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Summary 
 
A physics-based data-driven model is proposed in this study for the forecasting of secondary oil recovery. The 

model fully relies on production data and does not directly requires any in-depth knowledge of the reservoir 

geology or governing physics. In the proposed approach, we utilise Delft Advanced Reservoir Terra Simulator 
(DARTS) as a base for data-driven simulation. DARTS uses an Operator-Based Linearization technique which 

exploits an abstract interpretation of physics benefiting computational performance for a forward simulation. The 

proposed strategy was evaluated first on the two synthetic data ensembles and showed good prediction accuracy 

for a significantly reduced model size. Besides, the data-driven proxy methodology was compared with an 

advanced flow-based upscaling technique and demonstrated an improved accuracy for both ensembles. Besides, 

the proposed data-driven approach was examined on two realistic data sets. For the first case, the methodology 

demonstrates advanced predictive performance for training based on synthetic data generated from a high-fidelity 

simulation model with imposed random noise. To check the robustness of the proposed methodology, the control 

parameters for a forecast period were significantly changed in comparison to the training period. The data-driven 

model still manages to predict the forecast production quite close to the reference high-fidelity results. However, 

the training performed on another data set based on historical production from a real brownfield was not fully 

successful. We relate a bigger error in both training and forecast period for this model to poor data quality. The 
training procedure for this model led to a moderate accuracy in history matching for a long production period, 

where general production trends have resembled true data and water breakthrough time was restored in nearly all 

wells. However, there are still periods of poor accuracy, especially where shark peaks and falls are experienced. 

 

 



Introduction

Computer technologies are progressing rapidly. Computational capacities that are available nowadays
provide an opportunity for many subsurface applications to perform complex numerical simulations of
high-resolution three-dimensional geo-cellular computer models. A prediction obtained from such mod-
els is an important factor governing efficient reservoir management and decision making. The models
describe complex geological features through a set of grid blocks and associated rock and fluid proper-
ties. A high-resolution computer model can exceed a few million blocks and may take hours or even days
to simulate. It is still not computationally feasible to perform history matching or reservoir development
optimization at such resolution since it involves a large number of simulations runs.

Different methods have been developed to overcome the issue. Those methods fall into two categories:
simplified full-field models, or data-driven approaches. Methods such as upscaling, multi-scale methods
and streamline simulation fall into the first category. Upscaling is the process of numerical homoge-
nization, where the high-resolution model is represented as a set of coarser grid blocks with assigned
effective properties aiming to replicate high-fidelity model response (Durlofsky, 2005). Multi-scale
methods are somewhat similar to upscaling, where the global flow is computed on a coarse grid, while
the fine-scale heterogeneity is accounted for through basis functions (Jenny et al., 2003). The stream-
lined method (Batycky et al., 1997) is a Eulerian-Lagrangian approach with implicit pressure explicit
saturation (IMPES) time approximation. In this approach, a full 3D transport solution is translated into
a set of one-dimensional equations that are solved along streamlines.

All methods in the first category require an underlying geological characterization as a basis for con-
struction. However, there are many cases when this information is not available or its reliability is
questionable. Does it mean we cannot solve optimization or history matching problems efficiently?
Methods from the second category resolve this issue. The data-driven method assumes the building of a
proxy model with a sufficient amount of degrees of freedom to accurately mimic the high-fidelity model
based on its calibration to the production data. With frequent, sustained, and accurate data being fed
into a reliable regression framework, data-driven models can provide an accurate forecast for the given
reservoir.

There are many data-driven approaches available in the industry including statistical data-driven model
proposed by Jansen and Kelkar (1997); reduced-order models (Cardoso et al., 2009); a Capacitance Re-
sistance Model (CRM) by Yousef et al. (2005) which improved an earlier model proposed by Albertoni
and Lake (2003); flow-network model (Lerlertpakdee et al., 2014) where a complex 3D flow is repre-
sented as a set of 1D finite-difference reservoir models; Interwell Numerical Simulation Model (INSIM)
(Zhao et al., 2015) and INSIM-ft (Guo et al., 2018) approaches which somewhat similar to both CRM
and flow-network models; and many other alternative methods that rely on Artificial Intelligence (AI)
(Mohaghegh, 2009) and data fitting (Zubarev, 2009). All of these approaches have specific advantages
and limitations.

