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Summary

This research introduces a Language Model Augmented Program Synthesis (LMAPS) workflow

to enhance traditional Programming by Example (PBE). PBE is a method to automatically

generate a program that satisfies a specification that consists of a set of input-output examples.

These program specifications are often defined by a few examples, which can lead to multiple

programs that satisfy the given examples. In addition, PBE synthesisers have to explore a

huge inefficient search space to solve these problems. The LMAPS workflow incorporates

three components to overcome these limitations of PBE by using the language understanding

capabilities of Large Language Models (LLM). LLMs can assist in generating a well-defined

specification to mitigate the ambiguity issue inherent in PBE. The core component of LMAPS

leverages the capabilities of LLMs to generate programs. These programs can be decomposed

into building blocks to create a concise grammar for an inductive program synthesiser. This

optimized grammar makes it able to synthesise correct programs at lower depths, make the

workflow more efficient. LLMs can also aid in understanding the automatically generated

programs, as these programs can be hard to interpret by humans. We compare LMAPS to a

traditional PBE workflow in the task of synthesising regular expressions across four data sets.

The results demonstrated that LMAPS can significantly reduce the search space for program

synthesis and achieve up to 40% higher accuracy than PBE-only systems. Our research

indicates that integrating LLMs into a typical PBE workflow shows significant improvements

because of their combined strengths, resulting in a more accurate, efficient, and human-aligned

workflow.
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1
Introduction

In an era where machines are increasingly proficient at interpreting human language, our

research introduces a method that harnesses the synergy between Large Language Models

(LLM) and program synthesis. This approach is designed to generate programs that meet the

given specification and are aligned with human intentions.

Program synthesis is the field of computer science that aims to generate computer pro-

grams from high-level specifications automatically. One approach to program synthesis is

programming by example (PBE), which offers a simplified way of creating computer programs

by illustrating tasks using input-output examples. For instance, imagine a programmer

needs a program capable of dividing a person’s full name into their first and last names. A

program synthesiser can create such a program by providing it with input-output examples

that illustrate how to split the full names. This can drastically reduce the time and effort

involved in software development, optimisation, and debugging. However, PBE systems also

face various challenges and limitations as ’ambiguity’, ’generalizability’ and ’computational

efficiency’.

Ambiguity: PBE inherently suffers from under-definition because the problems are out-

lined using a limited set of examples. This limited context can lead to ambiguity, resulting

in various plausible interpretations. Consequently, the synthesised program may not nec-

essarily align with the intended functionality. For most tasks is impractical to create an

exhaustive list of input-output (IO) examples, particularly one that sufficiently represents

all potential edge cases. The more IO examples a system gets as input, the better it can un-

derstand the general rules or pattern to be applied, thereby producing more accurate programs.

Generalizability: PBE frequently encounters the dual issues of overfitting and underfit-

ting. Overfitting is observed when the synthesised program excessively aligns with the

provided examples, hindering its capacity to generalise to unseen cases. On the contrary,

underfitting arises when the produced program is overly generalised, failing to accurately

encapsulate the nuanced characteristics of the examples. Both these issues occur due to the

fact that there are multiple valid interpretations and synthesised programs for a given set of

examples. Note that ambiguity and generalizability look very similar. The main difference be-
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tween the two is that ambiguity refers to programs with wrong behaviour, whereas overfitting

and underfitting can be seen as finding the right balance between correct programs based on

the context.

Computational Efficiency: The task of synthesising a program that perfectly aligns with all

the given examples can be computationally intensive, especially for complex and large tasks.

The PBE system must search through many potential programs to find the one that accurately

matches the user its intention. This search space grows exponentially with the size of the

programs, making it infeasible to explicitly enumerate and check every possible program. This

computational inefficiency may limit the practical applicability of PBE, making it slow or even

unusable in certain applications.

Explainability: Programs synthesised through PBE often lack clarity, making understanding,

debugging, and maintaining these generated programs particularly challenging. PBE systems

are designed to create a program that correctly handles the provided examples, not necessarily

a program that is easy to comprehend. In some cases, the generated program might use

complex logic or take an approach that a human wouldn’t typically use. Since users only

provide input-output pairs, they may not fully understand the underlying logic of the generated

code. This can make it challenging to predict how the program will behave in situations not

covered by the examples. If something goes wrong or if changes need to be made, it can be

tough to debug or modify the generated code due to its complexity and the user’s limited

understanding of its logic.

Limited Modality: In traditional PBE workflows, only one type of information is used,

which means that potential information is not being fully utilised. Using different types of

information can provide additional insights into a problem, making it easier for the user to

control the program synthesis process. Showing user intent can be challenging when relying

solely on input-output examples. By incorporating different modalities, users can make a

richer specification of the problem.

The potential of integrating LLMs into PBE systems offers a promising solution to address

these limitations. By leveraging their capacity to generate human-like text, large language

models can assist in generating more diverse IO examples, creating programs with multiple

modalities and explaining the program afterwards. In this thesis, we harness the power of

LLMs to address various tasks related to program synthesis. LLMs can assist in creating more

effective program specifications by generating IO example suggestions based on both a natural

language description and the already existing IO examples. Initially, the LLM itself tries to

synthesise a program using these specifications. If the LLM cannot find a correct program,

parts of the generated programs are utilised to assist the inductive program synthesiser. Once

a program has been generated, the LLM can explain the workings of this program to help

users understand it better.

Let’s consider an example to illustrate these limitations of programming by example and show

how LLMs can help to overcome these limitations. Imagine that we want a program to check
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whether an email address is valid by using regular expression pattern matching. First, we

need to create a list of IO examples, as seen in Table 1.1. These IO examples are then given as

input to a program synthesis engine.

Input Output
john.doe@example.com ✓
jane_doe@example.com ✓
example.com ×

Table 1.1: IO examples for a valid email address check

A program that checks if the input ends with ’@example.com’ or a program that checks if the

input starts with a ’j’ would both satisfy all examples. However, both programs do not capture

the complete rules for a valid email address. This happens due to the ambiguous nature of the

examples. An LLM can help to generate more diverse examples and assists in finding edge

cases that the user did not think of.

Depending on the interpretation of the examples, the program could potentially overfit

or underfit. For example, an extremely overfitted program would only check if the input is

exactly "john.doe@example.com" or "jane_doe@example.com", which perfectly matches the

examples but fails to generalize to all other valid email addresses. An underfitted program

could only check if the input contains an ’@’ symbol. This can be solved by adding a negative

example which contains the ’@’ symbol. LLMs could potentially overcome this limitation be-

cause they can understand a task description as well as the IO examples. For example, if a user

only wants email addresses ending with ’.com’, this constraint can be clearly communicated

in the description of the task. This helps to strike the right balance between overfitting and

underfitting.

Exploring all possible programs that match the given examples can be computationally

intensive. A program that matches email addresses contains different parts (username, "@"

symbol, domain name, domain extension), and each part can have many possible variations.

The search space can quickly become large and complex. The search space can be greatly

reduced by using partially correct LLM solutions as a starting point which is further explained

in Section 4.

In the current example, the user is only providing input-output pairs. They do not have a

way to express that the email address should not start with a special character or end with a

certain domain. The inability to supplement the examples with more nuanced multimodal

instructions makes the process less human-aligned. An LLM can ’understand’ text-based

modalities, making it useful to combine text with IO examples to guide the program synthesis

process.

Synthesised programs can be hard to understand as they are automatically generates and

may contain illogical elements from a user perspective. For instance, the regular expression

"[A-Za-z0-9._+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}" is a correct program that matches

email addresses, but it might be challenging for a user to comprehend it. An LLM can explain

the program to help the user understand the generated program.
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This research explores the use of LLMs to tackle the challenges of program synthesis, with a

specific focus on synthesizing regular expressions. Specifically aiming to provide valuable

insights into the capabilities of LLMs in program synthesis workflows. We will investigate the

benefits of using LLMs in program synthesis workflows, analyze their performance compared

to traditional approaches, and assess their effectiveness in addressing the challenges inherent

in programming by example. We explore how LLMs can be used to augment the program

synthesis workflow. By doing so, we hope to contribute to the broader understanding of

the potential of LLMs in program synthesis and their practical applications in the software

development process.

LLMs can be used in programming synthesis tasks that satisfy the following three require-

ments. First, it is important that the task its core components and constraints can be effectively

communicated using textual descriptions. LLMs excel at understanding and generating

natural language, making them well-suited for problems that can be framed in this manner.

Sometimes it is needed to convert the data to a textual format. For example, tabular data

can often be converted to a textual representation. Second, it should be feasible to give a

textual representation of the problem as the problem must be comprehensively described using

natural language. This allows the LLM to understand the problem’s intricacies, objectives,

and constraints, enabling it to generate accurate and relevant solutions. Third, it should be

feasible to give a small subset of positive and negative examples. Providing a limited set

of positive and negative examples allows the LLM and program synthesizer to distinguish

between correct and wrong solutions. This helps the model to generalize and generate new

solutions that adhere to the given specifications.

Regular expressions are often used to evaluate PBE synthesis due to a combination of

characteristics that test the capabilities of these systems in various ways. One of the critical

features of regular expressions is their varying complexity, from straightforward to highly

intricate. This allows us to assess the full spectrum of a PBE system’s capabilities. Secondly,

it is relatively easy to check if the regular expression matches all IO examples. Regular

expressions are widely recognized in almost all programming languages. This ensures that

evaluating models can often be done across different PBE systems. The ability of a PBE system

to effectively synthesize regular expressions gives a strong indication of its practical utility.

Lastly, equivalent regular expressions can be written in many ways. This tests the capacity of a

PBE system to generate a variety of correct solutions, mirroring the reality that multiple valid

approaches often exist for a given problem. Thus, regular expressions present a robust, flexible,

and contextually relevant way of benchmarking PBE synthesis. They offer a comprehensive

test of a system its performance and provide an indication of its likely performance in tackling

practical programming tasks.

This research proposes a workflow called Language Model Augmented Program Synthesis

(LMAPS) that combines Large Language Models with PBE to enhance the program synthesis

process. The primary aim of the research is to mitigate the limitations of PBE-only systems,

such as ambiguity, overfitting, underfitting, efficiency, explainability, and single modality

issues. LMAPS combines three LLM components, "Specification Suggestion", "LLM Program

Synthesis", and "Explain Program Step", with a traditional PBE workflow. Each component
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addressing a specific limitations of the PBE-only approach. The ’LLM Program Synthesis’ is

the core component of the LMAPS workflow, which uses the capabilities of LLMs to generate

programs. These programs, if initially incorrect, can be repaired with an inductive program

synthesis engine. These partially correct programs can be used to reduce the program synthesis

search space immensely. Incorrect programs generated by the LLM can be dissected into

building blocks, contributing to the grammar of the program synthesis engine and boosting

its efficiency. In addition to the efficiency gains, the LMAPS workflow achieves significantly

higher accuracy than LLM-only and PBE-only approaches.



2
Background

In this research thesis, we explore a novel approach called LMAPS. To understand the

methodology and rationale behind our approach, it is crucial to have a basic understanding of

several key topics. This background section provides an overview of the fundamental concepts

required to comprehend the subsequent chapters.

2.1. Programming By Example
Programming By Example (PBE) is a powerful approach in program synthesis that aims to

generate computer programs from user-provided examples automatically. The core idea behind

PBE is to infer the intended program behaviour based on input-output (IO) examples rather

than requiring the user to specify the desired algorithm explicitly. PBE systems can analyze

these examples, identify patterns, and synthesize a program that captures the underlying

logic.

Input-output examples are essential in PBE because they serve as a simple and intuitive way to

communicate the desired behaviour of a program to the PBE system. By providing specific

examples of inputs and their corresponding expected outputs, users can effectively convey the

intended pattern or transformation without having to write explicit code. PBE systems can

generalize from the given examples, automatically synthesize a program that adheres to the

desired behaviour, and ultimately save time and effort for users.

Let’s say we have a set of input-output pairs, 𝐸 = {(𝑥1 , 𝑦1), (𝑥2 , 𝑦2), . . . , (𝑥𝑛 , 𝑦𝑛)}, where

each (𝑥, 𝑦) pair denotes an example provided by the user, such that 𝑥 is the input, and 𝑦 is

the output. The task of PBE is to infer a program 𝑃 from these examples, such that for all

(𝑥, 𝑦) ∈ 𝐸, when we execute the program 𝑃 with input 𝑥, it produces output 𝑦. This can be

represented by the equation:

∀(𝑥, 𝑦) ∈ 𝐸, 𝑃(𝑥) = 𝑦

The real challenge lies in generating the most appropriate program 𝑃 given the examples,

considering there could be multiple programs that satisfy the input-output examples.

To generate the program, a PBE system generally follows a search-based approach. This search

is often performed in the space of all possible programs, represented as 𝒫, that can be generated

6



2.1. Programming By Example 7

using the constructs of a given grammar. The search process can be highly sophisticated and

could involve constraint solving, machine learning, and probabilistic reasoning. The goal is

to find a program 𝑃∗ ∈ 𝒫 such that it is consistent with all provided examples and has the

user its intended behaviour. It’s important to note that PBE often relies on user interaction to

help refine and correct the inferred program. Users may need to provide additional examples,

validate the correctness of inferred programs, or directly guide the search process.

The critical part of this process is the grammar that guides the conversion of these ex-

amples into the actual program. The grammar is the set of rules that describe how expressions

of a particular language can be formed. These rules provide a formal definition of the syntax

of the language. It’s essentially the "vocabulary" that the system uses to express programs.

This grammar guides the system on the kind of programs it can generate. The PBE engine

uses the grammar, in conjunction with the provided examples, to search for a valid program.

The grammar can for example define how to generate Python code or regular expressions.

