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Abstract

In 1997 it was discovered that fragments of DNA
circulate freely in the blood plasma and, in the
case of pregnancy, this DNA consists of DNA be-
longing to both the mother and the fetus. This
circulating free DNA has made it possible to test
for chromosomal aberration in the fetus through
non-invasive methods, thereby avoiding the 1 in
100 chance of causing a miscarriage. Since then,
multiple methods have been developed to detect
chromosomal abnormalities with increasing accu-
racy and decreasing costs. The current state-of-
the-art WISECONDOR uses a within-sample ref-
erence set, which is then used to calculate the z-
score on a sliding window to determine whether
an aberration is present or not. Here, we in-
troduce a deep learning approach to non-invasive
prenatal testing in the form of a Long-Short Term
Memory model, which takes a sequence of GC
normalized read counts per bin on the genome
and outputs the label healthy or aberrated per
bin. To test the performance of both WISEC-
ONDOR and the newly proposed model, data is
simulated, and multiple experiments are set up
to test the influence of certain aspects of NIPT.
When comparing the LSTM model to WISEC-
ONDOR, it was shown that the LSTM model is
still too inconsistent in its performance. This is
caused by its reliance on the initialization of the
weights and its dependence on the training set’s
composition.

1 Introduction

In every pregnancy, a risk of the fetus being born with
a chromosomal aberration is present. The most common
chromosomal abnormality is aneuploidy, where there is
either an extra chromosome - trisomy - or a missing chro-
mosome - monosomy. The best-known form of aneu-
ploidy is trisomy 21, also known as Down Syndrome,
which occurs in 1 out of 700 live births in the United
States(1). Two other more uncommon chromosomal ab-
normalities are trisomy 18, Edwards syndrome, and tri-
somy 13, Patau syndrome. These occur in 1 out of 5,000

and 1 out of 16,000 live births respectively(2; 3).

Obtaining information on the presence of a chromoso-
mal aberration could help prepare the parents and care-
givers, either through medication for the mother or fetus
to help decrease the severity of the condition, or men-
tally by preparing them for the condition’s effect or the
chance of a stillbirth.

To detect such chromosomal aberrations in a fetus,
broadly speaking, there are two tracks: invasive and non-
invasive prenatal testing.

Invasive prenatal testing has been possible since the
1950s through either amniocentesis or chorionic villus
sampling (CVS). Both procedures can determine the gen-
der of the fetus and detect chromosomal abnormalities,
though CVS can be performed at an earlier gestational
age (4). Both methods have a high accuracy rate: amnio-
centesis has an accuracy of 99,4%, with a false positive
rate of ∼4% (5). CVS has an accuracy of ∼99%, with a
false positive rate of ∼0,15%(6). Though these methods
give definitive results with very high accuracy, there is a
1% chance of causing a miscarriage when taking the test
(7; 8).

In non-invasive prenatal testing (NIPT), the fetus’s
DNA is obtained through the mother’s blood plasma.
In 1948 it was discovered that there are fragments of
DNA circulating freely in the blood plasma: circulat-
ing free DNA (cfDNA)(9) and later in 1997, Lo et al.
found that the circulating free DNA of pregnant women
also contained DNA of the fetus, so-called cell-free fetal
DNA (cffDNA)(10). Through Next Generation Sequenc-
ing, the fragments of cfDNA can be sequenced, giving an
accurate representation of the mother and fetus’s DNA,
which can then be used to determine whether an aberra-
tion is present or not.

On average, the amount of fetal DNA in the cfDNA
lies between 10% and 15%, but it can range between 3%
and 30%(11). The amount of fetal DNA in the sample
is called the fetal fraction. The fetal fraction plays a
vital role in NIPT; if a sample does not contain enough
fetal DNA, the test’s conclusions may not be linked to
the fetus. These results could lead to false negatives: i.e.
the test concludes that no chromosomal aberrations are
present, but the sample contained insufficient fetal DNA,
meaning that the conclusion is drawn from the mother’s
DNA.
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In 2008 Chiu et al.(12) developed a Z-scoring method
that could detect trisomy 21 from the mother’s blood
plasma. This method was effective for both high and
low coverage data. However, a drawback of this approach
is that a set of healthy samples is required to compare
to the target sample. To reduce the number of exper-
imental con-founders, these healthy samples have to be
re-sequenced each time, to ensure identical experimental
conditions, which increases the testing cost.

To avoid this limitation, Straver et al.(13) created
the current state-of-the-art method, WISECONDOR.
WISECONDOR uses a within-sample reference set to
determine for each bin whether it is aberrated or not.
Furthermore, instead of only testing each bin individu-
ally for aberrations, a sliding window is used to find the
aberration in its entirety.

In this thesis, a deep learning model is proposed as a
novel method for NIPT. This model takes a sequence of
GC normalized read counts per bin on the genome and
outputs a label 0 (healthy) or 1 (aberrated) for each bin.
This is achieved through a bidirectional LSTM model,
consisting of a cell for each bin in the input.

This paper is organized as follows. In section 2.1
the available dataset and the procedure of simulating
new datasets are explained, followed by a description of
data preprocessing, which includes discretization of the
aligned read counts into bins and correcting for GC con-
tent bias. Then, in section 2.2 the current state-of-the-
art method WISECONDOR is explained in more detail.
Section 2.3 introduces the newly proposed method, in-
cluding the rest of the pipeline. In section 2.4 the exper-
iments that have been conducted will be defined. Section
2.5 describes the metrics used to evaluate the model and
evaluations of each of the experiments. In sections 3 and
4, the results of the experiments will be shown and dis-
cussed. Section 5 contains the conclusions that have been
drawn and recommendations for future work.

2 Method

2.1 Data

As mentioned before, cfDNA from both the mother and
the fetus can be found in the mother’s blood plasma.
Here the amount of fetal DNA is quite small. From this
small fraction of fetal DNA, an accurate representation
of the fetus’s actual DNA must be created: it has to
be sequenced. This DNA sequencing is done using next-
generation sequencing (NGS): a process to determine the
sequence of nucleotides A, C, G, and T in a sample.
These sequences are then aligned to their respective loca-
tion on the human genome. Once these reads are aligned,
the preprocessing can start by counting the amount of
reads mapping to each location and correcting them for
the GC content. This will be explained in more details
in sections 2.1.3 and 2.1.4.

2.1.1 Experimental Data

A set of experimental data from the VU Medical Center
Amsterdam diagnostic centre is available for this the-
sis. It consists of 401 healthy samples and 183 aberrated
samples. The labels for each of these samples have been
obtained through other NIPT methods, which are not
100% accurate. Therefore we cannot definitively say that
the labels are the ground truth. However, for this thesis,
the assumption is made that the labels are correct. A
thorough analysis of the data can be found in the sup-
plementary.

2.1.2 Simulated Data

There are three reasons to utilize simulated data over
the available experimental data. First of all, since we
are building a machine learning model, having sufficient
data is essential. If too little data is available or the
data is incorrect, the model might not learn anything and
will under-perform. Second, as mentioned before, the
ground truth is not known for the available samples. By
simulating the data, we can be sure of the ground truth.
Last, by simulating the data, the influence of multiple of
the samples’ characteristics on the model’s performance
can be tested—for example, decreasing the fetal fraction
by 1%.

The simulation process consists of five steps: varia-
tion, replacement, simulation, alignment, and prepara-
tion. In variation, a variant is introduced in a given
chromosome. This variant can either be a duplication or
a deletion. A set of N’s surrounds the variant to attach
to the rest of the chromosome. Next, in replacement,
the aberrated chromosome is placed within the hg19 hu-
man reference genome. Seqan’s Mason is then used to
simulate the data (14). Taking a maternal and a fetal
reference sample as input Mason will simulate a new sam-
ple with a user-defines number of reads. Hg19 is used as
the maternal reference, and the newly aberrated sample
is used as the fetal reference. In alignment, the created
reads are then aligned to the reference genome. For the
alignment, Burrows-Wheeler Alignment (BWA) was used
(15). BWA is used because it efficiently aligns small se-
quencing reads against a large reference genome (such as
the human genome) while allowing gaps and mismatches.
Last, in preparation, the aligned reads are counted per
bin and GC corrected to prepare for the model.

Datasets for six experiments are created using this
simulation process. In each of these experiments, the
influence of a different NIPT factor is analyzed. These
datasets are summarized below, and the Experiment plan
is attached in the supplementary for a more detailed
overview.

The main goal of Experiment 1 is to obtain an overall
performance of the model to benchmark against WISEC-
ONDOR. For this experiment, 1000 aberrated and 1000
healthy samples are simulated. Each sample has 20 mil-
lion reads and a fetal fraction of 10%. The aberrated
samples contain one duplication per sample, located on
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either chromosome 13, 18, 19, or 21 with a size of 60%
to 100% of the chromosome length. In Experiment 2,
the focus lies on the size of the aberration. They are du-
plications located on chromosome 21 with a size ranging
from 1Mb to 49Mb with steps of 1Mb. For Experiment 3,
the samples have a coverage ranging between 0.05x and
1.0x. This results in samples containing between 5 and
85 million reads per sample with steps of 10 million. For
Experiment 4, the fetal fraction of the samples ranges
between 1 and 20%. Experiment 5 tests the influence of
the bin size, for which the samples of Experiment 1 can
be re-used. In Experiment 6, samples containing a dele-
tion instead of a duplication are added to the dataset
of Experiment 1 to analyze the influence of a different
variant type on the model’s performance.

2.1.3 Read count per bin

After aligning the reads to their corresponding location,
the number of reads can be counted to obtain the read
depth or read coverage for each locus or area. Most com-
monly the chromosome or genome is divided into bins of
a size N . So a chromosome of 1M base pairs can be di-
vided into ten bins of size 100k. Next, for each of these
bins, the number of reads mapping inside that bin can
be counted to obtain the read count per bin.

2.1.4 GC correction

A challenge that occurs when using NGS is the GC bias.
GC bias is the dependency between read coverage and
the amount of GC content. When a fragment contains
many ’G’ or ’C’ nucleotides, this fragment will be easier
to sequence and will therefore be amplified more. This
means that a GC-rich area will have more reads than an
AT-rich area, even though that might not be the case
in the original DNA sequence(16; 17). A well-known
method to correct for this bias is Locally Weighted

Scatterplot Smoothing.

