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Abstract

Inspired by the Keplerian Map and the Flyby Map, a Gravity Assist Mapping using Gaussian Process Regression for the fully spatial
Circular Restricted Three-Body Problem is developed. A mapping function for quantifying the flyby effects over one orbital period is
defined. The Gaussian Process Regression model is established by proper mean and covariance functions. The model learns the dynamics
of flyby’s from training samples, which are generated by numerical propagation. To improve the efficiency of this method, a new criterion
is proposed to determine the optimal size of the training dataset. We discuss its robustness to show the quality of practical usage. The
influence of different input elements on the flyby effects is studied. The accuracy and efficiency of the proposed model have been inves-
tigated for different energy levels, ranging from representative high- to low-energy cases. It shows improvements over the Kick Map, an
independent semi-analytical method available in literature. The accuracy and efficiency of predicting the variation of the semi-major axis
are improved by factors of 3.3, and 1.27 x 10%, respectively.
© 2021 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).

Keywords: Gravity assist mapping; Machine learning; Gaussian process regression

1. Introduction

For deep space missions, a flyby along a planet or a
major moon is a common technique to save propellant.
The state of the spacecraft is changed effectively due to
the gravitational pull of these massive bodies. In the pre-
liminary design of an interplanetary mission, the patched-
conics model is typically used (Bate et al., 1971; Broucke,
1988; Longuski and Williams, 1991; Strange and
Longuski, 2002). This model has a crucial assumption:
the gravity of the flyby body (e.g. Mars) is considered if
and only if the spacecraft comes into the sphere of influence
of that body. The gravity effect of other objects (in partic-
ular, the Sun) can be ignored; the original problem is split
up in a succession of elementary two-body problem formu-
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lations. The patched-conics model simplifies the prelimi-
nary mission design process. However, it has a limitation
in describing the dynamics in more detail, in particular
for low-energy cases with phenomena like invariant mani-
folds, which do exist in a three-body formulation. The spe-
cial dynamics described by the three-body formulation has
proven to be essential to design low-energy trajectories or
study the movement of asteroids between Mars and Jupiter
(Beutler, 2004; Campagnola et al., 2012, 2014).

In order to reduce the degree of difficulty of a most gen-
eral three-body formulation, the Circular Restricted Three-
Body Problem (CR3BP) can be introduced (Szebehely,
1967). Here, it is assumed that the mass of one of the three
bodies can be neglected and the other massive bodies move
in circular orbits about the barycenter of the system. Con-
sidering the Sun-Earth-spacecraft system, this formulation
takes the gravitational attraction of the Sun and the Earth
into account simultaneously. The domain of a flyby in the

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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CR3BP is expanded beyond the sphere of influence of the
Earth.

The Keplerian Map (KM) is a common method to study
the flyby effects in the CR3BP. Based on perturbation the-
ory, this method was initially developed to investigate the
dynamics of comets around Jupiter (Petrosky and
Broucke, 1987; Chirikov and Vecheslavov, 1989; Conley,
1968; Malyshkin and Tremaine, 1999; Zhou et al., 2000).
Ross and Scheeres (2007) studied the KM in the system
of a planar CR3BP, which models the flyby effect over
one orbital period using an energy-kick function. It works
effectively for an energy level of around 3.0 for the Jacobi
constant. For a quantitative investigation in the spatial
framework (CR3BP), a three-dimensional KM was devel-
oped to solve initial-value problems (Penagaricano and
Scheeres, 2010). The accuracy of this method is reasonably
good for low three-body energy levels only. Alessi and
Sanchez (2016) expanded this method and derived a formu-
lation to estimate the variation of orbital elements due to
the perturbation of a third body. It then may be used to
study the effects of a flyby. The results are obtained by
applying the classical Lagrange planetary equations and
performing a first iteration of Picard’s method over one
orbital period. This formulation assumes a sufficiently
small mass ratio and may suffer from singularity problems
for low eccentricity and inclination. Neves et al. (2018)
analysed various ways of modelling the third-body effect
and tried to obtain a fully analytical solution. They showed
the accuracy of these models within certain fields of appli-
cation. It is well known that the 3BP is not solvable in an
analytically closed form. Many attempts have been made
to find closed analytical solutions for the variation of the
orbital elements of the massless body under specific condi-
tions in the CR3BP. The techniques mentioned above are
semi-analytical and employ numerical methods to generate
solutions. The Flyby Map developed by Campagnola et al.
(2012) is also a typical approach to study the CR3BP,
which is fully numerical and valid for a wide range of
energy levels. It extended the functionality of the Tisserand
graph over the applicability of the patched-conics model.
According to the spacecraft velocity relative to the sec-
ondary, the flybys are categorised into two types: ‘direct’
and ‘retrograde’ flybys. In terms of the variation of semi-
major axis, the direct flybys are shown to be more efficient
than the latter.

