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Abstract—Compute-and-forward (CF) is a technique which
exploits broadcast and superposition in wireless networks. In
this paper, the CF energy benefit is studied for networks with
unicast sessions and modeled by connected graphs. This benefit
is defined as the ratio of the minimum energy consumption
by traditional routing techniques, not using broadcast and
superposition features, and the corresponding CF consumption.

It is shown to be upper bounded by min(d̄,K, 12
√

K), where d̄

and K are the average hop-count distance and the number of
sessions, respectively. Also, it can be concluded that the energy
benefit of network coding (NC) is also upper bounded by the
same value, which is a new scaling law of the energy benefit for
NC as a function of K.

I. INTRODUCTION

Since network coding (NC) [1] was introduced, many stud-

ies considered the energy benefit of NC because it reduces

the number of transmissions in wireless networks by letting

the relay nodes transmit linear combinations of data packets.

A broadcast scenario has been considered in [2], in which

both centralized and decentralized schedules are considered

and matching upper and lower bounds are given on the energy

benefit. The problem of the energy benefit of NC in the

multiple unicasts case, on the other hand, is more complicated.

Upper bounds have been given for the energy benefit of NC

for multiple unicasts in [3], [4]. In some specific networks,

namely hexagonal lattice networks, a lower bound on the

energy benefit for multiple unicasts of 2.4 has been derived in

[5], which has been further improved to 3 in [6].

All of the above-mentioned studies considered the transmit

energy only, which is not very practical in the scenarios

that the energy consumed for receiving signals (for decoding,

demodulation) is not negligible. Furthermore, it has also been

shown in some studies, e.g., [7], that some NC based schemes

decrease the number of transmissions at the cost of increasing

the number of receptions. If the energy consumption for

receiving is not negligible, some of the NC based schemes

will have less improvement, or even no benefit at all. Hence,

it is more general and practical to study the energy benefit

in networks taking into account both the transmit and receive

energy.

Compute-and-forward (CF), also known as reliable physical

layer NC, is an advanced NC technique that allows the

receivers to decode a linear combination of multiple messages

after receiving the superposition of the physical layer signals

of these messages [8]. It can benefit the network in energy con-

sumption by reducing not only the number of transmissions,

but also the number of receptions. It has been shown that

in hexagonal lattice networks with a specific unicast session

placement, the energy benefit of CF is in between 2 and 3,

where the energy benefit is defined as the ratio of the minimum

energy consumption by traditional routing techniques and the

corresponding CF consumption [9].

The throughput benefit of CF over traditional routing, in

a setting with K unicast sessions, was studied in [10]. In

particular, this benefit was shown to be upper bounded by 3K,

while also a case was presented in which a benefit of K/2 is

achieved. Hence, a CF gain in the order of K is possible with

respect to throughput. In this paper, we show that gains in

this order of magnitude are not to be expected from an energy

perspective. Specifically, we show that the energy benefit is

upper bounded by min(d̄, K, 12
√
K), where d̄ is the average

hop-count distance. Hence, CF energy saving gains beyond an

order of
√
K are not possible. This is a new scaling law for

the energy benefit of CF and also NC in general networks with

multiple unicast.

This paper is organized as follows. In Section II, we

introduce our network model. In Section III, we give an

upper bound of the energy improvement factor. This bound

is obtained by combining 3 different upper bounds, which are

presented in Subsections III-A, III-B, and III-C, respectively.

At last, we conclude the results of this paper and give

recommendations in Section IV.

II. MODEL

In this section, a network model similar to the one used in

[10] is introduced. The network is represented by a connected

graph, in which the vertices represent wireless nodes and

the edges represent the wireless connectivity between two

nodes. We focus on two features of wireless networks: the
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broadcast feature of wireless signals at the transmitters and the

superposition feature of the wireless signals at the receivers.

CF is capable of exploiting both of these two features, while

in traditional routing schemes, neither of the two features is

exploited. Thus, two transmission modes are proposed, namely

TR (traditional routing) mode and CF mode. In these modes,

these two features are allowed or disallowed. The formal

definitions of the two modes will be given later in this section.

First, we introduce our network model.

A. Network Model

The network is denoted by N(V, E ,S). Here, V is a vertex

set, E is an edge set, and (V, E) represents a connected,

directed, and unweighted graph. Here, the elements in V
are called nodes, and node v ∈ V is a neighbor of node

u ∈ V if (u, v) ∈ E . The wireless connectivity between

two nodes is mutual. Hence, if (u, v) ∈ E , (v, u) ∈ E .

