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Manifold Learning of Nonlinear Airfoil Aerodynamics with

Dimensionality Reduction

Srikanth Vasudevan*, Roeland De Breuker', Xuerui Wang*
Delft University of Technology, Delft, The Netherlands

This paper aims to explore the advantages offered by machine learning (ML) for dimensionality
reduction of nonlinear transonic aerodynamics. Three ML techniques are evaluated in terms
of their ability to generate interpretable low-dimensional manifolds of the transient pressure
distributions over a NACA4412 airfoil equipped with a flap. These ML techniques are Kernel
Principle Component Analysis (kPCA), Locally Linear Embedding (LLE), and t-distributed
Stochastic Neighbourhood Embedding (t-SNE). Initial investigations are also carried out to
evaluate the performance of Artificial Neural Networks (ANNSs). Three transient aerodynamic
test cases are evaluated. First, a static aerodynamic transient analysis. Second, pitching and
heaving airfoils in terms of prescribed sinusoidal displacements. Lastly, the airfoil geometry is
adapted to include a flap under sinusoidal actuation. The snapshots forming the ground truth
are obtained from unsteady CFD simulations. The preliminary results of this study reveal that
patterns exist in low-dimensional nonlinear manifolds. Furthermore, unsupervised learning
techniques are seen to outperform supervised neural networks in terms of both training cost and
reconstruction accuracy. Promising reconstruction capabilities are observed with unsupervised
learning.

I. Nomenclature

P = Pressure, Pa
X = Chord, m
h = Height, m
t = Time, s
@ = Angle of attack, degrees
B = Angle of flap, degrees
+4 = Incremental quantity, degrees
w = Frequency of sinusoidal input, Hz
Y« = Latent dimension 1
Y2 Latent dimension 2
¥.3 = Latent dimension 3
C; = Coefficient of lift
Cyg Coefficient of drag
C, = Coefficient of pressure
M = Mach number
Re = Reynolds number
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I1. Introduction

With computing power growing at an exponential rate, the formulation of “digital twins” is crucial in attaining the
ambitious sustainability goals of the next decade. Digitalisation offers several benefits such as cost-effective simulations,
non-destructive virtual testings, predictive maintenance and condition monitoring. However, one of the major limitations
of physics simulations is their reliance on high fidelity solvers such as Computational Fluid Dynamics (CFD) for
accurate predictions of complex fluid flows. Furthermore, for multidisciplinary fields such as Aeroservoelasticity (ASE),
simulating the interactions between structures, aerodynamics and control is crucial [1]. This requires a consistent and
efficient transfer of information between models with varying degrees of complexity. In such scenarios, Model Order
Reduction (MOR) techniques are typically employed to reduce the complexity of the simulations [1].

Modal analysis as a standard MOR technique has existed in the field of structures for several decades [2]. Proper
Orthogonal Decomposition (POD) is commonly employed for simulations involving fluid flows [3-5]. In particular,
CFD-based reduced order models (ROMs) have been an active field of research for several decades [6]. As ROMs are
seen as surrogate models of a physical system, it begins with snapshots of the systems of interest taken as the ground
truth, following which eigenvalue-based subspace projection is performed. Several methods such as Discrete Fourier
Transforms (DFT), Dynamic Mode Decomposition (DMDs), multiscale POD (mPOD) exist in literature [7-9]. However,
these linear techniques are often described for simple 2D example cases and their performance normally degrade when
applied to nonlinear systems [10].

The aforementioned linear methods can be extended to generate “adaptive” Nonlinear Reduced Order Models (NL-ROMs)
via interpolation between local reduced bases [11—-14]. The rationale of sparse identification of nonlinear dynamics is
to represent the complex dynamics in terms of a few dominant latent coordinates [15]. This, in combination with an
exponential increase in trend towards Machine Learning (ML) research has led to the development of Artificial Neural
Networks (ANNSs) for complex flow physics [16—-19]. Moreover, combining the effects of projection-based reductions
with sequential dense layers enables superior data compression and dimensionality reduction [16]. General approaches
to simulate dynamical systems using ANNs include direct methods (where temporal information is provided as an
input) and time-stepper methods (ANNs augmented with numerical time marching schemes) [20]. Physics is often
incorporated into the loss function of the training phase to improve the generalisability of a given solution. Finally,
to tackle uncertainties in the predictions, often probability and stochasticity are taken into account with the use of a
Bayesian framework [20].

