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Abstract—Current advancements in machine learning have pro-
vided new architectures, such as encoder-decoder transformers,
for automatic speech recognition. For generic speech recognition,
very high accuracies are already achievable. However, in air traffic
control, automatic speech recognition models traditionally rely on
domain-specific models constructed from limited training data.
This study introduces this newly developed transformer model for
air traffic control and provides a set of fully open automatic speech
recognition models with high accuracies. This paper demonstrates
how a large-scale, weakly supervised automatic speech recognition
model, Whisper, is fine-tuned with various air traffic control
datasets to improve model performance. We also evaluated the
performance of different sizes of Whisper models. In the end, it
was possible to achieve word error rates of 13.5% on the ATCO2
dataset and 1.17% on the ATCOSIM dataset with a random split
(or 3.88% with speaker split). The study also reveals that fine-
tuning with region-specific data can enhance performance by up
to 60% in real-world scenarios. Finally, we have open-sourced the
code base and the models for future research.

Keywords—Air traffic control, automatic speech recognition,
Whisper, machine learning

I. INTRODUCTION

Since the start of Air Traffic Control (ATC) in aviation, voice
communication has been a key for pilots’ and Air Traffic
Controllers’ (ATCO) coordination. However, using speech to
communicate between the ATCO and the pilot can introduce
issues and human errors [1]. The controller often has to man-
ually keep track of the commands given in the transmission,
usually by inputting this information into the label of each
aircraft on the radar screen, which adds to their workload. Also,
outside the operational setting, RT can cause challenges. For
example, in safety analysis, where safety analysts transcribe RT
in order to study and document incidents. In many use cases,
converting the speech to text can reduce the workload of the
personnel dealing with the speech audio.

Automatic Speech Recognition (ASR) has been studied in
computer science literature, with research dating back to the
1950s [2]. The recent advancements in machine learning have
spurred significant progress in developing ASR models. In
machine learning, two common approaches exist for developing
a learning algorithm. On the one hand, there is supervised
learning, with long-time-ruling examples such as DeepSpeech
[3], [4] and SpeechStew [5]. On the other hand, there is
unsupervised learning with examples such as Wav2Vec [6], [7]
and BigSSL [8]. The difference between those methods is in
the labeling of the data. Supervised learning models exclusively

rely on labeled data. In the context of training an ASR model,
this can lead to limited training data because of the labor-
intensive process of creating the labels (i.e., transcribing audio).
In contrast, unsupervised learning models operate with unla-
beled data, leading to significantly larger volumes of training
data [9].

Large supervised learned ASR models are typically trained
on around 5,000 hours of labeled training data [5]. While recent
unsupervised models can ingest datasets of up to 1,000,000
hours of unlabeled training data [8]. However, neither of the
two approaches can be depicted as being the best. A gap existed
between small-scale supervised and large-scale unsupervised
ASR models. A newly introduced automatic speech recognition
model from September 2022 tried to fill this gap. The Whisper
model, created by OpenAI, is trained with 680,000 hours of
data using weakly supervised learning [10].

Whisper aims to have a robust automatic speech recognition
model characterized by high reliability and usability. This is
achieved by using a vast amount of diverse training data, which
results in broad generalization. This generalization is designed
to provide the ability to transcribe out-of-domain audio without
a significant drop in performance compared to training data.
This is ideal for niche domains with distinct phraseology, such
as air traffic control. In addition to the scarce training data and
the ability to fine-tune the Whisper model, this makes it an
appealing choice for the ATC domain.

ASR in ATC requires a high level of safety assurance, as
human performance in speech recognition is very high. In many
cases, the current performance of ASR does not match the
requirement on robustness, except in use cases like training
and simulation of air traffic controllers [11], [12].

This research aims to find out how large-scale, weakly
supervised automatic speech recognition could be applied to
air traffic control with improved accuracy. In this study, we
first explain the Whisper model’s potential speech recognition
performance in an ATC context. The methodology involved as-
sessing the out-of-the-box performance of Whisper in the ATC
domain and determining the possible performance increase that
could be reached by fine-tuning Whisper on global and local
ATC data.

To stimulate future research and to make these results
reproducible, the complete code, all public ASR models, and
other needed resources are published in a GitHub repository1.