S = {S1, S2, . . . , SK} is the session set and a session Si

is represented by its source ai and destination bi, i.e., Si =
(ai, bi), ai, bi ∈ V . Here, we assume ai 6= aj , bi 6= bj∀i 6= j.

Further, the notation A = {ai|i ∈ {1, 2, . . . ,K}} is used for

the set of the sources and B = {bi|i ∈ {1, 2, . . . ,K}} is used

for the set of the destinations. We use the notation di for the

(hop-count) distance of session Si and d(u, v) as the distance

between node u and v. Hence, di = d(ai, bi). We further de-

fine d(V ′,m),V ′ ⊆ V,m ∈ V as d(V ′,m) = minu∈V′ d(u,m)

and define d(m,V ′) in the same fashion. We let d̄ =
∑

K

i=1
di

K
.

For this network, assume that time is slotted and half-duplex

is used. Messages are represented by symbols from finite field

Fq . The capacity of all edges is 1 message per time slot.

Note that this network model can be seen as a generalized

version of the protocol model used in [3] with identical

transmit and interference radii in the sense that it does not

necessarily represent networks with certain geometric topolo-

gies.

B. Transmission Modes

We use the transmission modes proposed in [10], namely

the TR and CF modes, to compare the energy consumption of

traditional routing and CF. Here, we highlight the features of

these transmission modes which are important w.r.t. the energy

consumption. For details of these modes, we refer to [10].

1) TR Mode: TR mode represents traditional routing

schemes in which broadcast and superposition are not ex-

ploited. Since network coding is not used, although the trans-

mission of a node can be received by all neighbors, it can only

be useful to one of them and is considered as interference by

the other neighbors. Also, a transmission can be successfully

received only if it is not interfered by other transmissions.

Hence, at one time slot, a node can send a message to at most

one neighbor and a node can receive a message only if just

one of its neighbors is sending a message.

2) CF Mode: CF is a nested lattice codes [11] based

technique which allows a node to decode linear combinations

of the messages transmitted by its neighbors after the reception

of the superposition of the physical layer signals of these

messages [8].

In CF mode, as in NC, the broadcast feature is exploited

by letting nodes transmit linear combinations of multiple

messages. Thus, while transmitting, the message is broadcast

to all of its neighbors. The superposition feature is exploited

by the CF technique, i.e., a node is able to directly decode the

sum of all messages transmitted by its neighbors in that time

slot. 1

C. Energy Consumption

In this paper, the energy consumption of any transmission

scheme is always discussed in the context of a round. In

each round, a transmission scheme should guarantee a new

message from the corresponding source to be successfully

decoded by each destination after the initial state of a long-

term transmission. We then define EX as the minimum en-

ergy consumption of any scheme for each round in mode

X ∈ {TR,CF}. We use the notations et for the energy

consumed (for broadcast, encoding, modulation, etc.) by a

node to transmit (broadcast) a symbol from Fq to its neighbors

and er for the energy consumed (for decoding, demodulation,

etc.) by a node to receive a symbol (either one message

or the sum of multiple messages) from Fq .2 The energy

consumed for computing when CF is applied and all other

energy consumption (supporting circuits, routing, signaling,

etc.) are neglected. The energy improvement factor is defined

as

J = ETR/ECF. (1)

III. UPPER BOUND FOR THE ENERGY BENEFIT

In this section, the upper bound of the energy improvement

factor of CF for multiple unicasts is studied. The upper bound

of J is derived by studying lower bounds for ECF and

establishing an explicit expression for ETR. First, we give

the main result of this section.

Theorem 1 (Upper bound of the energy benefit). For any

network N(V, E ,S), the energy benefit satisfies

J ≤ min(d̄, K, 12
√
K). (2)

In the following three subsections, three upper bound of J
which are d̄, K, and 12

√
K, respectively, will be derived.

1Note that as shown in [8], the rate for decoding the sum of n messages
is not the same as the rate of transmitting one message via the same edge
in TR mode. More precisely, the rate for decoding the sum of n symbol
is 1/2 log(1/n + SNR), while in TR mode the rate can be as high as
1/2 log(1 + SNR). However, in high SNR scenarios, this difference is
negligible. In this model, we neglect this rate difference and assume that
the rate of decoding a individual message or a linear sum is 1 message per
time slot in both cases.