In this study, combining advantages of methods from both categories, we develop and validate a frame-
work capable of performing an accurate forecast based on historical field data while respecting under-
lying physical processes at the same time. It is achieved through the utilization of the Operator-Based
Linearization (OBL) technique (Voskov, 2017) and the highly efficient Delft Advanced Reservoir Terra
Simulator (DARTS) framework (DARTS, 2019).

Methodology

In this section, we describe the main ingredients of the proposed data-driven physics-based simulation
framework. It includes the generation of a connectivity graph, governing equations, nonlinear solution
and training of the model.
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Connectivity graph for proxy model

To connect spatial well locations with production data, we need to represent the domain of interest in
a discrete form. The geometrical discretization of the reservoir is typically performed based on the
control volume partitioning. For our proxy model, we use unstructured partitioning and finite-volume
discretization suggested by Karimi-Fard et al. (2004). It results in a spatial connectivity graph which
forms a discrete representation of the proxy reservoir model in terms of connections between control
volumes and associated transmissibilities (Lim, 1995). In the proposed data-driven approach, we adopt
this technique for the partitioning of the reservoir domain with a coarse resolution.

The discretized model is defined using boundaries which are gridded using the hierarchical approach: a
volume (convex polyhedra) is bounded by a set of surfaces (convex polygons), a surface is bounded by
a series of curves (segments), and a curve is bounded by two endpoints (nodes). The automatic open-
source meshing software package Gmsh (Geuzaine and Remacle, 2009) was utilised in this work for the
model gridding Exact grid parameters and rock properties (e.g., permeability, exact layer geometry) are
considered to be unavailable, therefore corresponding initial guess for control parameters are computed
using averaged values based on initial evaluations of the reservoir. When those values are not known,
they can be estimated using an analogue field or just based on common sense. Typical unstructured mesh
with corresponding well locations is shown in figure 1.

Figure 1 Typical grid for connectivity graph generated for proxy model with corresponding border lines
and well positions.

Governing Equations

In this section, we describe the set of governing equations required for a general compositional numerical
simulation. Transport equations for an isothermal system containing nc components and np phases can
be written as:

∂

∂ t
(φ

np

∑
j=1

xc jρ jS j)+∇

np

∑
j=1

xc jρ jv j +
np

∑
j=1

xc jρ jq?j = 0, c = 1, . . . ,nc (1)

where phase velocity is described by the Darcy’s Law:

v j =−
(

K
kr j

µ j
(∇p j− γ j∇d)

)
. (2)

Here, φ - rock porosity, xc j - mole fraction of component c in phase j, S j - phase saturation, ρ j -
phase molar density, v j - phase velocity, q?j - phase rate per unit volume, K - permeability tensor, kr j -
relative permeability, µ j - phase viscosity, p j - pressures of phase j, γ - gravity term, d is depth (positive
downwards).
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Eq. 1 can be written in a simplified (without gravity) discrete form by applying the finite-volume dis-
cretization in space and backward Euler approximation in time:

g =
V
∆t

(
φ∑

j
x jρ jS j +(φ∑

j
x jρ jS j)

n

)
−∑

lεL

(
∑

j
xl

jρ
l
jT

l
j ∆ψ

l

)
+∑

j
ρpx jq j = 0, (3)

where ψ l is the pressure potential between two blocks. The fully implicit time approximation requires
the flux term to be defined based on the nonlinear unknowns at the new timestep (n+1), which introduces
nonlinearity to the system of governing equations. We employ the overall molar formulation proposed in
Collins et al. (1992). In the molar formulation, the primary nonlinear unknowns are pressure and overall
composition, therefore the physical state ω is completely defined by these variables. The derivatives
of all properties in eq. 3 with respect to nonlinear unknowns can be found by applying several closing
assumptions.

Next, the Jacobian and the residual are constructed during the linearization stage. It is required by the
Newton-Raphson method, where at each nonlinear iteration, the following linear system of equations is
solved:

∂g(ωk)

∂ωk (ωk+1−ω
k) =−g(ωk). (4)

Here, J is the Jacobian matrix containing the derivatives with respect to primary unknowns, ω is the
vector of nonlinear unknowns ω = {p,zc}, k is the nonlinear iteration step and g is the residual. The
conventional nonlinear solution approach involves evaluation and storage of all properties and its deriva-
tives with respect to the nonlinear unknowns, which is quite challenging. A new strategy for linearization
was proposed in Voskov (2017) and will be briefly described next.

