude of velocity in the x-direction and y-direction, based on LES data.
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(a)

(b)

(c)

Figure 5.10: R profiles for high-fidelity LES and Bayesian neural network predictions. (a)
Comparison of LES data and neural network predictions along the plane of symmetry at 12 distinct
streamwise locations. (b) Comparison of LES data and neural network mean predictions with
predicted aleatoric uncertainty. (c) Comparison of LES data and neural network mean predictions
with predicted epistemic uncertainty. The red line represents the LES data, while the blue dotted line
denotes the neural network predictions. In (b) and (c), the blue region represents the uncertainty
region.
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A Large Eddy Simulation was used in [65] to examine the flow over a backward-facing
step with a gentle curvature at a Reynolds number of 13700 (CBFS13700).This study
was primarily focused on examining the mean impacts of detachment and reattachment
dynamics, much like the periodic hill (PH) instance. For this simulation, a computational
grid of 140 × 150 cells is used. A completely developed boundary layer simulation was
used to determine the inflow boundary condition. Shown in Figure 5.9 is the flow domain.
Additionally, the entire domain spans between 0 < y < 9.5 and 7.3 < x < 15.3.

Figure 5.11: A scatter plot visually
representing the average predictions for each
data point, colored based on the calculation of
aleatoric uncertainty by the BNN model.

Figure 5.12: A scatter plot visually
representing the average predictions for each
data point, colored based on the calculation of
epistemic uncertainty by the BNN model.

The comparative analysis in Figures 5.11 and 5.12 demonstrates a strong congruence be-
tween the Bayesian Neural Network (BNN) outputs and Large Eddy Simulation (LES)
data, with only a few outliers deviating from this trend. Uncertainty levels increase
with value magnitudes and data sparsity, consistent with the model’s training expecta-
tions. Figure 5.10 presents the streamline results within the systemic region. The BNN’s
mean predictions exhibit close alignment with LES data, underscoring the model’s ro-
bust predictive accuracy. Additionally, the modeled uncertainties—both aleatoric and
epistemic—are in line with anticipated behaviors. Notably, the uncertainty markedly
escalates in the flow separation region (specifically in the region at x between 1 and
5), a zone notoriously difficult to model accurately. This heightened uncertainty within
the separation region accurately reflects the model’s capability to identify areas of in-
creased predictive challenge, consistent with established physical insights into flow dy-
namics.
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5.2.2. Turbulent separation bubbles flow case

Figure 5.13: The flow domain of the APG case is illustrated with streamlines, colored according to
the magnitude of velocity in the x-direction and y-direction, based on DNS data.

The DNS dataset for this investigation originates from Coleman of NASA [66]. The
flow configuration under examination is a two-dimensional separation bubble, induced
through transpiration velocity modifications—specifically suction and blowing—along
the superior boundary. The approaching boundary layer in the zero-pressure-gradient
sector is characterized by a Reynolds number approximately 2000. Computational anal-
ysis was executed utilizing the incompressible Navier-Stokes equations within a pseudo-
spectral computational framework. Due to the extensive spatial extent of the flow field
(9.5 < x < 12.5), only the pivotal segment of the separation bubble is depicted in the
figure 5.13.

Figure 5.14: A scatter plot visually
representing the average predictions for each
data point, colored based on the calculation of
aletoric uncertainty by the BNN model.

Figure 5.15: A scatter plot visually
representing the average predictions for each
data point, colored based on the calculation of
epistemic uncertainty by the BNN model.

In the comparison analysis of Figures 5.18 and 5.19, the BNN predictions demonstrate
a high degree of congruence with LES data, particularly when the value of R is less
than 12500. The uncertainty profiles resemble those observed in the periodic hill case,
characterized by escalating uncertainty with increasing values and more pronounced
uncertainty at sparser data points. From Figure 5.16, It is evident that significant
uncertainty and data misalignment occur within the separation region. However, all the
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LES data falls within the aleatoric uncertainty bounds, indicating a impressive predictive
performance. Given that the entire domain encompasses the separation flow region, all
streetwise locations manifest considerable uncertainty compared to previous flow cases.
Additionally, regions proximate to the boundary exhibit substantial uncertainty.

