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Chapter 10
Computationally Tractable Reserve
Scheduling for AC Power Systems
with Wind Power Generation

Vahab Rostampour, Ole Ter Haar and Tamás Keviczky

Abstract This work presents a solution method for a day-ahead stochastic reserve
scheduling (RS) problem using anAC optimal power flow (OPF) formulation. Such a
problem is known to be non-convex and in general hard to solve. Existing approaches
follow either linearized (DC) power flow or iterative approximation of nonlinearities,
which may lead to either infeasibility or computational intractability. In this work
we present two new ideas to address this problem. We first develop an algorithm to
determine the level of reserve requirements using vertex enumeration (VE) on the
deviation of wind power scenarios from its forecasted value.We provide a theoretical
result on the level of reliability of a solution obtained using VE. Such a solution is
then incorporated in OPF-RS problem to determine up- and down-spinning reserves
by distributing among generators, and relying on the structure of constraint func-
tions with respect to the uncertain parameters. As a second contribution, we use the
sparsity pattern of the power system to reduce computational time complexity. We
then provide a novel recovery algorithm to find a feasible solution for the OPF-RS
problem from the partial solution which is guaranteed to be rank-one. The IEEE 30
bus system is used to verify our theoretical developments together with a comparison
with the DC counterpart using Monte Carlo simulations.
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10.1 Introduction

The reserve scheduling (RS) problem deals with day-ahead scheduling of the reserve
power to accommodate possible mismatches between forecasted and actual wind
power. Stochastic variants of the RS problem, where violations of operational con-
straints, e.g. power generations, bus voltage and line flow constraints, are allowed
with a small probability to achieve better performance, have received a lot of attention
in the past few years, see [1–4] and the references therein. A stochastic RS problem is
typically formulated using a lossless DC model based on the assumption of constant
voltage magnitudes and small voltage angles, while ignoring the active power losses
[5]. These assumptions do not hold in general and may lead to sub-optimality or
even infeasibility when implemented on real world systems, especially for networks
under a high degree of stress [6].

Using an AC model of the power network enables the stochastic RS formulation
to accurately model the effect of large deviations of wind power from its forecasted
value, and to offer a-priori suitable reserves such that both active and reactive power,
and complex-valued voltage are globally optimal. Due to the non-convexity of the
OPF problem, identifying such an optimal operating point of a power system may
not be straightforward. In [7], different reformulations and relaxations of the AC
OPF problem were presented and their connections were discussed. By means of
semidefinite programming (SDP), in [7] a convex relaxation was provided under the
existence of a rank-one SDP solution to guarantee the recovery of an optimal solution
of the power network.

An RS problem that incorporates an OPF formulation has been introduced in [8]
where a chance-constrained OPF problemwas formulated.With somemodifications,
the authors in [8] provided a theoretical guarantee that the OPF-RS problem yields a
rank-one feasible solution. Using a heuristic sampling approach, they showed that the
resulting optimization problem involves anOPFproblem for eachwind power profile.
Our work here is motivated by [8] to provide some results in a more systematical
approach.

While preparing the final version of this work, [9, 10] independently gave an
approach to solve an OPF-RS problem in each hour separately, based on the results in
[4]. TheOPF-RS formulation in [9] is similar to [8]with somemodifications,whereas
in [10] the formulation is weaker compared to [8], since the condition to distribute
reserves among generators is relaxed. Even though the authors in [8] presented a
complete day-ahead OPF-RS formulation with up- and down spinning reserves, the
results in the aforementioned references are limited either to be heuristic or to a single
hourly-based RS with the relaxed conditions. The major barrier of representing an
OPF-RS problem as a SDP is the necessity of defining a square SDPmatrix variable,
which makes the cardinality of scalar variables of the OPF-RS problem quadratic
with respect to the number of buses in the power network. This may yield a very
large-scale SDP problem for realistic large-scale power networks of interest.

Our work here differs from the aforesaid references in two important aspects. We
propose an algorithm to determine a worst-case reserve requirement in each hour by
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vertex enumeration (VE) of all possible deviations of wind power scenarios from the
forecast value. The outcome of VE determines the up- and down-spinning reserves
in a probabilistic sense. Using the OPF-RS problem formulation, similarly to [8]
with some modifications, we distribute the up- and down-spinning reserves among
generators together with the generator dispatch planning for day-ahead schedules.
To address the resulting high-dimensional SDP problem, we leverage the sparsity
pattern in power networks to break down the large-scale positive-semidefinite (PSD)
constraints into small-size constraints, similarly to [11, 12]. We then propose a novel
recovery algorithm to obtain a rank-one solution based on the results in [13]. It is
important to highlight that this work is based on the same authors’ conference paper
published in [14] and thesis report in [15].

