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Abstract

All investment firms in Europa must track the market quality of different exchanges and
choose the best for their clients. Previous research has shown that a limit order book with
additional market makers performs best in terms of market quality, followed by a pure
limit order book and market maker. With the rise of cryptocurrencies, a new exchange
called the automated market maker has appeared in the crypto markets. It is unclear how
it compares to the limit order book regarding market quality. This thesis compares the
automated market maker with the limit order book. We have built a simulation and tested
seven different scenarios, varying in liquidity, information, price variability and fee. Six out
of seven scenarios indicated that the automated market maker outperforms the limit order
book.
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1. Introduction

Any investment firm in Europe is required to ’take all reasonable steps to obtain, when
executing orders, the best possible result for their clients taking into account price, costs,
speed, likelihood of execution and settlement, size nature or any other consideration relevant
to the execution of the order’ by the Markets in Financial Instruments Directive (MiFID) [1].
In other words, any investment firm must trade according to their client’s best interest by
reducing costs where possible, decreasing waiting time and increasing execution likelihood.
These goals are aggregated in market quality, defined as ’the ability to get your orders done
subject to your best-execution requirements’ [2]. Thus, an investment firm must track the
market quality of the exchange they use.

The traditional stock markets have two main strands of exchanges. The first is the quote-
driven market, in which a specialist like a market maker or dealer quotes the price he is
willing to sell or buy at. Any market participant has to trade with the specialist and cannot
set the price on his own. This exchange type is also called the price-driven market since the
quoted price drives the exchange. A well-known example of a quote-driven market is the
dealer market.

In the order-driven market, any market participant can propose or accept a deal. A market
participant can, for instance, propose to sell a chosen number of shares for a specific price.
However, the same market participant can also choose to sell his shares for the best offer. A
well-known example is an exchange that works with a Limit order book (LOB). The exchange
displays all non-matched trades in the LOB. New traders can either fill existing open orders
or add a new one to the book.

Previous research has already measured and compared (several aspects of) market quality of
the LOB and the market maker, the two main exchange structures. It is generally accepted
that a combination of the LOB and market maker gives the best market quality, followed
by the pure LOB and the market maker in last place [3]–[6]. However, in recent years
another trading mechanism called the Automated market maker (AMM) has entered the
cryptocurrency markets.

The AMM is neither a quote nor an order-driven market. Even though everyone can sup-
ply liquidity as in the order-driven market, the quoted prices are a function of the available
liquidity and thus only indirectly influenced by the liquidity providers. Furthermore, the
function only quotes one bid and ask price, which is more similar to a quote-driven mar-
ket. Even though it is unclear which category the AMM falls into, the numbers suggest its
popularity is rising in the cryptocurrency markets. Uniswap, the leading AMM platform,
has seen an increase of almost 200% in their daily dollar volume in a little more than 12
months [7], [8]. Furthermore, 15,35% of the total market capitalization of cryptocurrencies
takes place in decentralized finance, of which the AMM is an example, with a 4.8% increase
in the last two months [9]–[11].

The AMM was initially proposed in the early 1990s to solve several issues caused by the
(human) market makers. After the introduction of the LOB, the AMM disappeared until its
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1. Introduction

reintroduction in 2018 in the cryptomarkets, where it solved several technical issues with the
blockchain that the LOB faced [12]–[14]. Though several advantages and drawbacks have
been empirically observed and theoretically shown, it is still unclear how well the AMM
performs in market quality. Furthermore, it is unclear whether the increasing popularity of
the AMM stems from technical superiority on the blockchain or the market quality, as this
was never measured nor compared.

In this paper, we will compare the performance of the AMM with the LOB in terms of mar-
ket quality. First, we introduce the minimal market requirements, the definition of market
quality and several metrics in chapter 2. Furthermore, in the same chapter, we introduce the
LOB and AMM and check whether they satisfy the basic requirements. Next, the simulation
is described in chapter 3. After this, the simulation results and the outcome of the metrics
are given in chapter 4. Finally, we conclude in chapter 5.
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2. Theory

This chapter discusses the theory of markets and the LOB and AMM in particular. For
this, we assume that every exchange trades assets against money, denoted by A and M
respectively. First, we discuss the minimal requirements of a market in section 2.1. These
requirements should be implemented in the market. After this, we discuss several desired
properties in section 2.2. These properties can be measured and used to compare the two
markets in chapter 4. Finally, we discuss how the LOB and AMM work, and how they meet
the requirements in sections 2.3 and 2.4 respectively.

2.1. Market Requirements

In this section, it is described what is required for marketplace to function properly.

Requirement 1. The given price should be the worst case price, when no other trade occurs in the
mean time.

The first requirement is transparency of price, meaning that you know a worst price at which
you are guaranteed to trade. When you sell, this is a lower price, while it is an upper price
when you buy. If a market doesn’t have this characteristic, it functions like a lottery. Even
though there still will be some interested parties, it cannot really be thought of as a exchange
anymore.

Requirement 2. Trades are made according to the agreed terms.

The second requirements is the guarantee that the trade is made according to the conditions
as soon as two parties agreed upon. If this were not the case, no trades can occur since the
risks are very high.

Both requirements 1 and 2 are forced upon an exchange via legalization. Therefore, we
assume that these are satisfied in any exchange.

Before we introduce the third and fourth requirement, we first give the pricing function of
assets expressed in money in equation 2.1. Here, we denote the amount of assets paid and
money received by A and M respectively. Therefore, A, M > 0 stands for a sell order while
A, M < 0 is a buy order.

M(A) : R→ R (2.1)

Requirement 3. All gains should have positive costs, that is M(A) should be an increasing function
through the origin.
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2. Theory

Requirement 3 ensures that there is no arbitrage opportunity in the exchange. Since the price
is increasing and it goes through the origin, we have M(A) > 0 ⇐⇒ A > 0. Therefore,
positive costs (A > 0) have positive gains (M(A) > 0) and visa versa. Furthermore, since the
price is increasing, additional costs are guaranteed to give additional assets and via versa.
The reason this in a requirement is twofold: First, the available liquidity in the market would
dry up very fast as everything is ’bought’ for non-positive costs, thus halting further trading
very fast. Secondly, it is very unlikely that a counterparty for such a trade can be found as
he only gives but doesn’t receive anything. Therefore, no new liquidity will be added to the
market and trading would halt.

Requirement 4. The price does not decreases when a buy order is placed while it does not increase
when a sell order is placed, that is

∀A1, A2, A3 ∈ R :
(

0 < A1 ≤ A2 ≤ A3 ∨ A1 ≤ A2 ≤ A3 ≤ 0
)

=⇒ M(A3)−M(A2)

A3 − A2
≤ M(A2)−M(A1)

A2 − A1

Requirement 4 is to create incentive to trade now rather than later. When 0 < A1 ≤ A2 ≤ A3,
there are three consecutive sell market orders of size A1, A2 − A1 and A3 − A2 respectively.
Requirement 4 states that the price decreases as more assets are sold. Therefore, trading
now rather than later is better for the trader. When A1 ≤ A2 ≤ A3 ≤ 0, there are three
consecutive buy market orders of size A3, A3 − A2 and A1 − A3 respectively1. Therefore,
requirement 4 states that the price increases as more assets are bought. Therefore, trading
now rather than later is better for the trader.

Theorem 2.1.1. Requirement 4 holds if and only if M(A) is concave on domains R+ ∪ {0} and
R− ∪ {0}.

Proof. A function f is concave on interval I whenever

∀x, y ∈ I, t ∈ (0, 1) : f (x + t(y− x)) ≥ f (x) + t( f (y)− f (x)). (2.2)

Without lose of generality, assume A1 < A3. Furthermore, denote A2 = A1 + t(A3 − A1).
Then we have to prove

∀t ∈ (0, 1) ∧ A1 × A3 ≥ 0 : M(A2) ≥ M(A1) + t(M(A3)−M(A1)).

Here, we require A1 × A3 ≥ 0 such that they have the same sign and we are on either
domain for which we have to prove concavity.

M(A3)−M(A2)

A3 − A2
≤ M(A2)−M(A1)

A2 − A1

≡ M(A3)−M(A2)

(1− t)(A3 − A1)
≤ M(A2)−M(A1)

t(A3 − A1)

1The order is now reversed, since the smaller number are of larger magnitude.
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2. Theory

≡ t(A3 − A1)
(

M(A3)−M(A2)
)
≤ (1− t)(A3 − A1)

(
M(A2)−M(A1)

)
≡ t
(

M(A3)−M(A2)
)
≤ (1− t)

(
M(A2)−M(A1)

)
≡ tM(A3) + (1− t)M(A1) ≤ M(A2)

Since requirement 4 holds if and only if the pricing formula is concave, we can test for this
instead.

2.2. Market Quality

Market quality is ”the ability to get your orders done subject to your best-execution require-
ments” [2]. Therefore, market quality considers traders’ preferences, like price, transaction
speed and execution risk. The higher the quality of the market, the more the demands of the
different traders are met. High market quality is thus not a requirement but a contraction
of desired properties. The first is called price discovery, which is the need for information
transparency or, said differently, the incorporation of all relevant information in the mar-
ket price. When an exchange has efficient price discovery, meaning that prices are updated
as fast as possible, there is little to no information gap between different traders. Since all
traders have the same knowledge and are thus on equal footing, there is a sense of ’fairness’.
More importantly, this property makes it possible for a trader to weigh his trading prefer-
ences accurately. Furthermore, it gives some insight into the feasibility of the price aspect of
the execution requirements. The second property, market liquidity, is defined as ’the degree
to which an investor can buy or sell an asset quickly without incurring large transaction
costs or exerting a material effect on the asset’s price’ [15]. Market liquidity covers the fea-
sibility of execution requirements in terms of risk, time and costs. Other more subjective
best-execution requirements, like the ease of use, are difficult to measure objectively and
thus will not be considered in this thesis. They are, however, part of market quality and
desired properties. In the following sections, we will discuss information incorporation and
liquidity, how they are related, and the metrics used to measure market quality.

2.2.1. Information incorporation

One of the key aspects of a high-quality market is the speed at which an exchange incorpo-
rates new information. The process is called price discovery and has been defined in many
ways. Nie [16] summarizes the different definitions as ’a dynamic process to reach a state of
equilibrium with the rapidly adjusting market prices to replace the old equilibrium with the
new one through new information.’ A market (or exchange) that encapsulates all relevant
information about the asset in the current price is called efficient, and price discovery is the
process that takes the market to its efficient state. Fama [17] first introduced the Efficient
Market Hypothesis (EMH), which states that all markets are efficient and rational. When a
market is efficient, it has already incorporated all relevant information in the current asset
price. Therefore, all price movements are random and independent of the past since there
is no new information on which they can be based. The price follows a random walk (for
short time horizons) when an exchange is in its efficient state [18].

5



2. Theory

Therefore, the time series of the price can be split into two parts. First, there are times when
there is no new information, and the market should be in equilibrium. In those times, the
prices should behave like a random walk, meaning increments should be uncorrelated. The
second part contains the times when not yet all information is incorporated. A positive
price correlation is expected since the price should move to the new price as fast as possible
without backwards steps. Therefore, the price should continuously decrease or increase
towards the new price. Furthermore, the time, the number of trades and the volume to reach
the new price can be measured for the speed of information incorporation and adaptation
of the new price in the market.

2.2.2. Market liquidity

Market liquidity is defined as ’the degree to which an investor can buy or sell an asset
quickly without incurring large transaction costs or exerting a material effect on the asset’s
price’ [15]. A market is thus liquid when demand and supply are high and the bid-ask
spread is low, which results in low transaction costs. In general, there are three categories of
metrics used to measure market liquidity [19].

The first category consists of volume-based liquidity measures. These measures were pre-
sented in the early stages and often easily determined. An example is the daily volume.
Fleming [20] claims that it is not a good measure since it only weakly correlates with liquid-
ity, as can be shown quickly for the daily volume. On one side, a larger volume seems to
point towards more liquidity. However, Karpoff [21] has also shown that the volume pos-
itively correlates to price volatility, which raises the transaction costs and thus reduces liq-
uidity. This example illustrates that a definitive conclusion is hard to draw using a volume-
based liquidity measure. Other drawbacks of the volume-based liquidity measures are that
they fail to distinguish between a state of temporary and persistent illiquidity, are only based
on the past, overestimate (underestimate) big (small) transactions and are only an indirect
measure of liquidity [15], [21].

The second category are the price-variability indices, which include measures that derive
market liquidity directly from price behaviour, either by looking at the variance or by looking
at statistics. The two main methods that look at the variance are the liquidity ratio of
Marsh and Rock [22] and the variance ratio. It is questionable whether something new is
measured since the assumptions made by these measures are similar to those of the EMH.
The second category of statistical measures is primarily based on event studies, which do
not uniquely define how to measure liquidity [19]. Furthermore, the measures overlap
with section 2.2.1 since they do not solely measure liquidity but market quality. Therefore,
price-variability indices cannot give a conclusive answer regarding market liquidity without
additional support.

The last category are the transaction cost measures, like the bid-ask spread. Transaction
costs can be seen as both the price for a quick transaction and the compensation for liquidity
provision. Therefore, transaction costs are deeply connected with market liquidity. The bid-
ask spread consists mainly of costs due order processing, adverse information, and inventory
[19]. However, not all costs are relevant to measure. The exchange structure does not cause
order processing costs since they stem from implementation or additional fees for using the
exchange. In the simulation, only costs caused by the exchange structure are relevant to
measure. Therefore, we will not consider costs like additional fees or waiting times due to
implementation in the simulation. The second cost caused by adverse information is already
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2. Theory

measured by measuring market efficiency (see section 2.2.1). Therefore, this does not have
to be measured anymore. Only transaction costs caused by inventory considerations are
not yet measured and are still very informative for liquidity. The bid-ask spread is such a
measure. Fleming [20] shows that the bid-ask spread, complemented by the quote size, is
the best indicator for market liquidity. The quote size is the amount that can be bought (or
sold) at the best price and indicates how variable the price is. According to Hu et al. [15],
larger volatilities indicate lower liquidity because ’prices tend to move more when there is
less depth to execute large orders’. A larger quote size thus indicates lower volatility and
higher liquidity.

However, the quote size is only reasonable to use when the prices and quantities offered
are discretized, which is not the case for the AMM. Even though the price and quantities
are discretized in computer models, the theory behind the automated market maker implies
a price that continuously changes. The best ask, best bid and quote size are thus not well
defined since the price changes with each trade regardless of size. Therefore, we generalize
the bid-ask spread and quote size to look at one unit. The unit bid-ask spread is the price
difference when buying and selling one unit of the asset. The unit quote size is the number
of assets that must be sold (bought) to decrease (increase) the price by one unit.

2.2.3. Interaction of Market Efficiency and Market liquidity

Bernstein [23] notes that liquidity and efficiency are not always compatible in every situation.
We can easily see this by looking at two examples.

First, we look at a situation where the true price is constant. The market price should stay at
this constant true price for perfect price efficiency. Even more so, the bid-ask spread should
be (near) zero. However, this perfect efficiency prohibits liquidity. Noise traders are traders
that push the price away from equilibrium, either because they are misinformed or because
they want to obtain a position. By doing this, noise traders provide depth, breadth and
resiliency [24], since informed traders rush to restore the price. Thus, noise traders provide
liquidity in the market by decreasing the price efficiency. A perfectly efficient market will
thus decrease trading since there is no place for noise traders.

The second situation that displays the tension between liquidity and price efficiency is a price
change due to new information. A quick price change is desired when new information is
introduced, but a lot of liquidity might prevent this. For instance, many traders are needed
whenever there is a lot of liquidity around the current price. In that case, the metric of quote
size would indicate a very liquid market, but efficiency would decrease. If the market were
less liquid, equilibrium would need a smaller traded volume.

Bernstein [23] therefore concludes that liquidity measures hold more weight when there
is no new information. This suggests a simulation in which more weight is given to the
liquidity measure when the true price is kept static. In contrast, price efficiency is more
important when new information becomes available.

2.2.4. Metrics

There are two things the metrics for market quality should measure: information incor-
poration and liquidity in the market. As explained in section 2.2.3, we value the metrics

7



2. Theory

of information incorporation more when new information is introduced, while metrics for
liquidity are valued more when the exchange is somewhat in equilibrium. To precisely sepa-
rate these parts, we define the time when new information is introduced until the new price
has been reached (and possibly surpassed) as the time for price discovery. The remaining
parts are assumed to be in equilibrium.

For information incorporation, the measures already mentioned in section 2.2.1 will be used.
The first metric is to test whether or not the price behaves like a random walk. The Auge-
mented Dickey-Fuller test (ADF) [25] tries to reject the null hypothesis that the time se-
ries is non-stationary and thus a random walk. Next to other values, it returns a p-value
at a 5% significance level. Therefore, the ADF concludes that the series behaves like a
random walk whenever the p-value exceeds 0.05. The ADF is often complemented by a
Kwiatkowski–Phillips–Schmidt–Shin test (KPSS)[26], which does the exact opposite: It tests
the null hypothesis that the series is stationary and thus not a random walk. The tests should
indicate a random walk when the exchange is in equilibrium and indicate otherwise when
new information is integrated. However, price-increment type tests like these are often used
when there is just one single market[27]. Metrics of relative speed are used whenever two or
more markets are compared [18]. Therefore, the time, volume and number of trades during
price discovery are used as a metric to compare two exchanges. On the other hand, the
random walk tests are used as validity and price incorporation checks.

As suggested in section 2.2.2, the unit bid-ask spread and the unit quote will be used as
metrics for market liquidity.

Another metric that does not fall under either market liquidity or information incorporation
will be used. It does, however, fall under market quality. We will call this metric the comple-
tion percentage, representing trader satisfaction. Simulation data includes the original goal
of the trader, unlike real-world data. The goal is to buy assets or money (which is the same
as selling stocks). Let us assume that the trader wanted to receive X assets (or money) and
has received X′ within his time frame. The completion percentage of this trader is then

C =
X′

X
. (2.3)

Therefore, the trader is completely satisfied whenever C >= 1, while his goal could not be
reached when C < 1. The market is thus of higher quality when the completion percentages
of the traders are higher. For this, we look at the mean and the variance in the completion
percentages. To see why the variance matters, let us take the following example: Two
markets both have an average completion percentage of one. The first has zero variance,
while the second has variance greater than zero. It should be clear that the first market is of
perfect quality since everybody is completely satisfied, while there are unsatisfied traders in
the second exchange. Therefore, the second exchange is of lesser quality.