In particular, two recent applications towards transonic aerodynamic predictions indicate promising future research
directions. Bertrand et al. [21] investigated the performance of ANNs and U-Nets in predicting the transonic flow
around the RAE2822 airfoil. These supervised ML techniques were found to predict the transonic pressure distribution
over the 2D airfoil with a high degree of accuracy. However, their large training dataset consisted of up to 150,000
steady simulations. Also, the ANNs were incapable of accurately predicting the linear subsonic regime thus making
them inherently dependent on the large training datasets. A more recent work by Vladyslav et al. [22] improved upon
these limitations with a major advantage of a temporal prediction using previous time steps. The training dataset was
drastically reduced here by using the approach of Averaged Pseudo-Random Signal (APRS) that typically excites a
frequency range of interest. The Encoder-Decoder and the U-Net architectures were seen to accurately predict the
temporal evolutions for a range of reduced-order frequency excitations [22].

However, although prediction accuracies were high in these simulations, grey box (non-intrusive) approaches were
utilised without any studies on the patterns that could exist in the low-dimensional manifold. Identifying these patterns
is crucial for sparse representation of complex nonlinear and multi-physical systems. This can reduce the computational
requirements by several orders of magnitude. Although ANNSs are known for their predictive prowess, they are often not
physically interpretable. Using ANNSs in the form of deep autoencoders to predict within the realms of these identified
manifolds could aid in better data compression with added physical intuition of the system [16]. Furthermore, most
aerodynamic ROMs in the literature do not model the flap system. Capturing the influence of control surfaces is crucial
for aeroservoelastic applications such as transonic flutter suppression.

This paper aims to build reduced-order transonic aerodynamic models by identifying low-dimensional manifolds where
patterns could exist in highly nonlinear aerodynamic systems. To this end, a 2D airfoil is first used in a static unsteady
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test case. Next, the evolution of aerodynamic loads due to prescribed pitching and plunging motion is analysed. Finally,
a prescribed flap actuation simulation is carried out to analyse the flap model.

II1. Methodology

This section briefly describes the numerical setup and the mathematical procedures that are utilised in this paper. First,
the geometry and settings used for CFD simulations are presented in section III.A. Subsequent sections provide the
mathematical descriptions of the reduction algorithms evaluated in this paper. For ease of comparison, the classical
linear POD approach and the related machine-learning methods III.B and III.C are presented sequentially.

A. Geometry and Computational Domain Definition
Figure 1 illustrates the geometry and preliminary test cases evaluated. Figure 2 along with table 1 describe the
computational domain used for generating the high fidelity snapshots.

(a) Airfoil at fixed o = 5°

(b) Pitching and heaving airfoil at w = 5 Hz (c) Flap actuation at w = 5 Hz

Fig.1 Preliminary test cases on a NACA 4412 airfoil equipped with a flap.

In this paper, ANSYS Fluent 21R2 was used for the unsteady Reynolds-Average Navier Stokes (URANS) simulations.
The governing partial differential equations are discretised using finite volume method that results in an expensive
high-dimensional system (set of ordinary differential equations) that is solved using time-stepping methods. We use the
1-equation Spallart-Allmaras (SA) turbulence model due to its suitability for external flows over airfoils [23]. Three
simulation scenarios are studied in this work:

1) The unsteady flow around a NACA4412 airfoil with a static angle of attack @ = 5deg at M = 0.85.

2) The airfoil is prescribed with 5 pitch and heave oscillations with frequencies w = 0.5Hz, 1Hz, 2Hz, 10Hz, 20Hz
about the mid-chord.

3) The airfoil is equipped with a trailing edge flap (0.2c, i.e 20% of chord), to which the above oscillations are
prescribed, simulating flap actuation at varying frequencies.

Each simulation is carried out for ¢ = 55/10s, with a timestep of 4t = 0.0055/0.01s. The choice of these frequencies is
based on the parameter reduced frequency k (where k = wb /U, w is angular frequency in radians/sec, b is the semi-
chord in m and UL, is the freestream velocity in m/s) which take the values £ = 0.00215,0,0107,0.0215,0.107,0.215.
These k values are of interest to the aeroelastician as a measure of flow unsteadiness. Thus, this study consists of
16 snapshots in total which form the ground truth for all results discussed in this paper. The spatial discretisation of
the complete flow field leads to n, = 5.53 x 10° degrees-of-freedom, which are the locations at which pressures are
evaluated.
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Table 1 CFD Simulation Settings.