The layout of thiswork is as follows. Section10.2 formulates theRSproblemusing
AC OPF model of power systems by including the uncertain wind power generation,
whereas in Sect. 10.3, we provide a computationally tractable reformulation to solve
the resulting large-scale SDP in infinite dimensional spaces. Section10.4 provides
a simulation result using IEEE benchmark, whereas Sect. 10.5 concludes this work
with remarks and future work.

Notations

R, R+ denote the set of real and positive real numbers, S, S+ denote the set of
symmetric matrices and positive-semidefinite matrices, respectively. C denotes the
set of complex numbers. Vectors are denoted by lowercase-bold letters a ∈ Rn , and
uppercase letters are reserved for matrices A ∈ Rn×n . The symbols A�, A∗, and AH

are used for the transpose, complex conjugate and conjugate transpose of a matrix,
respectively. The notations a and a are used to denote the minimum and maximum
allowed values, respectively. The cardinality of a setA is denoted by |A|.

10.2 Problem Formulation

AC OPF Problem

Consider a power system with a set of buses N , a set of lines L ⊆ N × N and a
set of generator buses G ⊆ N such that |N | = Nb and |G| = NG . The set of wind
power generation buses is denoted by F ⊆ N such that |F | = Nw. A set of hours T
forms the scheduling horizon of the hourly-based RS optimization problem and in
this work |T | = 24. The vectors p ∈ RNb , q ∈ RNb and s ∈ CNb denote real, reactive
and apparent power, respectively.

Define the decision variables to be the generator dispatch pGt , qG
t ∈ RNG and the

complex bus voltages vt ∈ CNb for each time step t ∈ T . Using the rectangular volt-
age notation: xt := [�vt��vt�]� ∈ R2Nb , we follow [7, Lemma 1] to determine the
data-matrices Yk,Y ∗

k ,Ylm,Y ∗
lm, Mk . The cost function is the cost of real power gen-

eration, expressed as a second order polynomial [16], where the coefficient vectors
cqu, cli ∈ R

NG+ correspond to the quadratic and linear cost coefficients, respectively,
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and [cqu] represents a diagonal matrix with entries cqu. We now formulate the AC
OPF problem by taking into account the effect of wind power generations as follows:

minimize
{xt , pGt ,qG

t }t∈T

∑

t∈T
(cli)� pGt + ( pGt )�[cqu] pGt (10.1a)

subject to:

1. Power generation limits ∀k ∈ G,∀t ∈ T :

pGk ≤ pGk,t ≤ pGk ,

qG
k ≤ qG

k,t ≤ qG
k .

(10.1b)

2. Power balance at every bus ∀k ∈ G,∀t ∈ T :

x�
t Ykxt = pGk,t − pD

k,t + pwk,t ,

x�
t Y

∗
k xt = qG

k,t − qD
k,t .

(10.1c)

where pwt := {pwk,t }k∈F is the wind power, and sDt := {sDk,t }k∈N is the demanded
power such that sDk,t = pD

k,t + qD
k,t . Note that it is assumed1 G

⋂
F = ∅ which

means there is no wind power at generator buses.
3. Bus voltage limits ∀k ∈ G,∀t ∈ T :

|vk |2 ≤ x�
t Mkxt ≤ |vk |2 . (10.1d)

4. Lineflow limits ∀(l,m) ∈ L,∀t ∈ T :

(
x�
t Ylmxt

)2 + (
x�
t Y

∗
lmxt

)2 ≤ |slm |2 ,

which can be reformulated using the Schur Complement [17] to form a linear
matrix inequality constraint, such that the fourth order dependence on the voltage
vector is reduced to quadratic terms:

⎡

⎣
−|slm |2 x�

t Ylmxt x
�
t Y

∗
lmxt

x�
t Ylmxt −1 0

x�
t Y

∗
lmxt 0 −1

⎤

⎦ � 0 . (10.1e)

5. Reference bus constraint ∀t ∈ T :

x�
t Erefxt = 0 , (10.1f)

1This assumption is considered to streamline the presentation and it is not restrictive for our proposed
framework.
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where Eref is a diagonal matrix from the standard basis vector eNb+iref , and iref
denotes the reference bus.