Operator-Based Linearization (OBL)

Eq. 3 can be written in a compact form as follows:

g(ω) =
V (ξ )φ0(ξ )

∆t
[αc(ω)−αc(ωn)]+∑

l
β

l
c(ω)T ab(ξ )(pa− pb)+ γc(ω,ξ ,θ) = 0, (5)

where ω defines physical state, while ξ represents spatial coordinates, φ0 is initial porosity and T ab is
the geometric part of transmissibility. All involved operators are defined as:

αc(ω) = (1+ cr(p− pre f ))∑
j

xc jρ jS j (6)

βc(ω) = ∑
p

xc j
kr j

µ j
ρ j (7)

γc(ω,ξ ,θ) = ∑
j

ρ jxc jq j(ω,ξ ,θ) (8)

Here, cr is the rock compressibility, pre f is initial reservoir pressure and θ is the vector of well controls.

In this form, the nonlinear system has a simplified description in terms of operators αc and βc, which
depend only on the physical state and valid at any spatial location of a reservoir. When several regions for
pressure, volume, temperature (PVT) properties or special core analysis laboratory (SCAL) properties
are introduced in a reservoir, several sets of the operators can be accordingly utilized. The values of
operators are uniquely determined in the parameter space which dimensionality is defined by the set of
nonlinear unknowns p and zc.

The OBL method suggests applying interpolation for evaluation of both operator values and their deriva-
tives at any point in parameter space instead of continuous evaluation. Then, operator values are only
computed at a limited set of supporting points. Moreover, operators are evaluated adaptively only at
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those supporting points in the discrete parameter space which are required to perform interpolation in
the course of simulation (Khait and Voskov, 2018a). This approximated physical description allows for
increased simulation performance, essential for gradient optimization problems, while approximation
error remains under control. An extensive study on applications of OBL for various subsurface prob-
lems can be found in Khait and Voskov (2017, 2018b); Kala and Voskov (2019). We use the solution
provided by OBL approach for solving both high-fidelity and proxy forward models.

Training of proxy model

The parameters of a model which are changed during the training stage are called control variables.
A gradient-based optimization algorithm adjusts control variables to ensure that the data-driven proxy
model response matches the "true" response based on either historical recorded data or reference high-
resolution reservoir model response as close as possible.

Model training is done with the following objective function

J(u) =
1
2

[
q(u)−qobs

]T
C−1

D

[
q(u)−qobs

]
. (9)

Here, J is the objective function, u is the control variables vector, q(u) is the vector of production/injection
rates from the proxy model (model response), qobs is the vector of observed rates and CD is the covari-
ance matrix. The training is performed through the solution of the constrained optimization problem
which can be formulated as

min
u∈Rn

J(u), d(u)≤ 0, (10)

where d(u) corresponds to constrains. To solve the constrained optimisation problem defined by Eq. 10,
a gradient-based optimisation with the implementation of Sequential Least-Square Quadratic Program-
ming (SLSQP) algorithm was used Kraft (1988). This approach requires the gradients of the objective
function with respect to control variables. In the proposed approach, we use numerical gradients ap-
proximation which yields

∂J
∂uk

=
J(u+δkε)− J(u)

ε
+O(ε), (11)

where δk is Dirac’s delta function. The disadvantage of the evaluation of the numerical gradient is
that they lack the robustness (appropriate choice of ε) and computationally expensive (each derivative
requires a forward run). However, this disadvantage was tackled to a certain extent with the parallel
implementation of numerical gradient evaluation, which is an embarrassingly parallel procedure.

To ensure that the gradient optimisation process stays in the physical range, a large penalty term was
imposed for non-physical regions. Moreover, the optimisation was penalised whenever the nonlinear
convergence of the proxy model was not reached due to non-physical combination of parameters. Also,
the scaling of the objective function and vectors of optimisation parameters was implemented in the
training procedure to preserve reliable performance.

Governing relations for control variables

Since the training is performed via constrained optimization, every control variable is bounded by the
minimum and maximum values. Using the bounds, every control variable is scaled to the interval [0,1],
as some of the regression algorithms are sensitive to the scale of a problem. Here, we briefly describe
how the initial guess and constrained intervals for control variables can be calculated based on the
available data and how they are included in the data-driven model.

Nonlinear control variables

We utilized a modified Brooks-Corey model (Brooks and Corey, 1964) to derive a nonlinear control
variables for a multiphase flow representation in the data-driven proxy model. The modified Brooks-
Corey model can be expressed as:

kro = ke
ro (1−S∗w)

no , (12)
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krw = ke
rw (S

∗
w)

nw , (13)

S∗w =
Sw−Swc

1−Swc−Sor
. (14)

where S∗w is the normalised or effective water saturation, krw - water relative permeability, ke
rw - endpoint

water relative permeability, ke
ro - endpoint oil relative permeability, nw,no - exponents for water and oil,

Sw - water saturation, Swc - residual or connate water saturation and Sor is the residual oil saturation.