(a)

(b)

(c)

Figure 5.16: R profiles for high-fidelity LES and Bayesian neural network predictions. (a)
Comparison of LES data and neural network predictions along the plane of symmetry at 10 distinct
streamwise locations. (b) Comparison of LES data and neural network mean predictions with
predicted aleatoric uncertainty. (c) Comparison of LES data and neural network mean predictions
with predicted epistemic uncertainty. The red line represents the LES data, while the blue dotted line
denotes the neural network predictions. In (b) and (c), the blue region represents the uncertainty
region.
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5.2.3. NASA-Hump flow case

Figure 5.17: The flow domain of the NASA-Hump case is illustrated with streamlines, colored
according to the magnitude of velocity in the x-direction and z-direction, based on LES data.

The NASA-Hump setup is used as a standard to assess how well turbulence models can
forecast two-dimensional flow separation—caused by an unfavorable pressure gradient—
from a smooth surface, as well as the subsequent reattachment and recovery of the
boundary layer. The model is positioned between two glass endplates, and a wind
tunnel splitter plate is completely incorporated with both the leading and trailing edges.
For this flow instance, simulations were run at Re = 93600 Reynolds number. Detailed
information on this setup can be found in [67], whereas [68] provides empirical data. In
Figure 5.17, the real flow situation is depicted.

Figure 5.18: A scatter plot visually
representing the average predictions for each
data point, colored based on the calculation of
aletoric uncertainty by the BNN model.

Figure 5.19: A scatter plot visually
representing the average predictions for each
data point, colored based on the calculation of
epistemic uncertainty by the BNN model.

As in the preceding analysis, the results from the BNN are compared with the LES data,
with uncertainties categorized as either aleatoric or epistemic, depicted in Figures 5.18
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and 5.19. Relative to other flow cases examined, the BNN predictions for the NASA-
Hump configuration exhibit substantial discrepancies, as evidenced by the preponderance
of data points residing above the y = x line.

(a)

(b)

(c)

Figure 5.20: R profiles for high-fidelity LES and Bayesian neural network predictions. (a)
Comparison of LES data and neural network predictions along the plane of symmetry at 9 distinct
streamwise locations. (b) Comparison of LES data and neural network mean predictions with
predicted aleatoric uncertainty. (c) Comparison of LES data and neural network mean predictions
with predicted epistemic uncertainty. The red line represents the LES data, while the blue dotted line
denotes the neural network predictions. In (b) and (c), the blue region represents the uncertainty
region.
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This deviation is partly attributable to the inherent limitations of the RANS models
in accurately predicting complex flows such as those encountered in the NASA-Hump
scenario. Notably, the uncertainty distribution aligns with the expected pattern: points
clustered closely within the dataset exhibit lower uncertainty, whereas more dispersed
points display increased uncertainty, which escalates with the magnitude of the values,
corroborating the findings from Section 5.1. A comparative analysis of Figure 5.20 re-
veals a marked congruence between the LES data and prediction in regions devoid of
separation flow, whereas significant discrepancies in the separation flow regions are high-
lighted by a pronounced aleatoric uncertainty, affirming the observations from Figure 5.8.
Despite these variations, the overall predictive performance remains robust, particularly
in terms of uncertainty quantification.



6
Conclusions and Recommendations

Given the growing prevalence of machine learning technologies in the computational
fluid dynamics (CFD) field, it is becoming increasingly crucial to extract uncertainty
from both the data and the model. This study introduced the initial implementation
of a Bayesian neural network method for data-driven closure modeling in RANS, which
includes estimates of aleatoric and epistemic uncertainty. The primary objective was to
simulate the adjustment of turbulence kinetic energy between the LES and RANS data.
However, the techniques used in this study may be extended to closure modeling, par-
ticularly for anisotropic tensors, using the neural network structure specified in section
3.4.1. Derived upon Ling’s influential study [29], this neural network design preserves es-
sential invariant characteristics, therefore guaranteeing the resilience and dependability
of the modeling procedure.

In the couse of study, a priori tests showed a good mean prediction of the R, indicat-
ing that the integration of uncertainty estimates during the training phase does not
compromise model precision. This work also found that the SVGD method is not well
adapted to identify the uncertainty problem of turbulence modeling. The SVGD method
tends to give an inaccurate aleatoric uncertainty range even at a low training error level,
which is reflected in previous work by Geneva [2] and section 4.1. Conversely, employ-
ing ELBO method to directly minimize the Kullback-Leibler divergence has proven more
effective.