1Source code is available at https://www.github.com/jlvdoorn/WhisperATC.
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II. DATA PROCESSING

A. Datasets

For this research, two well-known open-source datasets have
been used, namely the ATCO2 dataset [13] and the ATCOSIM
dataset [14]. This paper focuses on the ATCO2 and ATCOSIM
datasets, which contain clean labels and seem suitable for test-
ing machine learning models. These datasets are also frequently
used as benchmarks in previous ASR studies [15]. An overview
of the datasets’ corresponding characteristics can be found in
Table I..

TABLE I.: An overview of the used datasets.

ATCO2 ATCOSIM

Size (hrs) 1.1 10
Region Europe Simulation
Speaker Pilot & Controller Controller

Language English English
Other Air traffic info -

Sample rate 16 kHz 32 kHz

The ATCO2 dataset, as part of the ATCO2 project [13],
which began in 2020, is a collection of speech from multiple
airports, primarily in Europe. The publicly accessible portion
that was manually annotated accounts for one hour of speech.
It consists of speech collected from pilots and air traffic con-
trollers. Additionally, it is a community-driven project where
the audio is captured using simple, very high frequency (VHF)
antennas, resulting in relatively noisy data. It also includes air
traffic information, such as nearby waypoints and call signs,
augmented using the OpenSky network. The audio is captured
at a sampling frequency of 16 kHz.

The ATCOSIM dataset comprises ten hours of speech col-
lected during simulated sessions at the Eurocontrol experimen-
tal center. It exclusively features speech from the controller
role, specifically from ten ATCOs in the en-route position.
Since it is a simulated session, the data clarity is significantly
higher. Furthermore, the audio is captured at a higher sampling
frequency of 32 kHz, which, coupled with the low noise
footprint, results in superior audio quality [14] compared to
ATCO2.

B. Pre-Processing

Our first step involves processing the transcripts. As previously
mentioned, the transcripts must be standardized into a single
format since both datasets are not created equally. The actual
text is extracted from extensible markup language files and
purified by removing text within brackets, e.g., [...], (...), and
< ... >. Furthermore, for the ATCO2 dataset, radar data are
converted into a simple machine-readable format. Lastly, we
filter out all audio and transcript pairs where the transcript is
empty (i.e., corresponding to empty audio files).

Once the audio and corresponding labels are processed, the
dataset is divided into two parts. A portion of the data serves as
training data, specifically for the fine-tuning of Whisper. The
remaining portion is used for validation during Whisper’s fine-
tuning process. The dataset is typically divided into an 80%
training and 20% validation data split. These proportions are
used randomly to generate the dataset’s training and respective

validation portions. Upon creation, the datasets are uploaded to
the HuggingFace Hub, a development platform and repository
system for machine learning models. For performance assess-
ment beyond the baseline, only the validation split is utilized
for evaluation.

The final datasets, as detailed in Table II., are structured
as follows: The ATCO2 dataset includes 446 training samples
and 113 validation samples. Each sample comprises an audio
file, a transcript, and an additional file containing radar data
corresponding to the audio. The ATCOSIM dataset consists
of 7,646 training samples and 1,913 validation samples, each
including an audio file and a transcript but without any radar
data files.

TABLE II.: An overview of the pre-processed datasets.

ATCO2 ATCOSIM

Total Size (hours) 1.1 10.46
Train Size (hours) 0.86 8.37

Validation Size (hours) 0.23 2.09
Total Samples 559 9,559
Train Samples 446 7,646

Validation Samples 113 1,913

C. Evaluation Metrics

The most common evaluation metric in automatic speech
recognition is the WER (Word Error Rate) [16]. It compares
the transcript with the reference (ground truth) supplied by
the dataset on a per-word basis. The following formula can
calculate the WER:

WER(%) =
S + I +D

N
× 100%. (1)

Here, S represents the number of replaced words, I is the
number of incorrectly inserted words, and D is the number
of words missing in the transcript compared to the reference.
Conversely, N represents the total number of words in the
reference. The WER (Word Error Rate) score is commonly
expressed as a percentage.

