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TThe realizaTion of energy 
efficient, low area, and fast processing 
neuron and synapse circuits is of prime 
importance for unleashing neuromorphic 
computing full potential. in this paper, 
we introduce a graphene-based synapse, 
which can emulate Spike Timing Depen-
dent Plasticity (STDP) and Short/long 
Term Plasticity (STP/lTP) with variable 
signal amplitude and temporal dynamics. 
The synapse operation is validated by 
means of SPiCe simulations, and its syn-
aptic modulation ability is showcased 
through reinforcement learning within a 
Spiking neural network for robotic navi-
gation with obstacles avoidance. Besides 
its functional versatility, the proposed 
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graphene-based synapse can potentially 
occupy low active area (≈ 170 2nm ) and 
operate at low voltage (200mV). When 
compared with a biological brain synapse, 
its energy consumption per spike for a 
weight update operation (0 5. fJ) is 20× 
lower, while the processing speed is 
increased by six orders of magnitude. 
Such properties are essential desiderata 
for the realization of large scale neuro-
morphic systems, making the proposed 
graphene-based synapse an outstanding 
candidate for this purpose.

IntroductIon
neuromorphic computing, which aims to 
carry out different data processing tasks 
while taking inspiration from the brain 
structure and operating principles that 
underlie its outstanding abilities (e.g., 
robustness in the presence of noise, energy 
effectiveness, massive parallel processing, 
suitability for complex tasks solving), has 
recently emerged as a very promising vista 
for future diverse and sustainable comput-
ing technologies. Spiking neural net-
works (Snns) are of particular interest as 
they capture in a biologically plausible way 
the neural dynamics [1], [2], offering per-
spectives for brain-alike capabilities.

Synapses (schematically illustrated in 
figure 1), which ensure signal processing 
and connectivity between neurons, are the 
most abundant neural components and 
are believed to play an essential role in 
human brain learning, hence, the impetus 
for efficient artificial synapse implementa-
tions. The preponderant state-of-the-art 
synapse implementations rely on CMoS 

technology and energy efficient CMoS 
synapses have been proposed in, e.g., [3], 
[4], [5], [6]. nevertheless, they rely on a 
rather complex circuitry with many tran-
sistors, as CMoS devices cannot inherent-
ly mimic the analog synaptic behaviour. 
furthermore, the CMoS technology is 
approaching atomic feature size, which 
brings power consumption and reliability 
concerns. recently, emerging resistive 
switching memory devices, e.g., rraM, 
STTraM, phase-change memory  [7], 
have enabled the road towards artificial 
synapses implementations, e.g.,  [8], [9], 
[10], [11], with simple structure (only 
one or a few resistive switching memory 
devices per synapse), synaptic functionality 
mimicked through inherently analog 
behavior, low energy consumption, and 
good scalability potential. however, they 
suffer from temporal and spatial variability 
of the resistive states, which may result in 
undesired stochasticity in neuromorphic 
systems. on the other hand, graphene, a 
2D carbon atom honeycomb lattice mate-
rial, emerged as a prominent post-Si 
frontrunner, due to its unique combina-
tion of excellent properties, e.g., ballistic 
transport, atomic thinness, inherently ana-
log nature, biocompatibility  [12], [13], 
[14], which taken together have not been 
seen in other materials thus far. Thus, gra-
phene-based synapses with various plastic-
ities were demonstrated at device level 
with bilayer graphene [15], [16]. in [15], 
the authors modulate the synaptic plastici-
ty via external back gate voltage, while 
in  [16], the device conductance is con-
trolled by changing the concentration of 

the lithium ions located between the gra-
phene layers. While reporting low power 
switching ability and low variability, the 
obtained synaptic efficiency is small 
(<0 01. % for  [15], and <2% for  [16]), 
which limits the synaptic modulation 
extent for learning.

