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Abstract 
This paper derives a trick to account for variation in choice set size in Random Regret 
Minimization (RRM) models. In many choice situations the choice set size varies across choice 
observations. As in RRM models regret level differences increase with increasing choice set size, 
not accounting for variation in choice set size results in RRM models to predict relatively 
deterministic choice behaviour in observations where the choice set is large and relatively 
random choice behaviour in observations where the choice set is small. Such variation in choice 
consistency across observations is behaviourally unrealistic and leads to inferior performance of 
RRM models in the context of data sets with varying choice set sizes. The proposed trick resolves 
this in an econometrically pragmatic and behaviourally meaningful way by rescaling the regret 
levels as a function of the choice set size. The trick can be applied in the estimation phase when 
the choice set size varies across choice observations as well as in the forecasting phase when 
forecasts are made over choice sets of varying sizes. 
 

1 Introduction 
Random Regret Minimization (RRM) models have been proposed as a counterpart of the linear-
additive Random Utility Maximization (RUM) model, and are increasingly used to explain and 
predict a diverse range of choice behaviours (Chorus et al. 2014). The RRM model’s recent 
incorporation in the NLOGIT and Latent GOLD software packages (EconometricSoftware 2012; 
Vermunt and Magidson 2014), and its inclusion in the second edition of the Applied Choice 
Analysis textbook (Hensher et al. 2015), can be considered evidence of the growing interest in 
RRM models among scholars and practitioners. RRM models postulate that regret is experienced 
when a competing alternative outperforms a considered alternative with regard to one or more 
attributes. The overall level of regret associated with a considered alternative is postulated to be 
the sum over all pairwise comparisons between that alternative and all competing alternatives, in 
terms of all attributes. 
 
In many choice situations the choice set size, i.e. the number of alternatives which are available to 
the decision-makers, varies across choice observations. In RUM models, variation in choice set 
size across observations is inconsequential as it does not affect the utilities of alternatives. 
However, in RRM models variation in choice set size is consequential as it does affect the regret 
levels of the alternatives. Since the overall regret level equals the sum of all pairwise regrets 
arising from bilateral comparisons with competing alternatives, overall regret levels rise with an 
increase of the choice set size. Although there is some empirical evidence that larger choice sets 
potentially lead to more regret from the side of decision-makers (e.g. Schwartz et al. 2002; Sarver 
2008), from a discrete choice modelling perspective this phenomenon calls for a modelling 
intervention from the choice modeller. More specifically, as we will elaborate further below, the 
rise of regret levels with choice set size predicted by RRM models implies that regret differences 
between alternatives also tend to grow with the increase of the choice set size. This in turn means 
that when there is variation in choice set sizes in the data, RRM models predict larger differences 
in regret levels and therefore more deterministic choice behaviour in observations where the 
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choice set is relatively large, and smaller differences in regret levels and hence more random 
choice behaviour in observations where the choice set is relatively small. It goes without saying 
that such variation in choice consistency is behaviourally unrealistic and leads to inferior model 
performance of RRM models in the context of data sets with varying choice set sizes (Prato 2014; 
Mai et al. 2015).  
 
This paper derives a simple trick to account for variation in choice set size in RRM models, 
which is both econometrically pragmatic and behaviourally meaningful. The trick involves 
rescaling the regret levels as a function of the choice set size. It can be applied in the estimation 
phase when the choice set size varies across choice observations as well as in the forecasting 
phase when forecasts are made over choice sets of varying sizes, or when the choice set used for 
forecasting is of a different size than the choice set used for estimation. Note that the proposed 
trick also works in the situation where the number of attributes per alternative (rather than 
alternatives per choice set) varies across choice observations. For ease of communication, in the 
remainder of this paper we focus on the case where choice set sizes vary in data used for model 
estimation. Finally, it should be noted that the proposed trick is particularly suitable for the case 
where choice sets are relatively large (i.e., consisting of ten of more alternatives) and the 
composition of the choice set – as opposed to its size – does not vary systematically across 
observations.1 In the final section we however also outline a more involved method that can be 
used to deal with smaller choice sets and systematic variation in choice set composition. 
 

