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An adaptive approach to zooming-based control for
uncertain systems with input quantization

Nikolaos Moustakis, Shuai Yuan, and Simone Baldi

Abstract— This paper establishes an adaptive tracking ap-
proach for linear systems with parametric uncertainties, when
input measurements are quantized due to the presence of a
communication network closing the control loop. In order
to address the tracking problem, a novel dynamic quantizer
with dynamic offset is introduced and embedded into an
adaptive hybrid control strategy based on zooming mechanism.
A Lyapunov-based approach is used to derive the adaptive
adjustments for the control gains and for the dynamic range and
dynamic offset of the quantizer: it is proven analytically that
the proposed adjustments guarantee asymptotic state tracking.
Quantized adaptive control of an electrohydraulic system is
given as an example of the effectiveness of the designed control
methodology.

Index Terms- Hybrid dynamic quantization, input quantiza-
tion, asymptotic tracking, model reference adaptive control.

I. INTRODUCTION

With its clearly defined goal of designing control systems
that can adapt the control gains to parametric uncertainties
and changing conditions, adaptive control constitutes a flour-
ishing research area [1], [2]. A classical control problem
is the one of tracking (possibly asymptotically) a desired
reference: adaptive control has been shown to tackle this
challenge in the presence of unknown or time-varying sys-
tems’ parameters, providing significant advantages in several
application domains [3], [4], [5], [6], [7]. However, despite
the emerging research field of networked control systems
(NCSs), only limited attention has been devoted to adaptive
tracking with networked-induced constraints. In a NCS the
control loop is closed through a communication network
[8], [9], so that control and feedback signals are exchanged
in the form of information packages through the network:
because of this, some feedback signals must be quantized
[10]. This work will be focusing on how to achieve adaptive
(asymptotic) tracking in the presence of networked-induced
quantization. In the following we explain how this problem
is still an open one.

Much attention has been devoted by the control commu-
nity to asymptotic stability in non-adaptive (i.e. with fixed-
gain control) NCSs in the presence of quantization, with a
focus on regulation problems. Established approaches for
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achieving asymptotic regulation rely on dynamic quanti-
zation mechanisms such as logarithmic quantization [11],
[12], [13] or zooming-based hybrid control [14], [15]. The
latter mechanism takes its name from the analogy with the
zooming in digital cameras: since the quantizer has a fixed
number of quantization levels (i.e. number of pixels), when
the state is outside its range region, the quantizer ‘zooms
out’ so that the state can be captured within the region.
This can be achieved by increasing the size of the range.
On the other hand, once the state comes close to the origin,
we can ‘zoom in’ by reducing the size of the range so that
the quantization resolution becomes finer while the region
becomes smaller. Repeating this zooming in, we can obtain
asymptotic stabilization.

In the adaptive setting, [16] considered a passification-
based adaptive controller with quantized measurements and
disturbances, where ultimate boundedness can be obtained.
The authors in [17] developed a direct adaptive control
framework with a logarithmic quantizer, guaranteeing partial
asymptotic stability, i.e. Lyapunov stability of the closed-loop
system states and attraction with respect to the plant states.
For nonlinear uncertain systems, adaptive quantized ap-
proaches based on backstepping [18], [19], neural-networks
[20], [21] or passification [22] have been developed with
guaranteed global ultimate boundedness. These adaptive ap-
proaches to quantization are limited to regulation problems:
actually, the fact that the quantizer is anti-symmetric with
respect to the origin makes it suitable for regulation, but
it prevents from achieving high precision in the tracking
case. A solution to this drawback has been recently proposed
in [23], [24], where asymptotic tracking has been achieved
for the first time via a sliding-mode approach. However,
the implementation of sliding-mode control in a NCS is
not straightforward: in fact, due to chattering, a sliding-
mode approach requires infinite communication bandwidth,
because it has to send information infinitely.