Property Definition
Bounding box 15X x 10X (X is the airfoil chord)
Mesh domain Mapped face meshing with 5.53 x 10° nodes
Airfoil geometry NACA4412, 1 m chord, @ = 5°
Flow settings Spalart Allmaras RANS model, Mach 0.85
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Fig. 2 CFD domain definition for structured face meshing.

B. Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition is a physics-based parametrisation of a given field variable, u and can be
expressed as a separation of variables as follows [24]:

a(t) = 23 vea(r)

where # is the approximate solution of the field variable of interest u, vx represents a set of spatial modes that form the
POD basis and @, are the temporal coefficients of the basis.

In practice, the POD basis is computed using the method of snapshots, where a Singular Value Decomposition (SVD) of
the field variable matrix U gives us the following:

v=vzwrl

The POD basis vectors are then the first r columns of V, V,. = [v1,v2,...v;] and are orthonormal. The singular matrix X
is a diagonal matrix of ordered singular values such that the r-rank truncation results in V, corresponding to r highest
singular values.
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C. ML Algorithms for Dimensionality Reduction

This section briefly describes the main mathematical formulations behind the data-driven algorithms used in the current
work. Three algorithms are presented. Additionally, the autoencoder architecture is briefly described in the subsequent
section separately.

1. Kernel Principle Component Analysis (kPCA)

The kernel method can be seen as extension of the POD procedure described above with a nonlinear projection step.
Given a nonlinear function @ (x) : R? — R” (n > d), a kernel is defined as [25]:

K(x,y)=®x) ®(y)

Projecting a point from the kernelised high-dimensional data onto one of the principle coordinates Vi € V,., we get

Vil ®(x;) = Zi(af @ (x)) @ (x)

Now solving the eigenvector equation for af.‘ gives us the solution,

NAa = Ka

N is the dimension of the data, A is the eigenvalue of K.

2. Locally Linear Embedding (LLE)

s

Locally Linear Embedding attempts to reduce the dimensionality of a given dataset by preserving a “nearest neighbour’
metric around the individual data points. This is done by first performing a k-nearest neighbour (kNN) search in the high
dimensional space. A weight matrix is then built using this kNN search, which is mapped onto the low-dimensional
space. Mathematically, a reconstruction cost function, & (W), based on L2 norm can be defined as follows [26]:

EW) = Z|X; — Z;Wi X

where W;; is the weight matrix constructed based on the number of nearest neighbours. X; € R" is the high-dimensional
data. These weights are used in the embedding cost function, @ (Y'), defined as :
DY) = 5|Y; — Z;W,,Y )

where Y; € R™(m << n) is the obtained low-dimensional data.

3. t-distributed Stochastic Nonlinear Embedding (t-SNE)

Similar to the approach of maintaining a measure of euclidean distance in an LLE algorithm described above, t-SNE
embeds a similarity measure between two points in the high-dimensional data. This similarity measure is a conditional
probability function defined between two points as:

I b X;1/202)
M Sepiexp(—[1X; - Xc|2/202)

The similarity in the high dimensional dataset is then defined as

_ PjlitPjli
PETON
Now, this operation is performed for the low dimensional map,
_exp(=|lY; = Y;|PP/207)
Ziziexp(—|[Y; = Yi|1?/20)

qjli
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_4qjli +4qji
T

where pj|; and g j|; are the PDFs, p;; and ¢;; are the similarity metrics based on the PDFs, X; € R" and Y; € R™ are
the high and reduced dimensional data respectively.

Finally, the t-SNE algorithm minimises the Kullback-Leiber (KL) divergence using gradient descent.

KL = Zpijlogﬂ
qij

D. Deep Autoencoder Architecture

An autoencoder is a Neural Network architecture that aims to identify a nonlinear map f : x — £, where x,% € R"
using 3 parts which can be identified as: the encoder, the bottle-neck and the decoder. Mathematically, the nonlinear
function can be defined as follows:

fixe=yp-épx)

where the encoder transformation y g is given by,

VE x> 2

with x € R, 7z € R¥ (representing the bottle-neck), d << n and the decoder transformation ¢, given by,

¢p iz X

Both the encoder and the decoder consist of several fully connected layers whose weights and biases are learned via the
training operation using Stochastic Gradient Descent (SGD).

IV. Results and Discussions

The simulation results from the three test cases, illustrated in Figure 1 are discussed in this section. Three nonlinear
dimensionality reduction algorithms from III are tested for their suitability in building ROMs for nonlinear fluid flow
problems involving shockwaves and flow separation. Firstly, results from high fidelity simulations are presented in
section IV.A. Next, performance of the data-driven reduction algorithms in the context of nonlinear aerodynamics is
discussed in section IV.B.