Locally Weighted Scatterplot Smoothing
Locally Weighted Scatterplot Smoothing (LOWESS) is
a non-parametric method that creates a smooth line
through data points to show the relationship between
variables and helps the user spot trends. For GC con-
tent it can show where the GC-rich and GC-poor areas
are, which can then be used in correcting the read counts.

Similar to how the number of reads mapped to an in-
dividual bin is counted, the amount of ’G’ and ’C’ nu-
cleotides is counted in that same bin on each chromo-
some using the reference genome. These GC counts are
then plotted against their bins, and from this plot, a
LOWESS fit can be obtained as depicted by the red line
in Figure 1a. The LOWESS fit is obtained as follows.
The smooth y value is found by taking the N∗frac clos-
est points to the real y value of the target bin and cal-
culating the mean. Here, frac is the proportion of the
chromosome that should be considered when determin-
ing the smooth value, a larger frac leads to a smoother
line. By calculating the smooth y value for each bin, a
smooth line is found through each chromosome, indicat-
ing the LOWESS fit on each bin’s GC content. The read
counts can then be GC-normalized by dividing the read
counts by their corresponding LOWESS value:

GC-normalized read count = RCi/GCi

Where RCi is the read count for bin i and GCi is the G
and C nucleotide counts for bin i. Figure 1b shows the
GC normalized read counts for the sample in Figure 1a.

2.2 WISECONDOR

A drawback of previous NIPT methods was the need
for healthy samples to which the target sample is com-
pared. To keep the experimental influences as low as
possible, the healthy samples have to be re-sequenced

(a) Read count per bin of size 1 million base pairs. The
number of G and C’s are counted per bin and used to obtain
the LOWESS fit (red line).

(b) Read count normalized for the GC bias.

Figure 1: Read counts are corrected for the GC bias. The number of G and C nucleotides within each bin are counted, from which the LOWESS
fit can be obtained (indicated by the red line in (a)). The read counts per bin are corrected by dividing the read count by the LOWESS fit.
Through this process, the GC normalized read count as depicted in (b) is obtained.
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Figure 2: Finding within-sample reference bins by WISECONDOR.
(a) Shows an area on chromosomes 1 and 2 for two normal (diploid)
samples X and Y. The red bar is the target bin (TB) for which a set
of reference bins is to be determined. (b) Squared differences between
target bin TB and each of the bins on chromosome 2 for both samples.
(c) Summation of the squared differences between target bin TB and
each of the bins on chromosome 2 over both samples. Numbers show
the similarity ranking of the bins with respect to target bin TB. Red
arrows indicate the bins chosen for target bin TB to be included in the
set of reference bins. (d) Stars on each row illustrate selected reference
bins on chromosome 2 for every bin of chromosome 1.

for each new target sample, increasing the costs. To
overcome this drawback, Straver et al. created WISEC-
ONDOR: a WIthin SamplE COpy Number aberration
DetectOR(13).

WISECONDOR uses a Z-score to determine whether
an area is aberrated or not. Instead of using separate
healthy samples to compare to, WISECONDOR deter-
mines a within-sample reference set for each target bin.

A schematic representation of how the within reference
bins are determined can be seen in Figure 2. The genome
is divided into bins of size B and the GC normalized
read count is determined (Figure 2a). The Euclidean
Squared Distance between the target bin to every bin
located on the other chromosomes is calculated (Figure
2b) and the bins with the smallest distance to the target
bin are selected. If selected bins are neighbouring, only
the bin with the smallest distance is kept(Figure 2c).

Once the within reference set is found, z-scoring is ap-
plied on a sliding window. The Stouffer’s z-score is used
on a window of bins:

zwi =

∑i+v
k=i−v zk√

2 · (v + 1)

where zwi is the sliding window z-score for bin i when
considering v bins on either side of bin i and zk is the z-
score of bin k individually. A bin is considered aberrated
when the absolute value of the sliding window is larger
or equal to 3.

To detect chromosomal aneuploidy, the user defines a
threshold for the ratio of bins that need to be aberrated
on a chromosome for aneuploidy to be present.

2.2.1 Results

In their paper, WISECONDOR was tested on 56 sam-
ples. This test set contained:

- Eight samples with trisomy 21

- Two samples with trisomy 13

- Two samples with trisomy 18

- Two samples with trisomy 22

- Four sample with subchromosomal variants

For aneuploidy detection, 0.5 of the bins had to be
aberrated for aneuploidy to be present. With this thresh-
old, all 14 cases of trisomy were identified.

Of the four cases used to test subchromosomal clas-
sification by WISECONDOR, three cases were correctly
identified by the sliding window method of WISECON-
DOR. WISECONDOR could not detect the fourth case.
This was most likely because of the combination of very
low coverage, low fetal fraction, and mosaism.

Though WISECONDOR caught most cases, there
were also some false positives. These false positives
were relatively small, however, with the largest one being
13Mb.

2.3 LSTM

The goal is to determine for each bin whether it is aber-
rated. Three factors that could signal a possible aberra-
tion are:

- The read count for the target bin: a high read count
could indicate a duplication whereas a low read
count could result from a deletion on this bin. To
determine whether this read count is high or low, a
reference value is needed.

- The read count of the previous bin: the read count
of the target bin can be compared to the read count
of the previous bin. If an aberration starts at the
target bin, the difference between the two bins will
be significant.

- Information on other previous bins: if an aberration
spans multiple bins, comparing them to each other
might not reveal this aberration. For example, when
a trisomy is present, the read counts within one chro-
mosome will be roughly similar, but comparing them
to a bin on the previous chromosome may show an
increase in read counts.

One of the most suitable models to incorporate all
three factors is a Recurrent Neural Network: a Long-
Short Term Memory Model. In the remainder of this
section, the proposed model architecture and the rest of
the pipeline will be explained.
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2.3.1 Preprocessing

Each sample’s data is saved in a numpy file containing
the GC corrected read count per bin, where each bin con-
sists of 10.000 base pairs (bp). This data must be scaled
to the desired window by adding up the read counts
within the window. By design, this window has to be
a factor of 10.000. The class -healthy or aberrated- of
this new window, is decided by which of the two classes
is assigned to the majority of the 10.000bp bins within
the window.

Of the binned read counts per sample, the bins be-
longing to the X and Y chromosome are removed for two
reasons. First of all, because the read count of chro-
mosome X and Y is heavily dependent on both the fetal
fraction and the gender of the fetus, the read count of the
X and Y chromosome can vary wildly, regardless of aber-
rations. Secondly, WISECONDOR, the method against
which the model will be benchmarked, omits the gender-
specific chromosomes. By removing them here as well,
we can straightforwardly compare both methods.

Next, the read counts are masked for unmappable re-
gions. Reads are aligned to a location if that alignment
is unique. The human genome has repetitious regions,
for such regions no unique alignment can be found, and
therefore no reads will be mapped there: i.e. they are
unmappable (18). Unmappable regions are identified by
determining the read count per base pair for 100 sam-
ples. If in over half the samples no reads were mapped
to a base pair, that base pair is categorized as unmap-
pable.

Lastly, the class imbalance in the data has to be ad-
dressed. Though there is an equal amount of healthy and
aberrated samples in most simulated data sets, there is
an imbalance of labels within a single sample. For aber-
rated samples, only a fraction of the labelled bins has
label 1. For example, using a bin size of 1 million, a
sample with trisomy on chromosome 21 has 49 bins with
label 1 and 2833 bins with label 0. This means only
49/2882 = 1, 7% of the bins is labelled 1. To compensate
for this imbalance, sample weights are calculated and as-
signed to each bin in each sample. These weights are
calculated by solving

∑#0
w0 =

∑#1
w1, where w0 is

the weight for bins labelled 0 and w1 is the weight for
bins labelled 1.

2.3.2 Model

This thesis aims to create a deep learning model that
takes the sequence of read counts per bin as input and
outputs whether each bin has been aberrated. For this
goal, an LSTM is chosen.
A Long-Short Term Memory Model is a version of a Re-
current Neural Network designed to solve the lack of long
term memory in existing RNNs. Its architecture consists
of a cell and three ’gates’ that regulate the information
within the LSTM unit. The three gates are known as;
the input gate, the output gate, and the forget gate. A

schematic representation of three LSTM cells and their
gates can be seen in Figure 3.

Figure 3: A schematic representation of three cells of an LSTM. The top
line indicates the long-term memory through the cells and the bottom
line indicates each previous cell’s hidden state. In red, the Forget Gate
operations are shown, in yellow the operations of the Input Gate and
in blue the operations of the Output Gate. (19)

The sequence of GC normalized read counts per bin is
the model’s input, which maps each of the bins to either
0 for healthy or 1 for aberrated. Within the LSTM cell,
the forget gate decides what information from previous
bins should be kept in the long-term memory and what
information currently being kept can be forgotten. This
updated long term memory is then passed on to the input
gate. This gate first decides what information in the
long term memory should be updated and then creates a
vector of new candidate values, combines and adds them
to the long term memory. Last, the read count of the
current bin, the hidden state of the previous bin, and
the long-term memory are used as input for the output
gate, which decides the current target bin’s state. This
state is used as the output for this bin and is passed along
as short term memory for the next bin.

For the LSTM layer(s) a Bidirectional LSTM layer is
used. A Bidirectional Layer creates two copies of the
layer: one copy where the input sequence is used in the
order as-is and one copy where the input sequence is
reversed. The results from both layers are then concate-
nated and used as output for the layer. This allows the
model to decide based on the bins that came earlier and
bins that come after the target bin. Each LSTM layer
consists of a cell per bin on the genome. The optimal
amount of LSTM layers in the model has been empiri-
cally set using the dataset used for Experiment 1. First,
a set of possible values for the number of layers was cho-
sen. Next, for each value, the model was trained 100
times, and the performance on the training and test set
were determined. Results were compared, and the op-
timal value was chosen. The results of this test can be
found in Supplementary Figure S1. The tests showed
that one LSTM layer works best. This LSTM layer used
the ReLU activation function (20).

A decision has been made to make the LSTM stateful,
meaning that the end value of the previous iteration is
used as the initial value for each iteration. This allows
for the model to start where it left off at the previous
iteration.
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The LSTM layer’s output is then used as input for a
Time Distributed Dense layer, which serves as the out-
put layer. Here the Time Distributed layer allows the
model to use the same Dense layer with the same trained
weights on each ’time step’ in the input. In this case,
each ’time step’ represents one bin on the genome. For
the output layer, the Sigmoid activation function assigns
a label between 0 and 1 to each bin.