The task of synthesizing a program based on examples entails exploring a vast search space

that consists of all potential programs that can be constructed using the given grammar. The

complexity or depth of a program directly influences the size of the search space. For instance,

in the scenario where the maximum depth is limited to one, the search space encompasses all

possible programs of depth one. As the depth is incremented, the search space expands to

include all feasible programs up to the given depth, thus leading to a considerable increase in

the search space size. The size of the grammar also impacts the size of the search space. A

compact grammar consisting of only a few elements yields a relatively smaller search space

compared to a more expansive grammar with a diverse set of operators.

To illustrate these concepts, consider the task of regular expression synthesis, where the

objective is to synthesize a regular expression to match a specified string pattern. Suppose we

intend to synthesize a regex that identifies strings representing positive integers or, in other

words, sequences composed of one or more digits. For this task, the grammar might consist of

elements like individual digits, the dot-star operator ’.*’ matching any character zero or more

times, the ’+’ operator that matches one or more instances of the preceding character or group,

and character classes such as [0-9] denoting any digit.

A basic regex program which can be constructed with a depth of one is [0-9]. This pattern

matches a string containing a singular digit, for example, ’5’, but not multi-digit strings like

’12’ or ’345’. The depth limit of one means that the program synthesiser can only use one

element from the grammar, in this case [0-9]. A more sophisticated regex of depth two could

be [0-9]+. This pattern matches one or more digits, therefore identifying any positive integer.

Introducing new operators to our grammar, such as {n}, which matches ’n’ occurrences

of the preceding character or group, significantly enlarges the search space. We can now

construct expressions like [0-9]{3} to match exactly three digits and [0-9]{3}+ to match one

or more sequences of three digits.

This example scenario demonstrates the growth of the search space both with the depth
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of programs and the number of elements in the grammar. One of the principal challenges

in PBE lies in efficiently traversing this space to identify the most appropriate program for a

given set of input-output examples.

The are numerous benefits of using PBE to generate programs. For one, it allows for in-

tuitive communication, as IO examples enable users to show their intentions without the

necessity of writing explicit code. This makes it user-friendly even for non-programmers to

create customized solutions tailored to their specific needs. Another advantage is that it saves

time and effort since only needing to provide IO examples simplifies the program creation

process, thus reducing the time and effort required by users. Finally, PBE engines are capable

of synthesising complex programs that solve a certain specification, which is especially useful

when having a large list of strict requirements for the program. PBE engines also reduce the

likelihood of errors and inconsistencies, as the synthesized code is aligned with the provided

examples.

2.2. Large language models
Large Language Models (LLMs) have recently gained significant attention due to their remark-

able performance in various natural language processing tasks. An LLM is a transformer-based

neural network architecture designed to understand and generate human-like text by learning

from vast amounts of textual data. These models are trained on diverse sources, allowing

them to capture intricate patterns, relationships, and structures within the language. Notable

LLMs at the time of writing include GPT-4 by OpenAI [19], LLaMa by Meta [23], and PaLM 2

by Google [2].

While there exist specialized LLMs dedicated to code synthesis, such as OpenAI’s Codex

model, it has been reported that general-purpose LLMs like GPT-4 exhibit even better coding

abilities [20]. This demonstrates the incredible adaptability and competence of these models in

a wide range of tasks. LLMs can perform tasks from simple tweet sentiment analysis to more

complex tasks like language translation and code generation. LLMs are particularly useful

in problems with a large search space. LLMs have ’learned’ to detect patterns in the huge

amount of data they are trained on, making them useful for identifying patterns or trends

within extensive search spaces.

A transformer is composed of several layers, each of which consists of self-attention mechanisms

and feed-forward neural networks. However, the inner workings of the LLM architecture are

out of the scope of this research.

Tokens represent the smallest units of input that the model can understand and process. When

given an input prompt, it is converted to its corresponding numerical token representation.

This representation is then passed through the model its layers, where it is manipulated and

transformed to generate output.

A token is typically a word or a part of a word. The precise nature of a token, however, can

vary based on the tokenization strategy used. For instance, some models treat words as whole

tokens (e.g., "apple" would be a single token), while others use subword tokenizers which

break words into smaller units (e.g., "ap" and "ple" could be separate tokens). This latter

approach can help models handle rare and out-of-vocabulary words more effectively. The
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choice of tokenization strategy and the number of tokens a model can process simultaneously

play significant roles in the model’s performance, capabilities, and computational requirements.

LLMs are autoregressive models which essentially only predict the next token given its

preceding context. Given an input sequence of tokens, [𝑥1 , 𝑥2 , . . . , 𝑥𝑛], the model computes the

likelihood of the next token, 𝑥𝑛+1. The objective of the model is to maximize this likelihood.

max𝑃(𝑥𝑛+1 |𝑥1 , 𝑥2 , . . . , 𝑥𝑛) (2.1)

The concept of a ’prompt’ in the context of LLMs is the sequence of tokens [𝑥1 , 𝑥2 , . . . , 𝑥𝑛] that

are fed as input to the model. For instance, in a text generation task, a prompt could be the

start of a sentence, and the LLM’s job would be to predict the rest of the sentence.

Given a prompt, e.g. ’What is the capital of France?’, the LLM calculates the probability

distribution over all possible next tokens in its vocabulary 𝑉 , and selects the next token 𝑥𝑛+1

based on these probabilities. In this case, there is clearly one correct answer, which is ’Paris’.

However, for less factual questions, the simple method of always selecting the token with the

highest probability may not yield diverse or realistic output. Therefore, we need a way to

control the randomness of the token selection process, and this is where certain parameters

come into play.

2.2.1. Large Language Model parameters
The two main parameters to control the randomness and diversity of the output generated by

LLMs are the ’temperature’ and ’top-p’ parameters. These parameters allow us to tweak the

sampling process of the next token based on the output probability distribution. By adjusting

these parameters, we can influence the trade-off between diversity and quality in the model its

output and thereby adjust its "creativity". A higher temperature or top-p value typically leads

to more diverse but potentially less coherent output, which is useful in creative writing tasks.

In contrast, lower temperature and top-p values result in more coherent and predictable text,

something that is useful in tasks like fact retrieval or code generation. The optimal setting for

these parameters can depend on the specific use case and desired outcome. These parameters

must be set carefully to get the desired balance between quality and diversity in the output.

The temperature parameter uses an adjusted softmax function, which converts logits (raw

model output) into probabilities. The softmax function with a temperature parameter is

defined as

softmax(𝑧𝑖) =
𝑒𝑧𝑖/𝑇∑
𝑗 𝑒

𝑧 𝑗/𝑇
(2.2)

where 𝑧𝑖 are the logits and 𝑇 is the temperature. When 𝑇 = 1, the function becomes the

standard softmax function. For 𝑇 < 1, the model will output the token with the highest

probability more often. When 𝑇 > 1, the output becomes more uniform, hence adding more

diversity in the choice of the next token.

Top-p sampling offers another way to sample from the model’s output distribution. In-

stead of always picking the most probable next token or sampling from the full distribution,

we sample from the smallest set of tokens 𝑆 whose cumulative probability exceeds a threshold

𝑝. This is the algorithm to find the top-p tokens:
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1. Sort the probabilities in descending order

2. Keep adding tokens to the set 𝑆 while the cumulative probability of the set is lower than

the specified 𝑝.

3. Then sample the next token from the distribution over 𝑆

2.2.2. Prompting techniques
Prompting is the way to communicate with LLMs to get the model to generate the desired

output. The quality and specificity of the prompt significantly influence the model its subse-

quent text generation. Prompt engineering is the practice of carefully crafting and optimizing

prompts with the goal of generating useful and accurate outputs. Optimized prompts can

guide the model towards a specific type of output or to elicit a certain kind of knowledge.

This is particularly relevant for factual or technical questions, where precision and detail are

essential. A slight change in the formulation of the prompt can make a large difference in the

the quality of the response.

Different prompting techniques can maximize the model its performance for a given task. The

two most used prompting techniques are zero-shot and few-shot prompting.

Zero-shot prompting requires the model to perform a task without any prior explicit examples.

The prompt should precisely describe the task that the model is required to perform. The

effectiveness of zero-shot prompting is highly dependent on the specific structure of the prompt

and the data the LLM was trained on.

For instance, to generate a regular expression that matches strings ending with "dog", a

zero-shot prompt may look like:

1 User: Generate a regular expression that matches any string ending with ’dog’.
2 Model: ’.*dog$’

Prompt 2.1: Example of a zero-shot prompt, where ’User’ refers to the user input prompt and ’Model’ refers to the output

generated by an LLM.

Few-shot prompting provides the model with a few examples of the task before the task itself.

This approach aims to offer the model a clearer understanding of the specific task, by showing

the desired output for similar inputs.

For instance, a few-shot prompt for the same regular expression generation task could be:

1 User:
2 Task: "Generate a regular expression that matches any string ending with ’cat’."
3 Output: ’.*cat$’
4

5 Task: "Generate a regular expression that matches any string ending with ’ball’."
6 Output: ’.*ball$’
7

8 Task: "Generate a regular expression that matches any string ending with ’dog’."
9 Output: <<let LLM complete>>

10 Model: ’.*dog$’

Prompt 2.2: Example of a few-shot prompt, which includes examples of similar problems with their corresponding solution.
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Few-shot prompting most of time achieves a higher accuracy than zero-shot prompts as it

gives the model more context. However, it few-shot prompting requires high-quality example

data for each task. Both prompting techniques are used to guide the model to generate the

intended output. This process often involves trying different prompts, seeing how the model

responds, and then making adjustments to improve the outcomes.

2.2.3. LLM language understanding
LLMs are designed to process and generate human language in a way that often appears to

demonstrate understanding. However, the type of ’understanding’ these models exhibit is

fundamentally different from human understanding. These models are based on recognizing

patterns in the data they were trained on. For example, if the model was trained on a lot

of books, it might recognize that the phrase "Once upon a time" is often followed by the

beginning of a story. The "understanding" exhibited by current generation LLMs is a form of

pattern recognition based on statistical associations in the data they were trained on. Unlike

humans, these models don’t understand the meaning of the words or sentences they process.

For instance, if a model generates a reasonable response to the statement "The sun is cold,"

it’s not because the model understands that this statement contradicts the fact that the sun is

actually hot. It’s because the model has learned from its training data that the phrase "The sun

is cold" is often followed by responses indicating disagreement or correction.

2.3. Regular Expressions
Regular expressions (regex) are a powerful and versatile tool used in text processing, enabling

efficient pattern matching and manipulation of strings. Regular expressions are used in

various fields, including data processing, programming, and natural language processing. We

evaluate our LMAPS methodology on multiple regular expression data sets.

A regular expression is a sequence of characters that specifies a search pattern in text,

commonly used in "find" or "replace" operations on strings and input validation. Regex

patterns consist of a series of atoms, which are the smallest matching units within a pattern.

Atoms can be literals, metacharacters, and groups of characters enclosed in parentheses and

square brackets. Metacharacters play an essential role in shaping regex patterns as they define

all the functionalities of the regular expression.

From a mathematical standpoint, a regular expression is a way to describe a language

(set of strings). Regular expressions use operations that are based on the algebraic structure

known as Kleene algebra. Examples of regular expressions can be seen in Table 2.1

Regular Expression Description
a+ Matches one or more consecutive ’a’ characters.

(ab|cd) Matches either ’ab’ or ’cd’.

a(b|c)d Matches either ’abd’ or ’acd’.

[0-9] Matches a single digit.

[A-Z]2 Matches two uppercase letters.

Table 2.1: Examples of regular expressions
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Regular expressions are often perceived as difficult to read and write due to their concise

and cryptic syntax. The compact representation can be challenging for those unfamiliar

with the regex syntax. Furthermore, the flexibility in formulating regex patterns allows for

multiple representations of equivalent patterns, which can lead to confusion when comparing

different expressions. As a result, many people can benefit from tools and techniques that can

simplify the process of generating and validating regex, and make regex more accessible to a

broader audience. This means that regex synthesis could benefit from the "Explain Program"

component of the LMAPS workflow.

2.4. Multimodal program synthesis
Multimodal program synthesis is a method of automatically generating computer programs by

combining different types of user inputs or specifications, such as natural language descriptions

and input-output examples. Multimodal program synthesis often works better than NLP-based

or example-based approaches because it leverages the strengths of both modalities while

mitigating their individual weaknesses.

NLP-based synthesis relies solely on natural language descriptions, which are often ambiguous

and can lead to multiple interpretations. Although modern natural language processing

techniques can capture the meaning to some extent, they struggle to generate precise and

accurate code when faced with ambiguous descriptions.

Example-based synthesis uses only input-output examples to generate code. While these

examples provide precise constraints on the desired program’s behaviour, they often represent

an incomplete specification of the user’s intent. Users would have to come up with a huge

amount of examples to cover all edge cases of a program, which is often infeasible. Therefore,

program synthesis tasks are usually defined through only a few examples which makes them

under-defined.

Multimodal synthesis combines multiple modalities to generate programs. In PBE the

most used multimodal combination is a natural language description combined with IO

examples, benefiting from the complementary nature of these two modalities. Natural

language descriptions provide a more "complete" task description, capturing the user’s intent

in a way that examples alone cannot. For instance let’s say we want to match United Airlines

flight numbers with the positive examples from Table 2.2.

Positive examples
UA12
UA34

Candidate programs
(UA12 | UA34)
[A-Z]{2}[0-9]{2}
UA[0-9]{2}

Table 2.2: There are often multiple interpretations possible of a list of positive examples. An inductive program synthesiser

generates candidate programs that satisfy all positive examples. By only using these positive examples it is not possible to

discriminate between those candidate programs to find the user intended one.