Further tests were conducted to assess the model’s generalization capabilities across three
additional flow separation scenarios not included in the initial training dataset. These
tests revealed acceptable accuracy levels, although notable discrepancies were observed
in regions of intense flow separation. Such discrepancies suggest that the aleatoric un-
certainty is significantly pronounced in these regions. This study hypothesizes that the
reliance on merely two invariant inputs and the ϵ parameter is insufficient for capturing
the nuanced transitions from coarse to high-fidelity flow physics accurately. Despite
the model’s design to retain desired invariant properties, it is likely that incorporating
additional flow variables could enhance the prediction quality.

A critical avenue for future research is the development of more precise Reynolds stress
representations, which will involve identifying both local and non-local variables that
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critically influence these values. While several models in existing literature offer im-
proved predictions within limited flow scenarios, their generalization across diverse flow
conditions remains a significant challenge for the data-driven CFD community.

This research has established that aleatoric uncertainty generally exceeds epistemic un-
certainty, with both types of uncertainty exhibiting similar variations across the phase
space. However, disparities are more pronounced in regions with high progress variable
values, likely due to the uniform data sampling method employed. These observations
suggest the potential benefits of adopting a non-uniform data sampling strategy to ad-
dress areas with elevated aleatoric uncertainty effectively.

The dual capability of this Bayesian framework to quantify both aleatoric and epistemic
uncertainties provides invaluable insights for enhancing data-driven models. Not only
does this framework facilitate a better understanding of a model’s predictive confidence,
but it also identifies potential zones of reduced accuracy, which could guide the deploy-
ment of finer mesh resolutions or more detailed simulations. Moreover, the application
of a Bayesian neural network enables the calculation of predictive bounds for critical
quantities, offering substantial advantages in scenarios characterized by limited training
data.

Based on the current research, numerous enhancements can be implemented in future
studies. Initially, the training dataset incorporates only a single flow case; introducing
additional flow cases could enhance the model’s predictive accuracy. Secondly, adjusting
the prediction target to the bij tensor represents a comprehensive turbulence modeling
challenge; integrating such models into OpenFOAM for posterior analysis could provide
a more thorough evaluation of their performance. Furthermore, extending the analysis
from 2-D to 3-D would allow the examination of flow scenarios with the complete set
of five invariants, rather than just two. Currently, aleatoric uncertainty is estimated
using basic uncertainty propagation methods; future work could include the develop-
ment of a covariance matrix among the coefficients. Lastly, the existing approach uti-
lizes a simple Gaussian prior; exploring alternative distributions or deriving the prior
from empirical flow data could enhance model robustness and facilitate transfer learning
strategies.
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A
Necessary rules for deriving RANS

equations

The following equation shows the rules to derive the RANS control equatons :

⟨u+ v⟩ = ⟨u⟩+ ⟨v⟩
⟨au⟩ = a⟨u⟩ , a = const
⟨⟨u⟩v⟩ = ⟨u⟩⟨v⟩〈
∂u

∂x

〉
= ∂⟨u⟩

∂x

⟨u′⟩ = 0
⟨⟨u⟩v′⟩ = 0
⟨uv⟩ = ⟨u⟩⟨v⟩+ ⟨u′v′⟩

(A.1)

Where ⟨·⟩ means average and u′ means fluctuating term.

60



B
Derivation and proof for Stein
Variational Gradient Descent

Stein’s Identity

Assume p and q are two distributions, if

p = q ⇐⇒ Ex∼q [Apf(x)] = 0 (B.1)

Here is called the Stein’s Identity. In the equation of the Identity Ap is called the Stein’s
operator

Apf(x) = sp(x)f(x) +∇xf(x). (B.2)

sp(x) is called the score function:sp = ∇x log p(x) = ∇xp(x)
p(x) And define that a function

f : X → R is in the Stein class of p if f is smooth and satisfies∫
x∈X
∇x(f(x)p(x))dx = 0 (B.3)

Stein’s discrepancy

If
p ̸= q =⇒ ∃f , such that Ex∼q [Apf(x)] ̸= 0 (B.4)

Stein’s discrepancy can be defined as :

S(q, p) = max
f∈F

Ex∼q [trace (Apf(x))] (B.5)

(Trace just to make it become a scalar).Here the choice of this function set F is critical,
and decides the discriminative power and computational tractability of Stein discrep-
ancy.

Kernelized Stein discrepancy (KSD)
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A kernel k (x, x′) is defined as to be integrally strictly positive definition, if for any
function g that satisfies 0 < ∥g∥2

2 <∞,∫
X
g(x)k (x, x′) g (x′) dxdx′ > 0.

