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Abstract

Minimum-time optimisation has been used extensively in motorsports, such as Formula One racing. Using
minimum-time optimisation, the ideal racing line as well as control strategies such as braking strategies can
be found. This is interesting, as Reijne et al have shown that cyclists apply diverse strategies, specifically
during a descent [51]. With minimum-time optimisation, it is possible to compare a riders performance to
the theoretically optimal performance. The results from such optimisations can be used to help with training,
as well as improve and test equipment design.

This work describes a free-trajectory steady motion control optimisation for the descent of elite cyclists. The
prediction of the individual descent performance was formulated as an optimal control problem and solved
with a direct approach to find optimal cornering and braking strategies which yield the shortest descent time.
While the state equations were kept simple (3 variables only), more elaborated performance limits were rep-
resented by g-g diagrams. Such diagrams represent the longitudinal, lateral and combined acceleration limits
for cyclist. A method to numerically derive g-g diagrams for cyclists driving on 3D tracks was designed. In this
method, a tire model, power limit and steady motion equations for a cyclist are used to determine the control
space. The bicycle and cyclist are modelled as a single rigid body, the tire friction model is simplified as a
friction circle, and the wind speed is considered to be zero at all times. As for the 3D road geometry effects,
all possible effects are considered in the method, except from lateral road curvature. The resulting method
provides g-g diagrams as a function of 8 local geometry and state variables.

The optimisation model was tested against the velocity and trajectory output data measured on Team Sun-
web professional cyclists at the L218 descent in Germany. The resulting trajectory was similar to the trajectory
ridden by the elite cyclists. The velocity profile showed large differences, which are a result of a combination
of inaccurate track data, differences in friction coefficient estimation, and safety margins applied by the cy-
clists. The results show that descent performance can be improved, as even when adhering to safety margins
harder braking is possible. Overall, the model responds as expected to changes in track, environment and
bicycle/rider parameters.

Steps can be made towards better implementation of the g-g diagrams in the minimum-time optimisation.
Furthermore, a more accurate tire model and power model can improve the model and extend its applica-
tions. The presented model can be used for qualitative descent analyses, and facilitate the training of elite
cyclists.
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1
Introduction

Sport is continuously evolving. Innovations in gear, food schemes, and personal training plans are the way to improve
performances. One of those innovations is minimum-time optimisation. In both physical sports and motorsports this
technique is used to find out how the best racing time can be achieved. When Max Verstappen is preparing himself for a
race in his VR simulator, his performance is compared to an ’optimal’ performance. An optimal racing line and a speed
indication have been calculated through minimum-time optimisation.

1.1. background
Minimum-time optimisation was used in motorsport since approximately the sixties [63], although its first shown suc-
cess was in 1989, when computers could be deployed and predictions got close to reality [19]. An example of this first
computer generated result is found in figure 1.1. In motorsport, it is used to determine the racing line and accelerations
along the track. Later on, the idea was extended towards physical sports. In physical sports, it is used to find the opti-
mal power distribution during a race. This is often called an optimal pacing strategy. There are several ways in which
minimum-time optimisation can be used. First of all, it can be used to understand what happens during a race and to
find out which factors have the greatest influence on the total lap-time. For example, why is it better to slow down earlier,
or why does a parabolic power distribution yield the best results? Secondly, it can be used to theoretically ’test’ new gear
before it is actually made. Furthermore, the pros and cons of both gear and sportsman parameters (mass, tire materials,
etc.) can be explored. This is used a lot in formula-1 racing, as only a few test drives are allowed to determine the best
setup. Lastly, the information can be used to train sportsmen to perform in the theoretically best way.

Figure 1.1: A computer generated optimal trajectory on a section of the Paul Ricard circuit, said to be first digitally computed trajectory
and control optimisation. Figure from [19]

1.2. motivation and goal
While minimum-time optimisation can help to improve performances in sports, it has not been used much in physical
sports so far. In motorsport it has been used extensively. Can we alter and apply the methods used in motorsport to use
them on cycling? In an ideal case, the racing line and acceleration/deceleration behaviour for a certain course can be
found to train elite cyclists with. This is interesting, as Reijne et al have shown that racing lines differ quite a bit between
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professional cyclists, specifically during a descent [51]. Furthermore, theoretical changes to the bicycle and driver can
be analyzed without any risk of falling and injury. The cyclist could be modelled as a motor vehicle, where the "motor"
consists of all propelling factors. During a descent, the main propelling factor is gravity, and the anaerobic capacity is left
intact. This means that optimal pacing is not of much interest, and out of the scope of this project. A minimum-time
optimisation could help improve the performance of cyclists to new extents. Therefore the goal for this project is the
following:
to build a free-trajectory minimum-time optimisation model for the descent of elite cyclists.
There are two main challenges that arise from this goal: (1) applying free-trajectory minimum-time optimisation on cy-
cling, and (2) transferring the model from 2D to 3D to create a general model that can be used for a descent scenario.

1.3. state of the art
In literature, several different approaches for minimum-time optimisation can be found. Over time, new possibilities
came about, as a result of the development of computers. In this section, an literature overview is given on all the topics
in which choices are faced when solving a minimum-time optimisation problem. The majority of the information is also
presented in the literature study on optimal control approaches for minimum-time optimisation in sports, by the author
of this thesis. The reader is invited to request the literature study from the author 1.

1.3.1. fixed vs free trajectory
In practise, there are two main methods used for minimum-time optimisation. The quasi steady state (QSS) approach,
and the transient optimal control problem (OCP) approach. The first minimum-time optimisations were done following
the QSS approach, the transient OCP approach has been used since the start of the new millennium [16]. Both the QSS
approach (e.g. [11, 19, 65]) and transient OCP approach (e.g. [4, 16, 23, 31, 52, 61, 66]) are still widely used. The current
state of the art approach combines those two categories and benefits from both their advantages (this is illustrated in
figure 1.2) [48]. Another method is the fixed trajectory OCP, that is used to determine optimal pacing strategies for athletes
(e.g. optimal pacing strategies for cyclists: [22, 38, 69]).

Figure 1.2: An orderly overview of minimum-time optimisation approaches

quasi steady state approach-
In this approach a predetermined trajectory is taken. This trajectory may come from data of the fastest driver or athlete
taken during a top level race. It can also be a specific height profile (e.g. for cycling), or a route predefined for the compe-
tition.
In vehicle sports the approach is to first find the apex. An apex is the location in a turn where the lateral acceleration is
maximal [48]. It is often assumed to be located to be at the part of the turn that has the largest curvature. Here, the ve-
locity of the vehicle is assumed to be the lowest. Between these low velocities control strategies are developed to achieve
the highest average speed in between. To do so, an initial guess of the states is used to calculate the optimal controls
(the accelerations), and the states are updated using the results. This is iterated until the states have settled. The state
equations are steady state equations of motion, which do not take into account time dependencies and response time
[11]. It is assumed that the steady state is reached instantly. In this thesis, the motion that results from this assumptions is
referred to as steady motion. As a final result, lateral and longitudinal accelerations or power output at each (discretised)
point are found.
The benefit of this method is that the calculations are relatively simple. The downsides are the inaccuracy of the results if
the apexes are incorrect, the less accurate representation of the dynamics due to the steady motion assumption and the
large amount of iterations necessary to find a steady solution.

1e-mail address: astridvdniet@outlook.com
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transient OCP approach-
In a free-trajectory approach, the goal is to find optimal trajectory and optimal controls simultaneously. It is done by
describing the fully dynamic model as a set of first order differential equations. In practise, the transient OCP approach
often involves many degrees of freedom [52]. This makes the computations complex.
The benefit of this method is that the trajectory is found, so that no further data acquisition and analysis of for example
driver data is needed. The downside is that the calculations can be complex and computationally expensive.

free-trajectory OCP with QSS constraints-
Every minimum-time problem in which the trajectory still has to be determined (free trajectory) was solved using a fully
dynamic model. Until last year. Then, a new approach was suggested [48]. This approach is a combination of the QSS
approach and the transient OCP approach. It describes an optimal control problem, but the state equations do not de-
scribe the full equations of motion of the vehicle. Instead, they describe a simple model that shows how inputs are related
to positioning and movement on the road. The complex vehicle dynamics are taken into account via one constraint: a
g-g diagram. An example of a g-g diagram can be found in figure 1.4. A g-g diagram describes the limits of acceleration.
The name comes from the gravitational acceleration, that is indicated with the letter ’g’. The diagram shows the limits of
acceleration divided by g in two directions, hence g-g diagram. This way, the diagram is the same regardless of the use
of imperial or metric units. The concept has been used academically since the 1970’s [60].The g-g diagram is composed
using quasi steady state equations and tire models, and describes the vehicle performance. This model takes the best of
both worlds. Because most of the vehicle dynamics are taken into account implicitly through the constraint, only a few
states are solved in the OCP. This means that computational effort is relatively low, while having the possibility of solving
for the trajectory. Therefore, the free-trajectory OCP with QSS constraints approach is used for this project.

1.3.2. 2D vs 3D
In literature, only two studies have undertaken minimum-time optimisation while accounting for a 3D track and the
dynamics that it imposes [24, 45]. The study by Leonelli and Limebeer shows that inclusion of 3D effects like banking
(lateral slope of a road) can result in lap-time differences of 5% for relatively flat tracks, see figure 1.3. The largest effect
is seen for turns with a large banking angle and a small turn radius. Here, the normal force is high, increasing the friction
force such that turns can be driven with higher speeds. Since mountain roads almost solely have turns with a small radius
and large banking angle, it is important to include banking effects in the minimum-time optimisation model. Of course,
forward elevation is also a crucial 3D effect that should definitely be considered, because of the extra propulsion provided
by gravity.

Figure 1.3: Comparison between 2D and 3D simulation. The dash-dot line represents the speed in the 2D simulation, the solid line
represents the speed in the 3D simulation. The dashed line represents the build up of the lap-time difference. Figure from [45]

1.3.3. OCP solving methods
As the minimum-time optimisation approach that is chosen makes use of optimal control problems, it is necessary to
determine which solving method can be used. Both indirect and direct methods can be used. With the indirect or vari-
ational approach, Lagrangian or Hamiltonian formalism is employed to convert the control problem to a (two-point)
boundary value problem following the Pontryagin Maximum Principle explicitly [16]. The indirect method requires an
estimation of the solution that is already fairly accurate. Such estimations are scarce, as data acquisition of the accelera-
tions of cyclists is scarce. Furthermore, control history is assumed to be continuous. This is a problem, specifically for the
case of a cycling descent, as switching from acceleration to braking can happen rapidly and discontinuously. Therefore,
the indirect method is nearly impossible to use for this specific case. Another method, the direct method, is applied.
The direct method converts the OCP into a non-linear programming (NLP) problem. In this method the time-dependent
(or space dependent) unknown variables are approximated by parametrised equations. Then, parameters are treated as
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optimisation variables and the problem is transcribed to an NLP [49]. There are various NLP solvers available to receive
a solution. In this project, IPOPT (Interior Point OPTimiser) is used as it is freely available and implemented in popular
optimisation applications. In a Hock-Schittkowski benchmark test it is close to the fastest solver available [40].

1.3.4. online versus offline
Minimum time optimisation is mostly used to find an offline solution, opposed to an online solution [28]. An online solu-
tion is found and updated while the control takes place, during a race or on the road. Most minimum time optimisations
are computationally expensive and take a long time, so they cannot be deployed online. While the utility of offline solu-
tions is great, sometimes online and real-time solutions are necessary, due to rapidly changing scenarios. For instance, if
the racer is not able to follow a previously calculated path, how should it recover? In practise, not many successful online
minimum time optimisations exist so far [27, 64]. Since optimal path finding is new for cycling, the first goal is to find an
offline solution. Online solutions can be the next step.

1.4. approach
The approach as suggested by Veneri and Massaro was chosen to work with: a free-trajectory OCP with QSS constraints
[48]. As control inputs lateral and longitudinal accelerations are used, instead of the standard bicycle control inputs
(steering, leaning, pedalling/braking). As the lateral (stabilisation) dynamics are not of interest, steady motion is as-
sumed. The g-g diagram expresses the steady motion constraints for the inputs. A g-g diagram describes the maximum
lateral and longitudinal accelerations possible for a certain vehicle driving at a certain speed. Implicitly it describes all of
the steady motion vehicle dynamics as well as tire dynamics within one figure. Such figures are a standard within motor
sports for describing vehicle performance, hence the synonym ’performance envelope’. An example can be seen in figure
1.4.

Figure 1.4: An example of a g-g diagram of a race car. A standard way to look at the diagram is through polar coordinates. The angle
starting from the positive ay axis is called the adherence orientation α (anti-clockwise rotation is positive). The corresponding accelera-
tion limit is called the maximum adherence radius, rmax . The magnitude of any combination of lateral and longitudinal acceleration is
referred to as the adherence radius r . Figure from [48]

The optimisation variables are speed, lateral track position and the orientation with respect to the track. This way, the
movement of the cyclist is directly related to the track geometry. The optimisation constraints are listed below:

• the cyclist is constrained to move between the left and right track boundaries.

• the g-g diagrams constrain the inputs (accelerations).

The optimisation objective is to minimize time, therefore the cost function is simply the time cost to ride the track from
start to finish line.
Because it is the objective to model a descent, a 3D track geometry description will be used. As this project is a first
exploration into combining g-g diagrams and 3D road effects, the focus will be on producing an offline model.

1.5. reading guide
In chapter 2, the model description and the optimal control problem will be described. The g-g diagram, the most impor-
tant constraint of the OCP, is described in chapter 3. The constraint equations for the g-g diagram are gradually build up,



1.5. reading guide 5

forming a non-linear programming problem. A solving approach for the NLP is proposed. In chapter 4, the g-g diagram
model is analysed for parameter sensitivity. A case study of the L218 mountain road in Vossenack, Germany, is presented
in chapter 5. Finally, the discussion, recommendations and conclusion about the presented free-trajectory steady motion
model are discussed in the last chapters.





2
Optimal Control Problem

The goal is to determine the optimal accelerations of a cyclist during a descent. This is done through a minimum-time
optimisation for a 3D road. To be able to describe vehicle movement on a 3D road, first a track model needs to be defined.
For this project, a ribbon road model is used. Then, state equations are set up for a cyclist moving over this ribbon road.
Finally, the complete optimal control problem is formulated.

2.1. track description
Since the movement of the cyclist is (assumed to be) constrained to the road, it is important to define a road geometry de-
scription. There are several ways to model a 3D track. One well known way to do this is using B-splines. This is often used
for road tracking in automated driving. However, b-splines describe only the road boundaries, and say nothing about
the space in between. In the case of minimum-time optimisation, the orientation of the cyclist in space is important.
Therefore, a ribbon is used to model the road. The benefit of a ribbon is that it is build up out of a chain of planes, so that
the orientation of the road is known. A ribbon road assumes that there is no lateral curvature. Thus, lateral curvature is
not taken into account when using the ribbon model.

2.1.1. curve geometry

Figure 2.1: A space curve with the curve
frame C.

A ribbon is an extended space curve. A space curve is a point set x in space R3

that can be split into subintervals that can be described by (r ≥ 1) differentiable
functions [44].

C = {x(s) = [x(s), y(s), z(s)] ∈R3 : s ∈ [s0, s f ]} (2.1)

The distance over the curve is defined as s. At every s, a right handed coordinate
system can be defined. In literature this is often called a moving trihedron [32],
here it will be referred to as the curve frame C (see figure 2.1). The frame consists
of the unit vectors t , p and b. t is the tangent vector to the curve. The direction
of t depends on the direction of movement over the curve, indicated by an in-
creasing value of s. Principal normal vector p points towards the center of the
osculating circle. The osculating circle can be seen as the best circle that approx-
imates the curve at a certain location s [34]. The plane in which the circle resides
has the fitting name ’osculating plane’ (osculare is latin for kissing). The distance
from the center of the osculating circle at s to the point on the curve at s is called
the radius of curvature ρ. Often, the inverse of the radius of curvature is used.
This is called the curvature, κ. The binormal vector b is the cross product t ×p .
It is therefore normal to the osculating plane.

2.1.2. ribbon geometry
A ribbon or a strip can be seen as a curve in space, that has been expanded with a width and twist [32]. The ribbon has a
spine, which can be the center line in the road. The ribbon is then built up out of planes tangent to the spine, ensuring
that lateral road curvature is not present (figure 2.2). The entire ribbon can now be described with help of the notions
curvature κ, torsion τ and twist β. Curvature describes the curving of the spine in the osculating plane. Torsion describes
the extent to which the curve deviates from its osculating plane. With twist, camber can be described. The camber vector
n lies in the plane normal to the tangent vector t of the spine. In this project, the direction of the camber vector is chosen
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such that it always points to the right side of the road. The camber vector is rotated with a twist angle β with respect to
the principal normal p 1. Together with the tangent vector and a ribbon normal vector m, a trihedron moving over the
ribbon is defined. This is the ribbon frame B.

Figure 2.2: A ribbon generated by a spine curve C . The spine describes torsion and curvature, camber is described via twist angle β(s).
Figure from [32]

A different way to describe the orientation of a single plane of the ribbon is through Euler angles. Those will be used
later on, as it is an easy manner to describe elevation and banking with respect to the iN ertial frame. For the complete
parametrisation of a ribbon plane three Euler angles are needed. However, the direction of the center line within the
xy plane is not necessary for further calculations. We will see later on, that only the relative orientation with respect to
gravity matters. Therefore, only two angles are introduced,ψ and γ. ψ describes the angle between the tangent and the xy
plane of the inertial frame N , or forward elevation. γ describes the angle between the camber vector n and the xy plane
rotated by ψ, or banking. The Euler angles are represented corresponding to the right handed coordinate system.

2.2. model description
The goal is to build a free-trajectory minimum-time optimisation model for the descent of elite cyclists. In such situa-
tions, forward elevation is one of the main propelling factors. Banking is often positive 2 and can cause a higher normal
force. Therefore it is important to describe these road aspects and take them into account. The ribbon geometry is used
to describe the 3D road. The cyclist is constrained to move over this ribbon surface. A bicycle with a cyclist is a complex
system, the bicycle itself consists of multiple rigid bodies that are connected through hinges [42]. For the sake of simplic-
ity, in this model the cyclist and bicycle are together regarded as a single rigid body that moves over a ribbon surface. The
number of degrees of freedom can be found when looking at movement constraints.

1 body 1 ×6 = 6 coordinates
2 contact points 2 ×1 = 2 coordinate constraints

total = 4 independent coordinates

The independent coordinates together describe the location of the center of mass and the orientation of the rigid body
in space. The location of the cyclist in space can be described with two variables. Variable s describes the distance over
the center line of the ribbon. Variable n describes the lateral offset from s in the ribbon plane. The rigid body moves over
the ribbon surface, so it is constrained in height. The orientation of the cyclist can be described with two variables. χ
describes the orientation of the cyclist with respect to the center line, in the ribbon plane. φ describes the roll angle of
the cyclist around its longitudinal axis. As part of the minimum-time optimisation approach, steady motion is assumed.
In the case of cycling, this specifically means that the roll angular acceleration is assumed to be zero. This results into φ

not being a free variable. Instead, it depends on the other variables and the local track geometry. Therefore the accessible
configuration space is three-dimensional and can be described through the configuration variables:

x = (s,n,χ)T (2.2)

This is illustrated in the boxed page "Bicycle orientation: step by step". The velocity variables are commonly found
through differentiating the configuration variables. However, the speed of the cyclist projected over the center line ṡ is

1β ranges from −0.5πto0.5π. The other possible values of β are mirrored into this range, for those values the corresponding curvature
for that point s becomes negative. This is done to still receive the correct values for β̇, for our definition of the camber vector

2banking is called positive when the outside of the road in a turn is higher than the inside of the road.
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not very interesting. More interesting is the speed of the cyclist in its own direction, v , as it shows directly what the cyclist
does. With v , the speed at the contact point of the wheels with the ground is meant, not the speed of the CoM (Center of
Mass). This is done as a simplification, that is further discussed in section 2.3 and appendix B. Furthermore, the derivative
of n can be described using the other variables: ṅ = si n(χ)v . Therefore, ṅ is not an independent variable. That means
that the state vector can be given by:

x = (s,n,χ, v, χ̇)T (2.3)

As control inputs there are ax and ay , that describe the absolute longitudinal and lateral acceleration of the center of mass
respectively. The acceleration is expressed in the driving frame D, so that the direction of ax is longitudinal to the cyclist
and ay lateral along the ribbon plane. Those are the only inputs that the cyclist gives to the motion. The accelerations
together describe change of orientation, and change of speed. az is not (always) zero, but depends on the input and track
variables.

u = (ax , ay )T (2.4)

The acceleration limits can be described through a g-g diagram (more about the g-g diagram can be found in chapter
3). It is assumed that any acceleration within the diagram can be carried out in any sequence. Due to the simplification
of the model of the bicycle and rider, bicycle characteristics like counter steering and weave are not represented in the
model. From acceleration inputs, actual cycling inputs like lean and steering can be determined.
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Bicycle orientation: step by step

The bicycle is positioned on a curve at a certain distance
over the curve s. At its location a curve frame C is defined,
which depends on the geometry of the curve. If the curve
is taken as the center line of a ribbon, a road with a cer-
tain width can be seen as a ribbon. The road does not have
lateral curvature. The ribbon frame that corresponds with
it is twisted around the tangent vector with respect to the
curve frame by twist angle β. The cyclist can have a lateral
position with respect to the center line as well, n. Lateral
translation over the ribbon has the direction of the ribbon
vector n. s and n together determine the position of the
center of mass of the bicycle/rider combination. A rotation
χ around the moved ribbon normal vector m creates the
driving frame D. In this frame we want to know the accel-
erations, as this frame indicates the longitudinal and lateral
directions with respect to the cyclist. Finally, to know the
orientation of the cyclist roll (φ) is necessary as well. The
frame that moves with the cyclist is called the bicycle frame
F . Now, the position and orientation of the cyclist on the
ribbon can be fully described. This can be done through
adding three position vectors.

r CoM/N = r C /N + r D/C + r CoM/D (2.5)

The first vector from the origin of N to the origin of C .

N r C /N =
x(s)

y(s)
z(s)

 (2.6)

The second describes the lateral position with respect to
the center line, pointing from C laterally in the camber vec-
tor direction to the origin of D.

N r D/C = N RB

0
n
0

 (2.7)

The third vector describes the position of the CoM with re-
spect to the origin of frame D, through the roll angle.

