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Modelling turbulent heat flux accounting for Turbulence-Radiation  
Interactions 

S. Silvestri , D.J.E.M. Roekaerts 1, R. Pecnik 
Process and Energy Department, Delft University of Technology, Delft, The Netherlands  

A B S T R A C T   

The present work investigates the modeling of turbulent heat transfer in flows where radiative and convective heat transfer are coupled. In high temperature 
radiatively participating flows, radiation is the most relevant heat transfer mechanism and, due to its non-locality, it causes counter intuitive interactions with the 
turbulent temperature field. These so-called Turbulence-Radiation Interactions (TRI) largely affect the temperature field, modifying substantially the turbulent heat 
transfer. Therefore, in the context of modeling (RANS/LES), these interactions require a closure model. This work provides the inclusion of TRI in the modeling of the 
turbulent heat transfer by adopting a unique approach which consists in approximating the fluctuations of the radiative field with temperature fluctuations only. 
Based on this approximation, coefficients of proportionality are employed in order to close the unknown terms in the relevant model equations. A closed form of all 
radiation-temperature-velocity correlation is explicitly derived depending on the chosen turbulent heat transfer model. This model is applied to a standard two- 
equation turbulent heat transfer closure and used to reproduce results obtained with high-fidelity DNS simulations. While a standard approach (i.e., neglecting 
TRI) is not able to correctly predict the DNS data, the new model’s results shows exceptional agreement with the high-fidelity data. This clearly proves the validity 
(and the necessity) of the proposed model in non-reactive, radiative turbulent flows.   

1. Introduction 

Many engineering applications work with high temperature fluids 
which are able to absorb and emit thermal radiation, such as H2O, CO2 
or CH4. As a consequence, the correct prediction of thermal radiative 
transport is of primary importance in high temperature application such 
as combustors, volumetric solar absorbers and heat transfer equipment 
in power plants. Radiative heat transfer is different from conduction due 
to its peculiarity of being inherently non-local.2 This non locality causes 
counter intuitive interactions with other quantities such the as turbulent 
temperature field and conductive heat transfer. 

All the studies regarding combined radiative and conductive heat 
transfer have reported the occurrence of turbulence radiation in
teractions (TRI) due to the highly non-linear coupling between tem
perature and the radiative transport. Namely, the turbulence behaviour 
of the temperature field causes the appearance of fluctuations of radi
ative quantities, which in turn modify the mixing in the flow and the 
relevant scales of the thermal structures. 

The more practical works performed in the combustion field mainly 
deal with the effect of temperature fluctuations on the average radiative 
power and radiative transfer equation. The common conclusion is that 
this effect is negligible in non reactive flows, where the average 

radiative quantities can be calculated directly from the average tem
perature profile, but plays a large role in reactive flows where emission 
losses can be enhanced up to 30% due to TRI (Gupta et al., 2009, 2012; 
Coelho, 2007, 2012; Coelho et al., 2003). 

On the other hand, the first study which identified the role of radi
ation in the destruction of temperature fluctuations was performed by 
Townsend (1958). The study of the role of radiation in the modification 
of the temperature variance was advanced by findings in the field of 
atmospheric science (Schertzer and Simonin, 1982; Coantic and Simo
nin, 1984) which commonly deal with low temperature applications. In 
particular, Coantic and Simonin (1984) showed that radiative dissipa
tion rate is proportional to κp/ωK, where κp is the Planck-mean absorp
tion coefficient and ωK is the Kolmogorov wavenumber. Moreover, 
Soufiani (1991) has investigated the effect of radiation on the turbulent 
temperature spectrum of high temperature radiative gasses, demon
strating that radiative dissipation is more effective at the right end of the 
turbulent kinetic energy spectrum. 

More recently, thanks to the increase in the available computational 
resources, several works have addressed TRI with direct numerical 
simulation (DNS) to investigate the structural change of temperature 
turbulence in presence of radiative heat transfer. Numerous works 
involve different approximations to solve the issue of high 

E-mail addresses: s.silvestri@tudelft.nl (S. Silvestri), r.pecnik@tudelft.nl (R. Pecnik).   
1 Also at Department of Mechanical Engineering, Eindhoven University of Technology, The Netherlands.  
2 provided the speed of light can be regarded as infinite. 
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computational requirements for radiative calculation. The most used 
approximation is the optically thin approximation (OTA) which assumes 
an optically thin flow and, therefore, a negligible depletion of incoming 
intensity due to absorption. Employing this approximation Sakurai et al. 
(2010) investigated a horizontal buoyant radiative channel flow, 
discovering that radiative heat transfer leads to a destruction of the large 
organized buoyant structures. Other studies employed the gray gas 
approximation (Silvestri et al., 2018; Ghosh et al., 2014; Gupta et al., 
2009) to visualize the effect of radiative heat transfer on temperature. In 
particular, our previous work (Silvestri et al., 2018) showed that TRI has 
a non linear dependency on optical thickness τ, which is caused by the 
contrasting roles of radiative emission and absorption. 

Building on these results, we were recently able to parameterize TRI 
for a wide range of optical thicknesses in gray and non-gray partici
pating turbulent flows (Silvestri et al., 2019). This allowed us to 
compare non-gray gasses in non-reactive flows to the much simpler gray 
gasses and accurately assess TRI directly using the values of the tem
perature variance and the information of the temperature length scales 
in the domain. Contrarily to previous works, we highlighted the de
pendency of radiative dissipation on the ratio κg/ωc, where κg is a TRI- 
equivalent absorption coefficient and ωc is a characteristic wave
number which accounts for anisotropic turbulent structures. 

While all this knowledge has been gathered regarding the TRI 
mechanism and the coupling of convective and radiative heat transfer, 
standard models have not yet been adapted to these recent findings. 
When solving the Reynolds averaged Navier–Stokes (RANS) equations it 
is necessary to model the unclosed terms. It has been extensively proven 
that TRI modifies severely the value of the turbulent heat transfer, which 
is one of the variable requiring a proper closure model. This closure has 
never been provided in the presence of radiative heat transfer leading to 
the failure of all the developed models in high temperature, partici
pating turbulent flows. Here we provide the inclusion of TRI in the 
modeling of the turbulent heat transfer following a rigorous mathe
matical procedure. We construct the model on the base of the knowledge 
gathered in our previous DNS investigations (Silvestri et al., 2019). This 
“TRI” closure model is applied to a standard two equation model and 
tested against various DNS cases to demonstrate both its necessity and 
validity. 

2. Governing equations 

As discussed later, the model is developed in the framework of a 1D 
turbulent channel flow enclosed between a hot and a cold wall due to the 
availability of high-fidelity DNS data. Nonetheless, the formulation is 
general and applicable to other flows and boundary conditions. The non- 
dimensional Favre averaged Navier–Stokes equations for an emitting 
absorbing turbulent medium, read 

∂ρ
∂t

+
∂ρũi

∂xi
= 0, (1)  

∂ρũi

∂t
+

∂ρũiũj

∂xj
= −

∂p
∂xi

+
∂

∂xj

(
τij − ρu′′

i u′′
j

)
, (2)  

∂ρθ̃
∂t

+
∂ρθ̃ũj

∂xj
=

∂
∂xj

(
qcj − ρu′′

j θ′′
)
−

κpQ
Rd

, (3)  

where 

τij =
μ

Re

(
∂uj

∂xi
+

∂ui

∂xj
−

2
3
δij

∂uk

∂xk

)