in this paper, we propose a graphene-
based synapse implementation, built from 
complementary arranged generic gra-
phene nanoribbon (gnr) devices con-
sisting of monolayer graphene on top of 
an insulating material, and with a doped 
substrate acting as back gate. The current 
flow in the device gnr channel is 
induced by a drain-to-source bias voltage 
and is modulated via external voltages 
applied on top and/or back gates. The 
synaptic plasticity functionality, i.e., Spike 
Timing Dependent Plasticity (STDP), 
Short Term Plasticity (STP), and long 
Term Plasticity (lTP), is emulated via 
gnr devices with appropriately tailored 
topologies, while the plasticity temporal 
evolution is determined by the amount of 
interfacial charge traps. The proposed syn-
apse is functionally versatile, as its output 
signal can exhibit various amplitudes and 
temporal dynamics associated with differ-
ent synaptic receptors (aMPa, nMDa, 
gaBa). The gnr-based synapse is vali-
dated by means of SPiCe simulations, 
and its synaptic modulation ability is dem-
onstrated in a practical scenario: robotic 
navigation with obstacle avoidance within 
a confined environment. To this end, we 
propose a Spiking neural network (Snn) 
that can infer the robot’s course of action 
when faced with obstacles, utilize instanc-
es of the proposed synapse and graphene-
based  l eaky  in tegra te  and f i r e 
neurons  [17] to implement it, and dem-
onstrate its ability to quickly identify the 
proper trajectory to target by means of 
reinforcement learning. Besides functional 
flexibility, the proposes synapse potentially 
requires a small real estate (≈ 170 2nm ), 
operates at low supply voltage (200mV), 
and exhibits an energy consumption of 
0 5. fJ per synaptic event, which amounts 
to � �20  less energy consumption when 
compared to a brain synapse. further-
more, it operates at ns time-scale, 
enabling six orders of magnitude process-
ing speed-up relative to a brain synapse. 
all these properties are very attractive for 

FIGurE 1 Simplified synapse illustration and Spike Timing Dependent Plasticity (STDP)  
principle for synaptic modulation.
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neuromorphic computation in large scale 
scenarios, suggesting that the proposed 
gnr-based synapse can be a highly 
potent candidate to these ends.

The remaining of this paper is struc-
tured as follows: The “Background” sec-
tion presents underlying synaptic plasticity 
concepts and the generic graphene-based 
device. in the “gnr-Based Synapse With 
STDP Plasticity” section, we introduce the 
proposed gnr-based synapse circuitry 
and describe its basic operation. in the 
“robot navigation Case Study” section, 
we consider a robotic navigation with 
obstacle avoidance application, and we 
introduce an  Snn implementation that 
makes use of the proposed synapse in con-
junction with graphene-based leaky inte-
grate and fire neurons able to quickly 
identify proper robot trajectory by means 
of reinforcement learning. in the “Con-
clusion” section, we summarize the main 
findings of the paper.

BackGround
in this section, we outline the underlying 
concepts of synaptic plasticity and 
describe the generic graphene-based 
device we utilize into the proposed syn-
apse implementation.

SynapSeS and STdp plaSTiciTy
Synapses are communication sites where 
neuron pairs pass signals among them-
selves. Besides being merely transmission 
media, synapses also serve a processing 
role, as they can strengthen or weaken 
the transmitted signals via the synaptic 
plasticity mechanism. as illustrated in 
figure 1, a synapse has two inputs (i.e., a 
pre-synaptic spike coming from the pre-
synaptic neuron and a post-synaptic spike 
coming from the post-synaptic neuron) 