From this short overview of the state of the art we see
that we need to push further the boundaries of current
adaptive control tools, so as to achieve to asymptotic tracking
in the presence of quantization and finite communication
bandwidth. Solving this open problem is the main moti-
vation to this work. The main contribution of this work
is tackling the adaptive tracking problem by introducing a
novel dynamic quantizer with dynamic offset. We embed this
quantizer in a model reference adaptive control framework
with zooming mechanism, and a Lyapunov-based approach
is used to derive the adjustments for the control gains, and for
the dynamic range and dynamic offset of the quantizer. It is
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proven analytically that the proposed adjustment mechanisms
guarantee asymptotic tracking.

As the zooming mechanism of state-of-the-art quantizer
is typically explained in terms of digital videos, let us give
an explanation to the proposed quantizer in similar terms.
In fact, dynamic offsets are often used in video encoding:
in many H.264-based compression protocols the encoder is
regulated on a frame level (offset) to obtain the number of
bits that is very close to the allocated one [25]. Several
mechanisms have been defined to tune the offset of the
quantizer based on the previous frames [26], [27], so as to
increase the resolution around similar frames close in time;
similarly, our proposed quantizer increases the resolution
around a dynamically changing offset in order to achieve
asymptotic tracking.

The rest of the paper is organized as follows. Section
II formulates the quantized control problem. The adaptive
control design is established in Section III, while Section IV
presents the main stability and tracking results. In Section
V, quantized adaptive control of an electro-hydraulic system
serves as an example to illustrate the effectiveness of the
proposed ideas.

The notations used in this paper are standard:
R: the set of real numbers;
λmax(X),(λmin(X)) : the largest (smallest) eigenvalue of ma-
trix X ;
‖X‖=

√
λmax(XXT ): the induced 2-norm of matrix X ;

‖x‖=
√

n
∑

i=1
|xi|2 : the Euclidean norm of a vector x ∈ Rn;

tr[X ] : the trace of a square matrix X .
L∞ class: A vector signal x(·)∈ [0,∞)→Rn is said to belong
to L∞ class (x ∈L∞), if max

t≥0

∥∥x(t)
∥∥< ∞, ∀t ≥ 0;

II. PROBLEM STATEMENT

Let us consider the linear time-invariant system

ẋ(t) = Ax(t)+Bgηµ(u(t)) (1)

where x∈Rn is the state, u∈Rq is the control input, gηµ(u) :
Rq→Q, where Q⊂Rq, is the input quantizer (to be defined
later), and the matrices A∈Rn×n and B∈Rn×q are unknown
constant matrices.

A. Linear Reference Model System and Controller Structure

Let us consider the following linear reference model:

ẋm(t) = Amxm(t)+Bmr(t) (2)

where Am ∈ Rn×n, Bm ∈ Rn×q are constant known matrices
with Am a Hurwitz matrix, r ∈ Rq is a bounded continuous
reference input signal and xm ∈ Rn is the desired state to
track. The following assumptions are made in order to have
a well-posed adaptive problem:

Assumption 1: There exist a constant matrix K∗x ∈ Rn×q

and an invertible constant matrix K∗r ∈ Rq×q such that

Am = A+BK∗x
T , Bm = BK∗r . (3)

Assumption 2: There exists a known matrix S∈Rq×q such
that

Γ = K∗r S (4)

is symmetric and positive definite.

Assumption 3: A and B in (1) belong to a known and
bounded uncertainty set Θ.

Remark 1: Assumption 1 is required for the existence
of a closed-loop that matches (1) to the reference model
(2) (well-posedness). Assumption 2 generalizes the classical
condition of knowing the sign of the input vector field in the
multivariable case. Both assumptions are, up to now, the most
relaxed conditions for ensuring closed-loop signal bounded-
ness in multivariable adaptive control [1], [28], and will be
adopted also in our input quantization setting. Assumption
3 is required to obtain a bound to the increasing rate of the
tracking error during the zooming in phase, as it will be
explained in Section IV.