, qcj =
λ

Pe
∂θ
∂xj

, Q = E − G  

We have here assumed ideal gas, low Mach number, and constant heat 
capacity c*

p. The asterisk * indicates a dimensional quantity, while the 
variables without asterisk are non-dimensional. In the above equations 
and in the rest of the text, the overbar and the tilde denote Reynolds and 
Favre averages, while the prime and double prime indicate their 

respective fluctuations. The non-dimensionalization is performed as 
following 

x =
x*

δ*, t =
t*U*

b

δ* , u =
u*

U*
b
, ρ =

ρ*

ρ*
c
, μ =

μ*

μ*
c
, λ =

λ*

λ*
c
,

θ =
T* − T*

c

T*
h − T*

c
, I = π I*

σT*
c

4, κ = δ*κ*.

where x, t,u, ρ, μ, λ, θ, I and κ are non-dimensional position vector, time 
coordinate, velocity vector, density, viscosity, thermal conductivity, 
temperature, radiative intensity and absorption coefficient, respectively. 
Furthermore, U*

b is the bulk velocity and quantities with subscripts c and 
h refer to values at the cold and hot wall, respectively. The non- 
dimensional parameters appearing in Eqs. (1)–(3) are the Peclet num
ber Pe = RePr and the Radiation number Rd = RePrPl, where Re is the 
bulk Reynolds number, Pr is the Prandtl number and Pl is the Planck 
number, defined as  

(i) Re = ρ*
cU

*
bδ*/μ*

c ,  

(ii) Pr = μ*c*
p/λ*

c ,  

(iii) Pl = λ*
c
(
T*

h − T*
c
)/(

σT*
c

4δ*). 

The radiative quantities of interest are absorption coefficient κp, emis
sion E and reference incident radiation G. If the spectral absorption 
coefficient κ*

ν is not a function of the radiative wavenumber ν, the flow is 

considered to be gray and κp = δ*P
(
T* − 1), where P represents a fifth 

order polynomial fit for the Planck-mean absorption coefficient of water 
vapour. Otherwise, κp is calculated as in (Modest, 2013) 

κp =
1

∫∞
0 Ibνdν

∫ ∞

0
κνIbνdν. (4)  

Non dimensional emission and incident radiation are calculated as 

E = 4
(

θ
T0

+ 1
)4

, G =
1

κpπ

∫ ∞

0
κν

∫

4π
IνdΩdν, (5)  

where T0 is defined as T0 = T*
c/
(
T*

h − T*
c
)
. If the flow is gray, the standard 

definition of incident radiation is retrieved G = π− 1∫
4πIdΩ. The Rey

nolds stress ρu′′
i u′′

j and the turbulent heat flux ρu′′
j θ′′ in Eqs. (2) and (3), 

respectively, are unclosed terms that require a closure. The modeling of 
the Reynolds stress is well established and, since radiative heat transfer 
does not directly affect velocity, it is not a topic of this study. On the 
other hand, the turbulent heat flux ρu′′

j θ′′ is greatly affected by radiative 
heat transfer and, therefore, its effect has to be accounted for to ensure 
correct temperature predictions. 

3. Turbulence radiation interactions 

Before deriving the complete model for the unclosed terms, we 
describe the most prominent interactions between radiation and tur
bulence in a participating media. Fig. 1 shows a schematic that describes 
all the interaction pathways between mean and fluctuating temperature 
and radiative quantities. Turbulence radiation interactions are divided 
into two main effects: the action of the radiation field (both mean and 
fluctuating) on temperature fluctuations (κp,E,G→θ′) and the develop
ment of a fluctuating radiative field by the action of temperature fluc
tuations (θ′→κ′

p,E′,G′). 
The two gray lines show pathways which are considered negligible in 

this study. The first one, which represents the modification of the 
mean radiative field due to the presence of temperature fluctuations 
(θ′→κp,E,G), is relatively small in non reactive flows, where T′/T ≪ 1 
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(weak temperature fluctuations), as reported in several previous in
vestigations (Gupta et al., 2009; Vicquelin et al., 2014; Roger et al., 
2011; Ghosh et al., 2014; Silvestri et al., 2018). The second (κ′,E′,G′→θ) 
which quantifies the direct influence of radiative quantities fluctuations 
on average temperature, is much smaller than the counterpart 
(κp, E, G→θ, average radiative field impact on mean temperature) and 
null in constant absorption coefficient flows (Silvestri et al., 2019). This 
pathway can be, therefore, safely neglected. The dominant effect of 
radiative fluctuations on θ is felt through the modification of θ′ and the 
consequent change in turbulent heat transfer. This last pathway 
(κp,E,G ↔ θ′ ↔ θ), which includes all the blue lines of Fig. 1, is considered 
here the most influential in non reactive flows and is hence the only 
focus of this study. 

The specific novelty of this work consists in the modeling of all the 
relevant TRI pathways (blue lines) and the inclusion of these effects into 
a general turbulent heat transfer closure model (red lines). To avoid 
errors in modeling the radiative heat source, we will use the averaged 
radiative quantities (E, G, κp) directly from the reference DNS simula
tions. In order to model TRI, it is necessary to approximate the fluctu
ations of radiative quantities corresponding to the bottom right block in 
Fig. 1. For this purpose, we use the linear expressions recently derived in 
our previous DNS investigation (Silvestri et al., 2019) which relate the 
fluctuations of the radiative quantities (κ′, E′ and G′) to the temperature 
fluctuations θ′. Namely, 

κ′

p ≈ fκθ ′, E ′ ≈ fEθ ′, G′ ≈ fGθ ′. (6)  

where fκ, fE and fG are coefficients of proportionality, functions of the 
averaged quantities only, defined as following 

fκ = − δ*
(

c*
1
ΔT*

T*2 + c*
2
2ΔT*

T*3 + c*
3
3ΔT*

T*4

)

+

− δ*
(

c*
4
4ΔT*

T*5 + c*
5
5ΔT*

T*6

)

,

(7)  

fE =

(
16θ3

T4
0

+
48θ2

T3
0

+
48θ
T2

0
+

16
T0

)

, (8)  

fG =
fEκg + fκ

(
E − G

)

ωc
⋅atan

(
ωc

κg

)

. (9)  

where ΔT* is T*
h − T*

c and c*
0 − c*

5 follow from the fitting of κp. The TRI- 
equivalent absorption coefficient κg, appearing in the above expres
sion, is defined as 
{

κg = κp, if gray
κg = κg(θ,ωc), if non-gray (10)  

If non-gray, κg in expression (10) depends on the averaged temperature 
profile as well as ωc which is a “characteristic” wavenumber that in
cludes turbulence effects in the TRI model. In this case, κg is found by 
averaging TRI effects over the whole absorption spectrum by consid
ering each wavelength equal to an independent gray gas. Both ωc and κg 

are derived in (Silvestri et al., 2019), but also discussed in more details 
in Section 5.2. For the full derivation of the expressions of fκ, fE, fG and κg 

the reader is referred to our previous work (Silvestri et al., 2019). 

