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A Novel Metabolomic Aging Clock Predicting Health
Outcomes and Its Genetic and Modifiable Factors

Xueqing Jia, Jiayao Fan, Xucheng Wu, Xingqi Cao, Lina Ma, Zeinab Abdelrahman,
Fei Zhao, Haitao Zhu, Daniele Bizzarri, Erik B van den Akker, P. Eline Slagboom,
Joris Deelen, Dan Zhou, and Zuyun Liu*

Existing metabolomic clocks exhibit deficiencies in capturing the
heterogeneous aging rates among individuals with the same chronological
age. Yet, the modifiable and non-modifiable factors in metabolomic aging
have not been systematically studied. Here, a new aging
measure—MetaboAgeMort—is developed using metabolomic profiles from
239,291 UK Biobank participants for 10-year all-cause mortality prediction.
The MetaboAgeMort showed significant associations with all-cause mortality,
cause-specific mortality, and diverse incident diseases. Adding
MetaboAgeMort to a conventional risk factors model improved the predictive
ability of 10-year mortality. A total of 99 modifiable factors across seven
categories are identified for MetaboAgeMort. Among these, 16 factors
representing pulmonary function, body composition, socioeconomic status,
dietary quality, smoking status, alcohol intake, and disease status showed
quantitatively stronger associations. The genetic analyses revealed 99
genomic risk loci and 271 genes associated with MetaboAgeMort. The
tissue-enrichment analysis showed significant enrichment in liver. While the
external validation of the MetaboAgeMort is required, this study illuminates
heterogeneous metabolomic aging across the same age, providing avenues
for identifying high-risk individuals, developing anti-aging therapies, and
personalizing interventions, thus promoting healthy aging and longevity.
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1. Introduction

Individuals of the same chronological age
may have varying rates of biological ag-
ing, a phenomenon known as heteroge-
neous aging. Such different rate of aging en-
genders diverse susceptibilities to diseases,
their progression, and impacts on mortal-
ity beyond the chronological age.[1,2] As the
global demographic shifts toward an ag-
ing population, the ability to measure bio-
logical aging, identify individuals who age
faster, and understand the factors that con-
tribute to differential rates of aging are of ut-
most importance. These findings have sig-
nificant implications for the development
of targeted preventive programs and inter-
ventions. These efforts may alleviate the so-
cioeconomic and healthcare burden of age-
related diseases, thus promoting healthy
aging and longevity.

Metabolomics offers a novel avenue
for assessing the biological processes
that underlie aging.[3,4] To date, multiple
studies have attempted to elucidate how
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metabolomic profiles in various tissues (e.g., blood, urine, and
cerebrospinal fluid) interact with aging, and a few metabolomic
clocks have been proposed to measure biological aging.[5–8] The
majority of these clocks are generated based on correlations be-
tween metabolomic profiles and chronological age; while chrono-
logical age is considered an imperfect surrogate for building ag-
ing measures as it does not fully capture the heterogeneity of in-
dividual aging rates.[9] In contrast, metabolomic aging measures
based on health-related surrogate indicators (e.g., time to death)
may better reflect an individual’s health status and reveal intrin-
sic biological aging mechanisms.[10] Previous studies have uti-
lized targeted or untargeted mass spectrometry and NMR tech-
niques to construct multivariable metabolite scores of all-cause
mortality.[11–13] While these metabolite scores exhibit excep-
tional predictive accuracy even over conventional risk factor mod-
els, their applicability in risk stratification, especially across indi-
viduals of the same chronological age, remains constrained by
their reliance on scaled biomarker values created independently
for each cohort.[13] Metabolomic profiles manifest pronounced
responsiveness to the confluence of endogenous genetic regula-
tion and exogenous environmental exposures in each individual
cohort.[14] Thus, developing aging measures that can be calcu-
lated based on concentration units derived from individual-level
data, may have more applicability in both clinical setting and re-
search on the biology of aging.

Although certain behaviors (e.g., dietary quality) have dis-
played anti-aging properties in human and animal models,[15,16]

their impact on metabolomic aging remains uncertain. Further-
more, the complex relationship between aging and a constel-
lation of diverse factors (e.g., local environmental factors and
socioeconomic status [SES]) has emerged as a burgeoning fo-
cus in the field of aging research. A thorough investigation of
these modifiable factors in metabolomic aging could reveal new
strategies for preventive interventions targeting the aging pro-
cess. Moreover, prior investigations have indicated that aging
measures may capture distinct aging domains influenced by vary-
ing genetic determinants.[17] However, the underlying mecha-
nisms and pathways of metabolomic aging have not been elu-
cidated, thereby restricting the identification of potential thera-
peutic targets.[18]

In this study, we leveraged large-scale metabolomic data from
the UK Biobank (UKB), a prospective cohort study of over
500 000 participants. We first developed a novel aging mea-
sure, MetaboAgeMort, using all-cause mortality as a surrogate.[19]

Next, we evaluated its applicability by examining its associa-
tions with aging-related outcomes (i.e., morbidity and mortal-
ity), and comparing its performance to conventional risk factors
and several previously trained metabolomic clocks. Finally, we
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systematically identified the modifiable factors and genetic de-
terminants for MetaboAgeMort (Figure 1).

2. Results

2.1. Population Characteristics

As shown in Figure S1 (Supporting Information), 239 291 partici-
pants with complete data on plasma metabolomics and covariates
at baseline were included. These participants had a median age of
58.3 years (interquartile range [IQR]: 50.6, 63.7), and the majority
were female (53.0%), and white ethnicity (95.6%). To develop the
MetaboAgeMort model, the 239 291 participants were randomly
split into a training (n = 167 506) and a testing set (n = 71 785),
with a 7 to 3 ratio. No significant differences were observed in
the sociodemographic characteristics of participants between the
training set and the testing set. Detailed characteristics of the total
participants and by datasets are presented in Table S1 (Support-
ing Information).

2.2. Development of MetaboAgeMort and MetaboAgeMort
Acceleration (MetaboAgeMortAccel)

During a median follow-up of 13.9 years, we documented 20 447
deaths among 239 291 participants. After adjustment for po-
tential confounders and accounting for multiple testing, a to-
tal of 185 metabolic biomarkers, encompassing amino acids,
glycolysis-related metabolites, ketone bodies, fatty acids, lipids,
and lipoprotein subclasses, demonstrated significant correla-
tions with all-cause mortality (P < 0.05/249) (Table S2, Support-
ing Information).

To further select variables for inclusion in the MetaboAge-
Mort model, we applied a Cox regression model with least ab-
solute shrinkage and selection operator (LASSO) penalization–
where the hazard of all-cause mortality was regressed on the
185 metabolic biomarkers and chronological age–in the train-
ing set. Finally, chronological age and 35 metabolic biomark-
ers, including average diameter for very low-density lipoprotein
(VLDL) particles, linoleic acid, ratio of omega-3 fatty acids to to-
tal fatty acids, ratio of monounsaturated fatty acids to total fatty
acids, ratio of linoleic acid to total fatty acids, alanine, histidine,
leucine, valine, phenylalanine, tyrosine, glucose, pyruvate, cit-
rate, 3-hydroxybutyrate, acetate, acetoacetate, acetone, creatinine,
albumin, glycoprotein acetyls, triglycerides in very large VLDL,
free cholesterol in very large high-density lipoprotein (HDL), to-
tal lipids in small HDL, cholesteryl esters in small HDL, triglyc-
erides to total lipids ratio in large VLDL, phospholipids to total
lipids ratio in very small VLDL, phospholipids to total lipids ra-
tio in intermediate-density lipoprotein (IDL), cholesteryl esters to
total lipids ratio in IDL, triglycerides to total lipids ratio in large
low-density lipoprotein (LDL), triglycerides to total lipids ratio in
medium LDL, phospholipids to total lipids ratio in small LDL,
free cholesterol to total lipids ratio in small LDL, cholesteryl es-
ters to total lipids ratio in very large HDL, free Cholesterol to total
lipids ratio in small HDL, were selected (Table S3, Supporting In-
formation).