Being A and B in (1) unknown, the control gains K∗x and K∗r
in (3) cannot be implemented and must be estimated. Inspired
by [1], the following adaptive state-feedback controller is
applied:

u(t) = KT
x (t)x(t)+Kr(t)r(t). (5)

We consider a networked control setup with the controller
on the sensor side, so that the control input (5) must be
quantized and sent to the actuator via a communication
channel. The next section introduces a quantizer appropriate
to our control goals.

B. Dynamic Quantizer Design

A quantizer is a device that converts a real-valued signal
into a piecewise constant one taking a finite set of values. A
common quantization choice that increases precision without
sacrificing the bandwidth is adopted in [15], where a uniform
dynamic quantizer is used, whose quantization range M and
quantization error ∆ can be adjusted by using a hybrid control
policy. More precisely, let z ∈ Rq be the variable being
quantized. The uniform static quantizer is described by a
function g : Rq→Q, where Q⊂Rq. The finite set of values
is defined as {z ∈ Rq : g(z) = i}, i ∈ Q.

Remark 2: Commonly adopted quantizers, e.g. in [15],
[16], are anti-symmetric with respect to zero: as such, they
are appropriate only for regulation problems. If we adopted
a standard uniform quantizer for the tracking case we would
get

g(u) = g
(

KT
x x+Krr

)
= g
(

KT
x (x− xm)+KT

x xm +Krr
)
. (6)

We notice that, if we define the state-tracking error

e = x− xm (7)

then, for e→ 0 the quantized input converges to g(KT
x xm +

Krr) and asymptotic tracking would be in general impossible
due to finite precision of the quantizer around KT

x xm +Krr.



With these considerations in mind, we introduce an ad-
justable offset η(t) in the quantizer, so as to achieve quan-
tization anti-symmetry around

η(t) = KT
x (t)xm(t)+Kr(t)r(t) (8)

i.e. the offset η(t) is adaptive depending on the control gains
and the signals from the reference model. We define the
following dynamic quantizer:

gηµ(u) = µg
(

u−η

µ

)
(9)

where µ > 0 and the time index t has been (and will be)
omitted for compactness. Note that the dynamic quantizer in
(9) satisfies the following condition:

µ

∥∥∥∥g
(

u−η

µ

)∥∥∥∥≤ µM (10)

where µM represents the quantization range and M > 0 is
the quantization range of the static quantizer g(u). Saturation
occurs when the quantized signal is outside the range µM
of the quantizer. In case of no saturation, the quantizer must
satisfy the additional requirement:∥∥∥∥µg

(
u−η

µ

)
−u
∥∥∥∥= µ

∥∥∥∥g
(

u−η

µ

)
− u

µ

∥∥∥∥≤ µ∆ (11)

where µ∆ and ∆ > 0 represent the largest quantization error
in the dynamic and static uniform quantizers respectively,
when no saturation occurs.

III. ADAPTIVE LAW CONTROLLER DESIGN

Since Am in (2) must be Hurwitz so as to generate a
bounded signal state xm from bounded r, there exist positive
definite matrices P∈Rn×n, Q∈Rn×n such that the following
inequality holds:

AT
mP+PAm ≤−Q. (12)

When the quantized adaptive state-feedback controller given
by (5), (9), is applied to (1), the closed-loop system reads
as:

ẋ =Ax+B(KT
x x+Krr)

+µB
[

g
(

KT
x x+Krr−η

µ

)
− (KT

x x+Krr)
µ

]
︸ ︷︷ ︸

∆u

(13)

where ∆u is defined as the quantization error, and in case of
no saturation1 it holds ‖∆u‖ ≤ ∆.