Remark 10.1 The power balance constraints (10.1c) can be used to reformulate the
real and reactive generator dispatch in terms of the voltage vector as follows ∀k ∈
N,∀t ∈ T :

pGk,t = x�
t Ykxt + pD

k,t − pwk,t , (10.2a)

qG
k,t = x�

t Y
∗
k xt + qD

k,t . (10.2b)

Using this reformulation, one can substitute for pGk,t and qG
k,t in (10.1b) to have

∀k ∈ N,∀t ∈ T :

pGk ≤ x�
t Ykxt + pD

k,t − pwk,t ≤ pGk , (10.3a)

qG
k ≤ x�

t Y
∗
k xt + qD

k,t ≤ qG
k , (10.3b)

where the lower and upper generation limits have also been extended to N using
pGk = pGk = 0 ∀k ∈ {N \G}.
Remark 10.2 Following Remark 10.1, one can reformulate the cost function (10.1a)
using the voltage vector xt :

f xG(xt , pwt , pDt ) :=
∑

k∈G
clik

(
x�
t Ykxt + pD

k,t − pwk,t
)+ (10.4)

cquk
((
x�
t Ykxt + pD

k,t − pwk,t
))2

.

It is important to note that this function is of order four with respect to x, but it can
be also made quadratic.2 To streamline the presentation, these steps are skipped.

Using {xt }t∈T , we reformulate the problem (10.1) in a more compact form:

OPF({ pwt }) :
⎧
⎨

⎩
minimize{xt }t∈T

∑
t∈T f xG(xt , pwt , pDt )

subject to (10.1d), (10.1e), (10.1f), (10.3)
,

where the time dependency of OPF({ pwt }t∈T ) is dropped for clarity of the notation.
OPF({ pwt }) is a quadratically constrained quadratic program (QCQP) in {xt }t∈T ,

and a non-convex optimization problem, since the data matrices Yk,Y ∗
k ,Ylm,Y ∗

lm are
indefinite [7], which is in fact an NP-hard problem [18] and very hard to solve, in
general.

2The cost function can be made linear with the use of the epigraph notation (see also [17, Chapter
4.1.3]). The resulting inequality constraint can be converted to a LMI using the Schur Complement
(see also [17, Chapter A.5.5]), which yields a quadratic function of x.
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Convexified AC OPF Problem

Using a semi-definite reformulation (SDR) technique (see [7, 19] and the references
therein), one can reformulateOPF({ pwt }) as an equivalent problem in amatrix variable
Wt := xt x�

t ∈ S2Nb .Wt represents the operating state of the network, and is therefore
called the state matrix. We define W ⊂ S2Nb as the set of feasible operating states,
such that Wt ∈ W, using the following characteristics:

W( pw, sD) :=
{
W ∈ S2Nb

∣∣∣ Tr (ErefW ) = 0 ,

pGk ≤ Tr (YkW ) + pD
k − pwk ≤ pGk ,∀k ∈ N,

qG
k ≤ Tr

(
Y ∗
k W

) + qD
k ≤ qG

k ,∀k ∈ N,

|vk |2 ≤ Tr (MkW ) ≤ |vk |2,∀k ∈ N, ∀(l,m) ∈ L ,
⎡

⎣
−|slm |2 Tr (YlmW ) Tr

(
Y ∗
lmW

)

Tr (YlmW ) −1 0
Tr

(
Y ∗
lmW

)
0 −1

⎤

⎦ � 0
}

,

(10.5)

where pw is the wind power, and sD = pD + iqD is the demanded power. Consider
now the following formulation as an equivalent optimization problem to OPF({ pw}):

minimize{Wt }t∈T

∑

t∈T
fG(Wt , pwt , pDt ) (10.6a)

subject to Wt ∈ W( pwt , sDt ), ∀t ∈ T , (10.6b)

Wt 
 0, ∀t ∈ T , (10.6c)

rank (Wt ) = 1, ∀t ∈ T , (10.6d)

where fG is defined in (10.4), using Wt = xt x�
t . Constraints (10.6c) and (10.6d)

are introduced to guarantee the exactness of SDR and consequently, OPF({ pwt }) and
(10.6) to be equivalent.

The optimization problem (10.6) is non-convex, due to the presence of rank-one
constraint (10.6d). Removing (10.6d) relaxes the problem to a semi-definite program
(SDP). It has been shown in [7] and later in [20] that the rank-one constraint can be
dropped without affecting the solution for most power networks. In [8, Proposition
1], the authors showed that when the convex relaxation of the AC OPF problem has
solutions with rank at most two, then, forcing any arbitrary selected entry of the diag-
onal of the matrixWt to be zero results in a rank-one solutionW

opt
t . This condition is

motivated by the fact that in practice the voltage angle of one of the buses (the refer-
ence bus) is often fixed at zero. We denote by C-OPF({ pwt }) the convexified version
of OPF({ pwt }), i.e. Problem (10.6) with the rank-one constraint (10.6d) removed.
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OPF-RS Problem Formulation

Consider a power network where a TSO aims to solve a day-ahead AC OPF problem
to determine an optimal generator dispatch for the forecasted wind power trajectory
such that: (1) the equipments of power system remain safe and (2) the power balance
(10.1c) in the power network is achieved. As a novel feature in our proposed formula-
tion C-OPF({ pwt }) has a dependency on { pwt }t∈T , and thus, it solves the OPF problem
by taking into account the actual wind power trajectory { pwt }t∈T . We here define the
difference between a generic actual wind power realization and the forecasted wind
power, as the mismatch wind power at each time step, e.g. pmt = pwt − pw, f

t . Due
to the fact that { pmt }t∈T is a random variable, the following technical assumption is
necessary in order to proceed to the next steps.