And if k(x, x′) be a positive definite kernel. The spectral decomposition of k(x, x′), as
implied by Mercer’s theorem, is defined as

k (x, x′) =
∑
j

λjej(x)ej (x′) (B.6)

The kernelized Stein discrepancy (KSD) S(q, p) between distribution p and q is defined
as

S(q, p) = Ex,x′∼p
[
δq,p(x)⊤k (x, x′) δq,p (x′)

]
,

where δq,p(x) = sq(x)− sp(x) is the score difference between p and q, and x, x′ are i.i.d.
draws from p(x).

A kernel k (x, x′) is defined as to be in the Stein class of p if k (x, x′) has continuous
second order partial derivatives, and both k(x, ·) and k(·, x) are in the Stein class of p
for any fixed x.

Theorem 1.1 Assume p and q are smooth densities and k (x, x′) is in the Stein class of
p. Define

uq (x, x′) =sq(x)⊤k (x, x′) sq (x′) + sq(x)⊤∇x′k (x, x′) +
+∇xk (x, x′)⊤

sq (x′) + trace (∇x,x′k (x, x′))
(B.7)

then S(p, q) = Ex,x′∼p [uq (x, x′)]

Theorem 1.2 Assume k(x, x′) is a positive definite kernel in the Stein class of p, with
positive eigenvalues λj and eigenfunctions ej(x), then uq(x, x′) is also a positive definite
kernel, and can be rewritten into

uq (x, x′) =
∑
j

λj [Aqej(x)]⊤ [Aqej (x′)] (B.8)

In addition
S(p, q) =

∑
j

λj ∥Ex∼p [Aqej(x)]∥2
2 (B.9)

Theorem 1.3 Let H be the RKHS related to a positive definite kernel k (x, x′) in the
Stein class of p. Denote by β (x′) = Ex∼p [Aqkx′(x)], then

S(p, q) = ∥β∥2
Hd (B.10)

Further, we have ⟨f ,β⟩Hd = Ex [trace (Aqf)] for f ∈ Hd, and hence√
S(p, q) = max

f∈Hd
{Ex [trace (Aqf)] s.t. ∥f∥Hd ≤ 1} (B.11)

where the maximum is achieved when f ∗ = β/∥β∥Hd = Ex∼q [Apk(x, ·)].
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Definition of KL divergence:

KL(q∥p) ≡ Eq[log q(x)]− Eq[log p(x)] (B.12)

Theorem 1.4 Let T (x) = x+ ϵf(x) and q[T ](z) the density of z = T (x) when x ∼ q(x),
we have

∇ϵKL
(
q[T ]∥p

)∣∣∣
ϵ=0

= −Ex∼q [trace (Apf(x))] (B.13)

Lemma 1.1 From theorem 1.3, consider all the perturbation directions f(x)

in the ball B =
{
ϕ ∈ Hd : ∥f∥Hd ≤ D(q, p)

}
of vector-valued RKHS Hd, the direction of

steepest descent that maximizes the negative gradient is

f ∗
q,p(·) = Ex∼q [∇x log p(x)k(x, ·) +∇xk(x, ·)] (B.14)

And in this moment ∇ϵKL
(
q[T ]∥p

)∣∣∣
ϵ=0

= −S(q, p)

The outcome in Lemma (1.1) implies an iterative algorithm that converts an initial ref-
erence distribution q0 into the target distribution p. The process starts by implementing
the transform T ∗

0 (x) = x + ϵ0 · f ∗
q0,p(x) on q0. This transform reduces the Kullback-

Leibler (KL) divergence by ϵ0 · S(q0, p), where ϵ0 is a small step size. The outcome of
this is a fresh allocation q1(x) = q0[T0](x). Afterwards, an additional transformation
T ∗

1 (x) = x + ϵ1 · f ∗
q1,p(x) can be used to reduce the KL divergence by ϵ1 · S(q1, p). By

iteratively doing this procedure, a sequence of distributions {qℓ}nℓ=1 is generated, which
starts from q0 and ends at p.

qℓ+1 = qℓ[T ∗
ℓ ], where T ∗

ℓ (x) = x+ ϵℓ · f ∗
qℓ,p

(x). (B.15)

Proof Theorem 1.1

Lemma 2.1 Assume p(x) and q(x) are smooth densities supported on X and f(x) is in
the Stein class of p,it can be derived that