In view of (2) and (13), the evolution of the tracking error
can be written as:

ė = ẋ− ẋm = Ame+BK̃T
x x+BK̃rr+Bµ∆u (14)

where K̃x = Kx−K∗x and K̃r = Kr−K∗r , correspond to the
controller parameter errors. In order to analyze the stability

1In case of no saturation (‖u−η‖ ≤ µM), it holds
∥∥gηµ (u)−u

∥∥ =
µ‖∆u‖ ≤ µ∆.

of the closed-loop system (14), the following Lyapunov-like
function is considered:

V = eT Pe+ tr
[
K̃xΓ

−1K̃T
x

]
+ tr
[
K̃T

r Γ
−1K̃r

]
︸ ︷︷ ︸

Kv

(15)

with Γ ∈ Rq×q > 0 coming from (4).
In view of Assumption 3, lower and upper bounds for the

controller parameters Kx,Kr can be found (this can be done
by testing the matching conditions (3) over the uncertainty
set Θ). As a result, a parameter projection adaptive law can
be derived:

K̇T
x =−ST BT

mPexT +FT
x

K̇r =−ST BT
mPerT +Fr

(16)

where Fx and Fr are the projection terms that keep the
estimates inside the upper and lower bounds, as defined in
[29]. Using (16) and the properties of Fx and Fr [29], the
time derivative of (15) along (14) is

V̇ =eT (AT
mP+PAm)︸ ︷︷ ︸
≤−Q

e+2tr[K̃xΓ
−1FT

x ]︸ ︷︷ ︸
≤0

+2tr[K̃T
r Γ
−1Fr]︸ ︷︷ ︸

≤0

+2eT PBµ∆u
(17)

which results in

V̇ ≤−eT Qe+2eT PBµ∆u. (18)

Because Kx, Kr are bounded due to the projection terms
in (16), we can define ρ ∈ R≥ 0 such that:

ρ = max
t≥0

{
tr
[
K̃xΓ

−1K̃T
x

]
+ tr
[
K̃T

r Γ
−1K̃r

]}
(19)

and because of (15) we have

eT Pe≤V ≤ eT Pe+ρ. (20)

Because P is positive definite, the following inequalities hold

λmin(P)‖e‖2 ≤ eT Pe≤ λmax(P)‖e‖2 (21)

with λmax(P)≥ λmin(P)> 0.

A. Preliminaries in Hybrid Control Policy

The time derivative of V in (18) in case of no saturation
can be equivalently expressed as

V̇ ≤− eT Qe+2eT PBµ∆u

≤−λmin(Q)‖e‖2 +2eT PBµ∆

≤−λmin(Q)‖e‖
(
‖e‖− 2maxB∈Θ ||PB||

λmin(Q)︸ ︷︷ ︸
R

µ∆

)
=⇒

V̇ ≤−‖e‖λmin(Q)(‖e‖−µR∆) (22)

where R is bounded, in view of Assumption 3. According to
(10), the requirement of no saturation is represented by the
following condition:

‖u−η‖ ≤ µM.



We define

Kx = max
t≥0
‖Kx‖ (23)

which is well defined in view of the projection terms in
(16). Considering ‖u−η‖ =

∥∥KT
x x+Krr−KT

x xm−Krr
∥∥ =∥∥KT

x (x− xm)
∥∥, the condition for no saturation is satisfied if

the following condition holds:

‖e‖ ≤ µM
Kx

. (24)

We define the following regions:

B1(µ) :=
{

e :‖e‖ ≤ µM
Kx

}
I1(µ) :=

{
e : eT Pe≤ λmin(P)

µ2M2

Kx
2

}
B2(µ) :=

{
e :‖e‖ ≤ µR∆

}
I2(µ) =

{
e : eT Pe≤ λmax(P)µ2R2

∆
2
}
.

(25)

Note that, when√
λmin(P)M

Kx
>
√

λmax(P)R∆

then B2(µ)⊂I2(µ)⊂I1(µ)⊂B1(µ).

IV. MAIN RESULT

Using the previously explained design, the following
stability result can be derived:

Theorem 4.1: Consider the input-quantized model refer-
ence adaptive control given by system (1), reference model
(2), quantizer (9), adaptive laws (16). If the following holds√

λmin(P)M
Kx

>
√

λmax(P)R∆ (26)

then there exists an error-based hybrid quantized feedback
control policy that makes the closed-loop system (14)
globally asymptotically stable with lim

t→∞
e(t) = 0.

