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SUMMARY

With their ability to access hard-to-reach spaces and to provide a birds-eye view over
large areas, Micro Air Vehicles (MAV) are already taking over a wide variety of monitoring
and inspection tasks. As the continuing miniaturization of electronic components fur-
ther drives down cost, recent advancements in the design of control algorithms promise
a future, where these small drones will be able to operate fully autonomously and with
minimal human input.

Spatial awareness is a key aspect in developing fully autonomous MAVs and in this
dissertation, we develop new algorithms for on-board localization using Ultra-Wideband
(UWB) ranging. UWB is a low-power technology that enables data communication and
time-of-flight range measurements. The large bandwidth of UWB results in high tim-
ing accuracy as well as an improved resistance to shadowing and multipathing, which
makes UWB a very useful technology for ranging in indoor environments.

In the first part of this dissertation, we investigate the use of UWB ranging for abso-
lute localization. We take a look at Moving Horizon Estimation (MHE) as a better way
to cope with the non-linear drone dynamics, and the non-Gaussian noise observed on
UWB range measurements. Since MHE uses a computationally expensive, optimization-
based approach, we mainly focus on reducing the computational complexity of the algo-
rithm. By simplifying the system to an output error MHE, we can analytically calculate
the gradient of the cost function and subsequently use a single-step gradient descent
method for optimization. Since UWB is known to occasionally produce range measure-
ments with larger errors, we introduce switching variables as additional decision vari-
ables for outlier rejection. By modifying these switching variables during the optimiza-
tion step, individual measurements can be disabled if they are highly unlikely to be true.
We find that the resulting algorithm can outperform a standard EKF, and runs in real-
time on small drones with limited computational power.

In the second part, we look at range-based relative localization in small swarms of
drones. After formulating a three-dimensional system model, we perform an observ-
ability analysis and identity constellations, in which relative localization might not be
possible. We propose a simple EKF for state estimation, which we test in simulation and
on-board of both rotary and flapping wing drones. When using the estimation results as
inputs to a controller that performs a leader-follower behaviour, we notice that closing
the loop offers a stabilizing effect in unobservable configurations. As a result, we show
that such a behaviour works in practice, despite being theoretically non-observable.

In the third part, we modify this algorithm to be scalable to arbitrarily large swarms.
The scalability of swarming algorithms is a key aspect in their utility as swarms grow
larger and larger. To achieve scalability, we use a priority system to limit the maximum
number of agents that are tracked at the same time. Not tracking all agents at the same
time means that the list of tracked agents changes frequently and success depends on
quick initialization of newly tracked agents. Through the use of secondary range mea-
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x SUMMARY

surements, we improve the convergence of new estimates, thus making sure that we
can quickly swap between different agents to track. While the use of secondary range
measurements offers large advantages in terms of stabilizing the estimates and improv-
ing convergence, it also brings some disadvantages. Specifically, using secondary range
measurements can cause estimates to get stuck at a stable local optimum. To solve this
problem, we introduce multiple methods that counter the different types of local op-
tima. Most importantly, these are improvements to the initialization procedure, and the
use of covariance inflation during measurement updates. Our results show, that the re-
sulting algorithm offers many advantages over our previous one-on-one relative local-
ization.

This dissertation is of course not the end for the research on localization for swarm-
ing drones. In the conclusion, we highlight several additional topics we investigated
together with our Master students, and finally give an outlook on the future of the field.



1
INTRODUCTION

In February 2023, a magnitude 7.8 earthquake struck the border region between Turkey
and Syria [1]. The tragedy, which ended up claiming more than 50’000 lives, started a
race against the time for the search and rescue teams arriving on the ground shortly after.
With every passing hour, the chances of finding survivors in the collapsed buildings were
decreasing.

Searching through the ruins to find and rescue the people trapped inside is a difficult
and dangerous task. A wrong step or an aftershock could easily cause further parts of
the buildings to collapse, putting the lives of the rescuers at risk and potentially turning
them into victims themselves.

While there are currently few alternatives to scouring the ruins with human search
teams, there could be one in the future. Robotic vehicles such as drones have become
more and more powerful, evolving from simple toys to valuable tools that can perform
a wide variety of tasks. Using a small, autonomous drone to search through the rubble,
would mean that rescue teams only have to put themselves in danger when a victim
is found. And if we were to use coordinating swarms of drones, we might be able to
considerably speed up the search process at the same time [2].