Since this is a binary classification problem between 0
and 1, binary cross-entropy is chosen as the loss function.
The model is optimized using Adam (21).

As described earlier, hyperparameter tuning was per-
formed to determine the optimal number of epochs and
dropout rate. The results can be found in Supplementary
sections S2 and S3. The tests determined that the model
performed best with a dropout rate of 0. Therefore, no
dropout layer is added to the model. 10.000 epochs has
shown to be the optimal value. It has been shown that
when the number of epochs during training is increased,
the performance on the training set increases, but the
performance on the test set decreases, this signals that
the model is overfitting on the training data.

2.3.3 Post-process

For each bin in the input sequence, the model predicts
the probability of that bin belonging in class 1. If this
probability is higher than some cutoff point x, the class
label 1 is given to that bin, otherwise class label 0 is
assigned. As described before, hyperparameter tuning is
done to determine the optimal cutoff point. The result of
this can be found in Supplementary Figure S4. It shows
that though a lower cutoff point has a higher sensitivity,
it decreases in precision. The cutoff point of 0.5 is chosen
as the optimal parameter.

Once all bins have acquired their labels, the prediction
can be fine-tuned. The user can define a threshold for
the minimal number of bins an aberration should span to
be called a true aberration. Through this threshold calls
made on small peaks in the read count can be filtered
out.

2.4 Experiments

To test the performance and the limits of the LSTM
model, multiple experiments were set up, each validating
a different aspect of the model and its influence on the
NIPT model performance.

2.4.1 Experiment 1

The first experiment focuses on the overall performance
of the model. The dataset is divided into a training and
a test set, where 20% of the data will be in the test set
and the other 80% in the training set. As mentioned
in Section 2.1.2, the data consists of both healthy and
aberrated samples, where the aberrated samples contain
aberrations of different sizes on chromosome 13, 18, 19,
and 21. The test set is created to have an equal number

of samples of each ’group’. Meaning that of the test set,
20% of the samples consist of healthy samples, 20% of
the samples has an aberration on chromosome 13, and so
forth. Within the group of samples with an aberration on
each chromosome, there are an equal number of samples
with aberration size x as there are of size y. Likewise, the
training set has an equal number of samples from each
group.

To decrease the influence of specific files on both mod-
els’ performance, the data splitting process is repeated
once to create two pairs of training and tests sets that
consist of the same data distribution but different files in
the test and training sets. The model’s performances on
both datasets are used to compare the two algorithms.

2.4.2 Experiment 2 - 6

Each of the other experiments focuses on tuning a differ-
ent characteristic of NIPT:

- The size of the aberration

- The coverage of the sample

- the fetal fraction

- The bin size

- The variant in the sample

For each of these experiments, the training and test sets
are generated as follows. The test set will consist of 20%
of the data, and the other 80% is added to the training
set. The test set contains an equal amount of samples
for each of the values of the target characteristic:

- Experiment 2 aberration size: there are 1000 healthy
samples and 1000 aberrated samples, with aberra-
tions varying from 1Mb to 49Mb. Out of each aber-
ration size, 20 samples are available. Five of these
are added to the test set, while the other 15 are
added to the training set. This adds up to 100 aber-
rated samples in the test set. One hundred healthy
samples are added randomly to maintain the desired
distribution.

- Experiment 3 coverage: there are 1000 samples,
both aberrated and healthy. Of the coverages be-
tween 5M and 85M read per sample, 120 samples
are available per coverage, of which 11 aberrated
and 11 healthy samples per coverage are added to
the test set.

- Experiment 4 fetal fraction: the fetal fractions range
from 1% to 20%. There are 100 samples per fetal
fraction, both healthy and aberrated. Per fetal frac-
tion, ten aberrated samples and ten healthy samples
are added to the test set.

- Experiment 5 bin size: the training and test sets of
Experiment 1 are re-used.
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- Experiment 6 variant : for both deletions and dupli-
cations, there are 250 samples with varying aberra-
tion sizes. Of each aberration size of the 20 aberra-
tion sizes, three samples are added, adding up to 60
samples per variant. This is paired with 60 healthy
samples to create the test set.

These steps are repeated for every experiment to avoid
data skew based on specific files. By having an equal
number of samples for each value, the results can be com-
pared directly.

The performance of a model relies heavily on the ini-
tialization of the weights. Therefore, the performance of
two separately trained models can vary greatly. To ac-
count for this variation in our experiments, every model
is trained on the same dataset 100 times to capture these
models’ range of performance. This will be discussed in
Section 4.

2.5 Evaluation

2.5.1 Metrics

As mentioned before, the labels in the training data
are heavily imbalanced. Most data sets have an equal
amount of healthy and aberrated samples, but the labels
are assigned per bin, not per sample. This means that
aberrated samples have a combination of 0 and 1 labels.
For example, using the data of experiment 1 and a bin
size of 1 Mb, there are 5.764.000 bins, of which 5.694.490
bins are healthy and 69.510 are aberrated. If a model
predicts only the larger class, healthy, the confusion ma-
trix would result in:

Classified positive Classified negative
Positive TP 0 FN 69.510
Negative FP 0 TN 5.694.490

Table 2: Confusion matrix if the model only predicts healthy for each
bin

This results in an accuracy of 0+5.694.490
0+5.694.490+0+69.510 =

98, 8% even though it predicted the larger class for all
bins. This shows that accuracy is unfit as a metric for
an imbalanced dataset. Therefore the model will be as-
sessed through other metrics.

Instead of accuracy, the following metrics have been
chosen to be used to determine the performance of the
model (22): Sensitivity, Specificity, Precision, Youden’s
index, and Matthew’s Correlation Coefficient. These are
calculated as shown in Table 1.

Youden’s index is the difference between the true pos-
itive rate and the false positive rate. It gives equal im-
portance to the positive and negative classes regardless of
the size of each class. Looking at the first example again
where everything is classified as negative, Youden’s Index
equates to:

γ = 0− (1− 1) = 0

Matthew’s Correlation Coefficient (23) is a correla-
tion coefficient between the observed and predicted when
dealing with a binary classification problem. It maps the
true and false positives and negatives between -1 and 1,
where -1 means that the prediction is completely different
from the true label, 0 means the prediction is equal to a
random prediction and 1 represents a perfect prediction.
For the example of experiment 1 MCC equals:

MCC = 0·5.694.490−0·69.510√
(0+0)(0+69.510)(5.694.490+0)(5.694.490+69.510)

= 0
0 −→ 0

Of the two metrics, Youden’s index and MCC, MCC
will be the most important. Though Youden’s index uses
the true positive and false positive rates instead of di-
rectly calculating the amount of correctly classified base
pairs as is done when calculating accuracy, this still does
not take the imbalance between the classes enough into
account. When using specificity, the number of false
positives only influences the true negative rate. With
this dataset, the number of true negatives will often be
around 100x as large as the number of the other classes,
which leads to a high specificity regardless of the number
of false positives. This class imbalance does not influence
the MCC since it uses all classes in one calculation.

2.5.2 Experiments

For the experiments, the model is trained, and the true
and false positives and negatives predicted for the test
set for each of the varying characteristics are counted
from which the metrics can be calculated. As mentioned
in 2.5.1 MCC is the most important metric.

For experiment 1, the overall performance of the model
is tested first. True and false positives and negatives of
each sample are added together, and the Youden’s index

Metric Formula Performance

Sensitivity (Recall) TP
TP+FN Sensitivity = 0 poor, Sensitivity = 1 good

Specificity TN
TN+FP Specificity = 0 poor, Specificity = 1 good

Precision TP
TP+FP Precision = 0 poor, Precision = 1 good

Youden’s index γ = sensitivity - (1 - specificity) γ = -1 poor, γ = 1 good

Matthew’s Correlation TP ·TN−FP ·FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

MCC = -1 worst, MCC = 0 equal to random

Coefficient prediction, MCC = 1 perfect

Table 1: Metrics for performance assessment
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and MCC can be calculated. The highest MCC value will
be taken as the overall performance of the model. Besides
the overall performance, the performance per aberrated
chromosome will be determined as well. The samples are
divided into four groups, each containing files where all
aberrations are on the same chromosome. From this, the
model’s ability to detect aberrations on each of the chro-
mosomes can be analyzed separately. For each of these
chromosome groups, the MCC will be calculated again.
First, the individual best score will be determined as the
highest MCC value reached by any of the trained mod-
els. This individual score will then be compared to the
MCC score for each chromosome reached by the model
that did the best overall chromosomes.

For experiments 2-6, the datasets each contain an
equal number of samples for each target value. The MCC
value for each is calculated and compared. Two values
are taken to compare to the results of WISECONDOR:
the individual best and the overall best. The individ-
ual best is the highest MCC value for that target value
reached by any trained model, regardless of how it did
on the other target values. The overall best model is the
model with the highest overall MCC score. So for exper-
iment 2 the individual highest MCC value for files with
an aberration of size 30Mb might be 0.8 by model a, but
model a did not do well for other aberration sizes. Model
b however had an MCC score of 0.7 on aberration size
30Mb, but did better on the other aberrations sizes, giv-
ing the overall performance of the model a higher score.

WISECONDOR is run on the same test sets for each
experiment. The within-sample reference set is created
using the negative samples from experiment 1. This ref-
erence set is then used in all experiments to calculate the
Z-score.

3 Results

In this section, the results of the experiments will be
shown. For each experiment, the figures for the MCC
value, sensitivity (recall), and precision are shown in this
section. The other metrics’ figures can be found in Sup-
plementary Figures S5 - S10.

3.1 Experiment 1

In Figure 4 a boxplot of the sensitivity, specificity, and
precision and a boxplot of the Youden’s index and MCC
score show the results of experiment 1. Here the red,
green, and blue indicate the highest and average value
of the LSTM, and the performance of WISECONDOR,
respectively. The orange, cyan, and purple lines depict
the performance of the model with the highest achieved
sensitivity, the highest achieved precision, and the model
with the highest MCC value: the best scoring model
overall.

Looking at Figure 4a, we see that WISECONDOR and
the LSTM score similarly for sensitivity and specificity.

However, this sensitivity is still relatively low. WISEC-
ONDOR, the best LSTM model, and the individual best
sensitivity all lie around 0.57. This means that little over
half the aberrations are found. Combining this with the
precision, we see that WISECONDOR not only misses
almost half the aberrations, it also predicts just as many
false positives. The LSTM has higher precision, both the
individual best and the overall best model scoring around
0.87, which means that the LSTM also finds only half of
the aberrations, but far fewer false positives.