and one output (i.e., a Post-Synaptic 
Potential (PSP), which travels to the 
post-synaptic neuron. in biological neu-
rons, glutamate, the neurotransmitter 
released into the synapse from the pre-
synaptic neuron, can bind to various 
receptors types (e.g., gaBa, nMDa, 
aMPa) on the post-synaptic neu-
ron  [18]. These receptors are coupled 
with ion channels that can modulate the 
post-synaptic neuron excitability, by gat-
ing the influx of Calcium and Sodium 
ions. for instance, the aMPa receptor is 
coupled with an ion channel that lets 
Sodium ions enter the post-synaptic neu-
ron, when the glutamate from the pre-
synaptic neuron binds to it. as a result of 
the Sodium influx, the post-synaptic cell 
becomes depolarized, and when this 
depolarization reaches a certain thresh-
old, a nerve impulse (a spike) is generat-
ed and transmitted. While for the pre and 
post spikes (the synapse inputs) the infor-
mation is encoded in frequency, for PSP 
(the synapse output), the information is 
encoded in amplitude. Thus, a synapse 
ensures PSP amplitude modulation as a 
function of input spikes frequency rates, 
which is process known as synaptic plas-
ticity. The most common type of synaptic 
plasticity is Spike Time Dependent Plas-
ticity (STDP). STDP can be regarded as 
a learning process during which PSP 
amplitude (i.e., the strength of the con-
nections between two neurons, also 
known as synaptic weight) is updated 
based on temporal correlations between 
pre- and post-synaptic spikes [1]. Specifi-
cally, if a pre-synaptic spike precedes a 
post-synaptic spike, then the synaptic 
weight is potentiated (PSP amplitude 
increases). Conversely, if a post-synaptic 
spike occurs before a pre-synaptic spike, 

then the synaptic weight is depressed 
(PSP amplitude decreases).

formally, the synaptic weight (PSP 
amplitude) increase/decrease ∆w can be 
expressed as [1]:
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where �t t tpost pre� �  is the temporal 
difference between the post- and the pre-
synaptic spikes, �� and �� are the time 
decaying constants for the weight update 
potentiation and depression, and A+ and 
A− control the magnitude range of the 
weight update for potentiation and 
depression, respectively.

The PSP amplitude W  is then updated 
at every spike occurrence (whether it is 
post or pre spike), as

W W w t
t t tpost pre

� �
� �

� �
�

( )

 (2)

While the amplitude of the PSP signal is 
influenced by both pre and post spikes 
occurrences, the actual PSP signal is elic-
ited by pre spikes only.

Generic Gnr-BaSed deviceS
The fundamental building unit for syn-
apses implementation is the graphene-
based device illustrated in figure 2. The 
device includes a graphene nanoribbon 
(gnr) sheet that serves as a conduction 
channel when exposed to a drain-to-
source bias voltage V Vd s− . The nanorib-
bon geometry and its contacts topology 
determine the gnr device conduction 
profile, while the actual conductance 
value is modulated by means of external 
voltages exerted via top and/or back 

FIGurE 2 Generic graphene-based device and conductance map example.
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gates  [19]. figure  2 presents a gnr 
topology example and its conductance 
map obtained under constant V Vd s−  
while sweeping the top gate and the back 
gate voltages. as different gnr conduc-
tance maps induce different electrical 
functionalities, such graphene-based 
devices have been utilized for Boolean 
logic gate implementations, as well as 
other non-Boolean logic circuits  [20], 
[21], [22], [23]. furthermore, it has 
been experimentally observed that gra-
phene-based devices inherently exhibit 
interface traps, which can trap and release 
gnr carriers [12]. Such traps are respon-
sible for inducing a hysteretic i-V behav-
iour, which can be naturally exploited for 
synaptic plasticity (e.g., for emulating the 

synapse output signal magnitude  
dependence on the synapse’s accrued past 
activities [24]).