The WER score is calculated by simultaneously comparing
all generated transcriptions against all references. We apply
a weighted average method by evaluating the WER across
the entire set of transcriptions rather than per utterance. This
approach ensures that utterances with fewer words carry a
different weight in the overall calculation than those with more
words. Consequently, each transcribed word is given equal
significance.

III. TRANSFORMER-BASED WHISPER MODELS

A. Whisper model

The Whisper model is one of the few early models that was
made open-source by OpenAI. The series of models (including
different model sizes) combines both supervised and unsu-
pervised learning methodologies by leveraging a large dataset
composed of 680,000 hours of data. This dataset contains a
variety of audio sources, including multiple languages, dialects,
and acoustic environments.
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The model is a transformer-based neural network model,
which can capture extended contextual information better than
other auto-regressive models. The weakly supervised training
leverages data that is less accurately labeled or exact than
in fully supervised learning, such as subtitled audio from
YouTube.

B. Zero-shot capability

Whisper is trained with a large amount of data from quite
diverse sources. It can already be applied to ATC speech
without additional training (also known as zero-shot learning).
This paper examines such zero-shot learning capability by
applying different sizes of Whisper models directly to ATC
speech data. The word error rate is then compared to the models
that are further trained (fine-tuned) with ATC-specific voice
data.

C. Prompting

Prompting is a free text input feature of the Whisper model that
can improve the quality of transcripts by making it more likely
to correctly transcribe context-specific words and produce
transcripts in the desired style. This can be done by providing
acronyms that are likely to be named in the audio, by providing
transcripts of previous segments if an audio file is split into
multiple segments, or by providing a segment of text with the
desired style in punctuation [17].

During the construction of the prompting scheme, the first
step is to state the context (i.e., "air traffic control communica-
tions"). This is then extended with a list of airlines (e.g., KLM,
Lufthansa, Speedbird). Subsequently, location-specific items
such as full call signs, waypoints, and entities are added (e.g.,
KLM Six Eight One, WOODY, Amsterdam Radar). Ultimately,
the NATO alphabet and domain-specific vocabulary, such as
ILS and VFR (Visual Flight Rules), are incorporated into the
prompt.

D. Normalization

Whisper was developed in such a way that it predicts the
raw transcripts in the training set. Because of that, it tends
to produce naturalistic transcriptions in terms of, for example,
punctuation. However, because the datasets in this study are
all in (different) specific formats, it is necessary to perform an
additional processing step in order to be able to compare the
generated transcripts with the labels. This process is what we
call normalization.

Normalization is applied in the post-processing phase before
comparing the word error rate against the manual labels. For
example, it converts speed bird (output from Whisper) into BA.

Whisper includes a built-in normalizer that serves as a foun-
dation for the normalization process and is adapted to specific
ATC-specific terminology and phraseology. It is enhanced with
several functions and filters:

1) It ensures that only text is passed through (i.e., removing
any non-alphanumeric characters). It then ensures that all
numbers are represented numerically and splits numbers
into individual digits (e.g., 501 becomes 5 0 1).

2) It standardizes certain wordings (e.g., "goodbye" becomes
"good bye") to maintain a consistent format.

3) It processes everything as lowercase text. 2

In Figure 1, the prompting and normalization steps are
illustrated during the inference. Audio and prompt are first
provided as inputs for the Whisper model. Then, the output is
further processed with the normalizer to provide a consistent
text format for word error rate evaluation.

NormalizerWhisper

Prompt

Audio

Text! text

Figure 1. Application of prompting and normalization in voice transcribing

IV. FINE-TUNING OF WHISPER MODELS

The HuggingFace transformers Python package is used for
fine-tuning [18]. This Python library makes the model and
dataset easily shareable on the HuggingFace platform, pro-
viding a streamlined pipeline for fine-tuning any open model
hosted on the HuggingFace Hub. To test their performance, the
Whisper models are fine-tuned on the ATCO2 and ATCOSIM
datasets. The fine-tuning process of the Whisper model can be
summarized as follows:

1) In the data processing step, all audio files are resampled
at 16 kHz, aligning with the required format.

2) The Whisper tokenizer transforms the labels into input
tokens. These tokens represent the words in the lexicon
of the Whisper language model.