Next, MetaboAgeMort was developed using the methods pre-
viously proposed by Levine et al. in the training set.[19] For
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Figure 1. The roadmap of this study. Top part, the development of MetaboAgeMort model. We performed two steps to develop the MetaboAgeMort
model. First, we selected 185 all-cause mortality associated metabolic biomarkers and then performed LASSO Cox regression model to further select
variables for MetaboAgeMort construction. Tenfold cross-validation was used to select the optimal 𝜆. Second, we developed MetaboAgeMort model
using Gompertz proportional hazards regression models. Then we calculated the residual resulting from a least-squares linear model when regressing
MetaboAgeMort on CA, and referred to as MetaboAgeMortAccel. Bottom left part, the associations of MetaboAgeMort with mortality and incident dis-
eases. Metabolic diseases included hypertension and type 2 diabetes mellitus. Mental disorders included depression and anxiety. ROC curves were used
to evaluate the additional predictive power of MetaboAgeMort for 10-year mortality beyond the conventional risk factors. Bottom right part, the modifiable
and unmodifiable factors for MetaboAgeMort. We identified the modifiable factors across seven categories and genomic risk loci for MetaboAgeMort.
CA, chronological age; LASSO, least absolute shrinkage and selection operator; MetaboAgeMortAccel, MetaboAgeMort acceleration; ROC, receiver
operating characteristic; CVD, cardiovascular disease; CKD, chronic kidney disease; SNPs, single nucleotide polymorphisms.

Adv. Sci. 2024, 2406670 2406670 (3 of 13) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH

 21983844, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202406670 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [10/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

Figure 2. The performance and implications of MetaboAgeMort. a) The variable importance plot of MetaboAgeMort. The y-axis lists the variable compo-
nents of the MetaboAgeMort model, and the x-axis indicates their corresponding Gompertz coefficients values. b) The distributions of MetaboAgeMort
and chronological age across all participants and by sex in the testing set. Each scatter indicates a single participant. The correlation coefficient and MAE
are shown in the left top part. c) Associations of MetaboAgeMort with all-cause and cause-specific mortality in the testing set. For all-cause mortality,
Cox model adjusted for chronological age, sex, ethnicity, education level, Townsend deprivation index, alcohol intake frequency, smoking status, regular
exercise, healthy diet, body mass index, medication use, and prevalent diseases at baseline was used. We also repeated the analysis in those with ≥5
years of survival. For cause-specific mortality, Fine and Gray’s competing risk models adjusted for chronological age, sex, ethnicity, education level,
Townsend deprivation index, alcohol intake frequency, smoking status, regular exercise, healthy diet, and body mass index were used. d) Associations
of MetaboAgeMort with diseases in the testing set. Participants with a specific diagnosis before or at baseline were excluded prior to analysis. The
same method for cause-specific mortality was used. e) Receiver operating characteristic curves for 10-year all-cause mortality. The conventional risk
factors included chronological age, sex, alcohol intake frequency, smoking status, body mass index, systolic blood pressure, triglycerides, creatinine,
total cholesterol, high-density lipoprotein cholesterol, and prevalent diabetes, cardiovascular disease, and cancer. The combined model included both
MetaboAgeMort and conventional risk factors. MAE, mean absolute error; HR, hazard ratio; CI, confidence interval; AUC, area under the curve.

more information about the MetaboAgeMort estimator, refer
to Figure 2a and Table S4 (Supporting Information). A profil-
ing of the MetaboAgeMort performance was carried out in the
testing set (n = 71 785). MetaboAgeMort ranged from 27.82 to
104.06 years, with a mean and median value of 55.81 (stan-
dard deviation [SD] = 9.18) and 56.10 (IQR: 48.99, 62.50) years.
As shown in Figure 2b, MetaboAgeMort was highly corre-
lated with chronological age across all participants (r = 0.85)
and within each sex subgroup (female: r = 0.85; male: r =
0.86).

We also calculated a metric, MetaboAgeMortAccel, following
the methods by Liu et al.[20] MetaboAgeMortAccel represents
the divergence of MetaboAgeMort from chronological age (i.e.,
whether a person appears younger [values < 0] or older [val-
ues > 0] than expected, based on his/her chronological age). The
MetaboAgeMortAccel displayed a range of −16.43 to 41.29 years,
with a mean and median value of 0 (SD = 4.78) and −0.41 (IQR:
−3.29, 2.79) years in the testing set.

2.3. Association of MetaboAgeMort with Mortality

The associations of MetaboAgeMort with all-cause and cause-
specific mortality in the testing set are demonstrated in Figure 2c.
After adjustment for potential confounders, each additional year
in MetaboAgeMort corresponded to a 7% rise in the risk of all-
cause mortality (Hazard Ratio [HR]: 1.07, 95% confidence in-
terval [CI]: 1.06, 1.08) (Table S5, Supporting Information). Our
finding remains consistent when: 1) stratified by chronological
age, sex, ethnicity, education level, smoking status, alcohol intake
frequency, regular exercise, healthy diet, and body mass index
(BMI) category (Table S6, Supporting Information), 2) excluding
participants who died within five years of follow-up (Figure 2c;
Table S5, Supporting Information), and 3) restricting the sample
to diseases-free participants (Table S7, Supporting Information).
In addition, MetaboAgeMort was significantly positively associ-
ated with cause-specific mortality, including cancer (HR: 1.06,
95% CI: 1.05, 1.07), cardiovascular disease (CVD, HR: 1.08, 95%
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Figure 3. a) Kaplan-Meier survival plots of all-cause mortality, cause-specific mortality and b) 12 aging-related diseases according to quartiles of the
MetaboAgeMort Acceleration. Blue indicates the top quartile, green indicates the second and third quartile, and yellow indicates the bottom quartile
with 95% confidence intervals in the testing set. The y-axis indicates the survival rate, and the x-axis indicates follow-up time (in years).

CI: 1.07, 1.10), respiratory disease (HR: 1.08, 95% CI: 1.06, 1.10),
digestive disease (HR: 1.12, 95% CI: 1.09, 1.14), neurodegenera-
tive disease (HR: 1.03, 95% CI: 1.01, 1.04), and other causes (HR:
1.09, 95% CI: 1.07, 1.10) (Figure 2c; Table S5, Supporting Infor-
mation).

The Kaplan-Meier survival curves indicated that individuals in
the highest quartile group (Q4) of MetaboAgeMortAccel had sig-
nificantly increased risks of all-cause and cause-specific mortality
when compared to those in the lowest quartile (Q1) (Figure 3a;
Figure S3a and Table S8, Supporting Information). The all-cause

Adv. Sci. 2024, 2406670 2406670 (5 of 13) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH
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mortality rates of the highest quartile group (Q4) were found to
be comparable, or in certain instances higher, than those of the
lowest quartile group (Q1), despite the latter being 10 years older
chronologically (Figure S4, Supporting Information).

2.4. Associations of MetaboAgeMort with Disease Incidences

The associations of MetaboAgeMort with the risk of multiple
diseases in the testing set are depicted in Figure 2d. After ad-
justment for potential confounders, each 1-year increment in
MetaboAgeMort was significantly associated with higher risks of
cancer (HR: 1.02, 95% CI: 1.02, 1.03), CVD (HR: 1.03, 95% CI:
1.03, 1.04), dementia (HR: 1.04, 95% CI: 1.03, 1.05), liver disease
(HR: 1.06, 95% CI: 1.05, 1.07), respiratory disease (HR: 1.07, 95%
CI: 1.06, 1.07), chronic kidney disease (HR: 1.09, 95% CI: 1.09,
1.10), hypertension (HR: 1.05, 95% CI: 1.04, 1.06), type 2 diabetes
mellitus (T2DM, HR: 1.07, 95% CI: 1.06, 1.08), eyes disease (HR:
1.02, 95% CI: 1.01, 1.02), depression (HR: 1.03, 95% CI: 1.02,
1.03), and anxiety (HR: 1.02, 95% CI: 1.01, 1.02), with an excep-
tion of osteoarthritis (HR: 1.00, 95% CI: 1.00, 1.01) (Table S9,
Supporting Information).

The Kaplan-Meier survival curves exhibited discernible tra-
jectories among the quartile groups of MetaboAgeMortAccel
(Figure 3b; Figure S3b, Supporting Information). The group in
the highest quartile (Q4) showed a significant association with
increased risks of multiple disease incidences compared to the
lowest quartile (Q1) (Tables S10 and S11, Supporting Informa-
tion).