N r CoM/D = N RF

0
0
h

 (2.8)
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2.3. optimal control problem formulation
Now that it is clear what the control inputs and the state variables are, a connection should be made between the two.
The transport theorem can be used to find the state equations conveniently, as the motion can be build up out of relative
rotations. Since the control inputs are directed longitudinally and laterally with respect to the cyclist, the D frame is fit to
describe them.

D (
a

)
N = D (v̇ )D + DωD/N ×D v (2.9)

ax
ay
az

=
v̇

0
0

+ DωD/N ×
v

0
0

 (2.10)

Figure 2.3 illustrates how the basis rotation that takes place when riding over the center line can be altered through
changing state variables like the relative orientationχ. The red axis displays the direction of the combined angular velocity
vector DωD/N .

Figure 2.3: A possible configuration of a cyclist on a track. The grey circle depicts the osculating circle at location s on the center line.
The red circle depicts the osculating circle for the cyclist’s motion. Note that direction of the instantaneous axis of rotation differs from
the direction of the unit vector normal to the ribbon.

The goal is to find relations between the state variables and the inputs, but not all the state variables are present in
equation 2.3. Or are they? The angular velocity of frame D with respect to frame N is affected by three different angular
velocities: the absolute angular velocity of the center line of the track, the angular velocity of the twist, and the angular
velocity of the cyclist with respect to the center line. We can write the angular velocity vector ωD/N as a sum of angular
velocities:

ωD/N =ωC /N +ωB/C +ωD/B (2.11)

Here ωC /N can be seen as the angular velocity that is the result of moving over the center line. ωB /C can be seen as the
twist angular velocity of the ribbon frame with respect to the curve frame, andωD/B is the angular velocity of the driving
frame with respect to the ribbon frame, that is a result of the change of the angle χ. The expressions for those angular
velocities involve the state variables, making it clear how the inputs and state variables are related.

DωC /N = ṡ

ρ
D RC

C b (2.12)

And the twist angular velocity can be described as such:

DωB/C = β̇ D RB
B t (2.13)

Finally, the angular velocity of theD frame with respect to theB frame that is caused by a change in the relative orientation
χ can be expressed in the following way:

DωD/B = χ̇ D m (2.14)

When the cross product from 2.10 is combined with equation 2.11, an new expression for the cross product is found:

ωD/N ×v =ωC /N ×v +ωB/C ×v +ωD/B ×v (2.15)

with the help of this expression, a scalar representation can be found for v̇ and χ̇. See appendix A for elaborated calcu-
lations. For χ̇ expression 2.16 can be found. The first part of the expression describes the angular velocity caused by the
lateral acceleration, the second part the angular velocity of movement over the center line. If they are equal, the curvature
of the trajectory of the cyclist is the same as the curvature of the center line.
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χ̇= ay

v
− ṡ

ρ
cos(β) (2.16)

Here ρ stands for the radius of curvature of the center line of the ribbon at s, and β is the twist angle. Furthermore, χ̇
depends on ṡ. For ṡ, the expression by Perantoni was used [24]:

ṡ = cos(χ)v

1− n
ρ cos(β)

(2.17)

The projected speed is not simply the speed in the tangent direction of the road (cos(χ)v). Some compensation needs
to be made for trajectory choices that lead to cutting corners, reducing the length of the cycle trajectory with respect to
the length of the center line. If the cyclist rides more towards the inside of a turn, the radius of curvature of the cyclist
is shorter than that of the center line. Therefore, the denominator corrects for this. This expression for β takes the 3D
direction of road curvature into account. In a situation where a cyclist rides over the top of a hill, β has a value of ±0.5π.
In this situation, the lateral position does not matter for the value of ρ. This is reflected by the formula.
Note that equation 2.17 gives a simplified expression for the projection of the speed of the CoM on the center line. With
this expression, the velocity v has been treated as if the CoM is located in the center of the wheel contact points. This
assumption is made more often in motorsports and cycling [7, 48]. In Appendix B this is described in more detail.

The state equation for v can be extracted from equation 2.10 when looking only at the tangent direction. Per definition,
the direction of the angular velocity of the cyclist with respect to the inertial frame is orthogonal to the tangent vector
when expressed in the D frame. This means that:

v̇ = ax (2.18)

and the last state equation is:
ṅ = si n(χ)v (2.19)

as this information is necessary to reproduce the exact trajectory and motion of the cyclist. Note that this description of
ṅ only portrays the location of the wheels, not of the CoM. As road width constraints should be applied the wheels, this is
convenient for the constraint formulation.
Now how can we find the optimal result? The goal is to find the trajectory and accelerations that lead to fastest track
time. Logically, the fastest time is cycled when the highest average projected speed is cycled. Therefore the objective is to
minimize this cost function:

L =
∫

1

ṡ
d s (2.20)

subject to state equations 2.16, 2.18 and 2.19. Those state equations are formulated in the time domain, but the cost
function is related to the space domain. To convert the state equations to the space domain, the expression for the
projected speed can be used (equation 2.21).

x ′ = d x

d s
= ẋ

ṡ
(2.21)

To complete the OCP description, the path constraints need to be defined. The most important path constraint for this
optimal control problem is the g-g diagram. It is implemented through comparison of the adherence radius r with the
maximum adherence radius rmax (equation 2.22). The formulation of the g-g diagram constraint will be discussed in
chapter 3. The second path constraint describes the road width from the center line (equation 2.23). If the road width is
fixed, the path constraint can alternatively be implemented by bounding the variable n.

r ≤ rmax (2.22)

−nwl ≤ n ≤ nwr (2.23)



3
The g-g diagram

The trick of a free-trajectory steady motion minimum-time optimisation, is to capture all acceleration limits in the form
of a g-g diagram. In this chapter, a model that finds g-g diagrams will be constructed for a cyclist cycling on a road with a
variable orientation with respect to gravity. First, the build-up of a g-g diagram will be discussed. Then, the models and
theory that are needed for the composition of the g-g diagram are reviewed. Finally, a solving approach is suggested to
find the g-g diagram on the basis of those models.

3.1. build-up of the g-g diagram
A g-g diagram shows acceleration limits. Those limits can be found in several ways; experimentally, by recording accel-
erations and establishing which of them are the maximum accelerations that were experienced, or numerically. In the
numerical method, theoretical acceleration limits are found with the help of models that describe the dynamics of the
bicycle, the rider and its tires as well as the influence of the track and the environment on them. In this chapter, the
numerical method will be used to establish a model that finds g-g diagrams for a cyclist, moving in 3D.

Figure 3.1: Free body diagram of a cyclist on the ribbon plane, modelled as a single rigid body. The isometric view is depicted in the
ribbon frame B. The views are projected on the tm plane, the nm plane and the tn plane. Measurements are depicted in blue.

13
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To find the accelerations, the external forces working on the cyclist should be analyzed. Looking at the Free Body Diagram
(FBD) in figure 3.1 there are several kinds of forces working on the cyclist. There are ground contact forces, that prevent
the cyclist from slipping. Then a propelling force caused by pedalling and a drag force working against it. The direction of
the gravitational force is dependent of the orientation of the road, and can either work with or against the cyclist. Lastly,
there are normal forces keeping the cyclist on the track. All those forces can cause moments as well. The g-g diagram
describes acceleration limits; thus, also force limits. For the ground contact forces, this translates into the maximum
forces that can be applied on the tires before they start to slide (losing control). The tire force limits can be translated into
lateral and longitudinal acceleration limits and form a basic shape for the g-g diagram. Figure 3.2 shows a few examples
of how this may look.

Figure 3.2: Examples of acceleration limits based on tire force limits. The shapes come from different models (red is from Pacejka’s magic
formula, yellow and orange the friction ellipse).

These shapes give the absolute maximum lateral and longitudinal accelerations for the cyclist. The other forces and
moments may reduce this shape further, but can never extend them. There are three effects that can ’cut’ the g-g diagram
into shape.

• the propulsion limit

• the stoppie limit

• the braking limit

The typical shapes of those limits are shown in figure 3.3. The resulting g-g diagram is shown as well. Next, the limits will
be explained in more detail.

Figure 3.3: The typical shapes of the different acceleration limits that a cyclist experiences. The magnitudes and positions can change,
but the shape of the diagram will be symmetrical. The braking limit shape is shown for the ’front brake only’ strategy, the optimal braking
limit follows the shape of the tire limit instead.
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The propulsion limit is caused by the sum of all propelling and resisting forces; air drag, the force output of the cyclist
based on the applied power and the part of gravitation that works in the longitudinal direction of the cyclist. It cuts the
upper part of the g-g diagram.

A stoppie is an event in which the rear wheel loses ground contact. This can lead to the cyclist falling over the steering
wheel. It has a higher risk of occurring during a descent, as the moment arm of the CoM to the front wheel ground
contact point is larger in that configuration. A stoppie can be especially dangerous during a descent, when high speeds
are reached.

The braking limit is a shape that forms through the application of a certain braking strategy. Examples of strategies are
’front brake only’ and ’optimal braking’. The first strategy is the standard strategy for elite cyclists. Using the front brake
while braking has much more effect than using the rear brake because there is a lot of load transfer to the front wheel
during braking. The risk it brings is that of a stoppie. The second strategy is the optimal braking strategy. In this strategy,
the optimal braking ratio is applied. What is the optimal braking ratio? According to Biral, it is when the front and rear tire
work at the maximum combined adherence limit [29]. That occurs when the rear and front wheels are equally engaged,
i.e. Fxr /Nr = Fx f /N f . It means that in total, the theoretically maximum available deceleration is reached. However, in
another study the found effect of combined rear and front wheel braking compared to front wheel brake only was small
[47]. There was only a 300 ms difference while attempting to stop a race motorcycle driving nearly 300 km/h. Because of
the load transfer to the front wheel, the rear wheel does not contribute much. It should be considered however that this
study did not include slopes, and they can make a large difference.

As a conclusion, the basic shape of the g-g diagram is based on tire forces. Therefore, the first step towards building a
g-g diagram is to establish a tire model, that determines the outer shape of the g-g diagram. After that, the extra limits
that other forces cause can be found with the steady motion equations. They are found step-by-step, to build-up the
complexity gradually. Finally, a solving approach to find the total g-g diagram numerically is proposed.

3.2. the basis: tire forces
To find the maximum possible accelerations that can be experienced without losing control or falling, we need to know
what the maximum possible forces are. The contact forces with the ground play a big role. They depend on tire charac-
teristics. That is why it is important to understand tire characteristics and to choose an appropriate tire model. When this
basis is established, other conditions that influence the diagram can be analyzed.

3.2.1. tire characteristics
Tires have a large influence on vehicle dynamics. They are the contact between the bicycle and the ground. Tires affect
vehicle handling, traction, and friction forces. They are complex, due to their non-linear material dynamics that differ
with temperature and use (load cycle frequency), that act even stranger due to the threading of the tires. There exist many
different tire models, that are based on experiments or theory [56]. Most are made specifically for car tires. They take into
account certain tire properties, and neglect others. Therefore it is fundamental to know which tire properties bicycles
have, and how they differ from car tires and motorcycle tires. In this section, the tire characteristics are discussed that are
relevant for choosing a tire model.

friction coefficient-
The friction coefficient describes the interaction between the ground and the tires. Finding out what the coefficients
value is for a specific situation is complex due to the complex material characteristics of tires. It differs with tire wear and
ground surface (think of weather conditions, road quality, the presence of sand). One effect of the non-linear material
behavior is the hysteresis effect that rubber experiences in a load cycle. Due to this effect, energy is lost. The energy loss is
commonly described with the term ’rolling resistance’. Mostly, rolling resistance is described with a force that represents
the energy loss.

contact patch-
The area where a tire makes contact with the ground is called the contact patch (illustrated in figure 3.4. It can be divided
into adhesion and slip areas. Part of the tire sticks at a certain moment in time to the ground, while another part slides over
it. Which part sticks and which part slides depends on the geometry of the tire, the ground and the pressure distribution.

slip angle-
When the direction of travel differs from the direction the wheel points in, the angle between those directions is called
the slip angle. When a slip angle is present, there is a lateral tire force. This force is also called the cornering force. The
relation between the slip angle and the cornering force is described by a coefficient called the cornering stiffness. For low
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slip angles, the cornering force is linearly proportional to the slip angle. It is directed perpendicular to the mid-line of the
tire and lies in the road plane.

longitudinal slip coefficient-
This describes the difference of the free rolling wheel angular velocity, and the actual angular velocity. If the magnitude
of the slip coefficient is equal to or larger than one, then sliding occurs (pure slip).

relaxation length-
The delay between the initialization of a slip angle and the lateral force generation due to this slip angle reaching its
steady-state is called the relaxation length [25]. It is not a time constant but a length, that can be seen as the tire rolling
distance until 63% of the steady-state lateral force is reached [17]. It is mainly influenced by velocity, but also by tire
pressure and load. The relaxation length is an important predictor of wobble.

camber stiffness-
Camber stiffness describes the rate of change of the lateral force (also thrust force) that is generated perpendicular to
the direction of travel of the tire, due to a camber or roll angle. The wheel wants to travel in an elliptical path due to the
inclination, but cannot due to friction that is caused by the deformation of the tire (this is illustrated in figure 3.4) [17].
The lateral force that is generated is located before the center of the contact patch, and therefore generates a torque as
well. For bicycles and motorcycles, the thrust force can contribute greatly to the centripetal force that is necessary to
make a turn.

Figure 3.4: Illustration of the a-symmetric contact patch and the difference between the theoretical and real trajectory of the tire, that
generates the lateral force. Figure from [17]

3.2.2. tire models
With the help of tire models it is possible to determine the maximum combination of forces that a tire can handle before
it starts to slide. This in turn has a great influence on the maximum cornering speed and the vehicle trajectory. Not many
studies have been conducted about bicycle tire properties (the efforts of Dressel and Doria are the only studies found
[1–3, 26]). No actual bicycle tire models have been designed, while there are numerous models for car tires [25]. However,
cars are very different from bicycles. One of the main differences is that they do not roll as much as a bicycle. Therefore,
camber forces are less relevant and almost never taken into account in car tire models. There are also several motorcycle
tire models available. Since the motion and forces they experience are comparable to bicycles, they could be an option
to use for bicycles as well. There are also some important differences, that indicate that bicycle tire models could be
significantly different from motorcycle tire models:

• The shape. A tire of a bicycle is relatively thin, and thus has a very elongated contact patch.

• The pressure in bicycle tires is much higher than in motorcycle tires. This gives differences in the contact patch,
relaxation length, camber stiffness and cornering stiffness.

• The load on the tire is much lower for bicycles than for motorcycles, affecting for example camber stiffness.
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• The tire type does sometimes differ: bicycles have bias ply tires, and motorcycles (especially racing bikes) often
have radial tires. This affects the lateral force generation [8].

From this it can be concluded that motorcycle tire models can probably describe bicycle models in the most accurate way.
Still, there are many differences. In the next sections three very different models will be discussed. One is a brush model,
an analytical model that is based on simplified physical assumptions. Because it is based on simplified general physics,
it’s findings are as valid for cars as they are for bicycles. The other two discussed models are an often used empirical
motorcycle tire model (the Pacejka magic tire formula for motorcycles) and a basic model that is based on observations,
the friction ellipse.

brush model with static and kinetic Coulomb model of friction-
This model was developed to relate longitudinal forces and longitudinal slip [50]. Lateral tire dynamics are not taken into
account. A brush model presents the tire tread patterns by elastic brush elements attached to a belt, which is modelled
as an elastic beam. The brush elements as well as the foundation of the belt have elasticity conditions that are specific for
tires. The friction coefficient is modelled as sliding velocity dependent, namely as a Gaussian function of the logarithm
of the sliding velocity. This function is visible in figure 3.5.

Figure 3.5: Friction characteristic for elastomers. v represents the sliding velocity, vm the sliding velocity of maximum friction. Increasing
the sliding velocity and decreasing the temperature have similar effects, as temperature only affects the sliding velocity variable. Figure
from [50]

The biggest shortcoming of the model is that it does not include lateral relations, let alone a combination of longitudinal
and lateral forces.

friction ellipse-
The most simple model to work with is the friction ellipse (figure 3.6). The idea is that a tire has two force limits in the
lateral and longitudinal direction, and that maximum forces can’t be practised in both directions at the same time. The
maximum forces can differ between the directions, due to several influences. For example, a tire of a car has longitudinal
threading. This makes the flexibility in lateral and longitudinal direction different, and therefore the dynamics of the tire
as well. Also, the contact patch does not have the same length as width. An ellipse is then taken to describe the limits
for force combinations, as it’s two axes have different lengths just like the two different maximum forces. The maximum
forces in longitudinal and lateral direction are defined as normal force times friction coefficient µx and µy .

Figure 3.6: An example of a friction ellipse, the limits at the longitudinal and lateral directions are µx and µy respectively.

The model does not depend on the slip angle and traction slip and does not show nonlinear tire behavior. However,
Acceleration measurements have confirmed that an ellipse is able to describe the general force limits [5, 29].
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pacejka magic tire formula-
Pacejka has set up an empirical formula that describes the tire forces as a function of the slip coefficients, slip angle,
friction coefficients, load and more parameters [56]. The model is fairly accurate for cars, and is widely used. In the magic
formula, it is assumed that the camber angle or inclination angle of the tire is small. However, for cyclists, this angle is
large because of the large roll movement a cyclist can experience. For motorcycles, large inclination angles are equally
important. Pacejka has altered his magic tire formula for motor cyclists, to include large inclination angles. However,
he does not seem to include the effect of roll that another part of the tire suddenly makes ground contact. The surface
on the sides of a tire can have different friction coefficients. Furthermore, the tire certainly has a different contact patch
and thus a different pneumatic trail. Lastly, the pressure distribution during roll is very asymmetrical in comparison to
pressure distribution for car tires. Those factors are probably only a few of many. This is all not incorporated in the Pacejka
motorcycle tire model. Still, Pacejka finds good results when comparing his empirical magic tire motorcycle formula with
measurements. A comparison to bicycle tire performance measurements has yet to be made, but the expectation is that
the inaccuracies mentioned above are even larger for bicycles.

tire model choice-
To keep calculations relatively simple, the friction ellipse model was chosen to work with. In literature, it is used more
often to model motorcycle tires, and when comparing it with experimental data the shape seems appropriate when the
lateral and longitudinal friction coefficients are assumed to be equal (a circle model) [5, 29]. For bicycles, there is no
clear argumentation towards a different shape. Therefore the circular shape is adopted. The formula associated with the
friction ellipse is described in equation 3.1.

(
Fxr /Nr

µx

)2
+

(
Fyr /Nr

µy

)2

−1 ≤ 0 (3.1)

To form a circle, µx equals µy .

3.3. the complexity of setting up steady motions equations
There are several aspects that make the equations of steady motion complex. First of all, the motion of the cyclist is build
up out of various parts. This is illustrated in figure 3.7. Secondly, the orientation of the road constantly changes. If every
local ribbon plane is seen as the reference frame, the orientation of gravity changes constantly.

Figure 3.7: This figure illustrates how the different frames move with respect to one another. The possible accelerations of the cyclist will
be expressed in the Driving frame.

It is easiest to simplify the problem as far as possible and build up form there. The most simplified representation of a
cyclist and bicycle is a point mass. A ribbon is an expanded space curve. Therefore, accelerations of a point mass moving
over a space curve will be looked upon first. At the same time, formulas for the base vectors of the Curve frame and the
Driving are presented. They are necessary to calculate the accelerations. Next, the space curve is seen as the center line
of a ribbon, and the absolute accelerations are expressed in the ribbon frame. The following step is to transform the point
mass into a rigid body. First, a point mass on a massless stick that can rotate around the tangent is considered. Finally,
this is extended into a massless structure with two ground contact points, which represent the tire contact points.
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3.4. step 1: a point mass moving over a space curve
To understand how accelerations on a bicycle riding over a ribbon work, it is convenient to first simplify the situation. The
very basic of a ribbon is a curve. As a start, an expression for the accelerations of a point mass moving over a curve will
be found. In the book ’differential geometry’ by Kreyszig the relevant information can be found [44]. The derivative with
respect to s is displayed through prime notation. Derivatives with respect to time are indicated through dot notation.
In chapter 2 it was discussed how the Curve frame is built up. But how can the base vectors of this frame be found?
A unit vector tangent to the curve at a certain location is defined to have the direction of the change of the curve at that
location. As a curve can be described with the variable s, the unit tangent vector can be described as a function of s.

t (s) = x ′ (3.2)

Next, the principal normal vector p needs to be found . p points per definition in the direction of change of t .

p(s) = t ′

|t ′| (3.3)

To conclude the curve frame a third unit vector, the binormal vector, can be found by taking the cross product of t and p ,
t ×p . An example of the frame is seen in figure 3.8.

Figure 3.8: A space curve with the C frame

With the base vectors of the frame defined, the absolute accelerations of the point mass can be expressed more conve-
niently. The accelerations can be found using the transport theorem (general transport theorem displayed in equation
3.4). The vector A can then be seen as the velocity of the point mass moving over the curve.

(Ȧ)N = (Ȧ)B +ωB /N × A (3.4)

The acceleration relative to the curve frame can only take place in the tangential direction. As this is the acceleration over
the curve, it can be described by the term s̈. Since the movement happens over the curve only, the osculating circle that
describes the local curve also describes the local movement. The angular velocity vector can therefore be described al-
ways having the direction of b(s). The magnitude is the tangential speed divided by the instantaneous radius of curvature
ρ. The accelerations of the frame can now be described like this:

(a)N = s̈t (s)+ ṡ

ρ(s)
b(s)× ṡt (s) (3.5)

The cross product can be simplified to give the following expression:

(a)N = s̈t (s)+ ṡ2

ρ
p(s) (3.6)

The only unknown left is ρ(s), since the acceleration over the curve and thus also the speed over the curve (the velocity of
the point mass) are controlled by the rider.

ρ(s) = |t (s)× t ′(s)| (3.7)
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With equation 3.6, the accelerations of the point mass moving over a space curve can be found with respect to the inertial
frame.

3.5. step 2: a point mass moving over the center line of a ribbon
Our road is not a space curve. Instead it can be described as ribbon, with a space curve as its center line and a width.
In this section expressions for the base vectors of the riBbon frame are first found. When those are established, the
accelerations of a point mass moving over the center line of the ribbon can be described in terms of the ribbon frame.
The difference between the Curve frame and the riBbon frame is that the frame is twisted. The camber vector n that lies
laterally along the road surface can be twisted with respect to the principal normal vector (see figure 3.9).