The relative permeability is included into the βc-operator where it gets multiplied by ρ j
µ j

term of the
corresponding phase j, as can bee seen from (7). The vector of six nonlinear control variables was
therefore defined as

vn = {Sor,Swc,no,nw,ke
rwρw/µw,ke

roρo/µo}}, (15)

subjected to the following constrains:

vn,min = {0.0,0.0,0,0,100,10}, (16)

vn,max = {0.49,0.49,5,5,3000,2000}. (17)

The first four parameters are unitless; the units of the last two are [s ∗m−2]. These constraints were
obtained based on the physical interpretation of control variables.

Linear control variables

In reservoir simulation, the general unstructured grid is usually characterized by a spatial connectivity
graph represented as a connection graph Lim (1995). It involves the specification of the connections be-
tween grid blocks and associates transmissibility of those connections. The transmissibility Ti j between
grid blocks i and j can be defined for a general unstructured grid Karimi-Fard et al. (2004) as:

Γi j =
αiα j

∑n αn
,αi =

Aki

Di
. (18)

Here, A is the interface area between two grid blocks, Di is the distance from the pressure node to the
interface along the line connecting two pressure nodes and ki is the grid block permeability.

Transmissibility directly affects the flow dynamics in the reservoir since it is involved as a constant
multiplier in the term T ab of the convection operator in Eq. 5. In our approach, the linear control
variables effectively change the transmissibilities in proxy model. As the initial guess, they can be
defined based on two-point flux finite-volume discretization on unstructured grid using initial data about
the reservoir properties (rock permeability) and approximate geometric parameters (thickness and net-
to-gross ratio). Notice that transmissibility is a linear parameter with respect to the flow rate. However,
it still remains highly nonlinear with respect to the objective function. In our approach, the amount of
linear regression parameters equals to the number of connections. Through the regression course, linear
control variables were constrained by vl,min = 1 cPm3/d/bar and vl,max = 50,000 cPm3/d/bar.

Well control variables

A well index was proposed by Coats et al. (1974) in the steam-flood simulation to relate the grid block
pressure/rate to wellbore flowing pressure/rate. The equation that relates a well and a reservoir grid
block under the assumption of a single-phase flow can be written as:

qw
i =

WIi

µ
(Pi−Pw

i ) (19)

where qw
i is the well rate into (out of) the block i, WIi is the well index of the grid block i intersected by

a well, Pi is the grid block pressure and Pw
i is the well bottom hole pressure (BHP).
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Once it is determined in single-phase assumptions, it is also applied to a multiphase flow. The equation
to calculate WI was provided in Peaceman (1983) (Eq. 20) and can be used for evaluation of initial guess
in proxy model following:

WIi =
2π∆z

√
kxky

lnro/rw +S
. (20)

Similarly to transmissibility, a well index can be seen as a representation of the linear parameter between
pressure difference and the flux between a wellbore and a reservoir block. The main difference of a well
index is that it is involved in θc operator which directly relates the reservoir pressure with the wellbore
pressure. Besides, the wellbore pressure can be used as either a control or a constraint in a simulation.
In our study, the set of well control variables consisted of Nwell well indexes. They were constrained by
minimum value of vw,min = 1 cPm3/d/bar and vw,max = 1,000 cPm3/d/bar in the training stage.

Validation of proposed approach

We validate the proposed data-driven approach using two ensembles of stochastic fluvial models. For
each high-fidelity model, two reduced-order models are constructed: the first – through conventional
flow-based upscaling (Chen and Durlofsky, 2006); the second – using the proposed data-driven ap-
proach. Then, the accuracy of the two proxy models is compared for the entire ensemble under the
assumption that reservoir physics is known and correct, and the same set of parameters was used for all
three types of model tests. You can find these parameters in Appendix A.

Generation of ensemble of high-fidelity fluvial models

The stochastic ensemble of fluvial models was used to illustrate the accuracy of the proposed data-driven
methodology. high-fidelity model ensembles were generated by two different modelling approaches:

• FLUMY Grappe et al. (2016): Process-based models using FLUMY software, see example in fig.
2(a),

• MSP Strebelle and Levy (2008): Multiple Point Statistics (MPS) models, see example in fig. 2(b).