Assumption 1 { pmt }t∈T are defined on some probability space (P,B(P),P), where
B(·) denotes a Borel σ -algebra, and P is a probability measure defined over P.

In order to ensure the feasibility and validity of the power network (top TSO
priority), we formulate the following problem:

minimize{
W f

t

}

t∈T

∑

t∈T
fG(W f

t , pw, f
t , pD

t ) (10.7a)

subject to W f
t ∈ W( pw, f

t , sDt ), ∀t ∈ T , (10.7b)

Wt ∈ W( pwt , sDt ), ∀ pmt ∈ P, ∀t ∈ T , (10.7c)

W f
t 
 0 , Wt 
 0 ∀t ∈ T , (10.7d)

where { pw, f
t }t∈T denotes the forecasted wind power trajectory, { pwt }t∈T is a generic

wind power trajectory, {W f
t }t∈T is related to the state of the network in the case of

forecasted wind power, and {Wt }t∈T is a generic network state for a generic wind
power trajectory. Constraints (10.7b) and (10.7c) ensure feasibility for every network
state,while constraints (10.7d) enforce positive semidefiniteness of all network states.

As a second task of the TSO, the power balance of the power network has to be
achieved to ensure demand satisfaction even in the presence of uncertain wind power
generation. To address this issue, the TSO employs reserve power scheduling, using
the fact that a mismatch between actual wind power and forecasted wind power can
be mitigated by the controllable generators [1]. We can thus express

rk,t := pGk,t − pG, f
k,t , (10.8)

where r t = {rk,t }k∈G ∈ RNG denotes the amount of reserve requirement in the power
network. Following Remark 10.1, we have:

pGk,t = Tr
(
YkWt

) + pD
k,t − pwk,t ,

pG, f
k,t = Tr

(
YkW

f
t

)
+ pD

k,t − pw, f
k,t ,
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and one can substitute them in (10.8) to obtain the reserve power in terms of the
network states Wt and W f

t as follows:

rk,t :=Tr
(
Yk

(
Wt − W f

t

)) − (pwk,t − pw, f
k,t )

=Tr
(
Yk

(
Wt − W f

t

)) − pmk,t ,

=Tr
(
Yk

(
Wt − W f

t

))
,

(10.9)

where the term pmk,t is dropped, since it is assumed that there is no wind power
at generator buses. The elements of r t = {rk,t }k∈NG can be positive and negative
(the upspinning and downspinning reserve power, respectively) such that they are
deployed for a power deficit and surplus to bring balance to the network and sat-
isfy the demanded power [16]. Following the automatic generator regulation (AGR)
mechanism [4], we also define two vectors dus

t , dds
t ∈ RNG to distribute the amount

of up- or downspinning reserve power among the available generators for each hour
t ∈ T . To obtain the optimal control strategies for AGR, we consider the following
equality constraint ∀ pmt ∈ P, ∀k ∈ G and ∀t ∈ T :

rk,t =Tr
(
Yk

(
Wt − W f

t

))

= − dus
k,t min

(
0, 1� pmt

) − dds
k,t max

(
0, 1� pmt

)
.

(10.10)

In order to always negate the mismatch wind power using the reserve power and
bring balance to the power network, we enforce the sum of the distribution vectors
to be equal to one using the following constraint ∀t ∈ T :

1�dus
t = 1 , 1�dds

t = 1 , (10.11)

where 1 is a vector of appropriate dimensions with all entries equal to one. Define
rdst , rust ∈ RNG such that ∀t ∈ T :

−rdst ≤ r t ≤ rust , (10.12a)

0 ≤ rust , 0 ≤ rdst , (10.12b)

and consider corresponding linear up- and downspinning cost coefficients cus, cds ∈
R

NG+ yielding the total reserve cost:

fR(rust , rdst ) := (cus)�rust + (cds)�rdst .

Using � := {
W f

t , Wt , d
us
t , dds

t , rust , rdst
}
t∈T as the set of decision variables, and

combining our previous discussions with the optimization problem (10.7), we are
now in the position to formulate the OPF({ pwt }) problem with RS in a more compact
form:
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C-OPF-RS :
⎧
⎨

⎩
min

�

∑
t∈T

(
fG(W f

t , pw, f
t ) + fR(rust , rdst )

)

s.t. (10.7b), (10.7c), (10.7d), (10.10), (10.11), (10.12)
.