Figure 3.9: The ribbon frame B with is rotated by an angle β with respect to the C frame. On the right some environmental context is
added, to help imagine how the frame is related to the road. The cyclist is seen from the back.

Now the absolute accelerations over the center line can be expressed in this new frame. To do so, the principal normal
vector p needs to be expressed in terms of the B frame. This is simply done with help of a rotation matrix:

B p = B RC
C p (3.8)

With this new expression for vector p the accelerations can be described in the ribbon frame (equation 3.9). The tangent
vector expression is equal in frame B and C, as it is not rotated.

B (a)N = s̈ B t (s)+ ṡ2

ρ
B RC

C p (3.9)

3.6. step 3: steady motion of a point mass on a massless stick moving over
a center line of a ribbon

Now let’s consider a mass on a massless stick, that moves over a curve that can be considered the center line of a ribbon.
Therefore, the accelerations will be expressed in the ribbon frame. The massless stick can make a roll movement (around
the tangent) but pitch and yaw rotations are restricted. This can be imagined as a massless stick with a point mass at its
end connected to a hinge (see figure 3.10). This means that there are three force equations and one moment equation,
around the tangent vector t , that are of interest. The normal force at the contact point with the ground, as well as the
forces in the longitudinal and lateral direction and the roll angle can be calculated from those equations. The angle φ

describes the angle between the TM plane and the point mass. The frame that sticks with the point mass and experiences
the same rotation will be called the F frame. To indicate the lateral and longitudinal directions, the indications x and y
are used.

The vector r describes the orientation of the massless stick. This vector points from the hinge on the ground towards the
center of mass.

B r = B RF
F r =

1 0 0
0 cos(φ) si n(φ)
0 −si n(φ) cos(φ)

0
0
h

 (3.10)

The gravitational force needs to be expressed in the B frame as well. The force equations can then be found.
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Figure 3.10: Free body diagram of the point mass

m B a =
Fx −Fd

Fy
N

+ B RN

 0
0

−mg


︸ ︷︷ ︸

Fg

(3.11)

The moment equation of interest is the roll moment, around the tangent vector. Steady motion means that time lag or
other time dependent effects are not considered. The steady-state roll is assumed to be reached instantly. Therefore,
angular acceleration is not considered.

[r ×Fg − r ×ma + r ×F + r ×Fd ] · t = 0 (3.12)

The drag force is located at the center of mass (CoM), because the center of pressure is assumed to be at the location of
the CoM. Because Fd does not cause a moment around t , and neither do the contact forces, this can be simplified to:

[r ×Fg − r ×ma] · t = 0 (3.13)

3.7. final steps: steady motion of a simplified bicycle
In this section the point mass moving on a massless stick will be transformed into something more like a bicycle. Instead
of a massless stick, a massless frame with two contact points (the wheel contact points) will be used. First, this structure
will be regarded while moving over the center line of the ribbon. Then, this is extended towards movement throughout
the ribbon plane.

3.7.1. moving over the center line of a ribbon
First the extension of the model will be applied to movement over the center line of the ribbon. The free body diagram
can be seen in figure 3.11. The rigid body is simplified to such length that we can regard it as a point mass connected to a
massless rigid frame with two contact points. The rear and front contact points are denoted by r and f .

The force equations do not change much with respect to the previous situation (point mass on massless stick). The main
difference is that the there are now two pairs of tire forces.

m B a =
Fxr +Fx f −Fd

Fyr +Fy f
Nr +N f

+ B RN

 0
0

−mg


︸ ︷︷ ︸

Fg

(3.14)

The vector r describes the position of the center of mass with respect to the origin of the ribbon frame. The vectors rr
and r f describe the position of the contact points of the rear and front wheels, relative to the origin of the ribbon frame.

B r =
1 0 0

0 cos(φ) si n(φ)
0 −si n(φ) cos(φ)

0
0
h

 , B rr =
−b

0
0

 , B r f =
w −b

0
0

 (3.15)
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Figure 3.11: Free body diagram of a cyclist cycling over the ribbon plane, depicted in the local ribbon plane orientation.

The force vectors can be split in three vectors: a force at the rear wheel, one at the front wheel and the air drag force, that
always works in the opposite direction of movement (negative sense of unit tangent vector).

B Fr =
Fxr

Fyr
Nr

 , B F f =
Fx f

Fy f
N f

 , B Fd =
−Fd

0
0

 (3.16)

The main difference between this situation and the previous one is that now moment equations around three axes need
to be considered instead of one. Steady motion is considered still.∑

M = r ×Fg + r ×−ma + rr ×Fr + r f ×F f + r ×Fd = 0 (3.17)

3.7.2. moving over the ribbon plane
Now we can extend this idea for a bicycle that can move over the whole ribbon plane, instead of the center line only.
There is just one factor that changes with respect to the situation in the previous section: the orientation of the cyclist
with respect to the center line, χ, has changed. The frame that is related to this new orientation is the Driving frame. The
only vector of which the expression changes due to this change in orientation is the gravitational force vector. This vector
always points in the negative z direction of the inertial frame (see figure 3.12 on the next page). Other external forces
such as the air drag force depend on the direction of movement. It always points in the opposite direction of movement,
so that it is easy to express in the driving frame D. In the end, this means that only the rotation matrix R changes with
respect to the equations of a simplified bicycle moving over a curve. It now maps from the inertial frame to the driving
frame, D RN .

The found steady motion equations depend on the orientation of the ribbon plane where the cyclist is cycling, the cycling
velocity (this is reflected in the drag force) as well as the cyclists orientation with respect to the center line.
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Figure 3.12: In this figure it is illustrated how a certain configuration of a cyclist moving over a track (upper image) can be seen in a
simple way (bottom image). The idea is to look at the cyclist at a certain location s and n from a driving frame perspective. The cyclist is
observed as if riding over a flat plane. The only vector that changes direction, is the gravitational force vector. The normal forces, lateral,
and longitudinal forces always act in the directions of the base vectors of the coordinate frame D, as does the aerodynamic drag force.
To describe the direction of Fg in the D frame, D RN is used, which is a function of elevation Euler angle ψ, banking Euler angle γ, and
χ.
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3.8. finding the acceleration limits
There are multiple approaches towards finding the acceleration limits to create a g-g diagram. One option is to find the
limits analytically, by setting tire forces equal to the tire force limits. This option works well for a simple problem with a
few variables. However, a great deal of variables are necessary to describe acceleration limits for a 3D case. To deal with
this, a sequence of optimisations is used to form the g-g diagram. The optimisation is run via the function fmincon, avail-
able in MATLAB. The goal is to maximise the adherence radius, and so the constrained nonlinear multivariable function
describes the radius with variables ax and ay (see equation 3.18). The negative sign comes from the fact that fmincon
searches for a minimum cost, while the goal is to maximize the adherence radius.

J =−(a2
x +a2

y ) (3.18)

The function is constrained by several equations.

3.8.1. steady motion constraints
The steady motion equations form a part of the constraints. To complete the steady motion equations, a relation needs
to be found such that there are only two independent variables. In this case, az is taken as a dependent variable. az is
chosen because ax and ay translate more easily into the classic bicycle inputs (steer, lean, pedalling/braking). Next to
this, ax and ay depend on the derivatives of the states. az does not depend on them. This can be seen when looking at
the equations for acceleration. When calculating az expression 3.19 is found.

D az = β̇sin(χ)v + ṡ sin(β)cos(χ)
v

ρ
(3.19)

This makes it clear that az depends on β, the twist angle. When the rider moves (and keeps moving) in the osculating
plane where β equals zero, the normal force is not affected. It is furthermore affected by ṡ, that in turn depends on the
lateral road position n, next to the variables that are already in the expression for az . The dependence on n is clear when
looking at a situation with a banked corner and a turn, like in figure 3.13. If the rider cycles on the outside of the turn,
a larger turn is made with a bigger radius. Less acceleration in the principal normal direction is needed, so the normal
force experienced by the cyclist is smaller. The opposite is true when cycling at the inside of the turn.

Figure 3.13: The difference between the sizes of the osculating circles causes differences in lateral acceleration. This results in different
normal forces due to the banking with respect to the osculating plane.

3.8.2. tire constraints
A very important constraint comes from the tire model. The tire forces that are a result of the found acceleration limit
should remain within the friction ellipse. The tire constraint is therefore the same as the description of the friction ellipse
given in equation 3.1.

3.8.3. maximized braking constraint
As for braking, it is efficient to maximize the adherence radius. Maximizing the adherence radius to the fullest can be
done by making optimal use of the front and rear brake. This is the ’optimal braking’ strategy as mentioned earlier in this
chapter. Biral and Lot show that front only braking, a strategy which is often used by elite cyclists, does not maximize
the adherence radius [29]. For this project, optimal braking will be implemented. As this project is about finding the
theoretically best possible performance, it will be assumed that the cyclist can optimally control braking. In reality, this is
not so easy.

To find the maximized adherence radius, equal engagement is assumed, to make sure that maximum braking capac-
ity at both the front and rear wheel is accomplished. The equal engagement constraint that implies optimal braking is
described in equation 3.20. The constraint is only active when Fxr < 0, since this condition implies that the cyclist is
braking.
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Fxr

Nr
−

Fx f

N f
= 0 (3.20)

3.8.4. variable boundaries
While the cyclist applies force on the pedals, the resulting forward force is applied at the rear tire only. This means that
there cannot be a propelling force on the front tire, only a braking force. This condition is added through a boundary
condition of the front tire longitudinal force. The upper boundary for Fx f is equal to 0.

Another boundary condition is applied to the normal forces on the front and rear wheel. If the normal forces cannot
become zero or negative, it is ensured that the cyclist does not lose ground contact. In practise, it is possible that a cyclist
loses ground contact for a short duration, for instance while driving over a bump. But a g-g diagram relies on ground
contact, it is build up out of the friction ellipse, so it is assumed that the cyclist has ground contact. Furthermore, the
boundary condition implies two behavioural constraints: a stoppie limit (rear wheel loses ground contact) and a wheelie
limit (front wheel loses ground contact). The wheelie limit will probably never be reached, since in this model it is only
met when a lot more power is applied than a cyclist can deliver, even during peak performance. The stoppie limit is very
important on downward slopes. Due to the slope angle, it is easier for the cyclist to lose ground contact with the rear
wheel and tumble. With the stoppie limit it is ensured (theoretically) that the cyclist will not experience such a fall.

3.8.5. power constraint
A power constraint needs to be added to make sure that the pedalling power exerted through the rear wheel is limited
to the maximum power that can be delivered. In this model, this will be the critical power since it can be sustained for
longer time periods.

Fxr v ≤ Pmax (3.21)

3.8.6. NLP formulation
To sum it up, the goal is to maximize the adherence radius, while it is constrained by equation 3.14, 3.17, and equation
3.1 - C.1. The variables used in solving the NLP are ax , ay ,Fxr ,Fx f ,Fy f , Nr , N f and φ. The parameters which change the

NLP formulation are α, v,ψ,γ,β, β̇,ρ,n, and χ. A solving approach for the NLP can be found in appendix C.

3.9. conclusion
A model was developed to generate g-g diagrams as a function of α, v,ψ,γ,β, β̇,ρ,n, and χ. The road is described via a
ribbon geometry. The tire model used is a simple friction ellipse. The bicycle and rider are modelled as a single point
mass on a massless construction with two road contact points, assuming steady motion.

Assumptions of the road geometry-

• there is no lateral curvature

• the road is smooth, there are no small bumps

Assumptions of the tire model-
The friction ellipse tire model does not take into account any of the specific tire characteristics. It is based only on the
friction coefficients, and the idea that the general shape of the maximum tire forces could be an ellipse. This idea of a
circle is based on tire characteristics like camber stiffness, but they do not directly describe the tire behaviour.

Assumptions of the bicycle plus rider model-

• steady motion

• the side slip angle is small

• the bicycle and cyclist are one rigid body, therefore the movement of the wheels, the movement of the front fork
with respect to the frame, the movement of the rider with respect to the bicycle and any other movement within
the bicycle and the rider are neglected.

• the center of pressure is located at the center of mass.

• a constant power limit instead of a power model that accounts for exhaustion.
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Assumptions of the g-g diagram generating function-

• environmental variables do not vary over the track (like air density, the friction coefficient)

• driver behaviour does not change over the track, e.g. the cyclist does not lean to backwards while braking, and the
Cd A does not change either.

• the wind speed is 0 m/s at all times.



4
How bicycle, rider, environment, and track

parameters affect g-g diagrams

The shape and placement of the g-g diagram determine the solution of the minimum time optimisation. Therefore,
it is interesting to analyse which parameters have greater and smaller influence on the g-g diagram, and what kind of
influence they have. Those parameters were placed into three categories: bicycle and rider parameters, environment
parameters, and track parameters.

4.1. rider and bicycle parameters

Figure 4.1: Bicycle measurements h, w and b

Rider and bicycle parameters that influence the g-g diagram are illustrated in figure 4.1. The parameters are either con-
stant or assumed to be constant over the length of the track. Truly constant parameters in this model are mass m and
wheelbase w . Small amounts of mass might be lost over the course of the track due to for example sweating and urina-
tion, but this is negligible. The wheelbase is constant, unless a bike change is made. Some parameters are assumed to be
constant, but in reality aren’t. A great example is the height of the center of mass h in the bicycle frame F , as cyclists tend
to lower their center of mass during descents. Of course, it also varies in a smaller amount as a result of regular cycling
movement. The same can be said about the longitudinal distance from the rear wheel contact point to the center of mass
b, as expressed in the same frame F . Most cyclists lean to the back of their bicycle while braking, changing b. During
normal cycling movement it also varies a little bit.

The effect of the parameters on the shape of the g-g diagram was investigated by changing one parameter at a time, while
keeping the others constant. It is expected that the parameters will affect the same areas of the g-g diagram, regardless of
the track geometry. Therefore, a simple 2D flat track was chosen as a baseline for this sensitivity study.

27
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4.1.1. mass
The masses chosen reflect the range of masses where elite cyclists plus their bicycles lie within. A bicycle weighs at
least 6.8 kg according to the general UCI regulations for all categories of cycling competitions. In figure 4.2a resulting
g-g diagrams can be found where only the mass differs. Mass only effects the ability to accelerate, and to decelerate
longitudinally. A lighter person is better at both accelerating and decelerating. At first thought, this might seem strange.
A lighter person would have relatively more trouble with aerodynamic drag, this would make it indeed easier to brake but
harder to accelerate. But when looking at equation 4.1, the answer is found.

ax = Pmax

mv
− Fd

m
− g sin(ψ) (4.1)

The key lies in the power definition. For this model, a power limit was used. It is kept constant while the mass is varied,
so that the amount of Watt per kilogram changes over the g-g diagrams. A lighter rider will have relatively more Watts per
kilogram available to accelerate. This effect is larger than that of the aerodynamic drag, and therefore the lighter rider
will be able to accelerate more. The effect of mass changes on g-g diagrams where only front braking is allowed were
investigated as well. There are no differences in how mass is affecting g-g diagrams that take ’optimal braking’ and front
braking only into account.

4.1.2. wheelbase
Wheelbases of bicycles do not differ much. As a baseline, the wheelbase of the Ultimate CF SL Disc 8.0 Di2 Canyon bike
was taken. The resulting g-g diagrams are seen in figure 4.2b. The diagrams are not very different, they only have a slight
difference at the bottom. This is the stoppie limit. With a shorter wheelbase, the center of mass is closer to the front wheel
contact point. Therefore, the moment arm of the gravitational force keeping the cyclist on the ground is shortened, and
it is easier to lose rear wheel ground contact. The effect of wheelbase changes on g-g diagrams where only front braking
is allowed were investigated as well. There are no differences in how the wheelbase is affecting g-g diagrams that take
’optimal braking’ and front braking only into account.

(a) g-g diagrams with varying mass parameter. (b) g-g diagrams with varying wheelbase parameter

Figure 4.2: Influence of the mass and the wheelbase on the acceleration limits.

4.1.3. height of the CoM in the bicycle frame F
Based on the observations by Biral & Lot [29], who performed a comparable sensitivity analysis for motorcycle g-g dia-
grams, the effect of the height of the center of mass is expected to be large. While in figure 4.3a the stoppie limit is largely
affected by a change in h, the rest of the diagram is unaffected. The effect on the stoppie limit can be explained by the
effect of the height of the CoM on the load transfer. With a higher CoM, there is more load transfer and the cyclist will
have transferred its load to the front wheel faster, with rear wheel ground contact loss as a result. However, some effects
on combined lateral and longitudinal acceleration are expected as well, due to the increased load transfer. An explana-
tion for this is that the cyclist in this model follows ’optimal braking’, and will be able to achieve maximum braking at the
front and rear wheel anyway. In practise, elite cyclists mostly use their front brakes, and do not achieve the theoretically
optimal braking. Therefore, it is interesting to look at the effect of a varying height of the CoM when only front braking is
used as well, to fully understand its effect. This is investigated in figure 4.3b
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(a) g-g diagrams with varying h, optimal braking (b) g-g diagrams with varying h, front brake only

Figure 4.3: Influence of the height of the CoM position.

4.1.4. longitudinal position of the CoM in the bicycle frame F
The effect of the longitudinal position of the CoM was studied by Biral and Lot as well. As with the height of the CoM,
large effects on the diagram are expected based on that study. The longer b is, the closer the CoM is positioned towards
the front wheel contact point. When the CoM is positioned more towards the front, the load transfer is already before
braking more towards the front as well. This effect is visible in the stoppie limit line at the bottom of the left diagram,
figure 4.4a. A larger effect is seen when only front braking is applied (see figure 4.4b). When looking at pure longitudinal
deceleration, their is a minimum length for b that still results in greater deceleration limits. This happens probably due to
the fact that only a small proportion of the load is sustained at the front wheel, restricting the maximum brake force that
can be generated. As the stoppie limit will move up and down due to elevation differences, an optimal b could be found
when riding a specific descent.

(a) g-g diagrams with varying b, optimal braking (b) g-g diagrams with varying b, front brake only

Figure 4.4: Influence of the longitudinal CoM position.

4.1.5. drag area
The drag area Cd A is build up out of the drag coefficient of a cyclist times the frontal area. Both can be influenced by
rider behaviour. The drag coefficient is affected by the shape of the cyclist. Cyclists have shown very different strategies
to counter air drag, ranging from hanging from the steering wheel (as displayed by Froome) to laying flat on the seat (also
called the superman) [10]. Next to position changes prioritizing the minimisation of air drag, a cyclist also changes its
attitude while braking (shifting the CoM to the back) and in sharp turns (leaning sideways). For this model, the drag area
is assumed constant over the length of the track. Varying the drag coefficient affects the drag force, which affects the
maximum acceleration and deceleration. With a greater Cd A, accelerating gets harder and deceleration easier.
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4.1.6. conclusion
The mass of the rider and the wheelbase of the bicycle have only a minor influence on the g-g diagram. The height and
longitudinal position of the center of mass play a larger role. Since this study seeks the theoretically optimal solution, and
because humans are optimizers, it can be said that the cyclist always chooses the most optimal values that lie within the
possibilities. This would mean that the height of the CoM is as low as possible, and the longitudinal position is as far to
the back as possible. In combination with the optimal braking strategy, this configuration is ideal.

4.2. environment parameters
There are only two parameters used in the g-g diagram model that can be classified as environment parameters: friction
coefficients µx /µy , and air density ρa . The friction coefficient effects the size of the friction circle, which forms the basis
of the g-g diagram. The acceleration limits can only be constrained further within the friction circle. The air density
affects the aerodynamic drag force, so it affects the acceleration limit in the same way as the drag area. It changes slightly
over height, but so little that it is assumed constant.

4.3. track parameters
With track parameters, parameters that can change over the length of the track are meant. For this model there are 8
track parameters: v,ψ,γ,β, β̇,κ,n and χ. For a track that is elevated and/or banked, track parameters hugely influence
the g-g diagram. Where bicycle and rider parameters influence the g-g diagram independently, track parameters do not.
Therefore, a systematic analysis was necessary to fully research all possible combinations of effects. Before that, a few
examples of track parameter effects are given to create some familiarity with the idea, and to explain the complexity.

4.3.1. general examples
To give some insight in the behavior of the g-g diagram, some general examples are given in this section. As a reference
configuration a flat straight track is chosen (the direction of gravity is the normal direction into the plane), see figure 4.5.
Variables are changed one by one with respect to this reference configuration.

Figure 4.5: The reference configuration: a flat, straight road.

banking-
When the banking angle is changed, the main effect is that the diagram shifts horizontally (see figure 4.6b). This happens
due to the lateral force that is induced by the banking. A lateral force is now working on the cyclist, so that in one direction
lateral acceleration is supplemented, while it is reduced in the other direction. Another smaller effect (small for realistic
banking angles) is that the normal force decreases decreases due to the angle of the road with respect to the direction of
gravity. This causes shrinkage of the g-g diagram.

curvature-
When curvature is changed for a flat road, nothing happens to the g-g diagram (see figure 4.7b). The acceleration limits
are still the same, since the external forces have not changed. The limits might indicate that a certain curvature cannot be
ridden at a certain speed, but that will show in the minimum-time optimisation from the state equations. The curvature
can have an influence on the diagram when combined with 3D track aspects. This will be further discussed in section
4.3.2.

elevation-
As visible in figure 4.8b, elevation influences mainly the vertical position of the g-g diagram. Here a negative elevation is
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(a) A straight road with banking

(b) Positive banking is applied, which means that the right side of the track is
the downside. The diagram mainly shifts to the right, but also shrinks a bit.

Figure 4.6: Effect of banking

(a) A flat curved road

(b) The g-g diagram when different amounts of curvature are applied to a flat
track.

Figure 4.7: Effect of curvature

chosen, which represents a downward slope. The cyclist benefits from the gravity working partly along the longitudinal
direction, providing extra propulsion. On the other hand, because of that extra propulsion braking is harder as well. The
diagram will shrink a little bit as well, due to the normal force on the ribbon plane being smaller as a result of the relative
direction of gravity.

combined effects-
When the curvature was examined, no effect was found. However, kappa can have an effect when the track is not flat.
An example: when the road has a curvature κ, both the direction of the curvature (displayed by β) and the banking of
the road (γ) influence how the g-g diagram is affected. A given value for κ can have zero influence, a large influence and
anything in between. This is well visible in figure 4.9.