2As introduced in [8] CF is based on lattice codes, which can be any
linear code, e.g., low-density parity-check (LDPC) code, satisfying certain
properties introduced in [11]. It is then clear that decoding a linear combi-
nation consumes no more energy than decoding a message encoded with the
same linear channel codes in traditional routing. Hence, we assume that the
decoding of both the individual message and the sum of multiple messages
consumes energy er .



A. The d̄ upper bound of J

First, the expression for ETR is given.

Lemma 1 (Minimum energy consumption in TR mode). For

any network N(V, E ,S), the minimum energy consumption in

TR mode is

ETR = Kd̄(et + er). (3)

Proof: An upper bound on ETR can be given by any

valid transmission scheme. Clearly, by letting all sessions send

messages along their shortest paths, the energy consumption

for each round is

E =
K
∑

i=1

di(et + er) = Kd̄(et + er). (4)

Hence we have the upper bound for ETR. Then, it is clear that

it is also the lower bound for ETR since we assume that no

network coding is allowed in TR mode. Thus the shortest-path

routing strategy is optimal.

In the following lemma, a distance based upper bound of J
is given.

Lemma 2. For any network N(V, E ,S), the energy benefit

satisfies

J ≤ d̄. (5)

Proof: The proof of this lemma is straightforward since

in CF mode, each source needs to transmit once and each

destination needs to receive once in each round. Thus we have

ECF ≥ K(et + er). (6)

Combining this with (1) and (3) we finish our proof.

B. The K upper bound of J

In the next lemma, we show that the energy improvement

factor is upper bounded by the number of sessions.

Lemma 3. For any network N(V, E ,S), the energy benefit

satisfies

J ≤ K. (7)

Proof: First, we introduce a notation Nr for the minimum

number of non-source non-destination nodes needed to con-

nect all sessions. More specifically, let V∗ ⊆ V\(A ∪ B)
and E∗ = {(u, v) ∈ E|u, v ∈ V∗ ∪ A ∪ B}. For a network

N(V, E ,S), if the network N(V∗ ∪ A ∪ B, E∗,S) is also a

valid network model (all the sessions are connected), then

|V∗| ≥ Nr. In other words, there does not exist a non-

source non-destination node set V∗ with |V∗| < Nr such that

N(V∗ ∪ A ∪ B, E∗,S) is a valid network.

Then we can prove

ECF ≥ (Nr +K)(et + er) (8)

by contradiction: If there exists a transmission scheme which

consumes energy

E′ < (Nr +K)(et + er) (9)

in a round, since the sources have to transmit at least K times

and the destinations have to receive at least K times, it is

clear that in this scheme the energy consumption of all the

other nodes is less than Nr(et + er). Since in each round a

node must transmit and receive at least once to function in the

network if it is not a source or destination, we conclude that

in this scheme there are less than Nr non-source non-terminal

nodes involved, which contradicts the definition of Nr.

Combining (1), (3), and (8) we have

J ≤
∑K

i=1
di

Nr +K
. (10)

Now we prove
∑K

i=1
di ≤ K(Nr − 1) + K(K + 1) by

considering the networks with the sum distance achieving

this upper bound. More precisely, for given K and Nr, if

a network N(V, E ,S) has the maximum value of the sum

distance
∑K

i=1
di among all networks with the same K and

Nr, it should have the following properties:

1) None of the sources is collocated with any destination.

This can be proved by contradiction: Assume node u is

both ai and bj , then we can find another network with

node u = ai, an additional node v = bj , and edges

(u, v), (v, u) that has a larger sum distance.

2) It is a line network. First, it is straightforward that

the network is acyclic since the sum distance of any

network with cycles can be increased by removing

edges to break the cycles. Then, we prove that any

node can have at most two neighbors by contradic-

tion. Assume node u has neighbors v1, v2, and v3.

Since the network is acyclic, without loss of gener-

ality (w.l.o.g.) we assume v3 is closer to V∗, i.e.,

d(v3,V∗) ≤ d(v1,V∗) = d(v2,V∗). We consider

the network with edges (u, v1), (v1, u) removed and

(v1, v2), (v2, v1) added. This network has a larger sum

distance since the paths of all sessions involving v1 are

now 1 hop longer.

3) The paths of all sessions go through all the nodes in V∗.

This property is straightforward since any line network

without this property can be easily modified to a network

with this property and an increased sum distance.

With all the properties above, it can then be concluded that

the maximum sum distance is achieved by a line network

consisting of Nr+2K nodes. In this network, the sources and

destinations are non-collocated and the paths of all sessions

go through V∗. It can be easily calculated the sum distance of

this network is K(Nr − 1) +K(K + 1). Then we have

J ≤
∑K

i=1
di

Nr +K
≤ K(Nr − 1) +K(K + 1)

Nr +K
= K. (11)

C. The 12
√
K upper bound of J

In the following lemma, we give an upper bound of J which

is in the order of
√
K.