Gnr-BasEd synapsE WIth stdp 
plastIcIty
a practical way to implement in hardware 
the amplitude modulation for the STDP 
rule (equations (1) and (2)) [25] is con-
ceptually exemplified in figure 3.

it makes use of two separate traces: 
(i) a pre trace left behind only by pre 
spikes—the pre trace is updated by the 
fixed amount A+  at every pre spike 
arrival time moment, after which it 
decays exponentially in the absence of 
any pre spikes—and (ii) a post trace left 
only by post spikes—the post trace is 

updated by the fixed amount A−  at the 
every post spike arrival time moment, 
and it decays exponentially in the 
absence of subsequent post spikes. as 
concerns the weight update, at the arrival 
moment of a post spike, ∆w  is increased 
proportionally to the momentar y  
value of the pre trace (potentiation 
caused by pre before post spikes). analo-
gously, at the arrival moment of a pre 
spike, ∆w  is decreased proportionally to 
the momentary value of the post trace 
(depression induced by post before pre 
spikes). The amplitude increase/decrease 
∆w  is then used to modulate a fixed 
amplitude PSP signal and, thus, yields 
the synaptic output signal. We adopt the 
same rationale for the design of the pro-
posed gnr synapse.

figures  4 and 5 illustrate the gnr 
synapse circuit schematic, and its basic 
operating principle, respectively. The 
gnr synapse, functionally speaking, 
consists of three blocks: (i) the synaptic 
weight change block, that computes the 
PSP amplitude increase/decrease ∆w , 
based on the timing difference between 
pre and post spikes according to the 
STDP rule, (ii) the PSP amplitude 
modulation block, that determines the 
PSP total amplitude by enacting the 
∆w  amplitude increase or decrease for 
every pre spike event, and (iii) the PSP 
signal generation block, which elicits a 
PSP signal every time a pre spike 
occurs. The synapse circuit in figure 4 
has as inputs the pre- and post- synaptic 
spike signals, denoted by Vpre  and 
Vpost, and generates as output the PSP 
signal VPSP  via its three comprising 
blocks as follows:

•  The weight change block (gnr up
1  

and gnr dn
1 ). gnr up

1  generates 
the trace left by the post spikes and 
samples this trace everytime a pre 
spike occurs. The sampled values 
are further reflected proportionally 
in the weight change V w∆  decrease. 
Similarly, gnr dn

1  converts the pre 
spikes into a pre trace that is sampled 
by post spikes. as a result, a pro-
portional increase of weight change 
V w∆  is induced. as illustrated in 
figure  5, V w∆  increase is smaller 
than its decrease, due to smaller FIGurE 4 GNR-based synapse circuit schematic.

FIGurE 3 Synaptic weight increment/decrement (∆w) derivation via STDP rule.
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Vpre  trace sampled values in the  
former case.

•  The PSP amplitude modulation block 
(gnr up

2  and gnr dn
2 ). This block 

modulates the amplitude of every pre 
spike with the variation amount given 
by the weight change V w∆ . figure 5 
displays the amplitude modulated Vpre 
signal Vamplitude with amplitude decre-
ments, i.e., zoomed-in peaks,consistent 
with the weight change V w∆ .

•  The PSP signal generation block 
(gnr up

3  and gnr dn
3 ). The synapse 

output signal VPSP  with amplitude 
proportional to the Vamplitude  signal 
and exponential temporal dynamics 
is finally generated. for the example 
considered in figure  5, a zoom on 
VPSP  peak values reveals depression 
dynamics, in line with the expecta-
tions for the post-before-pre spike 
pairings case.

figure 6 depicts the gnr topologies 
of the proposed graphene-based synapse 
devices, which we identified by means of 
an atomistic model based Design Space 
exploration (DSe) process. Concerning 
the interface trap profile for the atomistic-
level graphene-based device modelling, 
we assumed an interface trap density of 
2 363 1013 2 1. � � �cm (eV)  and a trap-
ping/detrapping time constant of 
1 6. ms   [26], [27]. note that to get 
proper synaptic behavior, each device has 
to deliver a certain functionality, i.e., con-
duction map, but more topologies can 
provide the same conduction map; thus, 
other than the gnrs in figure  6 may 
also be appropriate.