2 The effect of variation in choice set size in RRM models 
Regret is experienced when a competing alternative j outperforms a considered alternative i with 
regard to attribute m. The overall regret associated with i is the sum over all possible pairwise 
comparisons, see equation 1, where n denotes the choice observation and rijmn the regret 
experienced in choice observation n when comparing i with j on m. This so-called attribute level 
regret can take on various functional forms, depending on the specific type of RRM model under 
consideration (e.g. Classical RRM, μRRM, or P-RRM, see Van Cranenburgh and Prato 
(submitted) for an overview of attribute level regret functions).  
 

in in in in ijmn
j i m

RR R where R r


    1 

 
Due to the double summation (equation 1), the overall level of regret Rin increases with the choice 
set size as well as with the number of attributes, irrespective of the functional form adopted to 
model attribute regret. This implies that – when the modeller does not correct for the variation in 
choice set size across choice observations – RRM models impose relatively deterministic choice 
behaviour in relatively large choice sets, and relatively random choice behaviour in relatively 
small choice sets. The following example serves to illustrate this point in a simple way.  
 
Suppose that a data set contains choice observations consisting of either 3 or 6 alternatives. For 
clarity of exposition each alternative consists of just one attribute x1. Choice observation 1 
consists of a choice from three alternatives {A, B, C} (see Table 1). Choice observation 2 
consists of a choice from six alternatives {A, B, C, A, B, C} (see Table 2). Hence, merely for the 
sake of illustration and without loss of general applicability, we assume that choice set 2 consists 

                                                      
1 We say that a choice set composition varies in a systematic way across cases, when for example a choice set of size 2 
always consists of modes train and bus and a choice set of size 3 always consists of modes train, bus and car. In such a 
case, the car is systematically absent in the 2 alternatives set, and systematically present in the 3 alternatives set. See 
the last section for a brief discussion of how to deal with such situations in the context of RRM model estimation. 
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of exact replicates of the alternatives in choice set 1. Furthermore, we assume that – having 
estimated the RRM model2 – the associated taste parameter β1 is found to be equal to one.  
 
Table 1 shows the implied regret levels and predicted choice probabilities in observation 1 
(computed using the estimated taste parameter). As can be seen, in observation 1 the RRM 
model predicts that a decision-maker is 33/12 = 2.7 times more likely to choose alternative B 
than alternative A. 

  A B C 

Attribute level x1 0 0.5 1 
Regret R 1.5 0.5 0 
Choice probability P 12% 33% 55% 
Table 1: Regret levels and choice probabilities for 
observation 1 

 
Table 2 shows regret levels and predicted choice probabilities for observation 2. Since the choice 
set in choice observation 2 consists of two exact replications of the choice set of choice 
observation 1, behavioural intuition suggests that /B AP P in the observation 2 should be equal to 

/B AP P  in observation 1. However, we see that the RRM model in choice observation 2 predicts 

that a decision-maker is about 26/4 = 13/2 = 6.5 times more likely to choose alternative B over 
alternative A. 
 

  A B C A B C 

Attribute level x1 0 0.5 1 0 0.5 1 
Regret R 3 1 0 3 1 0 
Choice probability P 2% 13% 35% 2% 13% 35% 
Table 2: Regret levels and choice probabilities for 
observation 2 

 

 
Clearly, this kind of differences in predicted randomness across observations is behaviourally 
unrealistic and translates into inferior model fit for RRM models when choice set sizes vary 
across observations in the data used for model estimation.  
 

3 A trick to account for variation in choice set size in RRM models 

3.1 The trick 
Equation 2 shows a simple and effective trick to account for variation in the choice set size when 
estimating RRM models. The overall regret level is corrected using a factor / nJ , where Jn  

denotes the size of the choice set presented to the decision-maker in observation n, and  denotes 
a constant. For the stylized example presented above (and in Appendix A), this correction factor 
yields constant ratios of the choice probabilities of any two alternatives, regardless of the size of 
the choice set (i.e., the number of replications)3, see Appendix A for a formal proof. While it is 

                                                      
2 In this illustration, without loss of general applicability, we use the P-RRM model (Van Cranenburgh et al. 2015) to 
compute regret levels.  
3 Note that also with the correction factor, the RRM model predicts a violation of the IIA property. This is by design, as 
the RRM model aims to capture choice set composition effects such as the compromise effect. The numerical example 
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clear that the stylized situation presented above is unlikely to occur in real life, it nonetheless 
provides a good indication that the correction factor in equation 2 should also work well on real 
data. This suggestion is indeed confirmed on a series of empirical analysis based on real as well 
as simulated data (not reported here for reasons of space limitations).  
 