This paper is inspired by the works on the Keplerian
Map and Flyby Map. Instead of solving the analytical
forms of flyby effects in the CR3BP, we develop a Gravity
Assist Mapping (GAM) based on Gaussian Process
Regression (GPR) to quantify flyby effects in a full three-
dimensional situation. Specifically, the flyby refers to an
encounter of the massless body with the second-largest
body. GPR is a supervised machine-learning method,
which was developed by Krige (1951) for mine valuation.
For a complete three-body problem, the technique of Deep
Neural Network was used to predict the position of each
body within a fixed duration (Breen et al., 2019). The pre-
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diction of velocity was not investigated. Instead of using
Cartesian coordinates, the GAM models use Keplerian
orbital elements similar to the Keplerian Map. The size
of the training data set for a DNN model requires around
10,000 samples. Moreover, the structure, the number of
layers, the number of nodes, the activation function and
the pooling function, etc. need to be determined. The
model selection of the GPR method is simpler than that
of the DNN. In addition, the GPR models work accurately
at a lower level of training data size (Rasmussen and
Williams, 2006). In the field of astrodynamics, GPR has
been used to evaluate the accessibility of asteroids, to
model the gravity field of small bodies, and to design
low-thrust trajectories (Shang and Liu, 2017; Gao and
Liao, 2019; Bouwman et al., 2019). Liu et al., 2021 used
GPR to evaluate flyby effects; their model was developed
in a planar CR3BP and performs more efficiently and accu-
rately than the work of Ross and Scheeres (2007). The
complexity of the CR3BP increases significantly when
going from a planar model to a full spatial model. In the
current work, we develop a new GPR-based GAM to solve
this. The Keplerian Map for approximating a particle’s
motion was initially developed for low three-body energies
(Ross and Scheeres, 2007). Here, we aim at developing an
approach which is applicable for a wider range of energy
levels. The energy of the considered cases ranges from val-
ues lower than that associated with the L1 libration point
to values larger than that associated with L4/L5. Several
thousands of training samples are required for the GPR
model to learn the dynamics. The prediction of output
given an arbitrary input will be compared with a previous
semi-analytical method and numerical integration meth-
ods. The computational effort is expected to be further
reduced particularly when a large group of initial condi-
tions needs to be assessed.

2. Circular restricted three-body problem

The CR3BP describes the dynamics of three point
masses: two massive bodies P; and P, and a third body
P; with masses M, M, and M3, respectively, which meet
the condition M, > M,>M;. Throughout this paper, fly-
bys in the Sun-(Earth + Moon)-spacecraft system are
investigated and the primary P;, the secondary P, and
massless particle P; are the Sun, the Earth + Moon and
the spacecraft, respectively. In the rotating reference frame,
the origin is set at the barycenter of P, and P,, and the X-
axis is aligned with the direction to P,. The primaries P,
and P, rotate around the Z-axis. The equations of motion
for the spacecraft are described as (Szebehely, 1967)

5&—2j/:x—(1:—3")(x+ﬂ)—r‘—§(x—l+u)
1 2

j>+25c:y—(1;T”)
1

(I-p)

y—5y

3
2

3 Z — 3Z
1 2



Y. Liu et al.

where x,y and z represent the normalized position coordi-
nates in the barycentric Cartesian reference frame, and

u="M,y/(M;+M,)

=) 2

(2)

rzz\/(x—l—ku)z—kyzﬂ2

u is defined as the mass parameter which differentiates
between different implementations of the CR3BP, and is
equal to 3.036 x 107° for the system of Sun-(Earth + Mo
on)-spacecraft. r; and », are the distances between P; and
the primaries P, and P,, respectively.

A closed-form solution of Eq. 1 does not exist; numeri-
cal integration methods are typically used to solve the
problem. Some attempts were made to find analytical solu-
tions for the variation of the orbital elements of P; (Ross
and Scheeres, 2007; Alessi and Sanchez, 2016; Neves
et al., 2018). Based on the concept of KM developed by
Ross and Scheeres (2007), the current work studies a new
approach to quantify the flyby effects for a wide range of
Jacobi energy levels.

2.1. Jacobi constant

The CR3BP has an analytical integral of motion which
is constant along the trajectory of the spacecraft. The value
of this Jacobi constant C; is fully determined by the posi-
tion and velocity of the spacecraft. In the rotating reference
frame, the Jacobi constant is defined as (Beutler, 2004):

2l—p) 2
2020 2y 22 41— )
ry )

(3)

The Jacobi constant reflects the energy level of the tra-
jectory of the spacecraft. A high value of C; represents a
low energy level. The region that is accessible for the space-
craft is related to the Jacobi constant for a given mass
ratio. The Jacobi constant associated with the Lagrange
libration points allows to characterize the accessible region
for different cases. For u = 3.036 x 107, the values for the
Jacobi constant of these points are

Cy1 = 3.000898, Cy; = 3.000893, Cy3 = 3.000003, Cpq/r5 = 2.999997. For some
values of C;, there are inaccessible regions which divide
the accessible regions (i.e. Hill’s regions) into different
parts. The boundaries of these regions are zero-velocity
surfaces. If the value of C; is larger than C;;, a particle
remains in its initial region. When C;; > C; > Cpp, it is
possible for the spacecraft to move to the vicinity of the
other primary if it started in the vicinity of either of the pri-
maries. Transitions between the interior and exterior
regions are not possible yet. This becomes possible when
C; < Cp, (for details see Beutler (2004)). The current work
focuses on the motion of a spacecraft which starts from the
exterior region as shown in Fig. 1.

Cr=x"+)y"+
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0 1
x(-)
Fig. 1. Hill’s region when C;; > C; > Cy,.

-2

3. Gravity assist mapping
3.1. Mapping function

In this paper, we aim to develop a GPR model to quan-
tify the flyby effects in the framework of a CR3BP, i.e. a
GPR-based GAM (GPR-GAM). The mapping function
of the GPR-GAM is described as:

Fopr_gam : x>y

4
orfa,e,i,w, ] — [da, de, di, dw, Q) )

where the vector x represents the orbital elements of the
spacecraft before a flyby and y the variation of orbital ele-
ments due to that flyby, after one orbital period of the ini-
tial osculating orbit. a, e, i, w,Q are osculating semi-major
axis, eccentricity, inclination, argument of pericenter and
longitude of the ascending node of the spacecraft with
respect to the primary. Particularly, the angular phasing
angle ¢ = tan~!(tan(w)cos(i)) + Q shown in Fig. 2
describes the relative position between the spacecraft and
the secondary (Alessi and Sanchez, 2016). When investigat-
ing the effects of a flyby, da and de have an explicit response
to ¢. The reference system will be detailed below.