2.3. Limit order book

In this section, we will introduce the Limit order book (LOB). Currently, the LOB is seen as
the best pure trading mechanism and is often employed in traditional finance. In section
2.3.1, the LOB is introduced, couples with some examples for better understanding. After
this, the LOB is formally defined in section 2.3.2. Finally, in section 2.3.3, it is shown how
the LOB satisfies the base requirements described in 2.1.
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2. Theory

2.3.1. Overview

A Limit order book (LOB) is a (digital) record of outstanding buy and sell orders that have
not yet been matched to a second party. Alternatively, the LOB is a collection of prices for
which a determined quantity can be bought/sold. The outstanding orders in the book are
called limit orders since the order is both limited in price and quantity.

Example - A basic limit order book

An example of an order book is given in figure 2.1. In this example, two assets can
be sold for €7 each, while the third to the tenth asset only yield €6. At the same time,
an asset can be bought for €10, while an additional asset will cost €11.

5 6 7 8 9 10 11 12

0
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4

6

8

Price (in €)

Q
u
a
n
ti
ty

Figure 2.1.: An example of a limit order book

There are three actions a market participant can take. The first action is a market order, in
which he buys or sells the asset directly at the best ask or best bid, respectively. A market
participant takes this action if time is of the essence.

Whenever a market participant has time, he can place a limit order. In this case, he wants
a better price than currently available via a market order and has some time to wait for a
counterparty. He decides on a price and quantity he wants to buy (or sell) and submits a
limit order, which is placed in the order book. By doing this, the market participant raises
the liquidity because he makes it easier for new market participants to find a counterparty.
Furthermore, by adding to the stock of the order book, the order book becomes more resilient
to large orders meaning that the price shifts due to large orders are dampened.

The third, and last action, is a limit order cancellation. Only market participants with an
outstanding limit order can take this action.

From these three actions, a natural division of market participants follows. The first group
are the market takers, which place market orders and thus take liquidity. The second group
are the liquidity providers, who provide liquidity by placing limit orders. It should be noted
that liquidity providers can also reduce liquidity when they place a limit order which can
be matched immediately2 or cancel a limit order.

2In this case, the liquidity taker can be seen as a market taker and will be categorized as such.
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Example continued - Placing orders

We take the previous setting with an order book in the state as shown in figure 2.1.
Now assume that a market maker wants to buy three assets. He will have to pay €32,
and the order book will be updated as shown in figure 2.2.

5 6 7 8 9 10 11 12
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Price (in €)

Q
u
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n
ti
ty

Figure 2.2.: The order book after a market participant bought 3 assets

The best ask has risen from €10 to €11. Suppose another market participant owns
three assets and believes it is still profitable to sell them for €10, €11 and €11, respec-
tively. In that case, he can place two limit orders (one of one asset for €10 and one of
two assets for €11) to return to the original state as depicted in figure 2.1.

A liquidity provider gets a better price than he would have when he placed a market order
at that moment. Sometimes, the bid-ask spread is seen as the costs (or merit in the case of
the liquidity provider) of liquidity. However, there is a risk that his order is never executed,
named the execution risk. The liquidity provider can influence his execution risk through
the price he provides since this partly determines his place in the queue. When the liquidity
provider provides a worse price than the market, he would be placed more in the back of
the queue. A liquidity provider performs an undercut when he places an order with a better
price than the market provides. Since his price is better than all other prices, he will be first
in line to be matched with a market order, and his execution risk decreases. Another benefit
is that the time to execution also decreases. An undercut is sometimes also called jumping
the queue.

The LOB has several settings that can be altered per exchange. The first is the order in
which limit orders are matched. It is clear from the example that a better price puts the
order earlier in the queue, but it does not describe the order of limit orders with the same
price. In practice, the first-in-first-out principle is used. Orders are thus ordered by price
and then by time in the order book.

The second setting is the tick size which is the step size of the price. All wielded prices have
to be a multiple of the tick size. For example, if the tick size were €0.01, a price of €0.91
would be possible, whereas a price of €1.231 is not. It should be noted that the asset sold
can also have a tick size representing the step size of the quantity bought. In US markets,
stocks are often bought in bundles of one hundred, but this is not strictly necessary. The
tick size also limits the possibilities of an undercut since there are fewer steps between the
best bid and best ask. Additionally, a larger tick size negatively influences the benefit of the

10
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undercut.

Example - Tick size and undercut

Assume a LOB with the order book in the state of figure 2.1 and tick size of €0.50. If a
market participant wanted to sell an asset in little time, he could attempt an undercut
to jump the queue. To do this, we would make a limit order for one asset at €9.50 to
make him the first in the queue. However, if he wanted to be sure that nobody could
perform an undercut on him, we would instead use the price of €8.50. Nobody could
perform an undercut since this would require a price of €8.00, which can immediately
be matched against a limit buy order. Since the market participant is ensured to be
first in line, it would only take one market order that buys an asset to sell his asset.
When there are many transactions on the exchange, he will sell for €8.50 instead of
€8.00 in a relatively short time.

2.3.2. Formal definition

This section formally defines the LOB after several components are presented.

Definition 2.3.1. A limit order is a tuple (p, q, t) such that p, q, t ∈N. Here, p is the price of
the asset expressed in another asset, q is the number of assets, and t is the discretized time stamp3.
Furthermore, we define (p, 0, t) as the empty limit order with the property that O ∪ (p, 0, t) = O,
where O is a list of limit orders.

In the definition of a limit order, it is unclear whether a sell or buy order is meant. As will
be shown, it will be clear from the context whether it is a sell or buy order. Furthermore,
even though the domain of natural numbers is taken for each variable, it can be generalized
to take smaller steps in all variables.

Definition 2.3.2. The sell side is a an ordered finite list (s1, s2, ..., sn) such that

• ∀i : si = (pi, qi, ti) is a limit order representing a buy order4

• ∀i, j : i < j =⇒ (pi > pj ∨ (pi = pj ∧ ti < tj))

• ∀i, j : ti = tj =⇒ i = j

Definition 2.3.3. The buy side is a an ordered finite list (b1, b2, ..., bn) such that

• ∀i : bi = (pi, qi, ti) is a limit order representing a sell order

• ∀i, j : i < j =⇒ (pi < pj ∨ (pi = pj ∧ ti < tj))

• ∀i, j : ti = tj =⇒ i = j

Definition 2.3.4. A LOB is a tuple (S, B, F) such that

• S = (s1, ..., sn) is a sell side, representing all limit orders that buy the asset.

3t can also be seen as an increasing identification number
4This name sell side might be a bit confusing when there are only limit buy orders in it. However, seen from the

market participants’ perspective, one can directly sell his assets on this side of the book, hence the name.
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• B = (b1, ..., sn) is a buy side, representing all limit orders that sell the asset.

• ps1 > pb1, where s1 = (ps1, qs1, ts1) and b1 = (pb1, qb1, tb1)

• F = f1, f2, ... is the set of transformations such that ∀ f ∈ F : f (q, p, t, S, B) = (S′, B′, T′),
where (S′, B′, F) is a LOB again.

Below, we give all the basic transformations possible for a LOB. All other possible transfor-
mations can be seen as a combination of the others. Here, we define tn as the current time5

and Qb = ∑(pi ,qi ,ti)∈B qi and Qs = ∑(pi ,qi ,ti)∈S qi as the total amount you can respectively buy
and sell in the LOB. Finally, we denote pbj, qbj, tbj, psj, qsj and tsj as the price, quantity and
time index of jth order on the buy and sell side of the LOB.

• Qb ≥ qb > 0, qs = 0, p = −1: this is a market order that wants to buy qb assets. From
this, we derive all components of the new LOB as follows:

– First, we find index j such that ∑
j−1
i=1 qbi ≤ qb < ∑

j
i=1 qbi

– B′ = B \⋃j
i=1 bi ∪ (pbj, ∑

j
i=1 qbi − qb, tsj)

– S′ = S

• qb = 0, QS ≥ qs > 0, p = −1: This is a market order that wants to sell qs assets. From
this, we derive all components of the new LOB as follows:

– First, we find index j such that ∑
j−1
i=1 qsi ≤ qs < ∑

j
i=1 qsi

– B′ = B

– S′ = S \⋃j
i=1 si ∪ (psj, ∑

j
i=1 qsi − qs, tbj)

• qb > 0, qs = 0, p < pb1: This is a limit buy order that wants to buy qb assets. From this
we derive all components of the new LOB as follows:

– B′ = B

– S′ = S ∪ (p, qb, tn)

• qb > 0, qs = 0, p ≥ pb1: This is a limit buy order that can directly be matched and thus
converted to a market buy order.

• qb = 0, qs > 0, p > ps1: This is a limit sell order that wants to sell qs assets. From this,
we derive all components of the new LOB as follows:

– B′ = B ∪ (p, qs, tn)

– S′ = S

• qb = 0, qs > 0, p ≤ ps1: This is a limit sell order that can directly be matched and thus
converted to a market sell order.

• t < tn, (p, q, t) ∈ B: This represents the cancellation of a limit sell order, uniquely
identified by t. From this, we derive all components of the new LOB as follows:

– B′ = B \ (p, q, t)

– S′ = S

5If t is seen as identifier, then tn can be seen as the identifier the next order would get.
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• t < tn, (p, q, t) ∈ S: This represents the cancellation of a limit buy order, uniquely
identified by t. From this, we derive all components of the new LOB as follows:

– B′ = B

– S′ = S \ (p, q, t)

2.3.3. Requirements

In this section, it will be shown that LOB satisfied the requirement posed on an exchange in
section 2.1.

It is clear to see that the requirement 1 of transparency is satisfied. Although traders may
hide their orders, this can only give a better price than the shown price.

Requirement 2 can only be enforced through legalization. However, a case can be made that
the price and quantity remain the same, since neither party would otherwise agree to the
exchange.

We know that requirements 3 and 4 are satisfied when several mathematical properties hold
for the pricing function. We will first define the pricing function. For this, assume A assets
are sold to receive M money. Furthermore, assume that limit orders with the same price
have been taken together. Then we have

M(A) =


∑

j−1
i=1 psi ∗ qsi + psj ∗

(
A−∑

j−1
i=1 qsi

)
s.t. ∑

j−1
i=1 qsi ≤ A < ∑

j
i=1 qsi ∧ A ≥ 0

−∑
j−1
i=1 pbi ∗ qbi + pbj ∗

(
A + ∑

j−1
i=1 qbi

)
s.t. ∑

j−1
i=1 qbi ≤ −A < ∑

j
i=1 qbi ∧ A < 0

.

(2.4)

Sometimes, the alternate form in equation 2.5 is used in the proofs.

M(A) =


∑

j
i=1 psi ∗ qsi − psj ∗

(
∑

j
i=1 qsi − A

)
s.t. ∑

j−1
i=1 qsi ≤ A < ∑

j
i=1 qsi ∧ A ≥ 0

−∑
j
i=1 pbi ∗ qbi + pbj ∗

(
∑

j
i=1 qbi + A

)
s.t. ∑

j−1
i=1 qbi ≤ −A < ∑

j
i=1 qbi ∧ A < 0

.

(2.5)

In the remaining of the section, we proof that the pricing formula is increasing and concave
with theorems 2.3.9 and 2.3.11. In order to do this, we prove several lemmas first.

Lemma 2.3.5. Whenever 0 ≤ A1 < A2, we have j1 ≤ j2, where ji is the index in equation 2.4.

Proof. By definition of formula 2.4, we know that ∑
j1−1
i=1 qsi ≤ A1 < A2 < ∑

j2
i=1 qsi. There are

two missing terms, namely ∑
j1
i=1 qsi and ∑

j2−1
i=1 qsi, which still need to be ordered. There are

three possible orders:

• ∑
j1−1
i=1 qsi = ∑

j2−1
i=1 qsi ≤ A1 < A2 < ∑

j1
i=1 qsi = ∑

j2
i=1 qsi,

13
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• ∑
j1−1
i=1 qsi ≤ A1 < ∑

j1
i=1 qsi ≤ ∑

j2−1
i=1 qsi ≤ A2 < ∑

j2
i=1 qsi,

• ∑
j1−1
i=1 qsi ≤ A1 < ∑

j2−1
i=1 qsi < ∑

j1
i=1 qsi < A2 < ∑

j2
i=1 qsi.

The first case implies j1 = j2. The second case implies j1 ≤ j2 − 1 and thus j1 < j2. The third
case is a contradiction, since it implies j1 − 1 < j2 − 1 < j1. Since the ji’s are indexes, they
are integers and there is no integer number between two consecutive integers. Therefore
j1 − 1 < j2 − 1 < j1 is a contradiction and the third case cannot happen.

Thus we have proven ∀0 ≤ A1 < A2 : j1 ≤ j2.

Lemma 2.3.6. Whenever A2 < A1 ≤ 0, we have j1 ≤ j2, where ji is the index in equation 2.4.

Proof. By definition of formula 2.4, we know that ∑
j1−1
i=1 qbi ≤ −A1 < −A2 < ∑

j2
i=1 qbi. There

are two missing terms, namely ∑
j1
i=1 qbi and ∑

j2−1
i=1 qbi, which still need to be ordered. There

are three possible orders:

• ∑
j1−1
i=1 qbi = ∑

j2−1
i=1 qbi ≤ A1 < A2 < ∑

j1
i=1 qbi = ∑

j2
i=1 qbi,

• ∑
j1−1
i=1 qbi ≤ A1 < ∑

j1
i=1 qbi ≤ ∑

j2−1
i=1 qbi ≤ A2 < ∑

j2
i=1 qbi,

• ∑
j1−1
i=1 qbi ≤ A1 < ∑

j2−1
i=1 qbi < ∑

j1
i=1 qbi < A2 < ∑

j2
i=1 qbi.

The first case implies j1 = j2. The second case implies j1 ≤ j2 − 1 and thus j1 < j2. The third
case is a contradiction, since it implies j1 − 1 < j2 − 1 < j1. Since the ji’s are indexes, they
are integers and there is no integer number between two consecutive integers. Therefore
j1 − 1 < j2 − 1 < j1 is a contradiction and the third case cannot happen.

Thus we have proven ∀A2 < A1 ≤ 0 : j1 ≤ j2.

Lemma 2.3.7.

M(A2)−M(A1) =

{
psj2(A2 − A1) 0 ≤ A1 < A2 ∧ j1 = j2
pbj2(A2 − A1) A1 < A2 ≤ 0∧ j1 = j2

(2.6)

Proof. Assume 0 ≤ A1 < A2 and j1 = j2. Then we have

M(A2)−M(A1) =
j2

∑
i=1

psi ∗ qsi − psj2 ∗ (
j2

∑
i=1

qsi − A2)−
j1

∑
i=1

psi ∗ qsi + psj1 ∗ (
j1

∑
i=1

qsi − A1)

=
j2

∑
i=1

psi ∗ qsi − psj2 ∗ (
j2

∑
i=1

qsi − A2)−
j2

∑
i=1

psi ∗ qsi + psj2 ∗ (
j2

∑
i=1

qsi − A1)

= −psj2 ∗ (
j2

∑
i=1

qsi − A2) + psj2 ∗ (
j2

∑
i=1

qsi − A1)

= psj2 A2 − psj2 A1

= psj2(A2 − A1)

The proof for A1 < A2 ≤ 0 and j1 = j2 follows along the same lines.
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Lemma 2.3.8.

M(A2)−M(A1) ≥
{

∑
j2−1
i=j1+1 psi ∗ qsi + psj1 ∗ (∑

j1
i=1 qsi − A1) 0 ≤ A1 < A2 ∧ j1 < j2

∑
j1−1
i=j2+1 pbi ∗ qbi + pbj2 ∗ (∑

j2
i=1 qbi + A2) A1 < A2 ≤ 0∧ j1 < j2

(2.7)

Proof. Assume 0 ≤ A1 < A2 and j1 < j2. First note

j2−1

∑
i=1

qsi ≤ qA2 <
j2

∑
i=1

qsi =⇒
j2

∑
i=1

qsi − qA2 ≤
j2

∑
i=1

qsi −
j2−1

∑
i=1

qsi = qsj2 , (2.8)

such that

M(A2)−M(A1) =
j2

∑
i=1

psi ∗ qsi − psj2 ∗ (
j2

∑
i=1

qsi − A2)−
j1

∑
i=1

psi ∗ qsi + psj1 ∗ (
j1

∑
i=1

qsi − A1)

=
j2

∑
i=j1+1

psi ∗ qsi − psj2 ∗ (
j2

∑
i=1

qsi − A2) + psj1 ∗ (
j1

∑
i=1

qsi − A1)

≥
j2

∑
i=j1+1

psi ∗ qsi − psj2 qsj2 + psj1 ∗ (
j1

∑
i=1

qsi − A1)

=
j2−1

∑
i=j1+1

psi ∗ qsi + psj1 ∗ (
j1

∑
i=1

qsi − A1).

Note that in the last line, the term ∑
j2−1
i=j1+1 psi ∗ qsi consists of zero terms whenever j2 = j1 + 1.

The proof for A1 < A2 ≤ 0 and j1 < j2 follows along the same lines.

Theorem 2.3.9. Function 2.4 is increasing.

Proof. To be increasing, we must prove ∀A1 < A2 : M(A2)−M(A1) ≥ 0. Therefore, assume
A1 < A2. We have three cases: A1 < A2 ≤ 0, 0 ≤ A1 < A2, and A1 < 0 < A2. We will
separately prove M(A2)−M(A1) ≥ 0 for all these cases.

Assume A1 < A2 ≤ 0. Lemma 2.3.6 tells us that j2 ≤ j1. When j2 = j1, we have M(A2)−
M(A1) = pbj2(A2 − A1) > 0 according to lemma 2.3.7, which is greater than zero since

A1 < A2 ⇐⇒ A2 − A1 > 0. When j2 < j1, we have M(A2)−M(A1) ≥ ∑
j1−1
i=j2+1 pbi ∗ qbi +

pbj2 ∗ (∑
j2
i=1 qbi + A2) according to lemma 2.3.8. Furthermore, we know that this value is

greater than zero since the first sum consist of nonnegative elements while the second term
is positive since ∑

j2
i=1 pbi ∗ qbi > −A2. Therefore A1 < A2 ≤ 0 =⇒ M(A2)−M(A1) ≥ 0.