2.5. Discriminative Improvements Beyond Clinical Predictors

Based on the findings depicted in Figure 2e, it is evident that
the area under the curve (AUC) of MetaboAgeMort displayed a
considerable improvement relative to chronological age, align-
ing it more closely with the AUC of the conventional risk fac-
tors model. MetaboAgeMort added predictive utility of 10-year
mortality beyond conventional risk factors (i.e., chronological
age, sex, alcohol intake frequency, smoking status, BMI, systolic
blood pressure, triglycerides, creatinine, total cholesterol, HDL
cholesterol, and prevalent diabetes, CVD and cancer).[12] Com-
pared with the conventional risk factors model, the combined
model including MetaboAgeMort had better discrimination abil-
ity, as demonstrated by significantly increased C-statistics (0.017,
P < 0.001) (Table S12, Supporting Information). The superior
performance of MetaboAgeMort was further confirmed through
substantial enhancements in reclassification, as evaluated by
integrated discrimination improvement (IDI: 0.018, 95% CI:
0.004, 0.021) (Table S12, Supporting Information), suggesting
that MetaboAgeMort captures something above and beyond what
can be explained for mortality risk by conventional risk factors.

2.6. The comparison of MetaboAgeMort with MetaboAge and
MetaboHealth Score

In addition, we calculated two pre-existing well-known multi-
metabolite scores (i.e., MetaboAge[6] and MetaboHealth

score[13]), and assessed their associations with the mortality
risk and multiple disease incidences. The MetaboAge score
predicts chronological age (in years) directly. Two versions of
MetaboAge were calculated: MetaboAge_LM (generated through
linear regression), and MetaboAge_EN (generated through
ElasticNET regression).[21] The MetaboHealth score is a multi-
variate model predicting all-cause mortality. It was calculated
as the weighted sum of 14 log-transformed and cohort-scaled
metabolites. The distributions of these multi-metabolite scores
in the testing set are shown in Figure S5a (Supporting Infor-
mation). As shown in Table S13 (Supporting Information), after
adjustment for potential confounders, the highest quartile group
(Q4) of the MetaboHealth score has significantly increased
risks of all-cause mortality, cause-specific mortality, and mul-
tiple incident diseases, compared to the lowest quartile group
(Q1). The MetaboAge_EN showed significant association with
all-cause mortality, CVD mortality, and several cardiometabolic
diseases (i.e., CVD and T2DM). Conversely, MetaboAge_LM did
not demonstrate any appreciable relationship with these same
clinical endpoints. As shown in Table S14 (Supporting Informa-
tion), even after mutual adjustment, both MetaboAgeMort and
MetaboHealth score maintained significant associations with
all-cause mortality. Notably, the Akaike Information Criterion
(AIC) for the model integrating MetaboAgeMort indicated a
relatively superior fit, implying that MetaboAgeMort may have
a higher predictive capacity or enhanced explanatory power in
forecasting all-cause mortality when compared to the model
integrating the MetaboHealth score.

Moreover, we compared MetaboAgeMort with these multi-
metabolite scores, in terms of their predictive utility for 10-year
mortality risk and multiple disease incidences. As shown in
Figure S5b (Supporting Information), MetaboAgeMort dis-
played a significantly higher AUC than that of the MetaboAge
and MetaboHealth score for 10-year all-cause mortality predic-
tion (P < 0.001). Combining MetaboAgeMort with conventional
risk factors resulted in an AUC that outperformed models
integrating MetaboAge (MetaboAge_EN and MetaboAge_LM,
both P < 0.001) or MetaboHealth score (P = 0.021) with the same
conventional risk factors. When combining MetaboAgeMort
with MetaboHealth score and conventional risk factors, the
resulting AUC was higher than that of the model integrating
only MetaboHealth score with conventional risk factors, but
this difference was not significant when compared to the model
integrating only MetaboAgeMort with conventional risk fac-
tors. This finding suggests that MetaboAgeMort may capture
something beyond what can be explained for mortality risk by
MetaboHealth score, when taking into account conventional risk
factors. MetaboAgeMort also exhibited a higher predictive utility
for multiple diseases (except for cancer incidence) compared to
the MetaboHealth score (Figure S5c, Supporting Information).
After accounting for chronological age and sex, the AUC of
the model integrating both MetaboAgeMort and MetaboHealth
score was higher than that of the model with MetaboHealth
score alone, but did not show a significant improvement over
the model with MetaboAgeMort alone. This finding suggests
that MetaboAgeMort may also capture something beyond
what can be explained for disease incidences by MetaboHealth
score.
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Figure 4. The modifiable factors and genetic determinants for MetaboAgeMort. a) The circular barplot shows the associations between MetaboAgeMort
and 107 modifiable factors (positive association in red bars and negative associations in blue bars). The linear models were adjusted for chronological
age, sex, and ethnicity. Bonferroni’s significant traits (P < 0.05/107) are in pink text and the others (P > 0.05/107) are in black text. b) Summary
of 99 genomic risk loci based on genome-wide association analysis of MetaboAgeMort. c) Gene-tissue expression results (P values significant at the
Bonferroni-corrected level 0.05/30 for 30 general tissue types or 0.05/53 for 53 specific tissue types in red bars and others in blue bars. SES, socioeconomic
status; COPD, chronic obstructive pulmonary disease; SNPs, single nucleotide polymorphisms.

2.7. Modifiable Factors for MetaboAgeMort

Then we investigated the modifiable factors of MetaboAge-
Mort. We considered a total of 107 potentially modifiable fac-
tors from the UKB baseline survey. After Bonferroni correction,
99 factors showed a significant association with MetaboAgeMort

(P < 4.67 × 10−4, Figure 4a; Table S15, Supporting Information).
For 16 factors across four categories, the associations were rela-
tively more substantial (≥ 2 years of change in MetaboAgeMort)
per 1-SD change in the factor or group contrast (Figure S6, Sup-
porting Information), such as forced vital capacity (FVC) (tertile
3 versus tertile 1, 𝛽 = −2.22, 95% CI: −2.28, −2.15), body fat
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percentage (tertile 3 versus tertile 1, 𝛽 = 3.55, 95% CI: 3.49, 3.61),
dietary index (tertile 3 versus tertile 1, 𝛽 = −2.04, 95% CI: −2.09,
−1.98), and average total household income before tax (greater
than 100,000 versus less than 18000, 𝛽 = −3.34, 95% CI: −3.44,
−3.24). Comparable findings were observed when additionally
adjusting for BMI, or when stratifying by chronological age and
sex (Table S15).

2.8. Genetic determinants for MetaboAgeMort

To better understand the genetic mechanisms underlying
metabolomic aging, we performed a genome-wide association
study (GWAS) analysis of MetaboAgeMort. In the GWAS anal-
ysis, 11 688 SNPs significantly associated with MetaboAgeMort
were identified (P < 5 × 10−8) (Figure S7a, Supporting Infor-
mation). The SNP-derived heritability of MetaboAgeMort was
38.26% (P = 2.23 × 10−86). Using the Functional Mapping and
Annotation (FUMA) online platform (v1.5.2), we pinpointed
1068 independent significant SNPs, 319 lead SNPs, and 99 ge-
nomic risk loci (Tables S16–S19, Supporting Information). Fur-
thermore, 585 prioritized genes that may be involved in the ge-
netic etiology of MetaboAgeMort were identified by positional
mapping (Table S20, Supporting Information). The leading SNP
of the most significant locus (rs174575, locus 57) was positioned
near or within FADS1 and FADS2 on chromosome 11. The lead-
ing SNP of the second most significant locus (rs217184, locus 78)
was in TXNL4B, HPR, and HP on chromosome 16 (Table S21,
Supporting Information). Summary results per genomic risk lo-
cus are shown in Figure 4b.

We also performed analyses pertaining to genes and tissue
enrichment using Multi-Marker Analysis of GenoMic Annota-
tion (MAGMA) v1.08 within FUMA. In genome-wide gene-based
association analysis (GWGAS), 310 genes were determined to
be genome-wide significant after applying Bonferroni correc-
tion (Table S22, Supporting Information), where 271 genes were
also positionally mapped to significant loci from the SNP-based
analysis above. The gene-set analysis identified 13 significant
gene sets after Bonferroni correction, including lipid-related bi-
ological process (e.g., reverse cholesterol transport, cholesterol
metabolism, and phospholipid homeostasis), CYP2E1 reactions,
and liver specific genes (Table S23, Supporting Information).
The tissue-enrichment analysis indicated that liver displayed sig-
nificant specificity in gene expression for the MetaboAgeMort-
associated genes (Figure 4c; Tables S24 and S25, Supporting In-
formation).