4. Turbulent heat transfer two equation closure model 

Most of the turbulent heat transfer closure models used in a RANS 
framework are based on the gradient-diffusion hypothesis which states 
that 

ρu′′
j θ′′ = − αt

∂θ
∂xj

, (11)  

where αt is the flow dependent “eddy diffusivity”. This quantity can be 
approximated in several ways. The most common is to relate it to the 
eddy viscosity μt as αt = μt/Prt, with Prt as the “turbulent Prandtl 
number”, usually taken as constant equal to 0.9 (Antonia and Kim, 
1991). This is a quite crude approximation which works in the limit of 
high Reynolds number flows when Pr ≈ 1. We have already demon
strated in our study on TRI in gray gases (Silvestri et al., 2018) that Prt is 
largely modified by radiative heat transfer and cannot be used if the flow 
is able to emit and absorb radiation. The two equation model, on the 
other hand, does not rely on the turbulent Prandtl number, and esti
mates the turbulent diffusivity αt by relating it to a mixed time scale τm, 
which incorporates both the velocity field and the temperature field 
information as 

τm = τm
u τn

s , with τu =
k
ε, τs =

θ′2

εθ
, and m+ n = 1, (12)  

where τu is a time scale characteristic of the velocity field, while τs 
represents the time scale of the thermal field. Usually, the contribution 
of these two time scales to the mixed time scale is considered equal (i.e., 
the exponents m and n are taken as m = n = 0.5) (Deng et al., 2001; 
Nagano and Kim, 1988; Sanders and Gokalp, 1998; So, 2000). In this 
work we followed the same approach. The expression for the eddy 
diffusivity then becomes 

αt = ρCmfmkτm, (13)  

where fmk is a damping function that accounts for low Reynolds number 
effects. This model has been developed and tested, with different details, 
in Deng et al. (2001), Nagano and Kim (1988), Sanders and Gokalp 
(1998) and So (2000). In this work we follow the model version devel
oped by Deng et al. (2001). The model functions and constants involved 
are summarized later in Section 6. In order to assess the thermal time 
scale τs, two additional non-dimensional transport equations, for tem
perature variance θ′2 and dissipation of temperature variance εθ, 
respectively, are solved (from here the name of the closure model). In 
contrast to previous works, we have here derived these equations for a 
radiatively participating flow, to account for the effect of radiative heat 

Fig. 1. Schematic representing the TRI pathways and the modeling procedure. 
The black lines are the pathways directly available in a RANS calculation which 
do not require modeling. The red lines represent the turbulent heat flux closure. 
The blue lines show the pathways which will be accounted for in the present 
TRI model and, finally, the gray lines show negligible pathways in non-reactive 
flows (Roger et al., 2011; Silvestri et al., 2018; Vicquelin et al., 2014). On the 
other hand, dashed lines (which include the negligible terms) show pathways 
which are automatically accounted for since κp, E and G are an input from the 
DNS solutions. 
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transfer. Both additional equations are displayed and discussed in the 
sections below. 

4.1. Temperature variance transport equation 

The exact transport equation for the temperature variance reads: 

∂ρθ′′2

∂t
+

∂ũjρθ′′2

∂xj
⏟̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

C θ

= − 2ρu′′
j θ′′ ∂θ̃

∂xj
⏟̅̅̅̅̅ ⏞⏞̅̅̅̅̅ ⏟

P θ

+
∂ρu′′

j θ′′2

∂xj
⏟̅̅̅̅ ⏞⏞̅̅̅̅ ⏟

T θ

+
∂

∂xj

(
λ

Pe
∂θ

′2

∂xj

)

⏟̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅⏟
ϕθ

− 2
λ

Pe

(
∂θ′

∂xj

)2

⏟̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅⏟
ρεθ

−
2

Rd
(
κpQ
)
′θ′′

⏟̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅ ⏟
R θ

+ θ′′

[
∂

∂xj

(
λ

Pe
∂θ′2

∂xj

)

+
2

Rd
κpQ

]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
D θ

.

(14)  

In order to obtain a closed form of the above equation, several as
sumptions and approximations have to be applied. A first approximation 
consists in neglecting the terms containing θ′′ (D θ in the above equa
tion). This is exact in an incompressible flow, and, given the Morkovin 
hypothesis (Morkovin, 1962), which states that compressibility can be 
accounted for by considering mean density variations alone, it is an 
accurate approximation in low Mach number flows as well. This 
approximation implies that 

θ̃ ≈ θ, since θ̃ = θ − θ′′

̃θ′′2 ≈ θ
′2, since ̃θ′′2 = θ

′2 +
ρ′θ

′2

ρ − θ′′
2 (15)  

The validity of this assumption for the investigated cases is demon

strated by showing profiles of θ, θ̃, θ′2 and ̃θ′′2 in Appendix A. In addition, 
it is common practice to assume that thermal conductivity fluctuations 
are low compared to its mean value (i.e., λ ≈ λ). Finally, the transport 
term is commonly modelled using a gradient-diffusion hypothesis 
employing the eddy diffusivity αt scaled by a coefficient σθ. All these 
approximations lead to 

∂ρθ′′2

∂t
+

∂ũjρθ′′2

∂xj
=

∂
∂xj

[(
λ

Pe
+

αt

σθ

)
∂θ

′2

∂xj

]

+ 2Pθ

− 2ρεθ −
2

Rd
(
κpQ
)
′θ′

⏟̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅⏟
R θ

,

(16)  

where Pθ is the production of temperature variance, estimated, consis
tently with the turbulent heat flux, as 

Pθ = αt

(
∂θ
∂xj

)2

, (17)  

and εθ is the scalar dissipation calculated by its own transport equation. 
The remaining unclosed term in this equation is the new radiative term 
R θ. 

4.2. Scalar dissipation transport equation 

The additional transport equation for εθ has been derived for con
stant property flow and applied also to variable density flow keeping in 
mind that density fluctuations are low compared to the average density. 
For the case without radiation, the following formulation is the same as 
used in (Deng et al., 2001) 

ρDεθ

Dt
=

∂
∂xj

[(
λ

Pe
+

αt

σεθ

)
∂εθ

∂xj

]

+
Cpfp

τm
ρPθ

⏟̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅ ⏟
Pεθ

−
Cd1fd1

τs
ρεθ −

Cd2fd2

τu
ρεθ

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
εεθ

−
2λ

PeRd
∂
(
κpQ
)
′

∂xj

∂θ′′

∂xj
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

R εθ

.

(18)  

Again, the turbulent transport term has been modelled by employing the 
gradient-diffusion approximation as for the temperature variance 
transport equation. In Eq. (18) the terms Pεθ and εεθ are the production 
and the dissipation term, respectively. The first is modeled with the use 
of the mixed time scale, while the latter is divided into two different 
parts, one that accounts for velocity time scale and one which accounts 
for temperature time scale. Constants Cp, Cd1 and Cd2 and model func
tions fp, fd1, fd2 are taken as in Deng et al. (2001) and shown in Section 
6. A new unclosed radiative term R εθ appears. The rationale for the 
derivation of this new term follows the procedure which leads to the εθ 

budget equation. If we start from an incompressible, constant viscosity 
formulation, then 

εθ =
1

Pe

(
∂θ′

∂xj

)2

. (19)  

In this case, ∂tεθ is equivalent to 

∂εθ

∂t
=

2
Pe

∂θ′

∂xj

∂
∂xj

(
∂θ
∂t

−
∂θ
∂t

)

. (20)  

Therefore, the procedure to obtain the radiative term in the scalar 
dissipation budget equation follows these steps: (1) subtract the mean 
radiative heat source to the instantaneous radiative source, (2) derive 
the result in xj, (3) multiply by 2Pe− 1∂xj θ

′, (4) Reynolds average the 
resulting term. If stemming from the compressible low Mach number 
Navier–Stokes equations (expressed in a non-conservative form), ∂tθ 
requires a division by ρ on the RHS. The first step of the procedure would 
then yield 

1
Rd

(
κpQ

ρ −
κpQ

ρ

)

. (21)  

On the other hand, to account for variable density, it is common practice 
to multiply the scalar dissipation equation with ρ (Sanders and Gokalp, 
1998). Therefore, by assuming that, in this context, 
(

1
ρ

)

⋅ρ ≈

(
1
ρ

)

⋅ρ ≈ 1, (22)  

the radiative terms obtained following the incompressible procedure is 
assumed to be valid also in a variable density framework. It has to be 
reminded that this assumption is valid only under the Morkovin hy
pothesis of weak density fluctuations and, therefore, it cannot be 
directly applied to high Mach number flows. To account for variable 
thermal conductivity, since – assuming weak thermal conductivity 

fluctuations – εθ ≈ λPe− 1( ∂xjθ′
)2, R εθ is further multiplied by λ. The 

final radiative term, as anticipated in Eq. (18) reads 

R εθ =
2λ

PeRd
∂
(
κpQ
)
′

∂xj

∂θ′′

∂xj
(23)  

5. TRI modeling 

By following the approach presented in Silvestri et al. (2019), it is 
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possible to find a closure for the additional radiative terms in Eqs. (16) 
and (18) by using the model functions shown in Eqs. (7)–(9). The radi
ative term in Eq. (16) can be rewritten in terms of emission and incident 
radiation by substituting Q = E − G. Additionally, a Reynolds decom
position of κp, E and G yields 

R θ =
2

Rd

(
κp

(
E′θ′ − G′θ′

)
+
(

E − G
)

κ
′

pθ′
)

+
2

Rd

(
κ′

pE′θ′ − κ′

pG′θ′
)
.