SynapTic adapTaTion
The dynamics governing timing depen-
dent synaptic plasticity may vary consider-
ably across synapse types and brain 
regions [34]. Such diversity is believed to 
be reconciled though a variety of underly-
ing modulatory mechanisms, among 
which the variation of the PSP amplitude 
(though STDP adaptation dynamics in 
particular) and of the overall PSP tempo-
ral dynamics are considered key adapta-
tion determinants [35].

To control the PSP amplitude varia-
tion ∆w , four control parameters, i.e., A+,  
A− , ��, and �� (as defined in equation 

(1)), are typically employed for pair-wise 
STDP. The amplitude variation ∆w  spec-
ified by the STDP rule is an exponential 
function, and so, A� �/  controls the 
amplitude of the exponential, while �� �/  
controls the exponential decay. for pro-
posed gnr-based synapse, A+  and A−  
can be adjusted separately via the back-
gate voltages of gnr up

1  and gnr dn
1 , 

respectively, denoted in figure  4 as 
Vctrla+  and Vctrla- . a coarse grain con-
trol common to both A+  and A−  is 
possible as well by applying a top gate 
voltage Vctrla  to gnr dn

2 . figure  7(a) 
exemplifies the gnr-based synapse 
STDP weight change for three different 
A+  and A−  settings. The time constants 
��  and ��  are kept constant in all three 
cases. The decaying behaviour of ∆w  for 
the proposed gnr-based synapse is 
induced by the trapping/de-trapping 
phenomena manifested by top-gate oxide 

defects  [12],  [24]. figure 7(b) exempli-
fies the gnr-based synapse STDP weight 
change for three different ��  and ��  set-
tings, while keeping A+  and A−   
constant.

PSP signals can be either excitatory 
(positive PSP) or inhibitory (negative 
PSP), depending on the neurotransmitters 
binding to synaptic receptors. Since differ-
ent types of synaptic receptors are respon-
sible for different temporal dynamics of 
the PSP signal, the ability to modulate the 
PSP behaviour is essential. figure  7(c) 
displays the PSP signals generated by pro-
posed gnr-based synapse, for various 
temporal dynamics which correspond to 
different types of receptors: aMPa and 
nMDa (excitator y), gaBaa  and 
gaBaB (inhibitory). The temporal 
dynamics afferent to each of the four PSP 
curves are induced by the gnr up

3  trap-
ping/de-trapping phenomena, by 

FIGurE 6 Graphene-based synapse GNR topologies.

FIGurE 5 GNR-based synapse operating principal exemplification for anti-causal pairings  
of post-pre spikes (for inducing LTD).
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considering different trapping/de-trap-
ping time constant values.

area and enerGy evaluaTion
To have a better view on the synapse 
implementations landscape and the 
potential of proposed graphene-based 
synapse for energy efficient, low area neu-
romorphic systems, we evaluate compara-
tively in Table  1 the figures for 
state-of-the-art artificial synapses imple-
mented in different technologies, e.g., 
CMoS, memristor, ferroelectric tunnel-
ing junctions, graphene.

as transpires from Table 1, from the 
area point of view, compared to CMoS 

implementations, the emergent technolo-
gies lend themselves to more compact 
implementations, which makes them bet-
ter suited for high density of integration 
associated with large scale neuromorphic 
systems. from the energy consumption 
standpoint, there are designs which target 
the biologically plausible time-scale (ms), 
while other state-of-the-art synapse 
implementations target fast non-cortical 
processing, and operate on orders of 
magnitude higher frequency with a much 
lower energy envelope when compared to 
the brain synapse energy.