4.3.2. systematic analysis method
There are some effects of variables on the shape and position of the g-g diagram that are less straight forward. To ex-
amine those effects, a more systematic approach was used. Six multiple regressions were used to predict ax and ay at
three different locations on the g-g diagram. The locations on the g-g diagram are chosen at the Fx = 0, the Fy = 0 and
the Fy = −Fx positions, where ay has the largest value (first and latter case) or ax the smallest (second case), see figure
4.10. This is done to find out the correlations between the input variables variables and the position and shape of the g-g
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(a) An elevated road

(b) Elevation mainly affects the vertical position of the g-g diagram.

Figure 4.8: Effect of elevation

Figure 4.9: Note that the axis scaling is the same in both graphs. The value of kappa is the same, but the effect of enlarging kappa in both
situations results in the opposite expansion effect. At the left situation, the normal forces will increase with kappa, at the right situation
they will decrease when kappa increases.

diagram. Three locations are chosen since it is impossible to run a multiple regression analysis for every location on the
diagram. The Fx = 0 position is located at the largest lateral width of the diagram, and the Fy = 0 position monitors the
deceleration limit. Together, they can tell something about position shifts, and lateral and horizontal shape changes. The
remaining position monitors the shape of the g-g diagram. For this, 320 random samples have been taken by selecting
random variable values from specified ranges, and calculating the corresponding ax and ay . The ranges are found in
appendix H. Statistically significant variable correlations are not present (no multicollinearity). To make sure that the
relations between the predictors and the dependent variable (ax and ay ) are linear, some variables (β,κ and χ) are trans-
formed to meet the requirement for a linear multiple regression. They have been transformed to |sin(β)|, |sin(κ)| and
cos(χ). Graphs of the correlations between the dependent variable and the independent variables are found in appendix
I.
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Figure 4.10: An indication of possible Fx = 0,Fy = 0 and Fy =−Fx positions. This g-g diagram is based on a downwards slope.

4.3.3. results
Fx = 0, ax
These variables statistically significantly predicted ax , F (1,97) = 211, p < .0005,R2 = 0.845. Three variables (v,ψ and
cos(χ)) added statistically significantly to the prediction, p < .05. The respective standardized coefficients of v,ψ and
cos(χ) are -0.4478, -0.7733 and -0.1140.

F x = 0, ay
These variables statistically significantly predicted ay , F (1,97) = 3.66, p < .0005,R2 = 0.0861. Four variables (V , |sin(β)|, |sin(κ)|
and cos(χ)) added statistically significantly to the prediction, p < .05. The respective standardized coefficients of V , |sin(β)|, |sin(κ)|
and cos(χ) are 0.1502, -0.1454, 0.1128 and 0.1640.

Fy = 0, ax
These variables statistically significantly predicted ax , F (1,97) = 9.02, p < .0005,R2 = 0.188. Three variables (v, |sin(κ)|
and cos(χ)) added statistically significantly to the prediction, p < .05. The respective standardized coefficients of v, |sin(κ)|
and cos(χ) are -0.3617, -0.1294, and 0.1910.

F y = 0, ay
These variables statistically significantly predicted ay , F (1,97) = 27.1, p < .0005,R2 = 0.41. Only ψ and γ add statistically
significantly to the prediction, p < .05. The standardized coefficient of ψ and γ are -0.0911 and 0.6153

−Fx = Fy , ax
These variables statistically significantly predicted ax , F (1,97) = 7.56, p < .0005,R2 = 0.163. Only v, |sin(κ)| and cos(χ)
added statistically significantly to the prediction, p < .05. The respective standardized coefficients of v, |sin(κ)| and cos(χ)
are -0.2976, -0.1635 and -0.1785.

−Fx = Fy , ay

These variables statistically significantly predicted ay , F (1.97) = 4.13, p < .0005,R2 = 0.096. Only v,γ, |sin(κ)| and cos(χ)
added statistically significantly to the prediction, p < .05. The respective standardized coefficients of v,γ, |sin(κ)| and
cos(χ) are 0.2038, 0.1143, 0.1182, and 0.1206

4.3.4. analysis of the results
All regression analyses show that the variables statistically significantly predict ax and ay . However, the coefficients of

determination (R2) indicate varying quality of the predictions. A very low R2 such as with the ax prediction at Fx = 0
indicates that only 8,6% of the variance is explained through the prediction. The value of ax at Fx = 0 and the value of
ay at Fy = 0 can be predicted with most of the variance accounted for by the model (84,5% and 41,0% respectively). This
shows that the variables that significantly contribute to this prediction indeed deliver a large contribution to the values
of the dependent variable. It is doubtful whether the variables that contribute significantly to the other predictions are
important for the prediction of the dependent variable at all. Therefore, mainly the two predictions that provide good fits
will be discussed.

Since only two multiple regressions resulted in good fitting models, they will be analyzed in more detail. Variable v has a
negative correlation with the longitudinal acceleration at the line where the forces in the x direction are zero. This can be
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Table 4.1: The results of the multiple regression analyses

ax ay

var stand coef var stand coef
Fx = 0 v -0.4478 v 0.1520

ψ -0.7733 |sin(β)| -0.1454
cos(χ) -0.1140 |sin(κ)| 0.1128

cos(χ) 0.1640
Fy = 0 v -0.3617 ψ -0.0911

|sin(κ)| -0.1294 γ 0.6153
cos(χ) 0.1910

Fx = Fy v -0.2976 v 0.2038
|sin(κ)| -0.1635 γ 0.1143
cos(χ) -0.1785 |sin(κ)| 0.1182

cos(χ) 0.1206

explained by the fact that air drag increases when velocity increases. Variable ψ also has a negative correlation with the
longitudinal acceleration. When the forward elevation is negative, the slope is downward. So a downward slope that is
getting steeper will cause the longitudinal acceleration limit to increase at the Fx = 0 line. The third correlation is between
cos(χ) and the longitudinal acceleration. When the value of the cosine decreases, the longitudinal acceleration increases.
This happens for extreme values of χ. The second prediction that accounts for most of the variance is that of the lateral
acceleration at the Fy = 0l i ne. There, the predictor with the highest coefficient is the banking, γ. With increased banking,
lateral acceleration increases to the right. Positive values of banking describe a road where the left side is higher than the
right side. Due to gravity a force is always pulling the cyclist to the right, shifting the g-g diagram. The other predictor
is the forward elevation. A steeper downward slope causes higher lateral acceleration at the bottom of the g-g diagram.
This could be the effect of the stoppie limit. The steeper the downward slope, the earlier the stoppie limit is reached as it
becomes easier to topple over the steer.

4.3.5. discussion
Variables that did not significantly contribute to any predictions, are n and β̇. The shared factor of those variables is
that they only influence the g-g diagram when χ does not equal zero. χ is a special case in any way. When looking at
the equations of steady motion, χ does not influence the g-g diagram when it has a value around zero. It is debatable
and it differs per track if χ can be assumed to be zero. Generally, χ is expected to be around zero for relatively narrow
tracks, where the turns are not too tight. Neglecting χ means automatically that n and β̇ do not influence the g-g diagram
anymore. This saves a lot of computation time. Therefore, it should be discussed whether χ will play a large role before a
minimum-time optimisation is made for a specific case.

4.3.6. conclusion multiple regression
Four of the multiple regression outcomes show a lot of unaccounted variance. Those models are not a good fit to the data.
The two models that do account for most of the variance suggest that ψ is the main contributor to the vertical position of
the Fx = 0 line, and that γ is the main contributor to the horizontal position of the Fy = 0 line. From the equations it can
be predicted that both these variables mainly shift the g-g diagram. Variables n and β̇ were never significant contributors
to the predictions.

4.4. conclusion
The g-g diagram is influenced by many parameters. A systematic study was held to identify the effects of the rider and
bicycle parameters on the g-g diagram. The height and longitudinal position of the CoM were the most influential param-
eters. As for the environment parameters, the friction coefficient influences the size of the g-g diagram whereas the air
density does not play a large role (mainly because it does not differ much). From track parameters, some overall effects
can be seen. ψ influences the vertical position of the diagram, and γ influences the horizontal position. n and β̇ do not
play a significant role. χ can hugely influence the diagram, but from the equations it can be seen that this is only the case
when it has extreme values. In practise (with normal road cycling) it might be defensible to assume it to be around zero.



5
Case: The L218 near Vossenack, Germany

To demonstrate the capabilities and shortcomings of the model, a minimum-time optimisation was solved for a mountain
road in Germany. The outcome is discussed and compared to measurements of the descent of elite cyclists on the same
track.

5.1. case description
The L218 near Vossenack, Germany, was the subject of a study about braking behaviour of elite racing cyclists [51]. For
this study, track data was gathered that can be used to model this track. The road segment has a length of 1.85 km, and
the average descent gradient (ψ) is 5 percent. In the experiment the riders were assigned to descent as fast as possible,
while staying safe. They were informed to use only the right half of the road, to ensure road safety. Therefore, only the
right half of the track will be modeled to use in optimisation. The track was split up into eight segments with different
cycling behaviour (see figure 5.1). The data of this track is used to solve a minimum-time optimisation. The results of the
optimisation can be compared to the measurements conducted on-site.

Figure 5.1: The part of the L218 near Vossenack, Germany, that was used for measurements. Figure from [51].
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5.2. goal and research question
The goal of this case study is to compare the descent strategies of elite cyclist and the outcome of the minimum-time
optimisation. An analysis of the measurements by Chris van Trigt pointed out that the fastest rider won time with respect
its competitors by producing more power, and lost time while cornering [67]. Therefore, a special interest is taken towards
tight corners. In straight segments, performance differences are due to differences in power usage, air drag and weight. In
tight turns, it comes down to braking strategies. The segment where the riders experience the tightest turn is at segment 6.
Therefore, next to an optimisation of the entire descent, segment 6 is optimised separately. There, the initial positioning
and velocity of the measured cyclists are used, in order to compare the segment performance in the best way. The main
research question for this case study is:
How does the optimal descent strategy differ from descent strategies practised by elite cyclists?
A hypothesis for the main question is that the braking strategy in sharp corners is the main difference.
Therefore, an important important subquestion is:
How does the optimal cornering strategy differ from strategies practised by elite cyclists?
A hypothesis is that using the optimal braking strategy allows the cyclists to brake harder, and accelerate more in general
during the turn. The braking is expected to end at the same moment, so that the location of the minimum velocity is
equal.

To be able to compare descent strategies, it should be known what is defined as a good performance. There are three
scores that can be given to the performances. The most important metric is, of course, time. Furthermore, the perfor-
mance can be measured by determining the percentage of the distance spent on decelerating, accelerating (ax > 0.1m/s2

and ax <−0.1m/s2) and the mean velocity / total time. Theoretically, the fastest descent time is obtained by accelerating
very fast to the maximum velocity and minimize decelerations or perform these also as fast as possible. Those metrics
that describe deceleration/acceleration percentages are especially interesting to compare performance for segment 6. In
this segment, initial velocities at the start of the segment differ between riders. Those different initial velocities cause the
segment times to differ, regardless of cornering performance quality. For segment 6 a fourth metric can be determined,
which is the exit speed of the turn. This metric is often used to compare cornering performance of Formula One race cars.

5.3. method
In this section, the detailed inputs and settings for the minimum-time optimisations are discussed. The description of the
OCP as presented in chapter 2 was used to run the optimisations, complimented by the details provided in this section.
Some parts of the method differ between the optimisation of the full track and the separate optimisation of segment 6. If
there is a difference, this is indicated.

5.3.1. track conditions & initial conditions

full track-
For the full descent, the following initial conditions were set:

v = 3 m/s, n = 0 m (center of the right lane), χ = 0.

The initial velocity differs from the initial velocity that was used for the measurements. There, cyclists had a standing
start (v = 0 m/s). This was not used for the optimisation, since from experience it was found that the solver gets stuck in
a restoration phase when the speed is below 3m/s. To make sure that a solution was reached for this large a problem, the
track width was set to a constant value of 6.6 meters (average track width in the corners). The full track length is optimised
at once; this means that for every optimisation iteration, new variable values are found for every node along the track.

segment 6-
For segment 6, the states of one of the riders at the start of the segment (s = 1480m) were taken as the initial conditions:

v = 16.7 m/s, n = -3.3 m (left lane boundary), χ = 0.

The initial lateral positions of all the riders were not within the road boundaries at this location. The riders used the
left side of the road (even though this was not allowed). The initial lateral position for the optimisation was however
placed within the road boundaries, at the left track boundary to approximate the initial position of the elite cyclists at
best as possible. As initial velocity, the lowest initial velocity of the measured descents was chosen. This was done to see
if the overall time spent would be even lower than for cyclists who had a higher initial velocity.

Since the riders determine their controls (accelerations) based on where they come from and where they are going, it is
important to not only model segment 6 specifically, but also take into account its surroundings. In this case segment 6
consists of a distance of 160 meters, but 30 meters extra are modelled at the end. At the start of the segment, the initial
conditions are set to meet the riding behaviour of the elite cyclists. The end conditions are not fixed, to give the model
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freedom to determine the optimal strategy. For segment 6, the measured track width was used as a boundary condition
for n as a function of s.

5.3.2. power limit
An amount of 500 Watt is set as the power limit for both optimisations, since from the measurements it was seen that a
maximum of 500 W could be sustained by the elite cyclists during the descent. This power can be sustained by the theo-
retical model until infinity, while real cyclists cannot sustain this amount of power for longer time spans. Further bicycle
and rider details can be found in appendix E.

5.3.3. solver settings
The solver settings are reported to ensure replicability of the study. Discretisation is done via Legendre-Gauss-Radau
(LGR) polynomials, which can provide accurate and smooth results. Smooth results are expected when looking at the
measurement data and equations of motion. Furthermore the benefit of LGR polynomials is that the weights and nodal
points (mesh points) can be updated by a mesh refinement function by the software such that the approximation is more
accurate in areas where state values change rapidly. With other methods the nodal points are often fixed beforehand, and
less accurate approximations can be created. The mesh refinement method was not used in this case however. For the full
descent, 200 intervals with each 5 nodal points on fixed distances were used. This yielded a total number of 5000 variables
to solve for. For segment 6, 30 intervals with 2 nodal points were used, yielding 300 variables. For the jacobian calculation,
finite differencing is used. The software Adigator can approximate the jacobians better, but sadly in this specific case a
bug was encountered 1.

5.3.4. run strategy
A mountain road is analyzed. As this is a long road, many variables (6000, three variables and their derivatives on 1000
nodes) need to be optimized. The g-g diagram optimisation model is not directly implemented inside the minimum-time
optimisation. This would cause very long run-times. Instead, the previously discussed option of a prefabricated database
was used. The adherence radii that result from a set of input conditions were stored in six dimensional database. The g-g
diagrams were the function of 5 variables: cycling velocity v , elevation angle ψ, banking angle γ, twist angle β, and the
center line curvature κ. Several more variables can influence the g-g diagram. However, the relative cyclist orientation
χ was assumed to approximate zero. As the lateral position and twist rate only influence the g-g diagram when χ is
not zero, they were left out as well. Since the adherence radius also corresponds to a certain adherence orientation,
the corresponding database has six dimensions. The database was interpolated cubically with the multidimensional
interpolation function from MATLAB, interpn. The variable ranges that were taken into account are reported in appendix
H.

Due to the interpolation of a large database, the optimisation is slow. To help the optimisation with convergence, the
optimisation is first run with help of a simple mock-up function instead of the database. This mock-up function is a
simple circle that moves up and down as a function of the forward slope. It expands with banking, while banking is
assumed to always be positive. The propulsion limits are the same as in the database. The outcome of this run is used as
the initial guess for the real run. As problems were experienced with banking, banking was introduced gradually. First, a
solution was found where 0% banking was taken into account. Then this solution was used as an initial guess for a run
where 20% banking was taken into account. This cycle was repeated until a solution was found for the road with 100% of
its banking.

5.4. results
In this section the outcomes of the two minimum-time optimisations are compared to four trials of the fastest cyclist
from the L218 study (of those trials, the data was complete at segment 6 at the very least). The results were checked for
global optimality, but this cannot be guaranteed (see appendix F). First, the general results will be discussed. After that,
some interesting segments will be looked upon in more detail. Detailed results of all segments can be found in appendix
G. For segment 6, results of the separate minimum-time optimisation are presented, so that braking strategies can be
compared.

5.4.1. total descent

trajectory-
The optimal trajectory is the combination of two logical strategies. For lower speeds, the shortest possible route is taken.
For higher speeds, the largest turn radius is created such that the cornering speed is the highest cornering speed possible.
Looking at figure 5.2, this is confirmed by the optimiser. There are two differences between the measured trajectory and
the calculated optimal trajectory.

1The author of Adigator has been notified of the bug.
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1. On relatively straight segments, the optimal trajectory switches from the right side to left side of the lane quicker
than the cyclist.

2. The optimal trajectory gets closer to the right lane boundary than the cyclist, sometimes even touching it.

The first difference theoretically yields a non-optimal solution for the optimisation. The shortest distance would be cov-
ered when the lateral displacement is stretched over a distance that is as long as possible. Instead, this is done is a shorter
distance than possible. Still, the optimiser marks this as the optimised output. One possibility is that the proposed tra-
jectory is due to the inaccuracy of the road measurement data. The calculated curvature might deviate from the actual
curvature. When calculated curvature is larger than the actual curvature, the model will try to cut a (slight) turn that does
not actually exist.

The second difference is probably due to a combination of several factors. First of all, a cyclist needs some lateral space
to be able to control the bicycle in case of an unexpected perturbation (think of sudden wind, a bump in the road) or
steering errors. Secondly, the road quality at the side of the road is often worse than in the middle of it. Degradation,
plant growth, sand and puddles can often be found there. Both of these factors also explain why only the right side of the
lane is avoided by the cyclists; the left side of the lane is the center line of the two-lane road. The cyclist can use the other
lane to make steering corrections and the road quality is also often good there.

Figure 5.2: Top view of the trajectory (red) of the cyclist on the right lane of the L218, which was modelled with a constant width of 6.7
meters. The GPS data of the cyclist is plotted in blue dots.

velocity profile-
The velocity profile shows multiple strange outcomes (figure 5.3).

1. In segment 2 and 4, the optimal velocity is much higher than the measured velocities.

2. In segment 3 and 4, the measured velocities are extreme and the rate of change is very high.

For outcome 1, there can only be two explanations. Either the minimum-time optimisation has an error somewhere, or
the track data variables were inaccurate. As for the track data, the curvature data, banking data, twist angle data and
friction coefficient have the largest influence on the maximum cornering speed. When the used curvature is lower than
it actually is, the maximum cornering speed will be higher in the optimisation than in reality. When the used twist angle
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and banking angle are larger than they actually are, the same effect is seen. The curvature used in segment 2 and 4
are both around 0.03, or a radius of 33 meters. Calculations show that the maximum cornering speed is about 15 m/s.
The optimised cornering speed is higher. The twist angle was recorded to be small, such that it does not influence the
cornering speed. The banking angle is 2 degrees, this too is not of great effect. It could be that the road was locally in
such condition that the friction coefficient was very different from the final segments of the track, where the calculated
cornering velocities are realistic. As a conclusion, the track data needs to be checked. If that does not explain the optimal
velocity profile, there might be an error in the model.

As for the second strange outcome, the velocities measured in segment 3 and 4 cannot be correct. To accelerate from less
than 10 m/s to 30 m/s within 100 meters requires a huge amount of power (more than 4000 W). Even when using their
absolute maximum power, this cannot be executed by the riders at all. This leads to the conclusion that the acceleration
measurements (from which the velocity can be found) are incorrect. The acceleration data is measured with an IMU with
axial accelerometers. The acceleration data received by the author was already filtered into the three fixed inertial axis
directions. The IMU however records the accelerations in the frame of the IMU. Built-in functionalities recalculate the
accelerations in the correct directions, using gravity as a reference.

There are also some results that show great correspondence with the velocity measurements.

1. In segment 1, the velocity profiles overlap. This indicates that total propulsion limit is correct. The individual
estimations of power output, drag area, and elevation might still be somewhat incorrect.

2. In segment 6 and 8, about the same maximum cornering speeds are reached. This indicates that the turns are
handled well by the optimiser.

Figure 5.3: The optimal velocity profile compared to the rider trials.

g-g diagram comparison-
In this thesis, the so called numerical method was used to describe g-g diagrams. Following this method, theoretical
acceleration limits are found making use of the steady motion equations. It has been used in several studies [19, 48].
Another method that is used is the experimental method. In this method, acceleration data is simply plotted, and a g-g
diagram is fitted around it. The data can also be gathered by simulation using a vehicle and driver model, as done by Ni et
al [39]. The downside of using the experimental method is that it is unknown why certain acceleration limits exist. To val-
idate the g-g diagram model for cyclists, a comparison was made between the experimental and numerical g-g diagrams.
For this, the acceleration measurements taken at the L218 study were compared to the found optimised accelerations.

The resulting comparison shows much correspondence (see figure 5.4). Almost all data points fall within the predicted
acceleration limits. There are however several points that lie outside of the predicted g-g diagram. The points above
the diagram might come from power peaks, but the accelerations are generally so high that it would be impossible to
produce them with physical power alone. The acceleration data is prone to errors, so it is expected that there will be
more extreme accelerations than happened in reality. The part of the g-g diagram that is not filled is the bottom. This
is expected, since the bottom of the diagram is where the largest risks are. Too much longitudinal braking can cause a
stoppie to happen, and combined cornering and braking can cause slipping when overdone. It is surprising to see that in
pure lateral acceleration, the cyclists dare to get close to the maximum acceleration limits. Still, there is room to improve
their performance within the acceleration limits.
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Figure 5.4: The experimental g-g diagram compared to the numerical g-g diagrams. The diagrams were created using the average slope,
and zero banking.

metrics-
A third way to compare the outcome of the minimum-time optimisation to the measurements is through the previously
mentioned metrics (results can be found in table 5.1). As expected, the optimal descent time is shorter than that of the
measurements. The fastest measured descent time was 114 seconds, this is a difference of a little more than 7 seconds: 6 %
of the total descent time. From the velocity profile however it could be seen that this comes partly from the strangely high
cornering velocities in segment 2 and 4. Time spent on decelerating was much lower in the optimal strategy, following
the Pontryagin Maximum principle. Time spent on acceleration is also lower. Due to the absence of braking in segments
2 and 4, the maximum velocity is reached for a large part of the descent, and further acceleration is impossible (mainly
due to air drag). In the measurements cyclists do break in those segments and have to accelerate again. This likely causes
the difference in time spent on acceleration.