(24)  

From the modelling of radiative fluctuations as given in Eq. (16) 

R θ ≈
2

Rd

(
κp(fE − fG) +

(
E − G

)
fκ

)
θ
′2

+
2

Rd
fκ(fE − fG)θ

′3.

(25)  

Since fκ≪κp (absorption coefficient fluctuations are mostly negligible, 

see Silvestri et al., 2019) and θ′3≪θ′2, it is possible to safely neglect the 
last term on the RHS. The final model for the radiative term in the 
temperature variance budget equation reads 

R θ =
2

Rd

(
κp(fE − fG) +

(
E − G

)
fκ

)
θ′2. (26)  

The above equation is closed, as it depends on quantities readily avail
able in a RANS framework (provided θ′2 is modeled). 

The radiative term R εθ in Eq. (18) can be expanded, by performing a 
Reynolds decomposition of κp and Q, as 

R εθ = 2
λ

PeRd

⎛

⎝
∂κ′

pQ
∂xj

∂θ′

∂xj
+

∂κ′

pQ′

∂xj

∂θ′

∂xj

⎞

⎠

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
fluctuating κp

+2
λ

PeRd

(
∂κpQ′

∂xj

∂θ′

∂xj

)

⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟
average κp

.

(27)  

As already done for Eq. (3), we neglect the higher order term containing 
κ′

pQ
′ . This is substantiated by the low impact of absorption coefficient 

fluctuations, demonstrated in Silvestri et al. (2019). By further splitting 
the derivatives, 

R εθ = 2
λ

PeRd

(
∂κ′

p

∂xj

∂θ′

∂xj
Q + κ

′

p
∂θ′

∂xj

∂Q
∂xj

)

+2
λ

PeRd

(

Q′
∂θ′

∂xj

∂κp

∂xj
+

∂Q′

∂xj

∂θ′

∂xj
κp

)

.

(28)  

Substituting Q = E − G, κ′

p ≈ fκθ′ and Q′

≈
(
fE − fG

)
θ′ and rearranging, 

yields the model for the radiative term in the εθ transport equation 

R εθ ≈
2

Rd

[
κp(fE − fG) +

(
E − G

)
fκ

]
εθ

+
λ

PeRd
∂

∂xj

[
κp(fE − fG)

] ∂θ
′2

∂xj

+
λ

PeRd
∂

∂xj

[
fκ

(
E − G

) ] ∂θ
′2

∂xj
.

(29)  

Also the above expression, provided θ′2 and εθ are modeled, depends on 
quantities readily available and can be directly implemented in the 
turbulent heat transfer model. Note that κp,E and G are taken from the 
correspective DNS simulations. However, our previous DNS investiga
tion showed that the terms involving E and G in Eqs. (26) and (29) are 

negligible irrespective of the optical thickness value. 

5.1. Modified temperature time scale 

The definition of τs to be used in the expression of the eddy diffusivity 
(13) accounts only for conductive dissipation of temperature variance 
(εθ). However, TRI acts as an additional “radiative dissipation” εr which 
reduces drastically the temperature time scale (Townsend, 1958). 
Therefore, to include TRI in the definition of αt, we must define a 
“modified” temperature time scale τ★

s which accounts for εr 

τ★
s =

θ′2

εθ + Crεr
, (30)  

where Cr is a model constant. Given the validation cases, the value of 0.5 
for Cr has been found to best match the DNS data. Radiative dissipation 
εr, in a strict sense, is the dissipative part of the radiative term R θ which 
can be retrieved by expressing the radiative heat source in terms of 
divergence of radiative heat flux, 

κpQ =
∂qrj

∂xj
. (31)  

By employing this definition it is possible to decompose the radiative 
term R θ into a dissipation εr and a transport term ϕr as 

R θ

2
=

1
Rd

∂q′

rjθ
′

∂xj
⏟̅̅̅̅̅⏞⏞̅̅̅̅̅⏟

ϕr

−
1

Rd
q′

rj
∂θ′

∂xj
⏟̅̅̅̅̅⏞⏞̅̅̅̅̅⏟

εr

(32)  

On the other hand, we can assume that, away from the walls, the 
dissipation term is much larger than the transport term (εr≫ϕr) as 
shown in Silvestri et al. (2018). Therefore, it is possible to assume that 
εr ≈ 0.5R θ. From this definition, the eddy diffusivity can then be cor
rected as follows 

αt = ρCmfmkτ★
m where τ★

m =
(
τuτ★

s

)0.5
, with τ★

s =
θ′2

εθ + 0.5CrR θ
.

(33)  

It has to be pointed out that τs is present also in the scalar dissipation 
transport Eq. (18) to model the dissipation and the production term (εεθ 

and P εθ , respectively). Here, the original definition of τs is maintained, 
as the influence of radiation is directly modeled through the term R εθ . 

5.2. Characteristic wavenumber 

The model employed for incident radiation fluctuations (G′

≈ fGθ
′ ) 

requires the estimation of a “characteristic wavenumber” ωc, which 
represents the length scale of the average energy-containing tempera
ture structure. In Silvestri et al. (2019) it is defined, such that anisotropy 
due to wall turbulence is accounted for, as 

ωc =

[(∫∞
0 ωxS θ(ωx)dωx

θ′ 2

)2

+

(∫∞
0 ωzS θ(ωz)dωz

θ′ 2

)2

+

(
κ

ln(10)

)2
]0.5

,

(34)  

where S θ is the one-dimensional temperature power spectrum. Since 
the power spectrum is not available in a RANS simulation, the integral 
length scale of temperature is used, calculated as in (Coantic and 
Simonin, 1984) 

lθ = Cε2Cm
θ′2k1/2

εθ
≈ ω− 1

c . (35)  

In non-gray gas cases, κg depends on ωc. An iterative procedure is, 
therefore necessary: κg is initialized with κp and, as the solution is 
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iterated, κg is updated as a function of the integral length scale and the 
mean dimensional temperature 

κglθ⋅atan
(

1
κglθ

)

=
1

κp

(
T*
)

Ib

(
T*
)

∫ ∞

0
κ2

ν

(
T*
)

Ibν

(
T*
)

lθ⋅atan

⎛

⎝ 1

κν

(
T*
)

lθ

⎞

⎠dν,

(36)  

by integrating over line-by-line spectra retrieved from a high resolution, 
accurate spectral database (Rothman et al., 2012). For a detailed deri
vation of Eq. (36), the reader is referred to Silvestri et al. (2019). 