Lemma 4. For any network N(V, E ,S), the energy benefit

satisfies

J < 12
√
K. (12)

Before proving this lemma, we give the following lemmas.

Lemma 5. For any network N(V, E ,S), the minimum energy

consumption in CF mode satisfies

ECF ≥ max
S∗⊆S

max(
∑

ai∈A∗

d(ai,B∗),
∑

bi∈B∗

d(A∗, bi))(et + er),

(13)

where S∗ is a subset of S and A∗,B∗ are its source and

destination sets, respectively.

The proof of this lemma is omitted here since it is simply

a straightforward generalization of [4, Theorem 5.1].

Now we analyze the bound given in (13) by introducing the

distance matrix.

Definition 1 (Distance matrix). For a network N(V, E ,S), a

distance matrix denoted by D is a K×K matrix with d(ai, bj)
as the entry in the i-th row and the j-th column.

A distance matrix has the following properties.

Property 1. The entries on the diagonal are non-zero.

Property 2. If di,j = 0, then di′,j , di,j′ 6= 0 for all i′ 6= i, j′ 6=
j.

Property 3. ∀i, j, k, l ∈ {1, 2, . . . ,K}, k 6= i, l 6= j, di,j ≤
di,l + dk,j + dk,l.

The first property is trivial. The second property follows

from our assumption in the model that a node cannot be the

sources or destinations for multiple sessions. The third prop-

erty follows from the fact that the route ai → bl → ak → bj
is a valid path in the network and the length should not be

smaller than d(ai, bj).
For a subset S∗ of S , we denote the submatrix which

contains only sessions in S∗ by D∗, i.e., D∗ is a submatrix

with entries di,j that Si, Sj ∈ S∗. We further use the notation

d∗i,j to represent the (i, j)-th entry of D which is also an entry

for D∗. Note that d∗i,j is not necessarily the (i, j)-th entry of

D∗. Then, we can rewrite (13) as

ECF ≥ max
S∗⊆S

max(
∑

i

min
j

d∗i,j ,
∑

j

min
i

d∗i,j)(et + er). (14)

By analyzing (14) we derive the following lemma.

Lemma 6. For a network N(V, E ,S) we have

ECF ≥ 1

6

√
Kd(et + er), (15)

where d = minKi=1 di.

Proof: First, for K < 36, (15) holds since (1), (3) and (7)

hold.

Then, for K ≥ 36, we discuss two cases.

• Case 1: There exists a row or column which contains at

least
√
K/2 entries which are smaller than or equal to

d/3, i.e., ∃i, |{j|di,j ≤ d/3}| ≥
√
K/2 or |{j|dj,i ≤

d/3}| ≥
√
K/2.

First we consider the case that ∃i, |{j|di,j ≤ d/3}| ≥√
K/2. Since the sessions can be arbitrarily indexed,

w.l.o.g., we assume that the first f ∈ Z ∩ [ 1
2

√
K + 1,K]

entries of the first row are smaller or equal than d/3
except the first one, i.e.,

d1,j ≤ d/3, j ∈ {2, 3, . . . , f}. (16)

Now, for all k ∈ {2, 3, . . . , f}, l ∈ {2, 3, . . . , f}, we have

dk,l ≥ dk,k − d1,l − d1,k

≥ dk,k − 2d/3

≥ d/3, (17)

where the first inequality follows from Property 3, the

second inequality follows from (16), and the third in-

equality follows from the definition of d. Then we con-

sider the submatrix D∗ with the 2-f th rows and columns

of D and have
∑

i

min
j

d∗i,j ≥ (f − 1)d/3 ≥
√
Kd/6. (18)

For the case that ∃i, |{j|dj,i ≤ d/3}| ≥
√
K/2, with the

same argument we have (18).

• Case 2: For any row or column, it contains fewer than√
K/2 entries which are smaller or equal than d/3, i.e.,

∀i, |{j|di,j ≤ d/3}| <
√
K/2 and |{j|dj,i ≤ d/3}| <√

K/2.