ni ni
n

R R
J


  2 

 
It is important at this point to note that while for some types of RRM models the choice of Γ is 
consequential for the behaviour imposed by the model, for other types it is not. More specifically, 
for the μRRM and P-RRM model (Van Cranenburgh et al. 2015) the choice of Γ is not 
consequential. In the μRRM model the scale parameter μ is estimated, as opposed to being 
implicitly fixed to 1 as in the Classical RRM model (Chorus 2010). Since Γ is perfectly 
confounded with μ, setting Γ to a large value will merely result in estimating a small scale 
parameter μ, and vice versa. Therefore, in a μRRM model the imposed behaviour is not affected 
by the choice of Γ, implying that Γ can freely be chosen by the choice modeller. Likewise, the 
choice of Γ is inconsequential for the behaviour imposed by the P-RRM model (which is a special 
case of the μRRM model). Since the attribute level regret function of the P-RRM model is scale-
invariant, it always imposes the same degree of regret minimizing behaviour, irrespective of the 
choice of Γ. 
 
In contrast, the size of Γ is consequential for the Classical RRM model (Chorus 2010) and for the 
G-RRM model (Chorus 2014). Since the attribute level regret functions of these two RRM 
models are not scale-invariant, a different choice of Γ leads to different degrees of regret 
minimizing behaviour imposed by the model, and hence a different empirical performance. More 
specifically, a large (small) value of Γ causes parameters to become small (large), leading to a 
model which imposes a mild (strong) degree of regret minimizing behaviour (see Van 
Cranenburgh et al. (2015) for a discussion of the relation between parameter sizes and the 
resulting degree of regret minimizing behaviour). More generally speaking, the fact that Γ cannot 
freely be chosen without affecting the choice behaviour imposed by the model, is very much 
related to the observation made recently that the scale underlying the Classical (and the 
Generalized) RRM model, which is implicitly fixed to 1, can and should be estimated (Van 
Cranenburgh et al. 2015). The resulting μRRM model provides a more flexible account of choice 
behaviour, and – as we have highlighted directly above – it features the related additional 
advantage of making the choice for a particular of Γ inconsequential, as opposed to being both 
arbitrary and consequential for the Classical RRM and Generalized RRM models. 
 
Finally, it is important to stress once more that the proposed trick is simple, yet somewhat coarse 
in the sense that the proposed correction factor is only a function of the choice set size and does 
not take into account the composition of the choice set. As a result, for the trick to perform well 
the choice set sizes need to be relatively large4 and the exact composition of the choice sets 
should not be systematic across observations.  
 

                                                                                                                                                              
used in Section 2 involves exact choice set replications to avoid confounding between this wanted violation of IIA, and 
the unwanted violation caused by differences in implied randomness in behaviour. 
4 Based on our experience, the trick seems to work well empirically for choice sets consisting of 10 or more 
alternatives, and somewhat less so for smaller choice set sizes. 
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3.2 Related approaches in the RRM-literature  
In recent papers, two related factors have been proposed which in a mathematical sense are 
special cases of the correction factor proposed in equation 2. More specifically, when Γ is set to 
one, our correction factor is equal to the factor presented by Mai et al. (2015) in the context of a 
recursive logit route choice model based on the G-RRM model. In their model – which they coin 
the Average RRM (ARRM) model – regret levels are normalized by dividing each alternative’s 
regret by the choice set size. As we discuss in the previous sub-section, setting Γ to the arbitrarily 
chosen value of 1 implies in the context of the G-RRM used by Mai et al. (2015) a highly specific 
– yet arbitrarily chosen – degree of regret minimizing behaviour. 
 
In the conceptually different but mathematically related context of choice set sampling, Guevara 

et al. (in press) proposed an expansion factor w J J   to rescale regret, where J denotes the size 

of the universal choice set, and J  denotes the size of the sampled choice set which is used in the 
estimator. They show that when using this factor, consistent parameters are obtained from the 
sampled choice set. Note that when Γ is set equal to the size of the largest choice set present in 
the data, our correction factor for dealing with varying choice set sizes within a dataset resembles 
the expansion factor presented by Guevara et al. (in press) in the rather different context of choice 
set sampling5. But note also here, that setting Γ to equal the choice set size of the largest choice 
set available in the data leads to a very specific degree of regret minimizing behaviour when 
either the Classical or the G-RRM models are being used.  
 

