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Abstract—Computation-in-memory (CIM) using memristors
can facilitate data processing within the memory itself, leading
to superior energy efficiency than conventional von-Neumann
architecture. This makes CIM well-suited for data-intensive
applications like neural networks. However, a large number of
read operations can induce an undesired resistance change in
the memristor, known as read-disturb. As memristor resistances
represent the neural network weights in CIM hardware, read-
disturb causes an unintended change in the network’s weights
that leads to poor accuracy. In this paper, we propose a method-
ology for read-disturb detection and mitigation in CIM-based
neural networks. We first analyze the key insights regarding the
read-disturb phenomenon. We then introduce a mechanism to
dynamically detect the occurrence of read-disturb in CIM-based
neural networks. In response to such detections, we develop a
method that adapts the sensing conditions of CIM hardware to
provide error-free operation even in the presence of read-disturb.
Simulation results show that our proposed methodology achieves
up to 2× accuracy and up to 2× correct operations per unit
energy compared to conventional CIM architectures.

I. INTRODUCTION

Neural networks form the backbone of modern artificial
intelligence (AI) and are widely used for many cognitive
tasks [1]. The implementation of neural networks using con-
ventional von-Neumann architecture-based hardware, such as
CPUs, GPUs, and AI-specific ASICs like TPUs [2–4], suffers
from low energy efficiency due to the memory wall [5].
Computation-in-memory (CIM) offers a highly energy-efficient
hardware alternative for neural network implementation [6, 7].
It performs computations within the memory to alleviate
the memory wall problem, by using emerging non-volatile
memory technologies such as memristors (also called resistive
random access memories RRAMs) [8, 9]. Memristors are non-
volatile, highly scalable, and compatible with CMOS technol-
ogy. However, they suffer from various non-idealities that arise
either at design-time or run-time, leading to computational
errors. While design-time non-idealities can be fixed via
circuit calibration, this approach cannot address run-time non-
idealities. The most prominent run-time non-ideality affecting
CIM-based neural networks is called read-disturb, where a
large number of read operations lead to a significant resistance

This work is partially funded by the European Union, DAIS (Grant No.
101007273), CONVOLVE (Grant No. 101070374), NEUROKIT2E (Grant No.
101112268) and also supported by the TU Delft AI labs program.

change in the memristor [10]. As neural network inference
involves numerous read operations on memristors, read-disturb
causes an undesired change in the weights stored as memristor
resistances and results in degraded inference accuracy [11].

To reduce the impact of read-disturb, some works have
recommended using low read voltages [10, 12, 13]. However,
this leads to a reduced sensing margin and increased influence
of process variation, resulting in erroneous output. Alterna-
tively, CIM-aware training can be leveraged to address read-
disturb. Such approaches fall into two categories: i) ex-situ
where software models of non-idealities are incorporated into
the training [14, 15], and ii) in-situ where training involves
forward path execution directly on the CIM chip [16, 17]. The
ex-situ approach only deals with design-time non-idealities,
leaving run-time non-idealities like read-disturb unaddressed.
The in-situ approach requires frequent on-chip training iter-
ations, leading to high energy consumption and endurance
issues. A few works provide only detection of the occurrence
of read-disturb [18, 19], while [20, 21] recommend periodic re-
programming of memristors for read-disturb mitigation which
leads to excessive write energy. Some techniques periodically
reverse the direction of the read current to compensate for
the resistance change due to read-disturb [11, 22]. However,
this strategy falls short due to the asymmetric behavior of
read-disturb in opposite read directions, leading to incorrect
compensation. Furthermore, it adds extra complexity to the
hardware design, which can negatively affect inference accu-
racy in the presence of process variation. Hence, there is a
strong need for an effective read-disturb mitigation technique
to improve the accuracy of CIM-based neural networks.

In this paper, we present a methodology for dynamic
detection and mitigation of read-disturb in CIM-based neural
networks. It begins with an analysis to extract insights about
the read-disturb phenomenon. We then develop a dynamic
detection mechanism capable of identifying instances of read-
disturb occurrence at run-time. Moreover, we propose an
adaptive method based on the aforementioned analysis, that
adjusts sensing conditions in CIM hardware upon detecting
read-disturb to prolong the error-free operation. The key
contributions of this paper are as follows:

• An analysis to derive insights about the read-disturb
phenomenon in memristor-based neural networks.
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(a) Vector-matrix multiplication. (b) Memristor technology.
Fig. 1. CIM-based vector-matrix multiplication [B]=[A]*[R].

• A mechanism for detecting the occurrence of read-disturb
at run-time.

• An adaptive design to adjust the CIM sensing conditions
to extend the correct functionality.

Our proposed methodology provides up to 2× accuracy and
up to 2× correct operations per unit energy than conventional
CIM architectures.

The rest of this paper is organized as follows: Section II
presents the basics of CIM. The proposed methodology is
described in Section III. Simulation results are presented in
Section IV, followed by conclusion in Section V.