In this case, w.l.o.g. we assume that the first f ∈
Z ∩ [0, 1

2

√
K + 1) entries of the first row are smaller or

equal than d/3 except the first one, i.e., d1,j ≤ d/3, j ∈
{2, 3, . . . , f}. Moreover, we assume that the entries in the

rows Z ∩ [g′, g] of the first column are smaller or equal

than d/3, i.e., di,1 ≤ d/3, i ∈ {g′, g′ + 1, . . . , g}. Here,

g′, g ∈ Z, g′ ∈ (1, 1

2

√
K + 2], g ∈ [g′,

√
K + 1), and

g − g′ <
√
K/2.

Then we consider the submatrix D1 which is the matrix

D with the 2nd to g-th rows and columns removed, i.e.,

D1 =











d1,1 d1,g+1 . . . d1,K
dg+1,1 dg+1,g+1 . . . dg+1,K

...
...

. . .
...

dK,1 dK,g+1 . . . dK,K











. (19)

Clearly, all entries in the first row and column (the blue

parts) of D1 are larger than d/3. Moreover, the property

that any column or row contains less than
√
K/2 entries

which are smaller or equal than d/3 still holds for this

submatrix D1. As a result, this puncturing process can

be iteratively repeated for other rows and columns which

still contain entries that are smaller or equal than d/3 (the

red parts). During each iteration, less than
√
K rows and

columns are removed. After h ∈ Z ∩ [
√
K/2,

√
K − 1]

iterations, we obtain a submatrix Dh in which all entries

in at least h rows and columns are larger than d/3. Then,



if we consider D∗ = Dh, we have
∑

i minj d
∗
i,j ≥ hd/3

and (18) holds.

Combining (18) with (14) we finish our proof.

Now, we prove Lemma 4 using Lemma 6.

Proof: Since the indexing of the sessions is arbitrary, w.l.o.g.

we assume d1 ≤ d2 ≤ · · · ≤ dK .

Now we consider a network N(V, E ,S∗) with S∗ ⊆ S .

Obviously, this network cannot consume more energy than

N(V, E ,S). Hence, by Lemma 6 we have a lower bound for

ECF for N(V, E ,S)

ECF ≥ 1

6

√

|S∗|min
i

d∗i,i(et + er). (20)

Combining all bounds obtained with all possible subsets, we

have

ECF ≥ 1

6
max
S∗⊆S

√

|S∗|min
i

d∗i,i(et + er). (21)

Then, since d1 ≤ d2 ≤ . . . ≤ dK , we do not need to consider

all subsets of S . More precisely, let us consider a subset S∗ ⊂
{Sk, Sk+1, . . . , SK}. It is clear that the lower bound of (20)

for this subset is strictly smaller than the lower bound for

the subset {Sk, Sk+1, . . . , SK}. Hence, we only consider the

subsets S∗ = {Sk, . . . , SK}, k ∈ {1, 2, . . . ,K} and (21) is

simplified to

ECF ≥ 1

6

K
max
k=1

√
K − k + 1dk(et + er). (22)

Then we consider the energy improvement factor J . By (1),

(3), and (22) we have

J =
ETR

ECF

=

∑K

k=1
dk(et + er)

ECF

≤
∑K

k=1
dk

1

6
maxKk=1

√
K − k + 1dk

≤ 6

(

d1√
Kd1

+
d2√

K − 1d2
+ · · ·+ dK√

1dK

)

= 6

(

1√
1
+

1√
2
+ · · ·+ 1√

K

)

< 12
√
K. (23)

The last inequality can be proved by simple algebra, the details

of the proof are omitted here.

Combining Lemmas 2-4, Theorem 1 is proved.

IV. CONCLUSION AND DISCUSSION

Unlike the throughput benefit for general networks given

in [10], it is shown in Theorem 1 that the upper bound of

the energy benefit of CF in (2) does not only depend on K
but also the average distance of the sessions. Moreover, it is

shown that the energy benefit is upper bounded by a factor

of
√
K. This is a different phenomenon in comparison to the

throughput benefit which can be as high as a factor of K/2
as shown in [10, Theorem 2].

Also, notice that CF is an advanced NC technique which

includes the methods of plain NC. Hence we can also conclude

that the energy benefit of NC over traditional routing is upper

bounded by a factor of min(d̄, K, 12
√
K). In other words, our

result can also be seen as an extension to [4, Theorem 5.1].

As far as we know, this is the best upper bound for the energy

benefit of NC for multiple unicasts in general networks when

K is large.

Another important remark is that for all the networks

that have been considered in literature, e.g. [9], the energy

improvement factors are no more than constants. Hence, it

remains as an interesting problem to study whether there exists

a network with an energy improvement factor at the order of√
K or that this upper bound can be further improved to a

constant.
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