Assume 0 ≤ A1 < A2. Lemma 2.3.5 tells us that j2 ≥ j1. When j2 = j1, we have M(A2)−
M(A1) = psj2(A2 − A1) > 0 according to lemma 2.3.7, which is greater than zero since

A1 < A2 ⇐⇒ A2 − A1 > 0. When j1 < j2, we have M(A2)−M(A1) ≥ ∑
j2−1
i=j1+1 psi ∗ qsi +

psj1 ∗ (∑
j1
i=1 qsi − A1) according to lemma 2.3.8. Furthermore, we know that this value is

greater than zero since the first sum consist of nonnegative elements while the second term
is positive since ∑

j1
i=1 psi ∗ qsi > A1. Therefore 0 ≤ A1 < A2 =⇒ M(A2)−M(A1) ≥ 0.
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Finally, assume A1 < 0 ≤ A2. Then M(A1) < 0 since all terms in equation 2.4 are negative.
Furthermore, since all terms are nonnegative, M(A2) ≥ 0. Therefore M(A2)−M(A1) > 0.

We have proven for arbitrary A1 > A2 that M(A2) − M(A2) > 0. Therefore, M(A) is an
increasing function for all A ∈ R.

Lemma 2.3.10.

∀A1 < A2 : (A1 ∗ A2 ≥ 0) =⇒ p2(A2 − A1) ≤ M(A2)−M(A1) ≤ p1(A2 − A1) (2.9)

Here, p1 and p2 are the prices at the border for A1 and A2 respectively. From the context, it can be
derived whether these are psj1 or pbj1 and psj2 or pbj2 .

Proof. Since A1 ∗ A2 ≥ 0, we know that they both have the same sign. Therefore, there are
four possible cases: Either A1 = 0, A2 = 0, A1 < A2 < 0 or 0 > A1 < A2. Note that it is
trivially true when A1 = 0 or A2 = 0. We will proof the formula to be true for the remaining
cases.

Assume A1 < A2 < 0 such that j1 ≥ j2 according to lemma 2.3.6. Then we compute

M(A2)−M(A1)

=

(
−

j2−1

∑
i=1

pbi ∗ qbi + pbj2 ∗
(

A2 +
j2−1

∑
i=1

qbi
))
−
(
−

j1−1

∑
i=1

pbi ∗ qbi + pbj1 ∗
(

A1 +
j1−1

∑
i=1

qbi
))

=
j1−1

∑
i=j2

pbi ∗ qbi + pbj2 ∗
(

A2 +
j2−1

∑
i=1

qbi

)
− pbj1 ∗

(
A1 +

j1−1

∑
i=1

qbi

)

=
j1

∑
i=j2+1

pbi ∗ qbi + pbj2 ∗
(

A2 +
j2

∑
i=1

qbi

)
− pbj1 ∗

(
A1 +

j1

∑
i=1

qbi

)
When j1 = j2, this simplifies to

M(A2)−M(A1)

=
j1

∑
i=j1+1

pbi ∗ qbi + pbj1 ∗
(

A2 +
j1

∑
i=1

qbi

)
− pbj1 ∗

(
A1 +

j1

∑
i=1

qbi

)
= pbj1

(
A2 − A1

)
= pbj2

(
A2 − A1

)
.

When j1 > j2, we can compute

M(A2)−M(A1)

≤
j1

∑
i=j2+1

pbi ∗ qbi + pbj1 ∗
(

A2 +
j2

∑
i=1

qbi

)
− pbj1 ∗

(
A1 +

j1

∑
i=1

qbi

)
(2.10)

= pbj1
(

A2 − A1
)
+

j1

∑
i=j2+1

pbi ∗ qbi − pbj1

j1

∑
i=j2+1

qbi
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= pbj1
(

A2 − A1
)
+

j1

∑
i=j2+1

(pbi − pbj1) ∗ qbi

≤ pbj1
(

A2 − A1
)
. (2.11)

In equation 2.10, we used pbj1 > pbj2 and A2 +∑
j2
i=1 qbi ≥ 0. Equation 2.11 follows from from

the fact that ∀i < j : pbi < pbj.

Furthermore, using the same arguments as above, we can compute

M(A2)−M(A1)

≥
j1−1

∑
i=j2

pbi ∗ qbi + pbj2 ∗
(

A2 +
j2−1

∑
i=1

qbi

)
− pbj2 ∗

(
A1 +

j1−1

∑
i=1

qbi

)
(2.12)

= pbj2
(

A2 − A1
)
+

j1

∑
i=j2+1

pbi ∗ qbi − pbj2

j1

∑
i=j2+1

qbi

= pbj2
(

A2 − A1
)
+

j1

∑
i=j2+1

(pbi − pbj2) ∗ qbi

≥ pbj2
(

A2 − A1
)
. (2.13)

In equation 2.12, we used pbj1 > pbj2 and A1 + ∑
j1−1
i=1 qbi ≤ 0. Equation 2.13 follows from

from the fact that ∀i < j : pbi < pbj.

Therefore, we have p2(A2 − A1) ≤ M(A2)−M(A1) ≤ p1(A2 − A1) when A1 < A2 < 0.

We now prove the second case. Assume 0 < A1 < A2 such that j1 ≤ j2 according to lemma
2.3.5. Then we compute

M(A2)−M(A1)

=

(
j2−1

∑
i=1

psi ∗ qsi + psj2 ∗
(

A2 −
j2−1

∑
i=1

qsi

))
−
(

j1−1

∑
i=1

psi ∗ qsi + psj1 ∗
(

A1 −
j1−1

∑
i=1

qsi

))

=
j2−1

∑
i=j1

psi ∗ qsi + psj2 ∗
(

A2 −
j2−1

∑
i=1

qsi

)
− psj1 ∗

(
A1 −

j1−1

∑
i=1

qsi

)
When j1 = j2, this simplifies to

M(A2)−M(A1)

=
j1−1

∑
i=j1

psi ∗ qsi + psj1 ∗
(

A2 −
j1−1

∑
i=1

qsi

)
− psj1 ∗

(
A1 −

j1−1

∑
i=1

qsi

)
= psj1 ∗ (A2 − A1)

= psj2 ∗ (A2 − A1).

When j1 > j2, we can compute

M(A2)−M(A1)
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≤
j2−1

∑
i=j1

psi ∗ qsi + psj1 ∗
(

A2 −
j2−1

∑
i=1

qsi

)
− psj1 ∗

(
A1 −

j1−1

∑
i=1

qsi

)
(2.14)

= psj1(A2 − A1) +
j2−1

∑
i=j1

psi ∗ qsi −
j2−1

∑
i=j1

psj1 ∗ qsi

= psj1(A2 − A1) +
j2−1

∑
i=j1

(psi − psj1) ∗ qsi

≤ psj1(A2 − A1) (2.15)

In equation 2.14, we used psj1 > psj2 and A2 + ∑
j2−1
i=1 qsi ≥ 0. Equation 2.15 follows from

from the fact that ∀i < j : psi > psj.

Furthermore, using the same arguments as above, we can compute

M(A2)−M(A1)

=
j2

∑
i=j1+1

psi ∗ qsi + psj2 ∗
(

A2 −
j2

∑
i=1

qsi

)
− psj1 ∗

(
A1 −

j1

∑
i=1

qsi

)

≥
j2

∑
i=j1+1

psi ∗ qsi + psj2 ∗
(

A2 −
j2

∑
i=1

qsi

)
− psj2 ∗

(
A1 −

j1

∑
i=1

qsi

)
(2.16)

= psj2(A2 − A1) +
j2

∑
i=j1+1

psi ∗ qsi −
j2

∑
i=j1+1

psj2 ∗ qsi

= psj2(A2 − A1) +
j2

∑
i=j1+1

(psi − psj2) ∗ qsi

≥ psj2(A2 − A1). (2.17)

In equation 2.16, we used psj1 > psj2 and A1 + ∑
j1
i=1 qsi ≤ 0. Equation 2.17 follows from from

the fact that ∀i < j : psi > psj.

Therefore, we have p2(A2 − A1) ≤ M(A2)−M(A1) ≤ p1(A2 − A1) when 0 < A1 < A2.

So indeed, A1 ∗ A2 ≥ 0∧ A1 < A2 =⇒ p2(A2− A1) ≤ M(A2)−M(A1) ≤ p1(A2− A1).

Theorem 2.3.11. Function 2.4 satisfies requirement 4.

Proof. Without lose of generality, assume random variables A1, A2 such that A1 < A2. Fur-
thermore, denote A3 = A1 + t(A2 − A1) such that A1 < A3 < A2, and assume A1 × A2 ≥ 0
as in requirement 4. We then know that A1, A2 and A3 all have the same sign. Therefore,
p1 > p2 > p3 for both the sell and buy side. Furthermore, lemma 2.3.10 tells us that

p3(A3 − A1) ≤ M(A3)−M(A1),
M(A2)−M(A3) ≤ p3(A2 − A3).

Rewriting, we find

M(A2)−M(A3)

A2 − A3
≤ p3 ≤

M(A3)−M(A1)

A3 − A1

as required.
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2.4. Automated Market Maker

This section introduces the Automated market maker (AMM). The AMM is an upcoming
market mechanism in the cryptocurrency markets [7], [8]. We first give an overview of the
basic AMM and its different components in section 2.4.1 using examples of the constant-
product AMM. In 2.4.2, we introduce an advanced constant-product AMM using range
orders, which is implemented in the simulation. After, we will formally define the AMM in
section 2.4.3. Finally, it will be shown that the AMM satisfies the requirements as formulated
in section 2.1 in section 2.4.4.

2.4.1. Basic AMM

An automated market maker (AMM) is a computer program that automatically prices an
asset in terms of another one based on the liquidity external parties lend it. The external
parties are liquidity providers, while the liquidity they lend forms the inventory of the
AMM. This inventory is then called the liquidity pool (LP) and consists of at least two
kinds of assets, like Google stocks and euros. The AMM also contains a function on the
LP that should always equal a constant. When a trade changes the amount of one asset in
the LP, the inventory in at least one other asset should also change. We call this function
the AMM curve since it generates a curve in the xy-plane when the amount of one asset
is graphed against another. The AMM curve is an inherited property of the AMM and
largely determines its behaviour. The price as dictated by the AMM curve will be called
the base price, for an additional fee has to be paid to compensate the liquidity providers
for their service. The following subsections will explain all these components of the general
AMM. In the examples, it will be shown how these components actually function in the
constant-product AMM used in the simulation.

The Liquidity Pool

The liquidity pool (LP) is the inventory of the AMM and thus describes its liquidity. The
LP can consist of more than two assets. Each asset in the pool can then be priced in (a
combination of) the others. This thesis only deals with two-dimensional pools containing
an asset denoted by A while the other is a currency (euros in the examples) denoted by
M. There are two reasons why we only deal with two-dimensional glsamms in this thesis.
First, we want to compare the AMM to the LOB, which only deals with two assets (shares
and money). More importantly, any n-dimensional AMM can be reduced to multiple 2-
dimensional AMMs by splitting up a trade and adjusting fees where necessary.

The AMM curve and base price

The base price formula gives the price of one asset in terms of the other. It is derived from
the AMM curve, which we defined first. The AMM curve is a function on the inventory
of the LP that is required to equal a constant. By imposing this requirement on the AMM
curve, any change in the inventory of one asset will dictate the (change in) inventory of the
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other. An example of an AMM curve is the constant product formula A ∗M = L2 depicted
in figure 2.36.

Example 2.1: A simple trade

In figure 2.3, the constant-product AMM curve is depicted in the case L2 = 40000.
Assume that the LP is in the state (200, 200), and 100 assets are bought. We then
require (M + ∆M) ∗ (A − 100) = 20000, and derive ∆M = 200. Therefore, the LP
would have a shortage of €200 and demand this from the trader. This can also be
seen in figure 2.3.

0 200 400 600 800 1,000
0

100

200

300

400

500

∆M

∆A

M

A

Figure 2.3.: The AMM curve of A ∗M = 40000

We turn to the actual base price formula that computes the returned assets. Assume an
AMM with pool in the state (A, M) and with curve C(A, M) = L2. We assume the AMM
curve to have to form C(A, M) = L2. Here, L2 is a constant called the invariant. Furthermore,
assume C(A, M) = L2 can be rewritten as M = f (A) and M = g(A)7. From this, we can
derive the pricing formula for assets expressed in euros: Denote the money paid by ∆M.
Then, the number of assets we receive, denoted by ∆A, is a function of both M and ∆M. The
base price formula for assets is given as

∆A(M, ∆M) = f (M)− f (M + ∆M). (2.18)

Similarly, using M = g(A), we find the base price formula of euros to be

∆M(A, ∆A) = g(A)− g(A + ∆A). (2.19)

6For practical reasons described in section 2.4.2, L2 is used instead of L.
7In practice, the AMM curve is always a simple function such that it is easily rewritten in the form M = f (A),

where f is a bijection. Approximations can be used when this is not the case.
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Example 2.2: Base price formula

Assume the same initial setting as in example 2.1. Then

C(A, M) = A ∗M = 40000,

from which we can derive that

A = g(M) =
40000

M
.

We can thus compute the price of for any change in assets as

∆A(M, ∆M) =
40000

M
− 40000

M + ∆M
. (2.20)

In example 2.2, M = 200 and ∆M = 200. As before, we find ∆A(200, 200) = 100 and
receive 100 A.

Equation 2.21 approximates the base price formula using Taylors approximation.

∆A(M, ∆M) ≈ f (M)−
(

f (M) + f ′(M) ∗ ∆M
)

= −∆M f ′(M) (2.21)

With this approximation, the spot price can be computed. It is known that the asset price is
∆M
∆A . Therefore we find that the spot price of assets is given by

SPA =
∆M
∆A

=
−∆M

−∆M f ′(M)
= − 1

f ′(M)
. (2.22)

We can also directly find the spot price of money as the reciprocal of the spot price of assets,
thus

SPM = − f ′(M). (2.23)

The AMM’s market price (or midprice) is computed as SPA. Therefore, the market price has
high volatility when f ′(M) has a steep slope. This can be desirable when new information
has entered the market but is unwanted otherwise since it makes the price unstable.
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Example 2.3: Market price

Assume the same initial setting as in example 2.1. In example 2.2, we had found that
f (M) = 40000

M = L2

M . Therefore, the derivative of f with respect to M can be found to
be

f ′(M) = − L2

M2 = − A
M

.

Therefore, the spot price of money is

SPA =
M
A

. (2.24)

The current market price is €1 for one asset.

The fee mechanism

Liquidity providers face several risks, including the devaluation of their assets due to trans-
actions. In order to compensate them, each transaction includes a fee which goes to the
liquidity providers. There are several ways to compute a fee, but we will state just one: A
percentage of the sold funds is withheld and given to the liquidity providers. This struc-
ture’s advantage is that larger orders, which impact the price more and create higher risks
for the liquidity providers, are charged more. Section 2.4.1 dives into the risks the liquidity
provider actually faces.

Another setting of the AMM is where the fees are collected. The fees can be added to the LP,
such that the liquidity grows, or can be kept separate. The advantage of increased liquidity
is that it stabilises the price, which reduces risks for the liquidity providers. However,
the liquidity parameter L has to be continuously updated when fees are added to the LP.
Furthermore, a liquidity provider must actively retrieve the LP fee. Following the example
of Uniswap V3[28], we opt to collect the fees outside the pool for simplicity8

Example 2.4: Paying a fee

Assume the same initial setting as in example 2.1. Again, a trader wants to buy assets
for €200. However, this time there is a fee of 2%, which means that €4 is set aside as a
fee. The remaining €196 will be traded for assets. Following formula 2.20 in example
2.2, we only receive 98.99 A, which is 1.01 A less then when no fee was paid.

The liquidity mechanism

The liquidity mechanism distributes the fees among the liquidity providers and facilitates
the protocol for them to enter and exit the LP. For the first task, it keeps track of each
liquidity provider’s shares of the LP and distributes the fees proportionally to that. The
second task is to update the reserves in the LP, the shares of ownership and L.

8More details can be found in section 2.4.2.
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When a liquidity provider exits the pool, he receives assets in the same ratio as the pool. For
example, a liquidity provider that owns half the pool will receive half of A and half of M.
This way, the price will not change when liquidity is added or retrieved9. The AMM curve,
and thus the speed at which the price changes, does change.

Following the example of the three biggest exchanges10 that implement the AMM, the liq-
uidity provider can only enter the pool with assets in the same ratio as the pool. The reason
for this is threefold: First, and most importantly, is to prohibit trading without paying a fee.
When one exits the LP, he receives the assets in the same ratio as the pool. Thus, when a
trader enters with a different ratio and exits immediately, he will have traded some assets
for the other without paying a fee. The second reason is practical. Since some versions of
AMMs, like Uniswap V3, only support a certain price range[28]. Entering the pool with
another ratio will change the current ratio of the LP, which might change the price depend-
ing on the used curve. Consequently, the new price may fall outside the acceptable range.
Finally, it is easy to determine who owns which part of the LP if all liquidity providers use
the same ratio.

The assumption that the liquidity provider provides and receives liquidity in the same ratio
as the LP does not significantly impact the options of a liquidity provider since he can always
trade to obtain the ratio he would prefer.

The new state of the LP determines the new invariant. However, the used function can be
changed to accommodate new circumstances.

Example 2.5: Entering and exiting a pool

Assume the initial settings as in example 2.1, with the addition of a fee of 2%. A
liquidity provider adds 100 assets and €100 to the pool. The new state of the LP is
(300, 300) with new invariant 300 ∗ 300 = 90000.
A trader wants to buy 100 assets, which costs him €150, excluding the fee and the
state of the LP is (200, 450). The total paid is €150/0.98 ≈ €153.06, €46.94 less than in
example 2.1. Since liquidity is higher, there is a smaller price increase, and the trader
has to pay less. When the liquidity provider pulls out his share, the AMM returns to
its original curve in the state (133.33, 300). He receives 66.67 assets and €150, next to
a fee of €1.02. He has essentially sold 33.33 assets for €51.02.

Theorem 2.4.1. Assume an AMM uses the constant product AMM curve. The liquidity pool’s value
decreases whenever the AMM price shifts away from its original price.

Proof. Assume a spot price rM = A
M per equations 2.23 and 2.24. Therefore, the LP starts in

state (rM M, M) and L2 = rM ∗M2.

Now assume ∆A (with fees already deducted) assets are added to the LP. When ∆A > 0,
assets are sold, while it is bought otherwise. We can compute the new state of the LP to be
(rM M + ∆A, L2

rM M+∆A ). The new price of an asset will be

rA =
L2

rM M+∆A

rM M + ∆A
=

rM M2

(rM M + ∆A)2 .