4 Conclusion and discussion 
This paper has proposed a correction factor to account for variation in choice set size across 
choice observations in the context of RRM models. The method can be used in the estimation 
phase when the choice set size varies across observations as well as in the forecasting phase when 
forecasts need to be made over choice sets of varying sizes (or when the size of the choice set 
used for forecasting differs from the size of the choice set used for estimation). Furthermore, we 
have shown that the proposed correction factor is generic in that it nests – in a conceptual sense – 
two related factors that have recently been proposed in the broader RRM literature.  
 
We have outlined that the proposed correction factor can be expected to work well when the 
choice sets are relatively large and the choice set compositions are unsystematic. When the choice 
sets are relatively small, or the choice set compositions are systematic, a different method is 
needed. One promising possibility to deal with such as situation is to estimate choice set size 
specific correction parameters – rather than using a generic correction factor like we propose in 
this paper. This method is akin to the way in which the scale of choice models needs to be 
adjusted when different data sets are pooled (see e.g. Ben-Akiva and Morikawa 1990; Ben-Akiva 
et al. 1994). Further research is needed to further explore this method in the context of data sets 
where choice sets are relatively small, or the choice set compositions are systematic. However, 
first results obtained in the context of the Swiss Metro dataset (Antonini et al. 2007) appear 
promising (see Appendix B). 
 
  

                                                      
5 But note that in our situation, smaller choice sets may include alternatives that are not present in the larger choice set, 
so that there is no actual sampling process. 
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Appendix A 
Suppose that a data set consists of observations having choice set C1 and choice observations 

having choice set C2. Choice set 1  1 , ,...,C a b z consists of Z alternatives, and choice set 2 

 2 1 1 1 1 1, , ,...,C C C C C C  consists of L exact replications of set C1.  

 
Theorem: To account for variation in the choice set size in the μRRM model and its special cases 
(the P-RRM model and the Classical RRM model) such that the ratio of choice probabilities of 
any two alternatives a and b is constant, regardless of the choice set size (i.e. regardless of the 
number of replications of C1), regret levels need to be scaled with a factor nJ , where Jn 

denotes the choice set size, and Γ is a constant.  
 
Proof:  
The ratios of the choice probabilities of alternatives a and b in choice set C1 and choice set C2 are 
given in equation A.1: 
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A.1

 
Acknowledging that C1 is a proper subset of C2 we can rewrite the ratio of the choice probabilities 
of alternative a and b in choice set C2 using C1 (equation A.2).  
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Noting that      ln 1 exp ln 1 exp ln 2m m
am am bm bmx x x x
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, and that constants 

are irrelevant in discrete choice models, equation A.2 reduces to equation A.3. 
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From equation A.3 it is easily seen that to ensure that 
 
 
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 

1 2

1 2

| |

| |

P a C P a C

P b C P b C
  holds, regrets 

levels in A.3 need to be divided by L. Without this division, the ratio becomes much larger for set 
C2, and more so when L increases, implying that the choice probability for the least (most) 
attractive alternative approaches 0 (1) as L becomes very large. 
 
In practical applications, choice sets are almost never exact replications of one another. 
Therefore, instead of using the number of replications L of a given choice set to correct the regret 
levels, it is more practical to write the correction factor as a function of the choice set size. The 
choice set size of C1 and C2 is respectively Z and L x Z. Equation A.4 and A.5 show that when a 
correction factor nJ  is used the ratios of the choice probabilities of a over b are independent of 

the choice set size, where Γ denotes a constant. 
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Finally, it is important to mention once again that in principle the size of Γ is free to choose by 
the choice modeller (e.g. set to one). However, it is important to acknowledge that Γ is 
confounded with the scale parameter μ. As a result of that, in the some RRM models (more 
specifically, in the Classical RRM and the G-RRM model) the choice of Γ is consequential for the 
imposed behaviour. 
Q.E.D. 
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Appendix B 
This appendix explores a method that can be used to account for variation in choice set size in the 
context of small choice sets, or when the composition of the choice set varies systematically 
across observations. This method involves estimating choice set size specific correction 
parameters, denoted Λ, and is akin to the way in which the scale of choice models needs to be 
adjusted when different data sets are pooled (see e.g. Ben-Akiva and Morikawa 1990; Ben-Akiva 
et al. 1994). 
 