6. Summary of the model equations 

In this section, the radiative modification is tested on different cases 
for which DNS data is available. The validation of the model is done by 
comparison with high fidelity DNS of a fully developed absorbing 
emitting turbulent channel flows enclosed by a hot and a cold wall 
which were performed in previous works (Silvestri et al., 2018, 2019). 
The DNS data is statistically steady and homogeneous in the streamwise 
and spanwise direction, and, as a consequence the model equations 
simplify to a one-dimensional problem (only the gradients in the wall- 
normal direction remain). Below, we summarize the model equations 
as well as the values for all the constants involved. It is reminded that we 
neglect fluctuation of transport properties (λ ≈ λ, μ ≈ μ) and make use of 
the gradient-diffusion hypothesis 

ρu′′v′′ = − μt
∂u
∂y

and ρv′′θ′′ = − αt
∂θ
∂y

. (37)  

the model RANS equations for a statistically fully developed turbulent 
channel flow reduce to, 

∂
∂y

[( μ
Re

+ μt

) ∂u
∂y

]

=
∂p
∂x
, (38)  

∂
∂y

[( λ
Pe

+ αt

) ∂θ
∂y

]

=
κpQ
Rd

. (39)  

Given the moderate Reynolds number of the test cases, turbulent vis

cosity is calculated using the v2 − f model of Durbin (1995) which is able 
to correctly predict wall damping by introducing ad hoc damping re
lations. The model is not shown here, for more details the reader is 
referred to Durbin (1995). In particular, for variable density cases, the 
variable property formulation of Otero et al. (2018) is implemented, as it 
slightly improves the turbulent stress prediction (proof in Section 8.1). 
The turbulent heat flux model equations are summarized below 

αt = ρCmfmk

(
k
ε⋅

θ′2

εθ + Crεr

)0.5

, (40)  

−
∂
∂y

[(
λ

Pe
+

αt

σθ

)
∂θ′2

∂y

]

= 2Pθ − 2ρεθ − R θ,
(41)  

−
∂
∂y

[(
λ

Pe
+

αt

σεθ

)
∂εθ

∂y

]

=
Cpfp

τm
Pθ −

[
Cd1fd1

τs
+

Cd2fd2

τu

]

ρεθ − R εθ ,
(42)  

with the model functions and constants (as in Deng et al., 2001) shown 
in Table 1, and below 

fm=

[

1− exp
(

−
Reε

16

)]2
(

1+
3

Re3/4
t

)

, fp=1,

fd1=1− exp
(

−
Reε

1.7

)2

, fε=

(

1− 0.3exp

[

−

(
Reε

6.5

)2
])[

1− exp
(

−
Reε

3.1

)]2

,

fd2=
1

Cd2
(Cε2fε − 1)

[

1− exp
(

−
Reε

5.8

)2
]

, Reε=
ρ3/4ε1/4y

μ3/4 , Ret=
ρ
μ

k2

ε .

(43)  

7. Test cases 

The investigated cases are presented in Table 2. All cases are forced 
convection in a periodic channel bounded by an isothermal hot and cold 
wall. Both walls are black (∊w = 1). In terms of thermal boundary 
conditions, the first 14 cases have T*

h = 955 K and T*
c = 573 K corre

sponding to T0 = 1.5, while the last two have T*
h = 1800 K and T*

c = 600 
K (T0 = 0.5). All cases have a constant Planck number equal to 0.03. The 
DNS database includes constant and variable properties as well as gray 
and non-gray cases. In particular, the first seven cases are constant 
property, constant absorption coefficient and gray. They differ only in 
the magnitude of κ and, therefore, optical thickness (τ). These DNS cases 
are presented and discussed in our previous work (Silvestri et al., 2018) 

Table 1 
Model constants as in Deng et al. (2001).  

Cm  Cr  Cp  Cd1  Cd2  Cε2  σθ  σεθ  

0.1 0.5 2.34 2.0 0.9 1.9 1.0 1.0  

Table 2 
Description of the test cases.  

Cases Re Pr T0  ρ  μ  λ  κp  τ  

bench 5800 1 1.5 const const const 0 (transparent) 0 
gray-01 5800 1 1.5 const const const 0.1 0.1 
gray-1 5800 1 1.5 const const const 1 1 
gray-5 5800 1 1.5 const const const 5 5 
gray-10 5800 1 1.5 const const const 10 10 
gray-20 5800 1 1.5 const const const 20 20 
gray-10p 5800 0.7 1.5 const const const 10 10 
bench-ρ  7500 1 1.5 T0/(θ+T0) const const 0 (transparent) 0 
gray-ρ01  7500 1 1.5 T0/(θ+T0) const const δ*P

(
T* − 1) 0.1 

gray-ρ1  7500 1 1.5 T0/(θ+T0) const const δ*P
(
T* − 1) 1 

gray-ρ10  7500 1 1.5 T0/(θ+T0) const const δ*P
(
T* − 1) 10 

spec–H2O 7500 1 1.5 T0/(θ+T0) const const H2O spectra 8.023 
spec–CO2 7500 1 1.5 T0/(θ+T0) const const CO2 spectra 2.99 
spec-Part 7500 1 1.5 T0/(θ+T0) const const QG spectra 2.79 
bench-highRe 33400 0.93 0.5 T0/(θ+T0) ρ− 1.15  ρ− 1.35  0 (transparent) 0 

highRe-H2O 33400 0.93 0.5 T0/(θ+T0) ρ− 1.15  ρ− 1.35  H2O spectra 2.12  
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where we characterized the effect of optical thickness on TRI. 
The next four cases, designated by a ρ in the name, are still gray, but 

with temperature-dependent density and absorption coefficient. In 
particular the absorption coefficient is a 5th order polinomial of T* − 1, 
defined as 

κp = δ*
(

c*
0 +

c*
1

T* +
c*

2

T*2 +
c*

3

T*3 +
c*

4

T*4 +
c*

5

T*5

)

, (44)  

where the constants c*
0 − c*

5 are taken from the Sandia national labora
tories’ (Barlow et al., 2001) model of water vapour Planck-mean ab
sorption coefficient. 

Finally, the last five cases have a spectrally varying, temperature 
dependent absorption coefficient and variable density. Fig. 2 shows the 
spectra for these cases at 800 K and 1 atm. These are (1) the spectra of 
water vapour named H2O, (2) the spectra of 10% carbon dioxide and 
90% nitrogen, labelled CO2 and (3) a synthetic spectra which mimics a 
multiphase medium, called QG for quasi-gray. The latter is generated by 
adding to the spectra of 10% H2O a constant (which represents the gray 
absorption coefficient of particulate media). The last two cases in 

Table 2 have a higher Reynolds number and variable viscosity and 
thermal conductivity. 

Among all these cases, three transparent benchmarks (bench, bench- 
ρ and bench-highRe) are used to test the employed RANS models. The 
reference DNS results for the constant property cases have been obtained 
using the code described in Silvestri et al. (2018). The variable proper
ties DNS results, on the other hand, are obtained by coupling the CLAM 
Finite Volume Method described in Silvestri et al. (2018) with the low 
Mach number Navier–Stokes solver described in Patel et al. (2015). 
Finally, the non-gray gas DNS results are produced by coupling the low 
Mach number Navier–Stokes solver with a high accuracy Monte Carlo 
spectral radiative solver described in Silvestri and Pecnik (2019). 

In the rest of the section the following RANS model combinations 
will be compared:  

• v2 − f for μt with αt = μt/0.9  
• v2 − f for μt and θ′2 − εθ for αt with no TRI model (R θ = R εθ = 0)  
• v2 − f for μt and θ′2 − εθ for αt with TRI model 

We remind that, since the focus of this report is the modeling of tur
bulent heat transfer in presence of radiation, to avoid errors in the 
calculation of the radiative sources, the profiles of the average radiative 
quantities (κp,E and G) are taken directly from DNS calculations. This 
ensures that, even if negligible, the θ′ →κp, E,G pathway is still accounted 
for (Fig. 1). 