Ascending Node

Earlh
>
&

Apoapsis

Fig. 2. Schematics of a three-body system before a flyby. The orbit of the
S/C is the initial osculating orbit centered at the Sun in the inertial
reference frame; it starts at apoapsis.
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0.5 1 15 2 25 3
Jacobi Constant

Fig. 3. Histogram of the Jacobi constant for 5000 samples based on the
input space defined in Table 1.

Table 1
Boundary for the input space.

rp [AU] ra [AU] i [deg] o [deg] ¢ [deg]
[1.00004464, 1.02] [1.01, 3.03] [0, 90] [0, 360] [—25, 25]

The minimum value of 7, corresponds to a minimum distance of 300 km
between the spacecraft and the Earth surface when ¢ = 0 deg, i.e. both of
them arrive at the positive X-axis simultaneously.

3.2. Configuration of flyby

In Eq. 4, the input and output are defined in an inertial
reference frame. Fig. 2 shows the orbit of a spacecraft
before a flyby in the Sun-(Earth + Moon)-spacecraft sys-
tem. The origin is located at the Sun, and the Earth
revolves around it in the XY-plane, so that the reference
plane is the ecliptic plane. Here, the input vector x repre-
sents the osculating orbital elements of the spacecraft at
apoapsis. The angular phasing ¢ denotes the angle between
the projection of the Sun-periapsis line of the spacecraft
onto the XY-plane and the positive X-axis. The spacecraft
starts from apoapsis with a true anomaly of —=, and the
true anomaly of the Earth is initialized such as to reach
the positive X-axis when the spacecraft has travelled half
of its unperturbed orbital period.

The GPR is a supervised learning method which
requires training samples consisting of input and output.
In this paper, the boundary of the input space is defined
such to obtain obvious flyby effects. In order to quantify
the distance between the spacecraft and the secondary
properly, we define a boundary based on the radius of peri-
apsis 7, and the radius of apoapsis r,, and then transform
these into « and e.

The boundary is specified in Table 1. Based on this input
space, the Jacobi constant ranges from 0.512176 to
3.001196, which covers energy levels from low to high
(Ross and Scheeres, 2007). The value of i only takes pro-
grade orbits into account, which is the expected geometry
for normal interplanetary missions. The boundary for ¢
is defined in order to observe an obvious flyby effect; the
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distance in phasing should not become too large. Fig. 3
shows the histogram of the Jacobi constant of a group of
5000 randomly generated samples (in line with further cal-
culations). In addition to this, we divide the range of w into
four quadrants:

o = {0, 0?2, 0% v}

= {(0,90], (90, 180], (180,270], (270, 360] } deg )

Given the same a,e,i and ¢, the output y is a periodic
function in terms of w:

y(wla,e i, ¢p) = y(w+180a,e,i,¢),w € [0,180]deg  (6)

In order to achieve an accurate estimate of the flyby
effects, two GPR models are built separately for ¢! and
w?. Using the property of periodicity (Eq. 6), these models
can be simply applied to w2 and w?. After generating
training inputs, the training outputs are obtained through
numerical propagation using Eq. 1, as will be explained
in Section 4.3.

4. Gaussian process regression model

The development of a GPR-GAM considers two major
steps: training and predicting. During the training part, the
GPR model is built by digesting the empirical information
from a certain process. In this paper, this process is the
mapping of orbital elements before the flyby to the post-
flyby changes of those elements. In the prediction part,
the trained model estimates the output for an arbitrary
input. We develop five GPR-GAM models with a single
output; each model associates the five inputs into one of
the outputs in Eq. 4. This separation of constructing a
GPR-GAM model simplifies the training process to a
single-objective optimization problem. The mapping func-
tion of the basic GPR model is:

R — R

Xy

SGPr-GaM :

(7)

where y represents one of the outputs [da, de, di, dw, IQ] as
in Eq. 4.

The GPR-GAM model is developed in terms of the
properties of a Gaussian Process (GP). A GP is a collection
of random variables following their own Gaussian distribu-
tion. A key property of any GP is that any finite number of
these random variables forms a joint Gaussian distribution.
Instead of simple variables, the GPR-GAM method takes
the function f(x) as that random variable. Therefore, the
development of the GPR-GAM model works in function
space. A GP over the function f(x) is given as:

f(x> ~ GP(m(x),k(x,x/)) (8)

where x and x’ are points in the input space; m(x) and
k(x,x’) are the mean function and the covariance function,
respectively. Both functions will be explained in Sections
4.1 and 4.2, respectively. These functions specify the prop-
erties of a GP completely through their formulation and
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hyper-parameters. The hyper-parameters are actually the
parameters of the mean function and the covariance func-
tion. ‘Hyper-’ is used to emphasize that they are character-
istics of a non-parametric model (Rasmussen and Williams,
20006).

The formulation of m(x) and k(x,x’) is selected by the
authors. Each formulation has a set of corresponding
hyper-parameters. The values of these hyper-parameters
are initialized randomly. Then the learning procedure
starts, which is actually a process of optimizing the
hyper-parameters using the empirical information. This
information comes from the training dataset Dy.;,, defined
by:

Dirain = {(X; Y)|X = [xlaxlv oo 7xN]7 Y

:b/hyb"wyN]} (9)
where  (x;,;) represents one training sample
(i=1,2,...,N), and N is the number of training samples.