Data 
To explore this method we use Stated Preference mode choice data collected in Swiss in 1998. In 
this experiment respondents were presented choice sets consisting of either two or three 
alternatives: a conventional train alternative, a Swiss metro alternative (a mag-lev underground 
system), and a car alternative available only to car owners. Out of the total 6768 choice 
observations, 1131 have choice set size 2 and the remaining 5607 have choice set size 3. 
Alternatives are defined in terms of two attributes: travel cost and travel time. See Antonini et al. 
(2007) for a more detailed discussion on the data set. Finally, note that the choice set composition 
in these data is highly systematic. Therefore, the method proposed in the main text of this paper 
can be expected to perform less well for these data. 
 
Model specification 
We estimated three models: (1) a linear-additive RUM model, (2) a μRRM model without 
correction factors, and (3) a μRRM model with choice set size specific correction factors. In order 
to identify the latter model, one of the choice set size specific correction factors needs to be fixed. 
Therefore, we fix the correction factor associated with choice set of size 2, ΛJ=2, to one, and 
estimate the correction factor associated with choice set of size 3: ΛJ=3 (jointly with the models’ 
taste parameters). 
 
Results 
Table B.1 shows the estimation results. Three key observations can be made. Firstly, in terms of 
model fit, the results show that both µRRM models substantially outperform the RUM model. 
Secondly, looking more closely at the µRRM models, we see a very significant increase in log-
likelihood for the µRRM model with the choice set size specific correction factors as compared to 
the model without correction factors. Thirdly, the estimated choice set specific correction factor 
ΛJ=3 is considerably larger than one:

3 3.60J   . This indicates that the correction factor 

discussed in the main text of the paper – which would impose a correction factor of 2/3 in this 
case – would result in inferior empirical performance.  
 
Finally, it is important to mention that by estimating choice set size specific correction parameters 
also heteroskedasticity across choice sets of different size may be picked up by the model. To 
investigate the extent to which such heteroskedasticity may have been captured, we analyse 
whether the behaviour imposed by the model (i.e., the degree of regret minimizing behaviour) is 
constant across the choice sets of size 2 and 3. Table B.2. shows the profundity of regret (see Van 
Cranenburgh et al. 2015) associated with travel cost and travel time. As can be seen, the imposed 
behaviour is not the same across the choice set sizes: the profundity of regret associated with 
travel time is substantially higher in choice sets of size 3 than in choice sets of size 2. This 
suggests that the model has captured some heteroskedasticity across choice sets of different size 
by accounting for variation in choice set size using choice set size specific correction parameters 
on these data. 
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 Table B.1: Estimation result for choice set size specific correction factor 
 
 

 
 Table B.2 Profundity of regret  

Swiss Metro data

MODEL

Number of observations 6768 6768
Null Log-likelihood
Final Log-likelihood

ρ
2

Est SE t-stat Est SE t-stat Est SE t-stat

Alternative Specific Constants
Car 0.00 --fixed-- 0.00 --fixed-- 0.00 --fixed--
SM 0.16 0.043 3.58 -0.06 0.030 -1.92 -0.21 0.07 -3.08
Train -0.55 0.046 -11.85 0.29 0.088 3.30 0.75 0.20 3.77

Taste parameters

βCOST -1.08 0.052 -20.91 -0.76 0.036 -21.08 -0.22 0.03 -7.14

βTIME -1.28 0.057 -22.46 -0.99 0.042 -23.53 -0.25 0.04 -6.89

Correction and scale parameters

ΛJ=2 1.00 --fixed--

ΛJ=3 3.60 0.48 7.51

µ 1.87 0.548 3.41 0.34 0.10 3.39

µRRM-MNL
Without correction factor With choice set size specific 

correction factor

-6964.7 -6964.7
-5264.9 -5145.8

0.244 0.261

RUM MNL

-6964.7
-5331.3

0.235

J = 2 J = 3

αCOST 0.24 0.23

αTIME 0.06 0.12

Choice set size
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