8. Results 

8.1. Transparent cases 

The models are first tested on the transparent benchmarks to ensure 
correct implementation. Figs. 3 and 4 show calculated velocity and shear 
stress, and mean temperature and turbulent heat flux, respectively. 
Here, the dashed lines show the results obtained with a simple constant 
turbulent Prandtl number, while the solid lines are the calculations using 
the two equation turbulent heat flux model. In particular, the red lines 
show the results obtained using a classical implementation, based on 

Fig. 2. Spectra of the non gray cases at 800 K and 1 atm. H2O is the spectrum of 
water vapour, CO2 is the spectrum of 10% carbon dioxide in N2, while QG is a 
synthetic spectra that mimics a multiphase medium. 

Fig. 3. Profiles of mean velocity and turbulent stress for the transparent cases compared to DNS data. The red lines show results obtained with a classical scaling, 
while the blue lines show the improved semi-local v2 − f formulation which relies on semi-local scaling and semi-local Reynolds number. In terms of turbulent heat 
flux models, a dashed line represents the Prt = 0.9 model, while a solid line shows the two-equation model. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

S. Silvestri et al.                                                                                                                                                                                                                                 



International Journal of Heat and Fluid Flow 89 (2021) 108728

8

wall scaling, while the blue lines are obtained using an improved v2 − f 
model, which accounts for variable properties, developed on the basis of 
semi-local scaling (Pecnik and Patel, 2017) and implemented in Otero 
et al. (2018). In the bench case, the turbulent heat flux model does not 
affect the velocity field, as temperature is a passive scalar. Since the 
results from all turbulent heat flux models would collapse on the same 
line, only one RANS result for u and ρu′′v′′ is shown. It is possible to 
notice that the v2 − f model slightly underpredicts the turbulent stress. 
For the bench-ρ and the bench-highRe cases, the classical and improved 
v2 − f formulations for μt are compared. It is possible to notice that, 
again, the choice of the turbulent heat flux model does not affect the 
velocity field (constant turbulent Prandtl number yields same results as 
the-two equation model), but the v2 − f formulation does, with slightly 
improved results using the “semi-local scaling” implementation 
described in Otero et al. (2018) when large property variations are 
present (case bench-highRe). In the latter case, the turbulent stress is 
largely underpredicted on the hot side. The reason for this under
prediction might be the very low density and high viscosity on the hot 
side that cause local low Reynolds number effects which are known to 
reduce the accuracy of a k − ε based turbulence model. 

In constrast, the turbulent heat flux and mean temperature profiles 
(Fig. 4) show differences between the models used. If the constant tur
bulent Prandtl model is used, the turbulent heat flux is mispredicted in 
the center of the channel, leading to improved mixing and a mean 
temperature profile which is lower on the hot side and higher on the cold 
side of the channel. On the other hand, the two equation model leads to 
an overprediction of the turbulent heat flux in the core of the channel. 
This is caused by a slight overprediction of the turbulent heat transfer 
(derivative of ρv′′θ′′) in the thermal conductive layer. Despite this 
overprediction, the important quantity is the derivative of the turbulent 
heat flux, which is better predicted with the two-equation model 
compared to the constant turbulent Prandtl number approach. This is 
proven by the better agreement of the mean temperature profile. Note 
that, as shown by Eq. (39), in a transparent case the temperature profile 

is completely defined by αt, and, therefore, reflects the real performance 
of a turbulence heat flux model. Therefore, the two-equation model 
leads to a smaller “thermal boundary layer” than the actual DNS data but 
an overall good performance in terms of average temperature profile in 
the core of the channel. Again, it is possible to notice that the variable 
properties v2 − f model yields slightly improved results in case of large 
property variations (case bench-highRe). For this reason, the improved 
variable property v2 − f formulation is used for all the following 
simulations. 

8.2. Constant property, gray cases 

Fig. 5 shows the results obtained for constant properties, low to in
termediate optical thickness cases. As already demonstrated in several 
previous studies (Silvestri et al., 2018; Deshmukh et al., 2008; Vicquelin 
et al., 2014; Gupta et al., 2009; Zhang et al., 2013) if the channel is 
optically thin, the influence of TRI is negligible. Indeed, it is possible to 
notice that, since TRI is negligible, the differences between the models, 
for case gray-01, closely resemble the transparent cases. In particular, by 
assuming a constant turbulent Prandtl number, turbulent heat transfer is 
mispredicted in the center of the channel leading to a higher mean 
temperature on the cold side of the channel. The two equation model 
overpredicts the turbulent heat flux as in benchmark case, while the 
addition of a TRI model improves slightly the predictions. This does not 
translate in a visible improvement in the mean temperature profile as 
TRI impact is still very low. On the other hand, at an intermediate optical 
thickness TRI starts to play an important role, strongly affecting the 
turbulent temperature field. This influence is reflected in the failure of 
the standard models in predicting both the turbulent heat transfer and 
the average temperature field. In particular, turbulent heat flux is always 
severely over-predicted leading to an increased temperature mixing 
when compared to the DNS results. This is caused by the fact that 
standard models do not take into account the additional dissipative ef
fect of radiative heat transfer on temperature fluctuations and, 

Fig. 4. Profiles of mean temperature and turbulent heat flux for the transparent cases compared to DNS data. The red lines show results obtained with a classical 
scaling, while the blue lines show the improved semi-local v2 − f formulation which relies on semi-local scaling and semi-local Reynolds number. In terms of turbulent 
heat flux models, a dashed line represents the Prt = 0.9 model, while a solid line shows the two-equation model. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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therefore, predict much higher thermal turbulence levels. In reality, TRI 
decouples the connection between turbulent velocity and temperature 
field, and severely reduce temperature fluctuations thanks to a long- 
range heat transfer mechanism. This results in a much lower turbulent 
heat flux compared to a non-radiative case with the same mean tem
perature gradient and velocity fluctuations. Contrarily, including a TRI 
model allows to predict the reduction in turbulent heat flux leading to 
accurate results in terms of mean temperature profile. It is possible to 
notice that increasing optical thickness (case gray-5) leads to a more 
severe misprediction of temperature by the standard models due to a 

higher TRI influence. 
Fig. 6 shows the optical thicker cases (gray-10, gray-20 and gray- 

10p). Again, since the impact of TRI on the turbulent temperature 
field is very high, the use of the proposed model is necessary to achieve 
an accurate prediction. Nonetheless, we imagine that substantially 
increasing the optical thickness (τ≫1) would decrease the necessity of 
the TRI model. This is caused by the fact that the strength of TRI is not a 
monotonic function of τ, it is zero at τ = 0, reaches a maximum and 
returns to zero at τ→∞. Case gray-10p shows the results obtained for a 
lower Prandtl number (Pr = 0.7). The TRI model performs still 

Fig. 6. Profiles of mean temperature (top row) and turbulent heat flux (bottom row) for the high optical thickness, constant absorption coefficient cases. DNS results 
are shown with circles. The dotted lines are results from setting Prt = 0.9, while the dashed and solid lines show results obtained by the two equation model, without 
and with including TRI, respectively. 