Search and rescue operations are in fact not the only scenario where swarms of au-
tonomous drones could prove to be incredibly beneficial. Many use cases have been sug-
gested over the past years, and although few seem to be as challenging as flying through
collapsed buildings, we are still far from seeing any of these ideas become reality.

So why don’t we see swarms of drones soar through a greenhouse to monitor the
crops [3], whiz through a warehouse counting the items in stock [4], or, search through
ruined buildings after natural disasters? Simply put, it is cheaper and easier to per-
form all of these tasks in the traditional way, as long as drones don’t operate fully au-
tonomously. When drones require a human operator, their use only becomes interesting
when the task involves accessing hard-to-reach spaces with enough room to maneuver,
such as the inspection of wind turbines or industrial furnaces [5].

Making drones operate autonomously is not easy and involves addressing many dif-
ferent challenges. The first problem that needs to be solved, however, is giving the drone

1
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knowledge about its location, and in the case of swarms, the location of its neighbors.
This knowledge enables the drone to move to the right location, coordinate with its fel-
low drones, and find its way back to the base station. While the use of Global Navigation
Satellite Systems (GNSS) has largely solved this problem in open areas, indoor environ-
ments still present a particular challenge. Since satellite signals can get blocked or de-
flected, the performance of GNSS is usually insufficient for operating in small, enclosed
spaces [6].

In the research underlying this dissertation, we set out to explore new ways of giving
our drones a sense of place. Specifically, we are looking at different ways to use Ultra-
Wideband ranging for absolute and relative localization of small, swarming drones.

1.1. THE CHALLENGES OF MICRO AIR VEHICLES
Before diving head-first into numbers, algorithms and technical details, let us first have
a look at the vehicles we are working with. "Micro Air Vehicles" or MAVs, are small, ver-
satile drones that can typically fly for up to an hour. There are no official definitions on
what "small" really means in this context, but there are good reasons for keeping MAVs as
small as possible [7]. First of all, small MAVs are safer. Getting hit in the head by 50 grams
of plastic is not nice, but bring this up to 1 kilo and one might already be in need of an
ambulance. Of course we try to make our drones as reliable as possible, but experience
has shown, that things can occasionally go wrong. Second, with indoor applications in
mind, a smaller platform allows for more maneuverability in tight spaces, enabling the
drone for example to navigate through doors and windows [8].

Finally, especially when working with swarms, the unit cost of a drone becomes im-
portant. Small drones are cheaper, because they require less material and smaller bat-
teries. Furthermore, they are easier to transport and handle in large numbers.

These advantages do however come at a price. Making drones smaller and lighter
means sacrificing computational power. High performance processors that draw large
amounts of power and possibly even require active cooling are not only heavier by them-
selves, but also require the use of larger, heavier batteries. This limitation adds an ad-
ditional challenge when designing localization algorithms for MAVs. As a result, some
accuracy has to be sacrificed in favor of reducing the computational cost to keep the
drones running smoothly.

1.2. ROBOTIC SWARMS
When multiple drones are coordinating to work together, we start talking of a swarm.
Inspired by nature, swarms offer the potential of completing complex tasks while keep-
ing the individual members, also called agents, small and simple. This offers additional
advantages, such as operational flexibility and robustness: Since swarms rely on large
numbers of agents, they can quickly react to changing circumstances, such as new tasks
appearing or the failure of another drone [9].

To realize the full potential of a swarm, the individual agents will have to work to-
gether. Algorithms for task allocation and path planning can help a swarm collaborate,
but usually require some form of estimate of the individual drones positions in space,
and/or with respect to each other. There are two important classifications that can be
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used to distinguish localization algorithms for swarming [10].

First, regarding the swarm architecture, we can distinguish between centralized and
distributed swarms. Centralized swarms rely on a computational hub to collect informa-
tion on all swarm members, execute the swarming algorithms and send back commands
to all members of the swarm. This hub could be one of the drones in the swarm, but more
commonly is a ground-based terminal with more extensive computational power. This
means, that centralized algorithms can be computationally costly without the need for a
lot of computational power on the individual drones. Furthermore, they can work with
complete information and therefore usually outperform distributed architectures.