9For the most frequently used constant (weighted) product AMM [29].
10Uniswap, Curve and Balancer
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We now compute whether the change in assets is worth the change in money. Therefore, we
compute the value of ∆A expressed in euros, add this to the new amount of euros and see
whether this is at least the old number of euros.

L2

rM M + ∆A
+ ∆A ∗ rA

=
rM M2

rM M + ∆A
+ ∆A ∗ rM M2

(rM M + ∆A)2

= M

(
rM M

rM M + ∆A
+

rM M∆A
(rM M + ∆A)2

)

= M

(
rM M ∗ (rM M + ∆A)

(rM M + ∆A)2 +
rM M∆A

(rM M + ∆A)2

)

= M

(
r2

M M2 + 2rM M∆A
r2

M M2 + 2rM M∆A + ∆A2

)
< M

So we find that we lose some money by restoring A to the original amount (by valuing ∆A
in euros and adding it to the other side). Therefore, the value of the pool has decreased.

The intuition behind theorem 2.4.1 explains why there is a loss of value. When the price
changes from p0 to p1, the AMM crosses all prices in between. When assets become more
valuable, the liquidity providers have sold them at lower prices than the new price. When
assets become less valuable, the liquidity providers have bought assets at a range of higher
prices than the new price. Therefore, there should always be a loss of value.

One might wonder why anybody would provide liquidity when a loss in value seems to
be guaranteed. There are two main reasons why anybody would still choose to engage.
The first is that they do not expect significant price changes over time. In that case, there
would be little impermanent loss while the liquidity provider gains lots of fees. The second
is that the liquidity trader might only be interested in one of the two assets in the LP. If the
price shifts such that that asset of interest becomes less valuable, the value of the liquidity
expressed in that asset increases. Assume a liquidity provider entered with assets and euros
but is only interested in the former. The price decreases when assets are sold, and the
liquidity provider buys them at increasingly lower prices. Therefore, the value of the pool
expressed in assets increases.

Theorem 2.4.2. The value of the liquidity pool expressed in an asset is at most twice the amount of
that asset.

Proof. Assume a spot price of rA = M
A as in equation 2.24. Thus, the LP starts in state

( M
rA

, M).

The best possible price is the spot price. Therefore, we can compute the value of the pool
expressed in assets as

A +
M
rA

= 2A.
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The value of the pool expressed in money is

M + rA × A = M +
M
A
× A = 2M.

Corollary 2.4.2.1. If the amount of an asset in the LP increases, so does the pool’s value expressed in
that good and visa versa.

Example 2.6: Changed pool value

Assume that the current state of the pool is (A, M) = (100, 100) such that L2 = 10000.
The spot price of both assets and euros is 1. Therefore, the pool has a value of 200
assets or €200 if expressed in either asset.
Assume that 50 assets are bought. The new state of the pool is (50, 200), and the spot
price of assets is €4 while the spot price of euros is 0.25 assets.
If the liquidity trader wanted to regain his original number of assets, he would have
to buy 50 assets. In the best case, he can buy them at spot price for €200, and he has
no money left. If the trader would instead restore his money to the original amount,
he would only be able to buy 25 assets. Either way, he always has lost some value.
If we value the pool in assets only, we get that it has a value of 100 assets. However,
if we value the pool in euros, we find a value of €400, which is an increase compared
to the original value.

2.4.2. Constant-product AMM with range orders

This section will discuss the constant-product AMM implemented in Uniswap V3 [28]. One
implicit assumption in the basic AMM was that liquidity providers accepted any price and
thus supplied liquidity on the whole spectrum of prices. This is both inefficient use of
liquidity and deterring liquidity providers. Since the AMM will likely not obtain all these
prices, liquidity at these prices is unused. Furthermore, liquidity providers cannot prevent
huge losses without continuously checking the AMM to withdraw their liquidity in time.
Uniswap V3 proposed a solution for this in the form of range orders. With a range order,
a liquidity provider provides a range of prices that can use his provided liquidity. This
decreases the risk for the liquidity provider and increases efficiency.

This section describes range orders. First, it is shown how multiple range orders integrate
into one AMM curve. After, the math needed to cross borders is given, followed by an
updated fee distribution mechanism. Finally, we present the math that allows liquidity
traders to obtain the correct ratio.

Range order

Assume a trader has a portfolio of ∆A assets and ∆M euros. He can choose to add liquidity
on the whole range of prices or a sub-range [pl , pu]. Figure 2.4 shows the difference between
these two range orders. In both, ∆A assets and ∆M euros are used to cover all possible price
changes in the range, but the states that can be obtained are quite different.
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pl

pu

a

b∆M

∆A

Mv

Av
∆M

∆A

M

A

Liquidity on [0,∞)

Liquidity on [pl, pu]

Figure 2.4.: Two range order with different ranges

Assume the pool is in the state (∆A, ∆M). Figure 2.4 shows that equation A ∗ M = L2

no longer holds for a range order on a part of the spectrum. Instead, it uses the curve
(∆A + Av)(∆M + Mv) = L2, with Av and Mv constant. It thus adds liquidity Av and Mv,
which it never uses. Figure 2.4 shows that Av and Mv would have been the liquidity needed
to cover the remaining price shifts.

pl

pu

M

A

Real liquidity
Virtual liquidity

Figure 2.5.: Virtual and real liquidity

Figure 2.5 shows the difference between virtual and real liquidity. The real reserves follow
the blue curve, while the total reserves (including the virtual liquidity) follow the red line.
The market price equals the lower price when all money depletes, while the upper price is
reached when all assets are sold. Subtracting the virtual liquidity from the red curve gives
the blue curve. Therefore, the red curve follows equation 2.25.
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(Ar + Av)(Mr + Mv) = L2, (2.25)

where r and v stand for real and virtual liquidity respectively.

Assume the LP is in state (A, M) when it reaches price pl . This is only possible when all
money is depleted such that M = Mv. Therefore, we find

pl =
Mv

A

=
Mv( L2

Mv

)
=

M2
v

L2

=⇒ Mv =
√

pl ∗ L.

A = Av when the price equals pu. From this, it is deduced that

pu =
M
Av

=

( L2

Av

)
Av

=
L2

A2
v

=⇒ qAv =
L√
pu

.

We find that equation 2.25 reduces to

(Mr +
√

pl ∗ L)(Ar +
L√
pu

) = L2, (2.26)

and L2 can be obtained using the ABC formula. The current price pc is computed with
equation 2.27.

pc =
Mr +

√
pl ∗ L

Ar +
L√
pu

. (2.27)

Finally, note that equations 2.26 and 2.27 should always hold. The current reserves of the
pool can thus always derive L and pc. However, the reverse is also true. A and M can be
derived when L and pc are known. Since L and ps =

√
pc are often used in computations,

and the square root is expensive to compute, it is more practical to save these values than
the reserves. Therefore, the state is sometimes also given as (L, ps).
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Interaction of range orders

This section explains how to compute the new AMM curve when two (or more) liquidity
orders are combined. For this, we assume there are two range orders on ranges [pli, pui], i =
1, 2 with Li, i = 1, 2, that may overlap.

Assume that the ranges do not overlap such that pl1 < pu1 < pl2 < pu2 as shown in figure
2.6. The liquidity of the second range order will never be used when pc < pu1, since there
is no liquidity between pu1 and pl2. The same holds for the first range order whenever
pc > pl2. All the fees go to the holder of the used liquidity, thus either to liquidity provider
one or two.

pl1

pu1
pl2

pu2

M

A

Figure 2.6.: Two distinct range orders

In the second case, the two range orders have at least one price point in common. Therefore
assume pl1 < pl2 ≤ pu1 < pu2, as depicted in figure 2.7. The final AMM curve is drawn in
red.

pl1

pu1

pu1

pl2

pl2

pu2

M

A

28



2. Theory

Figure 2.7.: Two overlapping range orders

It is not immediately clear how the new AMM curve is obtained. However, we will show
that it has a simple solution. To do this, we first introduce two key relationships proven by
Adams et al. [28], often used in the remaining section without reference.

∆ps =
∆M

L
⇐⇒ ∆qM = ∆psL, (2.28)

∆
1
ps

=
∆A
L
⇐⇒ ∆A = ∆

1
ps

L. (2.29)

Theorem 2.4.3. Given two range orders [pl1, pu1] and [pl2, pu2] with liquidity’s L1 and L2 such
that pl1 < pl2 ≤ pu1 < pu2 and current price pc. The combined AMM curve is then given by


(Mr +

√
pl2 ∗ L1)(Ar +

L1√
pu1

) = L2
1 pc ∈ [pl1, pl2)

(Mr +
√

pl2∗ ∗ L)(Ar +
L√
pu1

) = L2, L := L1 + L2 pc ∈ [pl2, pu1 ]

(Mr +
√

pl2 ∗ L2)(Ar +
L2√
pu1

) = L2
2 pc ∈ (pu1, pu2 ].

(2.30)

Proof. When pc ∈ [pl1, pl2) ∪ (pu1, pu2 ], there is only one active range order. Therefore, the
curve that that range order dictates has to be used.

It remains to prove that L = L1 + L2 when pc ∈ [pl2, pu1 ] is left to prove. To do this, we look
at the liquidity at pc = pl2 .

At pl2 , we know that we can only convert assets to euros within this segment. Therefore,
M = Mv and Ar is the number of assets available in both range orders to bring the price
from pl2 to pu1 . Alternatively, Ar is computed as the number of assets sold to go from pu1 to
pl2 .

Ar = ∆
1
ps

L1 + ∆
1
ps

L2

= ∆
1
ps

(
L1 + L2

)
=

(
1√pl2
− 1√pu1

)(
L1 + L2

)

Therefore, L can be deduced as follows:

L2 = (Mr +
√

pl2 ∗ L)(Ar +
L√
pu1

)

=
√

pl2 ∗ L

((
1√pl2
− 1√pu1

)(
L1 + L2

)
+

L√
pu1

)

=

(
L1 + L2

)(
1−

√
pl2
pu1

)
L +

√
pl2
pu1

L2
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=⇒
(

L1 + L2

)(
1−

√
pl2
pu1

)
L−

(
1−

√
pl2
pu1

)
L2 = 0

=⇒
(

L1 + L2

)
− L = 0

=⇒ L = L1 + L2

Note that L = 0 is technically also a solution. However, since we know there is liquidity, this
solution does not agree with the AMM.

The three segments in theorem 2.4.3 can be seen as three contiguous range orders. Adding a
third (or any number of range orders) would entail computing three new segments between
each existing segment and the new range order as described above.

Trading

When a trade occurs within one continuous segment on the curve, the AMM functions like
a normal constant-product AMM. However, the AMM splits the trade when it crosses a
border. First, the first trade brings the price to the border. Then, the AMM updates L,
and the segment across the border becomes active instead. Finally, the rest of the trade
(potentially split again) is executed. Note that this might not be possible when there is no
liquidity left. In that case, the AMM executes only part of the order. Since the state of the
LP is now given by (L, sp), we see that each step in a trade now only alters one variable.

When trading, the new price can be computed using equations 2.28 and 2.29. The AMM
uses the same equations to derive which part of the trade can be executed within the active
segment.
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Example 2.7: Trading outside borders

Assume the AMM consists of two orders with ranges [5, 10] and [10, 15] and invari-
ants L2 = 700 and L2 = 1200, respectively. Then we have the following AMM curvea,
also depicted in fig 2.8:{

(M +
√

3500)(A +
√

70) = 700 pc ∈ [5, 10)
(M +

√
12000)(A +

√
80) = 1200 pc ∈ [10, 15]
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Figure 2.8.

Assume there is no fee, pc = 9, and a trader wants to trade €30.
We then compute ps = 3 and ∆ps = ∆M

L = 30√
700
≈ 1.13. Therefore, the new price

is (3 + 1.13)2 ≈ 17.09. The AMM splits the trade in two since it crosses the border.
The amount that can be traded to reach the border is computed by: ∆M = ∆psL =

(
√

10−
√

9)
√

700 ≈ 4.29. Therefore, we first trade 4.29 M, resulting in a new price
of pc = 10. We can compute how many assets we get in return using equation 2.29:

∆A = ∆ 1
ps

L =

(
1√
10
− 1√

9

)√
700 ≈ −0.45. Therefore, we receive 0.45 assets for €4.29.

After this partial trade, we update our invariant to 1200. The trader still wants to
trade €25.71, so we compute the new price: ∆ps =

25.71√
1200
≈ 0.74. Therefore, the new

price is (
√

10 + 0.74)2 ≈ 15.24. The AMM splits the trade in two since it crosses
the border. The amount that can be traded to reach the border is computed by:
∆M = (

√
15−

√
10)
√

1200 ≈ 24.62. We can compute that we get 2.01 assets.
The remaining €1.09 cannot be traded.

aIt can be freely chosen to which segment pc = 10 belongs since there is no possible trade covering exactly
one price point.

Fee computations

This section describes the fee distribution over the different range orders. Assume a trade
within segment pc ∈ [pl , pu] of the AMM curve with liquidity L. If this is impossible, split the
trade into multiple trades and compute the fees for the different range orders separately.

Assume there are i = 1, .., n range orders active on ranges [pli, pui] with liquidity’s Li, such
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that ∀i = 1, .., n : [pl , pu] ⊂ [pli, pui]. Note that [pl , pu] is a subset or distinct set of [pli, pui]
since the trade doesn’t cross any borders.

The percentage of fees a liquidity provider is entitled to is computed as the portion of the
money he provides compared to the whole11. Assume that the current price is pu. Formula
2.29 gives the number of euros provided by liquidity provider i on the range [pl , pu] as

Mi = Li

(√
pc −

√
pl

)
. (2.31)

The percentage of the fees on range [pl , pu] liquidity provider i is entitled to, is given by

fi =

Li

(√
pc −√pl

)
∑n

j=1 Lj

(√
pc −√pl

) =
Li

∑n
j=1 Lj

=
Li
L

.

Therefore, a liquidity provider always earn fees proportional to the provided liquidity com-
pared to the total liquidity in that range.

Example 2.8: Fee computations

Assume an AMM in state (L, ps) = (0, 3). Two liquidity providers add liquidity. The
first provides 100 assets and €900 on the whole range such that L1 = 300. The second
provides ten assets and €100.30 on [8, 10] such that L2 ≈ 584.61. It can be checked that
the new state is (884.61, 3). Therefore, liquidity provider two is entitled to 66.09% of
the fees as long as they occur in the [8, 10] range. Note that he initially provided less
liquidity but used it more effectively (if the price indeed stays within the bounds).

The fee can either be stored or directly paid out. The latter induces many small transactions
that come with costs for the exchange. Therefore, Uniswap V3 [28] opts to collect the fees in
a contract range order contract, which can be withdrawn at any time. We will do the same
but implement it slightly differently.

We make two assumptions. First, the borders of any range orders can only be integer prices
since some form of discretization is needed. This assumption has no big consequences12.
Secondly, we assume that the price always stays in the range [pa, pb]. Even though this
assumption is unrealistic, we will show how the fee collection can be fixed whenever the
price steps out of this interval.

We will keep two vectors, one for the assets and one for money, that keep track of the total
fees accumulated per unit of L for each range’s upper bound. When a liquidity provider
enters the pool, he registers the total amount of fees accumulated per unit of L in his range
for both A and M. When he exits (or retrieves his fees), he computes these numbers again.
The difference times his liquidity is the fees he owns.

We use the vector fA, fM ∈ Qpb−pa to keep track of the total fees earned per unit of L. Here,
element fAi refers to price i + pa + 1 (assuming a zero-indexed vector). If an added range
order is outside these borders (and the price can thus reach a price beyond these borders),

11The portion of assets can also be used since the ratio of money and assets is the same for every provider.
12In theory, any step size could be chosen for the price. Uniswap V3 chooses the powers of 1.001, for example [28].
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we can add entries to these vectors so that we can register the fees at those prices too. For
efficiency, one could also delete indices that were not in use, but the references would be
more complex.

The total accumulated fees in range [a, b] ⊂ [pa, pb] can be computed as

fA =
b−pa

∑
i=a−pa+1

fAi, fM =
b−pa

∑
i=a−pa+1

fMi.

Example 2.9: Collecting and retrieving fees

Assume that AMM is initialized on price interval [pa, pb] = [1, 4] with pc = 2 and a fee
of 10%. Furthermore, one liquidity provider provides liquidity on [1, 3] with L = 100.
Since no trades have occurred yet, fA = fM = 0pb−pa = 03 and fM = fA = 0.
A trader trades €10, of which €1 is kept aside for the liquidity providers. The new
price of an asset is €2.26. The liquidity on the range is 100, such that fM is updated
as [0, 1

100 , 0]T .
When the liquidity provider now retrieves his fees, he computes(

3−pa

∑
i=1−pa+1

fMi − 0

)
× L =

(
0 +

1
100

)
∗ 100 = €1.

(
3−pa

∑
i=1−pa+1

fAi − 0

)
× L =

(
0 + 0

)
∗ 100 = 0 assets.

Entering the pool

When a liquidity trader wants to add liquidity, his range order should imply the same price
as the AMM. If not, the added liquidity will change the price since it changes the ratio of
the pool, which generates an arbitrage opportunity as seen in section 2.4.1. However, it is
unlikely that the liquidity provider will step in with the same ratio as the pool. Therefore,
the liquidity provider should trade with the AMM to obtain the same implied price. The
remainder of this section describes how such a trade is determined. Often, the AMM does
this automatically. All computations shown follow Protocol [30] and are based on Uniswap
V3 [28].

First, we introduce a simpler way to compute L. Assume we have a range order on [pl , pu],
with liquidity L. We have already seen that L is easily computed whenever pc /∈ (pl , pu):

pc ≤ pL ⇐⇒ Mr = 0

⇐⇒
(
(2.26) =⇒ √

pl L
(

Ar +
L√
pu

)
= L2

)

⇐⇒ √
pl ArL +

√
pl
pu

L = L2

⇐⇒ √
pl ArL + (

√
pl
pu
− 1)L2 = 0
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⇐⇒ L = 0 or L =

√
pl Ar

1−
√

pl
pu

⇐⇒ L = 0 or L =

√
pl pu√

pu −√pl
Ar

pc ≥ pU ⇐⇒ Ar = 0

⇐⇒
(
(2.26) =⇒

(
Mr +

√
pl L
)

L√
pu

= L2

)

⇐⇒ Mr√
pu

L +

√
pl
pu

L2 = L2

⇐⇒ Mr√
pu

L +

(√
pl
pu
− 1
)

L2 = 0

⇐⇒ L = 0 or L =
Mr√

pu −√pl

Since L ̸= 0, we take the other option.