3) Whisper’s feature extractor is used to calculate the log-mel
spectrogram, expressed as an array of input features (e.g.,
an array containing the signal’s power for each frequency
at a given time point).

4) A data collator is constructed to ensure the input tokens
and the spectrograms are the same length in time. In cases
of silence in the audio, it is expressed as a special input
token to ensure no information mismatch between the
inputs and the labels.

5) The loss function, based on the word error score, is used
for training.

During the fine-tuning process, samples in the training split
are loaded in a predefined batch size to be utilized in parallel,
improving training efficiency. During training, the parameters
(weights) of the Whisper models are adjusted based on the
difference between the predicted output and the labels from
this specific dataset. The fine-tuning process cycles over the
training dataset a fixed number of times (epochs). After fine-
tuning, the models are uploaded to the HuggingFace Hub3.

2The detailed normalizer is implemented at https://github.com/jlvdoorn/
WhisperATC/blob/main/Evaluate/Normalizer.py.

3Trained models are openly shared at https://huggingface.co/jlvdoorn.

3

https://github.com/jlvdoorn/WhisperATC/blob/main/Evaluate/Normalizer.py
https://github.com/jlvdoorn/WhisperATC/blob/main/Evaluate/Normalizer.py
https://huggingface.co/jlvdoorn


ICRAT 2024 Nanyang Technological University, Singapore

A. Hyperparameters

Each dataset underwent its fine-tuning process, requiring ded-
icated hyperparameters due to differences in dataset size.
Table III. lists the parameters used for fine-tuning each dataset.
We decided to train each model for approximately 100 epochs
due to time constraints on the shared GPU (Graphical Process-
ing Unit) resources. The rest of the hyperparameters were also
chosen accordingly.

TABLE III.: The hyperparameters used in each fine-tuning process.

Parameter ATCO2 ATCOSIM

Max. Steps 2,800 12,500
Train Samples 446 7,646

Batch Size 16 64
Epochs ∼100 ∼100

Eval Steps 100 1,000
Save Steps 100 2,000

B. Hardware Resources

Fine-tuning the Whisper models requires high-performance
GPU hardware. The Delft High-Performance Computing clus-
ter (DHPC) from the Delft University of Technology [19]
provides shared high-performance GPUs for the model training
in this study.

Our WhisperATC models are fine-tuned using one NVIDIA
A100 graphics card with 80 GB of video memory. Additionally,
one AMD EPYC 7402 24C CPU and 128 GB of working
memory are used. This configuration resulted in a fine-tuning
time of approximately one day per model.

C. Inference

During the inference process, the performances of both the
original Whisper models and the fine-tuned WhisperATC mod-
els are assessed. Each audio file in the validation dataset is
processed in the same manner as during training.

The inference is conducted twice for each audio file: once
with the prompt and once without the prompt. The prompt
initially includes the words Air Traffic Control Communications
to indicate the general context. It is then extended with specific
terminology (e.g., ILS (Instrument Landing System), knots,
heading) and the NATO alphabet. In the case of ATCO2, radar
information is also added to the prompt.

As the language of ATC speech is English, we manually
set the language to English during inference. We also tested
cases where the language is not manually set, comparing the
performance of the inferences.

The word error rate is calculated after each file has been
transcribed twice (with and without prompting). The word
error rate is evaluated twice: the first time with normalizing
both the reference and the transcript, and the second time with
previously defined normalization applied.

V. RESULTS

A. Performance of zero-shot, normalization, and prompting

Firstly, we aim to compare the prediction performance of
the base Whisper models without any fine-tuning to establish
a baseline for comparison. In this analysis, the performance

of the base Whisper Large v2 model on the ATCO2 and
ATCOSIM datasets is presented in Table IV.. Furthermore, the
results are also visualized in Figure 2.

TABLE IV.: The base Whisper Large v2 performance on ATCO2 and
ATCOSIM datasets, each with and without prompting and normaliza-
tion during the inference.

Norm Prompt ATCO2 ATCOSIM

no no 71.62% 79.11%
yes no 29.05% 17.98%
yes yes 24.03% 16.74%

ATCO2 ATCOSIM
dataset

0

20

40

60

80

100

word error rate (%)

71.62
79.11

29.05

17.98
24.03

16.74

treatment
zero-shot

+norm

+prompt

Figure 2. The performance improvement introduced by normalization and
prompting.