In Figure 4b sensitivity, specificity, and precision are
combined in the metrics Youden’s index and MCC. This
Figureshows that the overall performance of the LSTM
and WISECONDOR on this dataset is 0.686 and 0.559,
respectively.

As indicated in section 2.4.1, the samples are split into
four groups where each group contains the samples where
the true aberration is on chromosome 13, 18, 19, and 21
respectively. In Figure 5 the sensitivity, precision, and
MCC value results per chromosome can be seen. The red
numbers indicate the individual best score per chromo-
some, green the average, blue WISECONDOR, and pur-
ple the overall best LSTM model. Starting with the sen-
sitivity, we can see that WISECONDOR and the LSTM
follow the same trend. Chromosomes 18 and 19 are the
easiest to detect, followed by chromosome 13, with chro-
mosome 21 trailing far behind. For chromosome 21, the
best working model only calls 38% of the aberrations
present. WISECONDOR and the best overall model
detect only 13 and 8%, respectively. Notably, for all
chromosomes there exists a model that finds more true
positives than WISECONDOR. However, when looking
for one model that can accurately detect aberrations on
all chromosomes, WISECONDOR does outperform the
best LSTM model on all chromosomes except 18. When
we combine this with their precision scores, we see that
even though WISECONDOR finds more true positives
than the best LSTM model, it also finds more false pos-
itives. In the case of chromosome 21, WISECONDOR
even finds more false positives than true positives. From
this, we can conclude that though the LSTM may not de-
tect many aberrations on some chromosomes, the aber-
rations it does call are accurate.

In Figures 5c and 5d the Youden’s index and MCC
value of WISECONDOR and the LSTM are compared to
each other. Per chromosome, the LSTM again does bet-
ter than WISECONDOR. Noticeably, the performance of
both the LSTM and WISECONDOR is drastically lower
for chromosome 21 compared to chromosomes 13, 18, and
19. This will be discussed in further detail in section 4.
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(a) Sensitivity, specificity, and precision of the LSTM and
WISECONDOR in Experiment 1.

(b) Youden’s index and MCC score of the LSTM and WISEC-
ONDOR in Experiment 1.

Figure 4: (a) depicts the sensitivity, specificity, and precision of experiment 1 and (b) shows the Youden’s index and MCC value for experiment 1.
In both figures red and green indicate the highest and average values from the LSTM respectively, blue indicates WISECONDOR’s performance,
orange shows the model with the highest sensitivity, cyan the model with the highest precision, and purple the model with the highest MCC
score (the best model).

(a) Sensitivity (recall) of the models per chromosome. Red
represents the highest individual sensitivity, green the average
of all the LSTM models and blue the sensitivity of WISEC-
ONDOR. Purple indicates the overall best performing LSTM
model.

(b) Precision of the models on each of the chromosomes. Red
depicts the individual highest value, green the average of all
the LSTM models and blue the precision of WISECONDOR.
Purple shows the overall best performing LSTM model.

(c) The MCC values for each chromosome in Experiment 1.
Red indicates the highest individual value, green the mean
LSTM value, blue indicates WISECONDOR, and purple in-
dicates the overall best performing LSTM model.

(d) The MCC value of Experiment 1 per chromosome of the
best LSTM model (purple), WISECONDOR (blue) and the
individual best LSTM model per chromosome (red)

Figure 5: Results for Experiment 1 per chromosome. The x-axis shows aberrated chromosome. The y-axis depicts (a) the sensitivity (recall), (b)
the precision, (c) the MCC value, and (d) also the MCC value. The red numbers and lines represent the best individual model per chromosome,
green the average of the LSTM models, blue depicts WISECONDOR’s performance and purple the best overall performing LSTM model.
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(a) Sensitivity (recall) of the models for each of the aberra-
tion sizes. Red represents the highest individual sensitivity
for each aberration size, green the average of all the LSTM
models and blue the sensitivity of WISECONDOR.

(b) Precision of the models on each of the aberration sizes.
Red depicts the individual highest value, green the average of
all the LSTM models and blue the precision of WISECON-
DOR.

(c) The distribution of the MCC values achieved by the LSTM
models. Red shows the individual highest value for each aber-
ration size, green the average of the LSTM models an blue
WISECONDOR’s score.

(d) MCC value for each of the aberration sizes of the overall
best performing model (purple), WISECONDOR (blue) and
the individual best LSTM model (red)

Figure 6: Results for Experiment 2: Aberration size. The x-axis shows the aberration size in millions of base pairs. The y-axis depicts (a) the
sensitivity (recall) for the various aberration size, (b) the precision, (c) the MCC value and (d) also the MCC value. The red numbers and lines
represent the best individual model for each aberration size, green the average of the LSTM models, blue depicts WISECONDOR’s performance
and purple the best overall performing LSTM model.

3.2 Experiment 2: Aberration size

In Figure 6 and Supplementary Figure S6 the results
of experiment 2 can be seen. In this experiment, the
aberration size ranges from 1Mb to 49Mb (trisomy) on
chromosome 21. First looking at the sensitivity for each
aberration size in Figure 6a, it can be seen that the sensi-
tivity increases as the aberration size grows. This seems
logical since a bigger aberration should be easier to de-
tect. The LSTM model has a higher sensitivity than
WISECONDOR for the smaller aberration sizes, but
slightly worse for the larger aberrations. Precision (Fig-
ure 6b) also increases as the aberration size increases for
the LSTM model. WISECONDOR’s precision is higher
for the smaller aberrations sizes, but when the aberration
sizes increase, precision is inconsistent and varies wildly
for aberration sizes only 1 Mb apart in size. This is re-
flected in the MCC score in figures 6c and 6d as well.
Here WISECONDOR does better for aberrations sizes
smaller than 21Mb. From 21Mb onward, the individual
best for each aberration size is better. However, look-
ing at the best model overall aberration sizes, it rarely
performs better than WISECONDOR.

3.3 Experiment 3: Coverage

In Figure 7 and Supplementary Figure S7 the results for
experiment 3 for various coverages is shown. Here the
number of reads per sample is indicated on the x-axis,
where 5M reads corresponds to a coverage of 0.05x and
85M reads to 1x coverage. In Figure 7a and 7b the sen-
sitivity and precision are shown. We see that the sensi-
tivity is very consistent for both the highest individual
value, the average, and WISECONDOR. The highest in-
dividual value is 1.0 for all coverages, which means that it
found all aberration present on all samples, which would
be optimal. However, when we look at the precision,
even if the highest individual sensitivity belongs to the
same model as the highest precision, the model predicts
the same amount of false positives along with the true
positives. WISECONDOR follows that same trend, the
sensitivity is very consistent around 0.82, but its pre-
cision is 0.39 at most. These two scores are combined
in the MCC value, shown in figures 7c and 7d. These
figures show the distribution of MCC values achieved by
the LSTM, and the MCC value for the highest individual
LSTM model per coverage, the overall best LSTM model,
and WISECONDOR. Here we see that WISECONDOR
does best for a coverage of 25M reads per sample with an
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(a) Sensitivity (recall) of the models for each of the coverages.
Red represents the highest individual sensitivity for each cov-
erage, green the average of all the LSTM models and blue the
sensitivity of WISECONDOR.

(b) Precision of the models on each of the coverages. Red
depicts the individual highest value per coverage, green the
average of all the LSTM models and blue the precision of
WISECONDOR.

(c) The distribution of the MCC values achieved by the LSTM
models. Red shows the individual highest value for each cov-
erage, green the average of the LSTM models an blue shows
WISECONDOR’s score.

(d) MCC value for each of the coverages of the overall best
performing model (purple), WISECONDOR (blue) and the
individual best LSTM model (red)

Figure 7: Results for Experiment 3: Coverage. The x-axis shows the various coverages noted in the number of reads per sample. The y-
axis depicts (a) the sensitivity (recall) for the various coverages, (b) the precision, (c) the MCC value and (d) also the MCC value. The red
numbers and lines represent the best individual model for each coverage, green the average of the LSTM models, blue depicts WISECONDOR’s
performance and purple the best overall performing LSTM model.

MCC value of 0.566 versus 0.460 of the best LSTM. For
the higher coverages, the LSTM outperforms WISEC-
ONDOR. WISECONDOR performing best at 25M reads
per sample might be because the reference set used in
calculating the z-score was determined using the dataset
from experiment 1. In this dataset, all samples have a
coverage of 20M reads. This will be discussed in section
4.

3.4 Experiment 4: Fetal Fraction

In Figure 8 and Supplementary Figure S8 the results for
experiment 4 can be seen. Figure 8a shows the sensitivity
(recall) of the LSTM models and WISECONDOR. The
sensitivity of both models is quite consistent. WISEC-
ONDOR’s sensitivity lies above 0.73 and mostly around
0.82 for fetal fractions above 1%. The highest sensitiv-
ity for each fetal fraction individually is 1.0 for all fetal
fractions, so for each fetal fraction, a model exists that
can find all aberrations. Figure 8b shows that for sam-
ples with a fetal fraction of 11% or higher, a model can
find the aberration with precision around 0.8 or higher.
However, these could very well be two different mod-
els. WISECONDOR’s precision is high for lower fetal
fractions and drops drastically when the fetal fraction

increases. A large influence on this is that the within-
sample reference set is created for a dataset where all
samples have a fetal fraction of 10%. This will be dis-
cussed further in section 4. If we look at the MCC
value in figures 8c and 8d we see that the MCC value
of WISECONDOR follows the same line as its precision.
It does better at the lower fetal fractions above 2% but
gradually worsens with an increasing fetal fraction. For
the LSTM we can see that the highest sensitivity and
the highest precision are not from the same model. The
MCC value of the LSTM, both individually highest and
overall best, is consistent for all fetal fraction above 2%.

3.5 Experiment 5: Bin size

The results of the LSTM model in experiment 5 can be
seen in Figure 9, Figure 10, and Supplementary Figure
S9. In Figure 9a the sensitivity, specificity, and precision
of the model are depicted for each bin size: 2Mb, 1.5Mb,
1Mb, 750kb, 500kb, and 250kb. The orange boxplots
show the sensitivity for each bin size, the black boxplots
show the specificity and the cyan boxplots show the pre-
cision. The red and green numbers indicate the max-
imum and mean values, respectively. The purple lines
and numbers depict the model with the overall highest
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(a) Sensitivity (recall) of the models for each of the fetal frac-
tions. Red represents the highest individual sensitivity for
each fetal fraction, green the average of all the LSTM models
and blue the sensitivity of WISECONDOR.