Proof: The hybrid quantized feedback control is de-
signed in a constructive way along the proof. Let us dis-
tinguish two phases, namely the zooming-out and zooming-
in phases [15]. In the zooming-out phase µ is chosen so
that e ∈ B1(µ) and thus boundedness can be guaranteed.
During the zooming-in phase the objective is to shrink the
region I2(µ) by reducing the dynamic quantizer parameter
µ so that state-tracking properties can be concluded. The two
phases are analyzed as follows:

Zooming-out phase: Let µ(0) = 1. If
∥∥e(0)

∥∥ > M
Kx

we
have saturation. In this case we increase µ(t) fast enough
to dominate the growth of e, which can be seen from (14) to
be equal to

∣∣∣emaxA,B∈Θ‖A+BKT
x ‖
∣∣∣, where maxA,B∈Θ

∥∥A+BKT
x
∥∥

is bounded in view of Assumption 3. There will be a time
instant, call it t0 > 0, at which the following relation is true:

∥∥e(t0)
∥∥≤√ λmin(P)

λmax(P)
µ(t0)M

Kx
(27)

and as a consequence of (21), (25), e(t0) ∈ I1(µ(t0)) ∩
B1(µ(t0)). Because e(t0)∈B1(µ(t0)) and B2(µ)⊂B1(µ),
we have V̇ ≤ 0 from (22). Thus, for t > t0 when e(t) /∈
B2(µ(t)) we have

V̇ ≤ 0 =⇒ V (t)≤V (t0) =⇒

∥∥e(t)
∥∥≤√µ2(t0)M2

Kx
2 +

ρ

λmin(P)
(28)

which implies that e(t) does not necessarily decrease mono-
tonically. Then, for t > t0 we might have two cases: either
eT Pe is decreasing, in which case there is no saturation and
we go to the zooming-in phase; or eT Pe is increasing. For
this second case, because µ(t) is increased at higher rate than
the growth of e(t) to avoid saturation, we can assume that
∀t ≥ t0, e(t)∈B1(µ(t)). In addition, the following inequality
holds from V (t)≤V (t0):

∥∥e(t)
∥∥≤√ V (t0)

λmin(P)
=⇒ e(t) ∈L∞. (29)

Zooming-in phase: Let t ′ be a time instant such that t ≥
t ′ ≥ t0, and no saturation occurs, i.e. e(t) ∈B1(µ(t ′)). Then
it is true that V̇ ≤ 0 as long as e /∈B2(µ(t ′)). One can see
from (25) that B2(µ)⊂I2(µ). Thus, at time t̃ with t̃ ≥ t ′,
when e(t) ∈I2(µ(t ′)), µ(t̃) is updated

µ(t̃) =
Kx
√

λmax(P)R∆√
λmin(P)M︸ ︷︷ ︸

Ω

µ(t ′). (30)

Obviously Ω < 1 due to (26). Thus, a zooming-in event
occurs, and (30) implies that I1(µ(t̃)) = I2(µ(t ′)). After
the zooming-in event one might have two cases: either
eT Pe increases tending to violate e ∈ B1(µ(t̃)), in which
case a new zooming-out phase is activated; or eT Pe keeps
decreasing in which case a new zooming-in will eventually
be triggered. In the second case, since µ is updated when
e ∈ I2(µ) and because B2(µ) ⊂ I2(µ), it is true that
V̇ ≤ 0 and, as a consequence, (28) holds implying e(t)∈L∞.
Additionally, because of (7) and because xm is bounded, it is
true that x ∈L∞. By looking at (14) and (17) we can see by
using similar argumentation that ė and V̈ consist of bounded
terms, and thus they are bounded.