Table 5.1: The scores for the performance metrics for the optimal control strategy and the measurements from the trials (n = 4) for the
full track.

optimal strategy mean measurements std measurements
% s decelerating 15.95% 34.15% 3.87 %
% s accelerating 39.47% 52.25% 3.32%
descent time (s) 106.9 118.8 2.2

To look further into the events at segment 2 and 4, those segments will be discussed in more detail.
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5.4.2. segment 2
Segment 2 of the descent contains a left hairpin turn. In this segment, the optimal cornering velocity was found to be
much higher than in the measurements. To look into this, the trajectory, velocity profile and the g-g diagram are discussed
in more detail.

trajectory-
The optimal trajectory has one remarkable difference from the measured trajectories: the turn is exited at the inside,
instead of at the outside of the lane (figure 5.5). This behaviour is not expected for such tight turns. For a tight turn, it
is often efficient to ride in the largest possible turn radius, in order to maximize the cornering speed. It indicates that
the maximum cornering velocity that is calculated by the optimisation model might be even higher than the measured
cornering velocity. Furthermore, as indicated earlier, the optimal trajectory touches the right lane boundary while the
cyclist does not even get close to it. The cyclists needs a lateral control safety margin, which the optimisation does not
take into account.

Figure 5.5: The optimal trajectory compared to the measured trajectories in segment 2.

velocity profile-
When looking at the velocity profile (figure 5.6), the same conclusion can be drawn as when looking at the trajectory; the
calculated cornering speed is much higher than the cyclists dare to reach. Still, some deceleration is seen in the optimal
velocity profile. It does however not relate to the turn, as the optimal velocity keeps decreasing even after the apex of the
turn. This deceleration is causes by a decrease in forward slope (from 4.3 deg to 1.6 deg) that started in segment 1. This
reduces the propelling effect of gravity and therefore lowers the acceleration limit and the maximum possible velocity.

g-g diagram-
This numerical g-g diagram shows where the differences in the velocity profiles come from (see figure 5.7). The optimal
cyclist does not brake in the segment. The measurements show braking during the right turn, the straight part and the
left turn. The only parallelism is found in the cornering; both plots show that turns happen. The g-g diagram confirms
that there is something wrong with either the model or the track data that it has been fed. The measurement data shows
the continuity of the measurements beautifully; the sequence of the control actions can be followed by following the line
of dots.
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Figure 5.6: Comparison of the optimal velocity to the measured velocities in segment 2.

Figure 5.7: The numerical g-g diagram compared to the optimal controls for segment 2.
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5.4.3. segment 4
Segment 4 is a sharp tun to the right. In this turn, the velocity measurements are incorrect. Furthermore, the optimal
cornering velocity is much higher than expected for the curvature.
trajectory-
The optimal trajectory differs from the single GPS trajectory record that was not disturbed (figure 5.8). The GPS signal
was lost because of all the trees surrounding the road in this segment. The cyclist crossed the road center line, to the
left (forbidden) half. While the optimisation was constrained to find a solution within the lane boundaries, one still
would expect the optimal trajectory to approach the measured trajectory. This is not the case; the optimisation shows
the complete opposite. The optimised trajectory does not show an effort to enlarge the turn radius in order to increase
the cornering velocity. As discussed previously, this is either caused by the track data or an error in the minimum-time
optimisation model. To find out which of the possibilities is true, the track data is reviewed once more in the discussion
(section 5.5).

Figure 5.8: The optimal trajectory compared to the measured trajectories in segment 4.

velocity profile-
The velocity profiles do not look alike at all (see figure 5.9). As mentioned before, the large accelerations are not humanly
possible. More than 3600 W would be needed to reach them. It is therefore certain that measurement or filtering errors
were made. Common difficulties of IMU’s connected to bicycles include the effect of roll on the measurements. It couples
the measurements of the vertical and lateral accelerations (seen in the D frame). This would however result in virtually
lower lateral accelerations than actually happen. In this figure however, higher accelerations are seen. To check the
velocity measurements, the velocity data was derived from the GPS data as well. This shows the same high accelerations
as the IMU data. At the end of the segment, the velocity is suddenly lower. It is unclear why.

g-g diagram-
The g-g diagram confirms that the acceleration measurements must be incorrect, as the accelerations shown are as large
as 10 m/s2 (see figure 5.10). Such high accelerations are impossible to reach for a car on a road with a friction coefficient
of 0.75, let alone a cyclist who cannot deliver close to such power. Since the measurements are off, it is impossible to
compare the accelerations of the cyclist and the theoretically optimal accelerations. However, it was still expected that
braking is required in such a tight turn. The solution of the optimal control problem does not include braking in this
segment.



44 5. Case: The L218 near Vossenack, Germany

Figure 5.9: Comparison of the optimal velocity to the measured velocities in segment 4. Additionally, the velocity as derived from the
GPS data is shown.

Figure 5.10: The numerical g-g diagram compared to the optimal controls for segment 4.
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5.4.4. segment 6 - detailed optimisation
In this section, the separate optimisation of segment 6 will be discussed. The initial velocity of this optimisation was set
to the entry velocity at segment 6 of the fastest rider trial. This is done in order to be able to compare the strategies better
(e.g. the segment time), as the entry velocity of segment 6 in the full descent optimisation was much higher than the entry
velocity of the cyclists.

trajectory-
The optimal trajectory shows a wider turn radius than that of the cyclists (figure 5.11). The distance with respect to the
track boundary is much smaller, leaving no space for control actions. The trajectory of the fastest total descent trial is also
the trajectory which is the most similar to the optimal trajectory. This confirms the profit of the strategy.

Figure 5.11: The optimal trajectory. The cyclist has a power limit of 500 W, and the friction coefficient is 0.75. The optimal trajectory
touches the inside of the turn earlier, and shows a wider trajectory at the end of the turn. This way, the turn radius can be maximized.
The fastest trial that is indicated, is from the fastest overall trial (the best overall performing cyclist).

g-g diagram comparison-
The g-g diagram shows a few outliers in the measured data (see figure 5.12). Those are due to measurement errors (as
again, the accelerations are higher than possible for cyclists). Otherwise, the accelerations are comparable. The strategy
of the cyclists is more conservative. The lateral acceleration capability is not fully used, and the cyclists decelerate two
times slower than the optimisation deems possible. The lateral acceleration difference can come from safety margins, or
from a possible error in friction coefficient estimation.

Figure 5.12: The measured longitudinal and lateral accelerations compared to the optimal accelerations.
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velocity profile-
The optimal velocity profile differs a lot from the measured profiles 5.13. Braking is initiated later, stopped earlier and a
lot more braking force is used. Due to the optimal braking strategy applied in the model, the adherence radius is larger
than for front brake use only. Therefore, this effect was expected. The most unexpected difference is the fact that the
minimum speed is reached much more early in the turn. At the graph of the lateral acceleration (the third graph of figure
5.13) it can be seen that earlier in the turn the lateral acceleration as carried out by the optimal cyclist is lower than the
acceleration at the point of the turn where the curvature is the largest. Since the cyclist is braking, there can be less lateral
acceleration due to the circular shape of the diagram. Therefore the third figure shows that the cornering strategy follows
the acceleration limits. What’s more, is that cyclists can either handle more lateral acceleration later in the turn than they
think, or the friction coefficient was estimated wrongly. In the discussion, this will be analysed further. In figure 5.14 it is
again shown that the minimum velocity is reached very early in the turn.

Figure 5.13: (1) The optimal velocity profile. Braking is initiated later and stopped earlier, reaching the minimum velocity earlier in the
turn. From the slope of the velocity profiles at the end of the segment can be seen that the used power was estimated well. The optimal
cyclist is able to accelerate as fast as the elite cyclists. (2) The curvature of segment 6. (3) The lateral acceleration as acted out by optimal
the cyclist.

Figure 5.14: The optimal trajectory as well as the optimal speed shown together. The minimum speed is reached at an early point in the
turn, especially compared to the elite cyclists.
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metrics-
The scores of the performance metrics all show that the optimal control performance is indeed better. A significant
time difference is measured: the optimisation 15% is faster. This shows that there is room for much improvement. It
should be noted that this time reduction is not realistic, since no safety margins were built in the optimisation, while
humans do use safety margins. However, it is expected that even when adhering to safety margins, time savings can be
made, since the time difference is so large. The time difference is reflected in the metric that indicates the percentage
of time spent on deceleration. The optimal cyclist spends as little time as possible on deceleration. Spending less time
on decelerating means that more time is available for acceleration. Furthermore, every metric confirms that the optimal
control performance is better than the performance of the cyclists.

Table 5.2: The scores for the performance metrics for the optimal control strategy and the measurements from the trials (n=4).

optimal strategy mean trials std. dev. trials
time 9.47 s 11.12 s 0.20 s
exit speed 16.04 m/s 14.70 m/s 0.177 m/s
% time decelerating 15% 57% <1 %
mean velocity 15.58 m/s 14.47 m/s 0.27 m/s
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5.5. discussion
In this discussion, three main subjects will be discussed. The first is about the strange behaviour that showed in seg-
ment 2 and 4. The optimal velocity profile showed unexpected high velocities. The questions is whether the model is
mistaken, or the inputs for the model (track, cyclist, environmental parameters) are incorrect. The second subject is the
optimal braking and cornering strategy. How does it differ, and can cyclists perform better than they do now? Lastly, the
convergence towards a local minimum of the cost function will be discussed.

5.5.1. braking anomalies
One of the goals of this case study was to find out if the minimum-time optimisation model works as expected. In the
results, a large difference between the measurements and the optimisation output was found. In segment 2 and 4 the
cyclists break in the measurements. In the optimised results however, no braking is used and the cornering velocity is
much higher than acted out by the cyclists. Why is this? To find out whether the model is faulty or not, several checks
have been carried out. To start off, it is interesting to find out what the maximum cornering velocity is for segment 2 and
4 according to the optimisation.

maximum cornering velocity check-
To find out what the maximum cornering velocity is according to the model, the propelling force can be made higher.
Staying true to the track properties like elevation, this can be done through reducing the drag area or increasing the
available power. A reduced drag area has the most effect on high speeds. A minimum-time optimisation was run where
the drag area was halved. The resulting velocity profile shows that the maximum cornering velocity is about 20 m/s for
the turns in segment 2 and 4 according to the model (see figure 5.15). The minimum-time optimisation does take into
account the turns, but suggests that the maximum cornering velocity is very high. Furthermore, a small bump is seen
in the braking sequence in segment 2. Both the bump and the high cornering velocities are unexpected. If the model is
correct, either the track data or the estimated friction coefficient are not describing reality well. First, the track data will
be looked into.

Figure 5.15: The velocity profile for a study with only half of the estimated drag area (0.16m2 vs 0.32m2). The results show the maximum
cornering velocities that did not show when the higher Cd A value was applied.

track data check-
The track variable that influences the maximum cornering speed the most is the curvature. To check whether the curva-
ture data is realistic, the curvature was plotted. From figure 5.16 it can be seen that the curvature in every segment except
segments 6 and 8 is 0.03 or lower. A curvature of 0.03 equals a radius of 33 meter. When making good use of the road
width, this can be extended to 39 meters. The maximum cornering speed of a flat turn with a radius of 39 m is 16.9 m/s
(using the friction coefficient that is also used in the model). This is interesting, as the cyclists show a lower cornering
velocity (13 m/s). This indicates that the (safe) friction coefficient as estimated by the cyclists is lower than the one used in
the model. The fact that the cornering speed could be higher than 16.9 m/s according to the optimisation, can have three
logical reasons: (1) the turns are positively banked, increasing the lateral acceleration capacities, or (2) the optimisation
model includes an error.

To check for banking, another run was analyzed. This optimisation is the full track minimum-time optimisation, but
banking is set to zero (this automatically sets beta almost to zero as well, for this specific track). The expectation is that
in segment 2 and 4, the maximum cornering velocity is equal to 16.9 m/s. As visible in figure 5.17, the cornering velocity
is almost equal to the expected value. In both turns, it is a little bit above it (17.4 m/s and 17.5 m/s), it could be that the
largest possible riding radius was even larger than 39 m. This result shows that the minimum-time optimisation does not
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Figure 5.16: The curvature of the road as derived from the road GPS data. It is compared to the found optimal velocity profile, to see if
the braking behaviour corresponds correctly to the curvatures values. Note that this is the curvature of the center line, the cyclist can
enlarge the turn radius (lower curvature) by using all of the road width.

have strange errors, but behaves as expected. However, it is still unclear why the cornering velocity of the cyclists is much
lower than the calculated cornering velocity. One option is that the friction coefficient as estimated by the cyclists differs
from the one used in the model. To find out, the friction coefficient is analyzed next.

Figure 5.17: The effect of banking on the velocity profile. The red line shows the velocity profile when the banking of the road does have
effect, the magenta line shows the profile when the banking has been set to zero. It is visible that segment 4, 6 and 8 have positively
banked turns.

friction coefficient check-
The friction coefficient that was chosen to use in the model, was based on the information that the cyclists rode over as-
phalt, and the assumption that the asphalt was dry. When searching for information about the state of the track, a remark
made by a rider was overlooked. He had said: "3rd or 4th corner is very wet". How this rider counts the track corners is
unclear, but is clear from this remark that the road was not completely dry, and that some segments were more wet than
others. To see how a rider would descent on a really slippery road (µ= 0.3), another optimisation was run (see figure 5.18).

This optimisation shows a velocity profile where the cornering velocities of segment 2 and 4 are even below those mea-
sured. This means that the friction coefficient estimated by the cyclists on those segments is higher than 0.3 but lower
than 0.75. A friction coefficient of about 0.5 would describe a wet road, with some safety margin. To test this hypothesis,
the problem should be reformulated with a friction coefficient of 0.5 for the first 4 segments, changing to a coefficient of
about 0.7 for the last segments. The presented approach however uses a fixed friction coefficient over the entire length
of the track. It is possible to run such a problem, by making sure that the adherence radius database is switched when a
certain center line distance is reached. It was not done in this project, as new databases should be produced to do so, and
this costs a lot of time.
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Figure 5.18: The resulting velocity profile of a run where the friction coefficient was lowered to 0.3 (indicating a very slippery road).

Next to the expected braking events that now show for segment 2 and 4, some extra braking events are seen that were not
measured. In segment 2, extra braking is initiated before the sharp turn initiates. Before the sharp turn, there is a turn to
the right with a smaller turn radius. The fact that the cyclists did not break for this turn is because their estimated friction
coefficient is higher than 0.3. In segment 5, two extra braking events can be seen. The first shows a cornering velocity that
is almost equal to the one in segment 4. This is surprising, as on a first glance the right turn that is positioned in segment
5 has a much larger turn radius. The curvature data however shows a curvature of 0.027 for the turn in segment five, while
the one in segment 4 has a curvature of 0.030. This indicates that the curvature estimation of segment 5 is too high with
respect to the rest of the calculated curvatures. The second (smaller) braking event can be linked to a left turn, that comes
right before the sharp turn in segment 6. At this distance over the track, the friction coefficient has increased (as can be
seen by the correspondence between results of the high friction coefficient and the measurements) and the cyclists can
easily take this small turn without having to decrease their velocity.

With this analysis it was shown that the friction coefficient applied in the optimisation was much higher than the friction
coefficient estimated by the cyclists, for segment 2 and 4. A remark made by a professional cyclist during the measure-
ments confirms this. However, alongside a difference in friction coefficient estimation, there could have been one extra
factor that created the difference in cornering velocities between the cyclists and the optimisation: the road width.

road width-
The road width was modelled with a constant value of 6.7 m, since convergence was problematic when taking into ac-
count the variable road width. This value of 6.7 meters was chosen according to the maximum road width in segment 6.
The real road width is sometimes more narrow, however. To investigate the difference road width can make, a test was
run with segment 6. In the test, three different road widths were taken into account: a fixed road width of 6.7 meter, and
half of that road width taken both at the right and at the left side of the lane. The resulting velocity profile can be seen in
figure 5.19.

Figure 5.19: The velocity profiles resulting of three different road width configurations of segment 6.

The results show how much difference road width can make. The cornering velocity that results from cornering at the
inside half of the road is much lower than than that of the full road width. The difference is almost 2 m/s, more than 10
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percent of the total speed. Cornering at the inside half of the road reduces the turn radius spectacularly. The difference
between cornering velocities experienced by riding on the side of the lane that is positioned towards the outside of the
turn and riding on the full width lane is non existent. The turn radius is approximately the same in both these cases, but
on the outside of the turn more path distance (not center line distance) is covered. This is why it seems like the rider can
brake harder in the latter scenario in figure 5.19, but actually he covers more path length in the same center line distance,
which means that he probably brakes just as hard as in the normal situation. The extra path length also explains the late
braking. The turn is effectively shifted a few meters, so that the initial braking point is shifted. The center of the turn is
still at the same center line distance however, so the moment of lowest velocity is reached roughly at the same point. This
road width analysis shows that the optimiser takes road width into account in a correct way. Furthermore, it is shown that
road width can have a large effect on the outcome, and that working with the exact road width at s could possibly result
in a velocity profile more alike the ones measured.

conclusion-
As a conclusion, the model reacts to track and rider conditions as expected. The track data used to run the optimisation
seems to be reasonable. The friction coefficient applied in the model was much higher than the friction coefficient esti-
mated by the cyclists, for segment 2 and 4. A remark made by a professional cyclist during the measurements confirms
this. A combination of an estimated friction coefficient difference and the absence of accurate road width variation over
the track together cause the difference found between the measured and optimised velocity profiles.

5.5.2. braking strategy
One of the main goals was to find out if the optimal cornering strategy differs from strategies practised by elite cyclists.
There are two main differences. (1) The location in the turn where minimum velocity is reached differs greatly. This is
for example visible in segment 6, in figure 5.14. Even when cyclists would brake harder, their timing is wrong according
to the optimisation. But (2) the most striking dissimilarity between the strategies is the magnitude of braking, as seen
specifically in the results of segment 6. The optimal deceleration for segment 6 is almost two times higher than the
performed deceleration. Why is this? There are three main factors can cause a difference in braking performance:

1. front brake only vs optimal braking

2. friction coefficient estimation

3. safety margins

Of those three, the friction coefficient has already been discussed. The other two factors are further looked into.

front brake vs optimal braking-
When the front brake only strategy is used, there is a smaller adherence radius possible when turning and braking at the
same time (see figure 5.20). This can prevent cyclists from reaching the optimal decelerations shown in the minimum-
time optimisation solution.

Figure 5.20: A g-g diagram of a front brake only strategy, where the height of the CoM was varied. The diagram shows that the adherence
radius is not maximized when turning and braking happen at the same time.

safety margins-
It was discussed that cyclists brake less hard than what the optimisation deems possible. The hypothesis was that this is
partly caused by safety margins that the cyclists unconsciously use. To look further into the concept of safety margins, a
study was done where approximations of safety margins are applied. There are at least two types of safety margins that
can be thought of. First of all, a control safety margin. To be able to control a bicycle when a perturbation is experienced
(this can be as simple as an unexpected bump in the road or a strong breeze of wind) some lateral space is necessary.
This makes it possible to steer as a response to the perturbation. In a study by Schwab and Meijaard it was found that the
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minimum lateral distance necessary to control a bicycle when perturbed is 15 cm from the center line of the movement
[9]. The perturbations used in this study were not large, so in reality the distance that cyclists want to take from the road
boundary might be even larger. The second safety margin is a safety margin for acceleration. When seeking the lateral
acceleration limits, a cyclist risks slipping when a road condition is slightly different than expected. When braking, an
uncontrolled stoppie is risked. It is difficult to estimate at which points of the g-g diagram the safety margins are largest.
It is however clear that for pure acceleration, there is no safety margin.

To model those two safety margins, a simple approach was used. For the lateral positioning safety margin, the study of
Schwab and Meijaard had shown that a cyclist should stay clear from the roadside with at least 15 cm. When looking at
the measured trajectories, cyclists stay clear at least 0.5 m from the side of the road. Therefore, the right road boundary
was reduced with 0.5 cm from the center line. The left road boundary was left unchanged, as there is another lane of the
road on that side that allows for lateral control actions. The acceleration safety margin was applied through shrinking the
g-g diagram radius by 1.2m/s2, except for the forward acceleration part (see figure 5.21).

Figure 5.21: The safety margins as implemented. The power limit is left untouched.

There was no optimal solution found for the study, instead a maximum number of iterations was reached (6000). The
absolute errors of the variables are small compared to the variables values. The results of this study show that the safety
margins only partly explain the difference in performance between the measurements and the optimised descent. The
total descent time was 106 seconds without safety boundaries, and 108 seconds with safety boundaries. The cyclists
fastest time was 114 seconds. In figure 5.22 it is seen that the general trajectory does not differ much.

Figure 5.22: The resulting trajectory from the minimum-time optimisation where safety margins are approximated.
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The velocity profile shows the expected differences (see figure 5.23). The safety margins lower the maximum cornering
speed, but in the turns in segment 2 and 4 no difference is seen at all. This makes sense, since the calculated maximum
cornering velocity is around 20 m/s. The safety margins do not lower the cornering velocity enough to change the velocity
profile with respect to the base results. This is confirmed by the results for segment 6 and 8. There it is seen that the
cornering velocity is only reduced by about 2 m/s, which means that velocity in segment 2 and 4 is still lower than the
reduced maximum cornering velocity. In segment 6 and 8 it is also seen that the cyclists can brake harder than they
did, while adhering to the safety margins. This indicates that the safety margins are larger in the longitudinal direction
than in the lateral direction. The fact that the only velocity profile difference is seen at segment 6 and 8, means that
the time difference of 2 seconds between the two optimisation runs comes almost solely from the performance in two
turns. When a more precise friction coefficient is taken into account, the effect of safety margins is expected to play a
role in the performance in the turns of segment 2 and 4 as well. This means that safety margins have a significant effect
on performance. Getting cyclists to reduce their safety margins even slightly can make the difference between winning
and losing. The great question is then how to distinguish between a necessary safety margin and one which is falsely
exaggerated.

Figure 5.23: The velocity profile that results from the minimum-time optimisation where safety margins are approximated.

5.5.3. convergence
One of the outcomes of this case study is that the model has a lot of difficulty with convergence. After a few tests most
of the difficulty appeared to be caused by the banking and twist angle. This is why the results were obtained in several
steps, as explained in the method section. This convergence behaviour is curious, as there were little problems with
the elevation angle, compared to the banking and twist angle. Both the elevation angle and banking angle cause a shift
of the diagram. However, while a gradual change in forward elevation can only lead to gradual changes in the optimal
solution (for example gradual changes in braking intensity/timing), banking can lead to sudden changes. An example:
negative banking can cause two almost equally good options (a local minimum). Negative banking causes the cyclist to
lose normal force in the corners. This lowers the maximum cornering speed. If it is critically lowered, it could be that the
optimal trajectory is suddenly different; the turn radius should be increased, instead of decreased as much as possible.
Those two opposing tactics can result in convergence errors. The opposite can be said for positive banked corners.