Given the potential similarity between the MetaboHealth
score and MetaboAgeMort, we also performed GWAS and fur-
ther FUMA analyses for the MetaboHealth score (Figure S7b
and Tables S26–S33, Supporting Information). As shown in
Figure S9a (Supporting Information), a total of 215 indepen-
dent SNPs, 44 lead SNPs, 16 genomic risk loci, and 244 protein-
coding gene overlaps were detected across the two scores. The
gene-set analyses of MetaboHealth score identified 18 significant
gene sets, of which 6 were also identified for MetaboAgeMort.
Moreover, the tissue-enrichment analysis of MetaboHealth score
also showed significant enrichment in liver (Figure S9b, Sup-
porting Information). These findings suggest that MetaboAge-
Mort and MetaboHealth capture distinct yet overlapping aspects

of metabolic aging and health, partly due to the differing sets of
metabolic markers included in the two models.

3. Discussion

Leveraging the large-scale metabolomics data, we have formu-
lated a groundbreaking aging measure, MetaboAgeMort, based
on 10-year all-cause mortality risk prediction. The MetaboAge-
Mort demonstrated remarkable predictive utility of mortality risk
across a wide range of demographic and socioeconomic stratifi-
cations, as well as health behavior factors and causes of death.
Significantly, the conventional risk factors were augmented by
MetaboAgeMort in terms of predictive accuracy for 10-year mor-
tality. Meanwhile, our study has revealed compelling associa-
tions between accelerated metabolomic aging within the same
age group and an increased likelihood of various health-related
outcomes. This implies that it could serve as a comprehensive
indicator for health and mortality risk stratification in a clinical
setting. Next, we identified 99 modifiable factors across seven cat-
egories for MetaboAgeMort, highlighting the crucial role played
by body composition, healthy diet, SES, and pulmonary function
in the process of metabolomic aging. The genetic analyses ul-
timately revealed 99 significant genomic risk loci and 271 genes
linked to MetaboAgeMort, thus offering new insights into the ge-
netic architecture of metabolomic aging.

Previous studies have generated metabolomic clocks while
using chronological age as a surrogate, such as MetaboAge[6]

and the model by Ala-Korpela et al.[22] In comparison, our
MetaboAgeMort further incorporates information on all-cause
mortality risk, which is considered a more reliable surrogate for
biological aging than chronological age, through a sophisticated
modeling method. As one would expect from a measure of ag-
ing, MetaboAgeMort not only assesses the risks of all-cause and
cause-specific mortality, but also the risks of various incident dis-
eases, highlighting its considerable potential in the early detec-
tion of individuals at risk and facilitating timely and effective
interventions. It is worth mentioning that we have substanti-
ated the contribution of MetaboAgeMort in enhancing the pre-
dictive capacity for 10-year all-cause mortality risk in addition to
conventional risk factors. These findings translate into potential
clinical application of MetaboAgeMort as an additional source
of discriminatory information to refine comprehensive risk as-
sessments for death and diseases. To date, many studies have
endeavored to identify metabolite predictors of mortality risk
and have successfully developed multivariate metabolite scores
(e.g., MetaboHealth score[13] and the model by Lau et al.[23]).
These scores exhibited significant association with all-cause mor-
tality and a few diseases (e.g., CVD, cancer, and T2DM).[24,25]

Some of these multi-metabolite scores showed moderate asso-
ciations with chronological age even in the training set. Next,
the utilization of these multi-metabolite scores is constrained
due to the reliance on cohort-specific scaled biomarker values,
thereby impeding its clinical application in identifying individu-
als with a propensity for accelerated aging and comparison across
different populations. MetaboAgeMort, directly calculated from
individual-level data, more intuitively shows the heterogeneity in
mortality risk among individuals of the same chronological age,
exhibiting enhanced generalization.
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The 35 metabolic biomarkers employed in our study to de-
velop MetaboAgeMort are implicated in diverse processes, in-
cluding lipoprotein and fatty acid metabolism, fluid balance, and
inflammation, indicating that aging is an intricate multidimen-
sional phenomenon. Previous studies have sought to elucidate
the interaction between metabolites and aging. In line with the
discoveries made by Deelen et al.,[13] our study revealed that av-
erage diameter for VLDL particles, histidine, leucine, phenylala-
nine, valine, glucose, acetoacetate, albumin, glycoprotein acetyls,
the ratio of polyunsaturated fatty acids to total fatty acids, and
total lipids in small HDL were essential independent indicators
for mortality. Among these, the ratios of polyunsaturated fatty
acids to total fatty acids—specifically, the ratio of omega-3 fatty
acids to total fatty acids and the ratio of linoleic acid to total fatty
acids—hold considerable importance in our model. Polyunsat-
urated fatty acids have been shown to play beneficial roles in
combating oxidative stress, reducing inflammation, enhancing
insulin sensitivity, and preserving mitochondrial function,[26] all
of which contribute positively to slowing down the process of ag-
ing. Glycoprotein acetyls, another key component, serves as a
marker of inflammation and have been established as a signif-
icant factor related to multiple age-associated diseases and the
acceleration of the aging process.[27] In addition, we observed as-
sociations for several other metabolic biomarkers, such as ke-
tone bodies (KBs) and relative lipoprotein lipid concentrations.
KBs are endogenous fuels generated by the liver in response to
metabolic stress.[28] In a healthy community-based population,
higher elevated endogenous KBs have shown to be positively as-
sociated with all-cause mortality.[29] Relative lipoprotein lipid con-
centrations play a role in lipid homeostasis and their associa-
tions with mortality may be partially attributed to their regula-
tory effect on plasma triglyceride levels, a critical mortality risk
factor.[30] Collectively, our study contributes to the comprehen-
sion of metabolic alterations that underlie the process of aging.

The primary focus of aging research has been on the develop-
ment of strategies to combat aging. Measures like MetaboAge-
Mort, which capture future morbidity and mortality risk, could
facilitate evaluation of intervention efficacy while eliminating
the requirement for extended follow-up periods. A recent study
in the UK Airwave cohort has discovered correlations between
metabolomic aging and several factors such as overweight, obe-
sity, heavy drinking, diabetes, depressive symptoms, depression,
anxiety, and post-traumatic stress disorder.[8] Similarly, Lau et al.
reported similar findings regarding obesity, diabetes, smoking,
and physical inactivity.[23] Using a larger-scale population-based
cohort, our study meticulously investigated the modifiable fac-
tors associated with metabolomic aging. Consequently, we iden-
tified a total of 99 potential factors across seven distinct cate-
gories: SES, early life and sexual health, medical history, physical
measures, psychosocial factors, local environment, and lifestyle.
Stronger associations (𝛽 > 2) were quantitatively observed for 16
factors related to pulmonary function, body composition, SES,
dietary quality, smoking status, alcohol intake, and disease sta-
tus, all of which have previously been reported to be associ-
ated with aging.[31–34] Our study provides a metabolomic insight
into the mechanisms linking these factors to aging process. Cer-
tain local environmental factors, such as fine particulate matter
(PM2.5) and nitrogen dioxide (NO2), have been evidenced to po-
tentiate oxidative stress responses within biological systems, im-

pair mitochondrial function, and subsequently lead to metabolic
irregularities.[35,36] The correlation between these factors and
MetaboAgeMort underscores the significance of enacting urban
planning and environmental preservation policies to slow down
the aging process. Furthermore, MetaboAgeMort demonstrated
responsiveness to specific early-life exposure factors, suggesting
that targeted interventions during the critical developmental pe-
riod, such as optimizing maternal nutrition and improving the
developmental environment for children, could potentially con-
tribute to the promotion of healthy aging and reduction of risks
associated with late-life mortality and morbidity.[37]