Notice that one needs to substitute r t in (10.12a) with (10.9).
C-OPF-RS is an uncertain infinite SDP program, due to the unknown and

unbounded set P. It is therefore computationally intractable and in general diffi-
cult to solve. In the next section, we propose a technique to approximate P such that
it contains the probability mass distribution of P almost surely with a high level of
confidence.

10.3 Tractable Reformulations

In this section, we first present a tractable approach to approximately solve C-OPF-
RS, and then, we leverage the sparsity in the problem data to decompose the com-
putationally expensive PSD constraints.

Vertex Enumeration Scheme

The constraint function of C-OPF-RS is a linear function with respect to the uncer-
tainty pmt , if we exclude (10.10). However, due to the nonlinear operators, max-min,
it is not straightforward to reformulate (10.10) as a linear constraint. In fact such
operators lead to a hybrid operation, and especially in (10.10), the two terms on the
right-hand side cannot be non-zero simultaneously. Following this observation, one
can approximate the uncertainty set P using two sets B,B, and reformulate (10.10)
as follows ∀k ∈ G,∀t ∈ T :

Tr
(
Yk

(
Wt − W f

t

)) = −dds
k,t (1

� pmt ) ,∀ pmt ∈ B ,

Tr
(
Yk

(
Wt − W f

t

)) = −dus
k,t (1

� pmt ) ,∀ pmt ∈ B .
(10.13)

Remark 10.3 It is important to notice that all other uncertain constraints in C-OPF-
RS have to be satisfied for all pmt ∈ B and pmt ∈ B, separately, for all k ∈ G and for
all t ∈ T .

Our goal here is to approximate the uncertainty set P by employing recent results
in randomized optimization, the so-called scenario approach [21], to characterize
B,B and provide feasibility certificates. A similar technique has been also used in
[3, 22, 23] based on [24]. It is now of interest to characterize B,B such that B

⋃
B

approximates P. We assume for simplicity that B and B are two axis-aligned hyper-
rectangular sets. This is not a restrictive assumption and any convex set could have
been chosen instead as described in [22]. We define B := [0, pmt ], and B := [ pm

t
, 0]

as two intervals, where the vectors pmt ∈ RNw and pm
t

∈ RNw define the bounds of
hyper-rectangular sets. We now propose Algorithm 6 that aims to determine both
sets B and B with minimal volume such that B

⋂
B = ∅. Consider p∗m

t and p∗m
t
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to be the outcome of Algorithm 6 that determine B∗ and B∗, respectively. Defining
B∗ = B∗ ⋃

B∗, we next provide the following theorem that establishes a theoretical
connection between B∗ and P by means of the level of approximation.

Theorem 10.1 Fix ε ∈ (0, 1), β ∈ (0, 1),

Ns ≥ 2

ε

(
2Nw + ln

1

β

)
, (10.14)

and construct the set S = { pm,1
t , pm,2

t , · · · , pm,Ns
t }. Then,

P
Ns

[
S ∈ PNs : P[ pmt ∈ P : pmt /∈ B∗] ≤ ε

] ≥ 1 − β,

where PNs denotes an Ns-fold product probability.

Proof The proof is a direct result of [25, Theorem 1].

The interpretation of Theorem 10.1 is as follows. Given a generic sample pmt ∈ P,
the probability of pmt ∈ B∗ is greater than 1 − ε with high confidence level 1 − β.

Algorithm 6 Vertex Enumeration (VE) Algorithm
1: Input: ε, β

2: Ns ← � 2
ε

(
2Nw + ln 1

β

)
�

3: Extract { pm,1
t , pm,2

t , · · · , pm,Ns
t } ∈ PNs

4: for t ∈ T do
5: I ← ∅, { p∗m

t } ← ∅, { p∗m
t
} ← ∅

6: for k ∈ F do
7: I ← I ∪ argmaxi {pm,i

k,t }
8: I ← I ∪ argmini {pm,i

k,t }
9: end for
10: I ← I ∪ argmaxi {1� pm,i

t }
11: I ← I ∪ argmini {1� pm,i

t }
12: for i ∈ I do
13: if 1� pm,i

t > 0 then
14: { p∗m

t } ← { p∗m
t } ∪ pm,i

t
15: { p∗m

t
} ← { p∗m

t
} ∪ 0

16: else if 1� pm,i
t < 0 then

17: { p∗m
t } ← { p∗m

t } ∪ 0
18: { p∗m

t
} ← { p∗m

t
} ∪ pm,i

t
19: end if
20: end for
21: end for
22: Output: { p∗m

t , p∗m
t
}t∈T
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A complete description of Algorithm 6 can be found in [15, Section 4.1.2].
Combining the previous discussion with Remark 10.3, the resulting problem is
tractable by means of the robust SDP program which is a finite dimensional opti-
mization problem. We consider the generic network state {Wt }t∈T to be the sum
of forecasted network state {W f