The proposed gnr-based synapse 
requires ≈ 170 2nm  active area, operates 

at low voltage (200mV) and has an ener-
gy expenditure of ≈ 0 5. fJ  per synaptic 
event (plasticity modulation and  
spike transmission) for ns  timescale. 
Thus, accelerated computing with a 
speed-up factor of six orders of magni-
tude can be achieved by using the pro-
posed gnr-based synapse. in addition, 
the energy savings 20×  smaller relative 
to the brain synapse, and the small real-
estate requirements ( ≈ 170 2nm ), are 
indicative of desired characteristics for 
large scale neuromorphic systems. func-
tionality-wise, the proposed gnr-based 
synapse can emulate STDP synaptic plas-
ticity, which, depending on the synaptic 

PlastIcIty tEchnology oPEratIon VoltagE arEa EnErgy/sPIKE sPIKE tImEscalE

Brain synapse - - Spike: [−40,70] mV - 10 fJ ms

2020 [28] STDP CMOS 65nm 1.2 V - 1…50 fJ μs

2015 [29] STP, LTP CMOS 28nm 1 V 13 μm2 2.3…30 nJ 10 μs . . . 1 ms

2020 [30] STP, LTP, SRDP Memristor 1 V - - 20 μs

2017 [31] SRDP, STDP Memristor 3 V 0.01 μm2 - μs . . . ms

2020 [32] LTP PCM 2.5 V - 5…30 pJ ns

2020 [33] STP, LTP, STDP FTJ 1.8 V - 0.2…146 fJ 50 ns

2018 [16] LTP, STDP Graphene 100 mV 900 nm2 40 aJ . . . 500 fJ 100 ns . . . ms

Proposed STP, LTP, STDP Graphene 200 mV 170 nm2 0.5 fJ ns

STDP - Spike Timing Dependent Plasticity; LTP - Long Term Plasticity; STP - Short Term Plasticity; SRDP - Spike Rate Dependent Plasticity PCM - Phase Change 
Memory; FTJ - Ferroelectric Tunneling Junction

area and energy consumption for proposed and state-of-the-art artificial synapsest a B l E  1

FIGurE 7 Synaptic adaptation of GNR-based synapse. (a), (b) PSP amplitude via STDP dynamics. (c) PSP temporal dynamics.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 28,2025 at 08:16:13 UTC from IEEE Xplore.  Restrictions apply. 
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retention time period, can lead to either 
short-term or long-term plasticity. The 
proposed design also features a rich set of 
STDP adaptations via external control 
voltages, resulting in various PSP ampli-
tude and temporal dynamics. Such versa-
tility makes the proposed gnr-based 
synapse particularly attractive for func-
tionally diverse neuromorphic platforms.

roBot navIGatIon casE study
To demonstrate the ability of our pro-
posal to deliver proper synaptic plasticity, 
we assume as the discussion vehicle, a 
simple case of robot navigation towards a 
target within a confined environment 
with obstacles that shouldn’t be collided 
with. The environment under consider-
ation is a 500 500×  pixel planar area 
inside which polygonal obstacles are ran-
domly placed. as illustrated in figure 8, 
the moving vehicle is a 2-wheel differen-
tial drive robot with 30 30×  pixels area. 
as concerns the odometric ability, the 
robot is endowed with (i) a compass that 
measures its orientation relative to the 
earth magnetic north and (ii) five ultra-
sonic sensors oriented towards robot’s 
front, front left, left, front right, and 

right directions, that can sense the prox-
imity of objects (environment walls, 
obstacles, target) within a distance range 
of 45  pixels. additionally, we assume 
that the distance and orientation towards 
the target are known at all times. The 
robot can move 10  pixels towards the 
target, or relative to its own orientation 
10  pixels to its left or right, and 20  
pixels backwards. Starting from an initial 
position, the robot’s goal is to reach the 
target position while avoiding obstacles. 
a co-simulation setup was employed for 
this context, and the spiking neural net-
work was simulated by means of SPiCe 
in Cadence, while the remaining simula-
tion environment was written in C. for 
the gnr-based devices, the electronic 
transport properties are calculated using 
the atomistic level Tight-Binding  