Any of the generated programs could be the intended program by the user, as they all satisfy all

IO examples. From a program synthesis perspective, there is no way to discriminate between

them. When the user adds the following description "strings starting with ‘UA’ and ending

with two digits" it is immediately clear which of the three programs best fits the user intent. In
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this case it becomes clear that UA[0-9]{2} is the correct solution. (UA12 | UA34) overfits as

it does not match any other input than the positive examples. [A-Z]{2}[0-9] underfits as it

also matches inputs that are not United Airways flight numbers, for example ’AB12’. Only the

synergy of task descriptions and IO examples made it possible to find the intended program.

Descriptions of a task can help to discriminate between multiple potential solutions to find the

user intended one.

Natural language description help to find the right balance between overfitting and un-

derfitting. Whereas IO-examples offer precise constraints that help disambiguate the natural

language description and guide the search towards the correct program. Suppose a user

wants to generate a program that matches numbers in a string using only a natural language

description. Even for this simple case, there are many interpretations of the word ’numbers’.

For example, should it match integer numbers, decimal numbers, negative numbers and

numbers in a word? In this cases, IO examples are helpful to clarify the user intention as seen

in Table 2.3.

Pattern Positive example
Integer numbers 1
Decimal numbers 1.2
Negative numbers -1
Numbers in a word ’56’ in ’UA56’?

Table 2.3: Potential patterns which a user could have intended. IO examples are helpful to show the intended behaviour.

Multimodal synthesis techniques can achieve higher accuracy and efficiency than NLP-based

or example-based approaches alone. They are capable of narrowing down the search space

effectively, handling the ambiguity of natural language, and providing a more comprehensive

specification of the user its intent. This makes multimodal program synthesis a powerful

approach to efficiently generate programs across a wide range of tasks.

2.5. Vector Embeddings & Cosine Similarity
Vector embeddings are used in machine learning and natural language processing, serving as

a compact representation of high-dimensional data. This form of data representation is used

to capture the semantic and syntactic features of the data. When considering natural language

data, each string is represented by a unique vector in a multidimensional space.

Cosine similarity is a metric used to measure the similarity between two vectors. It is defined as

the cosine of the angle between the vectors, providing a measure of their orientation, regardless

of their magnitude. Mathematically, the cosine similarity between two vectors A and B can be

calculated using the following formula:

𝑆𝑖𝑚(𝐴, 𝐵) B cos(𝜃) = 𝐴 · 𝐵
∥𝐴∥∥𝐵∥ (2.3)

The result of this calculation ranges between -1 and 1. A value closer to 1 indicates that the

vectors are similar, 0 indicates that the vectors are not similar, and -1 indicates that the vectors

are opposites.

For example given the following three sentences and embeddings:
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Name Description Embedding
Vector A The dog is chasing its tail [1, 2, 3]

Vector B A canine is pursuing its own tail [1.1, 2.1, 2.9]

Vector C I ate pasta last night [-5, 6, -2]

Table 2.4: An example of descriptions with their corresponding embedding vector. The sentence "The dog is chasing its tail" is

similar to "A canine pursuing its own tail", which can be seen by the relatively similar embedding vectors.

The cosine similarity between Vector A and Vector B is 𝑆𝑖𝑚(𝐴, 𝐵) = 0.999, which means

they are very similar. Whereas, the cosine similarity between Vector A and Vector C is

𝑆𝑖𝑚(𝐴, 𝐵) = 0.033, which means they are not similar.

Finding similar prompt-answer pairs
In the context of few-shot learning, cosine similarity can be used to find prompt-answer pairs

in the training data that are similar to a new prompt. The embeddings of all data points in the

training data need to be stored in a vector database to efficiently search for similar prompts.

New unseen prompts can then be compared with the already existing prompts in the vector

database to find the most similar prompts-answer pairs. These pairs can then be given as extra

information to an LLM to predict the response to the new prompt.

Data set similarity
To evaluate the similarity of data sets, the cosine similarities between all pairs of vectors are

then calculated and compared with the other data set. For example, a high average cosine

similarity would indicate that the data sets have a high degree of overlap in their semantic

content.



3
Literature Review

In the rapidly evolving domain of artificial intelligence, the synthesis of programming through

LLMs has emerged as an intriguing field of study. LLM program synthesis presents a paradigm

shift from traditional coding by generating code from high-level language specifications. Con-

currently, the established concept of PBE remains vital, as PBE systems can guarantee that

generated programs satisfy the given specification, whereas LLMs-generated programs can

not. Understanding the intricacies of these two areas is crucial towards combining them into a

streamlined, synergistic workflow, with the goal of a more efficient program synthesis workflow.

It is essential to mention that multimodal program synthesis, while holding immense potential,

is currently under-explored in academic research. This form of synthesis, incorporating

multiple types of data inputs, can profoundly impact the efficacy and adaptability of program

synthesis systems. This research aims to contribute to this sparse body of knowledge, seeking

to foster new insights and advancements in this multifaceted area.

Finally, a comprehensive understanding of prompt generation techniques for LLMs is another

integral part of this study. The process of getting user-intended responses from LLMs using

suitably defined prompts is critical in maximizing the efficiency and utility of these models. The

ability to generate effective prompts automatically would significantly enhance the interaction

with the program synthesis workflow.

This literature review provides an overview of the current state of programming by ex-

ample, LLM program synthesis, multimodal program synthesis, and prompt generation. This

study aims to improve our knowledge in these fields with the goal of combining these methods

into a stronger and more effective approach.

3.1. Programming by Example
Programming by Example (PBE) is a powerful program synthesis method that allows users to

create programs by providing examples of the intended program behaviour [7]. This technique

has been successfully applied to various domains, including string transformations [11] and

regular expression synthesis [4]. In PBE, the interaction between the user and synthesizer is

limited to examples for both the initial specification and refinements.

15
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One of the first and most well-known applications that use PBE on a large scale is FlashFill [11],

which was developed by Microsoft in 2011. FlashFill revolutionized the way users perform

data manipulation tasks by automating the process of generating data transformation functions

based on provided examples in Microsoft Excel.

FlashFill’s success lies in its ability to simplify repetitive and time-consuming tasks that

often arise when working with spreadsheets, such as formatting, extracting, or concatenating

data. By merely providing a few input-output examples, users can teach FlashFill the desired

transformation pattern, and the system will generate a function that can be applied to the

entire dataset. The integration of FlashFill in Excel has made PBE accessible to a broad

audience, showcasing its potential to empower users with little or no programming expertise.

By reducing the need for manual data manipulation and complex formulas, FlashFill has

significantly improved productivity and efficiency for countless Excel users worldwide.

One of the earliest works in PBE was on inferring LISP programs from examples [22]. Over

the years, the field has evolved, with researchers exploring novel ways to automate string

processing in spreadsheets, a real-world scenario of such a PBE engine is FlashFill in Microsoft

Excel [11].

A common approach in PBE techniques is to combine enumerative search with lightweight

deductive reasoning, significantly pruning the search space [1, 8]. This method has been

employed in various domains, such as synthesizing data structure transformations from

input-output examples [10], developing a framework for data extraction by examples [14].

Each paper mentioned expanded the horizon of possible applications within the domain of

programming by example. From early explorations in inferring LISP programs from examples

to the practical implementation of PBE techniques like FlashFill in Microsoft Excel. Each

individual study has, therefore, contributed to a cumulative increase in our understanding and

application of PBE techniques. For our research, we examined the methods employed across

various domains to get crucial insights into how inductive program synthesis can be effectively

and efficiently executed. These insights have provided a valuable context to our research,

helping us understand the limitations of program synthesis. Moreover, by understanding the

history and evolution of PBE, we can better position our own research within this broader

context. This enables us to build upon existing methods, learn from past failures, and make

more meaningful contributions to the field.

3.2. Program Synthesis with Large Language Models
Code generation has become a hot topic in AI research because of transformer-architecture

models. Mainly because the transformers-architecture allowed for models that can understand

the relationship between sequential elements that are far from each other. LLMs have been

central to this effort, leveraging their natural language processing capabilities to generate

human-like text and code. Several papers have investigated LLMs, providing valuable insights

into the capabilities and limitations of LLMs in code generation. There is still a significant

amount of research required in the pursuit of understanding LLMs. Remarkably, the trans-

former architecture has only existed since 2017 [24], underscoring the novelty and rapid
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evolution of LLMs.

One of the first papers that used the transformer-based architecture to generate code is

by Feng et al. (2020) [9] who introduced a model called CodeBERT. CodeBERT is one of the first

models that were able to generate complex programs based on natural language. The study

highlighted the capability of language models to extract programming language semantics

from large-scale data, paving the way for more advanced models.

A subsequent paper, from Austin et al. (2021) [3], conducted an evaluation of LLMs’ ca-

pability in synthesizing short Python programs. The models evaluated ranged from 244

million to 137 billion parameters, with performance scaling log-linearly with model size.

Notably, this study found that engaging the model in dialogue about code and incorporating

human feedback could halve the error rate. Despite these advancements, the study also

highlighted some limitations of these models. One major limitation is that these models are

heavily input dependent, which means that these models sometimes fail on very easy tasks

when given a specific input.

Chen et al. (2021) [5] introduce Codex, a Generative Pretrained Transformer (GPT) model

fine-tuned on publicly available code from GitHub. Codex showed significant capabilities in

writing Python code based on HumanEval, a new evaluation set designed to measure the

functional correctness of programs. Nonetheless, the study again showed the limitations of

these models, including their struggles with longer chains of operations and more complex

reasoning tasks.

Before Codex, language models struggled to generate consistent and coherent long pas-

sages of text. The development and success of GPT-based models made it possible to generate

programs with much higher accuracy and with far better natural language understanding

capabilities. The natural language understanding and code generation capabilities of LLMs

have paved the way for generating programs in innovative ways, which our research builds

upon.

A more recent development in this area is AlphaCode from Li et al. (2022) [17]. They

showed that LLMs still perform poorly when evaluated on more complex and unseen problems

that require problem-solving skills beyond simply translating instructions into code. They

introduce AlphaCode, a system for code generation that can create solutions to more complex

problems that require a deeper understanding of the problem. This model demonstrated the

ability to perform competitively in programming competitions on the Codeforces platform 1.

AlphaCode utilized an encoder-decoder transformer architecture and a strategy of generating

diverse programs and then filtering them. This achievement marks a notable milestone in the

application of AI in code generation, suggesting that AI could perform at a level comparable

to human programmers under certain circumstances.

AlphaCode only uses natural language descriptions to generate programs. To increase

the accuracy, they generate multiple programs and then cluster and filter them to only get the

1Codeforces website: https://codeforces.com/

https://codeforces.com/
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potential best programs. However, a drawback of this approach is that clustering and filtering

are not straightforward to implement for new domains of problems. On top of that, generating

multiple programs also significantly increases computational intensiveness.

Our approach combines the use of natural language descriptions and input-output exam-

ples, which simplifies the process of identifying the correct solution. Furthermore, we have

eliminated the need for complex filtering and clustering techniques. Instead, our workflow

integrates a program synthesizer that can repair partially correct responses from an LLM.

The ongoing research on program synthesis by LLMs has revealed promising results, with

models showing increasing competence in generating functional code. However, these studies

also show the challenges that remain, such as handling complex programming tasks, reasoning

tasks and biased outputs. Further research is needed to overcome these limitations and fully

realize the potential of AI in program synthesis.

3.3. Multimodal program synthesis
The number of papers that address multimodal program synthesis is limited, particularly in the

context of regular expression synthesis. The papers in this section present different methods

and techniques for synthesizing regex from multimodal inputs to improve the accuracy and

efficiency of regex generation. In these papers ’multimodal’ always refers to natural language

descriptions and input-output examples,

Chen et al. (2020) [6] presented Regel, which parses the natural language description into a

hierarchical sketch to guide the PBE engine. The evaluation shows that Regel outperforms

NLP-only and PBE-only baselines. Regel uses semantic parsing instead of deep learning

methods, as it requires less labelled training data. Regel is limited by its needs for specific

parsing which takes a significant amount of time and knowledge to build. This constraint

makes it less suitable for diverse use cases and makes it hard to use models in different domains.

Although Regel improves over previous methods, it is still not optimal with an accuracy of

75.5% on a relatively easy data set.

Our methodology is similar to Regel in the sense that partially correct programs are used

to create the full program. However, Regel requires a semantic parsing of the English de-

scription to create regex sketches, whereas our method leverages an LLM to perform this

task, eliminating the need for specific parsing methods. This flexibility makes our approach

useable outside of the domain of regular expressions generation. Regel utilizes sketches as the

initial input for the program synthesizer. Whereas, our method involves extracting building

blocks from partial solutions, which we then input into the program synthesizer. Nonetheless,

both methodologies use the underlying principle of synthesising solutions with a program

synthesiser from partially correct programs.

Ye et al. (2020) [26] propose a neural synthesis approach by using a recurrent neural model

that aims to find a program satisfying user-provided constraints. The paper demonstrates that

this approach outperforms prior techniques in terms of accuracy, efficiency, and frequency of

finding model-optimal programs on the StructuredRegex data set (section 5.2).
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This paper also creates partial programs with an abstract syntax tree and non-terminal nodes.

These non-terminal nodes are then filled by a synthesiser to create a full program with only

terminal nodes. In our approach, we first try to solve the problem with an LLM. We extract

the building blocks from the partially correct program if the LLM did not find a correct solution.

Li et al. (2021) [16] introduce TransRegex. The paper treats the problem as NLP-based

synthesis with regex repair and presents novel algorithms for the combination of NLP-based

synthesis and regex repair. TransRegex is currently the state-of-the-art model and achieves

much higher accuracy than previous multi-modal techniques. However, TransRegex is heavily

optimized and finetuned for regex synthesis and specific data sets. They specifically analyzed

the most made mistakes from the regex synthesiser and created a list of 10 transformations to

repair those mistakes.