A. Full Order Model Fluid Flow Analysis

The setup of the fluid problem was described in section III.A. Here, the results obtained from a total of 16 uRANS CFD
simulations over a NACA4412 airfoil at Mach 0.85 (Us = 291.55 m/s) are presented.

Figure 3 presents the validation of the airfoil simulation model used in this work. To begin with, verification is
carried out for a steady, low-subsonic NACA4412 airfoil at @ = 13.87deg, M = 0.09, Re = 1.52E6 against standard
Spallart Allmaras (SA) and k — w Shear Stress Transport (SST) evaluations [27]. Also, the model is validated against
experimental results at this configuration as shown in figure 3a. The lift coefficient converged to a value C; = 1.72 as
predicted in literature [28]. Figures 3b and 3c illustrate the transonic, unsteady, transient lift and drag histories and
chordwise pressure distribution over a NACA4412 airfoil at @ = Sdeg, M = 0.85 (Uss = 291.55 m/s) respectively. As
the obtained time history plots remain bounded over the entire simulation, along with the static validation results from
Figure 3a, the transient results are deemed to be valid.
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NACA4412 o = 13.87°, M = 0.09, Re = 1.52E6

FLUENT SA
—— NASA CFL SA
N —— NASA CFL SST
a
O —6 1 A NASA EXP
[
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(a) Validation of simulation for stall angle of NACA4412 at

« = 13.87 deg.
Lift and Drag Histories - NACA4412, o = 5°, M=0.85 C,, Surface Distribution - NACA4412, o = 5°, M = 0.85
e Lower C,
1.00 4 -2 Upper C,
0.75 1 —
=
(.)" — (:' (5 0 . \-‘ S
~0.501 Ca
: [
0.251 T
0.00 4 2
0 2 4 6 8 10 0.0 0.2 0.4 0.6 0.8 1.0
timels] chord[m|
(b) Cj, Cq time history (c) Cp surface distribution plot

Fig.3 CFD Steady and uRANS simulation of a NACA4412 airfoil (static) at « = Sdeg, M = 0.85.

Figures 4 and 5 illustrate the lift and drag histories and pressure distributions due to sinusoidal heaving and pitching,

respectively. Five frequencies of oscillation are chosen in order to study the effect of reduced frequencies on flow
unsteadiness. For the heaving case 4, it is interesting to note that the total unsteady flow is a convolution of the heaving
and flow development as a multiple timescales phenomenon. For the sinusoidal pitching motion of the airfoil in Figure
5, the trend in C; is consistent with Theodorsen aerodynamics, wherein, the slope of C; vs reduced frequency curve
reduces with increasing reduced frequency.

Pressure History

— 0.2Hy Heave
11z Heave
—— 2Hy Heave
—— 10Hz Heave
= SIS NSNS ), Heave

10

= ().2Hz Heave
1Hz Heave
=— 21z Heave
= 10Hz Heave
—— 20Hz Heave

0 2 4 6 8 10
timels]

Fig.4 CFD uRANS simulation of a NACA4412 airfoil (Heave dynamics) at H = £0.1m, @9 = Sdeg, M = 0.85.
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Fig.5 CFD uRANS simulation of a NACA4412 airfoil (Pitch dynamics) at o = £5deg, M = 0.85.

Finally, to study the effect of flap actuation on transonic air loads, the airfoil is equipped with a flap at the trailing edge.
The above set of oscillatory inputs are now given to the flap hinge-line. The high fidelity simulation results of this test
case are illustrated in figure 6. As shown, the simulation of 20Hz actuation seizes to run due to mesh skewness. This
will be rectified in future work.

Pressure History

—— 0.2Hz Flap
11Tz Flap
— 2Hy Flap
—— 10Hz Flap
7 —— 20Hz Flap

10

—— 0.2Hz Flap
1Hz Flap
—— 2Hz Flap
—— 10Hz Flap
—— 20Hz Flap

10
timels]

Fig. 6 CFD uRANS simulation of NACA 4412 (Flap dynamics) at H = +0.1m,a¢ = Sdeg, M = 0.85.

B. Dimensionality Reduction using ML algorithms

The performance of the three machine learning algorithms presented in section III.C are evaluated and compared to
the standard POD technique for the each of the test cases presented above. For each algorithm, the reconstruction
capabilities, the patterns in the latent manifolds and the computational efficiencies are discussed.