We can see that the base model, without normalization and
prompting, yields a word error rate of around 72% and 79%
for the ATCO2 and ATCOSIM datasets, respectively.

With normalization, which converts natural language to
ATC-specific transcriptions, we observe a significant reduc-
tion in error rate to around 29% for ATCO2 and 18% for
ATCOSIM. With prompting, the error rates further decrease
to 24% for ATCO2 and 17% for ATCOSIM.

B. Fine-Tuned Model Performance

To analyze the improvement of fine-tuning with different
datasets, we created three fine-tuned models as follows:

1) WhisperATC A2: Fine-tuned with ATCO2 data only.
2) WhisperATC AS: Fine-tuned with ATCOSIM data only.
3) WhisperATC A2-AS: Fine-tuned with both ATCO2 and

ATCOSIM data.
With both prompting and normalization, we evaluated the

performance of these three models on the ATCO2 and AT-
COSIM datasets separately. Note that the evaluations apply to
validation data only.

The following Table V. shows the word error rates of
different fine-tuned models on both datasets. We observe that
model performance generally improves with the fine-tuning
process.

The only exception occurs when we fine-tune the model with
ATCOSIM data but apply it to the ATCO2 dataset; in this case,
the word error rate increases. This is likely because the model
becomes overly specific for higher quality audios with fewer

4
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TABLE V.: The performance of the base and fine-tuned models on
the ATCO2 and ATCOSIM datasets

Model ATCO2 data ATCOSIM data

base model 24.03% 16.74%
A2 14.66% 15.84%
AS 34.34% 1.19%

A2-AS 13.46% 1.17%

speakers from ATCOSIM. The performance of these different
models is also illustrated in Figure 3.

ATCO2 ATCOSIM
dataset

0

20

40

60

80

100

word error rate (%)

24.03
16.7414.66

1.19

13.46

1.17

model
base model

fine-tune (separately)

fine-tune (both dataset)

Figure 3. The performance of the blank and fine-tuned models on the ATCO2
and ATCOSIM datasets.

Examining the results, fine-tuning Whisper on the ATCO2
dataset resulted in a WER score of 14.66% on the same dataset.
Additional training of the model on the ATCOSIM dataset led
to a slight performance improvement, with a WER of 13.46

Conversely, fine-tuning Whisper on the ATCOSIM dataset
resulted in a more significant WER reduction. The blank
Whisper model achieved a 16.74% WER on the ATCOSIM
dataset. By fine-tuning Whisper with the 8.37 hours of training
data in the ATCOSIM dataset, the WER dropped to just 1.19%.
Extending the training with an additional 0.86 hours from the
ATCO2 dataset reduced the WER to 1.17%.

The impact of fine-tuning becomes evident in specific ex-
amples. For instance, the blank model predicted: "Telegraph,
Skyfinal 25 for touch and go," whereas the fine-tuned Whisper
model accurately predicted: "Hotel Echo X-ray final two five
for touch and go." The fine-tuned model produces meaningful
sentences instead of incorrectly predicting some words. While
the blank model recognized some terminology, fine-tuning
enabled the model to be trained with specific phraseology.

C. Performance of Different WhisperATC Models

To evaluate the performance of ATC speech transcription
across different sizes of Whisper models, we initially fine-
tuned individual models with ATCOSIM and ATCO2 datasets
separately. We then compared the word error rates of the
validation datasets from these models. The evaluation also
included variations with and without manually setting the
language to English. In total, 18 rounds of fine-tuning were
conducted.

Furthermore, we applied the normalization post-processing
step to the prediction outputs to generate a new set of normal-
ized outputs aligned with air traffic control phraseology. We
then further evaluated the improved word error rates.

Table VI. presents the results with the corresponding datasets
and fine-tuned models. The column WER (raw) shows the
word error rates directly from the fine-tuned models, while
the column WER (norm) displays the word error rates with the
normalization process applied.