From these, we define

LA =

√
pl pu√

pu −√pl
Ar, LM =

Mr√
pu −√pl

. (2.32)

We will shortly show that these represent the liquidity of the upper and lower part of a
range order respectively.

When pc ∈ (pl , pu), we can split the range order in two parts, namely (pl , pc) and [pc, pu).
The remaining money will be used for range (pl , pc) while the remaining assets will be used
for [pc, pu). Both range orders should still have invariant L2, since nothing has changed
except for the artificial border at pc. We will show this to be true.

Theorem 2.4.4. Given range order on [pl , pu], with invariant L2 and current price pc ∈ (pl , pu).
The two range orders formed by splitting the given one at pc both have invariant L2.

Proof. Ar and Mr are used to cover the price movement to the borders, and so

Ar =

(
1√
pc
− 1√

pu

)
L, Mr =

(√
pc −

√
pl

)
L.

Furthermore, we know

pc =
Mr +

√
pl L

Ar +
L√
pu

=

(√
pc −√pl

)
L +
√

pl L

Ar +
L√
pu

=

√
pcL

Ar +
L√
pu
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=
Mr +

√
pl L(

1√
pc
− 1√

pu

)
L + L√

pu

=
Mr +

√
pl L

L√
pc

The first suborder is defined on [pl , pc] with liquidity LM. This range order has funds (0, Mr)
and so we find

pc =
Mr +

√
pl L1

LM√
pc

.

This implies

Mr +
√

pl LM
L1√

pc

=
Mr +

√
pl L

Ar +
L√
pu

=
Mr +

√
pl L

L√
pc

⇐⇒ LM = L.

The second suborder is defined on [pc, pu] with liquidity LA. This range order has funds
(Ar, 0) and so we find

pc =

√
pcLA

Ar +
LA√

pu

.

This implies
√

pcLA

Ar +
LA√

pu

=
Mr +

√
pl L

Ar +
L√
pu

=

√
pcL

Ar +
L√
pu

⇐⇒ LA = L.

We have proven L = LM = LA.

Theorem 2.4.4 implies that the correct ratio has been obtained whenever LA = LM. Uniswap
V3 takes L = min(LA, LM) as the added liquidity, and uses these formula’s to see which
funds cannot be added (without further trading).

From LA = LM and edge cases pc ≤ pl and pc ≥ pu, it can be derived that

qMr

qAr

=

√
p̂−√pl

1√
p̂
− 1√

pu

, with p̂ = max(min(pc, pu), pl). (2.33)

Therefore, the liquidity provider trades assets or money until he reaches equality. However,
trading changes pc and possibly also the pool’s L. To consider this, we look at how both
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sides of equation 2.33 change when the price goes from pc to pn. Using formula’s 2.29 and
2.28, we define

R(pn) =


Mr+

L
1− f

(√
pc−√pn

)
Ar+L

(
1√
pc −

1√
pn

) pn > pc

Mr+L
(√

pc−√pn
)

Ar+
L

1− f

(
1√
pc −

1√
pn

) pn < pc

, (2.34)

r(pn) =

√
p̂−√pl

1√
p̂
− 1√

pu

, with p̂ = max(min(pn, pu), pl). (2.35)

Assume the AMM currently is in segment [pa, pb].

Define p− as the price at which the liquidity provider has traded all his assets or pc = pa.
Additionally, define p+ as the price at which the liquidity provider has traded all his money
or pc = pb. Thus

q+ = min

(
pb,
(√

pc + ∆
√

p
)2
)

= min
(

pb,
(√

pc +
qMr

L

)2
)

, (2.36)

q− = max

(
pa,
(

1
1√
pc
+ ∆ 1√

p

)2
)

= min
(

pa,
(

1
1√
pc
+

qAr
L

)2
)

. (2.37)

From this, seven cases follow:

1. R(pc) = r(pc): The portfolio of the liquidity trader already is in the correct ratio.

2. R(pc) > r(pc): The portfolio of the liquidity trader contains to much M, and thus
swaps M for A.

a) R(p+) ≤ r(p+): The point p+ is still in the current segment of the AMM. Fur-
thermore, we have passed the point since R(pn) = r(pn) for some pn ∈ [pc, p+]
since R(p+) ≤ r(p+). Therefore, the liquidity provider can trade M for A without
leaving the current segment.

b) R(p+) > r(p+): Even when the liquidity provider trades up till the upper bound-
ary, there is still too much M compared to A in his portfolio. The liquidity
provider performs a partial trade up till the upper boundary and tries again to
satisfy equation 2.33. It cannot happen that p+ is capped by the amount Mr since
this would imply that a trade within the current segment would be sufficient.

3. R(pc) = r(pc): The portfolio of the liquidity trader contains to much A, and swaps A
for M.

a) R(p−) ≥ r(p−): The point p− is still in the current segment of the AMM. Fur-
thermore, we have passed the point since R(pn) = r(pn) for some pn ∈ [p−, pc]
since R(p−) ≥ r(p−). Therefore, the liquidity provider can trade M for A without
leaving the current segment.
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b) R(p−) < r(p−): Even when the liquidity provider trades up till the lower bound-
ary, there is still too much A compared to M in his portfolio. The liquidity
provider performs a partial trade up till the upper boundary and tries again to
satisfy equation 2.33. It cannot happen that p− is capped by Ar since this would
imply that a trade within the current segment would be sufficient.

For cases 2b and 3b, it is clear what the new price after the trade should be. However, the
new price is not yet found for cases 2a and 3a. To do this, assume we have to trade up till
price point pn. Then we know pn ∈ [pa, pb]. Therefore, we can fill in p̂ = pn in equation
2.33, and deduce pn. Using the new price, we can find how many assets or euros we have
to trade with equations 2.28 and 2.29. Keep in mind that the fee should be added to these
numbers.

2.4.3. Formal definition

This section formally defines the contant-product AMM using range orders. The define the
AMM as a whole, we first define its separate parts.

This section formally defines the constant-product AMM using range orders. Before we
define the AMM as a whole, we first define its separate parts.

Definition 2.4.5. A constant product AMM using range orders is a tuple (pa, pb, f , pl , pu, L, LP, fA, fM)
such that

• pa ∈N is the minimal price the AMM can ever reach,

• pb ∈N is the maximal price the AMM can ever reach,

• f ∈ [0, 1) is the fee that is withheld from the input of every trade,

• pl ∈N is the current lower bound of the segment the AMM is in,

• pu ∈N is the current upper bound of the segment the AMM is in,

• L ∈Npb−pa is a vector that represents L in each price point (except for pa),

• LP is a tuple (ps, L) ∈ R+ ×N, such that ps is the square root of the current price pc, while
L is a measure of the total liquidity currently in use,

• fA ∈ Npb−pa is a vector that represents the total accumulated fees in A in each price point
(except for pa), initially the zero vector,

• fM ∈ Npb−pa is a vector that represents the total accumulated fees in M in each price point
(except for pa), initially the zero vector.

The real liquidity Ar and Mr can be derived from

• (Mr +
√

pl L)(Ar +
L√
pu
) = L2,

• Mr+
√

pl L
Ar+

L√
pu

= p2
s .

L should be constant on the current segment (excluding the lower border). Therefore, the following
relationships between the elements of the AMM should always hold:

• pc ∈ [pl , pu]
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• ∀p ∈ (pl , pu] ∩N : Lp−pa = L

• Lpl−pa ̸= L

• Lpu−pa+1 ̸= L

Besides the AMM, we also define a contract, which is given out to all liquidity providers.

Definition 2.4.6. A contract C is a tuple (px, py, L, fA, fM) ∈N2 ×R3
+ such that

• px is the lower bound of the range order,

• py is the upper bound of the range order,

• L is the liquidity that the range order adds to the AMM,

• fA is the total accumulated fees of A for the range per unit of L in the AMM when the contract
was created,

• fM is the total accumulated fees of M for the range per unit of L in the AMM when the contract
was created.

Six basic transformations bring an AMM from one state to the other, from which all trans-
formations described before can be derived. The first two, selling A or M, describe how
assets can be traded in the AMM. The last four influence the liquidity and thus parameter
L. The four are adding or retrieving liquidity and crossing the lower or upper border in the
current segment. We assume that trades happen within the current segment the AMM is in.
Furthermore, it is assumed that the liquidity is added and retrieved in the same ratio as in
the pool. We show how each of there transformations work below, where we assume A is
an AMM in state (pa, pb, f , pl , pu, L, (ps, L), fA, fM).

• Ta : R+ × AMM → R+ × AMM = Ta(qA, A) = (qM, A′) is the transformation in
which qA units of A are sold to the AMM. We derive the updated elements of A′ =
(pa, pb, f , pl , pu, L, (p′s, L), f′A, fM) as follows :

– p′s =
1

1
ps +

qA∗(1− f )
L

– f′Apu−pa
= fApu−pa

+ qA∗ f
L

– ∀i ̸= pu − pa : f′Ai
= fAi

– qM =

(
1

1
ps +

qA(1− f )
L

− ps

)
L

• Tm : R+ × AMM → R+ × AMM = Tm(qM, A) = (qA, A′) is the transformation in
which qM units of M are sold to the AMM. We derive the updated elements of A′ =
(pa, pb, f , pl , pu, L, (p′s, L), fA, f′M) as follows:

– p′s = ps +
qM
L

– f′Mpu−pa
= fMpu−pa

+ qM∗ f
L

– ∀i ̸= pu − pa : f′Mi
= fMi
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– qA =

(
1

ps+
qM(1− f )

L

− 1
ps

)
L

• L : R2
+×N2×AMM→ AMM×C = L(qA, qM, px, py) = (A′, C) assuming ps

√
pu√

pu−ps
qA =

qM
ps−√pl

is the transformation in which liquidity is added to the AMM (in the correct

ratio). The new AMM A′ = (pa, pb, f , p′l , p′u, L′, (ps, L′), fA, fM) and contract C can be
derived as follows:

– ∆L = qM
ps−√pl

– L′i =
{

Li + ∆L if i = px − pa, px − pa + 1, . . . py − pa
Li else

– p′l =

px if pl ≤ px ≤ p2
s ∧ py > p2

s
py if pl ≤ py ≤ p2

s
pl else

– p′u =

py if p2
s ≤ py ≤ pl ∧ px < pl

px if p2
s ≤ px ≤ pu

pu else

– L′ =
{

L + ∆L if px ≤ p2
s ≤ py

L else

– fA = ∑
py−pa
i=px−pa+1 fAi

– fM = ∑
py−pa
i=px−pa+1 fMi

– C = (px, py, ∆L, fA, fM)

• R : C× AMM→ AMM×R2
+ = R(A, C) = (A′, qA, qM) is the transformation in which

liquidity is retrieved from the AMM. Assume C = (px, py, ∆L, fA, fM). The new AMM
A′ = (pa, pb, f , p′l , p′u, L′, (ps, L′), fA, fM) and retrieved liquidity qA A and qM M can be
derived as follows:

– L′i =
{

Li − ∆L if i = px − pa + 1, px − pa + 2, . . . py − pa
Li else

– L′ = L′⌈p2
s⌉−qa

– For p′l it holds that
(

L′ = L′p′l−pa
̸= L′p′l−pa−1 ∨ p′l = pa

)
∧
(
∄q′′l : pc ≥ q′′l >

q′l ∧ L′p′′l −pa
̸= L′p′′l −pa−1

)
– For p′u is holds that

(
L′p′u−pa

̸= L′p′u−pa+1 = L′ ∨ p′u = pb

)
∧
(
∄q′′u : pc ≤ q′′u <

q′u ∧ L′p′′u−pa
̸= L′p′′u−pa+1

)
– qA = ∆L

(
∑

py−pa
i=px−pa+1 fAi − fA

)
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– qM = ∆L
(

∑
py−pa
i=px−pa+1 fMi − fM

)
• U : AMM → AMM = U(A) = A′ assuming p2

s = pu is the transformation in which
the AMM crossed the upper border. The new AMM A′ = (pa, pb, f , p′l , p′u, L, (ps, L′), fA, fM)
can be derived as follows:

– p′l = pu

– L′ = Lpu−pa+1

– For p′u is holds that
(

L′ = Lp′u−pa
̸= Lp′u−pa+1 ∨ p′u = pb

)
∧
(
∄q′′u : pc ≤ q′′u <

q′u ∧ Lp′′u−pa
̸= Lp′′u−pa+1 = L′

)
• L : AMM→ AMM = L(A) = A′ assuming p2

s = pl is the transformation in which the
AMM crossed the lower border. The new AMM A′ = (pa, pb, f , p′l , p′u, L, (ps, L′), fA, fM)
can be derived as follows:

– p′u = pl

– L′ = Lp′u−pa

– For p′l is holds that
(

Lp′l−pa
̸= Lp′l−pa+1 = L′ ∨ p′u = pa

)
∧
(
∄q′′l : pc ≥ q′′l >

q′l ∧ Lp′′l −pa
̸= Lp′′l −pa+1 = L′

)
It should be noted that the input and output, except for the possible borders for ranges,
are real numbers. In practice, this is not true since some rounding has to be done. How-
ever, since the rounding is specific to implementation and doesn’t say anything about the
workings of the general constant-product AMM with range orders, this has been left out.

2.4.4. Requirements

In this section, it will be shown that AMM satisfies the requirements posed on an exchange
in section 2.1.

The requirement 1 is satisfied since the AMM curve and current state are published. There
is no hidden liquidity like in the LOB, so everything is completely like expected.

Requirement 2 can only be enforced through legalization. However, a case can be made that
the price and quantity stay the same regardless since the state of the AMM would otherwise
be inconsistent.

We will now prove that the constant-product AMM with range orders as defined in 2.4.5
satisfy the third and fourth requirement.

Theorem 2.4.7. The costs M is an increasing function in A, the number of assets we buy.
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Proof. Equation 2.26 tells us

(Mr +
√

pl L)(Ar +
L√
pu

) = L2

holds when pc ∈ [pl , pu]. When ∆A is bought, the trader has to pay ∆M and equation 2.26
becomes

(Mr + ∆M +
√

pl L)(Ar − ∆A +
L√
pu

) = L2

. Therefore, ∆A > 0 =⇒ ∆M > 0. Furthermore, we can compute ∆M as

∆M =
L2

Ar − ∆A + L√
pu

−Mr −
√

pl ∗ L,

where only ∆A is variable. Furthermore, when ∆A > Ar, we split the trade into multiple
parts.

Assume we split the trade in n parts of ∆Ai respectively. Furthermore, assume that each part
begins with the pool in state (Ari), (Mri), has invariant L2

i and range [pli, pui] respectively.
Then we can compute the total costs as

∆M =
n

∑
i=1

L2
i

Ari − ∆Ai +
Li√
pui

−Mri −
√

pli ∗ Li

It is now easy to see that ∆M is increasing, since either ∆An increases, and therefor the n’th
term increases, or the number n increases, adding another positive term.

Lemma 2.4.8. Assume we have an AMM with LP in state (ps, L) that wield a fee of f . When no
liquidity border is crossed, the price when ∆A assets are bought for ∆M is given by ps

√
pn

1− f , with pn

the price in the AMM after the trade.

Proof. Since we assume no liquidity border is crossed, we can assume C to be constant.
Furthermore, define A and M as the total liquidity, including virtual liquidity, before the
trade. Therefore, we have A ∗M = L ∗ 2. Then, the price is given by

pA =
∆M
∆A

=

1
1− f
(

M− AM
A+∆A

)
∆A

=
1

1− f
MA + M∆A− AM

∆A ∗ A + ∆A2

=
1

1− f
M∆A

∆A ∗ A + ∆A2

=
1

1− f
M∆A

∆A ∗ A + ∆A2

=
1

1− f
M

A + ∆A
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=
1

1− f

√
M2

(A + ∆A
)2

=
1

1− f

√√√√ M L2

A

A + ∆A L2

M+(1− f )∆M

=
1

1− f

√
M
A

M + (1− f )∆M
A + ∆A

=
1

1− f
ps
√

pn

Lemma 2.4.9. Assume we have an AMM with LP that wields a fee of f . Furthermore, assume that
the AMM is defined on at least segments [p0, p1], ..., [pi−1, pi] with invariants L2

1, . . . L2
i respectively.

Furthermore, assume the current price pc = p0 and the new price after the trade is pn = pi when A
assets are bought, while pc = pi and pn = p0 it true when it is sold.

The price of ∆A assets expressed in euros when ∆M is paid given by

pA =
1

1− f

i

∑
j=1

∆Aj

∆A
√

pj−1 pj (2.38)

where

∆Aj =
( 1√pj−1

− 1√pj

)
Lj

Proof. qAj is defined as in equation 2.29, and represents the amount of A that is received
from the AMM when the price changes from √pj−1 to √pj. Furthermore, we know from
lemma 2.4.8 that

1
1− f

√
pj−1 pj =

∆Mj

∆Aj
,

where Aj is the number of assets we receive from changing the price from pj−1 to pj. There-
fore, equation 2.38 simplifies:

1
1− f

i

∑
j=1

∆Aj

∆A
√

pj−1 pj =
i

∑
j=1

∆Aj

∆A
1

1− f
√

pj−1 pj

=
i

∑
j=1

∆Aj

∆A
∆Mj

∆Aj

=
i

∑
j=1

∆Mj

∆A

=
∆M
∆A

= pA
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Theorem 2.4.10. The cost function satisfies requirement 4.

Proof. We have to prove ∀A1 × A2 ≥ 0, A3 = A1 − t(A2 − A1) we have

M(A2)−M(A3)

A2 − A3
≤ M(A3)−M(A1)

A3 − A1
(2.39)

Denote ∆M2 = M(A2)−M(A3), ∆M1 = M(A3)−M(A1), DeltaA2 = A2 − A3 and ∆A1 =
A3 − A1. Now note that these orders are two consecutive buy or sell orders. First ∆A1 is
traded, followed by ∆A2, performed after a trade of A1 assets. Lemma 2.4.9 states that there
are segments [p0, p1], ..., [pi−1, pi] with invariants L2

1, . . . L2
i such that

• p0 is the price before the second trade,

• pi is the price after the third trade,

• pk, 0 < k < i is the price after the second and before the third trade.

Furthermore, we have

∆M1

∆A1
=

1
1− f

k

∑
j=1

∆Aj

∆A1

√
pj−1 pj,

and

∆M2

∆A2
=

1
1− f

i

∑
j=k

∆Aj

∆A2

√
pj−1 pj.