(b) Precision of the models on each of the fetal fractions. Red
depicts the individual highest value per fetal fraction, green
the average of all the LSTM models and blue the precision of
WISECONDOR.

(c) The distribution of the MCC values achieved by the LSTM
models. Red shows the individual highest value for each fe-
tal fraction, green the average of the LSTM models an blue
WISECONDOR’s score.

(d) MCC value for each of the fetal fractions of the overall
best performing model (purple), WISECONDOR (blue) and
the individual best LSTM model (red)

Figure 8: Results for Experiment 4: Fetal Fraction. The x-axis shows the various fetal fractions in percents. The y-axis depicts (a) the sensitivity
(recall) for the various fetal fractions, (b) the precision, (c) the MCC value and (d) also the MCC value. The red numbers and lines represent
the best individual model for each fetal fraction, green the average of the LSTM models, blue depicts WISECONDOR’s performance and purple
the best overall performing LSTM model.

(a) Sensitivity, specificity, and precision of the LSTM in Ex-
periment 5.

(b) Youden’s index and MCC score of the LSTM in Experi-
ment 5.

Figure 9: (a) depicts the sensitivity, specificity, and precision of Experiment 5 and (b) shows the Youden’s index and MCC value for Experiment
5. In both figures, red and green indicate the highest and average values from the LSTM respectively, and purple indicates the overall highest
performing model. In (a) the orange boxplot shows the sensitivity of the model for each bin size, the black boxplot shows the specificity and
the cyan boxplot shows the precision. In (b) the pink boxplot shows the Youden’s index and the green boxplot the MCC values.

MCC value, which is the best performing model. It can
be seen that as the bin size decreases, the sensitivity and
precision increase. The models using a bin size between
2Mb and 1Mb have a sensitivity around 0.56 and a pre-
cision around 0.82. The models using a bin size between
750kb and 250kb achieve a sensitivity above 0.6 and a
precision over 0.9.

Figure 9b depicts the Youden’s index and MCC values
of the models for each bin size. The pink boxplot shows
the Youden’s index and the green boxplot the MCC value
in this figure. The red, green, and purple numbers indi-
cate the maximum, mean, and overall best performing
model. It can be seen that the MCC value increases
as the bin size decreases, indicating that the model per-
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(a) Sensitivity (recall) of the models per chromosome per bin
size.

(b) Precision of the models on each of the chromosomes per
bin size.

(c) The MCC values for each chromosome for each bin size
in Experiment 5.

Figure 10: Results for Experiment 5: Bin size. The x-axis shows the various bin sizes and per bin size it shows each of the chromosome 13, 18,
19, and 21. Chromosome 13 is shown by the orange boxplots, chromosome 18 is shown by the pink boxplots, chromosome 19 is shown by the
cyan boxplots, and chromosome 21 is shown by the black boxplots. The y-axis depicts (a) the sensitivity (recall) for the various bin sizes and
chromosomes, (b) the precision, and (c) the MCC value. The red numbers and lines represent the best individual model for each bin size for
each chromosome, green the average of the LSTM models, and purple the best overall performing LSTM model.

forms better as the bin size decreases, reaching at most
an MCC value of 0.732 for a bin size of 500kb.

In Figure 10 the sensitivity, precision and MCC value
for each bin size are shown per chromosome. In this fig-
ure, the orange boxplot depicts chromosome 13, the pink
boxplot depicts chromosome 18, the cyan boxplot depicts
chromosome 19, and the black boxplot depicts chromo-
some 21. The maximum, mean, and best overall model
are shown in red, green, and purple, respectively. Figure
10a shows that the sensitivity (slightly) increases as the
bin size decreases. For chromosome 13 it increases from
0.513 for a bin size of 2Mb to 0.553 for a bin size of 250kb.
For chromosome 18 and 19, it increases from 0.849 and
0.827 to 0.990 and 0.997, respectively, and for chromo-
some 21 it increases from 0.299 to 0.684. However, the
highest values for the sensitivity on chromosome 21 do
not stem from the best performing model. If we look
for a model that does well on both chromosome 21 and
the other chromosomes, sensitivity only increases from
0.099 to 0.114. A sensitivity of 0.114 means that the
model detects 10% of the aberrations on chromosome 21
at most. In Figure 10b the precision for each chromo-
some for each bin size is shown. It can be seen that the
precision for chromosome 13 is stable with the highest
value above 0.994 for each bin size. For chromosomes
18 and 19, the precision increases slightly from 0.818 an

0.738 to 0.935 and 0.914, respectively. The precision for
chromosome 21 increases as well, rising above 0.95 for bin
sizes of 1Mb and smaller. However, as we have seen in
Figure 10a, even if the highest precision belongs to the
same model as the highest sensitivity, the models only
find 20% of the aberrations at most. In Figure 10c the
MCC value for each chromosome for each bin size can be
seen. A (slight) increase in MCC value can be seen for
chromosome 13, 18, and 19, the latter two reaching an
MCC value of 0.896 and 0.879 respectively for a bin size
of 250kb. However, for chromosome 21 it can be seen
that the highest MCC value stagnates, increasing only
from 0.271 for a bin size of 2Mb to 0.325 for a bin size of
250kb.

3.6 Experiment 6: Variant

Figure 11 and Supplementary Figure S10 show the re-
sults for experiment 6. In this experiment, the difference
in performance between samples with a duplication ver-
sus samples with a deletion is tested. First looking at the
sensitivity and precision in Figures 11a and 11b, the per-
formance of the LSTM is very similar for both variants.
The maximum sensitivity lies at 0.763 and 0.795 for dele-
tions and duplications, respectively, while the maximum
precisions lie at 0.852 and 0.990. For WISECONDOR,
we see very different performances for each variant. For
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(a) Sensitivity (recall) of the models for deletions and dupli-
cations. Red represents the highest individual sensitivity for
each variant, green the average of all the LSTM models and
blue the sensitivity of WISECONDOR.

(b) Precision of the models on each variant. Red depicts the
individual highest value per variant, green the average of all
the LSTM models and blue the precision of WISECONDOR.

(c) The distribution of the MCC values achieved by the LSTM
models. Red shows the individual highest value for each vari-
ant, green the average of the LSTM models an blue WISEC-
ONDOR’s score.

(d) MCC value for each of the variants of the overall best
performing model (purple), WISECONDOR (blue) and the
individual best LSTM model (red)

Figure 11: Results for Experiment 6: Variants. The x-axis shows the variant type: deletion or duplication. The y-axis depicts (a) the sensitivity
(recall) for the two variants, (b) the precision, (c) the MCC value and (d) also the MCC value. The red numbers and lines represent the best
individual model for both variants, green the average of the LSTM models, blue depicts WISECONDOR’s performance and purple the best
overall performing LSTM model.

samples with a deletion, WISECONDOR has a sensitiv-
ity of 0.884 and a precision of 0.718. For samples with
a duplication, on the other hand, the sensitivity is 0.109
and the precision 0.352. This is shown in the MCC value
in figures 11c and 11d as well. For deletion, WISECON-
DOR has an MCC value of 0.795, but for duplication, it is
only 0.191. The LSTM model equally has a better score
for deletion than duplication, 0.788 versus 0.549. These
results will be discussed further in the next section.

4 Discussion

In this section, we will analyze the results seen in the
previous chapter.

A few things have to be noted before we analyze the re-
sults. First of all, the unmappable regions were not tak-
ing into account during the simulation of the data. While
simulating an aberration, the aberration size was given
as input for which a start base pair location was chosen at
random. This means that the true aberration might be
smaller or split into multiple aberrations by an unmap-
pable region. Though these unmappable regions were
taken into account when calculating the performance per
base pair, decreasing the size or splitting the aberration

in multiple smaller aberrations might make it harder to
detect.

Furthermore, both WISECONDOR and the LSTM use
bins to split up the genome and determine a label for each
bin instead of each base pair. The simulated aberrations
do not adhere to these bins. If an aberration spans half
of a bin, the methods have two choices: add the bin to
the aberration or label it as healthy. Half of the bin
will either be added to the false positives or the false
negatives, respectively.

Last, before the experiments were done, the within-
sample reference set for WISECONDOR had to be cre-
ated. This was done on the negative samples in the
dataset for experiment 1, meaning that the within-
sample reference set was created on data with a cov-
erage of 20M reads per sample and a fetal fraction of
10%. Therefore WISECONDOR will likely perform bet-
ter in experiments 3 and 4 for coverages and fetal frac-
tions closer to this value.

Experiment 1 showed that the overall best perform-
ing LSTM works better than WISECONDOR. Though
both methods had a sensitivity around 0.57, finding only
slightly more than half the aberrations, the LSTM model
had a higher precision, indicating that of the aberrations
found 86% is correct as opposed to the 56% of WISEC-
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ONDOR. When split out over the chromosomes, it be-
came apparent that both methods do well on chromo-
somes 13, 18, and 19, but considerably worse on chro-
mosome 21. A sensitivity of 0.082 and 0.134 for the
LSTM and WISECONDOR, respectively, means that
both methods find less than 15% of the true aberrations.
In addition to finding only a small amount of the true
aberrations, WISECONDOR also found a considerable
amount of false positives. The LSTM was relatively pre-
cise with a precision of 0.846, though this model found
only 8% of the true aberrations.

One of the reasons that both methods do worse on
chromosome 21 than on other chromosomes might be
that chromosome 21 is one of the smallest chromosomes
and has the smallest amount of reads mapped to it. Each
sample in this dataset has 20M reads, but these reads are
mapped proportionately to the chromosomes’ size. With
chromosome 13 being over twice as big as chromosome
21, twice as many reads will be mapped there. Having
more data to learn from, detecting aberrations on the
larger chromosomes will be more comfortable.

Another reason could be the unmappable regions. As
can be seen in table 3 almost 27% of chromosome 21 is
unmappable. Using a bin size of 1Mb, the unmappable

regions could span up to 12 of the 49 bins.