Let us now look at the combined behavior of V for
zooming-in and zooming-out phases. For t ≥ t0, at both
zooming-in and zooming-out phases it holds V̇ ≤ 0 =⇒
V (t)≤V (t0), thus V is upper-bounded by V (t0). Because V̈
is bounded, V is upper-bounded by V (t0) and lower-bounded
by 0, and because it holds V̇ ≤ 0 ∀t ≥ t0, we can conclude



using Barbalat’s lemma lim
t→∞

V̇ (t) = 0. The following relation
holds from (22):

lim
t→∞

V̇ (t)≤− lim
t→∞

∥∥e(t)
∥∥λmin(Q)

(∥∥e(t)
∥∥−µ(t)R∆

)
=⇒

0≤− lim
t→∞

∥∥e(t)
∥∥λmin(Q)

(∥∥e(t)
∥∥−µ(t)R∆

)
.

(31)
The above relation is true when

lim
t→∞

∥∥e(t)
∥∥= 0 or lim

t→∞

∥∥e(t)
∥∥−µ(t)R∆≤ 0. (32)

The second relation in (32) implies that e ∈ B2(µ).
However when e ∈ I2(µ), and because I2(µ) ⊃ B2(µ),
µ is decreasing as in (30) because zooming-in occurs, and
consequently e /∈ B2(µ). As a consequence lim

t→∞
µ(t) = 0

and from (32) we conclude lim
t→∞

∥∥e(t)
∥∥ = 0, i.e. asymptotic

stability of (14).

V. SIMULATION RESULTS

In this section we study the effectiveness of the proposed
adaptive hybrid control policy using the electro-hydraulic
system of [29]. The transfer function of the system operating
at supply pressure 11.0 MPa is:

G(s) =
62.4

s(s+4.58)

which can be equivalently written in controllable canonical
form:

ẋ(t) =

[
0 1
0 −4.58

]
x(t)+

[
0

62.4

]
u(t) (33)

where x= [x1,x2]
T , with x1, x2 representing the displacement

and the velocity of the arm respectively, u(t) is the control
voltage and y(t) is the measurement of the actuator arm
displacement. The desired dynamics are given as follows:

ẋm(t) =

[
0 1
−15 −8

]
xm(t)+

[
0

31.2

]
r(t)

where the reference input signal r(t) is specified as r(t) =
sin(0.8πt)+sin(πt). Moreover, the matrices P, Q in (12) are
defined as

P =

[
1.2830 0.1030
0.1030 0.0578

]
, Q =

[
2.1811 0.1751
0.1751 0.0983

]
and S in (4) is chosen equal to 2. The quantizer is chosen
so that M = 10, ∆ = 0.01 and µ initially is 1. Also, Ω

in (30) is computed Ω = 0.78. The initial error in the
simulations is chosen as e(0) = [0.1,−0.2]T . The controller
parameters are assumed to reside between lower and upper
bounds as follows: Kr ∈ [0.01,0.8], K(i, j)

x ∈ [−0.5,0.5], i =
{1,2}, j = 1 (the notation K(i, j) represents the (i, j)-th entry
of matrix K). The initial parameter estimates are chosen

Kx(0) =
[
0 0

]T
, Kr(0) = 0.6. At first, we present the

simulation results in Matlab-Simulink R© for the case of no
input quantization: tracking performance is shown in Fig. 1.
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Fig. 1. State tracking error and control input without input quantization

Next, we perform similar simulations for the case of
dynamic input quantizer with adjustable offset. Fig. 2 shows
that the tracking performance of the dynamic quantizer with
adjustable offset is clearly satisfactory: it is hard to notice
any difference between Fig. 1 (no quantization) and Fig. 2
(dynamic quantization). This reveals that the same tracking
performance can be attained without the need for infinite
bandwidth.
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Fig. 2. State tracking error and control input with input quantization
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Fig. 3. Hybrid control parameter µ(t) versus time (for the first 10 seconds
of the simulation)

The parameter µ in Fig. 3 is decreasing abruptly since the
first seconds of the experiment, indicating that the condition
e ∈ I2(µ) triggers (30) very often and state-tracking is
achieved quite fast. One can see in Fig. 3 that µ is not strictly
decreasing, indicating intermediate zooming-out phases in
between zooming-in time intervals, which complies with our
theoretical result in (28).