Genetics play a substantial role in determining individual bi-
ological aging rates.[38] Based on our current understanding,
this study offers the initial evidence regarding the genetic de-
terminants of metabolomic aging. By utilizing genotyping data,
we pinpointed 99 genomic risk loci and 271 genes associated
with MetaboAgeMort. The most significant SNPs were identi-
fied within the FADS cluster (FADS1, FADS2) on chromosome
11. These genes have emerged as significant genes in prior stud-
ies on serum omega-3 fatty acid,[39] a crucial type of polyunsat-
urated fatty acids that have demonstrated favorable impacts on
age-related diseases (e.g., CVD and metabolic diseases).[40] We
also identified several genome-wide significant genes on chro-
mosome 16, such as TXNL4B, HPR, and HP. These genes play
integral roles in modulating the core biological mechanisms, in-
cluding cell cycle progression, oxidative balance maintenance,
protein conformational dynamics and stability, which all ex-
hibit profound interdependencies with the aging process.[41,42]

Moreover, the MAGMA gene-set analysis unveiled the critical
involvement of lipid metabolism, CYP2E1-mediated reactions,
and liver-specific genes in metabolomic aging, providing valu-
able insights into the underlying molecular mechanisms and po-
tential therapeutic targets pertinent to this process. The tissue-
enrichment analysis further emphasizes the importance of liver
in metabolomic aging. This finding implies that strategies fo-
cused on preserving or restoring liver health, such as modu-
lating key metabolic pathways, enhancing antioxidant defenses,
and stem cell therapy, may have far-reaching systemic benefits
in countering metabolomic aging process. Further research is
needed to refine these potential strategies and evaluate their ef-
ficacy in promoting healthy aging and preventing age-related
diseases. Notably, the pathways identified for MetaboAgeMort
were distinct from those enriched by genes associated with Phe-
noAgeAccel or BioAgeAccel,[17] thus reaffirming that the hetero-
geneous aging patterns observed among individuals might be
partly attributed to varying genetic susceptibilities.

Some limitations in this study should also be noted. First, the
number of biomarkers captured by the targeted NMR platform is
only a fraction of the metabolites in the human plasma. Neverthe-
less, NMR has the ability to offer highly accurate quantification
at a minimal expense, thus facilitating the straightforward imple-
mentation of metabolomic clocks in population health. Second,
the association between modifiable risk factors and MetaboAge-
Mort is cross-sectional, and further causal inferences are needed.
Third, even though we have taken into account numerous mod-
ifiable risk factors, it is conceivable that certain factors may have
been unintentionally neglected. Moreover, the potential correla-
tion among the modifiable factors may impact the interpreta-
tion of the independent effects of each factor on metabolomic
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aging. Fourth, the majority of participants in the UKB were
White British and tended to be healthier and wealthier,[43] and
thus, our sample may be less representative of the overall UK
adult population. Fifth, the reliability of the concentration mea-
surements in the Nightingale NMR metabolomics data might
be affected by sample and data processing, and analytical batch
effects.[21,44] Moreover, known sample dilution issues affecting
the UKB data suggest that it may be more appropriate to treat
this specific dataset as quantitative in relative terms only. Thus,
our metabolomic model may not be directly transferable across
different versions of the data. When applying the model to other
datasets, we recommend either retraining the score using the tar-
get dataset or conducting an extensive re-evaluation of the model
and its associations with relevant endpoints to ensure validity and
accuracy.

In conclusion, we have successfully developed a novel
metabolomic-based measure of aging known as MetaboAgeMort.
This measure showed strong predictive power of mortality and
various diseases in the testing set. Of particular significance is
the fact that MetaboAgeMort can enhance the predictive accu-
racy of 10-year mortality beyond conventional risk factors. These
findings imply that MetaboAgeMort has remarkable potential as
a comprehensive measure of overall health and risk of mortality;
nevertheless, further external validations in independent cohorts
are needed. The potential of body composition, healthy diet, SES,
pulmonary function, smoking status, and alcohol intake were
highlighted as possible factors for delaying metabolomic aging.
Our research has led us to the identification of 99 significant ge-
nomic risk loci and 271 genes linked to MetaboAgeMort. This
breakthrough sheds new light on the complex genetic underpin-
nings governing the metabolomic aging processes.

4. Experimental Section
Study Participants: The UKB was a large prospective cohort study that

comprised over 500 000 participants aged 37–73 years at the time of base-
line assessment (2006-2010). Information was collected via touch-screen
questionnaires, biological samples, physical measurements, and linked
medical or death register records. Detailed study design and methodol-
ogy were described elsewhere.[45] Ethics for the UKB was approved by the
North West Multicenter Research Ethics Committee, and all participants
had provided signed informed consent.

Plasma metabolomics: A total of 251 metabolic biomarkers for EDTA
plasma samples from a randomly selected subset of approximately
280 000 UKB participants were measured between June 2019 and April
2020 (Phase 1) and April 2020 and June 2022 (Phase 2) using a
high-throughput NMR metabolomics platform developed by Nightingale
Health Ltd. The metabolic biomarkers span multiple metabolic pathways,
including fatty acids, fatty acid compositions, and lipoprotein lipids in 14
subclasses, as well as various low-molecular weight metabolites, such as
ketone bodies, amino acids, and glycolysis metabolites. Detailed protocols
for sample collection and methodology for the Nightingale NMR pipeline
were described elsewhere.[46,47] The present study considered 249 avail-
able metabolic biomarkers (except forglucose-lactate and spectrometer-
corrected alanine) and the values of each metabolic biomarker were trans-
formed using natural logarithmic transformation (ln[x+1]) followed by Z-
normalisation prior to analysis.

Development of MetaboAgeMort and MetaboAgeMortAccel: Two se-
quential steps were undertaken in order to create the MetaboAgeMort
model. In the first step, aging-related metabolic biomarkers were identi-
fied. Initially, the association of each metabolic biomarker (per 1-SD incre-
ment) with all-cause mortality was evaluated using multivariable Cox re-

gression models, with adjustment for chronological age, sex, ethnicity, ed-
ucation level, Townsend deprivation index (TDI), alcohol intake frequency,
smoking status, regular exercise, healthy diet, BMI, cholesterol-lowering
medication, anti-hypertensive medication, anti-diabetes medication, and
prevalent diseases at baseline (i.e., cancer, CVD, hypertension, diabetes
mellitus, and chronic obstructive pulmonary disease [COPD]) among all
participants (n = 239 291), and 185 metabolic biomarkers were selected
with Bonferroni correction. Then, a Cox regression model was employed
with LASSO penalization–where the hazard of all-cause mortality was re-
gressed on 185 metabolic biomarkers and chronological age–in the train-
ing set. Finally, an optimal 𝜆 of 0.00097 was selected via tenfold cross-
validation, and 36 variables, including chronological age were assigned
nonzero coefficients.

In the second step, the MetaboAgeMort was constructed in the training
set by adopting the methodology previously proposed by Levine et al.[19]

Two proportional hazards regression models based on the parametric
Gompertz distribution were fitted: one used 36 variables selected above as
predictors, and the other used only chronological age as a predictor. Based
on the two models, the 10-year all-cause mortality risk was predicted using
the cumulative distribution function, respectively. The mortality risk was
then converted into units of years by equating the risk from the two mod-
els and solving for age, thus obtaining MetaboAgeMort. In general, an
individual’s MetaboAgeMort represents the chronological age within the
general population corresponding to that individual’s mortality risk. For
example, two individuals were chronologically 40 years old, but one may
had a MetaboAgeMort of 45 years and the other a MetaboAgeMort of 35
years, indicating that they had the average mortality risk of someone who
was chronologically 45 or 35 years old, respectively. In addition, a met-
ric was calculated, MetaboAgeMortAccel, following the methods by Liu
et al.[20] MetaboAgeMortAccel represents the divergence of MetaboAge-
Mort from chronological age, defined as the residual resulting from a least-
squares linear model when regressing MetaboAgeMort on chronological
age.

Health-Related Outcomes: Information on date and cause of death
was obtained through the linkage to national death registries. The all-cause
and cause-specific mortality (i.e., cancer, CVD, respiratory disease, neu-
rodegenerative disease, digestive disease, and other causes) were deter-
mined using the International Classification of Disease (ICD)−10 codes
(Table S34, Supporting Information).[48] Follow-up time was calculated
from the date of baseline assessment to the date of death, loss to follow-
up, or end of follow-up (Dec 31, 2022), whichever came first.