TABLE VI.: Overview of transcription performances from different
WhisperATC model sizes

Dataset Model WER

ATCOSIM

tiny 30.25%
tiny.en 2.27%
base 3.49%
base.en 2.56%
small 1.50%
small.en 1.75%
medium 17.13%
medium.en 1.20%
large-v2 1.19%

ATCO2

tiny 126.88%
tiny.en 74.46%
base 36.16%
base.en 47.4%
small 22.79%
small.en 42.16%
medium 17.99%
medium.en 22.75%
large-v2 14.66%

For these results, we observe that prediction performance is
generally higher for the ATCOSIM dataset than the ATCO2
dataset. This difference is primarily attributed to audio quality,
as ATCOSIM voices are collected in a controlled simulation
environment, whereas ATCO2 voices are collected over VHF
radio frequency with low-cost receivers. Consequently, the
audio quality is significantly lower in the ATCO2 dataset.

Within each dataset, varying performances are also evident.
Specifically, for the ATCOSIM dataset, the word error rates are
lower when models specific to the English language are used.
However, for the ATCO2 dataset, manually setting the language
to English diminishes transcription performance. This could be
due to the ATCO2 dataset featuring a diverse range of speakers,
including both controllers and pilots, from various geographic
regions.

An anomaly is noted in Table VI.: the performance for
the fine-tuned medium-sized model on the ATCOSIM dataset
shows an unreasonably large error. Since its fine-tuning dataset,
procedure, and hardware are consistent with other models, we
hypothesize that there might be an issue with the base Whisper
medium model.

Overall, we find that with simulated ATC speech data, like
ATCOSIM, the optimal performance (with fine-tuning and
normalization) is around a 1.2% word error rate, for real-life
aggregated voice data from different regions, like ATCO2, the
lowest word error rate is approximately 18%. These results are
comparable to, or even surpass, the performance of state-of-
the-art but closed-source models.

5
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VI. VERIFICATION WITH LOCAL AIR TRAFFIC SPEECH

Data from LVNL (Air Traffic Control, the Netherlands) are
utilized to verify the effectiveness of our methodology in real-
world operations. The blank Whisper model is first employed
to establish a baseline on the LVNL dataset. Subsequently, we
fine-tune the Whisper model with the LVNL dataset to assess
performance improvement.

A. LVNL Dataset

The provided data encompasses a week of audio recordings
(3rd Oct. 2022 - 9th Oct. 2022) from tower controllers. The
audio files vary in length and include speech from both
controllers and pilots. Notably, the dataset lacks metadata such
as speaker IDs. As the recordings originate from the controller’s
side, the audio exhibits relatively high signal noise for pilot
speech. Additionally, it is captured at a sampling frequency of
only 8 kHz, lower than other datasets discussed earlier. Only
the audio is supplied, necessitating the creation of transcripts.

The first step involves selecting a manageable subset of
the LVNL data (139 hours across 50,000 files) for evaluation.
Ultimately, approximately three hours of audio are manually
labeled.

The audio is resampled from 8 kHz to 16 kHz, and empty
audio files, i.e., files without utterances, are removed. The files
are then shuffled randomly to eliminate time-based (and thus
speaker-based) biases.

Labeling the LVNL data, a labor-intensive task is facilitated
by using Prodigy[20]. This tool aids in labeling by providing
pseudo-labels from a pre-trained voice-to-text model. The
provided text is manually edited while listening to the audio,
resulting in accurate LVNL dataset labels. Some audio files are
rejected during labeling due to excessive noise, non-English
speech, or lack of utterances.

The final dataset comprises three hours of audio with ap-
proximately 1000 files. This dataset is randomly divided into
training and validation partitions using an 80% to 20% ratio,
resulting in 799 training samples (2 hours and 23 minutes) and
202 validation samples (37 minutes).

Performance assessment on the LVNL audio follows the
same procedure as the baseline performance assessment on the
ATCO2 and ATCOSIM datasets. The WER is calculated in four
configurations of prompting and normalization. Due to data
ownership, the LVNL data processing is confined to specialized
NLR (Royal Netherlands Aerospace Centre) hardware. The
fine-tuning process is executed on a server with an NVIDIA
Tesla V100 GPU with 32GB of VRAM.
1) LVNL Baseline Performance: First, the blank Whisper
model is evaluated on the created LVNL dataset. The word
error rate is compared with its performance on the ATCO2 and
ATCOSIM datasets. The results are presented in Table VII..