According to the properties of GP, the collection of train-
ing outputs Y can be written as a joint Gaussian distribu-
tion: (Liu et al., 2021):

Y ~ A (m(X),K(X,X)) (10)

where m(X) represents the mean function and will be elab-
orated in Section 4.1.

k(xi,x1)  k(x1,x,) k(x1,xy)

k(x2,x1)  k(x2,x2) k(x2,xy)
K(X,X) =

k(xy,x1) k(xy,x2) k(xy, xy)

(11)

The objective of the training process is to optimize the

hyper-parameters such that the GPR-GAM model has

the highest possibility to reproduce the ground-truth out-

puts. This is done by maximizing the marginal likelihood

logp(Y | X) using the following equation (Rasmussen
and Williams, 2006):

1 T rr—1

=-3 Y'K'Y

In principle, the marginal likelihood represents the pos-
sibility of obtaining true outputs given the inputs and
hyper-parameters. The hyper-parameters that yield a high
marginal likelihood would give rise to good predictions.
In order to predict the output y* for a new input x*, which
are called test output and test input respectively, we con-
struct the joint distribution of the training outputs and y*

() ((2).( )

(
(13)

where K(X,x*) represents the vector of the covariance
functions evaluated at all pairs of training inputs X and
new input x*.

1 N
logp(Y | X) Elog | K| —Eloan (12)

m(X)

m(x*)

K(X,X) K(X,x*)
KX, x)"  k(x*,x")
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Based on Bayesian inference, the predicted y* given x*
has a Gaussian distribution

VI XY~ A (u(y), cov(y7)) (14)
where the value of u(y*)is obtained from
n() = m(x’) = K(X,x") KX, X) (Y — m(X)) (15)

Typically, we take the value of u(y*)as the predicted output
(Rasmussen and Williams, 2006). In order to improve the
efficiency of the prediction effort, we simplify Eq. 15 by
merging matrices (Liu et al., 2021):

:u(y*) = m(x*) - K(X7 x*)TQtrain (16)

where Q... = K(X,X) ' (Y —m(X))can be obtained
immediately after the training process has been completed,
with the obvious advantage that it needs to be calculated
only once.

4.1. Mean function

When constructing GPR models for the planar CR3BP,
a zero-mean function is sufficient for this simpler scenario
(Liu et al., 2021). However, due to the increased complexity
of fully spatial CR3BP dynamics, compared to planar
dynamics, we add a non-zero mean function in this work.
The option of having a non-zero function offers the possi-
bility to interpret the model and express the empirical
information more correctly. The function employed here
is a straightforward constant:

(17)

where ¢ is one of the hyper-parameters that will be opti-
mized while training.

m(x) =c

4.2. Covariance function

The supervised machine learning generates predictions
using the relationship between samples. The test output is
predicted based on the correlation between its correspond-
ing input and all the training inputs. In a GPR method, the
covariance function is the most crucial module because it
describes this similarity between different samples and
plays a key role in interpolation. What remains is the speci-
fic formulation of this covariance function, and the number
and distribution of training samples. In principle, there is
no universal rule for choosing an appropriate covariance
function. The choice is typically based on experience, the
information about the characteristics of the relation
between inputs and outputs provided by training samples,
and the error over test samples. For the planar CR3BP, the
authors selected a sum covariance function combining a
Rational Quadratic function with Automatic Relevance
Determination (RQARD) and a cosine function to learn
the flyby effects (Liu et al., 2021). In this new spatial frame-
work, we test nine commonly-used covariance functions in
addition to this sum function and elaborate on the three
best options with the smallest error (Rasmussen and
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Williams, 2006). Only the best three (based on first evalua-
tions) are detailed here; the others will be mentioned briefly
at the end of this section.

The first one is the Neural Network (NN) covariance
function:

T
xPx'

\/(l + xPx")(1 + x'PxT)

) (18)

fenn (2, x7) = s%NN -sin”!(

where s7 \ is the signal variance. The matrix P = 5 x I5 is
a matrix of # times /s, which represents an identity matrix
of size five. Both S?-.NN and 5 are hyper-parameters to be
optimized.

The second one is the Squared Exponential covariance

function with Automatic Relevance Determination
(SEARD):

N 2
ksearp (¥, X') = 57 sparD

—(x—x)-0-(x— X’)T)
2

(19)

where 57 g 15 the signal variance for this function. The

matrix Q is explained below.
The third one is the aforementioned RQARD:

(x—x)0(x — X’)T)fa
20

- exp(

kRQARD (x, x') = S},RQARD(l + (20)

Here s7poarp and o are the signal variance and shape
parameter, respectively.

The latter two covariance functions include an ARD
term @, which is a symmetric matrix containing weights

(21)

where /,,1,.,/;,1, and [,, which are called characteristic
length-scale hyper-parameters, are weights for the elements
a,e,i,m and ¢, respectively. This ARD term controls the
similarity between samples. Therefore, these five input ele-
ments have a different influence on predicting the output of
a particular test sample.

In order to show the improvement of using ARD, the
performances of another two covariance functions Squared
Exponential (SE) and Rational Quadratic (RQ) are also
presented in Section 5.1. For these two functions without
the ARD term, the terms Q in Egs. 19 and 20 have a sim-
plified form - x /5.

The other four covariance functions that were initially
considered are Piecewise Polynomial, Matérn, and these
two formulations using ARD (Rasmussen and Williams,
2006). As mentioned earlier, their performance was such
that they were excluded from further analysis. It is partic-
ularly noteworthy that the sum covariance function is also
excluded, which has a good performance for the planar
CR3BP studied by the authors previously (Liu et al.,
2021). It indicates that the characteristics of the mapping
function have changed considerably from the planar
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CR3BP to the spatial one. A different covariance function
is required for the new mapping function, i.e. Eq. 7.

4.3. Training samples

Training samples are necessary for the supervised learn-
ing method to provide empirical information about a sys-
tem. In this paper, a training sample consists of a
training input of five orbital elements and an output of
the variation of a specific element due to a flyby (Eq. 7).
For the GPR-GAM model, the inputs are generated ran-
domly using the uniform distribution in the input space.
The range of values of each dimension is different (Table 1)
which would let the large-value input element dominate the
results. To avoid this, the inputs are normalized to [0, 1].