Unmappable Chromosome Length U\L
Chr13 19,55M 115,17M 0,170
Chr18 3,38M 78,077M 0,0439
Chr19 3,28M 59,129M 0,0554
Chr21 12,94M 48,130M 0,269

Table 3: Size of the unmappable regions, the length of the chromosome
and the ratio of unmappable regions versus length of the chromosome
for chromosomes 13, 18, 19, and 21

In Figure 12, the unmappable regions are depicted in
red for each of the chromosomes 13, 18, 19, and 21.
Since the unmappable regions were not taken into ac-
count when simulating new data, the chance is high that
a part of the aberration is located in the unmappable
region. In Figure 12, it can be seen that for both chro-
mosome 13 and 21, the unmappable region is located at
the beginning of the chromosome, whereas it is located in
the middle of the chromosome for chromosomes 18 and
19. Though the unmappable regions on chromosome 21
relatively span the largest area, the aberrations on chro-
mosome 18 and 19 are split into two smaller aberrations

(a) Class labels for each bin on chromosome 13 for an aber-
ration size of 80Mb.

(b) Class labels for each bin on chromosome 18 for an aber-
ration size of 70Mb.

(c) Class labels for each bin on chromosome 19 for an aber-
ration size of 45Mb.

(d) Class labels for each bin on chromosome 21 for an aber-
ration size of 30Mb.

Figure 12: The class labels per bin for an aberration size of 80, 70, 45, and 30Mb for chromosome 13, 18, 19, and 21 respectively. Class 0
indicates a healthy bin and class 1 indicates an aberration bin. The unmappable regions are depicted in red.
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by the unmappable region, making them harder to de-
tect. Consequently, the unmappable regions do not seem
to cause a drop in performance when comparing chromo-
some 21 to the other chromosomes.

Experiment 2 showed that both methods worked bet-
ter when detecting larger aberrations. The LSTM model
has an MCC value of over 80% for aberrations of size
35Mb or higher, with a few exceptions. For trisomy de-
tection, the LSTM has an MCC score of 93%. WISEC-
ONDOR scores lower on the larger aberration sizes, with
its MCC values varying wildly between aberration sizes
that are only 1Mb apart. WISECONDOR does better for
the smaller aberrations though, reaching an MCC value
above 0.2 at aberration size 8Mb, while the LSTM does
not reach that value until 17Mb.

However, the LSTM model only outperforms WISEC-
ONDOR when for each aberration size a different model
is used. If we look for one model that can accurately
predict aberrations of all sizes, Figure 6d shows that
WISECONDOR outperforms the best overall perform-
ing model on almost all aberrations sizes. Again we
see that the performance of both methods varies wildly
for aberration sizes only 1Mb apart. Especially for the
larger aberrations sizes, the performance of both meth-
ods seems to follow the same trend. This could indicate
that the data causes this.

From the experimental data analysis in the experiment
plan (in the Supplementary), we know that the smallest
aberration in the data set is 30.25Mb. Looking only at
both methods’ performance on aberrations of size 30Mb
and larger, we obtain the best LSTM model depicted in
Figure 13. Here the LSTM model performs better than
WISECONDOR, especially on the larger aberrations. It
still has the sudden drops for a few aberrations sizes, so
this does seem to point at it being caused by the data.

Figure 13: MCC score of the best performing LSTM model on aber-
ration sizes 30Mb or larger depicted against WISECONDOR. Purple
indicates the best LSTM model and blue shows WISECONDOR.

These drops could occur because part of the aberra-
tion is located in the unmappable regions, decreasing the
aberration size. Suppose for a specific aberration size, a
large part of the aberration is located in the unmappable
regions, and for an aberration size of 1Mb larger, the
aberration is located mainly outside the unmappable re-
gions. In that case, the aberration size of the former will

be smaller. However, when we look at the aberrations’
sizes, this does not seem to be the case. In Figure 14,
the aberration size when the unmappable region is re-
moved is plotted against the overall aberration size. The
red vertical lines show aberration sizes where a sudden
drop in performance was perceived. Though for some of
the red lines, the average aberration size without the un-
mappable regions does show a slight drop, this does not
seem to be why both methods perform this inconsistent
for aberrations only 1Mb apart.

Figure 14: Plot of the average aberration size when the unmappable
regions are removed from the length of the aberration. The blue line de-
picts the aberration length when the unmappable regions are removed
(x1Mb) and the red vertical lines are five values where a sudden drop
in performance occurred (30, 34, 37, 45, and 48Mb

Besides the size of the aberration, once the unmap-
pable region is removed, it could be caused by the aber-
ration’s actual location on the chromosome in relation to
the unmappable region. As mentioned before, if an aber-
ration is split in two by an unmappable region, it will
be harder to detect both aberrations. However, when
looking at the aberrations’ location on chromosome 21,
there is no large difference between aberrations sizes only
1Mb apart. For example, a large sudden drop in perfor-
mance occurs for aberrations of size 45Mb. In Figure 15,
the class for each bin on chromosome 21 can be seen for
the samples with an aberration size of 44Mb, 45Mb, and
46Mb. In the Figure, the class for each bin (0 for healthy
and 1 for aberrated) is depicted on the y-axis, the bins on
chromosome 21 on the x-axis and the red zones indicate
the unmappable regions. All three plots do not deviate
from each other largely.

Overall, when only focusing on detecting larger aber-
rations, the LSTM model outperforms WISECONDOR
on most aberration sizes. For smaller aberrations, the
LSTM is too unreliable. However, both methods show
sudden drops in performance for aberrations only 1Mb
apart for which no reason has been found.

In experiment 3, we saw that both WISECONDOR
and the LSTM did not perform well (0.566 and 0.496 at
most for any coverage, respectively). The coverage has a
considerable influence on the performance of a method.
This may be because even though the read count’s form
remains similar, the read count itself might be as much
as 10x as large. In Figure 16 the GC normalized read
counts is shown for a sample with 5M reads (a) and a
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(a) (b)

(c)

Figure 15: Plot of the class label for each bin on chromosome 21 for
aberration sizes 44, 45, and 46Mb. Class 0 indicates a healthy bin
and class 1 indicates an aberration bin. The unmappable regions are
depicted in red.

(a) (b)

(c)

Figure 16: GC normalized read counts for a sample with (a) 5M reads,
(b) 85M reads and (c) 5M versus 85M reads

sample with 85M reads (b). Both read counts have a
similar form, but as can be seen in (c) the sample with
85M reads has a read count that is 10x higher.

This shows that samples whose coverages are far apart
are quite diverse when compared to each other. There-
fore, intuitively, a model that does well for coverage x
will do better for coverages close to x than it does for
coverages more deviating from x. To test this, a plot can
be seen in Figure 17 where the MCC values of the best
model for each coverage are shown.

For each coverage, the highest value is shown in the
colour of the model it belongs to. For each of these mod-
els, we see that the more the coverage deviates from the
best performing coverage, the lower the performance be-

Figure 17: MCC value of the best performing model for each coverage.
The highest value for each coverage is shown.

comes. For WISECONDOR, we saw the same. In Fig-
ure 7, we saw that WISECONDOR performed best at a
coverage of 25M reads per sample, which is the coverage
from which the reference set is made. The performance of
WISECONDOR decreases as the coverage deviates more
from 25M reads per sample.

It became apparent that the LSTM model is not capa-
ble of generalizing. If the coverages in the training data
deviate too much, the model only learns to predict for a
small range of coverages, performing worse for coverages
outside this range.

We can deduce that the LSTM model should be
trained on a set of samples within a specific range of
coverages. That trained model can then be used to
detect aberrations on samples within that range of
coverages. If a lab would decide to sequence more or
fewer samples than the range of samples the model is
trained on, the model should be retrained on samples
with comparable coverages. This means that the model
should be re-trained if a new sequencing protocol
becomes available, especially if new types of data are
used. The LSTM does not seem to work adequately
enough for a training set where the coverages are too
widely spread.

Experiment 4 showed the influence of the fetal fraction
on the performance of the methods. Compared to the
coverage, the fetal fraction has a smaller influence on the
read counts. In Figure 18, a plot of a sample with 1%,
10%, and 20% fetal fraction can be seen for a bin size
of 1M. The difference in read count is relatively small.
One could argue that this means that if samples with
varying fetal fractions are tested, the performance will
not deviate much between the samples.

In Figure 8 this seems to be the case. The performance
of the LSTM on a set of varying fetal fraction remains
between 0.51 and 0.66. Even for the best overall per-
forming LSTM, the MCC value for each fetal fraction
lies close together, except for a fetal fraction of 1%. For
WISECONDOR, we see that it performs best for fetal
fraction between 2 and 11 %. This is mainly because the
reference set was created using samples with a fetal frac-
tion of 10%. Figure 18 shows that the read count for a
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Figure 18: Read counts for a sample with 1% fetal fraction (red), 10%
fetal fraction (blue) and 20% fetal fraction (green)

sample with a fetal fraction of 20% lies farther from the
read count of a sample with 10% fetal fraction than a
sample with 1% fetal fraction. Therefore it makes sense
that WISECONDOR does better for the fetal fraction
lower than 10% than for those higher than 10%.

Figure 19: MCC values of the model that performed best per fetal
fraction. The color of the MCC value indicates to which model it
belongs.

For each of the fetal fractions, the model with the
highest MCC score is plotted in Figure 19. In this
Figure, the highest MCC value for each fetal fraction is
shown in the colour of the model it belongs to. It can be
seen that the highest MCC scores for each of the 20 fetal
fractions belong to only six models. Noticeably, most
of the highest values belong to the same model if the
fetal fractions lie close to each other. This shows that
if a model does well for a certain fetal fraction, it also
does well for fetal fractions close to it. The experiment
has shown that though the LSTM model’s performance
could be higher, the samples’ fetal fraction does not
significantly influence its performance as long as they do
not deviate too much from each other.

In experiment 5, the influence of the bin size on the
performance was measured. Decreasing the bin size had
a positive effect on the performance on chromosomes
18 and 19. As the bin size decreased, the sensitivity,
precision, and MCC value each increased. As men-
tioned before, the LSTM model uses bins to determine
whether an aberration is present. This means that if an

aberration spans only a part of the bin, the model will
either label it as aberrated or healthy, which adds false
positive or false negative base pairs to the performance,
respectively. With a smaller bin size, the number of
base pairs in the bin that are called wrong is smaller,
leading to a higher precision, which results in a higher
MCC value. For chromosome 13, the metrics do not
deviate much between a bin size of 2Mb and 250kb. Its
highest MCC value remains between 0.588 and 0.612.
This is mostly because of the sensitivity remaining low
for each bin size. The highest sensitivity it reaches is
0.555, detecting little over half the aberrations present
at most. For chromosome 21, the MCC value increases
only slightly. This is due to the precision increasing
slightly, which, as explained before, could be because
the aberrations do not adhere to bins, while the LSTM
does. The sensitivity remains very low, detecting 9,3%
of the aberrations present on average. Only one model
detected over half the aberrations present with a sensi-
tivity of 0.68, but this model has a precision of 0.079,
meaning that it also found many false positives. We can
see that the LSTM model performing worse for chromo-
some 21 is not due to the bins’ size. Overall a smaller
bin size does increase the performance of the model.
However, even with a smaller bin size, the model still
does not perform adequately for chromosomes 13 and 21.