For the untrained base Whisper model, the best score of
32.02% word error rate is achieved on the LVNL dataset with
normalization.
2) LVNL Fine-Tuned Performance: Figure 5 illustrates the
fine-tuning process of the Whisper model on the LVNL dataset
alongside the ATCO2 and ATCOSIM datasets.

TABLE VII.: The performance of the blank Whisper model on the
ATCO2, ATCOSIM, and the LVNL dataset. The first two columns
indicate whether normalization and prompting are used.

Norm Prompt ATCO2 ATCOSIM LVNL

no no 71.62 79.11 78.49
yes no 29.05 17.98 32.02
yes yes 24.03 16.74 35.09

ATCO2 ATCOSIM LVNL
dataset

0

20

40

60

80

100

word error rate (%)

71.62
79.11 78.49

29.05

17.98

32.02

24.03
16.74

35.09

zero-shot

+norm

+prompt

Figure 4. The performance improvement introduced by normalization and
prompting.

The blank Whisper model established a baseline WER of
32.02% on the LVNL dataset. Fine-tuning on the 2 hours and
23 minutes of the training set resulted in a WER of 13.28%,
translating into a relative reduction of 59% due to fine-tuning,
outperforming the improvement with the model trained on
ATCO2 data.

ATCO2 ATCOSIM LVNL
dataset

0

20

40

60

80

100

word error rate (%)

24.03
16.74

32.02

14.66

1.19

13.28

base

fine-tune

Figure 5. The effect of fine-tuning and evaluating on the difference datasets.
Prompting and normalization are used.

The fine-tuning effect can be observed in the following
example:

• Blank model prediction: "Total green warfare elevator
level four VHF final eight right."

• Fine-tuned model prediction: "Tower, good morning,
KLM eight zero four; we are final eighteen, right."

This is likely due to accents and non-English speech used. With
the fine-tuned model, even though it is not perfect (e.g., "we
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is" should be "we are at"), it yields far better results than the
blank model. The latter transcript contains meaningful content,
whereas the blank model produced nonsensical text.

In comparison, the reduction in word error rate is even more
pronounced with the ATCOSIM dataset. The blank Whisper
model reached a WER of 16.74%, transcribing one in six words
incorrectly, which is already relatively low. With fine-tuning on
the ATCOSIM dataset, it achieved a word error rate of merely
1%, transcribing only one in 85 words incorrectly and a relative
reduction of 93%.

VII. DISCUSSION

A. Performance Comparisons

The performance of ATCO2 data and LVNL data are simi-
lar. Moreover, the error rate is higher than ACTOSIM. This
difference is attributed to real-world data containing a higher
noise level and a lower sampling frequency. In contrast, the
ATCOSIM dataset was produced in a simulated environment
with direct audio capture, resulting in clearer audio.

The fine-tuned models achieved a WER of 13.46% on
ATCO2 and 1.17% on ATCOSIM, surpassing the previous
state-of-the-art benchmarks of 15.4% on ATCO2 and 5.0% on
ATCOSIM [13], [15]. This indicates that WhisperATC sets a
new standard for ASR on these datasets.

When considering the required training data, Whisper’s
efficiency becomes even more apparent. The previous ATCO2
benchmark utilized 3600 hours of training data from the
complete ATCO2 dataset [13]. In contrast, training Whisper
on just 0.86 hours from the ATCO2 training partition yielded
a WER of 14.66% on the ATCO2 validation set. Extending
training to include ATCO2 and ATCOSIM datasets (totaling
9.23 hours) achieved the WER of 13.46%. This suggests that
the fine-tuned Whisper model outperforms the best available
model on the ATCO2 dataset with significantly less training
data.

A similar trend is observed for the ATCOSIM dataset,
where the best-performing model required 176.4 hours of
training data, substantially more than the hours needed for the
ATCOSIM model in our case. Again, 80% of the ATCOSIM
dataset was used for training, and validation was performed on
the remaining 20%.