1. Test Case I : Static Aerodynamics

Figure 7 shows the high-fidelity steady pressure field around the airfoil (Figure 7a ) at t = 10s and it’s reconstruction
using Proper Orthogonal Decomposition in Figures 7a and 7c.

Comparing the reconstructions and their respective error fields, it is evident that although the linear POD algorithm is
capable of reasonably good reconstructions, the error mainly arises along the shock wave region (with a maximum of
about 10% in Figure 7c). This is expected as the nature of the solution changes abruptly across the shock wave. The
approximation capabilities of the POD recovers after the shock region where it is linear again. Figures 7d and 7e show
the advantage of using the Radial Basis Function (RBF) kernels with improvements in the error to about 2.5 % with the
kernel-PCA algorithm.
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Full Order Model C,
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(a) uRANS CFD Pressure Field

3-mode POD Reconstruction

16
12
0.8
0.4
0.0
—0.4
-0.8
-1.2
-1.6

(b) Linear POD

3-mode kPCA reconstruction

16
12
0.8
0.4
0.0
—0.4
-0.8
-1.2
-1.6

(d) Nonlinear kernel PCA

POD Reconstruction % Error

10
=5
-10
=15

(¢) Y% Error in POD reconstruction

v

o

kPCA Reconstruction % Error

2.4
2.0
1.6
1.2
0.8
0.4
0.0
-0.4

(e) Y% Error in KPCA reconstruction

Fig. 7 Comparison of FOM pressure field (a) with those reconstructed from latent coordinates using machine

learning tools.
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PCA Manifold in 3D kPCA Manifold in 3D

(a) Linear PCA (b) Nonlinear kPCA
LLE Manifold in 3D t-SNE Manifold 3D

(¢) Nonlinear LLE (d) Nonlinear t-SNE

Fig. 8 Patterns in the latent manifolds for various machine learning algorithms.

To better understand the improvement in the above reconstruction, the latent subspaces obtained after nonlinear
transformation using various data-driven algorithms are given in Figure 8. With the kernel PCA algorithm, the linear
subspace is transformed as shown in Figure 8b. The total pressure distribution over the airfoil forms the data matrix D,
with each column vector representing the spatial airfoil data at a given timestep #;. Figure 8 shows the results obtained
using the three nonlinear model reduction techniques. The colourbar represents the evolution of the reduced state with
respect to time. Thus, in all the following figures, the state of the system transitions from red to gray with time in
seconds. ¥y 1, P«2, Pi3 represent the reduced, latent coordinate system within which we aim to identify the dominant
patterns.

The simulation domain was initialised with the inlet velocity of Mach 0.85 at t = 0 s. Results from the three
dimensionality reduction techniques are shown in Figure 8. Here, the ability of nonlinear reduction to predict dominant
patterns in the data is clearly evident as the traditional POD/PCA technique suffers to generate a coherent pattern in
figure 8a. Comparing Figures 8b to 8c, the transition towards a fixed attractor is clearly visible with predictable evolution
after about 1.6 seconds (green). This is attributed to the initial numerical transitory period where a high degree of
randomness exists. The existence of such a pattern in spite of completely different formulations makes these techniques

10
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good candidates for robustness. Techniques such as the t-SNE, see Figure 8d, are not suitable for transient dynamics and
were found to be computationally inefficient.

2. Test Case II : Pitching and Heaving Airfoil Preliminary Analysis

Pitching Excitation Input Profile

+Aa
o

0.0 0.2 0.4 0.6 0.8 1.0

t(s)

Fig. 9 Airfoil pitch at w = 5 Hz.

Next, the airfoil in pitching and heaving motions are evaluated and the results of high fidelity simulations are shown in
Figures 4 and 5. A preliminary simulation was conducted with a prescribed pitching + 4« with a frequency of 5Hz as
shown in Figure 9. In comparison to the previously discussed static case, heaving and pitching airfoil aerodynamic
simulations pose additional challenges with moving meshes in a given reference frame. To address this physical change
in simulation domain, surface pressure distributions are used in this analysis. The latent manifolds are shown in Figure
10.

It is interesting to note here that similar low dimensional patterns are obtained for this test case using both linear and
nonlinear methods. This is attributed to the fact that a pitching profile was prescribed to the system, see Figure 9, which
forms the most dominant pattern in the dataset. Firstly, a temporal transition is seen along one dimension. And along
the others, an oscillatory trajectory can be observed, especially in the nonlinear methods of kPCA, see Figure 10b, and
LLE, see Figure 10c. This way, the nature of the forcing function could potentially be inferred and aids in system
parametrisation.