t }t∈T and a corrective control action. In this way, it
emulates the way the set-points of the AGR unit can be adjusted as a function of the
wind power. Due to the fact that the constraint functions of C-OPF-RS, by replac-
ing (10.10) with (10.13), will be convex functions with respect to the uncertainty
pmt ∈ B∗, it suffices to enforce the constraints only at the values that correspond to
the vertices p∗m

t and p∗m
t
ofB∗ = B∗ ⋃

B∗. To solve numerically the resulting robust
SDP problem, we use a similar approach as in [3, 22] based on [26] together with
enforcing the PSD constraints Wt 
 0 and Wt 
 0 in each hour t ∈ T , separately,

for the worst-case uncertainties p∗m
t and p∗m

t
, respectively.

It is worth mentioning that compared to the result of [9], the number of samples
needed from P is much lower, since the dimension of the decision variable is much
smaller. We formulate a robust variant of the OPF-RS problem that uses far less
samples of the uncertainty compared to the approach in [9], whilst having the same
theoretical probabilistic guarantees.

Sparsity Pattern Decomposition

SDPs with matrix variables subject to PSD constraints are computationally com-
plex. One can reduce the size of the computationally expensive PSD constraints by
selecting certain submatrices of the original matrix variables and only imposing PSD
property on those matrices. The solution will be a partially filled matrix, with only
those entries filled that correspond to at least one of the submatrices. All other entries
will be undetermined. Various algorithms are available for matrix completion, the
a-posteriori filling of the undetermined entries. In [27], Grone et al. provided the
chordal theorem, that guarantees the completed matrix will be PSD if and only if
specific submatrices are PSD. Consider a symmetric matrix X ∈ Sd , and let G be a
graph with nodes {1, . . . , d}. The chordal theorem states that one can reconstruct the
PSD Hermitian3 matrix X using only the entries of X that correspond to the nodes in
the maximal cliques4 of G, if and only if G is a chordal graph.5 The chordal theorem
can thus be used to prove the equivalence between the PSD property of a matrix and
the PSD property of its submatrices, thereby reducing the size of the PSD constraints
with the overall computational complexity.

Consider a graph over all the buses of the power network such that the edges
correspond to the non-zeros in all the data-matrices Yk,Y ∗

k ,Ylm,Y ∗
lm, Mk , where the

3Note that a symmetric matrix is a Hermitian matrix with all its imaginary values equal to zero, i.e.
S ⊂ H, so the chordal theorem also holds for symmetric matrices.
4A clique is a subset of nodes that together form a complete graph, i.e. the number of edges between
any two nodes in a clique is equal to one. A clique is maximal if it is not a subset of any other
cliques in the graph [28].
5A graph is chordal if every cycle of length greater than three has a chord (an edge between
non-consecutive vertices in the cycle) [28].
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aggregate sparsity pattern can be found. Due to the definition of the nodal admittance
matrix, the sparsity pattern is identical to the network topology.

Using a greedy decomposition algorithm [29], we decompose the network in K
subsets of buses, corresponding to the maximal cliques of the chordal graph. Denote
every clique with Ck ⊂ N , and collect all cliques in C = {C1, . . . ,CK }, and let NC

be the number of buses in the largest maximal clique: NC := maxk |Ck |. Every subset
Ck induces a submatrix from the original matrix by selecting the columns and rows
corresponding to the buses in it. Note that the decomposed problem has K matrix
variables of dimension NC at most.

We now decompose the PSD constraints (10.7d) on every matrix variable in C-
OPF-RS ∀t ∈ T using the following constraints:

W f
t (Ck,Ck) 
 0, ∀Ck ∈ C (10.15a)

Wt (Ck,Ck) 
 0, ∀Ck ∈ C (10.15b)

Wt (Ck,Ck) 
 0, ∀Ck ∈ C (10.15c)

We call the proposed decomposed formulation as CD-OPF-RS. The following propo-
sition is the direct result of [13, Theorem 1].

Proposition 10.1 The optimal objective value of CD-OPF-RS is equivalent to the
optimal objective value of C-OPF-RS.

The obtained solution using CD-OPF-RS is a partially filled matrix, denoted by
W̃ f

t . From this matrix, we wish to reconstruct a PSDmatrix which is rank-one and an
optimal solution for the proposed original OPF-RS. Although the chordal theorem
proves the possibility of completing a PSD matrix, it does not provide a PSD matrix
with the desired rank. We therefore aim to develop a matrix recovery algorithm such
that the resulting solution is a PSD matrix with rank one.