Information on diagnoses and medical conditions of the participants
were obtained through the linked hospital inpatient record data, self-
reported data, and primary care data from the UK National Health Ser-
vices. The incident diseases were ascertained by the ICD-9 and ICD-10
codes (Table S35, Supporting Information). Follow-up time was calculated
from the date of baseline assessment to the date of first diagnosis of
the disease, death, loss to follow-up, or end of follow-up (Oct 31, 2022),
whichever came first.

MetaboAge and MetaboHealth Score: The MetaboAge score predicts
chronological age (in years) directly.[6] Two different models were utilized:
a linear regression model (MetaboAge_LM) and an ElasticNET regression
model (MetaboAge_EN). The model weights/coefficients were obtained
from the most recent publication by Bizzarri et al.[21] In quality control,
three samples were excluded with one or more zero values per sample, as
well as one or more concentrations that were more than five times the SD
away from the overall mean of the feature. The MetaboHealth score was
a multivariate model predicting all-cause mortality.[13] It was calculated
as the weighted sum of 14 log-transformed and cohort-scaled metabo-
lites, using the R-package MiMIR.[49] To avoid infinite values after log-
transformation, a value of 1 was added to the metabolites containing any
zero.

Modifiable Factors: A total of 107 potentially modifiable factors have
been taken into account from the UKB baseline survey. Details of pro-
cessing the factors are presented in Table S36 (Supporting Information).
These factors were classified into seven categories: local environment
(e.g., greenspace percentage, buffer 1000m), psychosocial (e.g., nervous
feelings), SES (e.g., TDI), medical history (e.g., prevalent CVD at baseline),
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early life and sexual health (e.g., breastfed as a baby), physical measures
(e.g., handgrip strength), and lifestyle (e.g., healthy diet).

Genome-Wide Association Analysis: To better understand the genetic
mechanisms underlying MetaboAgeMort, a GWAS analysis was per-
formed using the data from UKB v3 genotyping release. The SNPs were
excluded if meeting any of the following criteria: 1) minor allele frequency
< 0.01, 2) Hardy-Weinberg equilibrium test P < 1.0 × 10−6, 3) missing
minor allele frequency, or results of Hardy-Weinberg equilibrium test. This
particular aspect of the analysis was constrained to individuals of White
British descent (n = 226 937). The fastGWA-MLM analysis in the Genome-
wide complex trait analysis (GCTA) software (version 1.94.1) was used to
perform GWAS analysis.[50] Models included chronological age, sex, geno-
type array, and the top 10 principal components as the covariates. The
genome-based restricted maximum likelihood (GREML) method in GCTA
was used to estimate the SNP-based heritability (variance explained by all
the SNPs).[51]

Functional Mapping and Annotation: The FUMA online platform
(v1.5.2) was applied for functional mapping and annotation of GWAS re-
sults (default parameters were used unless explicitly stated otherwise),
with annotations derived from the human genome assembly GRCh37
(hg19).[52] To identify independent genomic risk loci (defined by r2 > 0.6)
and variants in linkage disequilibrium (LD) with lead SNPs, the SNP2Gene
module was applied using the genetic data of European populations in
1000G phase3 as the reference.[53] Positional mapping with a 10 kilobase
(kb) window size was employed to map risk loci to neighboring protein-
coding genes.

Gene-Based Association, Gene-Set, and Gene-Property Analyses with
MAGMA: Pertaining to genes and tissue enrichment (i.e., GWGAS,
gene-set, and tissue expression analyses) analyses were performed us-
ing MAGMA v1.08 within FUMA.[54] For each of the 18 955 protein-coding
genes, GWGAS accessed the joint effect of all variants within the gene.
Bonferroni correction was used to establish the genome-wide significance
threshold (P < 0.05/18 955 = 2.64 × 10−6). Gene-set analysis was further
performed using hypergeometric tests for curated gene sets and Gene On-
tology (GO) terms from MsigDB v7.0 to discern whether specific biologi-
cal pathways or cellular functions were implicated in the genetic etiology
of MetaboAgeMort, with Bonferroni correction also being utilized. Simul-
taneously, tissue enrichment analysis was carried out with 30 general and
53 specific tissue types from GTEx v8.[55]

Covariates: Information on chronological age, sex (female or male),
ethnicity (White or Non-white), education level (high, intermediate, or
low), alcohol intake frequency (never or special occasions only, one to
three times per month, one to four times per week, or daily or almost
daily), smoking status (never, previous, or current smoker), regular exer-
cise (yes or no), healthy diet (yes or no), and medication information were
collected through questionnaire interview. The TDI was assigned by par-
ticipants’ postcodes, representing SES levels.[56] BMI (kg/m2) was calcu-
lated as measured weight/height2.

Statistical Analysis: Baseline characteristics were described using
median (interquartile range, IQR) or count (percentage). Two-sample
Wilcoxon test for continuous variables and chi-squared test for categor-
ical variables were used to test the differences between the training and
the testing set.

The study’s roadmap is illustrated in Figure 1. The Cox proportional
hazard model was used to evaluate the association between MetaboAge-
Mort and all-cause mortality, with adjustment for chronological age, sex,
ethnicity, education level, TDI, alcohol intake frequency, smoking status,
regular exercise, healthy diet, BMI, medication use, and prevalent diseases
at baseline. To further assess robustness, the analyses were repeated by
1) stratified by several demographic, socioeconomic, as well as health be-
havior factors, 2) excluding participants who died within 5 years of follow-
up to reduce the influence of end-of-life metabolomic status, and 3) only
including participants who were free of prevalent diseases (i.e., cancer,
CVD, hypertension, diabetes mellitus, COPD, and depression) at baseline
to minimize the influence of reverse causality. Proportional hazards of the
associations were tested using Schoenfeld’s residuals. The participants
were then grouped into quartiles of MetaboAgeMortAccel. The Kaplan-
Meier plots were drawn to visualize survival curves.

The evaluation of MetaboAgeMort associations with cause-specific
mortality and incident diseases was conducted using Fine and Gray’s com-
peting risk models.[57] When constructing models evaluating the associ-
ations of MetaboAgeMort with incident diseases, the participants with a
specific diagnosis before or at the time of recruitment were excluded from
the models. Chronological age, sex, ethnicity, education level, TDI, alcohol
intake frequency, smoking status, regular exercise, healthy diet, and BMI
were used as covariates. The associations of MetaboAgeMortAccel with
mortality and incident diseases were evaluated using the same method as
that for MetaboAgeMort. The second and the third MetaboAgeMortAccel
quartiles (Q2 and Q3) were set as the reference.

Next, receiver operating characteristic (ROC) curves were used to eval-
uate the utility of MetaboAgeMort for 10-year all-cause mortality risk pre-
diction beyond conventional risk factors. C-statistic and IDI were calcu-
lated, in comparison to that of the conventional risk factors model. In
addition, ROC was used to compare its predictive utility for 10-year all-
cause mortality risk and multiple disease incidences with several previ-
ously trained multi-metabolite scores (i.e., MetaboAge and MetaboHealth
score). Moverover, the associations of these multi-metabolite scores with
cause-specific mortality and diverse age-related diseases were tested using
the same methods employed for MetaboAgeMort.

Multivariable linear regression models were applied to test the re-
sponse of MetaboAgeMort (response variable) for each modifiable factor
(independent variable), with a Bonferroni-corrected significance threshold
for identifying top hits (P < 0.05/107 = 4.67 × 10−4). In these analyses,
continuous variables were Z-normalised, and results were shown as 𝛽 co-
efficients per 1-SD increment in the corresponding factor (based on the
availability of each individual factor). Moreover, continuous modifiable fac-
tors were also divided into tertiles and the results using the lowest tertile
as a reference were showed. The models were adjusted for chronological
age, sex, and ethnicity. Stratified analyses according to chronological age
(< 60 and ≥ 60 years) and sex (male and female) were conducted, utilizing
Bonferroni-correction method to determine top hits.

Data analyses and visualization were all performed in R version 4.2.2.
A two-sided P of ≤ 0.05 was considered statistically significant.