This hypothesis implies that due to increased banking, results suddenly change a lot. To investigate this, a test is run
where the banking is set to zero. The results are compared to the baseline case study results where banking is included.
The resulting trajectories were exactly equal. This shows that a sudden switch in optimal tactics did probably not happen
when increasing the banking. In figure 5.24 it can be seen that in segment 6 and 8, larger cornering velocities can be
reached due to banking. However, this velocity change is a gradual change, that evolves with the banking rather than
change suddenly. As a conclusion, the theory that banking effected convergence because it can create a sudden ’switch’ in
optimality was not confirmed. There might be other underlying reasons why banking caused problems with convergence
for this case study.

5.5.4. accuracy
In the method section it was described how 1000 nodes were used in the optimisation, with a maximum distance of 2.8
m between them. This amount of nodes was chosen to make sure a minimum amount of information was provided per
center line distance. However, in practise this choice might fall short in describing the states accurately when interpo-
lating in between the mesh nodes. In events where states and/or inputs change rapidly, more mesh points are needed.
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Figure 5.24: The velocity profiles of test runs that do and do not consider banking. The only difference is found during the braking
sequences at segment 6 and 8.

While LGR discretisation allows for mesh refinement, mesh refinement was not used to solve this case study. To check
whether the current optimisation resulting states and inputs change rapidly between sequential nodes, the largest dif-
ferences were looked upon. For v this is 0.98 m/s, for n this is 0.59 m and for χ it comes down to 0.058 r ad . While an
orientation change maximum of 3 degrees is acceptable, the velocity change and lateral positioning changes are large.
For the results, requirements can be set up that describe the maximum state differences between sequential nodes, to
ensure accurate results. For the inputs, interpolation can even be a larger problem. Longitudinal acceleration can change
very sudden from full propulsion to full braking. When two nodes are 2.8 m apart and the calculated inputs on those
nodes are as different can be, what happens in between? It could well be that in the middle of this node interval sudden
braking should be initiated. But with regular interpolation, a gradual change towards braking is calculated. This makes it
hard to set a requirement for inputs, as it is possible that even between nodes that are as much as 0.1m apart, there are
large differences.

When are results accurate enough? This depends entirely on what it planned with the results of the optimisation. For this
case study, it makes sense to set the internodal variable change limit to a few percent of the maximum reached variable
value. In the case of velocity, this could be 0.2 m/s (1% of 20 m/s). For lateral positioning 0.2 m (3% of 6.7 m), and for
orientation χ a few degrees. It is however impossible to directly apply these requirements into ICLOCS2. Instead, the
results need to be checked to see if they meet the requirements. To achieve higher accuracy, either more nodes can be
added, or nodes can placed more strategically. Mesh refinement used both of the options at ones.

To find out if higher accuracy can be reached with the help of mesh refinement, two runs with mesh refinement were
compared to one without (the original run of which the results are covered in this chapter). One mesh refinement starts
with the same number of nodes as the original optimisation, 1000. The second mesh refinement starts out with only 500
nodes. The mesh refinement is carried out a maximum of 6 times per run. The results are displayed in table 5.3. Sur-
prisingly, the mesh refinement that starts out with the least amount of nodes performs the best. The internodal changes
of the parameters are generally small. The most noticeable are the values for the input changes. The maximum input
changes are much lower for the second mesh refinement than for both other runs. This means that knowledge about
when braking takes place exactly has improved immensely. The amount of nodes has increased drastically in segment 6
and other sharp turns, and on straight segments the amount of nodes has dropped. Why a mesh refinement that starts
out with less initial nodes yields better results is unclear. It might be that it is easier for the software to correctly place the
nodes than to reposition them.

Table 5.3: Differences between results from optimisations with and without mesh refinements. The mesh refinement runs have started
out with different amounts of initial nodes.

base run mesh refinement 1 (#nodes0 = 1000) mesh refinement 2 (#nodes0 = 500)
max |∆v | (m) 0.98 0.80 0.68
max |∆χ| (rad) 0.058 0.107 0.088
max |∆n| (m) 0.59 0.71 1.27
max |∆ax | (m/s2) 3.18 1.83 1.7
max |∆ay | (m/s2) 13.53 8.07 5.29
#nodes f 1000 1026 737
max ∆s (m) 2.8 4.6 9.18
min ∆s(m) 0.53 0.0033 0.0079
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5.6. conclusion
The optimal trajectory of the L218 has been defined robustly. A large difference was found between the measured and
optimal velocity profile. It was established that this is mainly the result of a difference between the friction coefficient
used in the model, and the friction coefficient as estimated by the cyclists. The model reacted as expected to parameter
changes, qualitatively showing good results.

Furthermore, differences between braking strategies have been shown. The optimal cyclist can brake harder for a shorter
period of time, even when adhering to safety margins. Next to that, the results indicate that the optimal location of the
minimum velocity is positioned earlier in the corner than where cyclists locate it.

It can therefore be concluded that the model is a nice tool to help analyse cycling performance. But only when there is
sufficient data and knowledge about the road, cyclist and bicycle at hand.





6
Discussion & Recommendations

In this chapter limitations of both the minimum-time optimisation as a whole and the g-g diagram model are discussed.
The choice of working with the free-trajectory OCP with QSS constraints is debated. The assumptions and simplifications
made in the g-g diagram model are further analyzed and recommendations are made towards a more accurate model.
Furthermore, an outlook is given towards possibilities of the presented model. More suggestions for cycling scenario’s
where this model can be used are discussed. This is extended even further by discussing applicability for other sports.
Lastly, the translation of the model results into practical instructions for rider training is explored.

6.1. chosen method review
At the start of this project, the free-trajectory OCP with steady motion constraints approach was chosen. There were two
reasons for this; the method was shown to be computationally fast compared to the transient approach, and the OCP is
simple. It is debatable whether the free-trajectory steady motion minimum-time optimisation approach is indeed the
best approach for the case of a bicycle descent. While the approach guarantees that all of the acceleration limits are
captured in a few g-g diagrams in a 2D case, the number of situation-dependent g-g diagrams that should be applied
increases exponentially when looking at 3D situations. In this project, this has been handled by using multiple variable
interpolation on a very large database. This is computationally slow and there is a risk of incorrectness of the found
interpolated value. Therefore one of the two presumed benefits of the free-trajectory steady motion approach ended
up being untrue; the computational effort is not as low as presumed. The remaining benefit is still true; the optimal
control problem can be formulated with only 3 variables. For future research it would be interesting to compare the
computational speeds of this approach and the transient approach, to find out how they compare for this specific use.

6.2. g-g diagram model limitations
Many assumptions were made in order to keep the g-g diagram model workable and simple. The consequences of choices
made for the power model, bicycle model, mechanical rider model, behaviour rider model, tire model, aerodynamic drag
modelling and road model will be discussed in this section.

6.2.1. power model
The power constraint for the g-g diagram is chosen to be a constant power limit, for simplicity reasons. However, this
does not represent acceleration possibilities for cyclists well. In physical sports research, optimal power distributions
are researched. The outcome is called an ’optimal pacing strategy’. They have been determined through fixed-trajectory
optimal control problems. Instead of a g-g diagram as a constraint, a power or exertion model is used. An idea for a future
improvement of the g-g diagram model of this project is to use the g-g diagram as a baseline constraint, and an exertion
model to determine the optimal power at a certain point on the track.

Which exertion model should be used? The general belief is that exertion models that mimic more of the physiological
phenomena are automatically better. The exertion model that is seen as the most advanced, is the Margaria-Morton
(M-M) model [20]. From all the available models, it takes the most physiological phenomena into account. The M-M
model accounts for V̇ O2 kinetics in addition to the lactic and alactic components of anaerobic work. Therefore, it is
recommended to investigate the implementation of the M-M model as an addition to the g-g diagram. However, as a
first step a more simple model can be taken. While the critical power (CP) model ([33]) is often judged as oversimplified
and inaccurate, a new adaptation to the model makes it a robust method of assessing exhaustion [57]. This adaptation
is a model of the W ′ balance. W ′ can be seen as the work capacity available above the CP threshold. The principle
is illustrated in figure 6.1. The work capacity can be imagined as a battery that can charge and drain, depending on
the power expenditure of the cyclist. One great advantage of the model is the possibility to calculate the status of the W ′

57
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’battery’ online, while cycling, so that it is easy to compare the optimal battery status to the actual battery status. Recently
this combination of both trajectory finding and the determination an optimal pacing was explored by Zignoli & Biral [7].
This study incorporates a road model that accounts elevation (no banking), and uses the transient method to solve the
optimal control problem. Their cost function tries to minimize the travel time, while also minimizing the power output
variation and steering angle variation.

Figure 6.1: Example of the W ′ battery principle. The dashed line shows the critical power, and the grey area above it is the available
battery capacity. The available power decreases, as the cyclist gets exhausted because it pedals 360 W, which is above their CP. Figure
from [21]

As a conclusion, it is recommended to look into the use of the M-M model to include optimal pacing in the optimisation.
With this addition, the minimum-time optimisation model can be used on more cases than descents only. If a more
simple model is sought (e.g. as a first step) the CP model with the work capacity adaptation is recommended.

6.2.2. bicycle model
In the g-g diagram model, the bicycle and rider are represented in a very simplified way. They are modelled together as a
single point mass. This simplifies the equations of motion, but makes them less accurate. Bicycle characteristics such as
countersteering are completely ignored. A more elaborate way to describe the bicycle would be to describe its different
parts as separate rigid bodies that interact. As established in the Whipple model [42], the bicycle can be modelled as four
rigid body parts: the front and rear wheels, the main frame and the steering axis. Examples of such single-track vehicle
models focused on steady state cornering are by Fu and Koenen [30, 43]. The model by Fu does not include a rider, and
the model by Koenen does. Application of such models can increase the accuracy of the optimisation and make sure that
bicycle characteristics such as countersteering are accounted included.

6.2.3. mechanical rider model
Next to the bicycle, the rider can be represented in more accurate ways too. Riders are modelled in several ways. They
are sometimes assumed to be a point mass connected rigidly to the rear frame. As an extension of that model, the driver
can be modelled as two point masses, one rigidly connected to the rear frame and one as an inverted pendulum above it.
One of the most complex model used for humans as inactive controllers has two degrees of freedom:lateral position with
respect to the bike and rolling rotation of the upper body [25]. Those are all possible mechanical rider models that can
improve the representation of reality in the current model.

6.2.4. behavioural rider models
Next to mechanical driver models, the drivers behaviour can be modelled. Tactically changing position while cycling can
influence the resulting drag area, or it can help with braking. Another example is the position of the legs while cornering.
In the following sections the modelling of such behavior will be discussed.

CoM positioning-
In the g-g diagram model, the CoM positioning is assumed to be constant over the entire track distance. In reality, cyclists
move a lot during a race, for multiple reasons. The cyclists positioning behaviour influences other parameters that are
important in minimum time-lap simulations. One is the frontal area that is needed for the calculation of aerodynamic
drag force. When a driver switches to sitting on the top tube during a straight section of the descent, the air drag changes
drastically. The same effect is seen when standing up during braking. This effect was modelled by Limebeer and Leonelli
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through implementing a ’prone’ (accelerating) air drag and a ’standing’ (braking) air drag [45]. A smooth transition be-
tween the air drags is made by a function designed by the researchers. A similar function can be used for the modelling
braking behaviour. Riders often reposition their CoM to the back of the bicycle, to prevent passing the stoppie limit. This
can be modelled through a brake dependent longitudinal CoM position. As a conclusion, CoM positioning influences
both braking and the drag area. Modelling CoM positioning changes over the course of a track could give insights in CoM
positioning strategies.

roll angle limits-
The g-g diagram model that was build in this thesis assumes that the rider has the ability to exert power while making
a turn. This means that the cyclist should be able to pedal. In practise this is not always possible, as the roll angle can
become so large that the pedal at the inside of the turn touches the ground. This inflicts great risks. Therefore, it is inter-
esting to analyse the effect of a roll angle limit. This limit is only necessary when pedalling is necessary, during braking
the cyclist can lift the pedal at the inside of the turn upwards so that it has more space to roll. To determine the maximum
roll angle, a calculation (see appendix J) was compared to the angle reported by the US national commission on product
safety [54]. The maximum roll angle was found to be 28.5 degrees.

In figure 6.2 a comparison can be seen between the g-g diagram that results from the model described in this thesis, and
two different roll angle limitations. The first limitation takes into account that the roll angle is always limited, so that
cyclists can corner with they inner turn foot down. This is a simple boundary condition, that implies vertical lines as
constraints. The second limitation limits the roll angle only when the cyclist is pedalling during a turn. It creates an extra
concave shape. This concave shape might provide more problems with convergence than the concave shape created by
the stoppie limit. This is because the stoppie limit always lies in the center of the symmetry axis of the diagram, while
the roll limit area does not. Since the roll limitation creates a seriously different shape at a critical location (the transition
between longitudinal acceleration and pure cornering), this condition is important to take into account for future bicycle
g-g diagrams.

Figure 6.2: A basis g-g diagram that was created for a flat road is compared to diagrams created for the same condition, only with two
different roll angle limitations added to it. The slight difference between the left and right side height of the roll limit is the result of the
numeric discretisation of the adherence orientation that was applied to create the diagram.

6.2.5. tire model
The tire model forms the basis of the g-g diagram, since it determines which forces the tire can handle. In this work, a very
simplified model is used. However, it is to be expected that tires are more complex in reality. As en example, effects such
as roll probably result in asymmetrical diagrams, due to asymmetrical contact patch shapes. At the moment there are no
bicycle tire models, but research is done on the subject by Andrew Dressel and hopefully others. An option to investigate
before bicycle-specific tire models emerge, is the Pacejka motorcycle tire model [56]. While motorcycle and bicycle tires
are quite different, Pacejka’s model does take into account very important characteristics like the camber angle, that are
left out in car tire models. It would be interesting to see the difference between g-g diagrams that result from such a model
and the friction ellipse, and in the future a bicycle tire model.

While the tire model helps to predict tire force limits, a specific tire characteristic should be taken into account while con-
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Figure 6.3: Here the effect of cornering on the power loss due to rolling resistance is seen for a heavy loaded truck. As a comparison,
the total power loss (mainly caused by air drag) on a straight segment is 15 W for this truck. For a bicycle the magnitude of the rolling
resistance coefficient is expected to be different (lower) due to the load difference, but the general effect is the same. Figure from [53]

sidering external forces on the bicycle model. Rolling resistance is now not taken into account. While rolling resistance
is indeed very low while driving straight ( 0.005 time the normal force), cornering enlarges this resistance effect. The cor-
nering force that is created when a small slip angle exists correlates directly with the magnitude of the rolling resistance
coefficient [53]. An example of this effect can be seen in figure 6.3.
As a conclusion, the tire model that is chosen influences the g-g diagram greatly. The friction circle is not based on
actual tire characteristics. Therefore it is recommended to apply a model that is based on tire dynamics. To enhance tire
modelling further, lateral acceleration dependant rolling resistance should be applied.

6.2.6. aerodynamic drag
The influence of drag on cycling performance is huge. To quote Debraux et al. [55]:

When cycling on level ground at a speed greater than 14 m/s, aerodynamic drag is the most important
resistive force.

Aerodynamic drag is caused by a combination of pressure drag and skin friction drag. The effective frontal area (the drag
coefficient times the projected frontal area), together with speed and air density, is a determinant parameter of the drag
force. Where the projected frontal area describes the specific position, the drag coefficient describes the aerodynamic
feasibility of that position. Both of those parameters can change over time. Next to this, wind can play a significant role.
In the current g-g diagram model, aerodynamics are implemented in a rather static way. The drag is assumed to be gener-
ated by the speed of the cyclist only, without taking into account wind coming from any direction. What’s more, is that a
position change is not taken into account. Air density change is assumed zero. And lastly, drag reduction caused by other
cyclists cycling nearby is not modelled.

This raises the question whether such effects could be implemented into the model. Currently, the (simple) equation
used to calculate drag force makes use of the vehicle speed. To include wind in the longitudinal direction, the relative
speed of the cyclist with respect to the speed of the wind can be used instead of the cycling speed (see equation 6.1).

F d = 0.5ρaCd A(vc ycl i st − vwi nd )2 (6.1)

However, now the wind is modelled to blow into the longitudinal direction of the cyclist only, while the cyclist may change
direction with respect to the wind. It is more complex to change the wind direction. For the current g-g diagram model,
the road can be reduced to a single plane, where the orientation and position in the xy plane did not matter. When
adding wind, the orientation does suddenly matter. What could be done however is determine the projection of the wind
direction onto the longitudinal direction, to determine which part of the wind will work in the longitudinal direction.
With this simplification, lateral wind effects will not be taken into account. Such an approach is for example used by
Zignoli and Biral [7].

Due to the large effect of drag, drag reduction due to other cyclists can play a large role. There are two types of cases
where such drag reduction can play an interesting role. The first is a scenario where it is known in which position the
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cyclist will ride (behind or in front of other riders). Here, drag force reduction can be calculated through multiplying the
drag force with a reduction percentage. In the second scenario, the riding strategy changes due to positioning choices.
The trajectory and riding strategy takes into account that a cyclist could take aerodynamic advantage of both opponents
and allies. Here, the positioning with respect to other riders is an OCP variable (example in figure 6.4). Due to the many
options of positioning, this would make the calculation of the g-g diagram complicated. The usage of a pre-setup database
is almost impossible.

Figure 6.4: The possible optimal trajectory for overtaking manoeuvres using aerodynamic advantages.

Drag area changes due to position changes can be approximated relatively easily, as described in section 6.4.2. However,
thorough knowledge of the specific rider behaviour and drag area is necessary before the drag area changes can be imple-
mented. Along with the drag area, the center of pressure (CoP) might change. In the current model, the center of pressure
was assumed to be located at the center of mass. In practise, the location might differ. Implementation of a different CoP
location is simple, especially as long as it is located in the sagittal plane (symmetry).

Lastly, the air density can change over the length of the track. For this to happen, large height differences should be
present. To give an idea, the air density in Colorado Springs (height of 1.84 km) is 0.94, whereas the air density at sea level
is 1.20 (considering a temperature of 20 degrees Celsius in both situations) [55]. Air density will only play a role at long
and steep descent routes. This is even more true when considering that the temperature at higher altitudes is often lower
than at ground level. When the temperature drops, the air density increases. This effect negates some of the air density
differences caused by height. In the majority of cases, the air density will not change significantly over the course of a
track.

To summarize, it is possible to implement the effects of longitudinal wind. Strategies that involve multiple riders are
further discussed in the outlook sections. Lastly it can be concluded that the air density can be considered constant.

6.2.7. road model
In this optimal control problem, the road is modelled as a ribbon. The ribbon road model describes the road as a "chain"
of planes. It makes it easy to describe the orientation of the road and the cyclist. However, lateral road curvature is not
modelled. For cycling, the author suspects that lateral curvature is small. Although it could not be checked with data for
the specific L218 case, since only the center line and road boundaries were recorded.

Next to lateral curvature, another road model assumption is made. Namely, that the friction coefficient is constant over
the track. In reality certain parts of the track may contain sand, or even puddles, which can drastically change the friction
coefficient. If the friction coefficient changes over the length of the track, the friction coefficient could just be another
input parameter for the g-g diagram model. This makes everything computationally hard, especially since the coefficient
can change instantly. This will have huge effects on the convergence of the OCP. When there are lateral friction coefficient
differences, it is complex to implement his.

As mentioned by Perantoni and Limebeer, the ribbon road model does not take into account short-wavelength road
features [32]. Examples are small bumps or holes in the road, that can be there because of wear or tree roots. Such road
distortions can cause riders to take a different trajectory because they do not want to fall over, or to slow down. The
roughness can cause short moments of ground contact loss, where the cyclist won’t be able to accelerate or decelerate
at all. Since those moments are short, and often disturbances are small (according to the author’s experience), the rider
controls are not expected to differ much.

In short, for applications of this model in track cycling the most important road parameter is the friction coefficient.
Lateral curvature is almost non existing on public roads, and short-wavelength road features are kept to a minimum.
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The friction coefficient can however change drastically over the course of a track. To gain accurate time predictions it is
recommended to map those friction changes and add those as an extra parameter in the model.

6.3. convergence
The convergence of the minimum-time optimisation is the main focus after the optimal control problem has been de-
fined. How can performance be maximized, and how certain is it that a global optimum was found?

6.3.1. improve convergence
The convergence of the problem mainly depends on the shape and continuity of the constraint space. This is discussed
in appendix D. However, the shape of the constraint space is a part of the problem definition, and cannot be changed.
The user and solver settings can however influence convergence too. There are two main contributors to the convergence
performance of IPOPT: a good initial guess and proper scaling [6].

initial guess-
A good initial guess is important as it can prevent the solver to get stuck in local solutions or crash and it can save a lot
of time. An example of a crash can be found when an initial guess of a variable is chosen such that a division by zero is
created. If the initial guess were to be any other value, this would have been prevented. The question remains, how a good
initial guess should be found. In this project, the optimisation was run with mock-up path constraints first. The results
from this run were then fed to the optimisation with the correct constraints, reducing the total run time significantly.

scaling-
To achieve the best solving performance, an optimisation problem should be scaled properly. But what is ’proper’ scaling?
Proper scaling consists of two aspects. Firstly, the magnitude of the absolute derivatives of the different variables should
be about the same magnitude. For the cycling optimisation problem, this is an issue. The derivative for the velocity
can generally be much larger than that of the relative orientation. The second aspect is the magnitude of the separate
derivatives. The magnitude should not be very small or very large. To comprehend this, a simple Newton-Raphson
problem can be thought of. In a root finding problem, a gradient approaching zero means that the tangent will never (or
not within the bounded area) cross the x-axis. Almost the same holds for a very large gradient, approaching infinity. Here,
the same x-value will be found over and over again.

6.3.2. global or local optimum
In principle, the solver will find a local optimum. The algorithm tries to steer towards a global optimum however, by
applying a filter and a penalty function. The filter avoids cycles of iterations. It checks the iteration with respect to a part
of the iteration history. In a regular situation, this enables the program to find global, rather than local solutions. Another
option to guide the solver towards a global solution is to use a penalty function. The penalty function makes sure that the
constraint exceedances are penalized [59]. The penalty parameter, that describes the severity of the penalty, is updated
such that the cost gradient is negative.