Ep [Aqf(x)] = Ep
[
(sq(x)− sp(x))f(x)⊤

]
(B.16)

Proof Since Ep [Apf(x)] = 0, we have Ep [Aqf(x)] = Ep [Aqf(x)−Apf(x)] = Ep[(sq(x)
−sp(x))f(x)⊤]

1) Denote by v (x, x′) = k (x, x′) sq (x′) +∇x′k (x, x′) = Aqkx (x′); applying Lemma 2.1
on k(x, ·) with fixed x,

S(p, q) = Ex,x′∼p
[
(sq(x)− sp(x))⊤ k (x, x′) (sq (x′)− sp (x′))

]
= Ex,x′∼p

[
(sq(x)− sp(x))⊤ v (x, x′)

] (B.17)

Because k (·, x′) is in the Stein class of p for any x′, It can be shown that ∇x′k (·, x′) is
also in the Stein class, since∫

x
∇x (p(x)∇x′k (x, x′)) dx = ∇x′

∫
x
∇x (p(x)k (x, x′)) dx = 0, (B.18)
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and hence v (·, x′) is also in the Stein class; apply Lemma 2.3 on v (·, x′) with fixed x′

gives
S(p, q) = Ex,x′∼p

[
(sq(x)− sp(x))⊤ v (x, x′)

)]
= Ex,x′∼p

[
sq(x)⊤v (x, x′) + trace (∇xv (x, x′))

] (B.19)

The result then follows by noting that∇xv (x, x′) = ∇xk (x, x′) sq (x′)⊤+∇x′x′k (x, x′).

Proof Theorem 1.2 Note that

∇xk (x, x′) =
∑
j

λj∇xej(x)ej (x′) , ∇x,x′k (x, x′) =
∑
j

λj∇xej(x)∇x′ej (x′)⊤ (B.20)

and hence

uq(x, x′) = sq(x)⊤k(x, x′)sq(x′) + sq(x)⊤∇′
xk(x, x′)

+ sq(x′)⊤∇xk(x, x′) + trace(∇x,x′k(x, x′))

=
∑
j

λj

[
sq(x)⊤ej(x)ej(x′)sq(x′) + sq(x)⊤ej(x)∇x′ej(x′)

+ sq(x′)⊤∇xej(x)ej(x′) +∇xej(x)⊤∇x′ej(x′)
]

=
∑
j

λj

[
sq(x)ej(x) +∇xej(x)

]⊤[
sq(x′)ej(x′) +∇x′ej(x′)

]

=
∑
j

λj

[
Aqej(x)

]⊤[
Aqej(x′)

]

(B.21)

In addition,
S(p, q) = Ex,x′ [uq (x, x′)]

=
∑
j

λjEx [Aqej(x)]⊤ Ex′ [Aqej (x′)]

=
∑
j

λj ∥Ex [Aqej(x)]∥2
2 .

(B.22)

Proof of Theorem 1.3 Equation B.10 is first be poved by applying the reproducing
property k (x, x′) = ⟨k(x, ·), k (x′, ·)⟩H on the defination of S(p, q):

S(p, q) = Ex,x′∼p
[
(sq(x)− sp(x))⊤ k (x, x′) (sq (x′)− sp (x′))

]
= Ex,x′∼p

[
(sq(x)− sp(x))⊤ ⟨k(x, ·), k(x, ·)⟩H (sq (x′)− sp (x′))

]
=

d∑
ℓ=1

〈
Ex
[(
sℓq(x)− sℓp(x)

)
k(x, ·)

]
,Ex′

[
k(x, ·)

(
sℓq(x)− sℓp(x)

)]〉
H

=
d∑
ℓ=1
⟨βℓ,βℓ⟩H

= ∥β∥2
Hd

(B.23)
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where the fact that β (x′) = Ex∼p [Aqkx′(x)] = Ex∼p [(sq(x)k (x, x′) +∇xk (x, x′)] = Ex [(sq(x)−
sp(x)) k (x, x′)] was used. In addition,

⟨f ,β⟩Hd =
d∑
ℓ=1

〈
fℓ,Ex∼p

[(
sℓq(x)k(x, ·) +∇xℓ

k(x, ·)
]〉

H

=
d∑
ℓ=1

Ex∼p
[(
sℓq(x) ⟨fℓ, k(x, ·)⟩H + ⟨fℓ,∇xℓ

k(x, ·)⟩H
]

=
d∑
ℓ=1

Ex∼p
[(
sℓq(x)fℓ(x) +∇xℓ

fℓ(x)
]

= Ex∼p [trace (Aqf(x))]

(B.24)

where the fact that∇xf(x) = ⟨f(·),∇xk(x, ·)⟩H was used. The variational form Equation
B.11 then follows the fact that ∥β∥Hd = maxf∈Hd {⟨f ,β⟩Hd , .s.t. ∥f∥Hd ≤ 1}.