Inspired by the voltage vector recovery algorithm in [13], we propose a matrix
recovery algorithm which is guaranteed to complete a partially filled state matrix
to a rank-one PSD matrix. We modify their algorithm for the rectangular voltage
notation, and extract a complex voltage vector from the partially filled solution. We
then recover the full state matrix from the complex voltage vector. Algorithm 7
summarizes our proposed recovery procedure.

The magnitude of the entries of v is determined by summing the entries on the
diagonal that correspond to the real and imaginary part of the same bus, and taking
the square root. After this, the angle difference between buses is calculated based
on the filled entries in W̃ f

t . Since the sparsity pattern coincides with the network
topology, the filled entries will correspond to the lines of the network. The convex
program in Algorithm 7 of extracts the globally optimal voltage vector if W̃ f

t is
rank-one such that

∑
(l,m)∈L |∠W̃lm − ∠vl + ∠vm | = 0. If this is not the case, the

program aims to find a voltage vector for which the corresponding angle differences
are as close to those suggested by the matrix W̃ f

t as in [13]. The determined solution
is used to build x, which is then used to form W f

t .
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Algorithm 7 Matrix Completion

1: Given: partially filled state matrix W̃ ∈ S2Nb

2: Initialize: v ∈ CNb

3: for k ∈ N do

4: |vk | ←
√
W̃ (k, k) + W̃ (k + Nb, k + Nb)

5: end for
6: for (l,m) ∈ L do

7: ∠W̃lm := tan−1
(
W̃ (l+Nb,m)−W̃ (l,m+Nb)

W̃ (l,m)+W̃ (l+Nb,m+Nb)

)

8: end for
9: ∠v ← argmin

−π≤∠v≤π

∑
(l,m)∈L |∠W̃lm − ∠vl + ∠vm |

10: x ←
[(|v| cos∠v

)�
,
(|v| sin∠v

)�]�

11: Output: W ← xx�

Remark 10.4 It is worth mentioning that the proposed approach in [13] first com-
pletes W̃ and then extracts the optimal voltage vector from this completed matrix.
We however skip the completion step compared to [13], since our proposed formu-
lation allows us to directly use W̃ f

t to extract a voltage vector and then reconstruct a
completely filled state matrix.

Remark 10.5 Comparing the computational time complexity of CD-OPF-RS with
C-OPF-RS by considering that NC � Nb, one can clearly see the impact of decom-
position on the computational complexity. For realistic networks, NC is still of rea-
sonable dimensions (see [13] for a list of power systems and their corresponding
treewidth, i.e. the size of the largest maximal cliques plus one). CD-OPF-RS has K
matrix variables of dimension NC at most, and the worst-case overall dimension of
the matrix variable is therefore K NC(Ns + 1)T .

10.4 Numerical Study

Simulation Setup

We carried out a simulation study using the 30-bus IEEE benchmark power system
[30] assuming only a single wind-bus infeed at bus 10. We follow the approach of
[31] to generate trajectories for the wind power, with a data-set corresponding to the
hourly aggregated wind power production of Germany over the period 2006–2011.
The load profile is assumed to be known (see [15, Fig. 6.1]) and the nominal load
from MATPOWER6 [32] is multiplied with this profile to get a time-varying load.

Following Theorem 10.1, we fix ε = 10−2, β = 10−5, and Nw = 1 to obtain the
number of required wind power samples at each hour Ns = 541. We use Matlab

6MATPOWER is a commercial software for solving powerflowproblemsusing successive quadratic
programming.
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together with YALMIP [33] as an interface and MOSEK [34] as a solver. All opti-
mizations are run on a MacBook Pro with a 2.4GHz Intel Core i5 processor and 8
GB of RAM.

After obtaining a solution, the scheduled generator power (the generator power
based on the forecasted wind trajectory) and the voltage magnitudes are extracted
from {W f

t } for all time steps using the following relations ∀k ∈ G,∀t ∈ T :

pGk,t = Tr
(
YkW

f
t

)
+ pD

k,t − pwk,t , (10.16a)

qG
k,t = Tr

(
Y ∗
k W

f
t

)
+ qD

k,t , (10.16b)

|vk,t | =
√
W f

t (k, k) + W f
t (Nb + k, Nb + k). (10.16c)

A comparison using theDCmodel of power network to solve theOPF-RSproblem
is delivered as a benchmark approach. A detailed description of DC model can be
obtained from [3, 4]. The solution of the benchmark program is the real generator

power and distribution vectors for every hour,
{
pG,dc
t , dus,dc

t , dds,dc
t

}
. One also needs

the reactive generator power and generator voltage magnitudes in order to have a
more realistic comparison. In [8], the nominal value of such variables was extracted
from the MATPOWER test case for all time steps and scenarios. This will result in
large violations, since the reactive generator power is not adapted to the time-varying
demand.