6.4. outlook: ideas for use cases
To provide some insights in how this approach of minimum-time optimisation can be used in elite cycling, a few ideas
are presented and discussed in this section.

6.4.1. multiple cyclists
In both track cycling and road cycling, an important part of strategy is determining how to overtake other cyclists. This
can potentially be modelled by setting the states of one cyclist as fixed, while optimising for a second cyclist. The difficulty
here is that the minimum-time optimisation is built up out of stages defined by distance s, instead of stages built up out of
time instances. This means that driving behind one another is hard to model, since the cyclists drive in the same position
at the same track distance s, only the time variable differs and this is generally not taken into account. Still there could
be a way to model this. To do this, the lateral position of the "fixed" cyclist should be available as a function of time. To
compare it to the lateral position of the second cyclist at a certain time instance, this information should be found for
the second cyclist as well. The time spent on a certain distance is known as it is the outcome of the cost function. The
time found for a certain distance ridden by cyclist 2 can be used to check the lateral position at cyclist 1 at the same time
instance. A path cost function can be set up to compare the two:

|n1(t )−n2(t )|−d ≤ 0 (6.2)

This makes sure that at least distance d is kept laterally between the wheels of the two cyclists. Another boundary should
make sure that for example the rear wheel of the first rider does not touch the front wheel of the second. This can be done
by using the same path constraint, only now the lateral position of the first rider is evaluated at an earlier time instant:
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|n1(t −e)−n2(t )|−d ≤ 0 (6.3)

where e describes the time distance that should be present between the two cyclists. The same can be done to make sure
that the second cyclist does not move in front of the other cyclist too early. With this strategy, the model can be used to
solve more strategic problems. It should be noted that aerodynamic drag plays a large role in overtaking strategies. It can
be more convenient to stick behind the back of another cyclist for some time to save energy. To make optimal use of this
possibility it is therefore important to incorporate both a power model and a model for aerodynamic drag, that takes into
account slip streams and wakes (pressure drops behind moving cyclists, providing reduced drag for both the front and
rear cyclist).

6.4.2. velodrome sprint qualifiers
In the qualifiers for the track cycling event called "sprint", the cyclist rides two or three warm up rounds. After that, the
final 200 m are completed in a sprint. The tactic for this is to use the warm-up rounds to gain height, so that the cyclist
can use the acceleration caused by the "drop" to the black line to initiate the final round (see figure 6.5). The interesting
part about this is the drop. Which trajectory will create the fastest lap? Is it a straight line towards the center of the turn,
or is it beneficial to get down to the black line very fast, to reduce the travelled distance? This model is perfect to find the
solution. In this case, the value of χ is of great importance, as without it the drop effect is not taken into account. Due to
the many input variables of the g-g diagram the problem will take long to solve, but it can be done. The objective is then
to lower the time spent on the 200 m, and as an initial condition the position at the top of the track is given.

Figure 6.5: Natasha Hansen of New Zealand competing in the Women’s team sprint qualifying during day 2 of the The UCI Cycling Track
World Championships 2020, at The Veledrom, Berlin Germany. She is right in the middle of the drop. Photo from [35]

6.5. outlook: applicability rider feedback system
The possibilities of minimum-time optimisation are great. But how can the results of a minimum-time optimisation be
communicated to the cyclists, in such a way that they can get the most out of it? A discussion with Rado Dukalski, PhD
candidate in the field of feedback solutions in sports, was held to explore the possibilities.

First of all, it needs to be established what the most important information is for the cyclist. Since the cyclist has its own
idea of how to perform optimal, it is a logical choice to focus on differences between this idea and the outcome of the
minimum-time optimisation. In the case study of chapter 5, we have seen that there are several differences between what
the rider does and what he should do: the trajectory is different, and the braking behaviour. Specifically, the location of
the minimum velocity and the duration of braking.

Secondly, a way of communicating should be found. While augmented reality (for example glasses that add layers of in-
formation to reality) would be a way to safely show the optimal trajectory, it is very complicated and costly to build this
in practise. State-of-the-art image recognition is necessary to line up the ever-changing angle of the horizon with the
trajectory images. Recognition of depth is even more complex. Estimating depth from a single image was only success-
fully implemented since this year (2020) [62]. This makes it complex and costly to implement augmented reality. Other
options should be lookud upon. Since many cyclists use their phone on their bike along with ANT+ or apps like Strava
and Training Peaks, using that phone for communication is a possibility. Dukalski has used a phone as a feedback device
to help cyclists with pacing. The results showed that participants adhered better when an aggregated presentation of data
was given (see figure 6.6). One brainstorm outcome was to show a short ( 3 sec) video of the approach of a turn during
an earlier straight segment of the route.



64 6. Discussion & Recommendations

Figure 6.6: Aggregated information presentation as used in the study by Dukalski et al. On the left the past and present power output as
well as goal power output is seen. In the center, the present and future power output goal is seen. On the right, navigation information
is visible. The color scheme was chosen for high contrast and lack of value attribution. Figure from [58]

One of the main discussion points was whether the cyclist needs to know a goal velocity or a goal power output. Cyclists
generally have a good feeling of how a certain wattage feels, while estimating velocity is harder. However, in certain
conditions (like during a braking procedure) there is no power output while the velocity is still important.

As a conclusion, several instructions for the cyclist are needed, making communication complex. Researching which base
instructions can be used to effectively inform the cyclists is an interesting project on it’s own. A possible option for the
communication of those instructions is through a phone, mounted on the bike.

6.6. outlook: extension to other sports
As this minimum-time optimisation approach was converted from formula-1 and motorcycle racing to cycling and to
3D, there might be possibilities to use this model or an adaptation in other sports as well. With the current model (one
without a power model), the most relevant sports are downhill sports. Sports like bobsledding, skeleton and luge can
be considered. For these sports, a different track model is necessary since lateral curvature is an important aspect of it.
There are no such optimal control models right now for those sports. An analysis was conducted by Gong et al based on
simulations, which shows correlations between certain control strategies and descent times [15]. But this does not show
the optimal trajectory, and that is where the minimum-time optimisation model presented in this model can be of help.

Another sport where descent plays an important role is mountain biking. However, the fact that the bike loses ground
contact often makes it impossible to use this model. One of the consequences of working with g-g diagrams is the au-
tomatic assumptions that there is always ground contact. Furthermore, the dexterity of mountain bikers is much higher
than that of cyclists in other cycling categories. Due to this dexterity, the location of the CoM moves a lot and this should
be modelled.
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Conclusion

A free-trajectory steady motion optimal control model for the descent of elite cyclists was presented. This model is among
the first generation of free-trajectory cycling optimisation models. It is the first to take into account all important 3D road
aspects such as elevation, banking, and the change of gradient. As constraints, the model features g-g diagrams that
depend on the current rider states and local road geometry. Those g-g diagrams are the first g-g diagrams that are de-
termined specifically for bicycles. When comparing the numerical g-g diagrams to experimental data, they show great
correspondence. This indicates that the numerical g-g diagrams represent reality well.
The model was shown to robustly predict comparable trajectories to those of elite cyclists. It contributes to the under-
standing of cycling acceleration limits, varying with both the vehicle states and track configuration. The model is fit to be
used for descents specifically, since the power output of the cyclists was simplified. To summarize, the overall model is
promising, and shows qualitative correspondence to reality.

The most important recommendation is to add a power model to the optimisation. With this addition, the model can
be used in multiple categories of bicycle racing. It would be possible to predict the optimal strategies for track cycling,
road cycling and time trials while calculating the optimal trajectory and their mutual effects at the same time. When
aerodynamic effects of drafting are taken into account, it is also possible to use the model for team events or events
where riders are riding closely together.

It is debatable whether the free-trajectory steady motion approach is the best for this case. Where it provides calculation
simplicity and a decrease of calculation time for a 2D road case, for 3D it gets complex anyway. For a 3D case there are 9
variables for the g-g diagram that likely change over the track distance, where there is only 1 for the 2D case. In many cases
some of the variables can assumed to be zero or fixed, for example when the road has almost no banking. A comparison
to a transient model could be made to establish which one is faster. A benefit of the steady motion model is that the g-g
diagrams give insight in the acceleration capabilities for a specific situation.

With this kind of models, elite cycling performances can be improved further. The model results can be used for training
purposes, theoretical gear optimisation, and gear selection for specific courses. Next to that, a better understanding of the
currently existing racing strategies can be created. The model paves the road towards more advanced cycling analytics.
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A
Acceleration calculations

In section 2.3, it is shown how the state equations are found that describe the change of position and orientation of the
cyclist. This appendix provides a detailed elaboration of the exact calculations. It was stated that through the transport
theorem, the accelerations of the cyclist can be described like in equation A.1, with the angular velocity build up out of
the relative angular velocities of the frames. ax

ay
az

=
v̇

0
0

+ DωD/N ×
v

0
0

 (A.1)

ωD/N =ωD/B +ωB/C +ωC /N (A.2)

Figure A.1: Build up of the angular velocity vector, out of the relative angular velocity vectors of the frames, from iN ertial frame to
Driving frame.

Here ωC /N can be seen as the angular velocity of the center line or curve frame with respect to the iN ertial frame. ωB /C
can be seen as the twist angular velocity of the riBbon frame with respect to the Curve frame, and ωD/B is the angular
velocity of the Driving frame with respect to the riBbon frame, that is a result of the change of the angle χ.
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72 A. Acceleration calculations

DωC /N = ṡ

ρ
D RC

C b, DωB/C = β̇ D RB
B t , DωD/C = χ̇ D m (A.3)

The rotations are all defined according to the right hand rule. The rotation matrices that describe the rotations mentioned
in equation A.3 can therefore be defined in the following way:

B RC =
1 0 0

0 cos(β) sin(β)
0 −sin(β) cos(β)

 , D RB =
 cos(χ) sin(χ) 0
−sin(χ) cos(χ) 0

0 0 1

 (A.4)

For clarity, the unit vectors b, t and m in their respective frames are given as well.

C b =
0

0
1

 , B t =
1

0
0

 , D m =
0

0
1

 (A.5)

Now the angular velocity vectors can be found. To find the expression for b in the D frame, successive rotation matrices
are used.

DωC /N =
 cos(χ) sin(χ) 0
−sin(χ) cos(χ) 0

0 0 1

1 0 0
0 cos(β) sin(β)
0 −sin(β) cos(β)


 0

0
ṡ
ρ

= ṡ

ρ

sin(χ)sin(β)
cos(χ)sin(β)

cos(β)

 (A.6)

DωD/C =
 cos(χ) sin(χ) 0
−sin(χ) cos(χ) 0

0 0 1

β̇0
0

= β̇

 cos(χ)
−sin(χ)

0

 (A.7)

DωD/C =
0

0
χ̇

 (A.8)

The total angular velocity vector for the rider with respect to the inertial frame can then be calculated by adding the found
angular velocity vectors.

DωD/N =


ṡ
ρ sin(χ)sin(β)+ β̇cos(χ)
ṡ
ρ cos(χ)sin(β)− β̇sin(χ)

ṡ
ρ cos(β)+ χ̇

 (A.9)

Filling this information in into equation A.1, the accelerations are determined. ax is a function of v̇ , y is a function of χ̇
and az is not a function of the derivatives of the state variables, only of the geometry at a specific situation.

ax
ay
az

=

 v̇
ṡ
ρ cos(β)V + χ̇V

− ṡ
ρ cos(χ)sin(β)V + β̇sin(χ)V

 (A.10)

This equation tells a lot about how the optimisation works. The direction of turn is determined by β. Consider a 2D road.
Since n always point to the right side (from the perspective of the cyclist) according to our definition, β determines if the
principal curvature is to the right, yielding cos(β) = 1, or to the left, yielding cos(β) =−1. Since all the other variables are
per definition positive, β indicates the turn direction.

What is also clearly represented, is that az consists of two kinds of acceleration. The first one describes the centrifugal
acceleration that is experienced when the elevation is not constant. This acceleration is greatest when β has the values
0.5π and 1.5π, indicating that the principal curvature points in or out of the road plane. That situation is like driving over
a top of a hill or down through a valley. The second kind of acceleration is experienced when β changes, and the cyclist
has an orientation different from the tangent direction of the curve. The largest effect occurs when the cyclist would ride
sideways on the road, while β is changing a lot. When you ride sideways, and the banking angle or principal curvature
direction (or both) suddenly changes, it can feel like you ride down or up a slope suddenly. This effect mostly has a small
influence, due to the fact that χwill remain small and β̇ as well when considering existing roads. Roads are designed such
that they are smooth and the driver does not need to perform extreme steering actions.



B
Velocity projected on the center line

In this thesis, the velocity projected on the center line is simplified. To explain why this was done and what the implica-
tions are, first the idea and theory behind this projected velocity, ṡ, is explained.

Figure B.1: A flat road with a turn, seen from above. The red trajectory is the trajectory of the point mass. The dotted line represents the
center line.

We will start from the most simple situations. A point mass is moving in the turn of a flat road. It is cutting the corner
by moving at the inside of the turn (see figure B.1). The projected speed is calculated with help of the notion of angular
velocity. The idea is that the angular velocity of a projection of the point mass on the center line is the same as the angular
velocity of the point mass, when it is moving in the same direction as the tangent direction of the center line. The angular
velocity of the projection on the center line can be described by ṡ

ρ . The angular velocity of the point mass moving in the

same direction as the center line can be described by
cos(χ)v
ρ2

. ρ2 can actually be written in terms of ρ, as it is equal to
ρ−n. The angular velocities are per definition equal to each other, giving the following expression:

cos(χ)v

ρ−n
= ṡ

ρ
(B.1)

This can be solved for the projected velocity:

ṡ = cos(χ)v

1−nκ
(B.2)

Now an expression for the projected velocity has been found. The nominator describes the projection of the velocity on
the center line tangent. The denominator describes the cutting of corners; if n and κ have the same sign, the corner is cut

73



74 B. Velocity projected on the center line

and the speed is scaled accordingly. The found expression however is fit for the condition of a flat road. For a 3D road, an
expansion must be made.
This addition can be explained best through a situational figure (see figure B.2).

Figure B.2: A straight road which curves over a hill. In this situation, the principle curvature vector and the camber vector are perpendic-
ular. A lateral shift of the point mass does not affect the radius of curvature.

In this situation, the lateral positioning does not result in cutting corners. This means that the denominator term of ṡ
should not be reducing the radius. this is accomplished through the introduction of an extra term:

ṡ = cos(χ)v

1−nκcos(β)
(B.3)

In the particular situation from figure B.2, β equals 0.5π. This means that the term cos(β) is reduced to zero. The radius
is not cut by the lateral positioning anymore. This expression for ṡ is used in this thesis. However, the expression was
build up using the velocity of a point mass on the ribbon plane that has no height or roll effects. The attribute of height
together with roll can also influence the radius, so for an accurate calculation of the projected speed their effect should
be included.

First, an expression for ṡ will be discussed that includes height and roll. Then it will be explained why that expression was
not used in this thesis. So how can roll influence the projected speed? Let’s start with a simple situation. A cyclist is cycling
on a flat road, that has a turn in it. This is illustrated in figure B.4. If the cyclist is positioned upright, without any roll, the
distance from the CoM to the center of the osculating circle is the same as that from a location on the ground, between
the wheels. When the cyclist starts to roll to the inside of the turn, the CoM gets closer to the center of the osculating
circle. If the velocity is the same, but the radius is smaller, this means that the projected speed is relatively larger now (see
equation B.1). Another example in which the CoM height can affect the projected speed is again the situation of figure
B.2. Here, the height of the CoM adds up to the radius of curvature of the center line. A new expression for ṡ that takes roll
into account is presented in equation B.4.

ṡ = cos(χ)v

1−nκcos(β)−hκcos(χ)sin(β+φ)
(B.4)

The denominator has an extra term compared to the previous variant. This term compensates for the change in radius
due to roll. An example for the compensation can be found in figure B.3.

The expression for ṡ includes the roll angle, which is not a geometry variables nor an OCP variable. As the roll angle results
from the lateral acceleration combined with the local road geometry, many more equations are necessary to find its value.
Another option is to create a 6D database of values of φ, and interpolating it. Both of these options are computationally
expensive. Next to that, the errors created by using expression B.3 for ṡ are small. This can be explained while looking at
a sharp turn (see figure B.4). For this example the measurements of the sharp turn in segment 6 of the L218 are taken.
When a cyclist makes the turn here at a high speed, the roll angle is large. This means that the effective radius of curvature,
from the center of the osculating circle to the CoM, differs with h sin(φ) from the radius of curvature from the origin of
the bicycle frame. Considering a maximum roll angle of 28.5 degrees, and a CoM height of 1 m, the maximum distance
change is about 0.5 m. In segment 6, the maximized turn radius is about 20 m. Subtracting 0.5 m gives a maximum
turning speed of 11.97 m/s, compared to 12.12 m/s when looking at the turn radius of the origin of the bicycle frame. The
difference is only 1.3 % of the speed. The largest possible difference in curvature radius is the full height of the CoM. A
situation in which this could happen is when the axis of rotation is parallel with the lateral bicycle direction, which can
happen in a Velodrome. When the roll angle is zero, the radius is altered with distance h. With a a difference of 2.6% of
the minimum speed, it can be concluded that (certainly when the error is small with respect to the road data uncertainty)
the difference between the two speeds is negligible. This was also the conclusion of the authors of several bicycle and
motorcycle studies [7, 24, 48]. Therefore, expression B.3 was used for ṡ in this thesis.



75

Figure B.3: In this figure, two example situations are reviewed. The cyclist is visible from behind. In the first situation, the cyclists roll
direction is the same as that of the principal curvature. This causes the third part of the denominator expression to have maximum
influence, as sin(0.5π) equals one. The expression then becomes hκcos(χ), which stands for the length with which the effective radius
of curvature is reduced due to the full CoM height. In the second example, the direction of roll and the principle curvature vector are
perpendicular. This means that the effective radius of curvature as seen from the wheel contact point is the same as from the CoM. The
third part of the denominator expression now equals zero.

Figure B.4: Simplified turn in segment 6. The maximum turning radius is almost equal to the outer road boundary turn radius. The CoM
of the rolled bicycle + cyclist reduces this radius of curvature.





C
G-G diagram solving approach

A normal approach for finding the g-g diagram is to first find the acceleration limits at ax = 0 and ay = 0, as it is easy to
guess to results at those orientations [28, 48]. Then the orientation is changed slightly. To find the acceleration limits for
the new orientation, the results from the previous orientation are used as initial guesses. With this method, the entire g-g
diagram for a certain location on the road, a specific speed and a certain χ can be created. A final constraint for the model
is necessary to make sure that the optimisation finds a solution (a maximized adherence radius) for a specified adherence
orientation α.

ax −ay tan(α) = 0 (C.1)

For a 2D situation with only 2 variables, the created data is then merged into a biquintic spline, which is smooth and fast
to interpolate. However, there are many more input variables to the problem for this model compared to a 2D road model.
The g-g diagram solution will have more dimensions than smooth splines can be created for with functions available at
this moment.

C.1. solving for a g-g diagram with more than 2 variables
Therefore, a function was written that directly calculates the acceleration limit when given input variables {α, v,ψ,γ,β, β̇,ρ,n,χ},
without starting from known values at ax and ay . To still provide somewhat accurate initial values for the optimisation
variables, the orientation angles are sorted into a category, and receive the initial values for a known orientation (as shown
in figure C.1).

Figure C.1: An orientation is sorted into an area to provide the initial values from the nearest angle of which the initial values are known.

Testing has shown that when near enough to somewhat accurate initial guesses, the correct acceleration limits are found.
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While the results are accurate, a downside of this approach is that it is slow, as an optimisation is run within an optimisa-
tion.

Another option is to create a multidimensional database that can be interpolated with the interpn MATLAB function. A
linear interpolated is mostly not good enough to enable convergence. A cubic interpolation is fast and provides a much
smoother function, to help convergence. This approach is less accurate but fast.

C.2. difficulties of g-g diagrams for 3D motion
Adding elevation and banking to a road brings along some computational differences. For example due to a steep eleva-
tion, the forward acceleration limit can drop below zero. This means that the g-g diagram does not surround the origin
anymore. That is a problem, as a single adherence orientation can now have either zero or multiple maximum adherence
radii rmax as a solution. To solve this, the solution is shifted so that the g-g diagram is expected to surround the origin
again. The moves are based on three generalised effects that can be found:

1. the g-g diagram moves horizontally when γ changes.

2. the g-g diagram moves vertically when ψ changes.

3. the g-g diagram moves vertically when v changes, due to the higher aerodynamic drag.

Another effect that can be found is that β effects the surface size of the g-g diagram (expansion and reduction), but this
does not influence the placement of the origin within the diagram.
So how much does the g-g diagram move when those effects happen? This can be predicted largely when looking at the
orientation of the gravitational force. For example the forward acceleration ax is influenced by the elevation orientation
of the road. When χ is very small, this can be simplified to equation C.2

max +mg sin(ψ) = Fxr +Fx f −Fd (C.2)

It is clear that the acceleration changes longitudinally with mg sin(ψ), and the g-g diagram is moved up or down with
respect to a g-g diagram of a flat surface. To make sure that the origin is still located within the g-g diagram, the g-g
diagram is moved. This is done through subtracting the generalised effects (not the exact effects) from ax and ay in the
equations of steady motion that are used in the fmincon constraints. This looks like equation C.3.

axnew = ax −Fd /m + g sin(ψ), aynew = ay − g sin(γ) (C.3)

It does not matter that the displacement caused by the elevation is not always completely undone, as long as the shifting
is done consistently. But how is the shifted g-g diagram still useful when it does not have the correct values for rmax ? The
answer is to make sure that the inputs that are used in the control optimisation are treated in the same way. The values of
ax and ay are moved as well, in an opposite manner to the one shown in equation C.3 (signs change). This is illustrated
in figure C.2.

Figure C.2: An example of a shifted g-g diagram. Both r and rmax , as well as α are calculated taking into account the shift, so that they
are still comparable. FIXME



D
Convexity and continuity of the g-g

diagram

The feasible input region of the minimum-time optimisation for a certain combination of speed and local road geometry
is described by a g-g diagram. A g-g diagram as an optimisation constraint only works if the g-g diagram is continuous,
and preferably smooth. What also helps the convergence, is a convex g-g diagram. In a convex shape, all lines of which
the endpoints lie within the shape lie fully within the shape. In other words: it is impossible to draw lines that start in
the shape, leave it, and end within the shape again. A convex constraint indicates that any local minimum is a global
minimum as well. In this appendix it will be discussed whether a g-g diagram is always continuous and convex.