B. Training and Testing Split for ATCOSIM Dataset

For the ATCOSIM dataset, which consists of recordings from
only ten speakers and includes speaker labels, splitting the
dataset based on speaker IDs could be beneficial for a more
rigorous evaluation. In order to do so, speakers sm2 and zf2
were assigned to the validation set and the rest to the training
set. The fine-tuned model produced an error rate of 3.88% on
the new validation set. Although higher than the previously
mentioned 1.17%, it still establishes a new benchmark com-
pared to the current state-of-the-art of 5.0%.

C. Out-of-Domain Voice Data for Training

The ATCO2 project concluded that using standard speech
corpora (e.g., LibriSpeech[21], CommonVoice[22]) for training
an ASR model does not effectively enhance speech recognition

performance in the ATC context [13], [23]. However, likely
due to a difference in scale in both the (pre-)training dataset
and model size, transfer learning was shown to be an effective
method for improving speech recognition performance in ATC.

D. Effect of Prompting and Normalization

In this study, we implemented prompting and normalization
processes. Both techniques significantly reduce the word error
rate. However, it is important to note that prompting relies on
a priori knowledge, which may only sometimes be feasible in
real-time transcription. Nevertheless, it could be implemented
using a data augmentation system, such as incorporating radar
data. In contrast, based on a posteriori knowledge, normaliza-
tion is more feasibly applied after transcribing.

E. Future Work and Applications

We observed that the ATCO2 and ATCOSIM fine-tuned ASR
models achieved up to 13.46% WER on ATCO2 and 1.17%
WER on ATCOSIM. Further fine-tuning on local data (ANSP
dataset) resulted in a WER of 13.28%.

Multiple studies indicate the feasibility of ASR application
in the ATC domain [24], [25]. One of the potential practical ap-
plications of ASR in air traffic control is training and simulation
[11], [12], where the required performance is less critical than
in real-world operations. The accuracy of WhisperATC, mainly
based on ATCOSIM, suggests its potential in simulations.

The current model’s performance is sufficient for ap-
plications with lower performance requirements, like post-
processing audio for incident analysis. ASR could be used to
transcribe audio for text-based investigations and documenting
purposes.

A more challenging next step would be extracting events
such as callsigns, take-off clearances, etc. This could be used
in different applications such as operational analysis tools or
even as an additional safety net. In order to do so, real-time
processing may be necessary.

F. Data Limitation

Accessing suitable data for training an ASR model in the ATC
domain is challenging. The ATCO2 and ATCOSIM datasets are
the only free publicly available datasets of adequate quality, yet
they are relatively small (1 hour and 10 hours, respectively).
The lack of data is a commonly cited issue in this field
[16], [13]. More accessible, public data availability is crucial
for improving ATC-related ASR models and promoting open
research.

Data diversification is also crucial. Ideally, training data
would encompass recordings from across the globe, incor-
porating various accents, phraseologies, and ATCo positions.
However, the ATCO2 and ATCOSIM datasets are limited
mainly to European data, with minimal diversity. This results
in models fine-tuning on these datasets and performing less
effectively on data not included in the training set. This is a
common issue in machine learning that can be addressed by
training on more diverse data. Ultimately, this could eliminate
the need for local dataset fine-tuning, as demonstrated in this
research.
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VIII. CONCLUSION

This research focuses on applying automatic speech recognition
to air traffic control using Whisper, a large-scale, weakly
supervised ASR model. The main objective was to evaluate
the performance of fine-tuned Whisper models for transcribing
air traffic control speech.

From the baseline evaluation, it is clear that blank Whisper
performs relatively well on the ATCO2 and ATCOSIM datasets,
with WERs of 24% and 17%, respectively, indicating a good
understanding of ATC speech. The fine-tuning significantly
enhances performance, setting new state-of-the-art WERs of
14% on ATCO2 and 1.2% (or 3.9 when split by the speaker) on
ATCOSIM. The model’s ability to comprehend ATC-specific
vocabulary and phraseology is particularly noteworthy. Further,
validation with actual ANSP voice data demonstrates the po-
tential application of Whisper in real-world ATC environments.

A significant contribution of this paper is the provision of the
first open models for air traffic control speech recognition with
such accuracy. Transformer-based models like WhisperATC
have the performance to begin reducing air traffic controllers’
workload in the short term. In the long term, they hold
significant potential to transform air traffic control operations.
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