TransRegex is very similar to our approach as it first tries to find a complete program using one

technique. If the first program is not correct they use a second algorithm to fix the incorrect

program based on the provided IO examples. However, TransRegex uses a synthesiser in the

first step and an exact highly-specific and optimized algorithm approach in the second step,

whereas our approach first uses an LLM and then tries to repair the programs by using an

inductive program synthesiser with a simple grammar.

In conclusion, these papers present various approaches to multimodal program synthesis,

focusing on the synthesis of regular expressions. They combine natural language processing,

neural networks, and program synthesis techniques to improve the accuracy and efficiency of

regex generation.

3.4. Prompt generation
Prompt engineering is an essential area to enhance the performance of LLMs. Precise construc-

tion of prompts can result in more specific and better-performing model responses, but this

precision often requires intensive manual involvement or gradient-based tuning of prompts.

While these approaches have their benefits, they can be limited in scalability and practical

application.

Zhou et al. (2023) [27] present a simple method to automatically generate prompts based

on IO examples. This is one of the first methods in the new field of automated prompt

generation. The method is called Automatic Prompt Engineer (APE), which automatically

generates and selects instructions based on input-output examples. It uses an LLM to generate,

score, and optimize prompts. This strategy reduces the dependency on human input and

prompt creation, thereby streamlining the process and increasing efficiency. The authors treat

LLMs as black-box optimizers, contrary to other methods like backpropagation [15] which

uses the weights of the LLM to find the best prompt. The algorithm generates and scores a

pool of instruction candidates, from which it selects the most appropriate instruction. APE can

automatically generate high-quality instructions that can significantly enhance zero-shot and

few-shot learning performance. This makes APE effective in directing LLMs towards desired

behaviours without the need for human prompt creation.

Reynolds and McDonell (2021) [21] benchmarked multiple prompt programming techniques
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to generate higher-quality outputs with LLMs. It specifically evaluates the capability of

GPT-3 in tasks through a zero-shot approach versus a few-shot approach. The authors also

propose new perspectives on how to approach prompt engineering, including the exploration

of metaprompts. Metaprompts, are a way to let LLMs generate their own natural language

prompts for a range of tasks. Significant human effort is needed to create good prompts

since non-specific prompts tend to be less efficient than those tailored for a certain task. This

highlights the value of creating automated ways of generating prompts dedicated to specific

tasks. This method is nearly identical to the Automatic Prompt Engineer approach. This

research also emphasises the importance of treating prompts as an integral part of LLMs

prompt tuning for generating desired outputs.

Both papers conclude that prompt engineering is an important aspect of getting the right

output from LLMs. In our methodology, we use prompt engineering techniques to improve

the accuracy of the generated programs. Prompt engineering techniques not only enhance the

output of LLMs but also expands their potential by using the APE method to let LLMs generate

their own prompts. Automatic prompt generation can make LLMs easier to work with by

eliminating the need for human-made prompts. Prompts can be automatically generated by

using the IO examples, this potentially removes the need for natural language descriptions. In

our research, we use the APE method to create prompts that can generate programs.
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Methodology

The creation of the Language Model Augmented Program Synthesis (LMAPS) workflow is

primarily driven by the need to overcome the limitations associated with Programming by

Example (PBE). The goal of the LMAPS workflow is to use LLMs to augment traditional

program synthesis, helping to tackle these challenges and improving the effectiveness of

programming by example. This new workflow contains three new LLM-based components,

called "Specification Suggestion", "LLM Program Synthesis", and "Explain Program".

By introducing the "Specification Suggestion" step, we are leveraging the natural language

understanding capabilities of the LLM to reduce the ambiguity of the problem specifications.

This is done by generating relevant examples and a task description with the LLM. The "LLM

Program Synthesis" step overcomes the issues of generalizability and efficiency by generating

programs with an LLM based on the specifications. These generated programs are often

correct or partly correct. A program synthesis engine can make variations of these nearly

correct programs to find a correct program. This approach reduces the search space and

thereby increases the efficiency. Lastly, the "Explain Program" step enhances explainability.

The generated program is explained to the user, which helps the user understand the program.

By including natural language problem descriptions alongside IO examples, we have in-

troduced a second modality to the traditionally single modality of PBE. This allows the system

to use this additional information for better results. The ultimate goal is to build a more

accurate, efficient, and user-friendly method for programming by example, one that leverages

the capabilities of large language models to generate, enhance, and explain program solutions.

To create the new LLM augmented workflow, we first need to understand the traditional

program by example workflow. After that, we show the program synthesis workflow with the

new LMAPS components.

4.1. Traditional PBE workflow
The first step in a traditional PBE workflow begins with the user. The user is the actor in the

process who has a specific need or problem that they wish to address through a program.

21
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The user defines the problem as a program specification, which shows what the desired

program is expected to achieve. Note that the specification can also be indirectly defined, for

example, FlashFill in Microsoft Excel, where the user does not know that program synthesis is

used under the hood.

The quality of the program specification heavily influences the success of the inductive

program synthesis. The more accurately and completely a problem is defined, the better the

chances that a solution will be generated that meets the user’s needs. Therefore, it is crucial

to focus on the quality of the specification. The user can provide as many IO examples as

necessary to express the general and edge behaviour of the desired program.

Once the program specification represents the intended behaviour, it can be given to an

inductive program synthesis engine. This engine uses the provided specification to synthesise

a program that satisfies the given IO examples. The goal is to generate a program that not

only meets the IO examples given but is also general enough to handle other unspecified

inputs correctly. However, in traditional program synthesis workflows, it is hard to distinguish

between multiple ’correct’ programs.

Figure 4.1: The traditional program synthesis workflow. A user creates a specification of a problem, which an inductive program

synthesiser can use to generate a program that solves it.

4.2. LLM augmented program synthesis workflow
The LMAPS workflow overcomes the limitations of PBE by using the capabilities of LLMs. By

incorporating LLMs into the process, LMAPS gains the ability to understand and generate

code based on both natural language descriptions and specifications. This integration allows

programmers to provide high-level instructions and requirements, and the LLM assists in

automatically synthesizing the corresponding code that fulfils those requirements. It is

important to note that the ’Specification Suggestion’ and ’Explain Program’ steps of the LMAPS

workflow are optional. This means the workflow can be tailored to specific needs. For instance,

the ’Explain Program’ can be excluded without affecting the other components.
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Figure 4.2: The LLM augmented workflow consists of the Specification Suggestion, LLM Program Synthesis and Explain Program

steps on top of the traditional workflow. The Specification suggestion and Explain Program steps assist the user in the program

synthesis workflow, whereas the LLM Program Synthesis works by generating programs based on the given specification

automatically.

Program Specification
To generate the intended program, a user first needs to formulate the problem. The program

specification consists of a natural language description of the problem and a set of IO examples.

This specification is important to check the correctness of generated programs and works as

guidance for the next steps in the workflow. The LLM can help to improve the specification by

formulating the task description and generating diverse IO examples. This assists users in

creating a diverse set of IO examples. These examples then need to be labelled by the user to

indicate if they are correct or not, based on the desired behaviour. Defining a representative set

of the problem is crucial in overcoming the ambiguity limitation of programming by example.

By leveraging the LLM its ability to understand and generate contextually relevant examples,

users can obtain a diverse set of IO examples that cover various aspects of the desired program.

The LLM-generated examples can aid in identifying edge cases, ensuring the synthesized

program is robust and reliable. Even incorrect input-output examples generated by LLMs are

valuable as negative examples, as they often contain partially correct patterns. These negative

examples are important for multiple reasons. First, negative examples can also help users

refine their natural language description by pointing out ambiguities or inconsistencies in their

initial description. Secondly, generated negative examples can expose edge cases or unusual

patterns the user may not have considered. By taking these negative examples into account,

the PBE system can better handle such edge cases and generate a more reliable program. Lastly,

generated negative examples can help discriminate between programs as PBE systems often

find multiple programs that satisfy all IO examples.

LLM Program Synthesis
The LLM gets as input a prompt that contains a natural language description of the task to

generate a list of programs. This prompt contains the problem specification to show the LLM

what kind of program it has to generate. For regular expression generation, the prompt could

look like this: "Write a list of regular expressions that satisfies the following description and IO

examples. <description> and <io examples>". This generates a list of one or more candidate

programs that might solve the problem. The generated candidate programs are then tested

against the IO examples to check if they contain a correct program. A candidate program is

correct if the program satisfies all IO examples. When all candidate programs are incorrect,
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they are given to the grammar creation step to extract valuable building blocks from them.

These building blocks make it able to create a concise grammar, thereby improving the overall

effectiveness and efficiency of the workflow. Therefore, LLM program synthesis is crucial to

overcome the efficiency and generalizability issues of PBE-only workflows.

Grammar Creation
We need to create a grammar for the inductive program synthesis, as the grammar defines the

syntax of the language in which the program is to be synthesized. We can utilize valuable

insights from partially correct programs generated by the LLM by extracting their building

blocks. These building blocks, being part of a partially correct solution, have a high likelihood

of being useful in a correct solution. Using these building blocks, we construct a grammar that

is used as input for the inductive program synthesis engine. The LMAPS process can be seen

as a program repair mechanism, transforming partially correct LLM-generated programs into

beneficial building blocks for further program synthesis. Instead of dismissing the incorrect

outputs, this methodology harnesses them to help steer the program synthesizer’s search

process, leading to more accurate program generation.

Inductive Program Synthesis
The inductive program synthesis engine gets the IO examples and building blocks grammar

as input with the goal of finding a program that satisfies all IO examples. The search space

includes all potential programs that can be generated using the provided grammar and

constraints. This step can be seen as a repair mechanism based on the grammar with building

blocks from partially correct programs. The benefit of inductive program synthesis is that they

can quickly generate and evaluate programs to find a correct one. The engine can use various

search strategies to find a program within the search space that satisfies the specification. This

search can be conducted using different approaches, including enumerative search, stochastic

search, and constraint-solving, among others. Every program that the synthesiser generates is

verified against the specification. If the program satisfies the IO examples, it is considered a

valid program. If not, the engine continues the search. Finally, if the synthesiser finds one or

more valid programs, the programs are given to the user. The programs can then be used,

evaluated, or further refined.

Inductive program synthesis, combined with the constructed grammar from candidate

programs and natural language descriptions, showcases the power of program synthesis. This

concise grammar, instead of a complete grammar, makes finding a correct program more

efficient. However, no correct program will be found if the solution consists of different

building blocks than those present in the grammar.

Explain Program
Once an inductive program synthesizer generates a correct program, it only guarantees that

the program meets all IO examples. However, understanding the program can be challenging

for the user, especially since it’s created automatically. Synthesized programs often suffer from

a lack of clarity, posing considerable obstacles when it comes to interpreting, debugging, and

maintaining the resulting software.

The main aim of inductive program synthesis systems is to produce a program that can
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accurately handle the given IO examples rather than focusing on the readability of the gen-

erated program. This oversight could potentially lead to significant risks when trying to

predict the behaviour of the program in situations not covered by the provided examples.

LLMs can bridge this gap of understanding by generating human-friendly explanations of the

program. For instance, given a regular expression such as ^a[0-9]*b$, an LLM could explain

that this pattern will match any string that starts with ’a’ (^a), followed by any number of

digits ([0-9]*), and ends with ’b’ (b$). LLMs can also provide examples, further aiding in

comprehending the generated regular expressions. For instance, the LLM might say that the

regular expression ^a[0-9]*b$ will match strings like ’a123b’, ’a4567b’, or ’ab’, but not ’a123’,

’123b’, or ’ba123b’. However, it is always important to check the output of an LLM, as it is not

guaranteed to be correct.

Feedback loop

Figure 4.3: Programs that satisfy all IO examples are not necessarily the user-intended program. The feedback loop can be used

to update the specification of the problem to synthesize a more user-aligned program. A verifier checks if the generated program

works as intended. If not, the program specification has to be updated which acts as feedback for the synthesiser.

Including a feedback loop in our approach potentially allows for iterative refinement of the

program specification based on user inputs and synthesized results. This could enable the

continuous improvement of program synthesis. When the generated program does not align

with the user intent, the user can update the specification by updating the natural language

description or by adding a counter-example to the set of IO examples. This feedback loop

can be seen in Figure 4.3. The complete workflow has to be rerun after the user updates the

specification.

In conclusion, we introduce the LMAPS workflow, designed to address the limitations of

traditional PBE workflows. LMAPS aims to enhance various facets of PBE, improving its

accuracy, efficiency and user experience. Our proposed methodology includes an innovative

process of extracting beneficial building blocks from partially correct programs generated by

LLMs. We hypothesize that these insights could aid in creating a more refined grammar for

program synthesis, thereby leading to a more accurate and efficient program generation. We

evaluate the effectiveness of this approach in the results section.

4.3. Prompt enhancing components
The quality of the prompt has an important factor in the accuracy of the workflow. To enhance

the prompt generation, we use two methods. The first method can aid to generate a prompt

based on the provided IO examples, which can help to reduce the time that is needed to

manually construct prompts. The second component can improve few-shot prompts by

including similar description-answer pairs. Few-shot often reaches a higher accuracy than
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zero-shot prompts, especially with similar description-answer pairs. It is important to note

that both these components are optional to use but can help to enhance prompts.

4.3.1. Automatic prompt generation
Prompt creation by humans can take a lot of time. This time could potentially be saved by

letting LLMs create their own prompt based on IO examples. This is done by asking the model

what the instruction should be to create the output from the input as explained in 3.4. So

essentially, an LLM uses a standard prompt and IO examples to generate a task description

prompt. This generated task description prompt can then be used to generate programs.

For example, by using ’1’ and ’3’ as positive examples, and ’2’ as a negative example for a

program that can check if an integer is odd.

1 User: Write a task instruction prompt for the following IO examples:
2 Input: 1

3 Output: True

4

5 Input: 2

6 Output: False

7

8 Input: 3

9 Output: True

10

11 Model: Please write a function that takes an integer as input. The function should return
True if the input is an odd number, and False if it’s an even number.