Given a training input, the final state of the spacecraft is
obtained by numerically propagating the motion as
described by Eq. 1 over one unperturbed orbital period
of the initial osculating orbit. The propagation employs
an RK4 integration in MATLAB® 2018b (The
Mathworks Inc., 2018) using a relative error tolerance of
1.0 x 10~ and an absolute error tolerance of 1.0 x 107'2,
leading to uncertainties of 0.15 km (i.e. 1.0 x 1077 % on
the scale of the problem) after one orbital period of integra-
tion. Starting from the exterior Hill’s region, it is possible
for the spacecraft to be temporally trapped by the sec-
ondary. The training output, i.e. the variation of Keplerian
orbital elements, is calculated by subtracting that input
from the final osculating orbital elements of the spacecraft.

The training process then uses a conjugate gradient
method to look for the optimal values of hyper-
parameters maximizing the outcome of Eq. 12
(Rasmussen and Williams, 2006). Based on the theory of
Bayesian inference, the GPR-GAM model has a high pos-
sibility of producing results close to the training outputs
with optimal hyper-parameters. Training samples are also
used by the GPR-GAM model when predicting the output
for a new input x*, as in the matrix X denoted in Eq. 15.

4.4. Accuracy evaluation and training data size

To evaluate the performance of a GPR-GAM model, a
set of test samples is generated. Following the same way of
generating training samples, a group of 500 test samples T’
are generated and used. This set is kept constant for all fur-
ther evaluations. Exact test outputs ycgpsgp’s (still, the
effects da etc. of the flyby) obtained by the numerical
CR3BP propagation are employed as benchmark and com-
pared with results ygpr_gam S Obtained by GPR-GAM.
The criterion to quantify their quality, we use the Mean
Absolute Error (MAE), which is defined as:

1 &
MAE(N) = N Z‘yCR3BP,i(N) — Yopr-cam,i (V)] (22)
=1

This equation shows the MAE of N* test samples when
using NV training samples.



Y. Liu et al.

Generally, a larger training dataset can be expected to
decrease the MAE since more information is provided for
the GPR-GAM model to capture the characteristics of
the problem at hand. However, as shown in Eq. 15, more
training samples will increase the burden of computation.
It remains a problem to identify the optimal size of the
training dataset due to the trade-off between accuracy
and efficiency. Bouwman et al. (2019) defines a threshold
emag for the fluctuation of the MAE. Increasing the num-
ber of training samples is stopped when AMAE becomes
smaller than that particular threshold. For GPR-GAM,
we improve this method so that it works for different types
of output elements. When estimating the MAE of test data
T with an increasing number of training samples, the train-
ing data size N starts from 100 and is increased with 100
each time.

A set of MAE’s over a certain range of training data size
is defined as:

E(N) = [MAE(N),MAE(N + n),...,MAE(N + 9n)]

(23)
where n = 100. The fluctuation of MAE over this range is
given as:

AMAE(N) = max(E(N)) — min(E(N)) (24)
When the number of training samples for the GPR-GAM

model meets the condition, i.e. AMAE is smaller than 5
% of the lowest MAE over the last 10 iterations:

Advances in Space Research 68 (2021) 2488-2500

ky = argmin E(N) (26)

The value N is selected as the final training data size:
Ny =N +n Xk (27)

This criterion can be applied to every output element and
ensures that an accurate GPR-GAM model with minimum
training samples is obtained.

5. Performance of GPR-based gravity assist mapping
5.1. Different covariance functions

The performance of GPR-GAM is shown in Fig. 4 as a
function of an increasing number of training samples, from
100 to 5000. Fig. 4 presents the MAE of test samples using
five different covariance functions. The covariance func-
tions of SE and RQ with the ARD strategy are shown in
addition to those without ARD. For every output element,
RQARD performs better than RQ. Also, SEARD obtains
more accurate results than SE except for predicting dw.
The results clearly demonstrate the positive effect of
ARD. For predicting an output, the five input features play
different roles in Eq. 7. The accuracy is improved by
emphasizing the effects of some particular inputs using
ARD. The RQARD function has the best accuracy with
regards to all outputs. The NN function comes second
except for quantifying 0Q.

AMAE(N) Us1r.1g. RQARD, the MAE tends to become stable wh.en
n(EN) EN) < 0.05, (25) the training data size is larger than 3000. To better quantify
this by applying the criterion of Section 4.4, the minimum
The prediction converges at the point £;: stable training data size for the five outputs to converge are
e <108 10 2 %10
—=—RQARD 2 &) \ —=—RQARD |——raarD
RQ g | RQ 18- /| RQ
SEARD 1 1 SEARD o i |+ searD
=9 SE i SE 16| ¥ SE
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Fig. 4. The MAE of test samples when using five different covariance functions.
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Table 2

The values of length-scales, signal variance and shape parameters using
the RQARD covariance function. The subscript of the length-scale hyper-
parameters stands for the order of influence of an input element on
predicting a particular output using the GPR model.

da de oi %) 0Q

2 14.545 17.565 8.79s 1.144 13.39,

2 0.17, 0.28, 1.013 0.02; 0.07;

I 0.21, 0.03, 0.38, 0.57 7.17;

I 0.665 4.064 0.04 2.25; 26.155

i 1.07, 0.485 1.284 6.905 3.79,

57 ROARD 8.29 15.76 19.98 0.068 0.518
o 0.15 3.22 1.23 3.37 1.21

¢ 0.002 —0.001 0.001 0.03 0.0004

[4700,3500,4300,4200,4500]. Due to the complexity of the
spatial CR3BP, significantly more training samples are
required than for the planar case (Liu et al., 2021), which
should not come as a surprise. Predicting eccentricity is
the fastest to become stable. When increasing the number
of training samples from 100 to 1000, the MAE of da
and i decrease sharply. However the results tend to be
really stable using more than 4000 training samples.