These are thus weighted averages of several price points, such that it displays the price of
one asset again.

Since p0 < ... < pi, we have

∀j = 0, ..., k :
√

pj−1 pj ≤
√

pk−1 pk

and so

∆M1

∆A1
≤ ∆M2

∆A2
.
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Chapter 2 gives an exchange’s requirements and desired properties. Furthermore, we have
seen that both definitions of the LOB and AMM adhere to the requirements and can thus be
used to facilitate trading. It is still unclear how these two kinds of exchanges compare. To
measure this, we introduced metrics in chapter 2, for which data should be obtained. In this
chapter, we describe the model used to generate this data1.

In the simulation, the LOB and AMM are simulated separately in seven different scenarios.
The implementation of the exchanges follows definitions 2.3.4 and 2.4.5 with few exceptions.
Changes in the implementation are given in sections 3.1 and 3.2 respectively. The initializa-
tion of traders, their decisions and behaviour afterwards is given in section 3.3 for both LOB
and AMM. Section 3.4 presents the settings of the simulation and how they influence the
outcome. Furthermore, the seven tested scenarios are defined. Finally, section 3.5 describes
how the data is extracted from the simulation.

3.1. Limit order book

This section describes the difference in the implementation and definition 2.3.4 of the LOB.

3.1.1. Data structure of buy and sell side

In definition 2.3.4, the buy and sell side are represented by two different ordered lists as
depicted in figure 3.1. Assume pi < pi+1 and ti < ti+1. Figure 3.1 shows the data structure
used in definitions 2.3.2 and 2.3.3 for the buy and sell side respectively.

(p1, t3)(p1, t1)(p2, t6)Best bid

(p4, t2) (p4, t5) (p6, t4)Best ask

Figure 3.1.: Ordered list of limit orders

Even though this is the most straightforward way of implementing the LOB, it does give
some computational overhead. There are three actions in a LOB that modify the lists: The
first places a market order, the second places a limit order, and the third cancels a limit
order. The current data structure of the ordered list makes it easy to process a market order
by matching it against the first limit order in the queue. That limit order is either updated

1The code can be found on GitHub.
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3. Simulation

when it is partially filled or deleted from the list when it is filled, whereafter the new first
limit order is looked at.

However, the second and third actions have to traverse the lists. The addition of a limit
order needs to find the correct place. In the worst case, the whole list has to be traversed.
An example of the worst case is the addition of limit order (p6, t7). The same holds for
the cancellation of the limit order since it must be found in the list. Using a different
data structure for the two lists and saving some helper variables reduces the number of
operations. We first introduce the linked list in figure 3.2.

order0 order1 order2 order3 order4 order5
next next next next next

prev prev prev prev prev

Figure 3.2.: Linked list

The linked list is not a list in the traditional sense. Instead, it consists of many separate
objects, one for each limit order. This object then contains a pointer to the next and previous
object in the list, which can be set to ’None’ if there is no next or previous element. When
we save a pointer to the best bid and best ask, it is still easy to process a market order.
Furthermore, a cancelled limit order can easily access the previous and next orders and
update their pointer to remove itself. See figure 3.3 for an example.

order1 order3

order2

nextprevious next prev

(a) Three limit orders in queue

order1 order3
next

previous

(b) Two limit orders in queue

Figure 3.3.: Removal of limit order in linked list

The LOB still has to traverse the lists to find the place of a new limit order and update all the
pointers. This would consist of going from the state in figure 3.3b to the state in figure 3.3a.
The placement can be sped up if the AMM saves additional pointers to the last in order at
each price point. The total data structure is given in figure 3.4.
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(p1, t3) (p1, t1) (p2, t6) (p4, t2) (p4, t5) (p6, t4)

p1 p2 p3 p4 p5 p6

next next

prev prev

next

prev

next

prev

Best askBest bid

Figure 3.4.: Total structure to save ordering of limit orders

When a limit order is placed, the LOB first checks whether it can immediately match the
order. If not, the LOB checks the last node at price point pi in the list of price pointers. If
there is none, which means that there is not yet a limit order at this price, we can check
increasingly better prices up till the best price of the other side to find the previous in line.

Example 3.1: Adding a limit order in the middle of the queue

Assume that the LOB is in the state as depicted in figure 3.4. A liquidity trader would
like to add a limit sell order at time t7 and price p5.
The LOB checks the best bid price first, which is p2. The limit order cannot be directly
matched against another since p2 < p5.
There is no pointer at p5. Therefore, the new limit order will be the last limit order
at this price point, and the pointer is updated. At p4, limit order (p4, t5) is found.
Therefore, the new limit order is placed directly behind (p4, t5). Therefore, (p4, t5) =
order1 and the new order is order2 in figure 3.3b. The LOB updates the pointes
accordingly.

Example 3.2: Adding a limit order that performs an undercut

Assume that the LOB is in the state as depicted in figure 3.4. A liquidity trader would
like to add a limit sell order at time t7 and price p3.
The LOB checks the best bid price first, which is p2. The limit order cannot be directly
matched against another since p2 < p3.
There is no pointer at p5. Therefore, the new limit order will be the last limit order
at this price point, and the pointer is updated. The LOB does not check the pointer
at p2 since this is a price point of the bid side (as is any price ≤ p2). The new limit
order will thus be the first in line for the ask side. The best as is order3 in figure 3.3b,
while order1 is ’None’. The LOB updates all pointers of the new limit order and best
ask, followed by the pointer to the best ask.
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3.1.2. Limit order object

Section 3.1.1 introduced the limit order as an object, rather than a tuple as in definitions 2.3.3
and 2.3.2. This object saves extra variables, including two pointers to the next and previous
order in line. Additionally, some logic was added to aid with the pointers in case the limit
order is filled or cancelled. Furthermore, the limit order fires an event automatically when
the limit order is filled to notify the liquidity provider.

3.2. Automated Market maker

This section explains how the implementation of the AMM differs from definition 2.4.5.
There are three small yet important differences.

The first is that the implementation does not save that pl and pu. Instead of the lower bound,
it saves an index. Since the ith element of vectors L, fA and fM actually represent the value
at price point i + pa, we have to subtract pa from pl every time to access the correct elements.
The AMM keeps track of the index since it is used more frequently than the lower bound.
Furthermore, pu can easily be derived using the current price (saved in the state of the LP)
and the liquidity vector L. The AMM then finds the upper boundary pu as the largest integer
greater than the current price, such that the liquidity L is constant on [pc, pu]2.

The second change affects how the AMM computes L. The definition wields a vector L that
keeps track of the parameter L for all price points. However, all price points in an order’s
range must be updated when the order is submitted or cancelled. Therefore, instead of
keeping track of L with a vector L, we keep track of the difference in L between the price
points in vector dL. The AMM adds dLi to L when the border at p = i + pa is crossed from
below, while it is subtracted otherwise. This way, only the elements of dL that represent
the lower and upper boundary of the range of the order have to be updated. However, fees
are distributed over consecutive segments of range orders instead of the active one when
they have the same L. To salvage this, the number of references at each price point is saved
in vector nR. An additional two elements must be updated whenever a range order is
submitted or cancelled, causing a few extra computations. Furthermore, when parameter
pu is derived (or the index of the upper bound), it should be taken as the first price higher
than the current price, where the number of references is nonzero.

The third change is that the AMM rounds L to the nearest integer to prevent floating point
errors. A small mistake in L significantly impacts the results, whereas a small error in the
current price or returned value does not since L is used to update itself and dL. Therefore,
an element of dL may not obtain a value of zero due to the floating point error, which causes
errors like faulty borders.

We will show that the effect on the collected fees is small for several worst-case scenarios.
The maximal rounding error in L is 0.5. Therefore, we maximize the relative rounding
error when we minimize L. We assume the settings of the basic scenario (see section ...).
L becomes smaller when the range is bigger. Therefore, we take the maximal range order,
which is [950, 1100] in the simulation. Furthermore, we take the smallest order possible:
either 1000 assets or €1000 ∗ pc. We test the rounding error for four cases. The first is when

2In theory, it does not have to be the largest integer. However, the upper border is crossed less frequently when
the borders are further apart, thus decreasing the number of computations that must be done around the border.
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pc = pl such that the trader’s portfolio consists of assets only. The second case is when
pc = pu such that the trader’s portfolio consists of euros only. In the third and fourth case,
pc = 1000 and pc = 1010 since these are the true prices before and after a shock respectively
(see section 3.4). In these cases, (1000− A) ∗ pc

3. The results are given in table 3.1. As we
can see, even in these worst-case scenarios, the maximum error is O(10−6).

pl 950 950 950 950
pu 1100 1100 1100 1100
pc 950 1100 1000 1010
A 1000 0 648 581
M 0 1100000 352000 423190
LA 436081,4168 - 440324,438 441924,463
LM - 469247,6647 439611,7202 441546,3401
L 436081,4168 469247,6647 439611,7202 441546,3401
Loss (%) 1,15E-06 1,07E-06 1,14E-06 1,13E-06

Table 3.1.: Influence of rounding L in worst case scenario’s.

3.3. Trading behaviour

The process of a trade goes through several steps. First, initialization and decision variables
are computed as described in sections 3.3.1 and 3.3.2. After that, sections 3.3.3 and 3.3.4
describe how the traders use these variables to finalize their trading strategies in the LOB
and AMM respectively.

3.3.1. Initialization variables

This section describes some variables used by the trader which determine what kind of
trader he is.

A trader first checks the current liquidity in the market. It is easily computed how many
A can be sold or bought at any time. If this number is below the threshold minLiquidity,
the trader aims to fill this gab. The order in which the sell and buy-side are checked is
randomized for each trader. The believed price pb is set to the market price pm whenever
the trader becomes a so-called forced liquidity trader.

If there is no shortage of liquidity in the market, the trader will initialise several parameters
like informed, pb and buy. Other initialized parameters are used in the decision-making and
thus discussed in the exchange-specific sections.

The parameter informed is a boolean variable that states whether the trader is informed or
not. An informed trader assumes he has information that has not yet been incorporated into
the market’s current price. Therefore, he may believe that the asset’s true price is different
from the market price. An uninformed trader believes that there is no new information (or
he thinks it is irrelevant to his goals) and thus that the exchange is efficient (see section 2.2).
Therefore, he believes that the true and market price are equal. Assume that i per cent of

3Computing M this way corresponds with the simulation.
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the traders is informed, and the true price of the asset is pt while the market price is pm.
The price the trader believes to be true pb can then be determined by lines 1-7 of algorithm
3.1.

Algorithm 3.1: Determining the initial parameters of a trader when no liquidity
order is forced
1 u1 ∼ U (0, 1);
2 in f ormed← u1 < i;
3 if in f ormed then
4 n ∼ N (0, 1);
5 pb = pt + min(max(n,−3), 3);
6 else
7 pb = pm

8 u2 ∼ U (0, 1);

9 buy← u2 < 1/
(
1 + e−

pb−pm
2
)
;

The believed price of the informed trader is not simply the true price of the asset. Since every
informed trader interprets his private information differently, the believed price is slightly
different for each trader. We cap the maximal difference between the believed price and true
price at three for two reasons. First, negative prices are possible when n becomes very small.
Furthermore, a larger difference might not be realistic since the information often points to
either an increasing or decreasing price. When the market price is close to the true price,
it might not be clear from the information which direction the price should go. However,
when there is a large discrepancy, it should point in the correct direction. By capping the
price at three, we ensure the correct direction is chosen whenever the difference is larger
than three. The probability that an informed trader believes the correct direction is easily
computed as

prd = P
(

pb ≥ pm ⇐⇒ pt ≥ pm

∣∣∣∣|pt − pm| = a
)

= P
(
(pb ≥ pm ∧ pt ≥ pm) ∨ (pb < pm ∧ pt < pm)

∣∣∣∣|pt − pm| = a
)

= P
(

pb ≥ pm ∧ pt ≥ pm

∣∣∣∣|pt − pm| = a
)
+ P

(
pb < pm ∧ pt < pm

∣∣∣∣|pt − pm| = a
)

= P
(

pb ≥ pm

∣∣∣∣pt ≥ pm ∧ |pt − pm| = a
)

P
(

pt ≥ pm

∣∣∣∣|pt − pm| = a
)

+ P
(

pb < pm

∣∣∣∣pt < pm ∧ |pt − pm| = a
)

P
(

pt < pm

∣∣∣∣|pt − pm| = a
)

= p
(

n ≥ −a
)

P
(

pt ≥ pm

∣∣∣∣|pt − pm| = a
)
+ P

(
n < a

)
P
(

pt < pm

∣∣∣∣|pt − pm| = a
)

= P
(

n < a
)

P
(

pt ≥ pm

∣∣∣∣|pt − pm| = a
)
+ P

(
n < a

)
P
(

pt < pm

∣∣∣∣|pt − pm| = a
)

= P
(

n < a
)(

P
(

pt ≥ pm

∣∣∣∣|pt − pm| = a
)
+ P

(
pt < pm

∣∣∣∣|pt − pm| = a
))

= P(n < a)

49



3. Simulation

The probabilities for several values of a are given in table 3.2. Finally, note that the probabil-
ity |n| > 3 is only 0.0027, which means that the borders do not influence the believed prices
too often.

|pm − pt| Prd
0.1 0.5398
0.5 0.6915
1 0.8413
2 0.9772
3 1

Table 3.2.: Probability that the believed price is in the correct direction for informed traders.

The believed price pb subsequently determines whether the trader wants to buy or sell the
asset. The trader has no preference when pb = pm. However, when pb is much larger than
pm, he rather buys since he believes it to be cheap. Likewise, the trader would rather sell
when pb is much smaller than pm. The logistic function is used to compute the probability
that a trader buys assets. The logistic function with parameters L = 1, k = 1

2 , x0 = pm
and x = pb is given in equation 3.1 and depicted in figure 3.5. The parameter L is the
maximum of the curve. Since the maximum probability is one, we have L = 1. Furthermore,
k determines the logistic growth rate or steepness of the curve, currently set to 0.54. Finally,
x0 is the midpoint, where the probability is 0.5.

P(buy) =
L

1− e−k(x−x0)
=

1

1− e−
pb−pm

2

(3.1)
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Figure 3.5.: The logistic function with L = 1, k = 1
2 , x0 = pm and x = pb.

As required, the trader is indifferent whenever pb = pm since we have a probability of 0.5
that a buy order will occur. Furthermore, from figure 3.5, it is clear that pb > pm returns

4For more information about settings, see section 3.4.
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a probability larger than 0.5 that a buy order occurs and visa versa, which agrees with the
intuition. Lines 8-9 of algorithm 3.1 show how to determine whether the trader places a buy
or sell order.

3.3.2. Decision variables

This section describes some variables used later by the trader to determine his trading strat-
egy. The LOB and AMM derive these almost identically.

First, we have to decide the kind of trader this liquidity trader is. For this, we introduce
variable kind, which can be in one of three states. The first is ”L”, meaning the trader is a
liquidity trader. This is the case, for instance, when the trader is a forced liquidity trader.
The second state is ”M” when the trader places a market order. The final state is ”False”
when the trader does not have a preference. How this variable is initialized depends on the
exchange, and will be discussed in sections 3.3.3 and 3.3.4.

Lo, MacKinlay, and Zhang [31] have analyzed data from the hundred largest stocks in the
S&P 500 from August 1994 to August 1995. From this, they distilled statistics about waiting
times for limit orders and the number of market orders used to fill one limit order. The
portfolio and maximum waiting time in the case of a liquidity provider are based on these
statistics.

Two simulation settings are the minimal and maximal size of an order denoted by qmin and
qmax, respectively. A trader’s order size is a random draw in this range. Furthermore, Lo
et al. [31] show that on average, 1.3662 market orders are needed to fill one limit order5.
Generalizing this, we assume that a liquidity order is 1.3662 times as big and multiply the
order size with this number in case of a liquidity order.

A market order has a maximum waiting time of zero, while a liquidity order has a positive
waiting time. Lo et al. [31] found that the average time (in minutes) to cancellation for limit
orders without any fills was distributed as N (46.92, 72.31) and N (34.15, 53.94) for buy and
sell orders respectively. A draw from such a variable can thus be used as an approximation
for the maximum waiting time. However, this does not take into account the maximum
waiting time of (partially) filled limit orders. Therefore, the actual distribution might have a
lower mean.

Finally, the portfolio has to be determined. We assume that the portfolio consists entirely of
the sold funds. This means that the portfolio consists of assets when assets are sold, while
it consists of euros otherwise. When the portfolio only consists of money, we assume the
trader has q ∗ pb M, where q is the order size.

Algorithm 3.2 shows how the different variables are computed. This algorithm assumes that
variables qmin and qmax are predefined.

In order to estimate the probability of execution, several statistics are computed. First, the
trader requests the number of assets bought and sold over the last one hundred transactions
from the AMM and normalizes them to assets per second. After, he multiplies them by his
waiting time and denotes the quantities by bQ and sQ respectively. Since the trader can
be informed, these quantities can differ from his expectations. Therefore, he updates the
quantities such that the ratio of them is closer to his expectation. Algorithm 3.3 describes

5See table 2 of [31], where we have taken the weighted average of the pool. Since the last column states ≥ 7, we
have taken a value of 8 to compensate for higher numbers.
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Algorithm 3.2: Determining portfolio and waiting time of a trader

1 q ∼ U (qmin, qmax);
2 if buy then
3 time ∼ N (46.92 ∗ 60, 72.31 ∗ 60);
4 else
5 time ∼ N (34.15 ∗ 60, 53.94 ∗ 60);

6 if kind == ”L” or time ¿ 0 then
7 q← o ∗ 1.3662;
8 while time ≤ 0 and buy do
9 time ∼ N (46.92 ∗ 60, 72.31 ∗ 60);

10 while time ≤ 0 and not buy do
11 time ∼ N (34.15 ∗ 60, 53.94 ∗ 60);

12 else if kind==”M” then
13 time← 0;

14 if buy then
15 A← 0;
16 M← q ∗ pb;
17 else
18 A← q;
19 M← 0;

how he updates the quantities. He first computes tQ, the total amount of A that is traded.
After, he computes the ratio of the believed and market price, r in line two. The trader
expects the price to rise when r > 1 and decrease otherwise. Line three computes the
weight of his expectations compared to the past. Note that the weight increases when the r
diverts further from one. Finally, we update bQ as a weighted average of the current value
and a value that is shifted towards the expectation of the trader. To get the second term,
first notice that we have tQ = bQ + sQ. Since r > 1 implies that the price should increase,
it also implies bQ > sQ and visa versa. Therefore, we assume r = bQ

sQ . Solving this system

of equations gives bQ = tQ∗r
1−r , which is used as the updated value. Finally, in line 5, we

compute the corresponding updated value of sQ.