Prompt 4.1: An example of a prompt to automatically generate a task description prompt by using the IO examples.

The model output "Please write a function that takes an integer as input. The function should

return True if the input is an odd number, and False if it’s an even number." can then be

used to create programs without a human ever needing to write a task description. These

automatically generated prompts can then be used to synthesize programs by giving the task

instruction prompt combined with the natural language description and IO examples to an

LLM. The complete prompt that is used in the Automatic Prompt Engineering method can be

found in Appendix A.3.

4.3.2. Similar few shot examples lookup
In the context of Few-Shot Prompting, vector databases make it able to retrieve similar tasks,

where we already know the answer, efficiently. This can be useful to add more relevant

examples to the prompt, which can improve the performance of the prompt.

In our case, the task-answer pairs consist of a description that describes a regular expression.

These descriptions are then converted to vector embedding, which makes it able to calculate

the similarity between descriptions in a high-dimensional vector space called the "embedding

space." The embedding model essentially learned to map semantically similar descriptions

to proximate points in the embedding space. When a new description is presented, it is

first transformed into a vector representation using an embedding model. This vector is

then compared to the vectors in the database by cosine similarity. The system can quickly

identify similar descriptions and their corresponding regular expressions. These descriptions
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and regular expressions can then be used to give more relevant IO examples in the few-shot

prompts.

4.4. Regular expression components
To evaluate LMAPS on regular expressions, we use two more components. The first component

is used to create a valid regex grammar. The grammar creation step is necessary to incorporate

the building blocks from candidate programs in the grammar so that the inductive program

synthesiser can use it. The second component is needed to check if a generated regular

expression is equivalent to the one used in the evaluation regex data sets. This extra validation

step is important as programs that satisfy all IO examples are not necessarily the intended

program.

4.4.1. Regex grammar creation
The goal of the grammar creation step is to create a concise regular expression grammar that

contains all building blocks to synthesize a correct program that satisfies all IO examples.

Building block extraction from candidate programs
The modularity of regular expressions allows expressions to be broken down into simpler

builder blocks. The building blocks of regular expressions can be divided into literal characters,

and quantifiers, which dictate how many times a pattern should repeat.

Literals are a string of characters that match exactly as they are. Everything inside parentheses

or block quotes becomes a single literal. These elements can then be modified with quantifiers.

For example, the regular expression (abc)+[A-Z]d{2} consists of the literals (abc), [A-Z] and

d.

Quantifiers specify how many instances of an element we are looking for. For example,

in the regular expression a*, the asterisk is a quantifier, and it signifies zero or more ’a’.

Extracting building block elements and quantifiers from a regular expression is a task

that can be solved by using regular expression patterns themselves. First, the ’?’, ’+’ and ’*’

quantifiers have to be converted to {0,1}, {1,} and {0,} respectively. After that, all elements

and quantifiers can be extracted by using three regular expressions. One to extract parentheses,

one to extract block quotes and one to extract quantifiers surround by curly brackets.

Building block extraction from natural language description
Natural language descriptions also contain information about potential building blocks and

elements included in the regex solution. Descriptions often contain explicit digits, which can

be used to specify quantifiers in regular expressions. These digits may appear as single or

composite numbers and denote specific repetitions or ranges. A regex pattern can be used to

detect and isolate these numbers. After that, the numbers can be converted to quantifiers. For

example, given the description "matches exactly 5 alphabetic characters," we can extract the

digit ’5’ and convert it into a quantifier in the regular expression, resulting in "5".

Numbers may also be represented as words in natural language descriptions, such as "one",

"two", "three", etc. These word counts can be translated into numeric quantifiers for regular
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expressions. By using a number lookup table, we can extract those numbers. For instance,

the description "matches three consecutive digits" can be translated into a regular expression

using the quantifier "3".

It is common in natural language descriptions to specify elements of interest enclosed

in quotes. Elements surrounded by quotes can also be found by using a regular expression.

For example, in the description "matches the word ’apple’", the text within quotes ’apple’ can

then be used as an element in the regular expression grammar.

Extracting elements and quantifiers can also be done by prompting an LLM. This saves

time for users as they don’t need to develop a parsing algorithm. For regular expressions,

a parsing prompt could look like this: "Extract all literals and quantifiers from this regular

expression: «regular expression»". However, exact parsing gives more control over the building

blocks extraction. In general parsing methods are also faster than prompting LLMs.

Grammar
The building blocks are inserted as regex elements and quantifiers. The program synthesis

starts with a ’RegexConnector’ as its root. This grammar is then given to the inductive program

synthesis engine to find a correct program based on these building blocks and quantifiers.

Small variations can be made to the building blocks if no solution is found with the current

building blocks.

1 RegexConnector = Regex + RegexConnector
2 RegexConnector = Regex
3 Regex = Literal or Literal + Quantifier
4 Literal = <List of literals >
5 Quantifier = <List of quantifers >

Grammar 4.2: Simplified regular expression grammar which can incorporate building blocks, consisting of literals and

quantifiers.

4.4.2. Program validation
A crucial phase in the program validation is the regex equivalence check. This check involves

the generation of positive examples and negative examples. First, a set of positive examples is

sampled from the regular expression program. Sampling matching string from the regular

expressions is easy to do as the regular expression itself defines a language. These positive

examples can then also be used to construct near-miss negative examples as more than one

random negative example is not useful.

Regex equivalence
The flexibility of regular expressions allows for multiple representations of equivalent patterns.

Therefore, checking the equivalence of regexes is not as straightforward as a simple string

comparison. Two regexes that look dissimilar can match the same language, making them

functionally equivalent.

The regex equivalence check determines the equivalence of two regular expressions, which is

needed to remove duplicate candidate programs or to detect whether a synthesized candidate

program is a solution (if the solution is known).
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By determining regex equivalence, we can eliminate the computational redundancy of

evaluating functionally identical candidate programs. This reduction makes the search process

more efficient.

There are two ways to determine regex equivalence. One way is by transforming both regexes

into their respective deterministic finite automata (DFAs). These DFAs can prove whether the

regexes are functionally equivalent by checking if the DFAs are the same. The DFA equivalence

check can be performed using a graph equivalence algorithm. However, two functionally

equivalent regular expressions can still have different DFAs. That is the reason we need

another method for determining regex equivalence. This is done by random sampling ’n’

positive examples from the languages of both regular expressions and constructing ’n’ negative

examples from those positive examples. In a case where two regular expressions are equivalent,

they match the same set of positive examples and do not match any of the negative examples.

Negative examples are crucial for ensuring the regular expressions are not overgeneral-

ized, for example, a regular expression which matches everything. The drawback of the

random sampling method for checking equivalence is that it does not guarantee that the

regexes are equivalent, whereas equivalent DFAs prove that the regexes are equivalent. As ’n’

increases, the likelihood of making an accurate prediction becomes more certain. It can be

guaranteed that the two expressions are equal if ’n’ equals the length of the whole language

for both regular expressions.

Positive example generation
Generating positive examples works by sampling strings with different complexities and

lengths from the language. It is important to create a diverse set of positive examples to cover

as many edge cases as possible for the equivalence check. However, generating too many

positive examples makes the regex equivalence computationally intensive, which slows down

the workflow as the equivalence check has to be done many times.

Negative example generation
Negative example generation is also necessary to check the equivalence of two regular expres-

sions in a program synthesis workflow. The task involves crafting ’n’ negative examples from

the positive examples provided for both regular expressions. However, this is not a trivial

process as it requires some knowledge of the specific regular expressions to create valuable

and nearly matching negative examples.

Generating random strings as negative examples is a straightforward solution but does

not lead to robust evaluations. Random strings are almost always far from any plausible match

for a given regular expression, so they contribute little to the effective testing of the expression.

These random negative examples do not provide a proper boundary test and, therefore, may

be unable to catch all possible errors or edge cases. An edge case could, for example, be a

single character off, a misplaced special character or slightly different quantifiers.

The workflow uses mutation of the positive examples to create such near-miss negative

examples. This involves replacing, adding, deleting or swapping one or more characters. The

goal is to create examples that are close to the regular expression but still fail to match it,

thereby pushing the boundaries of the test case.
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Additionally, to further improve the testing quality, some random strings can also be added to

the pool of negative examples. While these may not present the challenge of the near-miss

examples, they can still provide additional assurance that the regular expression functions as

expected in more generic cases, further ensuring the validity of the equivalence check. It is

important to balance the number and types of mutations to apply in order to create the most

effective negative examples.



5
Experiments & Results

This chapter presents the results of our research on the Language Model Augmented Program

Synthesis (LMAPS) workflow. We compare LMAPS with a traditional inductive program

synthesis workflow on four regular expression synthesis data sets.

We evaluate the usefulness of augmenting inductive program synthesis with LLMs by

answering the following questions:

Q1: Can LLMs improve the accuracy of traditional program synthesis?

Q2: Can information from LLM-generated programs improve the efficiency of traditional

program synthesis by reducing the search space?

Q3: Can LLMs aid in the enhancement of problem specifications through example generation?

Q4: To what extent are LLMs capable of explaining the synthesized programs?

5.1. Research tools
The workflow is written in Python using the OpenAI package to interact with the ChatGPT

3.5 model with version identifier ’gpt-3.5-turbo-0301’. For the inductive program synthesis,

we use Herb.jl [12]. Herb.jl is a program synthesis framework written in Julia. It uses an

enumerative search to synthesize a program, or in this case, a regular expression that aligns

with the IO examples. However, Herb is currently in development and not fully optimized. To

still be able to test the LMAPS performance potential, we do a depth and search space analysis.

5.2. Data sets
To evaluate our workflow, we use four regex data sets: KB-13, NL-RX, StructuredRegex and

KB-13-emoji. Each dataset contains a collection of descriptions along with their corresponding

regex solutions. These data sets are often used to benchmark models on the task of regular

expression generation. In the following section, we provide an overview of each data set,

including its creation process and limitations.

KB-13
The KB-13 data set [13], introduced in 2013, is created by crowdsourcing pattern finding in

random texts. Participants were asked to provide descriptions of patterns they observed,

31
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and programmers then manually crafted the corresponding regex solutions based on these

descriptions. The descriptions provided in the data set tend to be relatively simple and similar.

For example, the data set contains the descriptions ’lines that have at least 3 words’ and ’lines

which have 3 words.

NL-RX
The NL-RX dataset [18], created in 2016, was developed through a combination of manual

crafting and crowdsourcing. A manually crafted grammar was used to translate regular

expressions into natural language descriptions. These natural language descriptions were then

paraphrased by crowdsourcing to create a more diverse set of descriptions.

StructuredRegex
StructuredRegex [25] was introduced in 2020 to overcome some of the limitations of the

previous data sets. The regex solutions in this data set were generated using a probabilistic

grammar based on StackOverflow posts. The data set its descriptions were created through

crowdsourcing, with participants writing descriptions for the regular expressions. The data set

contains incorrect descriptions for some of the regex solutions, which may introduce challenges

when using this data set for evaluation purposes. This data set is specifically made to be more

diverse and complex than the KB-13 and NL-RX data sets.

Shared limitations
KB-13, NL-RX and StructuredRegex all share similar limitations. The main limitation of

those data sets is that they use ’NOT’ and ’AND’ operators in their domain-specific language

(DSL), which cannot be trivially converted into valid regex. We filtered the data sets to only

keep the data points that could be converted to valid regular expressions. Additionally, the

regex solutions in this data set are often unnecessarily complex. Many regex solutions can

be replaced by an equivalent simpler regular expression. However, we did not filter based

on this limitation as the regex solution is only used to check if a candidate program is equivalent.

KB-13-emoji
We introduce a new data set called KB-13-emoji, as KB-13, NL-RX and StructuredRegex could

potentially be part of the training data of ChatGPT 3.5. Our modified KB-13 data set is used

to evaluate our LMAPS approach with a data set that ChatGPT 3.5 is not trained on. This

approach helps to understand how the model generalizes from its training data and tackles

unforeseen inputs, which our proposed workflow relies on. We modified the existing KB-13

data set in a unique manner, by incorporating emojis into its natural language descriptions and

regular expressions. The idea behind this modification comes from our limited knowledge of

the training data used for ChatGPT 3.5. Without concrete knowledge of the corpus utilized

in its training, there is an inherent risk of our chosen data set overlapping with the training

data set, which could potentially skew the results of our experiment. By infusing our data

set with emojis, we aim to minimize this risk. An example of a description: "sentences that

contain «emoji» or «emoji»". It is important to note that the KB-13-emoji is a simpler subset of

KB-13 as the description always contains the sequence it has to match in the natural language

description. However, this approach also works with descriptions like "sentences that contain

an apple emoji", where the emoji is described in the text.
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Our modification process involved replacing specific parts of the KB-13 data set with emojis,

chosen at random, yet maintaining the underlying structure and content of the data set. We

are confident about the uniqueness of our modified data set because emojis are seldom used as

serious linguistic elements in academic databases. Thereby reducing the chance of pre-existing

similar regex data sets that include emojis.

In summary, KB-13, NL-RX and StructuredRegex provide valuable resources for research

in the field of regex generation from natural language. However, they exhibit limitations

related to the DSL operators and the correctness of descriptions. It is important to keep these

limitations in mind when evaluating new regex generation methods. An overview of the data

sets can be found in Table 5.1.

Name Year Descriptions created by Regexes created by Datapoints
KB-13 2013 Crowdsourcing Programmers 824

NL-RX 2016 Crowdsourcing Manual crafted grammar 10,000

StructuredRegex 2020 Crowdsourcing Probabilistic grammar 3,520

KB-13-emoji 2023 Modified KB-13 description Modified KB-13 regexes 200

Table 5.1: Overview of the regular expression data sets.