Inspecting Figs. 4(c)—(f), in particular the zoomed-in
plot in Fig. 4(f), the conclusion can be drawn that dw is
the most difficult element to predict, in terms of level of
convergence. Predicting 6Q is the second-most difficult
thing to do (at a level of 1.0 x 10~ rad), whereas di is
the most accurate one.

The full set of hyper-parameters of the mean and covari-
ance functions is presented in Table 2. According to Eq. 21,
the influence of an input element on predicting a particular
output is inversely proportional to the absolute value of the
corresponding length-scale. For a set of five length-scales in
predicting a specific output, a lower value of a length-scale
represents a higher influence of the corresponding input
feature because all the inputs are normalized before train-
ing. For example, the eccentricity plays an important role
in predicting da, ow and 6Q. The predictions of de and di
most rely on i and o, respectively. The second-most influ-
ential input element is i ranking first in the prediction of
de, and second in that of da,di and dw. This illustrates

Table 3
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the importance of inclination in the flyby effects in a spatial
CR3BP. The signal variance parameter s7 poarp represents
the amplitude of the RQARD covariance function. The
value of 57 poarp for @ is small, which means that the sim-
ilarity between two samples is small even though their
inputs are close to each other. This is supportive of the
large values in the MAE results shown in Fig. 4. The shape
parameter o controls how the similarity changes when a
sample moves away from the nearest sample, together with
the length-scale of course. The similarity is highest when
two samples coincide. A larger « indicates that the similar-
ity decreases fast when two samples are further separating.
The prediction of dw has a small s7poarp and large o,
which means an accurate prediction of dw relies on the
availability of training samples very close to the test sam-
ples. w is a difficult parameter to determine and predict
in view of some small values of eccentricity produced in
the domain in Table I, in particular when e < 0.1.

5.2. Comparison with semi-analytical method

For the same group of test samples, we compare the
GPR-GAM model to the Semi-analytical Keplerian Map
(SKM), which is called the Kick Map, developed by
Alessi and Sanchez (2016). Since the Kick Map is known
for working well outside the Hill sphere of the perturbing
body, an additional comparison is performed for the case
of r, >0.01 AU. The performance of a Planar-GPR-
GAM (P-GPR-GAM) model developed by the authors
for the planar CR3BP is also presented (Liu et al., 2021).
The P-GPR-GAM studies flyby effects in a three-
parameter input space of a,e and .

In Table 3, the MAE and CPU time of these methods
are presented. Note that the SKM statistics are based on
an implementation of this technique on the first author’s
PC (Core i7 CPU and 8.00 GB RAM), and not on the
numbers reported in Alessi and Sanchez (2016) itself; in
this way platform-specific effects are eliminated. In the case
of r, > 6678 km, the GPR-GAM has a better accuracy
than the SKM for all outputs. The advantage is clear with
regards to da, oe and oi. In particular, the MAE of da by

The performance of GPR-GAM compared to that of Alessi and Sanchez (2016) (fully reproduced here). The computational time is obtained by taking the
mean value of 1000 repeated experiments. The value is the CPU time spent on one test sample. The CPU time of numerical integration of the equations of

motion of CR3BP is listed in the last row.

MAE oa [AU] oe [-] oi [rad] dw [rad] 0Q [rad]
> 6678 km GPR-GAM 5.7 %107 3.4 x107° 6.3 x 107° 1.9 x 1073 1.9 % 107*
SKM 1.9 x 107 7.6 x 1073 1.1x107° 22x107? 21x107*
> 0.01 AU GPR-GAM 33x107° 2.1%x 107 3.8 x 107 1.3 %1073 0.8 x 107*
SKM 73 x107° 2.1x107° 59%107° 1.2x107? 1.0x107*
Time[s] GPR-GAM 59%107¢ 1.5 % 107° 3.8x107° 3.6x107° 52%107°
SKM 7.5 %1072 7.5 %1072 7.5 %1072 7.5 %1072 7.5%x1072

P-GRP-GAM 1.2x10°¢ 12x10°¢ - 12x10°° -
CR3BP 59 x 107! 59 % 107! 59 % 107! 59 % 107! 59 % 107!
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Fig. 5. The difference of predictions between the GPR-GAM and the
numerical integration for 100 random test samples.

SKM is about 3.3 times that of using GPR-GAM. The effi-
ciency of predicting da is improved by a factor of
1.27 x 10*. 7.5 x 107 %s is the total time of SKM predicting
five outputs of a single test sample. However, predicting
these five outputs using GPR-GAM, which spends a total
of 2.0 x 107%s, is still much faster than SKM. GPR-
GAM has seen an improvement on the accuracy and effi-
ciency over SKM. Note that the time in this table shows
the prediction component only. The training time needed
for a GPR-GAM model using 4000 training samples is
32 min on the first author’s PC. The advantage of GPR-
GAM is that it has to learn only once and can be easily
applied to a next prediction.

In the case of r, > 0.01 AU, the accuracy of both SKM
and GRP-GAM is improved due to simpler dynamical
properties. The overall accuracy of SKM approximations
increases by about a factor of two. With regards to da, di
and 0Q, GPR-GAM still has better performance over
SKM. SKM is more accurate for the prediction of dw.
When the minimum distance between the spacecraft and
the Earth is larger than the radius of the Hill sphere, the
difference of MAE between these two methods decreases.
In the planar case, P-GPR-GAM uses only 1500 training
samples to reach a stable prediction. In addition to a lower
dimension of the input space, using less training samples
benefits the efficiency drastically.