In experiment 6, the difference in detecting duplica-
tions and deletions was tested. Both WISECONDOR
and the LSTM model were better at detecting deletions.
Intuitively it is easier to notice if (a part of) a chromo-
some is missing as opposed to noticing if the number of
reads for (a part of) a chromosome is higher than usual.
Since read counts in itself can vary depending on many
factors such as the coverage or fetal fraction, detecting a
rise in read counts might be more challenging.

Interestingly, the LSTM model did better at detect-
ing duplications on chromosome 21 in this experiment
than in experiment 1. Though the precision decreased,
the sensitivity increased. This shows that the model de-
tected more true aberrations, but also added more false
positives. The model might have been able to find more
aberrations because, in this experiment, the aberrations
only occurred on chromosome 21, allowing the model to
focus on this chromosome.

In Figure 20, the MCC values for the best model for
each variant are shown. The pink line and number show
the model that performed best when detecting deletions
and the green line and number show the same for dupli-
cations. From this plot, we can see that the model only
learns to detect deletions or duplications. If the score
for one variant is high, the score for the other is zero or
lower.

This leads us to believe that if the LSTM model is
trained solely on either duplication or deletions on chro-
mosome 21, the performance will be higher than when
combined. Since evaluation is fast, multiple models could
be trained, each on a different variant, and the results of

18



Figure 20: MCC values of the model that performed best per variant.
Pink depicts the best model for detecting deletions and green shows
the best model for detecting duplications.

each model on a new test sample could be combined to
obtain the end detection for multiple variants.

5 Conclusion

Though the LSTM shows potential for detecting fetal
chromosomal aberrations, the current model is too in-
consistent. The models range from an MCC value of
-0.374 to 0.95, while WISECONDOR is more robust in
its detection.

One of the reasons the model is very inconsistent is
its reliance on the initialization. If the initialization of
the weights is not right, the model will do one of two
things. It learns nothing and predicts the larger class for
each bin, leading to an MCC value of 0. Alternatively, it
learns wrong information, predicting random aberrations
that are not true, leading to an MCC value below zero,
indicating that its prediction is worse than a random
prediction. One way to improve the initialization is to
train the initial state as a parameter. This can be done
by either not resetting the states after the training phase
and using this as initial states for the test set, or by first
detecting aberrations on a sample from the training set
and using those states as initial states for the test set.

Another reason the model often does not perform well
is its dependence on the dataset. As we saw by compar-
ing experiments 1 and 6, the model performs differently
when the dataset consists of other samples. From this,
we can see that the LSTM has difficulty with general-
ization. When trained on one particular coverage, the
model has difficulty detecting aberrations on a sample
with much smaller or larger coverage. The same goes for
samples containing different variants. When the model is
trained on one variant, it detects barely any other vari-
ants present. An optimal training set for the current
model would have the following characteristics. The sam-
ple should contain aberrations on all chromosomes with
a size of at least half the chromosome size. The current
model does not detect the aberrations of a smaller size
consistently enough. The aberration on the chromosome
should be of one variant. To improve this, perhaps two

LSTM models can be combined, each specializing in a
different variant, and combining both models’ output to
obtain the overall output. The sample’s fetal fraction
should be 3̃% or higher, though a higher fetal fraction
is preferred. The coverages of the sample should be no
more than 10M reads apart. The same goes for the sam-
ple that will be tested. If the lab decides to sequence
more or fewer samples than the range on which the model
is trained, the model should be re-trained on compara-
ble coverages. The model should be trained on a small
bin size. This thesis’s smallest bin size is 250kb, which
performed the best of all tested bin sizes. In this the-
sis, no smaller bin sizes due to the time restraint when
training the model, since a smaller bin size leads to a
longer training time. A recommendation would be to
test even smaller bin sizes when more time is available.
The dataset might also be improved by taking the un-
mappable regions into account while simulating data.

Though the model often does not perform well, some
trained models do detect aberrations quite accurately,
and we saw in most experiments that although WISEC-
ONDOR has a higher sensitivity, the LSTM often has
higher precision. So even though the LSTM finds fewer
aberrations than WISECONDOR, the calls it does make
are more precise.

In this thesis, we focused on creating an LSTM model
to predict chromosomal aberrations. For this pur-
pose, other many-to-many classification methods could
be looked into as well. A Conditional Random Field (24)
might be useful for this purpose. It can take a sequence
as input, each with its label, and instead of predicting
the label for each bin separately, it uses the dependencies
between the predictions. It uses the input sequence in a
single exponential model to determine the joint proba-
bility of the entire sequence of output labels. This model
could be tested on its own or in combination with an
LSTM model, as seen in (25).

Currently determining the fetal fraction of a sample is
very hard, especially for female pregnancies. A method
that can determine the fetal fraction for both male and
female pregnancies is SeqFF(26), which uses both an
elastic net (Enet)(27) and Second Weighted Rank Selec-
tion Criterion (WRSC)(28) to determine the fetal frac-
tion from the read count on the gender chromosome.
Ensuring that the fetal fraction is high enough is very
important in NIPT, as mentioned before. Therefore,
a method that could detect chromosomal abnormalities
and determine the fetal fraction would be beneficial.
Multi-task learning could be used to achieve this goal,
where both tasks are solved simultaneously using the in-
formation from each other.
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Experiment plan

Noor van Ruyven

1 Data Simulation Experiment

Overall there are three reasons for simulating data for this project. First of all, to train a deep learning
model, (a lot of) data is needed. If there is not enough data available, a deep learning model may not be able
to learn anything and will therefore not perform well. Second, the ground truth of the data is not known.
The data is labeled, but these labels come from WISECONDOR [1]. Even though WISECONDOR has high
accuracy, it is not 100% certain that the labels they output are true. So by simulating data yourself, the
ground truth will be known. Last, by simulating data, experiments can be set up to test the limits of the
model. Experiments can be done to determine for which value of, for example, the coverage the model does
not work adequately anymore.
The current dataset consists of 584 samples, of which only 183 are positive for chromosomal abnormality.
These samples consist of reads, aligned to the human genome. For each of these samples, the mapped reads
can be counted (per bin), which can then be used as input for a model.
For simulation, Mason [2] will be used, which takes two reference genomes as input and simulates a new
sample from them. Here one reference will be hg19 for the maternal reference and the other will be hg19
where one contig has been replaced by an aberrated contig, to represent a fetal reference. Afterward these
new samples will be aligned to a reference genome, after which they are ready to be pre-processed and then
used as input for a model.
In this experiment plan, the available data will be analyzed and the experiments and their data will be
defined.

2 Available data

Multiple parameters can vary during data simulation. To obtain a general feel of what the simulated data
should look like, the currently available data is analyzed. This dataset consists of 401 negative samples and
183 positive samples. Their labels originate from calls made by WISECONDOR. These labels are assumed
to be true.
The following parameters will be analyzed: the number of reads per sample, the number of aberrations per
sample and their size, the location of the aberrations on the chromosome, and which variants are present.

2.1 Number of reads per sample

For both positive and negative samples the number of reads are counted and a boxplot is created as can be
seen in figure 1. The average for both positive and negative samples lies around 20M reads per sample.

2.2 Number of aberrations per sample

For the positive samples, the number of aberrations within a single sample is counted. In Figure 2 it can
be seen that samples with one aberration occur most often with a considerable amount. Of the 183 positive
samples, 79% contains one aberration, 17,5% contains two aberrations, and 3,5% contained three or more.

2.3 Size of aberrations

As can be seen in figure 3, the size of the aberrations mostly varies between 40 and 60Mb. The smallest
aberration in the dataset has a size of 30.25Mb and the largest a size of 180.75Mb.
When this is split up per chromosome (Figure 4) it can be seen that the aberration size differs for each
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Figure 1: Number of reads per sample Figure 2: Number of aberrations per sample

chromosome. The figure also shows that for some chromosomes no sample with an aberration located on
said chromosome exists in this dataset (4, 15, X, Y). For these chromosomes, no conclusion can be drawn
solely from this dataset.

Figure 3: Boxplot of the average aberration size

Figure 4: Boxplot of the average aberration size
per chromosome

2.4 Location of aberrations

In figure 5 the distribution of aberrations over the chromosomes can be seen. As noted before, for some
chromosomes the dataset does not contain a sample with an aberration located there. These chromosomes
have been removed from the x-axis.

Figure 5: Number of aberrations per chromosome

Most aberrations occur on chromosome 21, followed by chromosomes 19, 13, and 18.
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For each of these chromosomes, the location is analyzed, whether they occur only on a specific part of the
chromosome or uniformly over all base pairs. For each chromosome, a plot is created showing the span of
each aberration. The large unmappable regions (telomeres and centromeres) are marked in red. It can be
seen that some of the aberrated regions include the unmappable region and some do not. This has to do
with the parameters set by WISECONDOR.
In figure 6 the plots for chromosomes 13, 18, 19, and 21 (the chromosomes with the most samples in the
dataset) have been added.

(a) Chromosome 13 (b) Chromosome 18

(c) Chromosome 19 (d) Chromosome 21

Figure 6: Aberration location for chromosomes 13, 18, 19 and 21

The figures show that the aberrations span most of the chromosome and do not adhere to a specific part.

2.5 Variant types

Of the 183 positive samples, not all present variants are known. It is known that 127 of the 183 samples
(70%) are trisomies. Of the other 30% the variants are unknown.