The g-g diagram model described in this thesis is based on a friction ellipse. Under perfect conditions, the acceleration
limits would look like the friction ellipse, which is a continuous and convex shape. Under imperfect conditions, accel-
eration limits ’cut’ the ellipse in a different shape, that lies within the ellipse. When looking at those ’cutting’ shapes,
there are several that can be named. The easiest is the maximum power condition, that just cuts off the upper part of
the ellipse in a straight line. The remaining shape is still convex. But when looking at the stoppie limit, this can cause
an elliptic cut from the bottom of the diagram. Then, the shape is not convex anymore, but it is continuous. While the
stoppie limit can make the shape of the g-g diagram convex, it is unlikely to cause much problems with finding global
minima. This is because the stoppie limit shape is symmetric about the longitudinal axis: both sides of the axis stand
for different cycling directions. It is not often the case that riding to the left and riding to the right are (almost) equally
effective options to reduce the cost function. Therefore, the stoppie limit will not cause many convergence problems.
Receiving a discontinuous shape would only happen when some boundary condition or constraint is active for a certain
angle set only. Such conditions do not apply in this model. Therefore, it can be concluded that a g-g diagram set up in the
way described in this thesis is sometimes non-convex (only when the stoppie limit is in play, while driving downward)
and always continuous.

Figure D.1: Example of a g-g diagram. The stoppie limit can cut the lower part from the diagram in certain conditions, creating a non-
convex shape. In this figure, the stoppie limit is not of influence.
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E
Bicycle and rider parameters

Table E.1: Bicycle and rider parameters as used to create the database for the L218

symbol description value
b longitudinal distance of the center of mass to the rear wheel, in {F } frame 0.4469 m
h vertical height of the center of mass, in {F } frame 1.00 m
w wheelbase 0.993 m
m mass of the bicycle + cyclist 80 kg
CdA drag area coefficient 0.32 m2

g gravity 9.81 m/s2

δ air density 1.20 kg/m3

Pmax maximum power available (often critical power) 0 W
µx longitudinal friction coefficient 0.75 -
µy lateral friction coefficient 0.75 -

motivation
The center of mass was estimated to be positioned just above the front of the saddle. The height of the upper side of the
saddle was estimated at 1 meter [41]. As a rule of thumb, 45% of the rider weight is estimated to be distributed to the
front wheel, in upright position on a flat surface [18]. This means that b consists of 45% of the wheelbase. The wheelbase
size was taken from the Ultimate CF SL Disc 8.0 Di2 Canyon bike. The mass of the bicycle plus the cyclist is an estimate,
where the bike makes up a minimum of 6.8 kg (UCI regulations). The weight of Tour de France cyclists is often around
70 kg [13]. Together this was rounded to 80 kg. The drag area coefficient was chosen to represent relatively optimised
aerodynamics [46]. Air density was taken for 20◦ C and IUPAC standard pressure. The maximum power was set to zero, as
in the comparison study ([51]) only coasting (no pedalling) is allowed. The friction coefficients are for a bicycle on a dry
asphalt road [68].
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F
Finding the global optimum

Having non-convex constraints makes it hard to verify if the found local optimum is also the global optimum. To try and
check this, the minimum-time optimisation was run several times with different guesses for the state variables and input
variables. The runs and found solutions of the runs are discussed in this appendix.

The run strategy that was used to find the results presented in chapter 5 uses a mock-up function first to quickly find a
good guess of the results. This was then used to find the final results. To test if a global optimum was found, optimisations
were run directly with the correct constraints. Because this is a very sensitive function, a slightly different setting was used
in IPOPT to help prevent the optimisation to get stuck in the restoration phase. Specifically, the hessian approximation
was set to "limited-memory" instead of the "exact" setting. The guess works in the following way: variable guesses are
made for the start and end point of the track. The nodes that lie in between them receive a guess based on linear interpo-
lation. Various tests have been run to confirm whether an optimal solution was found. The different guesses used will be
discussed, then the output trajectories and velocity profiles will be compared.

F.1. overview of the initial guesses

The first run that was tested features the same initial guess as was used to run the mock-up model with. Now, it is run
directly with the database, to see if the solution direction of the mock-up model and the database give the same results.

variable x0 x f

v 15 m/s 15 m/s
n 0 m 0 m
χ 0 rad 0 rad
ax 0 m/s2 0 m/s2

ay 0 m/s2 0 m/s2

Table F.1: Run 1. This initial guess was used to run the mock-up function as well.

The second run explores whether the model can still find the same solution when the guessed trajectory is majorly
different. The trajectory was set to lie on the right side of the lane over the whole course of the track.

variable x0 x f

v 18 m/s 18 m/s
n 3.3 m 3.3 m
χ 0 rad 0 rad
ax 0 m/s2 0 m/s2

ay 0 m/s2 0 m/s2

Table F.2: Run 2. In this initial guess, the trajectory guess is located at the right side of the lane at all times. The speed is constant.
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For the third run, the trajectory was set to change from the left to the right side of the track slowly.

variable x0 x f

v 5 m/s 18 m/s
n -3.3 m 3.3 m
χ 0.2 rad -0.2 rad
ax 1 m/s2 0 m/s2

ay 1 m/s2 -1 m/s2

Table F.3: Run 3. In this initial guess the trajectory goes slowly over the course of the track from the left side of the lane to the right side.

The fourth run guess is most equal to the found solution, as the end velocity is about equal and the initial acceleration
is represented.

variable x0 x f

v 5 m/s 20 m/s
n 0 m 0 m
χ 0 rad 0 rad
ax 1 m/s2 0 m/s2

ay 0 m/s2 0 m/s2

Table F.4: Initial guess that is much like the expected result.

For run 5, the velocity profile was radically changed. Instead of the expected velocity increase, a decrease was used as
a guess.

variable x0 x f

v 15 m/s 5 m/s
n 0 m 0 m
χ 0 rad 0 rad
ax -1 m/s2 0 m/s2

ay 0 m/s2 0 m/s2

Table F.5: Initial guess where the cyclist starts at a high speed and slows down over time. The opposite of the expected velocity profile.

F.2. results
The figures (F.1 and F.2) show that a wide range of initial guesses (run 1,3, and 4) result into the same solution. Run 2 and
5 resulted in the same local minimum, although they had very different initial guesses. As a conclusion, to the best of our
knowledge the solution that was used in the case study results is a global minimum.
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Figure F.1: The results show that the trajectories of run 2 and 5 remain around the center line, showing a local minimum solution. The
other trajectories overlap, indicating that likely a global optimum was found.

Figure F.2: The velocity profiles resulting from run 2 and run 5 differ and show a much much higher cost. The other results are about
equal. The difference with optimal result found via the mock-up function might come from the fact that the optimal solution was not
yet found for run 1,3 and 4. Their maximum amount of iterations was exceeded, the optimal solution was not yet reached.





G
Detailed results of the separate segments

G.0.1. segment 1
The separate segments will be discussed in more detail. The first segment of the descent is a long, relatively straight
segment. The cyclists have a standing start, and race towards segment 2, which is a turn.

trajectory-
In figure G.1 the optimal trajectory can be seen, compared to the measured descents. Part of the GPS data is missing.
Overall, the optimal trajectory corresponds well to the rider trajectory. There are several differences. The optimal trajec-
tory is positioned to the furthest inside edge of the turns, while the cyclists do not go all the way to the side of the road.
This can have several reasons. First of all, cyclists will always reserve some lateral space in order to be able to carry out
control actions in case of unexpected perturbations. Furthermore, there is often sand and rubble at the side of the road.
It can also be because the curvature is so small that they do not bother for the tiny time difference that this can possibly
yield. Another notable difference is that the optimal trajectory crosses the road from right to left in a relatively short dis-
tance. Mathematically, the shortest distance to cross a straight road is when using the full distance to make the lateral
position change. This is what the cyclists show too. As to why the solver might think that crossing more swiftly is better,
this might have to do with the curvature determination from the track coordinates. If there is slightly more curvature
determined than there actually is, it might be theoretically beneficial to move to the other side of the lane faster.

velocity profile-
The optimal velocity profile corresponds really well with the measured velocity profile (figure G.2). This indicates that
the chosen power limit represents the experienced power limit well. The initial velocity of the optimisation is higher
than the initial velocity of the cyclists (standing start). When taking this into account, the power limit might be slightly
underrepresented for the start of the segment. Still, it is very close for an estimation based on noisy and incomplete power
measurements.

g-g diagram-
The measurements show that this cyclist has braked during this segment (figure G.3). This is also seen in the velocity
profile. There was no reason to break during this segment when solely considering the trajectory. However, the measure-
ments were carried out on a road that was not closed off, allowing other road users to interfere with the descent. It is
possible that a car interfered with this trial. This was reported for several trials. Since the data was anonymised, it is not
certain if this happened during this trial. The rest of the g-g diagram overlaps and shows no divergent behaviour.
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Figure G.1: The optimal trajectory compared to the measured trajectories in segment 1.

Figure G.2: Comparison of the optimal velocity to the measured velocities in segment 1.

G.0.2. segment 2
Segment 2 of the descent contains a left hairpin turn.
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Figure G.3: The numerical g-g diagram compared to the optimal controls for segment 1.

trajectory-
The optimal trajectory has one remarkable difference from the measured trajectories: the turn is exited at the inside,
instead of at the outside of the lane (figure G.4). This behaviour is not expected for such tight turns. For a tight turn, it is
often efficient to ride in the largest possible turn radius, in order to maximize the cornering speed. This might indicate
that the calculated curvature is incorrect.

Figure G.4: The optimal trajectory compared to the measured trajectories in segment 2.

velocity profile-
When looking at the velocity profile (figure G.5), the same conclusion can be drawn as when looking at the trajectory; the
calculated cornering speed is much higher than the cyclists dare to reach. While the cyclists will probably not reach the
actual maximum possible cornering speed due their sense of risk, they will not be this far off.

g-g diagram-
This numerical g-g diagram shows totally different acceleration behaviour than the optimal solution (see figure G.3).



90 G. Detailed results of the separate segments

Figure G.5: Comparison of the optimal velocity to the measured velocities in segment 2.

The optimal cyclist does not brake in the segment. The measurements show braking during the right turn, the straight
segment and the left turn. The only parallelism is found in the cornering; both plots show that turns happen. The optimal
cyclist dares to act out a higher lateral acceleration, therefore less braking is needed. However, the difference in cornering
speed is so high that this does not explain the complete behaviour. As mentioned before, the most likely explanation is
that the curvature of this segment was too low.

Figure G.6: The numerical g-g diagram compared to the optimal controls for segment 2.
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G.0.3. segment 3
Segment 3 is a relatively straight segment, between two tight turns.

trajectory-
The start and end of the trajectory differ from the measured trajectories (see figure G.7). The start differs because in seg-
ment 2, the turn was exited at the inside instead of the outside. At the end of segment 3 lies another turn. The optimal
strategy is to move to the inside of the turn much earlier than practised by the cyclists. In between the endpoints of the
segment, the trajectory corresponds really well.

Figure G.7: The optimal trajectory compared to the measured trajectories in segment 3.

velocity profile-
The velocity profiles corresponds well (see figure G.8). The initial speed differs, because in the previous segment the opti-
mal velocity was not reduced for the turn. The elite cyclists did reduce their speed in segment 2. Furthermore the cyclists
start to brake at the end of segment 2, while this does not happen in the optimal velocity profile.

Figure G.8: Comparison of the optimal velocity to the measured velocities in segment 3.

g-g diagram-
This measured accelerations show a slight turn to the left, which is what happens in this part of the trajectory (see figure
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G.9). However, they also show severe braking and acceleration. When looking at the velocity profiles, it it clear that the
accelerations correspond with the profile where the rider accelerates and then brakes at the end of the segment. Still, the
majority of the data points shows deceleration with about 2 m/s2. This would mean that the cyclist is braking the majority
of the time. This is not visible in the velocity plot however. This indicates a mismatch between the absolute velocity data
(used for the velocity profile plot) and the directional velocity data that was used for the numerical g-g diagrams. This is
probably due to the fact that the absolute velocity data was filtered.

Figure G.9: The numerical g-g diagram compared to the optimal controls for segment 3.
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G.0.4. segment 4
Segment 4 is a sharp tun to the right.
trajectory-
The optimal trajectory differs from the single GPS trajectory record that was not disturbed (figureG.10). The cyclist
crossed the road center line, to the right (forbidden) half. While this is not allowed in this optimisation, one still would ex-
pect the trajectory to have a maximized turn radius. This is not the case. This can very well be another case that proves the
difficulty curvature determination. This is hard to do, since it is based on the second derivative of the road coordinates.
The noise of the GPS coordinates is amplified by taken the second derivative, resulting in very noisy curvature values.

Figure G.10: The optimal trajectory compared to the measured trajectories in segment 4.

velocity profile-
The velocity profiles do not look alike at all (see figure G.11). As mentioned before, the large accelerations are not humanly
possible. It is therefore certain that measurement or filtering errors were made. The IMU data in this specific corner was
non-existent or of very bad quality for many of the trials. A more expected outcome would be that the riders break into
the corner and then accelerate well into the next segment.

Figure G.11: Comparison of the optimal velocity to the measured velocities in segment 4.

g-g diagram-
From this g-g diagram it is clear that there are two things going wrong (see figure G.12). Firstly, the measurement data.
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Those acceleration values are impossible to reach on a bicycle, so something in the measurement or filtering process has
gone wrong. This could well be the translation of the accelerations from the IMU directional axes to the inertial x and
y axes. However, this is unclear and unsolvable without the raw data. The second striking notion is that the solution
of the optimal control problem does not include braking in this segment, while the cyclist is riding a speed higher than
the maximum cornering speed (when making a rough estimate of the radius of curvature). This indicates that either the
solution is incorrect, or the curvature fed to the OCP is incorrect. Since the author has experimented with various road
geometries and the found maximum cornering speed was correct every time, the latter is strongly considered.

Figure G.12: The numerical g-g diagram compared to the optimal controls for segment 4.
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G.0.5. segment 5
Segment 5 is a relatively straight segment. After this segment a sharp hairpin turn is situated.

trajectory-
The optimal trajectory and the measured trajectories correspond well (see figure G.13). The main difference is that the
optimal trajectory touches the outside of the road more closely. At the center line of the road this difference is not seen.
This indicates that the side of the road may be of bad quality, preventing the cyclists to ride on it. The left boundary of
their lane is the center of the road, which is probably in a better shape.

Figure G.13: The optimal trajectory compared to the measured trajectories in segment 5.

velocity profile-
The main differences in the velocity profile lie at the beginning and the end of the segment (see figure G.14). At the start
of the segment, the odd speeds of segment 4 still have their effect. At the end of the segment, the cyclists already slightly
decelerate before they enter segment 6. Segment 6 contains a sharp turn. It is more efficient to spend as little time as
possible on braking. Braking hard and short will leave more time for acceleration. Therefore, no deceleration is seen yet
in the optimal velocity profile.

Figure G.14: Comparison of the optimal velocity to the measured velocities in segment 5.
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g-g diagram-
Overall the g-g diagrams show much correspondence (see figure G.15). The measurements show severe braking, this is
probably still a part of the extreme accelerations shown in segment 4. The cyclist can deliver a bit more acceleration than
the optimal controls, since its speed is lower over the whole segment (less air drag). The cyclist also brakes at the end of
the segment. This is a preparation for segment 6, a very tight turn. This is not optimal, as (according to the Pontryagin
Maximum principle) it is better to control with short, extreme control actions.

Figure G.15: The numerical g-g diagram compared to the optimal controls for segment 5.



97

G.0.6. segment 6
Segment 6 is the sharpest turn of the descent. The center of the right lane has a radius of curvature of about 20 meters.
trajectory-
The trajectory of the cyclists differs somewhat (see figure G.16). Steering into the corner happens earlier, and the path of
the exit is more wide. The first aspect saves distance, and the second enlarges the turn radius of the cyclist, allowing a
larger cornering speed.

Figure G.16: The optimal trajectory compared to the measured trajectories in segment 6.

velocity profile-
The velocity profile differs in three aspects (figure G.17). (1) The speed at the start of the segment is higher. (2) The
braking happens in a shorter period of time. (3) The cornering speed is the same, but the optimal minimum speed is
reached earlier than that of the cyclists. As for (1), this is a result of some light braking that happens at the end of segment
5. This is not a result of the gradient. As explained earlier, (2) is efficient and optimal. The optimal deceleration can be
higher than that carried out by the cyclists. The optimal cyclist knows no fear, and makes use of optimal braking to take
fully advantage of the force capacity of the tires.

Figure G.17: Comparison of the optimal velocity to the measured velocities in segment 6.
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g-g diagram-
This numeric g-g diagram shows beautifully how the accelerations succeed each other (figure G.18). This also shows that
the rate of change of the accelerations (jerk) is constrained. This is an important difference between the optimal control
solution and practice; in practise it is not possible to make a sudden lateral switch in accelerations due to transient
dynamics while in the model steady motion is assumed. Next to this the main differences between the measured and
optimal accelerations are the magnitudes. The optimal controls show higher decelerations and lateral accelerations than
the cyclists dare to perform.

Figure G.18: The numerical g-g diagram compared to the optimal controls for segment 6.
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G.0.7. segment 7
Segment 7 is a relatively straight segment.
trajectory-
The main trajectory corresponds (see figure G.19). The differences are once again found at the start and end of the seg-
ment. The optimal trajectory has a wider exit from segment 6, explaining the difference at the start. At the end of the
segment, the optimal trajectory takes a bit longer to transition towards the inside of the turn. While trajectory of the
cyclists might be shorter, the optimal trajectory enlarges the radius of curvature, to ensure maximum possible cornering
speed.

Figure G.19: The optimal trajectory compared to the measured trajectories in segment 7.

velocity profile-
The velocity profiles match (see figure G.20). At the second part of the segment, the elite cyclists seem to brake slightly
while the optimal velocity keeps increasing.

Figure G.20: Comparison of the optimal velocity to the measured velocities in segment 7.

g-g diagram-
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First of all, some of the measured accelerations are again higher than they can be (figure G.21). This points towards a
measurement error that has been filtered out for the velocity calculations, as such high accelerations are not seen in the
velocity plot. Furthermore, the optimal solution shows much higher lateral accelerations. It is questionable whether such
high accelerations are necessary, as the optimal trajectory is almost straight. At the end of the segment the turn to the left
should require some lateral acceleration, but it is unclear why such high lateral acceleration towards the right should be
necessary. This points towards an inaccuracy in the curvature data once more.

Figure G.21: The numerical g-g diagram compared to the optimal controls for segment 7.
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G.0.8. segment 8
Segment 8 is a somewhat larger turn. The end of the segment is the finish line for the experimental trials.

trajectory-
The trajectory is, like those of the cyclists, situated at the inside of the turn (see figure G.22). The optimal trajectory looks
strange and wobbly. This is because of the shape of the center line. Those smaller curvatures have been filtered out of the
curvature data, while the raw center line data was used to plot the road. When lateral distance n stays constant but the
center line is wobbly, the trajectory is wobbly is well. Were the minor curvatures taken into account, then the trajectory
would have been more fluent regardless of the center line shape.

Figure G.22: The optimal trajectory compared to the measured trajectories for the final segment.

velocity profile-
Once again the optimal velocity profile shows that braking shorter and harder is more efficient (see figure G.23). This
time however, the minimum velocity that is reached is lower than that of the cyclists. This indicates that the calculated
curvature might be higher than the real curvature.

Figure G.23: Comparison of the optimal velocity to the measured velocities for the final segment.

g-g diagram-
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It is once again shown by the optimal solution that more lateral acceleration and braking can be reached than the cyclists
dare to (figure G.24). Apart from this, no important differences are seen. The plot furthermore confirms that the trajectory
of segment 8 is not wobbly at all, this is caused by the way of presenting the trajectory. If the cyclist would cycle such a
oscillating path, more divergence in lateral accelerations would be seen.

Figure G.24: The numerical g-g diagram compared to the optimal controls for segment 8.
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Multiple regression sample selection

Table H.1: The ranges of all variables used in multiple regression. Within this range, random values were generated, uniformly distributed
over the range (with help of MATLAB’s rand function)

symbol description range motivation
v velocity of the cyclist 3-30 speed range Tour de France
ψ elevation with respect to the inertial xy plane -0.26-0.26 double the maximum elevation in the L218
γ banking with respect to the inertial xy plane -0.26-0.26 double the maximum banking in the L218
β twist angle −0.5π−0.5π all possible angles
β̇ time derivative of β -0.4-0.4 maximum possible β̇ velodrome
κ curvature of the center line -0.3-0.3 minimum radius of curvature of 3.33 m
n lateral road position -3-3 width of a two-lane road
χ angle between the center line tangent -0.5π-0.5π maximum possible angle

and the bicycle longitudinal direction
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Scatter plots of sample data
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106 I. Scatter plots of sample data

Figure I.1: The scatter plots show the correlation between the separate untransformed independent variables and ax . For the variables
β, κ, and χ nonlinear correlations are observed. As those variables describe angles, and the angles are always inputs for goniometric
functions, variable transformations are proposed that take this into account.
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Figure I.2: The scatter plots show the correlation between the separate independent variables and ax for the position on the Fx = 0 line.
For v and ψ, clear linear relationships are visible.
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Figure I.3: The scatter plots show the correlation between the separate independent variables and ay for the position on the Fx = 0 line.
No clear linear relationships are visible.
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Figure I.4: The scatter plots show the correlation between the separate independent variables and ax for the position on the Fy = 0 line.
No clear linear relationships are visible.
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Figure I.5: The scatter plots show the correlation between the separate independent variables and ay for the position on the Fy = 0 line.
For γ, a clear linear relationship is visible.
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Figure I.6: The scatter plots show the correlation between the separate independent variables and ax for the position on the -Fx = Fy
line. No clear linear relationships are visible.
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Figure I.7: The scatter plots show the correlation between the separate independent variables and ay for the position on the -Fx = Fy
line. No clear linear relationships are visible.
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Calculation of the maximum roll angle

In figure J.1 some bicycle geometry aspects are reported. The lengths represent a bicycle of a relatively short person (crank
length 170 mm), since this data was the easiest to find [12, 14].

Figure J.1: The angle between the ground and the lower pedal in upright position equals the maximum roll angle of the bicycle. Figure
altered from [37]
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