hamiltonian in order to capture the 
atomic interactions and the external 
potentials, the non-equilibrium green 
function (negf) for solving the 
Schrödinger equation, and the landauer-
Büttiker formalism to derive the gnr 
current and conductance  [36], [37]. 
Solving self-consistently a 3D Poisson 
equation yields the potential distribution 
on the graphene sheet, and computing 
the equivalent voltage shift of the 
trapped/detrapped charges at the gra-
phene interface with the top gate oxide 
accounts for the hysteresis inducing phe-
nomena  [24]. To enable physical-level 
accurate and time effective simulation, a 
Verilog-a model is employed, with look-
up tables containing extensive gnr con-
duction simulation data derived with the 
aforementioned methodology.

FIGurE 8 Navigational environment and robot’s odometry and movement.

The robot can move 10 pixels towards the target,  
or relative to its own orientation 10 pixels to its left  

or right, and 20 pixels backwards.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 28,2025 at 08:16:13 UTC from IEEE Xplore.  Restrictions apply. 
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KinemaTicS
The robot’s state at a given time moment 
t , p t( ) , can be described by its center 
mass Cartesian coordinates ( , )x y  and 
orientation θ  with respect to magnetic 
north, as p t x y T( ) � � �� . The kine-
matics of the 2  wheel differential-drive 
mobile robot, that describe the state tran-
sition between two consecutive time 
moments (p t p t p( ) ( )� � �1 ), is expressed 
in the Cartesian coordinates as
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The robot’s linear and angular velocities, 
v and ω, respectively, are given by
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where ωL  and ωR  are the angular left 
and right wheel velocities, L  is the dis-
tance between the wheels, and r  is the 
wheel radius.

naviGaTion STraTeGy
figure  9 illustrates the block scheme of 
the robot navigational flow, where the 
obstacle avoidance navigational actions 
are inferred by a spiking neural network 
within a reinforcement learning approach.

from the initial position, the robot 
first rotates itself towards the target. The 
ultrasonic sensor readings are processed, 
and while they indicate no obstacle prox-
imity within 45  pixels, the robot repeat-
edly moves 10  pixels towards the target. 
otherwise, if an obstacle is detected by 
the sensors, the Snn is activated to com-
pute the best course of movement in 
order to avoid the obstacle, i.e., move  
10 pixels to either left or right, or 20 pix-
els backwards. When moving in the direc-
tion inferred by the Snn, if the robot has 
successfully avoided the obstacle, a 
reward is applied to the Snn, i.e., the 
synaptic pathways that lead to the suc-
cessful obstacle avoidance direction are 
potentiated. in the case of colliding with 
the obstacle, a penalty is applied to the 
Snn to depress the synaptic connections 
that lead to the erroneous Snn move-
ment direction output, and thus discour-
age such Snn outcome in the future. 
Upon obstacle collision, the robot posi-
tion and orientation are reset to their ini-
tial values for a new trial. after a certain 
number of trials, the Snn learns the 
directions that lead to obstacles avoidance 
and the target is finally reached.

Snn reinforcemenT learninG
reinforcement learning promotes the 
ability to select actions in response to the 
contingencies provided by the environ-
ment to one’s subjective benefit. it is a 
meaningful learning paradigm for robotic 
navigation scenarios, as when operating in 
environments about which complete 
knowledge is unattainable, the robot’s 
correct action for each state is not known, 
but rather, it has to be inferred through 
trial-and-error interaction with the envi-
ronment, i.e., from post factum rewards 
and punishments. recently, neuroscience 
studies have shown that certain decision FIGurE 10 SNN for obstacle avoidance.