We here develop a novel benchmark approach, namely converted DC (CDC), to
have a more sophisticated comparison by solving the following program:

min{Wt }t∈T

∑

t∈T

∑

k∈G

(
pG,dc
k,t −

(
Tr (YkWt ) + pD

k,t − pw, f
k,t

))2

s.t. Wt ∈ W( pw, f
t , sDt ), ∀t ∈ T ,

Wt 
 0, ∀t ∈ T .

The solution to this program is a feasible (AC) network state {Wt }t∈T where the
real generator power is as close as possible to the obtained generator power from
the DC solution. The distribution vectors used in simulation will be equal to those
obtained from the original solution of the DC framework. A schematic overview of
the optimization and simulation process to obtain and validate both the benchmark
and proposed formulations is given in Figs. 10.1 and 10.2.

After retrieving a solution, we simulate the network power flow using MAT-
POWER such that the power and voltage magnitude of generators and all the loads
are fixedwithout imposing any constraints for 10,000 differentwind power scenarios.
The wind power is implemented as a negative load on the wind-bus. Afterward, the
resulting power flows and voltage magnitudes are evaluated by means of counting
the number of violated constraints.
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Fig. 10.3 Relative line loading for all hours and scenarios per line. The red line represents the
median value, edges of each box correspond to the 25th and 75th percentiles, the whiskers extend
to 99% coverage, and the red marks denote the data outliers. The upper plots a and b show the
Benchmark results, and the lower plots c and d show the proposed approaches

Simulation Results

Figure10.3 depicts the line loadings7 as boxplots for DC, CDC, C-OPF-RS, and
CD-OPF-RS formulations, for all hours and scenarios. Such a boxplot has been also
used in [9] to show line flow violations. It can be seen that all formulations have
some violations of the lineflow limits for line 10. To further assess the performance

7Line loadings are defined as the apparent power flow over a line divided by the maximum apparent
power flow for that line, such that a line loading higher than 100% corresponds to the violation of
the lineflow limit.
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Fig. 10.4 Empirical violation level of lineflow limit for different formulations

of these results, we calculate the level of violation for lineflow limit empirically using
the different formulations at each hour (see Fig. 10.4).

In Fig. 10.4 the results for the peak hours are shown. For all other hours, the chance
of constraint violation is very close to zero for all formulations. As expected, the DC
solution shows a very high level of violation during the peak hours. Although the
CDC solution improves the chance of lineflow limit violation, the theoretical limit
at the peak hours is still not respected. It is important to notice that the empirical
chance of constraint violation for the C-OPF-RS and CD-OPF-RS results are well
below the theoretical limit (5%), and they are at most 1.1 and 2.2%, respectively.
The proposed decomposition and reconstruction process caused the solution to be
slightly less conservative compared to the results of C-OPF-RS.

We next examine the bus voltage magnitudes for all formulations. It is observed
that the DC, C-OPF-RS and CD-OPF-RS solutions are always within the limits for
all hours and scenarios. However, using the CDC formulation the bus voltage limits
show a violation of 100% for all hours. This can be explained by the fact that in the
DC framework, the bus voltages are assumed to be constant at nominal value. When
we implement the obtained solution in the AC framework, it can be seen that this
assumption does not hold. We can thus conclude that for both the DC formulations,
the empirical chance of constraint violation is well above the theoretical limits once
the solution is implemented in the AC power flow simulations. For both C-OPF-RS
and CD-OPF-RS, the a-priori probabilistic guarantees are confirmed to be valid.

10.5 Conclusions

We developed a framework to solve the reserve scheduling (RS) problem using AC
optimal power flow (AC OPF) formulation. We first integrated the effect of wind
power generation in power networks into an AC OPF problem formulation. Using
this new formulation, we unified the RS problem with the AC OPF problem. The
final optimization problem leads to an uncertain infinite semi-definite program (SDP)
formulation, since the uncertainty set is unknown and unbounded. We approximated
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the uncertainty set with a-priori probabilistic guarantee using a set-based charac-
terization technique, and then solved a robust finite SDP problem at each hour. A
decomposition technique is employed to reduce computational time complexity of
the resulting problem. As a final contribution, we proposed a new recovery algo-
rithm to determine a rank-one solution from the decomposed problem. The resulting
solutions are validated using Monte Carlo simulations and a commercial power flow
simulator, and found to perform as expected. The obtained solutions via our proposed
formulation perform better than the solution obtained from theDC framework, which
is currently used in industry. Future work will focus on extending the current results
to multi-area power systems.
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