To illustrate the effectiveness of the dynamic quantizer



with adaptive offset, we repeat the simulations for the case of
the static quantizer, antisymmetric with respect to zero. Fig.
4 reveals that asymptotic tracking is not achieved because of
finite precision of the static quantizer.
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Fig. 4. State tracking error and quantized control input without dynamic
offset

VI. CONCLUSION

The adaptive asymptotic state-tracking problem in the
model reference adaptive control framework has been in-
vestigated in the quantized input measurements. In view of
the uncertainty in the system, an adaptive hybrid control
policy has been derived for a novel dynamic quantizer with
adjustable offset. With respect to state-of-the-art policies,
the proposed hybrid control policy comprises adjustment
laws for the control gains and for the dynamic offset and
dynamic range of the quantizer. Asymptotic state-tracking
was proven via Lyapunov analysis. A practical example of
an electro-hydraulic system has been used to demonstrate the
effectiveness of the proposed hybrid control scheme.

Future work will include the extension of the proposed
approach to switched systems, via dwell-time techniques
as in [30], [31]. In addition, the study of quantization in
networked environments with asynchronous switching [32],
[33] will also be investigated.

REFERENCES

[1] G. Tao. Adaptive control design and analysis. John Wiley & Sons,
2003.

[2] K. S. Narendra and A. M. Annaswamy. Stable adaptive systems.
Courier Corporation, 2012.

[3] S. Baldi, G. Battistelli, E. Mosca, and P. Tesi. Multi-model unfalsified
adaptive switching supervisory control. Automatica, 46(2):249–259,
2010.

[4] K. S. Narendra and Z. Han. A new approach to adaptive control using
multiple models. International Journal of Adaptive Control and Signal
Processing, 26(8):778–799, 2012.

[5] J. Hu and W. X. Zheng. Adaptive tracking control of leader–
follower systems with unknown dynamics and partial measurements.
Automatica, 50(5):1416–1423, 2014.

[6] Y. Abou Harfouch, S. Yuan, and S. Baldi. An adaptive switched
control approach to heterogeneous platooning with inter-vehicle com-
munication losses. IEEE Transactions on Control of Network Systems,
PP(99):1–1, 2017.

[7] S. Yuan, B. De Schutter, and S. Baldi. Robust adaptive tracking control
of uncertain slowly switched linear systems. Nonlinear Analysis:
Hybrid Systems, 27:1 – 12, 2018.

[8] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu. A survey of recent results
in networked control systems. Proceedings of the IEEE, 95(1):138–
162, 2007.

[9] L. Zhang, H. Gao, and O. Kaynak. Network-induced constraints in
networked control systems—a survey. IEEE Transactions on Industrial
Informatics, 9(1):403–416, 2013.

[10] D. Almakhles, A. K. Swain, A. Nasiri, and N. Patel. An adaptive two-
level quantizer for networked control systems. IEEE Transactions on
Control Systems Technology, 25(3):1084–1091, 2017.

[11] H. Ishii and B. A. Francis. Quadratic stabilization of sampled-data
systems with quantization. Automatica, 39(10):1793–1800, 2003.

[12] M. Wakaiki and Y. Yamamoto. Output feedback stabilization of
switched linear systems with limited information. In IEEE 53rd Annual
Conference on Decision and Control (CDC), pages 3892–3897, 2014.

[13] N. Elia and S. K. Mitter. Stabilization of linear systems with limited
information. IEEE Transactions on Automatic Control, 46(9):1384–
1400, 2001.

[14] R. W. Brockett and D. Liberzon. Quantized feedback stabilization of
linear systems. IEEE Transactions on Automatic Control, 45(7):1279–
1289, 2000.