This results in completely different model complexity between the ensembles. Each high-fidelity en-
semble model has a size of 100 by 100 grid cells (cell dimensions are 10×10×10 m). The models use
a simple 5-spot vertical well set-up (one injector is located in the middle of the reservoir and surrounded
by 4 producers located at reservoir edges). Injection wells are modelled by setting a rate control of 500
m3 d−1 and production wells are modelled by setting a fixed BHP control of 100 bar. The simulation
was limited by 2000 days with ∆t = 20 days. The main difference between models generated by MPS
and FLUMY is the main paleoflow orientation ranging from SW-NE to W-E. Besides, FLUMY model
has a limited statistical variability in comparison to MPS model (de Hoop et al., 2018).

Typical porosity distribution of the high-fidelity realisations from MPS and FLUMY ensembles can be
seen in figure 2. It is clear, that the model generated by MPS is more complex as the phase can flow
only through distinct channels, which are usually smaller sized than the coarse grid block. In contrast,
the model generated by FLUMY has many overlaying channels providing multiple possible flow paths,
hence it is easier for capturing of the reservoir dynamics on a larger scale. More details about high-
fidelity ensemble generation, upscaling and simulation properties can be found in de Hoop et al. (2018).

Generation of upscaled proxy models

Upscaled proxy models were generated using a global flow-based upscaling technique, which involves
solving the fine-scale incompressible single-phase pressure equation and using it to obtain coarse-scale
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Figure 2 Porosity distributions of a typical high-fidelity model realisation generated by process-based
modeling approach with FLUMY software (a) and (b) stochastic modeling approach using Multiple
Point Statistics (MPS) (b).

transmissibility

−∇ ·
(

K
µ

∇(P−ρg)
)
= qwell. (21)

Under the Two-Point Flux approximation, Eq. 21 can be written in the discrete form, in which the coarse
properties can be evaluated

(qc
x)i+1/2, j = (T c

x )i+1/2, j

(
Pc

i, j−Pc
i+1, j

)
. (22)

Here, (qc
x)i+1/2, j is the coarse flux across the interface i+ 1/2, j simply defined as the integrated fine

scale fluxes across the coarse interface, (T c
x )i+1/2, j is the coarse transmissibility and (Pc

i, j and Pc
i+1, j) are

the coarse pressures obtained by arithmetic averaging the fine-scale pressures contained in each coarse-
scale block respectively. A similar approach for a flow-based upscaled well-index for well α can be
derived, given by the following equation

WIα =
qα

Pc
i, j−Pα

. (23)

The big advantage of the global flow-based upscaling technique is its computational efficiency and
accuracy. However, in highly heterogeneous reservoirs it has one downfall: the resulting transmissibility
values might be large or even negative (Chen and Durlofsky, 2006). This iterative upcsaling procedure
is generally used to obtain a positive definite transmissibility matrix, which is typically reached within
5 iterations, see Holden and Nielsen (2000) for more details.

Each high-fidelity model was upscaled laterally by 100 times (10× 10). The resulting upscaled trans-
missibility, porosity and well index was used to initialise the upscaled proxy model. Well controls and
simulation time were kept identical to the high-fidelity model. Moreover, the same upscaled porosity
was used in the data-driven proxy model to ensure pore volumes match between models.

Generation of data-driven models

Data-driven proxy models were generated with the same grid and well configuration as for upscaled
proxy models. The initial guess for spatial connectivity and well indexes of the data-driven proxy model
was chosen as a uniform distribution of 100 cPm3/d/bar and 200 cPm3/d/bar respectively.

Then, data-driven models are trained based on the linear control variables. The regression was limited
by 100 iterations. However, most cases converged before reaching the imposed maximum. Thanks to
computational efficiency of DARTS package, training of a single realization takes from 20 minutes to
one hour on a single cluster node with four Intel Xeon CPU E5-2650 v3 processors. The performance
of the regression framework can be improved further using adjoint gradients.
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Comparison between upscaled and data-driven proxy models

For the correct comparison of the data-driven and upscaled model response, we have ensured consistency
between model volume, physical properties and well controls. Those parameters are identical since the
upscaling procedure is sensitive to the boundary conditions. We compare a stochastic response of the
trained proxy results for two data-driven models against conventional flow-based upscaled models to
validate the accuracy of the proxy modeling methodology.