Fig. 5 shows the difference of predictions between the
GPR-GAM and the numerical integration method for the
first 100 test samples. For most of the predictions, the
GPR-GAM outputs almost overlap with those of the
numerical integration. The maximum error is 3.3 x 107*
AU (49,369 km) for the No.87 test sample, where an obvi-
ous separation is observed. However, this magnitude of
error does not occur often. The minimum error within
these 100 samples is only 4.7 x 10~* AU (7 km). By con-
verting the Keplerian orbital elements into the Cartesian
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coordinates in the ecliptic coordinate system centered at
the Sun, the MAE of Cartesian distances between the
GPR-GAM outputs and those of the numerical integration
is calculated by

L
MAEc, = m2|orb2Car(yCR3BpJ)
i=1

- Orbzcar(yGPR—GAM,i)| (28)

where y consists of all the Keplerian orbital elements of the
spacecraft. orb2Car is a function converting y into Carte-
sian coordinates, and only the position components are
used. When taking into account the error of predicting
every Keplerian orbital element, MAEc,, for these 100 test
samples is 37,063 km.

5.3. Robustness when changing training dataset

To study the influence of the training samples on the
accuracy, we generate another two groups of training sam-
ples in the same input space. These groups use different
seed numbers to generate different (quasi) random samples.
For all cases, the RQARD covariance function is selected
to build the GPR-GAM model. For the same set of test
samples, Fig. 6 shows the comparison of the GPR-GAM
models trained by these three groups of training samples.
The MAE drops sharply when going from 100 to 1000 sam-
ples and there is an obvious difference between datasets
when using less than 3000 training samples. A steady
decline begins at 3000 until the three curves converge using
more than 4000 training samples. An eventual close agree-
ment between three groups ensures the robustness of pre-
diction using GPR-GAM.

The prediction of de converges and stabilizes fastest,
which supports the observation of using the least number
of training samples in Section 5.1. In Fig. 6(c), for inclina-
tion, the results of the three datasets converge slowly after
going through a gap of 0.5 x 10 °rad. A minimum dataset
of 4000 training samples is required to obtain a stable per-
formance of di. In Fig. 6(d), the behavior of dw using three
datasets has an insignificant difference compared to the
other output elements, but the zoomed-in plot (Fig. 4(f))
shows a more clear difference. Predicting 6Q is also difficult
for GPR-GAM in view of the significant fluctuation in
Fig. 6(e). Using different groups of training samples, strong
fluctuations can be observed between 1000 and 3000 train-
ing samples. 0Q has relatively larger values due to a flyby
than those of i and dw, which is a cause of this fluctuation.
Increasing the number of training samples is necessary to
stabilize the MAE.

The results are summarised in Table 4. To quantify the
consistency of the MAE outcome, the Percentage of Devi-
ation (PD) is calculated by subtracting the lowest value
from the highest value, and then dividing the result by
the highest value. Quantifying ow with different training
datasets has the lowest PD. The accuracy of evaluating
0Q is affected more seriously than the other orbital ele-
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Fig. 6. The MAE of test samples when using three different training datasets.
Table 4
The performance of GPR-GAM over three different training datasets using the same test dataset. The values of MAE and PD are shown.
da [AU] de [-] i [rad] oo [rad] 0Q [rad]
Group 1 574 x 1073 3.42%107° 6.32 x 107° 1.89 x 1073 1.91 x 1074
Group 2 5.56 x 1073 3.49 x 1073 6.34 x 107° 1.90 x 1073 1.96 x 107*
Group 3 5.64 x 107° 3.56 x 107° 6.68 x 107° 1.89 x 1073 2.02 x 107
PD 3.14% 3.93% 5.38% 0.53% 5.44%
Table 5
The performance of GPR-GAM over three different test datasets using the same training samples. The values of MAE and PD are shown.
da [AU] de [-] i [rad] ow [rad] 0Q [rad]
Group 1 574 x 1073 3.42x107° 6.32 x 107° 1.89 x 1073 1.91 x 107*
Group 2 578 x 1073 3.40 x 1073 6.39 x 107° 1.84 x 1073 1.89 x 107*
Group 3 575 x 1073 338 x 107° 6.24 x 107° 1.85x 1073 1.93 x 1074
PD 0.69% 1.17% 2.35% 2.65% 2.07%
Table 6

The performance of GPR-GAM over the various energy domains. The first line represents the low-energy domain (C, > C;3), whereas the second line

represents the full domain.

da [AU] oe [-] oi [rad] ow [rad] 0Q [rad]
low 371 x 1073 428 x 1073 8.08 x 107° 2.56 x 1073 231 x 107
full 57 %1073 3.4 %107 6.3 x107° 19x107? 1.9x 107
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ments. However, the absolute difference between different
groups is small and the convergence is good as shown in
Fig. 6(e).

5.4. Robustness when changing test dataset

To evaluate the robustness of GPR-GAM when predict-
ing different test datasets, we generate another two groups
of test samples using different random seed numbers. Akin
to the group used before, each group has 500 samples. The
original training data set and the RQARD covariance
function are used for building the GPR-GAM model. By
applying the criterion of Section 4.4 to the results in
Fig. 4, the training data size is set at [4700, 3500, 4300,
4200, 4500] for each orbital element. The performance of
these three groups is presented in Table 5, where the first
line obviously refers to results already presented in Tables
3 and 4. The PD is calculated for these parameters. These
PD’s are smaller than those in Table 4, except for dw.
The GPR-GAM model has a better robustness when
changing test datasets than that when changing training
datasets. The results for da have the smallest PD which is
only 0.69%. This suggests that predicting da using GPR-
GAM has the best generalization (Rasmussen and
Williams, 2006). For every element, the overall PD’s
between groups is lower than 3.0%. The results demon-
strate that the GPR-GAM model has a stable performance
when predicting the flyby effects for a new given initial
condition.