Algorithm 3.3: Updating the buy and sell quantities

1 tQ← bQ + sQ;
2 r ← pb/pm;
3 w← (1 + |1− r|)/2;
4 bQ← bQ ∗ (1− w) + tQ ∗ r/(1 + r) ∗ w;
5 sQ← tQ− bQ;

3.3.3. Limit Order Book

This section describes the trading behaviour when traders interact with the LOB. It is as-
sumed that all initial variables exist.
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The trader can choose what kind of order he places when there is enough liquidity in the
market. In the LOB, the kind of orders depends on variables informed, buy, pb and pm.

When the trader is informed, there are two cases when he places a market order without
additional checks. Let pba and pbb denote the best-ask and best-bid price respectively. The
trader buys assets via a market order when pb ≥ pba since he gets immediate execution
within his budget. The same s true when the trader sells assets and pb ≤ pbb. In all other
cases, the trader will try for a limit order.

An uninformed trader places a limit order with probability Pr. A larger bid-ask spread
implies an increased probability of a limit order since the spread is the cost of a market
order. Therefore, Pr has to (implicitly) depend on the bid-ask spread. Pr is computed using
the logistic function given in equation 3.1 with L = 1 and k = 1. Furthermore, x0 = pb and
x = pba when assets are bought and x0 = pbb and x = pb otherwise. Therefore we see that
Pr depends on the bid-ask spread, since pba − pb = pb − pbb is half the bid-ask spread.

Assume that variables q, time, bQ and sQ are computed using algorithms 3.2 and 3.3.

The trader immediately executes his order when it is a market order, contrary to a liquidity
order since the price and execution probability are still undetermined.

There are three possibilities for the price of a limit order. In the first case, the limit order
performs an undercut and p = pba − 1 when assets are sold while p = pbb + 1 otherwise.
The second case it that the trader gets ’in line’ with p = pba or pbb respectively. The last case,
called the overcut, has p = pba + 1 or p = pbb − 1 respectively.

The probability that a trader performs an undercut is denoted by Pu(pb) and can be com-
puted as

Pu(pb) =



1
1+e−(pba−pb−3) if informed and buy

1
1+e−(pba−pb−6) if not informed and buy

1
1+e−(pb−pbb−3) if informed and not buy

1
1+e−(pb−pbb−6) if not informed and not buy

. (3.2)

Note that we have applied the logistic function once again. We have plotted the functions in
figure 3.6. In these functions, an informed is more likely to do an undercut. Furthermore,
the undercut is only likely with a significant difference.

The trader performs an undercut with probability Pu when it is within budget and possible.
Therefore, it must hold that pb ≥ pbb + 1 and pba − 1 ≥ pbb + 1 when assets are bought or
pb ≤ pba − 1 and pba − 1 ≥ pbb + 1 otherwise. The limit order is placed without additional
checks since an undercut has a big probability of execution.

When the trader does not perform an undercut, he first checks the overcut opportunity.
It is assumed that only the excess of sQ − bQ changes the liquidity of the LP since it is
replenished otherwise. Assume that liqAt number of assets bought (sold) before the trader’s
assets will be bought (sold). For an overcut, we then require that sQ− bQ ≥ liqAt + amount
(bQ− sQ ≥ liqAt + amount).

If the overcut is unlikely to be filled, the trader checks whether an ’in-line’ limit order can
be filled. For this, he checks sQ ≥ liqAt + amount (bQ ≥ liqAt + amount), where liqAt has
been updated to the new price point.
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Figure 3.6.: Probability of undercut

When the trader deems execution of a limit order unlikely in all three cases, he places a
market order instead. The trader cancels his limit order when it is not filled after time has
passed and trades the remaining funds via a market order.

3.3.4. Automated Market Maker

This section describes the trading behaviour when traders interact with the AMM. It is
assumed that all initial variables exist. Furthermore, we set kind to ’False’ if there is enough
liquidity and ’L’ otherwise. All other decision variables can then be derived as described in
section 3.3.2.

After computing bQ and sQ, the expected price pe after time can be computed. For this
computation, we assume that sQ − bQ assets are bought (or sold when sQ < bQ) and
compute the new price accordingly. We will use pe extensively in further computations.

The first thing to be noted is that an undercut is impossible in the AMM since there is only
one price. Even worse, it is impossible to buy (sell) assets via a range order when the price
increases (decreases) since it implies that assets (euros) are converted to euros (assets)).
Therefore, a range order cannot be placed for the purpose of buying (selling) whenever
pb > pm (pb < pm) and a market order will be placed instead.

For a range order, we will treat the cases of buying and selling separately, though they are
mirror images of each other.

Buy range order

If the trader wants to buy assets, we assume that pb < pm. Furthermore, we compute An and
Aw, the number of assets the trader gets if he trades right now or trades after his maximal
waiting time. We then determine the range as
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rL =

⌊
max

(
pm − 2, pb − 1, p5

)⌋
,

rU =

⌈
max(rL + 2, p95, pnl)

⌉
,

where p5 and p95 are the 5 and 95 percentile of the prices of the past and pnl is the first price
from pm to rL where L = 0.

The way rL and rU are defined, we have at least a range with width four that includes 95%
of previous fees. Furthermore, it forms a ’bridge’ of liquidity between our believed price
and the market price since it adds liquidity where L = 0. We want rL as low as possible
for a buy range order since we have seen that the average price paid is given by

√
rL ∗ rU.

Finally, pb is also considered since the trader does not expect the price to fall below pb.

After we have computed the range, the trader estimates the minimal fees he will collect. To
do this, he computes the percentage Pin of orders that occur in his range. Furthermore, he
computes the percentage Pown of liquidity he will own (Ls) in that range. Let us denote the
minimal price of the range that is reached by rLr = min(rL, pe). The fees he will collect are
then computed as A f = Pin ∗ Pown ∗ sQ and M f = Pin ∗ Pown ∗ sB ∗

√
rL ∗ rU and the total

number of assets received after trading with a liquidity order, denoted by Al can be derived
as

Ms =

(√
rU −

√
rLr

)
∗ Ls,

Al = A f +
Ms√

rLr × rU
+ As,

where Ms is the number of euros that were actually sold in the range order, As the number
of assets we receive for M f + M−Ms M when pm = pe and liquidity stayed constant.

The trader then compares An, Aw and Al and goes for the strategy that returns the biggest
value. Note that the trader buys assets with remaining euros when time has run out.

Sell range order

If the trader want to sell assets, we assume that pb > pm. Furthermore, we compute Mn and
Mw, the number of euros the trader gets if he trades right now or after waiting his maximal
waiting time. We then determine the range as

rU =

⌈
max(pm + 2, pb + 1, p95

⌉
,

rL =

⌊
pnl , rU − 2, p5

⌋
,
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where p5 and p95 are the 5 and 95 percentile of the prices of the past and pnl is the first price
from pm to rU where L = 0.

The way rU and rL are defined, we have at least a range with width four that includes 95%
of previous fees. Furthermore, it forms a ’bridge’ of liquidity between our believed price
and the market price since it adds liquidity where L = 0. We want rU as big as possible
for a sell range order since we have seen that the average price paid is given by

√
rL ∗ rU.

Finally, pb is also considered since the trader does not expect the price to fall below pb.

After we have computed the range, the trader estimates the minimal fees he will collect. To
do this, he computes the percentage Pin of orders that occur in his range. Furthermore, he
computes the percentage Pown of liquidity he will own (Ls) in that range. Let us denote the
maximal price of range that is reached by rUr = min(rU, pe). The fees he will collect are
then computed as A f = Pin ∗ Pown ∗ sQ and M f = Pin ∗ Pown ∗ sB ∗ √rL ∗ rUr and the total
number of euros received after trading with a liquidity order, denoted by Ml , can be derived
as

As =

(
1

pm
− 1

rUr

)
× Ls,

Ml = M f + As
√

rL× rUr + Ms,

where As is the number of assets that were actually sold in the range order, Ms the number
of euros the trader receives for A f + A − As assets when pm = pe and liquidity stayed
constant.

The trader then compares Mn, Aw and Ml and goes for the strategy that Returns the biggest
value. Note that the trader sells all remaining assets when time has run out.

3.4. Settings and parameters

This section describes are parameters used in the simulation and their effect. Furthermore,
we give the values they take on in the basic configuration of the simulation. We have divided
the parameters into three categories. The first are the parameters used to initialize the
simulation. The second set of parameters determines liquidity and its development. The
third set of parameters determines how the true price changes and how the information
spreads through the traders. Finally, an overview of the different tested scenarios is given.

3.4.1. Initialization settings

The true price must be set first to initialize the simulation. For this, we use variable trueP,
initially set to 1000. Changing this price should not have a significant effect on the results.
Another setting used for the AMM is the fee market takers pay.

We use variable fee, initially set to 0.05% per Uniswap’s recommendation for stable assets
[32]. Increasing the fee also increases the bid-ask spread in the AMM since the bid-ask
spread depends fully on the liquidity and fee, as can be seen from formula’s 2.28 and 2.29,
the change in price decreases when liquidity increases. The fee is thus the main component
of the bid-ask spread whenever liquidity is high.
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Both exchanges need initial liquidity to kick-start the exchange. For this, variable minLiq-
uidity as given in section 3.4.2, is used. Furthermore, we use variable initialBidAsk initially
set to two. In the LOB, minLiquidity assets are sold at trueP+initialBidAsk, while minLiquidity
assets are bought at trueP-initialBidAsk, creating a bid-ask spread of four. For the AMM,
we create a range order with minLiquidity assets and €minLiquidity×trueP. Here, we set the
upper boundary of the range to trueP + initialBidAsk. However, since we want to have a
spot price of trueP initially, the lower boundary is derived using formulas from section 2.4
and rounded afterwards since it has to be an integer. Therefore, the initial spot price of the
AMM changes slightly to 999.998 with the current settings.

Both exchanges also have a range of prices that can be obtained. This range is
[minPriceRange, maxPriceRange], initially set to [950, 1100]. This range can be changed
whenever a larger (or smaller) set of prices is assumed to be obtainable. Since not all used
prices are visible (limit orders may never execute, and thus the price may never be shown
in the spot price graph), this range should be taken large enough. However, decreasing this
range has two important effects. First, it is computationally faster to have a smaller range
since smaller lists have to be traversed. However, more importantly, is that this range caps
the computation of the spot price. Therefore, it might influence the expected price pe in the
trading behaviour with the AMM. However, we do not expect large effects since these are
extreme cases.

Variable days represents the duration of the simulation, currently set to three days. A longer
time frame can give insights into the stationarity of the prices, especially when there are
multiple shocks. However, it negatively affects the reliability of the random walk indicators
when the time between two shocks is large since these are only reliable for smaller time
frames. We have set the time to three days since this gives the exchanges enough time to
obtain a new equilibrium and generate enough data to test for a random walk.

The last parameter used in the initialization of the exchanges is lookNTransactionsBack, ini-
tially set to 100, which determines how many past market transactions are saved for statistics
used by the trader for trading decisions in section 3.3. Furthermore, it is used to give an
artificial past the exchanges, further explained in section 3.4.2.

3.4.2. Liquidity

This section describes all parameters used to regulate the liquidity in the simulation.

The variable transSize is used to determine the size of the trades in the simulation, initialized
to [1000, 5000]. The variable itself does not influence the simulation since variable minLiq-
uidity, which directly depends on transSize changes with it, and together they influence the
amount of liquidity in the market.

The variable minLiquidity directly depends on transSize, and is set to ten average trades. The
variable states the minimum liquidity on both the buy and sell sides before a liquidity order
is forced. Furthermore, it is also the initial liquidity in the market. Since there will be more
liquidity, price variability decreases when minLiquidity is a larger multiple of the average
transaction size.

The speed of transactions is determined by liqP, initially set to one, which is a ’liquidity
percentage’. From this percentage, the minimum and maximal time to a new trader liqMin
and liqMax are derived as liqMin = 4 + (1 − liqP) ∗ 6 and liqMax = 8 + (1 − liqP) ∗ 12
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respectively. When liqP decreases, the time between traders increases. Therefore, the change
in price possible in a fixed time frame will decrease, and liquidity orders become less advan-
tageous. This causes more market orders and, paradoxically, larger price movements. Since
transactions occur more sparsely, pricing errors are fixed at a slower pace, the price is less
stable, and the bid-ask spread increases.

The final liquidity parameter is variable agressiveness, currently set to 0.5, which determines
the slope of the buy probability in equation 3.1. This variable increases the probability that
a trader trades in the direction of his believed price. However, when the difference between
the spot price and the believed price is small, we expect only a small preference for the
direction of the believed price. Therefore, we have set the steepness of the curve relatively
small.

3.4.3. Informed traders and shocks

This section describes all variables regarding (the number of) informed traders and the price
shocks.

minInfP and maxInfP describe the range of probabilities that a trader is informed trader,
while the current probability infP is set the minInfP. The informed traders push the price
towards trueP, dampening price variability. Increasing either the boundaries or the current
probability of being informed thus dampens the price volatility even further.

When the exchange is assumed to be in equilibrium, as at the simulation’s start, we always
have in f P = minIn f P. When a shock occurs, infP increases to maxInfP in a predetermined
time, after which it decreases to minInfP again. Several variables regarding the shocks deter-
mine these times.

First, the variable shocks states the number of shocks that will occur in the simulation. It
divides the total simulation time evenly among the number of shocks, saved as variable
shockTime, which itself is divided into four parts: shockWait, shockIncrTime, shockDecrTime and
shockAfterTime. These represent the time till the shock occurs, the time that infP increases
linearly from minInfP to maxInfP, the time that in which it decreases linearly to minInfP, and
a wait time till the next shock block. Currently, these times are set to 30%, 10%, 10% and
50% of shockTime respectively. Even though the length of shockWait and shockAfterTime do not
really influence the simulation, shockIncrTime and shockDecrTime do. If these times are taken
too short, the number of informed traders will not be big enough to cause the price to shift
toward its new value. Therefore, the new information will not properly be incorporated into
the price. When the times are too long, the price is kept artificially stationary after the new
true price has already been reached.

3.4.4. Tested settings

To capture the influence of different parameters, we test for seven different scenarios given
in table 3.3. Omitted variables are assumed to retain the value given in previous sections.

The basic scenario simulates the LOB and AMM for an asset with a reasonably stable price
in a liquid market with small transaction costs. To capture the effect of the time horizon,
we also simulate zero and two shocks with the same parameters. In the scenario of low
liquidity, we test the exchanges when the frequency of the trades has decreased by fifty per
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cent. Furthermore, we also want to simulate how the metrics change when the number of
informed traders increases or decreases. For this, the percentage of informed traders and
the time for which there are many informed traders are updated. Finally, we compare the
exchanges when the AMM fee is higher to simulate the assumption of a volatile market.

Scenario Basic
setting

No
shocks

Two
shocks

Low
liquidity

High
fee

Informed
market

Uninformed
market

Shocks 1 0 2 1 1 1 1
LiqP 1 1 1 0.5 1 1 1
Fee 0.0005 0.0005 0.0005 0.0005 0.01 0.0005 0.0005
MinInfP 0.1 0.1 0.1 0.1 0.1 0.2 0.05
MaxInfP 0.75 0.75 0.75 0.75 0.75 0.75 0.4
ShockWaitTime
(as % of ShockTime) 0.3 0.3 0.3 0.3 0.3 0.3 0.3

ShockIncrTime
(as % of ShockTime) 0.1 0.1 0.1 0.1 0.1 0.2 0.05

ShockDecrTime
(as % of ShockTime) 0.1 0.1 0.1 0.1 0.1 0.2 0.05

ShockAfterTime
(as % of ShockTime) 0.5 0.5 0.5 0.5 0.5 0.3 0.6

Table 3.3.: Seven different scenarios and the values of the parameters

3.5. Output

This section describes the two different data sources of the simulation. The first contains
data about the executed orders, while the second contains the exchange state at various
times.

Order data

The order data is mainly used to assess the validity of the simulation. It consists of twelve
variables about each finished trade with the exchange. All but one variable are used for in-
sight into the trader’s identification and decision-making process. These eleven variables are
not relevant to the actual results but give insight into anomalous transactions and indicate
bugs.

The twelve columns are the name of the trader, the market price when the trader was initial-
ized, and trade execution has finished, pe, pb, q, time, the actual time passed, A after trading,
M after trading, the completion percentage and the kind of order (liquidity or market). Of
all these variables, only the completion percentage is used in the results.

Exchange data

Metrics are computed on the exchange data. For each (partial) trade, the current price,
time, total sell and buy volume, unit and 1000 unit bid-ask spread, in f P and the available
number of assets and euros are saved. Note that the data excludes trades to obtain the
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correct ratio in the AMM. Furthermore, orders split due borders in the AMM are saved as
separate orders.
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In this chapter, we present and discuss the results of the simulation. We do this in four
parts. First, we validate the simulation in section 4.1. After that, results corresponding to
information incorporation are presented in section 4.2, while the data regarding market liq-
uidity is presented in section 4.3. Finally, the results concerning the completion percentages
are given in section 4.4.

4.1. Validity

In this section, we check the validity of the simulation for each of the seven scenarios. We
inspect whether the price graphs follow are realistic and explainable. Furthermore, we also
check if the completion percentages of liquidity providers and market takers are realistic.
Finally, we check if the parameter changes cause the predicted changes.

The prices are plotted in figure 4.1. We expect that the price oscillates around the true price
when no new information is available. The price should move toward a new price without
many regressions, while an overshoot should stay within reasonable bounds. When we look
at the graphs of the scenarios, there are a few cases in which the plots seem unrealistic. In
the uninformed scenario, both exchanges experience a significant overshoot of 50% before
they revert to the true price. Appendix A gives the graphs for more extended time horizons
with different settings. It turns out that the LOB will oscillate around the true price with
increasing amplitude while the AMM remains close to the true price in 75% of the cases.
We can conclude that the uninformed scenario holds less weight than other scenarios. The
completion percentage underlines this conclusion for the AMM since the average completion
percentage of a market taker is higher than that of the liquidity providers. We expect the
reverse to be true since the liquidity providers already have additional costs of time and
execution risk. Therefore, they should be favoured money-wise.