Ethics Approval and Consent to Participate: UK Biobank has approval
from the North West Multi-Centre Research Ethics Committee as a Re-
search Tissue Bank approval in 2011 and is renewed every 5 years, which
allows researchers to use data from UK Biobank without an additional eth-
ical clearance. All participants have provided signed informed consent.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements
This research was supported by Grants from Research Center of Preven-
tion and Treatment of Senescence Syndrome, School of Medicine Zhejiang
University (2022010002), “Pioneer” and “Leading Goose” R&D Programs
of Zhejiang Province (2023C03163), National Natural Science Founda-
tion of China (72374180, 82204118), Fundamental Research Funds for
the Central Universities, Zhejiang Key Laboratory of Intelligent Preventive
Medicine (2020E10004), Zhejiang University Global Partnership Fund, and
Zhejiang University School of Public Health Interdisciplinary Research In-
novation Team Development Project. The funders had no role in the study
design; data collection, analysis, or interpretation; in the writing of the re-
port; or in the decision to submit the article for publication.

Conflict of Interest
The authors declare no conflict of interest.

Adv. Sci. 2024, 2406670 2406670 (11 of 13) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH

 21983844, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202406670 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [10/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

Data Availability Statement
The data that support the findings of this study are openly available in UK
Biobank at [https://www.ukbiobank.ac.uk/], reference number [61856].

Keywords
aging, biological age, genetic determinant, metabolomic, modifiable fac-
tor, mortality

Received: June 16, 2024
Revised: August 22, 2024

Published online:

[1] M. R. Hamczyk, R. M. Nevado, A. Barettino, V. Fuster, V. André, J. Am.
Coll. Cardiol. 2020, 75, 919.

[2] B. K. Kennedy, S. L. Berger, A. Brunet, J. Campisi, A. M. Cuervo, E.
S. Epel, C. Franceschi, G. J. Lithgow, R. I. Morimoto, J. E. Pessin, T.
A. Rando, A. Richardson, E. E. Schadt, T. Wyss-Coray, F. Sierra, Cell.
2014, 159, 709.

[3] Q. Ji, X. Jiang, M. Wang, Z. Xin, W. Zhang, J. Qu, G.-H. Liu, Phenomics.
2024, 4, 56.

[4] D. J. Panyard, B. Yu, M. P. Snyder, Sci. Adv. 2022, 8, eadd6155.
[5] N. Hwangbo, X. Zhang, D. Raftery, H. Gu, S.-C. Hu, T. J. Montine, J.

F. Quinn, K. A. Chung, A. L. Hiller, D. Wang, Q. Fei, L. Bettcher, C. P.
Zabetian, E. Peskind, G. Li, D. E. L. Promislow, A. Franks, J. Gerontol.
A Biol. Sci. Med. Sci. 2022, 77, 744.

[6] E. B. van den Akker, S. Trompet, J. J. H. Barkey Wolf, M. Beekman,
H. E. D. Suchiman, J. Deelen, F. W. Asselbergs, E. Boersma, D. Cats,
P. M. Elders, J. M. Geleijnse, M. A. Ikram, M. Kloppenburg, H. Mei,
I. Meulenbelt, S. P. Mooijaart, R. G. H. H. Nelissen, M. G. Netea,
B. W. J. H. Penninx, M. Slofstra, C. D. A. Stehouwer, M. A. Swertz,
C. E. Teunissen, G. M. Terwindt, L. M. ’t Hart, A. M. J. M. van den
Maagdenberg, P. van der Harst, I. C. C. van der Horst, C. J. H. van
der Kallen, M. M. J. van Greevenbroek, et al., Circ. Genom. Precis. Med.
2020, 13, 541.

[7] J. Hertel, N. Friedrich, K. Wittfeld, M. Pietzner, K. Budde, S. Van der
Auwera, T. Lohmann, A. Teumer, H. Völzke, M. Nauck, H. J. Grabe, J.
Proteome Res. 2016, 15, 400.

[8] O. Robinson, M. Chadeau Hyam, I. Karaman, R. Climaco Pinto, M.
Ala-Korpela, E. Handakas, G. Fiorito, H. Gao, A. Heard, M.-R. Jarvelin,
M. Lewis, R. Pazoki, S. Polidoro, I. Tzoulaki, M. Wielscher, P. Elliott,
P. Vineis, Aging Cell. 2020, 19, e13149.

[9] D. Finkel, K. Whitfield, M. McGue, J. Gerontol. B Psychol. Sci. Soc. Sci.
1995, 50, P104.

[10] E. Bernabeu, D. L. McCartney, D. A. Gadd, R. F. Hillary, A. T. Lu,
L. Murphy, N. Wrobel, A. Campbell, S. E. Harris, D. Liewald, C.
Hayward, C. Sudlow, S. R. Cox, K. L. Evans, S. Horvath, A. M.
McIntosh, M. R. Robinson, C. A. Vallejos, R. E. Marioni, Genome.
Med. 2023, 15, 12.

[11] F. Wang, A.-J. Tessier, L. Liang, C. Wittenbecher, D. E. Haslam, G.
Fernández-Duval, A. Heather Eliassen, K. M. Rexrode, D. K. Tobias,
J. Li, O. Zeleznik, F. Grodstein, M. A. Martínez-González, J. Salas-
Salvadó, C. Clish, K. H. Lee, Q. Sun, M. J. Stampfer, F. B. Hu, M.
Guasch-Ferré, Nat. Commun. 2023, 14, 5744.

[12] K. Fischer, J. Kettunen, P. Würtz, T. Haller, A. S. Havulinna, A. J.
Kangas, P. Soininen, T. Esko, M.-L. Tammesoo, R. Mägi, S. Smit,
A. Palotie, S. Ripatti, V. Salomaa, M. Ala-Korpela, M. Perola, A.
Metspalu, PLoS Med. 2014, 11, e1001606.

[13] J. Deelen, J. Kettunen, K. Fischer, A. van der Spek, S. Trompet, G.
Kastenmüller, A. Boyd, J. Zierer, E. B. van den Akker, M. Ala-Korpela,
N. Amin, A. Demirkan, M. Ghanbari, D. van Heemst, M. A. Ikram, J.

B. van Klinken, S. P. Mooijaart, A. Peters, V. Salomaa, N. Sattar, T. D.
Spector, H. Tiemeier, A. Verhoeven, M. Waldenberger, P. Würtz, G.
D. Smith, A. Metspalu, M. Perola, C. Menni, J. M. Geleijnse, et al.,
Nat. Commun. 2019, 10, 3346.

[14] C. H. Johnson, J. Ivanisevic, G. Siuzdak, Nat. Rev. Mol. Cell Biol. 2016,
17, 451.

[15] P. D. Neufer, M. M. Bamman, D. M. Muoio, C. Bouchard, D. M.
Cooper, B. H. Goodpaster, F. W. Booth, W. M. Kohrt, R. E. Gerszten,
M. P. Mattson, R. T. Hepple, W. E. Kraus, M. B. Reid, S. C. Bodine, J.
M. Jakicic, J. L. Fleg, J. P. Williams, L. Joseph, M. Evans, P. Maruvada,
M. Rodgers, M. Roary, A. T. Boyce, J. K. Drugan, J. I. Koenig, R. H.
Ingraham, D. Krotoski, M. Garcia-Cazarin, J. A. McGowan, M. R.
Laughlin, Cell Metab. 2015, 22, 4.

[16] L. Fontana, L. Partridge, Cell. 2015, 161, 106.
[17] C.-L. Kuo, L. C. Pilling, Z. Liu, J. L. Atkins, M. E. Levine, Aging Cell.

2021, 20, e13376.
[18] D. Melzer, L. C. Pilling, L. Ferrucci, Nat. Rev. Genet. 2020, 21, 88.
[19] M. E. Levine, A. T. Lu, A. Quach, B. H. Chen, T. L. Assimes, S.

Bandinelli, L. Hou, A. A. Baccarelli, J. D. Stewart, Y. Li, E. A. Whitsel,
J. G. Wilson, A. P. Reiner, A. Aviv, K. Lohman, Y. Liu, L. Ferrucci, S.
Horvath, Aging. 2018, 10, 573.

[20] Z. Liu, P.-L. Kuo, S. Horvath, E. Crimmins, L. Ferrucci, M. Levine, PLoS
Med. 2018, 15, e1002718.

[21] D. Bizzarri, M. J. T. Reinders, M. Beekman, P. E. Slagboom, E. B. van
den Akker, Metabolites. 2023, 13, 1181.