Combined, these data sets contain 14544 data points. We use a subset of these data sets for the

evaluation for two reasons. Firstly, it is not feasible to make 14544 requests to the ChatGPT

API for all of the 14 prompts. However, making a subset of the data sets does not change

the underlying concepts of the data sets, as the data points per data set are relatively similar

to each other. Secondly, the StructuredRegex contains many wrong descriptions. Some of

the wrong descriptions can be useful to make our LMAPS method robust to slightly wrong

descriptions. We exclude data points which contained completely wrong descriptions as they

can not be used as valid input for an LLM. For the evaluation, we use 200 data points from the

KB-13 data set, NL-RX and KB-13-emoji data sets, and 111 manually checked data points from

the StructuredRegex data set.

5.2.1. Data set similarity
Using multiple data sets prevents our research from being overly sensitive to the unique

characteristics of a single data set, thereby ensuring the findings can be applied in a wider

range of contexts. Different data sets can introduce different challenges that test the robustness

and versatility of our methodology. Using multiple data sets also helps to benchmark the

results against different methods and algorithms.

By selecting a variety of data sets and ensuring they are not overly similar, we can bet-

ter evaluate the generalizability and robustness of our methodology. We use the cosine

similarity the measure the similarity of the datasets. For every data point in the data set, we

calculated the embedding of the natural language description with the ’text-embedding-ada-

002’ model of OpenAI. These vector embeddings can then be used to compare the different

data sets. A lower cosine similarity value implies the data sets are distinct from each other,

ensuring the data sets chosen for testing the methodology are not too similar. As all data sets

are regular expression related, they still have a high base similarity. The cosine similarity of
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a data set with itself is not equal to 1, as the similarity is calculated as the average pairwise

cosine similarity. The similarity of a data set with itself measures the variety of the descriptions

within the data, where a higher value indicates that the data set is less diverse.

KB-13 KB-13-emoji NL-RX StructuredRegex

KB-13 0.834 0.818 0.828 0.777

KB-13-emoji 0.818 0.903 0.810 0.770

NL-RX 0.828 0.810 0.874 0.808

StructuredRegex 0.777 0.770 0.808 0.872

Mean 0.814 0.825 0.830 0.807

Table 5.2: Cosine similarity between all data sets. A higher value means that the data sets are more similar.

We use t-Distributed Stochastic Neighbor Embedding (t-SNE) to represent the similarity

between data sets visually. The t-SNE algorithm models each high-dimensional vector embed-

ding by a two-dimensional point in such a way that similar objects are modelled by nearby

points and dissimilar objects are modelled by distant points with high probability. Using

t-SNE to visualize data set similarity is particularly useful because it allows us to intuitively

understand the relationships between data sets in a way that is difficult to achieve with raw

numerical measures like cosine similarity. By projecting the data sets into a lower-dimensional

space, we can visually inspect whether and how the data sets cluster together, providing a

visual means of understanding their degree of similarity.

If the data sets we use to test our approach are too similar, they would group together

closely in the t-SNE visualization. However, if they are diverse enough, we would see these

data sets form distinct clusters within the t-SNE plot. In Figure 5.1 can be seen that every data

set has its own cluster, which means that the natural language descriptions of different data sets

do not have much overlap. This confirms that it is useful to evaluate our workflow on multiple

data sets, to make sure that our workflow works on a larger variety of regex descriptions. The

KB-13-emoji data set has its own cluster and is the closest related to the KB-13 data set, which

is as expected since KB-13-emoji is a modification of the data set. Furthermore, it can be seen

that the StructuredRegex data set is the least similar to any other data set, which was the goal

of the creators of the data set.
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Figure 5.1: t-SNE analysis of the natural language description embeddings. The analysis shows that every data set has its own

cluster, indicating that the data sets contain diverse regular expression descriptions.

5.3. LMAPS accuracy
To answer the question if LLMs can improve the accuracy of traditional program synthesis,

we create an experiment to test the full LMAPS workflow. The first step in this experimental

setup is creating a program specification for every task in the regex data sets. These tasks

consist of a description and a regular expression solution. These solutions are used to generate

random positive and negative examples that can be used in the LLM prompt. We use multiple

prompts that can generate regular expressions as the complexity of program synthesis lends

itself to diverse approaches in the prompt formulation. These prompts are then ran on all

the data sets, to generate the base LLM prediction programs. Building blocks are extracted

from these programs to create an optimized grammar for the inductive program synthesiser.

This grammar is then compared to a traditional regex grammar to measure the accuracy

improvement. The accuracy of the LMAPS and PBE grammars are calculated by checking if

the solution can be synthesized with a depth of 6 or less.

The PBE-only method reached an average accuracy of 31.9% on the KB-13, NL-RX and

StructuredRegex data sets. In Table 5.3 can be seen that LMAPS has an average accuracy of 57.0,

which is 25.1% higher than the PBE-only approach. The LMAPS improves the base LLM pre-

diction by 30.7%, this show that the inductive program synthesiser can improve the base LLM

prediction by synthesising a program using an optimized grammar with building blocks from

the LLM predictions. The LMAPS grammar is on average 8 times smaller than the traditional

regex grammar, so, in most cases, can search deeper than the traditional regex grammar. This

means that the accuracy difference between these methods is potentially even higher than 25.1%.

All prompts are created and tested by humans except for the APE prompts. An analy-

sis of the prompts used in this research is done in Section 5.7. The exact prompts can be found

in Appendix A.
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Prompt identifier LLM-only LMAPS Δ LLM-only Δ PBE-only

Baseline 1 22.0 54.8 32.8 22.9

Baseline 2 19.4 52.5 33.1 20.6

APE 1 22.4 55.2 32.8 23.3

APE 2 19.4 53.6 34.2 21.7

Task-based 17.5 53.2 35.7 21.3

Requirements-based instruction 18.5 52.5 34.0 20.6

Requirements-based completion 19.3 53.2 33.9 21.3

Simple instruction + positive examples 25.3 57.4 32.1 25.5

Simple instruction + quoted positive examples 23.0 55.6 32.6 23.7

Positive examples 27.5 56.6 29.1 24.7

Positive and negative examples 25.0 56.2 31.2 24.3

Few-shot baseline 18.3 51.1 32.8 19.2

Few-shot similarity lookup 55.2 73.5 18.3 41.6

Few-shot similarity lookup + positive examples 54.2 71.9 17.7 40.0

Mean 26.2 57.0 30.7 25.1

Table 5.3: The LLM-only columns shows the accuracy (%) per prompt on the KB-13, NL-RX and StructuredRegex data set of the

generated programs by using an LLM. The LMAPS accuracy is compared to the PBE-only and LLM-only by calculating the

accuracy increase. The LMAPS workflow has, on average, a 25.1% higher accuracy than the PBE-only approach and a 30.7%

higher accuracy over the base LLM prediction.

5.3.1. Accuracy per data set
Comparing LMAPS accuracy on individual data set is important to evaluate if the workflow

works for different types of regex problems. We evaluate this by using the ’Positive examples’

prompt as it is a representative prompt for many use cases, as programming by example

tasks need to have some positive examples. From Figure 5.2 can be seen that LMAPS has

a higher accuracy than PBE-only and the base LLM predictions. However, just combining

two methods will in most cases increase the accuracy as both methods solve slightly different

problems than the other. To measure the synergy effect we compare the accuracy of LMAPS

with a combined LLM and PBE method that checks if either LLM or PBE can solve it, without

using an optimised grammar. This synergy effect can be seen in Figure 5.3, where the LMAPS

approach performs on average 11.3% better than the methods combined.

The KB-13-emoji data set has a higher accuracy than the other data sets for the base LLM

prediction, PBE-only and LMAPS. This is mainly because the data set is less complex than the

other data sets. However, it does show the capabilities of LLMs to generalize to new domains,

like regular expressions with emojis.
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Figure 5.2: Accuracy per data sets for different methods for the Positive examples prompt.

Combining two methods will in most cases reach a higher accuracy, as only one of the models

has to be correct. When combined, they often complement each other because if one model

can not find the solution, there is still a chance that the other model can find it. We analyzed

if LMAPS performs better than the combination of the base LLM prediction and PBE-only

approach. This is done to analyze if the LMAPS workflow has a synergy effect of combining

the strengths of LLMs and programming by example. The combined accuracy of the ’Positive

examples’ prompt is 54.0% and 64.7% on the KB-13, KB-13-emoji, NL-RX and StructuredRegex

data sets. LMAPS, on average, has 9.7% higher accuracy than the methods combined, which

shows the synergy of LLMs and the PBE engine.

Figure 5.3: LMAPS reaches a higher accuracy than the combination of the base LLM prediction and PBE-only approach.

We also analyze the relationship between the base accuracy of different prompts and the

accuracy of LMAPS. A higher base LLM accuracy implies that the prompt is better at the given

tasks, which in most cases means better building blocks that can be given to the inductive

program synthesis grammar. Our experiments show that prompts that have a higher base

accuracy tend to produce better building blocks, which contribute to increased accuracy of the

synthesised programs, as can be seen in Figure 5.4.
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Figure 5.4: Higher accuracy LLM base predictions produce higher-quality building blocks, which in turn increases the accuracy

of the program synthesisers. The curve flattens as there are some tasks in the data sets that require a high depth to be solved even

with well-defined building blocks, which makes these tasks still unsolvable by LMAPS.

The results of this study show a clear improvement in the accuracy of program synthesis

when using LMAPS compared to traditional PBE methods. The experiments demonstrated

that LMAPS outperforms both PBE and LLM methods individually on various data sets, as

it leverages the strengths of both. Another insight from the study is that the quality of the

building blocks extracted from LLM programs is strongly related to the base accuracy of

the prompts. Prompts with higher base accuracy tend to produce superior building blocks,

thereby increasing the accuracy of the synthesised programs.

5.4. LMAPS efficiency
In program synthesis, the depth needed to find a solution is highly related to the complexity of

the synthesized program logic. Without enough depth, the model might fail to solve problems

that require a more elaborate logic. When the depth is increased, the model its search space

broadens, enabling it to synthesize a wider variety of programs. The benefits of increased

depth come at the cost of a larger search space, translating into more programs the model

must explore. That is why enhancing the grammar to reduce the depth needed to reach a

solution makes the search more efficient.

Another critical aspect of efficient inductive program synthesis lies in the formulation of a

well-structured grammar. An optimized grammar can find the correct program at a compar-

atively lower depth. Our optimized grammar with building blocks can significantly limit

the combinatorial explosion of the search space typically seen with increased depth. This

reduction enables the synthesizer to find the correct program more efficiently, thus enhancing

the overall efficiency of the synthesis process. Furthermore, synthesizers often operate within

strict computational constraints, particularly in scenarios where it is not feasible to allow

extensive search durations. For practical reasons, a timeout is commonly implemented to

limit the computational resources. Given this timeout, the efficiency gains from an optimized

grammar can significantly impact the synthesizer its ability to produce a correct program

within the allotted time, thereby also increasing the accuracy.
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An optimized grammar that includes the building blocks of candidate LLM programs has a

smaller search space and can find programs at lower depths. As many synthesis processes

are time-constrained, the ability to find a solution faster boosts the likelihood of finding a

correct program before hitting the time limit. Therefore, optimization of the grammar not only

enhances the speed and efficiency of the synthesis process but also has an impact on its accuracy.

We do three experiments to analyze if LLM-generated programs can improve the efficiency

of traditional program synthesis by reducing the search space. First, we check how many

solutions can be generated with the new grammar. Secondly, we analyse the depth to reach

a solution with the new grammar compared to traditional regex grammar, as a lower depth

to reach a solution makes the search more efficient. Lastly, we compare the search space of

traditional PBE systems with the new workflow, as in general it is harder to find a solution

when the search space is larger. Based on these experiments, the efficiency of LMAPS is

evaluated.

A drawback of more concise optimized grammar is that it no longer can create all pos-

sible regular expressions. In this experiment, we measure how many optimized grammar

still contain all the necessary elements to synthesize the solution, regardless of the depth.

This is done by analysing every problem from regex data sets to determine if the solution can

potentially be reached. The common quantifiers and common literals are added to improve

the grammar as the extract building blocks are only able to synthesize the solution in 31.2%.

In Table 5.4 can be seen that adding common literals and quantifiers to the building blocks

increases the percentage of solutions the grammar can synthesize from 32.4% to 95.6%. We

define grammar size as the total number of literals and quantifiers used in the grammar.

The grammar size changes based on the number of building blocks extracted from the LLM

programs. The ’Extracted building blocks + common literals + common quantifiers’ on average

has a grammar size of 21.0, of which, on average, 14.5 building blocks and 6.5 quantifiers.

In comparison, a traditional regex grammar contains 100+ literals and quantifiers, as it has

to include all lower-case and upper-case letters, digits and special characters. However, a

traditional regex grammar can synthesize all solutions as it contains all the elements a regular

expression can consist of.

Common literals = [A-Z], [A-Za-z], [a-z], [0-9], [AEIOUaeiou], .
Common quantifiers = {0,}, {1,}, {0,1}

These common and building block literals and quantifiers are then used in the following

grammar:

1 RegexConnector = Regex + RegexConnector
2 RegexConnector = Regex
3 Regex = Literal or Literal + Quantifier
4 Literal = <List of literals >
5 Quantifier = <List of quantifers >

Grammar 5.1: Simplified regular expression grammar which can incorporate building blocks, consisting of literals and

quantifiers.
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Grammar Possible to synthesize program
Common literals + common quantifiers 7.7%

Extracted building blocks 32.4%

Extracted building blocks + common quantifiers 34.6%

Extracted building blocks + common literals 78.4%

Extracted building blocks + common literals + common quantifiers 95.6%

Table 5.4: A grammar with extracted building blocks from LLM candidate programs can only find a solution in 32.4% of the cases.