The second case in which the price series does not follow an expected curve is for the LOB
in scenario ’no shock’. Appendix B gives an extended time horizon that shows that the
price oscillates as expected, but the amplitude has increased to four. However, the average
completion percentage of the liquidity provider lies beneath that of the market taker again
is slightly lower. Therefore, we proceed with caution in this scenario but still consider it.

Section 3.4 gives several predictions when parameters are changed. We will check if the
parameter changes have the expected effect. The first prediction was that an increased
fee would cause a larger bid-ask spread in the AMM. Figures 4.6 and 4.7 show that this
is indeed the case. Another prediction was that a decreased liquidity percentage would
lead to increased price volatility. Figures 4.1a and 4.1d show that this is only true after a
shock has taken place. However, this is to be expected since the initial liquidity restricts
the price variability as long as it exists. After the price shift, at least one side of this initial
liquidity has been filled, and the price depends on liquidity traders. The price variability
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immediately increases as expected. The third prediction was that an increased number of
informed traders would decrease price variability, while a decreased number of informed
traders would cause an increase. Figures 4.1, 4.1f and 4.1g show that the latter holds while
the former does not. The reason for this is twofold. First, the number of informed traders
remains high in the coloured areas. Therefore, the price is forced back to the true price, and
every price change is inverted, increasing variability with smaller differences. The second
reason may be that the additional number of informed traders do not have any effect since
there already were enough informed traders in the basic scenario. We do not question the
validity of the simulation since the different results can be explained. The final prediction
was that increased shockIncrTime and shockDecrTime would cause forced price stability while
decreasing them could cause problems incorporating all information. Figure 4.1f shows that
the price is kept close to the true price by reverting the price after the information has been
incorporated. Therefore, price stability is enforced. Furthermore, figure 4.1g indeed shows
that information incorporation is more difficult than in the basic scenario.

(a) Basic (b) No shocks (c) Two shocks

(d) Low liquidity (e) High fee (f) Informed

(g) Uninformed

Figure 4.1.: Spot price development over time for different scenarios
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4.2. Information incorporation

In section 2.2.1, we have seen that information incorporation is measured in terms of market
efficiency and price discovery, which are closely related.

Market efficiency checks whether all information is incorporated. If it is, the price should
follow a random walk. In contrast, price discovery looks at the period in which the in-
formation is not yet incorporated. Therefore, we split the simulation into multiple parts
(depending on the number of shocks). When information is introduced, we compute price
discovery metrics and test the EMH on the other parts. The metrics results are given in table
4.1.

Basic No shock 2 shocks Low liquidity High fee Informed Uninformed

LOB

Price
discovery

Time 4827 - 5105
4256 7821 4827 6921 18996

Trades 766 - 964
731 730 766 1137 3040

Buy volume 1,096,429 - 1,424,573
987,229 989,532 1,096,429 1,716,834 4,027,275

Sell volume 285,641 - 328,106
317,215 318,427 285,641 364,755 1,736,994

Market
efficiency

Adfuller p-values 0.0055
0.1654 0.9483

0.3597
0.7198
0.0415

0.7519
0.1272

0.0055
0.1654

0.0741
0.1733

0.9214
0.8624

KPSS p-values 0.01
0.01 0.01

0.01
0.01
0.01

0.01
0.01

0.01
0.01

0.01
0.01

0.01
0.01

AMM

Price
discovery

Time 4009 - 4211
4099 5517 4478 3720 6831

Trades 880 - 930
906 647 931 785 1327

Buy volume 1,632,044 - 1,858,759
1,861,457 1,259,215 1,860,471 1,490,918 2,599,939

Sell volume 481,011 - 628,133
700,971 398,269 599,518 430,570 1,141,619

Market
efficiency

Adfuller p-values 0.9844
0.3815 0.7168

0.1654
0.9782
1.0

0.4213
0.8629

0.6378
0.4006

0.9969
0.5514

0.3021
1.0

KPSS p-values 0.01
0.01 0.01

0.01
0.01
0.01

0.01
0.01

0.01
0.01

0.01
0.01

0.01
0.01

Table 4.1.: Results of information incorporation metrics

The data regarding market efficiency is clear. An adfuller p-value greater than 0.05 points
to a random walk, whereas a KPSS p-value smaller than 0.05 does the same. We see that
all cases have p-values of 0.01 for the KPSS tests. Since the build-in KPSS test in python
cannot obtain a value smaller than 0.01, this is not uncommon. Furthermore, the KPSS tests
indicate that the price followed a random walk for both the LOB and AMM in all scenarios.
However, this is not the case for the adfuller tests where the LOB does not follow a random
walk in the basic, high fee and two shock settings. It should be noted that the basic and high
fee scenarios are the same for the LOB.

Rather than conclusive answering whether an exchange has good price discovery, the metrics
can only be used to compare the two exchanges. We look at the time, number of trades and
buy and sell volume needed to transition from the current to the new price. The AMM
is always faster than the LOB, which indicates that the AMM has better price discovery.
However, this conclusion does not hold for all other metrics. The number of trades favours
the AMM in four of seven cases, while the buy and sell volumes are always smaller using
the LOB. Therefore we can conclude that the AMM moves faster in the sense of time but also
needs more trading to obtain the updated time. A limit order disappears when it is filled (or
the time has run out), which is not necessarily true for the range order. Therefore, the total
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available liquidity remains higher in the AMM, as shown in figures 4.2 and 4.3, and more
assets have to be traded in order to update the price. The total amount of assets bought and
sold over time is plotted in figure 4.4. The AMM is still faster since more market orders are
submitted than in the LOB. Furthermore, different strategies for liquidity providers might
improve the price discovery of the AMM even further.

(a) Basic (b) No shocks (c) Two shocks

(d) Low liquidity (e) High fee (f) Informed

(g) Uninformed

Figure 4.2.: Total buy quote over time for different scenarios
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(a) Basic (b) No shocks (c) Two shocks

(d) Low liquidity (e) High fee (f) Informed

(g) Uninformed

Figure 4.3.: Total sell quote over time for different scenarios

(a) Buy (b) Sell

Figure 4.4.: Total amount of A bought/sold over time in the basic scenario.
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4.3. Market liquidity

This section discusses liquidity in the LOB and AMM. As seen in section 2.2.2, this can be
measured in the bid-ask spread and unit quote sizes. We will now discuss these separately.

The bid-ask spread is a measure of the costs of transactions. We expect a small bid-ask
spread in a liquid market. The unit bid-ask spreads are given in figure 4.6. There is a clear
distinction between the LOB and AMM.

Liquidity traders create the bid-ask spread in the LOB. Therefore, the results are directly
correlated to the implemented behaviour of the traders. The graphs show that the unit bid-
ask spread generally stays in the range of one to four. The big exception is when a shock
occurs, and the price of one side moves faster than the other.

In the AMM, liquidity traders only partially determine the bid-ask spread. Without liquidity
at the current price, the price cannot move, and liquidity traders cannot trade or earn fees.
Therefore, they are incentivized to provide liquidity between the current price and their
believed price. Finally, a liquidity trader cannot provide liquidity at one price. The results
can be found in figure 4.5, in which the liquidity is plotted at several times just before, during
and after a shock. Liquidity is centered around the true price at t = 25924 and pt = 1000.
After this time, the true price is set to 1010 to simulate a shock in information. We see that
a liquidity bridge is built from the current to the new price. Therefore, the price slippage
is only a small component of the bid-ask spread in the AMM. The main component is the
fee, which is 0.05% (or 1% in the case of a high fee). The bid-ask spread is €1.01 (or €20.20
in case of a 1% fee) when pm = 1005 and there is no slippage. The unit bid-ask spread in
figure 4.6 stays very close to these values.

However, it can be argued that the unit bid-ask spread is not a fair comparison of the LOB
and AMM. In the simulation, the order sizes are in the order of thousands. Therefore, the
real unit used in the simulation is one thousand assets. Since slippage becomes more evident
with larger orders, this might change the conclusion. The 1000 bid-ask spread is plotted in
figure 4.7. Here, we have capped the bid-ask spread at ten for all scenarios except for the
high fee scenario. For the AMM, some influence of the liquidity providers can be found at
the main peaks of the bid-ask spread of the LOB, but it is still very minimal and fleeting.
The LOB does not change much, except for an additional peak at the beginning due to the
initialization.

Therefore, we can conclude that the cost of liquidity is lower and more consistent in the
AMM than the LOB, as long as the fee is appropriate.

Figure 4.5.: L at different times during the shock in the basic scenario.
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(a) Basic (b) No shocks

(c) Two shocks (d) Low liquidity

(e) High fee (f) Informed

(g) Uninformed

Figure 4.6.: Unit bid-ask over time for different scenarios
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(a) Basic (b) No shocks

(c) Two shocks (d) Low liquidity

(e) High fee (f) Informed

(g) Uninformed

Figure 4.7.: 1000 bid-ask over time for different scenarios68
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The quote size indicates price slippage and is a complementary metric for the bid-ask spread.
We have plotted the unit quote sizes in figures 4.8 and 4.9. Due to frequent undercuts, a
temporary drop to one is commen in the LOB. A better comparison would be to compare
the upper boundary of the graph of the LOB graphs to the quote size of the AMM. There is
still a clear distinction since liquidity is always higher in the AMM than the LOB.

However, the unit quote size is defined differently for the LOB and the AMM. In the LOB,
the unit quote size is the number of assets that can be bought or sold at the best ask or
bid. However, this change would only change the mid-price by half a currency unit. In the
AMM, on the other hand, the unit quote size is defined as the number of assets that can be
bought or sold to alter the price by one unit of the currency. For the market takers, there is
no difference between the two exchanges since their price changes by one unit in both cases.
However, the market price changes by half a unit in the LOB while it changes one unit in
the AMM. Therefore, this definition of the quote size allows for more price movements in
the AMM and likely more liquidity. We can also compare another definition of the quote
sizes, in which the market price changes by half a unit. The half-unit quote sizes are given
in figures 4.10 and 4.11. The results are not as clear as before but still favour the AMM in
most cases.
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(a) Basic (b) No shocks

(c) Two shocks (d) Low liquidity

(e) High fee (f) Informed

(g) Uninformed

Figure 4.8.: Unit buy quote over time for different scenarios according to the market taker.
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(a) Basic (b) No shocks

(c) Two shocks (d) Low liquidity

(e) High fee (f) Informed

(g) Uninformed

Figure 4.9.: Unit sell quote over time for different scenarios according to the market taker.
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(a) Basic (b) No shocks

(c) Two shocks (d) Low liquidity

(e) High fee (f) Informed

(g) Uninformed

Figure 4.10.: Unit buy quote over time for different scenarios according to the spot price.
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(a) Basic (b) No shocks

(c) Two shocks (d) Low liquidity

(e) High fee (f) Informed

(g) Uninformed

Figure 4.11.: Unit sell quote over time for different scenarios according to the spot price.
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4.4. Completion Percentage

The final metric on which we compare the LOB and AMM is the completion percentage,
which measures traders’ satisfaction. Table 4.2 presents the average completion percentage
for all traders, liquidity providers and market takers. Additionally, the standard deviation
of all traders is given. Figure 4.12 presents the histograms of the completion percentage to
give insight into the distribution.

Basic No shock 2 shocks Low liquidity High fee Informed Uninformed

LOB

Mean 1.000004 0.999817 1.000075 0.999883 1.000004 1.000082 1.000031
Std 0.001746 0.001181 0.002358 0.001710 0.001746 0.002058 0.002216
Liquidity
providers 1.000205 0.999779 1.000558 1.000136 1.000205 1.000444 1.000315

Market
takers 0.999769 0.999863 0.999489 0.999601 0.999769 0.999679 0.999677

AMM

Mean 1.000192 0.999996 1.000113 1.000276 0.999483 1.000239 1.000031
Std 0.001643 0.000551 0.002536 0.001753 0.009702 0.001691 0.002433
Liquidity
providers 1.000319 0.999983 1.000478 1.000468 0.999352 1.000371 1.000127

Market
takers 0.999960 1.000025 0.999445 0.999918 0.999720 1.000053 0.999820

Table 4.2.: Completion percentage statistics

The traders are more satisfied using the AMM in all cases except for the higher fee. Further-
more, the standard deviations are very close and small except for scenarios ’no shock’ and
’high fee’. In the case of the higher fee, even the liquidity providers lose since the fee is not
balanced compared to the stability and price of the asset.

In four of the seven scenarios, the LOB provides better results for the liquidity providers,
while the market takers are only better off in two. This suggests that the AMM has a better
balance between the two different kinds of traders.

Finally, although all standard deviations are close, figure 4.12 tells a different story. In six
out of seven scenarios, the lowest completion percentages are obtained using the LOB while
the highest are acquired in the AMM. Furthermore, the AMM seems denser around one
than the LOB is in all these six cases. Therefore, we conclude that the AMM mediates better
between the bid and ask side and liquidity provider and market taker.
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4. Results

(a) Basic (b) No shocks

(c) Two shocks (d) Low liquidity

(e) High fee (f) Informed

(g) Uninformed

Figure 4.12.: Completion percentage distributions for different scenarios
75



5. Conclusion

5.1. Summary

This thesis aimed to compare the performance of the Limit order book (LOB) and Automated
market maker (AMM) in terms of market quality with the help of a simulation. We have
defined the requirements and desired properties of an exchange. The requirements are
needed to have a functional exchange, while the desired properties measure competitiveness.
We have given a comprehensive overview of both the LOB and AMM and shown that both
satisfy the minimal requirements of an exchange. To compare the LOB and AMM, we have
built a simulation based on heuristics that is used to measure the three main components
of market quality: information incorporation, market efficiency and satisfaction in the form
of completion percentages. Seven different scenarios have been tested through different
settings in the simulation.

Table 5.1 shows which exchanges outperformed the other for each metric, each part of mar-
ket quality and the final winner per scenario. The AMM outperformed the LOB five out of
seven times in information incorporation, six times in market liquidity and six times in the
completion percentages. The LOB outperformed the AMM one, zero and one time respec-
tively. The AMM was the overall winner in six of the seven scenarios, making it the best in
this thesis.

Basic No
shock

Two
shocks

Low
liquidity

High
fee Informed Uninformed

Validity Good Good Good Good Good Good Bad

Information
incorporation

Price Efficiency AMM - AMM AMM LOB AMM AMM
Market efficiency AMM - - - AMM - -

AMM - AMM AMM LOB AMM AMM

Market
liquidity

Unit bid-ask AMM AMM AMM AMM LOB AMM AMM
1000 bid-ask AMM AMM AMM AMM LOB AMM AMM
Buy quote

market taker AMM AMM AMM AMM AMM AMM AMM

Sell quote
market taker AMM AMM AMM AMM AMM AMM AMM

Buy quote
spot price AMM AMM AMM - AMM LOB -

Sell quote
spot price AMM AMM AMM AMM AMM - AMM

AMM AMM AMM AMM - AMM AMM
Completion percentage AMM AMM AMM AMM LOB AMM AMM

AMM AMM AMM AMM LOB AMM AMM

Table 5.1.: Overview of results for each metric
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5. Conclusion

5.2. Strengths and weaknesses

This section describes the strengths and weaknesses of the simulation.

The simulation tests seven different scenarios that test the LOB and AMM for different
varieties of price variability, liquidity, informed traders and fees. Since six out of seven
scenarios favour the AMM, we confidently conclude that the AMM outperforms the LOB.

However, we have seen that the bid-ask spread depends entirely on the trading strategy of
the traders in the LOB. Furthermore, we assumed rational traders who try to optimize their
gains, which is not always realistic. The results may therefore change when the goals and
trading behaviour of the trader change.

Another limitation of the model is the discretization, which is implemented differently than
in real-life examples. A different form of rounding might impact the returned values and
decisions of the traders, resulting in different trades and thus results. We have opted to keep
a light discretization since this is implemented differently for real-life examples of the LOB
and AMM.

However, the simulation is compartmentalized, meaning parts of the code can be easily in-
terchanged. Therefore, other implementations of trading behaviour, metrics and exchanges
can be used with little adaptation.

5.3. Future research

The simulation is based on heuristics instead of real-world data. When similar data for both
the LOB and AMM is obtained, the same metrics can be used to derive updated conclusions.
Furthermore, it can be tested whether trading data resulting from the simulation can be used
as an alternative to real-world data since it is both difficult to obtain and often costly.

This thesis did not consider ease of use. Even though better results can be obtained using the
AMM, this might not be possible for traders without spending several hours understanding
the mechanics. Future research can indicate whether this prevents new traders from using
an AMM.

It is unclear what effect discretization has on the performance of the LOB and AMM in terms
of the completion percentage. Discretization can work in favour or against a trader, which
might cause more variable completion percentages. Therefore, future research is needed to
find the effect on the results.

Finally, research might optimize the AMM even further. It can do so by finding optimal
trading fees, possibly making them liquidity dependent. Another possible improvement of
the AMM is the automatic ’fulfilment’ of liquidity orders as in the LOB.

77



A. Price graphs for uninformed scenario

(a) in f P = 0.05,
maxIn f P = 0.4,
shockIncrTime = 0.05,
shockDecrTime = 0.05

(b) in f P = 0.05,
maxIn f P = 0.5,
shockIncrTime = 0.05,
shockDecrTime = 0.05

(c) in f P = 0.05,
maxIn f P = 0.6,
shockIncrTime = 0.05,
shockDecrTime = 0.05

(d) in f P = 0.05,
maxIn f P = 0.4,
shockIncrTime = 0.1,
shockDecrTime = 0.1

(e) in f P = 0.05,
maxIn f P = 0.5,
shockIncrTime = 0.1,
shockDecrTime = 0.1

(f) in f P = 0.05,
maxIn f P = 0.6,
shockIncrTime = 0.1,
shockDecrTime = 0.1

(g) in f P = 0.1,
maxIn f P = 0.4,
shockIncrTime = 0.05,
shockDecrTime = 0.05

(h) in f P = 0.1,
maxIn f P = 0.5,
shockIncrTime = 0.05,
shockDecrTime = 0.05

(i) in f P = 0.1,
maxIn f P = 0.6,
shockIncrTime = 0.05,
shockDecrTime = 0.05

(j) in f P = 0.1,
maxIn f P = 0.4,
shockIncrTime = 0.1,
shockDecrTime = 0.1

(k) in f P = 0.1,
maxIn f P = 0.5,
shockIncrTime = 0.1,
shockDecrTime = 0.1

(l) in f P = 0.1,
maxIn f P = 0.6,
shockIncrTime = 0.1,
shockDecrTime = 0.1
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B. Extended graph of no shock
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