[22] M. Ala-Korpela, T. Lehtimäki, M. Kähönen, J. Viikari, M. Perola, V.
Salomaa, J. Kettunen, O. T. Raitakari, V.-P. Mäkinen, J. Clin. Endocrinol.
Metab. 2023, 108, 2099.

[23] C.-H. E. Lau, M. Manou, G. Markozannes, M. Ala-Korpela, Y.
Ben-Shlomo, N. Chaturvedi, J. Engmann, A. Gentry-Maharaj, K.-H.
Herzig, A. Hingorani, M.-R. Järvelin, M. Kähönen, M. Kivimäki, T.
Lehtimäki, S. Marttila, U. Menon, P. B. Munroe, S. Palaniswamy, R.
Providencia, O. Raitakari, A. F. Schmidt, S. Sebert, A. Wong, P. Vineis,
I. Tzoulaki, O. Robinson, Aging Cell. 2024, 23, e14164.

[24] Y. van Holstein, S. P. Mooijaart, M. van Oevelen, F. J. van Deudekom,
D. Vojinovic, D. Bizzarri, E. B. van den Akker, R. Noordam, J. Deelen,
D. van Heemst, N. A. de Glas, C. Holterhues, G. Labots, F. van den
Bos, M. Beekman, P. E. Slagboom, B. C. van Munster, J. E. A. Portielje,
S. Trompet, GeroScience. 2024, https://doi.org/10.1007/s11357-024-
01261-6.

[25] J. Rutledge, H. Oh, T. Wyss-Coray, Nat. Rev. Genet. 2022, 23, 715.
[26] D. Swanson, R. Block, S. A. Mousa, Adv Nutr. 2012, 3, 1.
[27] J. Lian, V. Vardhanabhuti, Geroscience. 2024, 46, 1515.
[28] J. C. Newman, E. Verdin, Trends Endocrinol. Metab. 2014, 25, 42.
[29] E. Shemesh, P. A. Chevli, T. Islam, C. A. German, J. Otvos, J. Yeboah,

F. Rodriguez, C. deFilippi, J. A. C. Lima, M. Blaha, A. Pandey, M.
Vaduganathan, M. D. Shapiro, Eur. Heart J. 2023, 44, 1636.

[30] J. Liu, F.-F. Zeng, Z.-M. Liu, C.-X. Zhang, W.-H. Ling, Y.-M. Chen, Lipids
Health Dis. 2013, 12, 159.

[31] Y. Kim, T. Huan, R. Joehanes, N. M. McKeown, S. Horvath, D. Levy,
J. Ma, Am. J. Clin. Nutr. 2022, 115, 163.

[32] L. Oblak, J. van der Zaag, A. T. Higgins-Chen, M. E. Levine, M. P. Boks,
Ageing Res. Rev. 2021, 69, 101348.

[33] W.-S. Liu, J. You, Y.-J. Ge, B.-S. Wu, Y. Zhang, S.-D. Chen, Y.-R. Zhang,
S.-Y. Huang, L.-Z. Ma, J.-F. Feng, W. Cheng, J.-T. Yu, Aging Cell. 2023,
22, e13995.

[34] T. Robertson, G. D. Batty, G. Der, C. Fenton, P. G. Shiels, M. Benzeval,
Epidemiol. Rev. 2013, 35, 98.

[35] H. Li, M. Han, L. Guo, G. Li, N. Sang, Chemosphere. 2011, 82,
1589.

[36] P. Thangavel, D. Park, Y.-C. Lee, Int. J. Environ. Res. Public Health.
2022, 19, 7511.

[37] A. Britton, M. Shipley, A. Singh-Manoux, M. G. Marmot, J. Am Geriatr.
Soc. 2008, 56, 1098.

Adv. Sci. 2024, 2406670 2406670 (12 of 13) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH

 21983844, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202406670 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [10/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advancedscience.com
https://www.ukbiobank.ac.uk/
https://doi.org/10.1007/s11357-024-01261-6
https://doi.org/10.1007/s11357-024-01261-6


www.advancedsciencenews.com www.advancedscience.com

[38] A. Gialluisi, A. Di Castelnuovo, S. Costanzo, M. Bonaccio, M.
Persichillo, S. Magnacca, A. De Curtis, C. Cerletti, M. B. Donati, G.
de Gaetano, E. Capobianco, L. Iacoviello, Eur. J. Epidemiol. 2022, 37,
35.

[39] O. Coltell, J. V. Sorlí, E. M. Asensio, R. Barragán, J. I. González, I.
M. Giménez-Alba, V. Zanón-Moreno, R. Estruch, J. B. Ramírez-Sabio,
E. C. Pascual, C. Ortega-Azorín, J. M. Ordovas, D. Corella, Nutrients
2020, 12, 310.

[40] I. Djuricic, P. C. Calder, Nutrients. 2021, 13, 2421.
[41] B. C. Dowds, J. A. Hoch, J. Gen. Microbiol. 1991, 137, 1121.
[42] Z. Ju, J. Xiang, L. Xiao, Y. He, L. Zhang, Y. Wang, R. Lei, Y. Nie,

L. Yang, J. Miszczyk, P. Zhou, R. Huang, MedComm. 2023, 4,
e258.

[43] A. Fry, T. J. Littlejohns, C. Sudlow, N. Doherty, L. Adamska, T. Sprosen,
R. Collins, N. E. Allen, Am. J. Epidemiol. 2017, 186, 1026.

[44] S. C. Ritchie, P. Surendran, S. Karthikeyan, S. A. Lambert, T. Bolton, L.
Pennells, J. Danesh, E. Di Angelantonio, A. S. Butterworth, M. Inouye,
Sci. Data. 2023, 10, 64.

[45] C. Sudlow, J. Gallacher, N. Allen, V. Beral, P. Burton, J. Danesh, P.
Downey, P. Elliott, J. Green, M. Landray, B. Liu, P. Matthews, G. Ong,
J. Pell, A. Silman, A. Young, T. Sprosen, T. Peakman, R. Collins, PLoS
Med. 2015, 12, e1001779.

[46] P. Würtz, A. J. Kangas, P. Soininen, D. A. Lawlor, G. D. Smith, M. Ala-
Korpela, Am. J. Epidemiol. 2017, 186, 1084.

[47] P. Soininen, A. J. Kangas, P. Würtz, T. Suna, M. Ala-Korpela, Circ. Car-
diovasc. Genet. 2015, 8, 192.

[48] H. Han, Y. Cao, C. Feng, Y. Zheng, K. Dhana, S. Zhu, C. Shang, C.
Yuan, G. Zong, Diabetes Care. 2022, 45, 319.

[49] D. Bizzarri, M. J. T. Reinders, M. Beekman, P. E. Slagboom, E. B. van
den Akker, Bioinformatics. 2022, 38, 3847.

[50] L. Jiang, Z. Zheng, T. Qi, K. E. Kemper, N. R. Wray, P. M. Visscher, J.
Yang, Nat. Genet. 2019, 51, 1749.

[51] J. Yang, B. Benyamin, B. P. McEvoy, S. Gordon, A. K. Henders, D. R.
Nyholt, P. A. Madden, A. C. Heath, N. G. Martin, G. W. Montgomery,
M. E. Goddard, P. M. Visscher, Nat. Genet. 2010, 42, 565.

[52] K. Watanabe, E. Taskesen, A. van Bochoven, D. Posthuma, Nat. Com-
mun. 2017, 8, 1826.

[53] A. Auton, L. D. Brooks, R. M. Durbin, E. P. Garrison, H. M. Kang, J.
O. Korbel, J. L. Marchini, S. McCarthy, G. A. McVean, G. R. Abecasis,
Nature. 2015, 526, 68.

[54] C. A. de Leeuw, J. M. Mooij, T. Heskes, D. Posthuma, PLoS Comput.
Biol. 2015, 11, e1004219.

[55] F. Aguet, A. N. Barbeira, R. Bonazzola, A. Brown, S. E. Castel, B. Jo, S.
Kasela, S. Kim-Hellmuth, Y. Liang, M. Oliva, P. E. Parsana, E. Flynn,
L. Fresard, E. R. Gaamzon, A. R. Hamel, Y. He, F. Hormozdiari, P.
Mohammadi, M. Muñoz-Aguirre, Y. Park, A. Saha, A. V. Segrć, B. J.
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