3 Experiment 1: Basis

From the available data the following dataset characteristics for the basis experiment have been decided on:
Each sample will consist of 20M reads, since this is the average amount of reads for both positive and
negative data. Half of the samples will contain zero aberrations (healthy), the other half will contain a single
aberration. This is divided evenly to maintain a balanced dataset. For this experiment samples with more
than one aberration are not included, since this occurs far less often than one aberration.
Within this experiment, aberrations will only be simulated on four chromosomes: chromosomes 13, 18,
19, and 21. Trisomy 21, 18, and 13 are the most common forms of aneuploidy, therefore aberrations on
these chromosomes occur most often. Chromosome 19 has been added to analyze if there is a difference in
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performance between the most common aneuploidy chromosomes and one that is not commonly aberrated.
Here chromosome 19 has been chosen because even though it is not one of the three most well-known
chromosomes for trisomy, it still occurs relatively often (Figure 5).
For these four chromosomes the lower limit of the aberration size is chosen as the lower limit from Figure 7
and the full chromosome length is chosen as the upper limit for the aberration size:

• Chromosome 13: 80Mb - 116Mb

• Chromosome 18: 70Mb - 79Mb

• Chromosome 19: 45Mb - 60Mb

• Chromosome 21: 30Mb - 49Mb

Figure 7: Aberration size for chromosomes 13, 18, 19 and 21

For simplicity, only one variant of aberration will be used in this experiment: duplications. Duplication
has been chosen over deletion mainly because trisomy occurs more often than monosomy.
In real data, samples have an average fetal fraction of 10%. This value can vary quite a lot and depends on
multiple factors, among which the presence of a trisomy. For this experiment, a fetal fraction equal to the
normal average is used: 10%.
To decide on the amount of samples to simulate, the time and memory needed for each simulation is first
evaluated.
Simulating and pre-processing the data consists of five steps. First, a variant has to be introduced into a
healthy contig (var). Second, this contig has to be inserted into a healthy reference instead of the healthy
contig (rep). Third, from the aberrated reference and a healthy (maternal) reference, a new sample has to
be simulated (sim). Fourth, this new sample has to be aligned to the hg19 reference genome (aln). And
last, the reads on the aligned file have to be counted per bin and pre-processed after which they can be used
as input for the model (prep).
Table 1 shows average time and memory usage for each of the steps.

Table 1: Time (T) and Memory (M) usage

chr var rep sim aln prep

T M T M T M T M T M
13 10s 200Mb 80s 3.3Gb 1h 5.8Gb x2 2h 2Gb 1.5h 14.2Mb
18 10s 150Mb 80s 3.25Gb 1h 5.8Gb x2 1.5h 2Gb 1.5h 14.2Mb
19 7s 120Mb 80s 3.2Gb 1h 5.8Gb x2 1.5h 2Gb 1.5h 14.2Mb
21 6s 100Mb 80s 3.2Gb 1h 5.8Gb x2 1.5h 2Gb 1.5h 14.2Mb

From Table 1 it can be seen that steps rep and var take at most 10 seconds and 80 seconds respectively.
Sim, aln and prep take 1, roughly 1.5 and 1.5 hours per sample respectively. So collectively, simulating a
single sample takes 4 to 4.5 hours. However, steps sim, aln and prep can be done in parallel for multiple
samples at the same time.
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The memory needed for each sample is quite a lot. However, the output file from each step only has to be
used as input for the next step, after which it can be removed. So only the output files from prep have to be
kept, which is 4.84 Mb per sample for a bin size of 10kb. By only keeping the pre-processed bin counts for
a small bin size a lot of memory can be saved and the read count per bin can easily be upscaled to a larger
bin size.
2000 samples will be simulated, where half will be healthy and half will be aberrated. That means that for
each of the four chromosome there will be 250 samples where the aberration is located on that chromosome.

4 Experiment 2: Aberration size

First, the influence of the aberration size on the performance of the model will be tested. For this experiment
a data set will be simulated with the following characteristics:
The data set will consist of samples with 20M reads per sample and this dataset can consist of all aberrated
samples, since the healthy samples from Experiment 1 can be re-used. The samples will contain one dupli-
cation, located on chromosome 21. The fetal fraction is equal to 10%.
The aberrations will range from the full length of the chromosome (∼ 49Mb) to a size of 1Mb with steps of
1Mb. A bin size of 1M will be used. This will also test whether the model can detect aberrations of only 1
bin.
For this experiment 1000 samples will be simulated, so the data set will be balanced when combined with
the 1000 healthy samples from Experiment 1. This means that there will be about 20 samples per aberration
size between 49M and 1M base pairs.

5 Experiment 3: Coverage

Next, the influence of the coverage of the samples on the performance of the model will be tested. In the
basis experiment the coverage is:

Coverage = (read count * read length) / total genome size

= (20.000.000 ∗ 36)/3.000.000.000

= 0.24

Samples will be simulated for both a higher and lower coverage. The data set will consist of samples where
half has no aberration and half has one aberration on chromosome 21. This aberration will span the entire
length of the chromosome and the variant is a duplication (trisomy). A bin size of 1M is used and the fetal
fraction is equal to 10%.
To get an idea of the amount of reads per sample needed for certain coverage values, the number of reads
for a coverage of 0.05 and 1.0 are as follows:

read count =
coverage ∗ 3.000.000.000

36

read countmin =
0.05 ∗ 3.000.000.000

36
≈ 4.166.666

read countmax =
1.0 ∗ 3.000.000.000

36
≈ 83.333.333

Based on these, the number of reads per sample will range from 5M to 85M with steps of 10M. This results
in nine different coverages to be tested.
For each coverage 60 samples with trisomy 21 and 60 samples that are healthy will be simulated. This
roughly adds up to simulating 1000 samples.

6 Experiment 4: Fetal Fraction

On average a sample contains about 10% fetal fraction, which is also the fetal fraction chosen for the basis
experiment. For this experiment the samples will consists of 20M reads per sample containing zero or one
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duplication of the full length of chromosome 21 (trisomy 21) divided into bins of size 1M bp. The fetal
fraction will range from 1 to 20% with a step of 1%. For each fetal fraction 50 samples with trisomy and 50
healthy samples are created.

7 Experiment 5: Bin Size

For this experiment no new data has to be simulated, the data from Experiment 1 can be reused. After
simulation and alignment, the number of reads are counted per bin of size 10.000 and saved. To test the
influence of the bin size on the performance the saved read count for bin size 10.000 can be upscaled to
the desired bin size. Here the label will be 1 (aberrated) if over half the bin is aberrated and 0 (healthy)
otherwise. The bin sizes that will be tested are: [250.000, 500.000, 750.000, 1.000.000, 1.500.000, 2.000.000].
Here 250.000 is the smallest size because of the time restraint.

8 Experiment 6: Variant type

For the last experiment samples with deletions are compared to the samples with duplications and the
healthy samples. For this experiment the samples will contain 20M reads per sample, containing zero or one
aberration and a fetal fraction of 10%. The samples from Experiment 1 can be reused for the duplication
and the healthy samples. The samples with a deletion will be simulated following the characteristics of
Experiment 1, except that the aberration will only be located on chromosome 21. Here 250 samples will
be created containing a deletion to add to the 250 sample containing a duplication on chromosome 21 in
Experiment 1 and 250 healthy samples from Experiment 1, creating a data set of 750 samples.
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(a) Recall of the training set (b) Recall of the test set

(c) Precision of the training set (d) Precision of the test set

(e) MCC of the training set (f) MCC of the test set

(g) Youden’s index of the training set (h) Youden’s index of the test set

Figure S1: Results of parameter testing for the number of layers in the LSTM model. The left column shows the results of each metrics for the
last epoch during training. The right column shows the metrics obtained by predicting for the test set after training.
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(a) Recall of the training set (b) Recall of the test set

(c) Precision of the training set (d) Precision of the test set

(e) MCC of the training set (f) MCC of the test set

(g) Youden’s index of the training set (h) Youden’s index of the test set

Figure S2: Results of parameter testing for dropout rate of the LSTM model. The left column shows the results of each metrics for the last
epoch during training. The right column shows the metrics obtained by predicting for the test set after training.
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(a) Recall of the training set (b) Recall of the test set

(c) Precision of the training set (d) Precision of the test set

(e) MCC of the training set (f) MCC of the test set

(g) Youden’s index of the training set (h) Youden’s index of the test set

Figure S3: Results of parameter testing for the number of epochs during training. The left column shows the results of each metrics for the last
epoch during training. The right column shows the metrics obtained by predicting for the test set after training.
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(a) Recall (b) Precision

(c) MCC (d) Youden’s index

Figure S4: Results of parameter testing for the cutoff between the healthy and aberrated class label.
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Figure S5: Results Experiment 1. In the left column the boxplot for each metric is depicted per chromosome. In the right column only the
highest values are shown in a line plot. The red line and numbers indicate the individual highest value for the metric, the green line and numbers
indicate the mean value, blue indicates WISECONDOR, and purple indicates the overall best performing model.
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Figure S6: Results Experiment 2: Aberration size. In the left column the boxplot for each metric is depicted per aberration size. In the right
column only the highest values are shown in a line plot. The red line and numbers indicate the individual highest value for the metric, the green
line and numbers indicate the mean value, blue indicates WISECONDOR, and purple indicates the overall best performing model.
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Figure S7: Results Experiment 3: Coverage. In the left column the boxplot for each metric is depicted per coverage. In the right column only
the highest values are shown in a line plot. The red line and numbers indicate the individual highest value for the metric, the green line and
numbers indicate the mean value, blue indicates WISECONDOR, and purple indicates the overall best performing model.
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Figure S8: Results Experiment 4: Fetal Fraction. In the left column the boxplot for each metric is depicted per fetal fraction. In the right
column only the highest values are shown in a line plot. The red line and numbers indicate the individual highest value for the metric, the green
line and numbers indicate the mean value, blue indicates WISECONDOR, and purple indicates the overall best performing model.
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Figure S9: Results Experiment 5: Bin size. The first row shows the performance over all chromosomes. The left figure shows the sensitivity
in orange, the specificity in black, and the precision in cyan. The right figure shows the Youden’s index in pink and the MCC value in green.
The second and third row show the sensitivity, precision, Youden’s index, and MCC value split out per chromosome. The orange boxplot shows
chromosome 13, the pink boxplot shows chromosome 18, the cyan boxplot shows chromosome 19, and the black boxplot shows chromosome 21.
In all figures the red indicates the highest individual value per metric, green indicates the mean, and purple the overall best performing model.

16



Figure S10: Results Experiment 6: Variant. In the left column the boxplot for each metric is depicted per variant. In the right column only
the highest values are shown in a line plot. The red line and numbers indicate the individual highest value for the metric, the green line and
numbers indicate the mean value, blue indicates WISECONDOR, and purple indicates the overall best performing model.
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