Figure 3 illustrates the total water rate of all 100 realizations for high-fidelity, data-driven proxy and
upscaled proxy cases. It can be seen that the stochastic response of the high-fidelity and data-driven
models have a reasonably good agreement for both mean and individual realization water rates, whereas,
the upscaled model rates matched worse, with a distinct delay in the water-breakthrough. The average
error between data-driven and reference water rate throughout the simulation period is 3.4%, while error
for the upscaled model is 14.9%. Error distribution graph for upscaled and trained data-driven models
against the high-fidelity model can be found in the Appendix B.

Figure 3 The total water rate for the high-fidelity (reference) model with the size of the 100x100 grid
block for the hundred FLUMY realizations, together with data-driven, and upscaled models (10x10)
response. Grey lines indicate rates from a single model realization, whereas the red, blue and green
lines indicate quantile response of the ensemble i.e the P10, P50 and P90.

Then, the same test was performed for a more complicated model ensemble build with Multi-Point
Statistics (MPS) modeling approach. Results are shown in figure 4. The mean error between total water
rates for both data-driven and upscaled models increased to 7.4 % and 19.7 % respectively. Correspond-
ing error distribution for the both types of proxy models against the high-fidelity model can be found in
Appendix B.

It is an expected result as it is much more difficult to find a value for the effective property on a coarse
scale that will accurately represent fine-scale features (e.g., small and poorly connected channels, which
can be seen in figure 2,b). On the contrary, the channels in the FLUMY model overlap each other
creating more distinct and rough flow paths, which are easier to capture on a coarse scale. The overall
accuracy of the data-driven proxy model is still significantly higher than that for the upscaled proxy
model. It confirms the applicability of the data-driven approach for uncertainty quantification analysis
when a reliable and accurate high-fidelity model is not available.
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Figure 4 the total water rate for the high-fidelity/reference model with the size of the 100x100 grid block
for the hundred MPS realizations, together with data-driven, and upscaled models (10x10) response.

Data-driven proxy model for realistic field

In this section, we give the description of a realistic field used in this study. Next, we describe a gener-
ation of the data-driven proxy-based ensembles and illustrate the performance of the proposed method-
ology.

High-fidelity and proxy model

We analyse the performance of the proposed framework using a reservoir model of the Brugge field
(Peters et al., 2010). It is a synthetic model developed as a benchmark for optimisation of reservoir
production. The structure of the Brugge field consists of an East-West elongated half-dome with a large
boundary fault at the northern edge. The model has 30 wells (20 producers and 10 injectors, see 5(a))
located in the peripheral water drive. There are more than 100 realisations of this model. A single
realisation encoded as FY-SS-KP-8-73 is used as the true high-fidelity model in this study and 40 other
realisations with KP code are taken for the high-fidelity ensemble. The true data for history matching
was obtained by 10 year-long simulation with monthly varying BHP well controls.

Figure 5 High-fidelity Brugge model, used to generate the true model response (139x48x9 grid blocks)
(a) Unstructured proxy model mesh with a 283 elements, red cells indicate the presence of a producing
well, whereas white cells indicate injection well.
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Only the basic information about the field was used for the data-driven proxy model. For example, the
reservoir boundaries were approximated based on several piece-wise linear segments as can be seen in
figure 5(b). Next, the unstructured mesh was generated and extruded by an average value of reservoir
thickness. The two-point stencil was utilized for the construction of unstructured grid to create the dis-
crete connectivity graph for the proxy model. The mesh was constructed using two regions by Gmsh R©
software: an outer with coarser meshing and an inner with finer meshing, as seen in figure 5(b). It is done
to preserve accuracy in the area where the main flow happens, whereas the outer cells were made larger
to reduce the number of degrees of freedom along with the computational load. There are no significant
flow dynamics in that area, hence the coarsening of that zone does not significantly affect simulation ac-
curacy. The resulting performance of proxy vs. high-fidelity is approximately two orders of magnitude
improvement (0.46 vs. 97 sec). This performance is farther enhanced utilizing shared-memory parallel
implementation of numerical gradients calculations for training period which brings the proxy-model
execution to around 20 runs per second.

Generation of proxy ensemble

Initial guess for control variables was calculated using a uniform permeability of k = 1000 mD and
governing equations described in .The vector of nonlinear parameters vn = {0.15,0.25,4,3,1800,300}
and vw was set to 200 cPm3/d/bar for all wells. The total volume of the proxy model was adjusted
with a model thickness, porosity and initial water saturations of individual cells to match fluid in-place
volumes of the high-fidelity model. In a more general case, these parameters can be adjusted in the
training period.