Fig. 5. Profiles of mean temperature (top row) and turbulent heat flux (bottom row) for the low/intermediate optical thickness, constant absorption coefficient cases. 
DNS results are shown with circles. The dotted lines are results from setting Prt = 0.9, while the dashed and solid lines show results obtained by the two equation 
model, without and with including TRI, respectively. 
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exceptionally. We did not test Prandtl numbers larger than unity because 
of the unavailability of DNS data. Nevertheless, since the relative in
fluence of the radiative heat transfer (and TRI) is reduced with an in
crease in Prandtl number, we believe that the results will still be 
accurate without any modification. It is possible to imagine that for a 
higher Prandtl number (Pr > 1) temperature structures will be signifi
cantly different, and this change will have to be taken into account with 
a Prandtl number dependency of the characteristic wavenumber ωc 
(approximated by lθ). Nonetheless, the strength of TRI, which scales 
with Pr− 1, will reduce in intensity. Therefore, it is straight-forward to 
show that also for an increased Prandtl number, no significant modifi
cation of the proposed model would be required. 

Finally, it is important to notice how, in both Figs. 5 and 6, the two 
equation model without TRI performs very poorly in terms of turbulent 
heat transfer. We already showed that the two equation model results in 
an over-estimation of turbulent heat transfer near the walls (Fig. 3). In 
case of radiative heat transfer, where turbulent heat transfer is largely 
suppressed near the boundaries, this over-estimation becomes 

unacceptable. TRI, especially in case of an intermediate to high optical 
thickness, is the dominant mechanism. Thus, by including a closure 
model for TRI we are able to correct the mispredictions and obtain 
excellent results. The constant turbulent Prandtl number model (red 
dashed lines) did not necessarily over-predict the turbulent heat flux 
near the walls in the benchmark cases, but is still a very crude approx
imation which connects tightly the velocity and the temperature field. 
This connection is partly severed by TRI leading also to unacceptable 
results as optical thickness (and radiative heat transfer strength) 
increases. 

8.3. Variable property, gray cases 

Fig. 7 shows results for the variable property, gray cases compared to 
DNS. As explained in Silvestri et al. (2019) the fluctuation of absorption 
coefficient do not impact TRI significantly as much as E and G fluctua
tions. As a consequence, the results for these cases follow very closely 
what was observed in Figs. 5 and 6. In particular, the low optical 
thickness case does not feel the impact of a fluctuating radiative field 

Fig. 7. Profiles of mean temperature (top row) and turbulent heat flux (bottom row) for the variable absorption coefficient, gray cases. DNS results are shown with 
circles. The dotted lines are results from setting Prt = 0.9, while the dashed and solid lines show results obtained by the two equation model, without and with 
including TRI, respectively. 

Fig. 8. Characteristic wavenumber ωc from DNS (circles), calculated with Eq. (34) compared to the characteristic length scale (solid lines) obtained in the RANS 
simulations using Eq. (35). 
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and adding a TRI closure model does not change significantly the results. 
Contrarily, a large improvement is found when including TRI for in
termediate and large optical thickness cases (gray-ρ1 and gray-ρ10). To 
show the accuracy of the length scale approximation, Fig. 8 shows 
profiles of ωc as calculated from DNS data with Eq. (34) and l− 1

θ 
approximated with Eq. (35) in the RANS simulations. It can be noticed 
that near the walls l− 1

θ has an unphysical spike which is not seen in the 
DNS data. While ωc has a fixed value at a boundary, lθ tends to zero as k 
goes to zero, which means that, following expression (35), the integral 
length scale of temperature structures tends to zero as a fixed boundary 
is approached. This caused the characteristic wavenumber calculated by 
the RANS model to tend to infinity. Another misprediction is seen in the 
value of ωc for the optically thickest case gray-ρ10. This is attributed to 
the fact that Eq. (35) is not able to predict thermal structure’s enlarge
ment caused by the dual absorption–emission process at high absorption 
rates (Silvestri et al., 2018) as it does not include any radiative quantity. 
Nonetheless, both of these deviations from DNS values (which will be 
addressed later in Section 8.5 while discussing second order statistics) 
do not impact the predictions of both turbulent heat transfer and mean 
temperature. 

8.4. Non-gray cases 

Figs. 9 and 10 present the results for the non-gray cases with a 
spectrally varying absorption coefficient. Fig. 9 shows, from left to right, 
cases with an H2O, CO2 and QG type spectrum (see Fig. 2). On the other 
hand, results presented in Fig. 10 are obtained with an H2O type spec
trum. For the non-gray cases, the failure of the standard models is not as 
trivially connected to the optical thickness shown in Table 2 as for the 
previously analysed gray cases (i.e., for gray cases higher τ lead to larger 
misprediction if the TRI model was not included). In particular, case 
spec-Part (with τp = 2.79) shows the worst performance in terms of both 
turbulent heat flux and mean temperature. On the other hand, case spec- 

Fig. 9. Profiles of mean temperature (top row) and turbulent heat flux (bottom row) for the non-gray, low Reynolds number cases. DNS results are shown with 
circles. The dotted lines are results from setting Prt = 0.9, while the dashed and solid lines show results obtained by the two equation model, without and with 
including TRI, respectively. 

Fig. 10. Profiles of (a) mean temperature, (b) turbulent heat flux and (c) κg for the non-gray, high Reynolds number case. DNS results are shown with circles. In (a) 
and (b), the dotted lines are results from setting Prt = 0.9, while the dashed and solid lines show result from the two equation model, without and with including TRI, 
respectively. In subfigure (c) the solid line shows the profile of κg obtained iteratively with Eq. (36) compared to the DNS results. The Planck mean absorption 
coefficient is shown (dashed line) as a reference. 

Table 3 
TRI-governing parameters for the different non-gray cases.  

Case spec-H2O spec-CO2 spec-Part highRe-H2O 

τp  8.023 2.99 2.79 2.12 
τg  13.4 18.9 3.1 7.09 
τeq  0.736 0.118 2.391 0.384  
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Fig. 11. Top row: characteristic wavenumber ωc from DNS (circles), calculated with Eq. (34) compared to the characteristic length scale (dashed-dotted lines) 
calculated with Eq. (35). Bottom row: comparison between the actual κg calculated from DNS data (circles) and the one obtained iteratively with Eq. (36) (blue solid 
line). The Planck-mean absorption coefficient (red dashed line) is shown as a reference. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.) 

Fig. 12. Profile of second order statistics calculated using the two equation turbulent heat flux model for the some selected constant absorption coefficient cases. The 
top row shows temperature variance, while middle and bottom row display molecular and radiative dissipation, respectively. The symbols show DNS data while the 
red and blue lines show the results obtained using the two equation model without and with the addition of a TRI model, respectively. 
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CO2, with a comparable optical thickness (2.99) seems to be relatively 
unaffected by TRI. 

This is because, as we explain in Silvestri et al. (2019), two different 
parameters control TRI in a non-gray gas: τp which is the Planck-mean 
optical thickness, and τg, which is the TRI-equivalent optical thick
ness, based on the parameter κg. These two parameters are defined as 
follows 

τp = 0.5
∫ 2

0
κpdy, and τg = 0.5

∫ 2

0
κg(θ,ωc)dy. (45)  

In gray gas cases τ = τg = τp, meaning that TRI depends only on the 
Planck-mean optical thickness. This is not the case in non-gray gases. 
The two optical thicknesses are shown, for the different cases, in the 
Table 3, together with the gray-equivalent optical thickness (τeq) 
described below. Since the influence of absorption coefficient fluctua
tions is generally negligible (Silvestri et al., 2019), the impact of TRI on 
the temperature field scales with 

R θ

/
θ′2 ≈ κp(fE − fG) ∝ κp⋅

(
1 − κg⋅f

(
κg
) )

, (46)  

where κg⋅f
(
κg
)

is bounded between 0 and 1 and increases with κg. The 
RHS of the proportionality relation has the dimensions of an absorption 

coefficient and is obtained by dividing R θ by 
(

θ′2fE
)

. Therefore, the 

impact of radiation increases with τp and decreases with τg. To compare 
the results shown in Fig. 9 with the gray gas cases it is possible to define 

a new optical thickness (we call it here gray-equivalent), which is a 
combination of these two parameters. If we assume that only one ab
sorption coefficient (here denoted κeq) is responsible for TRI (as in gray 
gasses), the “gray-equivalent” optical thickness can be defined as: 

τeq = 0.5
∫ 2

0
κeqdy, where κeq

(

1 −
κeq

ωc
atan

ωc

κeq

)

≡ κp

(

1 −
κg

ωc
atan

ωc

κg

)

.