II. BACKGROUND

A. Computation-in-memory Architecture for Neural Networks

Computation-in-memory (CIM) performs vector-matrix
multiplication (VMM) within the memory as shown in Fig. 1a,
to avoid frequent data transfers and save energy. Inputs are
converted to voltages (V ’s) using digital-to-analog converters
(DACs) and applied to weights stored as memristor resistances
(R’s). The resulting column currents (Ic’s) denote a VMM
operation. Analog-to-digital converters (ADCs) convert these
currents to digital form for use by other system components.

B. Memristor Technology

Memristor, also called resistive random access memory
(RRAM), consists of two metal electrodes separated by an
oxide layer [6, 23] (Fig 1b). It stores data as 0 (high-resistance,
RH) and 1 (low-resistance, RL). ”SET” process changes its
state from RH to RL by creating a conductive path with a set
voltage, while ”RESET” process shifts its state from RL to

(a) Finite on-off ratio (b) Resistance variation

(c) Possible column current distributions at design-time.
Fig. 2. Design-time nonidealities and their impact.

Fig. 3. Read-disturb phenomenon in memristors [11].

RH using a reset voltage. Data is retrieved via read operation
by applying a read voltage and measuring resulting current to
determine the resistance state of the memristor.

C. Memristor Non-idealities Affecting CIM-based Inference

1) Finite on-off ratio and resistance variation: Memristors
represent a zero weight using non-zero resistance, known as
finite on-off ratio [6, 24]. Programmed resistance of a mem-
ristor deviates from the target value due to stochastic physics
and fabrication imperfections [6], called resistance variation.
These non-idealities result in column current distributions due
to deviation from ideal current as shown in Fig. 2.

2) Read-disturb: Although read operations on the memris-
tor are performed with low voltages, they can still lead to a
minuscule change in its resistance [10, 12]. Such minuscule
changes accumulate into a substantial resistance change over
numerous read operations, known as read-disturb, shown in
Fig. 3 [11]. As neural network inference on CIM hardware
is inherently a read-intensive task [11], read disturb changes
weights stored as memristor resistances and degrades the neu-
ral network accuracy. In this paper, we improve the accuracy
of CIM-based neural networks in the presence of read-disturb.

III. PROPOSED METHODOLOGY

A. Overview

Based on the experiments in [11], read disturb only im-
pacts RH memristors and decreases their resistance. Thus,
the column currents increase over time and their distributions
shift towards the right as shown in Fig. 4. Conventional
design practice sets sensing reference at the midpoint between
adjacent column current distributions, to optimize the sensing
margin [25–27]. However, this leads to erroneous operation at

Fig. 4. Overview of proposed read-disturb detection and mitigation.
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Algorithm 1: Identifying the most vulnerable columns.
input : Weights (W), inputs (I), fixed point weight format

(FW), fixed point input format (FI), memristor
bit-size (R), DAC resolution (D), crossbar size (X)

output: A matrix containing the location of the most
vulnerable column in each crossbar (MVC matrix)

1 Wfxp ← fixed point conversion(W, FW);
2 Wsliced ← bit slicing(Wfxp, R);
3 Wxbar ← split into xbar chunks(Wsliced, X);
4 Ifxp ← fixed point conversion(I, FI);
5 Isliced ← bit slicing(Ifxp, D);
6 Ixbar ← split into xbar chunks(Isliced, X);
7 RVS matrix ← track nonzero inputs to RH(Ixbar, Wxbar);
8 MVC matrix ← max(RVS matrix, X);
9 return MVC matrix

run-time due to right shift induced by read-disturb, as shown in
Fig. 4. This challenge is also not effectively addressed by prior
works as discussed in Section I. Our proposed methodology
overcomes this problem by dynamically detecting the occur-
rences of read-disturb and then adapting the sensing references
to restore correct operation as depicted in Fig. 4. It requires
new hardware components such as read-disturb detection unit,
ADC adaptation control, and adaptive ADC which are shown
in Fig. 5 and discussed in the next subsection.

B. Implementation
1) Dynamic Read-disturb Detection: Dynamic read-disturb

detection starts with software profiling in Algorithm 1, em-
ploying test data to identify the most vulnerable column
(MVC) for read disturb. The weights and inputs are quan-
tized, bit-sliced and divided into crossbar-compatible chunks.
The number of read operations (Nread) on RH memristors is
obtained by tracking the instances where each digital 0 weight
gets digital 1 input. The sum of Nread across memristors in a
column gives its read-disturb vulnerability score (RVS). The
column with the highest RVS in each XPE (Fig.5) becomes the
MVC, monitored by its read-disturb detection unit (RDU) in
Fig.6. RDU uses registers to store the MVC index and digital
MVC weights, allowing monitoring of any crossbar column. It
performs a multiply-accumulate operation (MAC) between the
digital MVC weights and input register. A mismatch between
MAC output and ADC output for MVC indicates read-disturb,
activating the ADC adaptation control unit.

Fig. 6. Read-disturb detection unit.

Fig. 7. Adaptive SAR ADC design.