FIGurE 9 Robot navigational flow.
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making processes in the brain rely on 
some form of reinforcement based on 
reward  [38]. one hypothesis is that the 
reward is conveyed via dopamine neurons, 
and can modulate the synapses STDP 
plasticity [39], [40]. for the robotic navi-
gation task, we employ an Snn and rein-
forcement learning to infer the obstacle 
avoidance action given the current robot 
state. The Snn as illustrated in figure 10, 
has two layers of graphene-based leaky 
integrate and fire neurons [17] (1st  layer 
which encodes the robot’s state space 
( , , )x y θ , and 2nd  layer which encodes 
the action space (move left, move right, 
move backwards)), and an extra layer of 
dopaminergic neurons  [41]. To relay the 
robot state information to the Snn, the 
500 500×  pixels environment is quan-
tized into 100 50 × 50 pixels cells. each 
such cell j  corresponds to one L1   
neuron, which receives as input a spike 
train with an inhomogeneous Poisson 
process firing rate Fj  given by

F F exp
d d

c
j

j� � �
��

�

�
�

�

�

�
�

( )2

2
 (5)

where d  is the robot’s distance to target, 
dj  is the cell j  center point distance to 
target, and F  and c  are design con-
stants  [42]. The Snn output neuron 
with the highest firing rate will determine 
the robot’s next movement direction in 
order to avoid the obstacle. a reward or 
punishment is further applied depending 
on successful obstacle avoidance as a 
result of the Snn inferred action.

figure  11 presents the environment 
configurations we utilized for evaluating 
the Snn synaptic modulation ability for 
obstacle avoidance learning and the 
obtained robot trajectories. for every 
environment, multiple trials are repeated, 
and the number of collisions is recorded. 
a trial resets the obstacle pose to the initial 
position and ends when a collision with an 
obstacle occurs or when the target is 
reached. in the the environment with two 
obstacles in figure 11(a), the robot collid-
ed four times across four trials until the 
target is first reached. its four navigation 
paths across the trials are depicted in red. 
after first reaching the target, subsequent 
navigation trials are collisionless. fig-
ure 11(b) illustrates an environment where 
the robot has 0 5.  probability to go left or 
right when detecting the second obstacle 
and the Snn managed successfully learn 
the two possible paths to the destination. 
The two paths lengths however are not 
equal, so it might be advantageous to 
prime the robot’s reaction towards the 
shorter 2nd path, which can be potentially 
achieved by applying a reward at the end 
of each trial for which the target was 
reached via path 2. in this way, the robot 
will eventually learn to follow path 2 only, 
but we did not follow this avenue howev-
er, as navigation strategy optimization 
(e.g., distance minimization) is outside the 
scope of this paper. for this environment, 
the robot required 14  trials to first reach 
the target. figure 11(c) environment has a 
more complex obstacle setup with a  

concavity where the robot can get stuck, 
but despite this the robot first reaches the 
target after 10 trials. our simulations indi-
cate that collision avoidance behavior per-
formance improved across trials, which 
clearly demonstrate that the proposed 
gnr-based synapse can be successfully 
utilized for Snn implementations.

conclusIon
in this paper, we propose a generic gnr-
based synapse able to emulate Spike Tim-
ing Dependent Plasticity (STDP) and 
provide Post-Synaptic Potential (PSP) 
amplitude and temporal dynamics associ-
ated with different synaptic receptors 
(aMPa, nMDa, gaBa). Besides func-
tional versatility, the proposed gnr-
based synapse can potentially necessitate 
small active area (≈ 170 2nm ), operate at 
low supply voltage (200mV), and has 
low energy consumption (0 5. fJ) when 
operating in the ns  non-cortical, fast 
processing mode. With respect to a bio-
logical synapse, the gnr-based synapse 
can enable six orders of magnitude faster 
processing, while consuming 20×  less 
energy. all these characteristics are highly 
desirable for neuromorphic systems with 
high density of integration. We validated 
the synapse operation by means of SPiCe 
simulations in Cadence and demonstrat-
ed its synaptic plasticity abilities by imple-
menting a Spiking neural network 
(Snn) with reinforcement learning capa-
bilities for obstacle avoidance robotic 
maneuvering within a confined space.

FIGurE 11 SNN reinforcement learning generated robot traces.
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