Finally, the β(·) = Ex∼p [(sq(x)k(x, ·) +∇xk(x, ·)] is in the Stein class of p because
k(x, ·) and ∇xk(x, ·) are in the Stein class of p for any fixed x (see the proof of Theorem
1.2).

Proof of Theorem 1.4

Denote by q[T−1](z) the density of z = T−1(x) when x ∼ q(x), then

q[T−1](x) = q(T (x)) · |det (∇xT (x))| . (B.25)

By the change of variable, it can be derived that

KL
(
q[T ]∥p

)
= KL

(
q∥p[T−1]

)
(B.26)

and hence
KL

(
q[T ]∥p

)
= KL

(
q∥p[T−1]

)
= −Ex∼q

[
∇ϵ log p[T−1](x)

]
(B.27)

With p[T−1](x) = p(T (x) · |det(∇xT (x)|, it can be derived that:

∇ϵ log p[T−1](x) = sp(T (x))⊤∇ϵT (x) + trace
(
(∇xT (x))−1 · ∇ϵ∇xT (x)

)
(B.28)

Therefore,

∇ϵKL
(
q[T ]∥p

)
= −Eq

[
sp(T (x))⊤∇ϵT (x) + trace

(
(∇xT (x))−1 · ∇ϵ∇xT (x)

)]
(B.29)

When T (x) = x+ ϵf(x) and ϵ = 0, it can be easily got that:

T (x) = x, ∇ϵT (x) = f(x), ∇xT (x) = I, ∇ϵ∇xT (x) = ∇xf(x), (B.30)

where I is the identity mateix.Put them back to equation B.29, it gives that result
that

∇ϵKL
(
q[T ]∥p

)∣∣∣
ϵ=0

= −Ex∼q [trace (Apf(x))] (B.31)



C
Computation of Uncertainties

In the appendix, the procedures for calculating a predictive distribution (Algorithm
2), epistemic uncertainty (Algorithm 3), and aleatoric uncertainty (Algorithm 4) are
provided. The Bayesian Neural Network (BNN) facilitates quick assessment of weight
samples, though precise averaging is necessary to distinguish between epistemic and
aleatoric uncertainties. After obtaining the weight distribution after training, use monto
carlo sampling and then average it to obtain the final result.

Algorithm 2 Calculate the predictive distribution for a dataset {xi}Ni=1 using the poste-
rior distribution p(w|θ) of a BNN, incorporating a specified number of epistemic samples
Nepi and aleatoric samples Nale.
Require: A posterior with density function p(w|θ) and number of samples

1: for i = 1, . . . , N do
2: for j = 1, . . . , Nepi do
3: Sample wj ∼ p(w|θ)
4: Compute BNN prediction of yµ and yσ
5: for k = 1, . . . , Nale do
6: Sample y ∼ N (yµ, diag(yσ)) and append to collection of predictions
7: end for
8: end for
9: end for
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Algorithm 3 Calculate an estimate of the epistemic uncertainty associated with an
input datum x
Require: A posterior with density function p(w|θ) and number of epistemic samples

Nepi

1: for j = 1, . . . , Nepi do
2: Sample wj ∼ p(w|θ)
3: Calculate BNN prediction of yµ corresponding to Ewj∼q(w|θ)[y | x,D] and append

to collection
{
yµi

}Nepi

i
4: end for
5: Compute the sample variance of collection {yµi

}Nepi

i corresponding to
Var

(
Eq(w|θ)[y | x,D]

)

Algorithm 4 Calculate an estimate of the aleatoric uncertainty associated with an
input datum x
Require: A posterior with density function p(w|θ) and number of epistemic samples

Nale

1: for j = 1, . . . , Nale do
2: Calculate BNN prediction of yσ corresponding to Var(y | x,D) and append to

collection {yσi
}Nale

i

3: end for
4: Calculate the mean of collection {yσi

}Nale

i corresponding to Eq(w|θ)[Var(y | x,D)]
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