Adding often-used regex building blocks to the grammar makes it possible to synthesize a program in 95.6% of the cases.

The number of building blocks that get extracted from the LLM predictions increases with the

complexity of the task. This means that when a larger depth is needed to construct a solution,

the LLM, on average, also generates programs that contain more building blocks. In Figure

5.5 can be seen that a smaller depth to reach the solution also requires fewer building blocks.

This show that the complexity of the problem has a huge effect on the search space, as more

complex problems need a larger depth and a larger grammar size to be solved.

Figure 5.5: The average grammar size compared to the depth to reach a solution. The generated LLM programs contain fewer

building blocks for less complex programs, resulting in a small grammar size.

Being able to find correct programs at lower depths improves the efficiency significantly as

the search space grows exponentially with the depth. Solutions that require less depth are

therefore, in general, much faster to compute. Creating a well-structured, comprehensive

grammar is crucial for optimizing the depth to reach a solution. An optimized grammar can

essentially provide ’shortcuts’ to the desired solution. A grammar designed to find solutions at

lower depths provides a more constrained and directed search space for the solution. The depth

to reach a solution is calculated by finding the minimum number of literals and quantifiers

from the grammar needed to construct the regular expression solution. In Figure 5.6 can be

seen that LMAPS can find solutions at much lowers depths than a traditional regex grammar.

The LMAPS grammar contains fewer elements and can reach solutions at lower depths. This

makes the search much more efficient than a traditional regex grammar. It is important to note

that the new grammar can not reach a solution in 5.4% of the cases, as seen in Table 5.4. In

these cases, a traditional regex grammar still has to be used.
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Figure 5.6: Comparison of the depth required to reach a solution for the LMAPS and traditional regex grammars. LMAPS can

solve programs at a lower depth than traditional regex grammars.

Search space
The number of components in a grammar is a determining factor for the quantity of potentially

synthesizable programs, hence presenting a direct correlation with the size of the search space.

We compare the LMAPS grammar with a traditional regex grammar to analyze the search

space reduction, as can be seen in Figure 5.7. At a depth of three, the search space of the

LMAPS grammar is on average 545 times smaller compared to a traditional regex grammar.

This huge reduction in the search space has a positive effect on the computational resource

requirements and time efficiency in the PBE synthesis.

The advantage of the LMAPS grammar becomes even more apparent when tackling problems

that need a higher depth to be solved due to the combinatorial explosion of the search space.

The LMAPS grammar has a 43686 times smaller search space at a depth of five. This clearly

shows the potential of the LMAPS grammar in a more efficient and effective PBE workflow.
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Figure 5.7: Search space comparison of the traditional regex grammar with the LMAPS grammar. The concise LMAPS grammar

has a smaller search space than the traditional regex grammar, which becomes even more apparent at higher depths.

5.5. Generating examples
Creating a representative program specification of the problem is crucial in getting the program

synthesiser to produce the intended program. LLM can potentially help to improve the pro-

gram specification by generating examples that provide additional information to specification.

A key difficulty in measuring the additional information provided by each example in PBE

is the inherent variety of possible examples. Examples can vary significantly in terms of

their complexity, structure, and relevance to the problem at hand. Some examples might

offer unique insights into the problem, while others might only confirm already understood

patterns. Another difficulty arises from the inherent complexity of the underlying problem.

If the problem requires complex logic, even many examples may not suffice to capture the

entire problem space. Consequently, an example that seems to provide little information might

actually be vital for solving a complex problem.

Given the aforementioned challenges, we quantify the relative effectiveness of adding ex-

amples by measuring the reduction in programs that satisfy them. With these experiments,

we evaluate if LLMs can aid in the enhancement of problem specifications through example

generation. When new examples are added to a program specification, they often eliminate

a number of incorrect programs from the set of programs that did satisfy the specification

before the example was added. A reduction in the number of programs that satisfy the new

program specification means that added examples are effective. Conversely, if introducing

a new example does not affect the number of programs that satisfy the program specifica-

tion, it implies that the example has offered no additional information to the already existing set.

To understand the effectiveness of LLMs in generating examples for PBE, we create an

experimental setup to compare the LLM approach against two alternative methods. The

experimental setup and the obtained results are presented herein. We consider three distinct

example-generation methods. The first method generates examples with an LLM as used in

LMAPS. The second method samples random positive examples from the regex solution and
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generates completely random negative examples. It’s important to note that in real-world

scenarios, the solution isn’t known in advance. Therefore, if our proposed method achieves

similar or better results compared to this approach, it can already be considered beneficial.

Nevertheless, a limitation of randomly generated examples is that they may not effectively cover

edge cases. The third method involves sampling random positive examples from the solution

and creating near-miss negative examples based on these positive examples using algorithms

that make small variations. This approach effectively covers a lot of edge cases, as near-miss

negative examples, in general, help to create a well-defined program specification. However, it

costs human knowledge and time to create an algorithm to generate high-quality near-miss

negative examples and other meaningful variations. To keep the comparison fair across the

experimental setup, we generated the same number of positive and negative examples across

each method, matching the quantity generated by the LLM for each problem.

To measure the reduction in correct programs, we first generate all correct programs that

satisfy a certain specification based on the tasks from the regex data sets. The initial program

specification is made by sampling three random positive examples from the regex solution

and generating one random negative example. This specification is then given to a program

synthesiser to find all programs that match it. After that, we update the program specification

with the newly generated examples per method and count the reduction of programs that

satisfy the specification. The more programs that are no longer ’correct’, the more information

the examples gave to the program specification.

From the results in Figure 5.8, it is clear that the LLM-generated examples outperformed

the random examples, with a program count reduction improvement of 9.4%. This suggests

that LLMs have an inherent capability of generating meaningful examples. However, they

did not surpass the effectiveness of the smart negative example variation examples, which

require human knowledge to create valuable variations. The superior performance of the

smart negative example variation algorithm emphasizes the value of human intuition and

expertise in defining near-miss examples to cover edge cases.

Figure 5.8: The average search space reduction for three different example generation methods. LLM-generated examples are

better at reducing the number of programs that satisfy the specification than randomly generated ones. However, the

human-crafted negative example variation algorithm still outperforms the LLM.
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Despite not reaching the performance of human-crafted algorithms, the LLM its relative success

over random examples underscores its potential to create well-defined program specifications.

As advancements in AI continue, we anticipate that the gap between LLMs and human-crafted

examples will continue to narrow.

5.6. Explaining programs
Our research investigated the capability of an LLM to explain regular expressions to humans

as part of the Language Model Augmented Program Synthesis workflow. In this experiment,

we analyze to what extent LLMs are capable of explaining the synthesized programs. This is

done by manually analyzing if the explanation of the regex solutions in the KB-13-emoji data

set were correct. This experiment showed that ChatGPT accurately explains 94% of the regular

expression of the KB-13-emoji data set. LLMs can thus help to understand the generated

program in the LMAPS workflow. Nevertheless, users always have to be careful when they

rely on the output of LLM, given that in 6% of the cases, ChatGPT provided inaccurate or

incomplete explanations. A thorough, independent understanding of the underlying principles

of programming and regex remains essential. This balance between reliance on LLMs and a

solid foundational understanding of programming ensures that users can effectively harness

the power of PBE while mitigating the risks of misinterpretation or misuse of generated

programs. The full prompt can be found in Appendix A.3.

It is important to note that regular expressions are commonly used in programming which is

part of the reason why LLMs are so good in explaining regular expressions. Another reason

is that regular expressions often contain the same building blocks like’.*’ and [A-Z], which

means that ChatGPT probably has seen many of these. This experiment does not show that

LLMs can also explain programs for different programming or domain-specific languages. It

does show its usefulness in LMAPS for regular expression and its potential for new domains.

5.7. Prompt analysis
By analysing varied prompt methodologies, we can better understand how to approach and

optimize prompt formulation in the field of program synthesis. Better prompts increase the

accuracy of LMAPS and help to overcome the ’efficiency’ limitation as shown in Section 5.3 and

5.4. The performance is measured in terms of the base LLM prediction and the final LMAPS

accuracy. Table 5.5 provides an overview of the performance of different prompt strategies in

the LMAPS method. These strategies range from basic prompts without any examples to more

advanced few-shot prompts that give more context to the prompt by providing similar examples.

Prompt descriptions:

• Baseline 1 and Baseline 2 are basic prompts with no other information like positive

examples.

• APE 1 and APE 2 are generated by the Automatic Prompt Engineer method.

• Task-based, Requirements based instruction, and Requirements based completion use

more detailed instructions than the baselines.

• Simple instruction + positive examples, Simple instruction + quoted positive examples,

and Positive examples consist of a task description and positive examples. This will
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be an often used prompt because it is a good performing and relatively simple prompt,

which does need any other components like similar example lookup. The Positive and
negative examples prompt also includes negative examples in this same prompt.

• Few-shot baseline uses a few-shot prompt with random description-regex solution pairs

from any of the data sets. The Few-shot similarity lookup and Few-shot similarity
lookup + positive examples prompts use a more advanced method to look up similar

description-regex pairs based on the cosine similarity of the embeddings.

In Table 5.5 can be seen that the Few-shot similarity lookup method shows a significant

leap in accuracy, especially in the base LLM predictions, reaching accuracies of 54.2% and

55.2%. The LMAPS accuracy for these strategies is also the highest among the evaluated

strategies. Overall, the results indicate that prompts enriched with similarity lookups or

positive examples enhance both LLM predictions and LMAPS accuracy, underscoring the

utility of these strategies in LMAPS. The variety in the results of different prompt strategies

shows the importance of prompt design and selection for the LMAPS method.

Base LLM prediction LMAPS Δ Improvement

Baseline 1 22.0 54.8 32.8

Baseline 2 19.4 52.5 33.1

APE 1 22.4 55.2 32.8

APE 2 19.4 53.6 34.2

Task-based 17.5 53.2 35.7

Requirements-based instruction 18.5 52.5 34.0

Requirements-based completion 19.3 53.2 33.9

Simple instruction + positive examples 25.3 57.4 32.1

Simple instruction + quoted positive examples 23.0 55.6 32.6

Positive examples 27.5 56.6 29.1

Positive and negative examples 25.0 56.2 31.2

Few-shot baseline 18.3 51.1 32.8

Few-shot similarity lookup 55.2 73.5 18.3

Few-shot similarity lookup + positive examples 54.2 71.9 17.7

Mean 26.2 57.0 30.7

Table 5.5: The average accuracy per prompt on the KB-13, NL-RX and StructuredRegex data sets for the base LLM prediction and

LMAPS method. The ’Improvement’ column shows the difference between the LMAPS accuracy and the base LLM prediction

accuracy. The prompts can be found in Appendix A.

A more in-depth analysis is done to compare the difference between different types of prompts.

Analyzing prompts can give insights into how changes in the prompts affect the model its

output behaviour. This can aid in improving the model responses and can help in mitigating

risks associated with unintended outputs. By comparing the outputs of similar prompts, we

can analyze the effect of adding positive, negative and few-shot examples to the prompt, which

is useful for future prompt design and makes it easier to decide which prompt type best suits a

specific use case.

Automatic prompt generation component
The performance of the APE prompts is analyzed to measure if automatically generated

prompts perform worse than human-created ones. The prompt generation component (4.3.1),

which uses the Automatic Prompt Engineer (APE) method, performs as well as human-created

baselines. Zhou et al. (2023) [27] concluded that APE-generated prompts could perform
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comparably to human-designed prompts. Our results show that APE-generated regular

expression generation prompts indeed perform on par with human-created baseline prompts,

as shown in Table 5.6. This finding suggests that the time and effort typically required to craft

high-quality manually created prompts could be saved by using APE without sacrificing the

performance of the system. The APE system can generate and test many prompts in the time it

takes a human to create a single one. However, for more advanced prompts, human prompt

engineering is still required.

Base LLM prediction LMAPS Δ Improvement

APE 1 22.4 55.2 32.8

APE 2 19.4 53.6 34.2

Baseline 1 22.0 54.8 32.8

Baseline 2 19.4 52.5 33.1

Table 5.6: Generated prompts with the APE method perform as well as human-created baseline prompts.

Negative examples in prompts
To measure the effect of adding negative examples to a prompt, we compare the prompt with

only positive examples to the one with both positive and negative examples. The accuracy of

prompts with only positive examples is higher than that of prompts with both positive and

negative examples in both the base prediction as LMAPS workflow, as can be seen in Table 5.7.

This suggests that adding negative examples may not be beneficial for the accuracy of these

prompts and can even decrease the accuracy.

Base LLM prediction LMAPS Δ Improvement

Positive examples 27.5 56.6 29.1

Positive and negative examples 25.0 56.2 31.2

Table 5.7: The accuracy of the prompts with only positive examples is higher than the prompt with both positive and negative

examples.

Few-shot prompts
Few-shot prompts are used to provide context that guides the model in generating appropriate

responses, especially when dealing with tasks that require specific knowledge or a particular

style of response. They essentially act as a primer, helping the model to better interpret and

adapt to the desired task. Our experiment compares the performance of three different few-shot

prompts to check the effect of using a similarity lookup to add similar description-regex pairs

to the prompt, as seen in Table 5.8.

• Few-shot base: This prompt includes randomly chosen description-regex pairs from any

of the data sets.

• Few-shot similarity lookup: This prompt similar description-regex pairs from the data

sets, which are calculated via cosine similarity. This ensures the selection of more relevant

few-shot examples, resulting in significantly improved accuracy over the few-shot base

propmpt.

• Few-shot similarity lookup + positive examples: This prompt is the same as the

’Few-shot similarity lookup’ prompt with the addition of positive examples.
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Using relevant description-regex pairs significantly enhances the accuracy of few-shot prompts,

with the prompt using the similar example lookup performing considerably better than the

one using random examples. Adding both positive examples and similar description-regex

pairs slightly decreases the prompt accuracy.