5.5. Low-energy cases

The computations so far sample the input space in a uni-
form way, irrespective of the energy level. One could argue
that the high-energy part of the domain does not really
need a three-body formulation, and that the low-energy
part of the domain is the more challenging. In order to ana-
lyze the specific application of the GPR-GAM model to
low-energy transfers, we generate a group of 500 test sam-
ples with C; > C;3. According to the initial condition
defined by the input space, the spacecraft starts from some-
where in the exterior Hill’s region. This means that the fol-
lowing situation is not considered when the Jacobi constant
is smaller than that of C;;: the spacecraft is located initially
in the vicinity of either the Sun or the Earth and travels to
the neighbourhood of the other. However, it does allow the
cases of the spacecraft starting from the exterior realm and
moving into the neighbourhood of the Earth when
Cpp > C; > C3. The predictions are obtained by using
the training dataset 1 and the corresponding hyper-
parameters shown in Table 2, so for the model that is based
on the entire energy range. The MAE for the low-energy
part of the domain are shown in Table 6.

The MAE’s remain at the same level of magnitude as
those of the entire Jacobi energy cases in Table 4, with a
slight degradation of about 20 — 30% (except for da). This
is mainly because of the more complex variation of orbital
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Fig. 7. The variation of the semi-major axis induced by a flyby for 500 test
samples in the low-energy regime.
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Fig. 8. Trajectory of a test sample (C; = 3.00057). In order to show the
trajectory properly in three dimensions, the scales of three axes are not
equal.

elements due to the higher chaotic dynamics, particularly
when C;, > C; > Cps.

Using the numerical CR3BP propagation, the variation
of the semi-major axis induced by a flyby for 500 test sam-
ples in the low-energy regime is shown in Fig. 7. Although
the majority of da results have an absolute value of about
1.0 x 107° AU, a significant percentage of them are larger
than 0.01 AU in absolute terms. The initial conditions with
a smaller phasing angle would generally result in a larger
variation of the semi-major axis. The largest change among
these is —0.0771 AU. In the rotating reference frame, the
trajectory of this case (C; = 3.00057) is shown in Fig. 8.
The osculating Keplerian elements of its initial condition
[a,e,i,m, ¢, 0 are
[1.028 AU,0.008,0.086°,0.932°, —0.524°, —180°].

The value of C; meets the condition C;, > C; > Cy3.
The interior and exterior Hill’s region are connected which
allows a spacecraft motion between these two realms. Over
one unperturbed orbital period computed from the initial
condition, the spacecraft travels from the exterior Hill’s
region into the neighbourhood of the Earth temporarily
before moving out. The closest distance between the space-
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Table 7
The prediction of the test sample (C; = 3.00057).
oa [AU] de [-] oi [deg] o [deg] 0Q [deg]
Numerical integration —0.0771 0.0470 20.1637 —20.2493 9.0656
GPR-GAM —0.0773 0.0464 20.1127 —20.4192 8.9913
PD 0.26 % 1.28 % 0.25 % 0.85 % 0.82 %

craft and the center of the Earth is 7223 km. The variation
of the Keplerian elements and the predictions obtained by
GPR-GAM are shown in Table 7. The predictions are well
approximated especially for da and de. The prediction of
oi, 00 and 0Q yield poorer accuracy compared to the
MAE in Table 6, but the relative error is small compared
to the large variation of these elements. It is worth noting
that the value of the semi-major axis of the final condition
is 0.951 AU, which is beyond the predefined input space in
the current work. Extending the input space to the initial
conditions of starting from the interior Hill’s region is of
interest for future work.

6. Conclusions

A Gravity Assist Mapping was developed based on
Gaussian Process Regression for evaluating flyby effects
in the fully spatial CR3BP. A new criterion was proposed
to select the number of training samples for every orbital
element. Due to the increasing complexity of a fully spatial
CR3BP compared to that of the planar one, a larger train-
ing dataset is required. Compared to a previous semi-
analytical method, GPR-GAM has achieved a better accu-
racy. The CPU time for prediction is a factor 10° faster
than that of this semi-analytical method. The domain of
applicability is extended beyond that of the Keplerian
Map.

According to the MAE, the RQARD covariance func-
tion performs best. Based on the optimized values of the
length-scale, the influence of different input elements on
flyby effects was discussed. The stable robustness of
GPR-GAM was illustrated by changing the training and
test datasets. It indicates that quantifying da has the best
generalization property. The prediction of dw is more diffi-
cult than that of the other output elements. Further atten-
tion needs to be paid to the various ranges of output. The
results show the ability of the GPR-GAM model to predict
the dynamics of the CR3BP system with relatively high
accuracy compared to SKM. The GPR-GAM model has
been shown to be a versatile tool that can be applied for
a wide range of energy levels. The quality of predictions
in the low-energy domain is almost comparable to that in
the high-energy part.

The input space considers only the initial conditions of
the spacecraft starting from the exterior Hill’s region, and
the time of flight is limited to one orbital period of the ini-
tial osculating orbit. The periapsis passage of the initial
osculating orbit is located in the same region. The phe-
nomenon of the spacecraft temporarily being captured by

the secondary is observed for this input space, which is
not amenable to a patched-conics technique. However,
future work will consider extension of the input space to
include more complex situations. The angular phasing
and the longitude of the ascending node are used in the
input and the output vectors, respectively. The flexibility
of the GPR technique allows the mapping function to have
different formulations. In order to explore the applications
of GPR-GAM, four subjects are of interest for further
investigation: a) using an alternative set of orbital elements;
b) employing the orbital elements in the rotating reference
frame; c) extending the time of flight to multiple orbital
periods, or using a Poincaré section as boundary condi-
tions, such that more complex dynamics is involved and
more CPU time could be saved on predicting the status
of the spacecraft; d) establishing GPR-GAM for different
CR3BP systems considering the various goals of space mis-
sions, e.g. SMART-1 (Moon) or exploration missions to
Jupiter or Saturn (Sanchez et al., 2015). The GPR tech-
nique is an extremely interesting modelling option, in view
of the CPU time that can be gained over techniques that
fully rely on numerical integration, satisfying the same
accuracy requirements.
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