2) Adaptive Sensing-based Mitigation: Successive
approximation-register (SAR) ADC is widely used in CIM
due to its low power consumption [28]. In n-bit SAR ADC,
reference shifting is achieved by augmenting its internal
DAC with m additional least significant bits (LSBs) and a
tuning logic, as shown in Fig. 7. Upon activation, tuning
logic increments m-bit LSB value by 1 and references shift
by VFS/2(m+n), where VFS is the full-scale ADC voltage.

The ADC adaptation control unit in Fig. 8 tracks the number
of executed reference shifts (C). When activated by RDU, it
increments C by 1 if C < 2m and triggers the tuning logic in
the adaptive ADC. It also sends a stall request to tile control
logic, ensuring it waits for reference shifting completion.
Conversely, C = 2m means no further shifting is possible and
memristor reprogramming request is sent to tile control logic.

Fig. 8. ADC adaptation control unit.

Fig. 5. CIM system architecture with conventional and proposed crossbar processing element (XPE), with new/modified components indicated in yellow.
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(b) Read voltage 0.5V. (c) Read voltage 0.6V.

Fig. 9. Accuracy comparison between conventional CIM architectures [25, 26] and proposed methodology across various datasets and read voltages.

IV. SIMULATION RESULTS

A. Simulation Setup

We use four datasets for evaluation: MNIST [29], EMNIST-
Letters [30], EMNIST-balanced [30] and CIFAR-10 [31]. We
modify the VGG [32] network for CIFAR-10 as: 32c3 → 32c3
→ maxpool → 64c3 → 64c3 → maxpool → 128c3 → 128c3
→ maxpool → flatten → 128 → 10. Here, nCm denotes a
block of n filters of m kernel size with batch normalization and
relu, while a single number indicates neurons in a fully con-
nected layer with batch norm and relu (except the last layer).
Lenet-5 [29] with batch normalization is used for all other
datasets. After training these networks in PyTorch, we perform
behavioral simulation of their inference on CIM hardware
using our Python-based framework. This framework leverages
the crossbar processing element (XPE) in Fig. 5 and adaptive
ADC obtained by modifying the SAR ADC in [25, 26] as
per Section III-B2 with four extra LSBs. Power and area for
the adaptive ADC are obtained using [33]. We performed
RTL synthesis in TSMC 40nm technology to derive power
and area for read-disturb detection unit and ADC adaptation
control unit. The power and area of other XPE components
are obtained from [26]. We consider full-precision weights
distributed across a group of 1-bit memristors, programmed
using write-verify method in [34]. Read-disturb models are
extracted from [11] which presents experimental investigations
on real memristors. Our simulations consider both finite on-off
ratio and resistance variation in addition to read-disturb.

B. Neural Network Accuracy

The accuracy comparison between proposed adaptive refer-
encing and conventional CIM architectures [25, 26] is shown
in Fig. 9. These results are presented in terms of relative
accuracy, obtained by normalizing the accuracy of behavioral
CIM hardware simulation with corresponding software base-
line accuracy. This normalization effectively quantifies how
faithfully computational correctness in software is maintained
in CIM hardware. The proposed methodology achieves up
to 2× accuracy compared to conventional CIM architectures
(EMNIST-Balanced dataset with 0.5V read voltage), providing

TABLE I
COMPARISON OF CROSSBAR PROCESSING ELEMENT (XPE) METRICS.

Metric Conventional XPE
[25, 26]

Proposed XPE
[This work]

Energy consumption (pJ) 407.06 416.00
Net energy-efficiency (GOPS/W) 157.22 153.85

EMNIST-Balanced accuracy at 0.5V (%) 33.45 66.12
Correct operations per unit energy (GOP/J) 52.59 101.72

Area (µm2) 3735.43 4617.82

effective read-disturb mitigation. It also accommodates diverse
dataset complexities (from MNIST to CIFAR-10) and adapts
seamlessly to various network sizes (from Lenet-5 to VGG-
like architecture). Furthermore, it delivers these benefits across
two different read voltages, highlighting its robustness.

C. Hardware Performance Evaluation

The hardware metrics per XPE for the proposed methodol-
ogy and conventional CIM architectures [25, 26] are shown
in Table I. Metrics like energy and net energy-efficiency
expressed in giga operations per second per watt (GOPS/W) do
not inherently account for the energy devoted to correct com-
putations. Hence, we introduce a new metric called “correct
operations per unit energy”. It is defined as the ratio of correct
operations to total energy consumption (unit: Giga operations
per joule, GOP/J), where correct operations are given by the
product of accuracy (as a fraction) and total operations. Our
proposed methodology achieves up to 2× correct operations
per unit energy at the expense of 2.2% energy overhead and
23.6% area overhead. This additional cost can be attributed
to the increased resolution of the DAC within the SAR ADC,
which is necessary to accommodate reference shifting. Thus,
it is clear that its advantages outweigh the overheads.

V. CONCLUSION

This paper presented a read-disturb mitigation methodol-
ogy to improve the accuracy of CIM-based neural networks,
through run-time monitoring and adaptation of sensing ref-
erences. It provides up to 2× accuracy than conventional
CIM architectures. Thus, we showed that a shrewd design can
facilitate correct operation despite memristor non-idealities.
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