[15] D. Liberzon. Hybrid feedback stabilization of systems with quantized
signals. Automatica, 39(9):1543–1554, 2003.

[16] A. Selivanov, A. Fradkov, and D. Liberzon. Adaptive control of
passifiable linear systems with quantized measurements and bounded
disturbances. Systems & Control Letters, 88:62–67, 2016.

[17] T. Hayakawa, H. Ishii, and K. Tsumura. Adaptive quantized control
for linear uncertain discrete-time systems. Automatica, 45(3):692 –
700, 2009.

[18] X. Yu and Y. Lin. Adaptive backstepping quantized control for a
class of nonlinear systems. IEEE Transactions on Automatic Control,
62(2):981–985, 2017.

[19] J. Zhou, C. Wen, and G. Yang. Adaptive backstepping stabilization
of nonlinear uncertain systems with quantized input signal. IEEE
Transactions on Automatic Control, 59(2):460–464, 2014.

[20] G. Lai, Z. Liu, Y. Zhang, C. L. P. Chen, and S. Xie. Asymmetric
actuator backlash compensation in quantized adaptive control of
uncertain networked nonlinear systems. IEEE Transactions on Neural
Networks and Learning Systems, 28(2):294–307, 2017.

[21] L. Huang, Y. Li, and S. Tong. Command filter-based adaptive fuzzy
backstepping control for a class of switched non-linear systems with
input quantisation. IET Control Theory Applications, 11(12):1948–
1958, 2017.

[22] T. Hayakawa, H. Ishii, and K. Tsumura. Adaptive quantized control for
nonlinear uncertain systems. Systems & Control Letters, 58(9):625–
632, 2009.

[23] Y. X. Li and G. H. Yang. Adaptive asymptotic tracking control of
uncertain nonlinear systems with input quantization and actuator faults.
Automatica, 72:177–185, 2016.

[24] G. Lai, Z. Liu, C. L. P. Chen, and Y. Zhang. Adaptive asymptotic
tracking control of uncertain nonlinear system with input quantization.
Systems & Control Letters, 96:23–29, 2016.

[25] Q. Xu, X. Lu, Y. Liu, and C. Gomila. A fine rate control algorithm
with adaptive rounding offsets (aro). IEEE Transactions on Circuits
and Systems for Video Technology, 19(10):1424–1435, 2009.

[26] S. Notebaert, J. De Cock, K. Vermeirsch, P. Lambert, and R. Van
de Walle. Leveraging the quantization offset for improved requan-
tization transcoding of H.264/AVC video. In 2009 Picture Coding
Symposium, pages 1–4, 2009.

[27] V. Parameswaran, A. Kannur, and B. Li. Adapting quantization
offset in multiple description coding for error resilient video trans-
mission. Journal of Visual Communication and Image Representation,
20(7):491–503, 2009.

[28] G. Tao. Multivariable adaptive control: A survey. Automatica,
(11):2737–2764, 2014.

[29] C. Wu, J. Zhao, and X. M. Sun. Adaptive tracking control for uncertain
switched systems under asynchronous switching. International Journal
of Robust and Nonlinear Control, (17):3457–3477, 2015.

[30] Q. Sang and G. Tao. Adaptive control of piecewise linear systems:
the state tracking case. IEEE Transactions on Automatic Control,
57(2):522–528, 2012.

[31] S. Yuan, B. De Schutter, and S. Baldi. Adaptive asymptotic tracking
control of uncertain time-driven switched linear systems. IEEE
Transactions on Automatic Control, 62(11):5802–5807, 2017.

[32] L. Zhang and P. Shi. Stability, L2- gain and asynchronous H∞ control
of discrete-time switched systems with average dwell time. IEEE
Transactions on Automatic Control, 54(9):2192–2199, 2009.

[33] S. Yuan, L. Zhang, B. De Schutter, and S. Baldi. A novel Lyapunov
function for a non-weighted L2 gain of asynchronously switched linear
systems. Automatica, 87:310–317, 2018.