(47)  

The values of τeq for each case, calculated with DNS data and ωc as in Eq. 
(34), are given in Table 3. Given these values, it is possible to compare 
the predictions obtained for the non-gray cases with the gray gas cases. 

For spec-H2O, (τeq = 0.74) neglecting TRI results in slightly better 
prediction than for the gray cases with τ = 1 (gray-1 and gray-ρ1), 
but still unacceptable if compared to the optically thin gray cases 
(gray-01 and gray-ρ01). In this case, the inclusion of a TRI model is 
necessary to obtain satisfactory results. Moreover, spec–CO2, despite the 
seemingly high τp, is very similar to the optically thin cases (gray-01 and 
gray-ρ01) given that τeq is equal to 0.118. Therefore, the two equation 
model is improved only slightly when including the TRI closure. On the 
other hand, since spec-Part has very similar τp and τg (the absorption 
spectrum has a really low variability), the result is similar to an optically 
intermediate gray case with optical thickness between 1 and 5 and hence 
largely impacted by TRI. Finally, case highRe-H2O has a τeq lower than 
case spec–H2O, but is more affected by TRI (i.e., the deviations of the 
standard models are larger). This is caused by the fact that, in this case, 
there is more emitted energy that can dissipate thermal fluctuations. In 

Fig. 13. Profile of second order statistics calculated using the two equation turbulent heat flux model for the variable absorption coefficient cases. The top row shows 
temperature variance, while middle and bottom row display molecular and radiative dissipation, respectively. The symbols show DNS data while the red and blue 
lines show the results obtained using the two equation model without and with the addition of a TRI model, respectively. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.) 
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simple terms, the average dimensional temperature is higher or, 
mathematically, 

R θ

/
θ′2∝fE, where fE∝T − 4

0 . (48)  

Nevertheless, the TRI closure model seems to yield remarkable results 
independently from the Planck-mean, TRI-equivalent or gray-equivalent 
optical thickness of the case. 

Fig. 11 shows the comparison between the integral thermal length 
scales (top) and the TRI-equivalent absorption coefficient (bottom), 
calculated with DNS data and obtained with the RANS simulations (the 
latter is shown in Fig. 10 for the highRe-H2O case). The red dashed lines 
are the Planck-mean absorption coefficient profiles, plotted for refer
ence. As seen previously for the variable property cases, the integral 
length scale lθ tends to zero while approaching the boundary, causing a 
spike in the characteristic wavenumber l− 1

θ . This is reflected in the 
calculation of the TRI-equivalent absorption coefficient which also 
spikes near the walls. Fortunately, the relevant function which approx
imates the incident radiation fluctuation is dependent on the ratio κg/ωc. 
Therefore, the misprediction of ωc is corrected by the calculation of the 
TRI-equivalent absorption coefficient. Aside the problems close to the 
boundaries, the model (and iterative approach) employed seems to yield 
fairly correct values, especially for the calculation of κg, which, due to its 
dependency on both temperature and thermal length scales, is the most 
complex quantity to assess. 

8.5. Second order statistics 

In this section we present the quantities calculated by the two 
equation model (θ′2 and εθ) and the radiative dissipation assessed by the 
additional TRI closure model (R θ). Since, in case of an eddy diffusivity 
calculated using a constant turbulent Prandtl number these quantities 
are not available, only the two equation model is shown in comparison 
to DNS data. Fig. 12 shows the results obtained for the constant property 
gray cases. It is possible to notice that for a low to intermediate optical 
thickness (gray-01 and gray-1), the TRI model predicts very accurately 
radiative dissipation, leading to a satisfactory calculation of temperature 
variance and molecular dissipation. Already for τ = 1, not accounting 
for TRI causes temperature variance and molecular dissipation to be 
unphysically high. This is caused by the large mean temperature 
gradient which develops in the center of the channel that translates in a 
high temperature variance turbulent production rate. The high pro
duction rate, coupled to absence of a radiative dissipation model results 
in a large overprediction of temperature variance. Increasing the optical 
thickness further (gray-10) leads to a lower accuracy in terms of radia
tive dissipation. This is most likely caused by the overprediction of the 
characteristic wavenumber. Since, for the high optical thickness cases, 
the characteristic wavenumber is effectively higher than the actual 
value obtained from the DNS simulations (Fig. 8), predicted incident 
radiation fluctuations (G′ ) are lower, see Eq. (9), which result in a higher 
absolute value of radiative dissipation, see Eq. (25). Physically speaking, 
the model is predicting smaller thermal structures which are optically 

Fig. 14. Profile of second order statistics calculated using the two equation turbulent heat flux model for the non-gray cases. The top row shows temperature 
variance, while middle and bottom row display molecular and radiative dissipation, respectively. The symbols show DNS data while the red and blue lines show the 
results obtained using the two equation model without and with the addition of a TRI model, respectively. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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thinner and not capable of re-absorbing emitted radiation. This will lead 
to a decreased temperature variance (and ultimately a lower equilibrium 
R θ). Therefore, the cause for having a lower R θ in Fig. 12 (for high 
optical thickness cases) is, counter-intuitively, an overprediction of 
radiative dissipation. Nevertheless, the temperature variance obtained 
without accounting for TRI is progressively worse as the optical thick
ness increases due to the larger mean temperature gradient. Therefore, 

despite slight inaccuracies in the second order statistics, including TRI 
leads to excellent results also for higher optical thickness cases. 

Figs. 13 and 14 show the performance of the RANS simulations in 
terms of second order statistics for variable properties and non-gray 
cases, respectively. As for the average profiles, the conclusions drawn 
for constant property cases are suitable for the variable property gray 
cases with the same optical thickness. It is interesting to notice the high 
accuracy of the TRI model in an intermediate optical thickness scenario, 
as for gray-ρ1 and all the non-gray cases. Also for highRe-H2O, which 
has variable transport properties and a significantly larger ΔT* and Re, 
the TRI model approximates very accurately radiative dissipation, 
allowing a correct prediction of temperature variance and molecular 
dissipation. 

9. Conclusions 

We developed a general radiative modification which can be applied 
to most turbulent heat transfer models. The modification consists of a 
first order approximation of the fluctuating radiative field which is 
expressed as a linear function of temperature fluctuations. This TRI 
closure model is then applied to a two-equation turbulent heat flux 
model which evaluates temperature variance and scalar dissipation rate. 
The improved model has been tested on several cases in comparison 
with available DNS data to prove its validity. The results show that in 
case of a radiative flow, the proposed model is always capable to 
improve the results when compared to the standard models available. 
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Appendix A. Verification of the Morkovin hypothesis 

To assess the impact of density fluctuation on average quantities and 
second order statistics, plots of Reynolds and Favre averaged tempera
ture and temperature variance, obtained by direct numerical simulation, 
are shown in Fig. A.15. It is clearly demonstrated that in these low Mach 
number cases, the Morkovin hypothesis is fulfilled. 
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