It is important to note that the similarity lookup often uses data points from the same

data set as the current description. This could potentially inflate the accuracy of this method in

comparison with real-world unseen data points as data points from the same data set are often

similar, as shown in Section 5.2.1. In diverse real-world data, the looked-up description-regex

pairs are potentially less similar, which would result in lower accuracy.

Base LLM prediction LMAPS Δ Improvement

Few-shot baseline 18.3 51.1 32.8

Few-shot similarity lookup 55.2 73.5 18.3

Few-shot similarity lookup + positive examples 54.2 71.9 17.7

Table 5.8: Comparison of the average accuracy of the few-shot prompts. The few-shot prompt with similarity lookup performs

significantly better than the few-shot baseline. Including positive examples in the similarity lookup prompt does not increase its

accuracy.
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Discussion

The results from our study show that LMAPS is a potent method for multimodal program

synthesis, providing improvements over traditional regular expression generation methods.

Even though little research is done in this area, our results indicate that combining LLMs with

PBE can address several of the limitations of traditional PBE workflows.

By harnessing the power of LLMs in three distinct stages of program synthesis, our approach

manages to mitigate the challenges of ambiguity, overfitting, underfitting, computational effi-

ciency, explainability, and single modality associated with PBE. The significant improvements

of our LMAPS method signal the untapped potential that lies in the synergy of LLMs and PBE.

While the LMAPS workflow showed significant improvement over traditional PBE work-

flow, we recognize it does have limitations. First, creating a fully unambiguous specification

using LLMs is not a trivial task. Even a well-formulated problem description can result in

ambiguous or non-optimal programs due to the inherent nature of language itself. Additionally,

the model its capacity to generate diverse IO examples is not without faults. Human review is

needed to create a well-defined program specification and to check whether the generated

program works as intended. Secondly, the results can vary significantly depending on the

complexity of the task, the capabilities of the LLM, and the efficiency of the inductive program

synthesis engine. This should be included in the consideration of using LMAPS. Thirdly,

although our method introduced multi-modality to the process, there still exists a question of

how well the LLM can comprehend and integrate information from various modalities. We

know current models are relatively robust in the text modality but might not be as strong in

other modalities, such as interpreting equations and tables. Further research is necessary to

realize a fully multimodal workflow. Lastly, the added complexity introduced by the LLM in

the workflow also has to be considered. While the LLM assists in the generation of programs,

diverse IO examples, and explaining the generated programs, it presents an additional layer of

complexity that must be managed.

LLM development limitation
One significant limitation is the intensive computational power required by LLMs which is not

available or affordable for most researchers and organizations. The development, training,

48
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and deployment of LLMs involve significant financial investment. The resources necessary for

model training, including computational hardware and energy, can be costly. This expense

can pose a barrier to research and application development. Furthermore, comparing LMAPS

performance to previous programming synthesis benchmarks may not always be fair due

to differences in computational requirements. LLMs require huge amounts of diverse and

high-quality data to be trained effectively. The necessity for such large and complex data

sets may limit the accessibility and usability of these models, particularly for researchers and

organizations that do not have access to such data resources. The computational resources,

high costs and data requirements make it infeasible to create their own LLM for most people.

This creates a dependency issue when relying on a third-party LLM, as users have to trust the

security, availability and data control of another company. Sending sensitive data through a

third-party model can raise privacy concerns.

LLM capabilties limitation
LMAPS its effectiveness is inherently bound to the capabilities of the LLM used, limiting the

universal applicability of our method. Our research is mainly focused on regular expression

synthesis, and more research has to be done to evaluate the effectiveness of LMAPS on new

domains. Certain tasks that are seemingly simple and straightforward for humans are very

difficult for LLMs due to their architecture. For instance, tasks such as counting the number of

words in a text are challenging for current LLMs. This limitation shows the importance of

understanding and testing the capabilities of an LLM before using it in real-world scenarios.

As LLMs are black-box models, it can be difficult to understand why they generate something.

Any limitations or shortcomings intrinsic to the LLM, such as biases in training data or inability

to handle certain task types, negatively affect the LMAPS workflow. This lack of transparency

can be problematic in certain domains where interpretability is important.

As current-generation LLMs are only trained on text, they have no real-world experience or

sensory understanding. They do not understand or know anything about the world in the way

humans do. The model generates responses based on patterns learned from training data,

which may contain errors, biases, or misinformation. Because of this, LLMs sometimes generate

inaccurate or misleading information, even when asked factual questions. Additionally, LLMs

do not always comprehend nuanced or complex contexts, leading to nonsensical or irrelevant

responses.

Future work should aim to refine the integration of LLMs in the programming by example

workflow and further investigate the challenges of ambiguity, generalizability, efficiency,

explainability, and multi-modality in this context. A closer look at the capabilities of LLMs in

program synthesis and understanding how these models work can lead to significant advances

in the field of program synthesis.

Practical applications
Practical applications of LMAPS extend across various sectors. For example, LMAPS could be

integrated into programming environments to assist developers in writing code, debugging,

and maintaining software systems. It can help reduce the time spent on coding and debugging

by generating code snippets, refactoring existing code, and providing suggestions based on
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the problem description and input-output examples. LMAPS would potentially work well in

Test-Driven Development, a programming technique that involves writing tests before you

write the code to fulfil them. Each test essentially provides a specific example of how your code

should behave under a given set of conditions, effectively acting as the program specification

for the LMAPS workflow.

LMAPS could also help professionals who are not trained programmers, such as data

analysts or consultants, but do need to write scripts for automation. LMAPS could provide

significant assistance by synthesizing code based on their problem descriptions and examples,

making programming more accessible to a wider audience. This is possible because the PBE

engine and LLMs both provide an intuitive interface, consisting of IO examples and a language

description, that can be used without programming knowledge.

Future of LLMs in Program Synthesis
The immense potential for the growth and development of LLMs, particularly in the domain

of program synthesis, holds a promising future. As these models continue to evolve, we

anticipate multiple improvements. The next generation of LLMs will likely enhance their grasp

of context, leading to a better understanding of human intent, which is key to synthesizing

accurate, efficient programs. We foresee these improved models being capable of handling

more complex programming tasks, demanding a deeper understanding of the problem and

advanced reasoning capabilities. As our understanding and refinement of LLMs progress,

we can expect to see models that better generalize to new domains. Our LMAPS workflow

would greatly benefit from improved language understanding capabilities of LLMs, resulting

in a better example, program and explanation generation. This could lead to a significant

improvement in the final generated programs by LMAPS. The future of programming looks

set to be an exciting blend of human creativity and AI efficiency, leading to faster development

times, fewer errors, and potentially, more innovative programs.
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Conclusion

Our research explored the use of LLMs to augment PBE workflows, aiming to overcome the

inherent limitations of PBE. LLMs have been shown to be effective in augmenting program

synthesis workflows by generating IO examples, programs and explaining the generated

programs on the task of generating regular expression. Using four regular expression data

sets, we conducted an in-depth analysis to evaluate the efficacy of our LMAPS method. By

leveraging the natural language processing capabilities of LLMs, we were able to create a

workflow that can address the key limitations of programming by example, notably ambiguity,

overfitting, underfitting, computational efficiency, explainability and single modality.

The results of our experiments show that LMAPS significantly improves the accuracy of

program synthesis compared to traditional PBE methods. LMAPS outperforms both PBE

and LLM methods individually, leveraging the strengths of both. The accuracy improvement

achieved by LMAPS is substantial, with an average increase of 25.1% compared to the PBE-only

approach, up to a 40% increase by using more advanced prompts. By utilizing LLM-generated

programs to extract building blocks, an optimized grammar is created. This optimized gram-

mar allows for finding correct programs at lower depths, resulting in more efficient synthesis.

The LMAPS workflow effectively reduces the search space and improves the efficiency of

program synthesis.

LLMs also show the potential in assisting in the process of creating well-defined prob-

lem specifications through example generation. The LLM-generated examples contribute

valuable information to the program specification, resulting in a reduction of programs that

satisfy the specification. While LLM-generated examples demonstrate effectiveness, they do

not surpass the performance of human-crafted algorithms for generating near-miss negative

examples. Human intuition and expertise in creating near-miss examples to cover edge cases

still achieve superior results. However, the relative success of LLM-generated examples does

highlight their potential to enhance program specifications. Lastly, LLMs are also capable

to explain synthesized programs, as demonstrated by the accurate explanations of regular

expressions of the KB-13-emoji data set. The LLM explanations were correct in 94% of the

cases, providing a valuable tool for understanding the generated programs. However, LLM

should never be blindly trusted, as in 6% of the cases the LLM explanations were inaccurate.
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The synergy of LLMs and traditional program synthesis holds great promise for advancing

the field of program synthesis by providing an effective way to overcome the limitations of

programming by example.
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A
Prompts

A.1. Example generation

1 Create a list of examples that fully match this regular expression ‘{regex}‘? Only answer
with a comma-separated list of examples without any other information.

Prompt A.1: Regex to examples

1 Create a list of examples that fully matches the following regular expression description ’{
nl_description}‘? Only answer with a comma-separated list of examples without any other
information.

Prompt A.2: Natural language to examples

A.2. Regex generation

1 Write a list of regular expressions that match the following pattern:
2 {nl_description}

Prompt A.3: APE 1

1 Create a list of regular expression patterns for the given input description:
2 {nl_description}

Prompt A.4: APE 2

1 List of regular expression patterns that match {nl_description}:

Prompt A.5: Baseline 1
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A.2. Regex generation 56

1 Generate a list of regular expression patterns that match {nl_description} without giving an
explanation or other information.

Prompt A.6: Baseline 2

1 Generate a list of matching regular expression patterns based on a description of the regex
pattern.

2

3 Requirements:
4 - The list of matching regular expressions must be diverse to compensate for ambiguous

descriptions.
5 - The regular expression patterns must fully match the strings described by the description.
6

7 Description: A sentence that contains the sequence ’dog12’
8 Regular expression: .*dog12.*
9

10 Description: A text that starts with "hello" and ends with "world"
11 Regular expression: hello.*world
12

13 Description: A string that consists of exactly 5 uppercase letters
14 Regular expression: [A-Z]{5}
15

16 Description: Lines that contain only letters and numbers, and are between 3 and 6 characters
long

17 Regular expression: [A-Za-z0-9]{3,6}
18

19 List of regular expressions that match "{nl_description}":

Prompt A.7: Few-shot baseline

1 Generate a list of matching regular expression patterns based on a description of the regex
pattern.

2

3 Requirements:
4 - The list of matching regular expressions must be diverse to compensate for ambiguous

descriptions.
5 - The regular expression patterns must fully match the strings described by the description.
6

7 {io_pairs}
8

9 List of regular expressions that match {nl_description}:

Prompt A.8: IO examples

1 Generate a list of matching regular expression patterns based on a description of the regex
pattern.

2

3 Requirements:
4 - The regular expressions must fully match all positive examples
5 - The list of matching regular expressions must be diverse to compensate for ambiguous

descriptions.
6 - The regular expression patterns must fully match the strings described by the description.
7

8 {io_pairs}
9 {pos_examples}

10

11 List of regular expressions that match {nl_description}:

Prompt A.9: IO examples and positive examples



A.2. Regex generation 57

1 Generate a list of matching regular expression patterns based on a description of the regex
pattern.

2

3 Requirements:
4 - The regular expressions must fully match all positive examples
5 - The list of matching regular expressions must be diverse to compensate for ambiguous

descriptions.
6 - The regular expression patterns must fully match the strings described by the description.
7

8 {pos_examples}
9

10 List of regular expressions that match "{nl_description}":

Prompt A.10: Positive examples

1 Generate a list of matching regular expression patterns based on a description of the regex
pattern.

2

3 Requirements:
4 - The regular expressions must fully match all positive examples
5 - The regular expressions do not match any negative examples.
6 - The list of matching regular expressions must be diverse to compensate for ambiguous

descriptions.
7 - The regular expression patterns must fully match the strings described by the description.
8

9 {pos_examples}
10 {neg_examples}
11

12 List of regular expressions that match "{nl_description}":

Prompt A.11: Positive and negative examples

1 Generate a list of regular expression patterns that match {nl_description}.
2

3 Requirements:
4 - The list of matching regular expressions must be diverse to compensate for ambiguous

descriptions.
5 - The regular expression patterns must fully match the strings described by the description.
6 - Only respond with a list of regular expressions without any explanations.
7

8 List of regular expressions that match {nl_description}:

Prompt A.12: Requirements based completion

1 Generate a list of regular expression patterns that match {nl_description}.
2

3 Requirements:
4 - The list of matching regular expressions must be diverse to compensate for ambiguous

descriptions.
5 - The regular expression patterns must fully match the strings described by the description.
6 - Only respond with a list of regular expressions without any explanations.

Prompt A.13: Requirements based instruction



A.3. Program explaining 58

1 Generate a list of potentially matching regex based on a description without giving an
explanation or other information. The regular expressions must match all positive
examples.

2

3 {pos_examples}
4

5 List of regular expressions that match "{nl_description}":

Prompt A.14: Simple instruction + positive examples

1 Generate a list of potentially matching regex based on a description without giving an
explanation or other information. The regular expressions must match all positive
examples.

2

3 {pos_examples_quotes}
4

5 List of regular expressions that match "{nl_description}":

Prompt A.15: Simple instruction + quoted positive examples

1 Your task is to provide regular expression patterns based on the given description without
any explanations.

2 List of regular expressions that match "{nl_description}":
3 -

Prompt A.16: Task-based

A.3. Program explaining

1 Task: Explain regular expression patterns.
2 This is a regular expression that matches the following description: {nl_description}.
3 Please explain how all parts of the regular expression work in detail: {regex}

Prompt A.17: A prompt to generate an detailed explanation of a regular expression
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