Obtained optimal linear and nonlinear parameters are used as the basis for proxy model ensemble gen-
eration, where we have applied a random perturbation of parameters using a normal distribution with
20% variance. The results of the training stage are shown in the figure 6. A good history matching was
obtained based on the data-driven proxy model. However, some periods were not matched very well,
which can be seen between 1000 and 2000 days for some wells. This is related to an insufficient number
of degrees of freedom in the proxy model, which results in a limited variety of possible flow distribution.

0 500 1000 1500 2000 2500 3000 3500
Time[days]

2000

1500

1000

500

0

Ra
te

[m
3 /d

ay
]

Well: P01

0 500 1000 1500 2000 2500 3000 3500
Time[days]

600

400

200

0

Ra
te

[m
3 /d

ay
]

Well: P02

0 500 1000 1500 2000 2500 3000 3500
Time[days]

800

600

400

200

0

Ra
te

[m
3 /d

ay
]

Well: P03

0 500 1000 1500 2000 2500 3000 3500
Time[days]

2000

1500

1000

500

0

Ra
te

[m
3 /d

ay
]

Well: P04

0 500 1000 1500 2000 2500 3000 3500
Time[days]

250

200

150

100

50

0

Ra
te

[m
3 /d

ay
]

Well: P05

0 500 1000 1500 2000 2500 3000 3500
Time[days]

800

600

400

200

0

Ra
te

[m
3 /d

ay
]

Well: P06

0 500 1000 1500 2000 2500 3000 3500
Time[days]

500

400

300

200

100

0

Ra
te

[m
3 /d

ay
]

Well: P07

0 500 1000 1500 2000 2500 3000 3500
Time[days]

800

600

400

200

0

Ra
te

[m
3 /d

ay
]

Well: P08

0 500 1000 1500 2000 2500 3000 3500
Time[days]

600

400

200

0

Ra
te

[m
3 /d

ay
]

Well: P09

0 500 1000 1500 2000 2500 3000 3500
Time[days]

3000

2000

1000

0

Ra
te

[m
3 /d

ay
]

Well: P10

0 500 1000 1500 2000 2500 3000 3500
Time[days]

1500

1000

500

0

Ra
te

[m
3 /d

ay
]

Well: P11

0 500 1000 1500 2000 2500 3000 3500
Time[days]

1500

1000

500

0

Ra
te

[m
3 /d

ay
]

Well: P12

0 500 1000 1500 2000 2500 3000 3500
Time[days]

1250

1000

750

500

250

0

Ra
te

[m
3 /d

ay
]

Well: P13

0 500 1000 1500 2000 2500 3000 3500
Time[days]

200

150

100

50

0

Ra
te

[m
3 /d

ay
]

Well: P14

0 500 1000 1500 2000 2500 3000 3500
Time[days]

3000

2000

1000

0

Ra
te

[m
3 /d

ay
]

Well: P15

0 500 1000 1500 2000 2500 3000 3500
Time[days]

1500

1000

500

0

Ra
te

[m
3 /d

ay
]

Well: P16

0 500 1000 1500 2000 2500 3000 3500
Time[days]

1000

800

600

400

200

0

Ra
te

[m
3 /d

ay
]

Well: P17

0 500 1000 1500 2000 2500 3000 3500
Time[days]

1000

800

600

400

200

0

Ra
te

[m
3 /d

ay
]

Well: P18

0 500 1000 1500 2000 2500 3000 3500
Time[days]

800

600

400

200

0

Ra
te

[m
3 /d

ay
]

Well: P19

0 500 1000 1500 2000 2500 3000 3500
Time[days]

1250

1000

750

500

250

0

Ra
te

[m
3 /d

ay
]

Well: P20

Figure 6 The oil-production rates obtained with the history-matched data-driven proxy model. Grey
line is oil-production rates from un-optimized proxy model, black line is a true response, and red line is
history matched estimated data-driven proxy response.
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Training and forecast

Figure 7 illustrates a two-year production forecast of the Brugge model based on the data-driven prior
ensemble training. For fair analysis of the model, we have generated a new set of well controls, different
from the one used during training, with random perturbations within 20 percent of 100 bar for producers
and 120 bar for injectors. The obtained results indicate a relatively accurate rate prediction for all 20
production wells. The mean error for training period is calculated using Eq. 24 and is equal to 1.83 %,
whereas prediction period error reaches the value of 3.18 %

ME =

∑
N
i=1

∣∣∣∣Qi
o,opt−Qi

o,truth

Qi
o,truth

∣∣∣∣∗100

N
(24)

Figure 7 The oil-production rates obtained with the history-matched data-driven proxy model. Grey
lines are oil-production rates from multiple prior realisations of the high-fidelity model, black line is a
true response, and red line is history matched estimated data-driven proxy response.