The results obtained from a preliminary heaving airfoil test case are not presented here. From initial observations of the
heaving test case, it is hypothesised that the effect of heaving on dominant low-dimensional patterns is not as influential
as the airfoil pitching case presented here. The change in effective angle of attack =4« due to a given heaving velocity
h as observed in Figure 4 is still within the linear range of ¢; vs a.

11
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kPCA Manifold in 3D

(a) Linear PCA

(c) Nonlinear LLE

Fig. 10 Results from dimensionality reduction of dynamic pitch excitation.

3. Test Case III : Dynamic Flap Actuation

Fig. 11

-3 T

0.8
0.6
0.4
0.2
(b) Nonlinear kPCA
t-SNE Manifold 3D
0.8
0.6
0.4
0.2
(d) Nonlinear t-SNE
Flap Actuation Input Profile
0.0 02 0.4 06 0.8 10
t(s)

Flap Actuation at w = 5 Hz.

12
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PCA/POD Manifold in 3D 1o kPCA Manifold in 3D 1

0.8 0.8

0.6

0.4
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0.0 0.0
(a) Linear PCA (b) Nonlinear kPCA
LLE Manifold in 3D 10 t-SNE Manifold 3D
0.8 0.8

0.6

0.4

0.2

0.0
(c) Nonlinear LLE (d) Nonlinear t-SNE

Fig. 12 Results from dimensionality reduction of dynamic flap actuation.

Finally, as in the prescribed pitching test presented in the previous section, we find similar patterns for the sinusoidal
flap actuation in Figure 12. The t-SNE method, once again, fails to provide any substantial information on dominant
structures in low dimensions. While being an efficient algorithm for classification tasks, the t-SNE is not suited for
simulating dynamics. Another interesting observation is the similarity of the flap actuation kPCA manifold and that of
the static aerodynamic test case shown in Figure 8b. It can be inferred that the effect of actuation of flap on pressure
redistribution, in the presence of flow separation and shock, is limited. However, with flap actuation, we have lesser
damping towards the attractor and this can be attributed to the excitation profile as before.

V. Conclusions and Future Work
From the work presented here, the following major conclusions are drawn:
1) Patterns exist in the nonlinear flow field around an airfoil with shockwaves. These can be represented in terms of

2D or 3D manifolds. The benefits of this are two-fold. Firstly, the computational costs are minimised due to
reduction of the system DOF by two orders of magnitude. Secondly, the system can be represented by 2 or 3

13
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most dominant parameters in the latent manifold. This aids the physical intuition of the system properties and
reduces the dependence on “hyper-parameters’.

2) Certain machine learning tools such as kPCA and LLE have the potential to perform a meaningful transformation
into the latent dimensions. It is imperative to relate these transformations to first principles such as stability
theory and bifurcations in order to make data-driven predictions generalisable and interpretable.

Future work involves:

1) From preliminary tests conducted on performance of ANNSs [data not shown], unsupervised algorithms such
as kPCA and LLE are seen to identify the underlying dominant patterns while also minimising the error in
reconstruction. Although ANNSs are considered to be universal approximators, the high degree of variance in
their architecture such as the need for training datasets, the number of hyperparameters, the number of sequential
dense layers etc, results in the need to have specific constraints. Further evaluation of these autoencoders remains
the subject of future work. Also, not all unsupervised algorithms pertaining to dimensionality reduction are
suitable for a given task. The t-SNE algorithm was seen to perform a classification of the underlying dataset in
most cases and is not suited for a pattern recognition task of a dynamical system.

2) Analyse the high-fidelity data from heave, pitch and flap simulations shown in this paper: The preliminary
results generated for oscillatory input signals illustrate the existence of latent coordinates that have a parametric
dependence on input frequency. This will be further extended to study the patterns obtained for varying
frequencies.

3) Develop a physics-informed neural network: In the preliminary tests, neural networks were evaluated in a limited
sense with a simple architecture. This will be extended to deep neural networks with sequential layers and physics
information such as low-dimensional patterns and time integration module to obtain a Physics Informed Neural
Network - Reduced Order Model (PINN-ROM). Future applications involve the use in a coupled aeroservoelastic
environment. This is illustrated in Figure 13.
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Fig. 13 Illustration of the complete methodology for generating the PINN-ROM.
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