For comparison, the data-driven model training can be performed using more accurate high-fidelity prior
ensemble available for the Brugge model. It can be seen from the figure 8 that high-fidelity prior has
less variation than proxy model-based prior. Consequently, this results in a smaller variation in the
covariance matrix and is more constraining for the objective function. The mean error for the training
period calculated to be equal to 1.67 % using eq. 24, whereas prediction period error came to 4.27
%. By comparison, there is no huge improvement in terms of model accuracy when trained on high-
fidelity prior, whereas the time to generate its ensemble is more significant and usually is not feasible
for situations when the geological model is not available.

It was observed that accuracy of the proxy model increases with the increase of data density for each
well. In cases when well rate is small compared to the other wells, the output from those wells is less
informative for the regression algorithm. Hence, it fails to adjust parameters in the reservoir for those
wells with the same quality than for others. Moreover, the number of regression parameters should be
chosen wisely as the model is prone to over-fitting. A superb history match can be achieved in this case,
but the model will struggle to give an accurate prediction.
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Figure 8 The oil-production rates obtained with the history-matched data-driven proxy model. Grey
lines are oil-production rates from multiple prior realisations of the high-fidelity model, black line is a
true response, and red line is history matched estimated data-driven proxy response. The vertical line
separates the historical and future-prediction time periods.

Conclusion

In this work, a physics-based data-driven framework was developed based on the Delft Advanced Re-
search Terra Simulation (DARTS) platform. The resulting strategy was evaluated on two synthetic data
ensembles and showed good prediction accuracy for a significantly reduced model size. Both training
and prediction accuracy is within a satisfactory level with good modelling of all well production rates.
In addition, the data-driven proxy methodology was compared with an advanced flow-based upscaling
technique and demonstrated an improved accuracy withing both stochastic ensembles.

The framework was examined on a more realistic Brugge field data set. The proposed data-driven
methodology demonstrates advanced predictive performance for training based on synthetic data gen-
erated from high-resolution Brugge field. We compared the results of optimization with two types of
covariance matrices based on high-fidelity prior ensemble and data-driven proxy prior ensemble. Both
approaches behave equally accurate while proxy-based prior ensemble is more feasible in practical ap-
plications.

The proposed data-driven method offers a great opportunity to get a fast and reliable framework for
solving many subsurface engineering problems, as was demonstrated in this work. The rising popularity
of those techniques indicates their potential in a modern data-dependent world. There is still a wide
range of methods that can be coupled with data-driven approaches to increase prediction capabilities
and incorporate data-driven models into widely accepted engineering practice. The main advantage of
the proposed approach is the potential for a natural extension of the proxy model for more complex
production scenarios and physical processes.
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Appendix A: Physical modeling properties

Table 1 Hydrodynamic parameters
Phase Oil Water

Fluid compressibility, 1/bar (c j) 1.34 ×10−4 4.35×10−5

Fluid densities, [kg/m3] (ρ j) 1002.8 897.0
Residual saturation (S jr) 0.15 0.225
End point relative permeability (Kr je) 0.4 1.0
Saturation exponent (n j) 3.0 3.0
Viscosity, cP (µ j) 1.294 0.320

Appendix B: Errors between two proxy models and high-fidelity fluvial model

Below we present an ensemble errors of upscaling and data-driven approaches for the FLUMY-based
ensemble by the end of the training stage.

Figure 9 The error between the response of reference models generated by FLUMY vs. data-driven and
upscaled proxy models. Sharp peaks indicate water breakthrough timing mismatch.
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Similar graph is shown below for ensemble errors of upscaling and data-driven approaches for the MPS-
based ensemble by the end of the training stage.

Figure 10 The error between the response of reference models generated by MPS approach vs. data-
driven and upscaled models. Sharp peaks indicate water breakthrough timing mismatch.

Appendix C: Brugge model pressure controls

Lastly, we illustrate pressure controls for production wells in Brugge model for training and forecast
stage.

Figure 11 Synthetically generated new BHP controls used for Brugge model production forecast steps.
Dashed line indicate separation between model training and forecast periods
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