The biggest downsides of centralized architectures are latency, communication band-
width and robustness, and this is where the appeal of distributed approaches comes in
[11]. The requirement for stable communication links between all agents and the base
station becomes particularly difficult to achieve in indoor environments (where signals
can be blocked), over large distances (where signals are weak) or in fast changing envi-
ronments (where agents react too slowly). Furthermore, the base station is a single point
of failure for the system. In these scenarios, distributed algorithms can offer a distinctive
advantage, as every agent executes its own version of the algorithm based on the infor-
mation available. While the results might be less optimal, these algorithms still work
when communication with some of the other members is lost and swarms can continue
operation even if multiple members fail.

Second, looking at the source of positioning information, swarms may rely on ex-
ternal positioning or only on local sensing. External positioning such as GNSS or visual
tracking provides high accuracy in a global context and reduces on-board computational
requirements for the agents. It does however introduce similar risks to a centralized ar-
chitecture, in that it requires stable communication links with the source of positioning
information, and potentially modifications to the environment. Local sensing on the
other hand, while often being less accurate and putting additional load on the agents
processor, can still work under adverse circumstances such as loss of communication
[10].

Looking at aerial swarms developed around the world over the past few years, it be-
comes clear that it is currently much easier to build large swarms based on a central-
ized architecture and external positioning information. Decentralized systems with local
sensing on the other hand are still in their infancy and these swarms are usually limited
to less than 20 robots [10].

While centralized swarms with external positioning are currently encountered more
frequently, it is clear that they are limited in terms of scalability and flexibility, as they
require an ever increasing amount of computational power to back them up from the
ground. We therefore believe that it is only a matter of time until distributed systems
with external positioning will take over. When it comes to swarms with local sensing, it
is possible that they will never reach the same sizes. After all, GNSS can provide fast and
reliable external positions for an unlimited number of receivers. However, for a variety
of scenarios where GNSS is not available (indoors or on another planet), local sensing
might be the only information available.

Especially for a search and rescue scenario in collapsed buildings as presented in the
beginning, distributed swarms with local sensing are the most promising solution, as we
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cannot guarantee a stable communication link to the outside.

1.3. INDOOR LOCALIZATION
If an autonomous vehicle is to conduct a complex mission, it needs some form of aware-
ness of its position in the environment. A robot without localization system may be able
to autonomously explore an environment and find locations of interest, but it would be
incapable of sharing that location with others [12]. Furthermore, without at least a hom-
ing beacon, such a robot could not actively travel back to a charging station [13].

Two things are needed to give a robot information about its location: Sensors, with
which to extract information from the environment, and filter algorithms, with which to
convert these measurements into a position estimate.

1.3.1. SENSORS

Roboticists distinguish between proprioceptive and exteroceptive sensors. Propriocep-
tive sensors measure internal states of the robot, such as battery voltage or angular ve-
locities, while exteroceptive sensors like cameras or a compass are used to observe the
environment [14].

One of the most important proprioceptive sensor for localization that can be found
on any drone is the inertial measurement unit (IMU). IMUs measure linear accelerations
and angular velocities and have become incredibly small and energy efficient. Unfortu-
nately, while being vital to keeping a drone stable in the air, IMU measurements by them-
selves are unsuitable for long-term navigation. This stems from the fact, that converting
IMU measurements into position estimates requires integration of these measurements,
which will lead to an accumulating drift. However, combining high-frequency IMU mea-
surements with lower frequency exteroceptive measurements is a great way to achieve
stable and drift-free position estimates [15].

For us humans, vision is probably the most intuitive form of exteroceptive localiza-
tion, given that most of us use it every single day to find our way through the world. It also
comes with the advantage, that it can be used to detect and avoid obstacles [16]. What
our brains do with ease is however much more difficult for robots to achieve. Simultane-
ous localization and mapping (SLAM) for example requires a lot of memory and compu-
tational power [17]. An easier way of using visual information, visual-inertial odometry
(VIO), consists of integrating movement between consecutive images. This saves mem-
ory, but is vulnerable to drift, just like IMU integration [18] [19]. Finally, there is the
option of detecting markers at known positions in the area, which does however require
previous preparation of the environment [20].

As we noted earlier, GNSS is not a viable solution for most indoor environments [6].
There are however other range-based techniques with similar working principles, that
we can use if we allow modifications of the environment. These work by placing bea-
cons at known positions in the room with which robots can then exchange messages.
Depending on the ranging-protocols used, the robot can then calculate its distance from
a specific beacon, or the difference in distance to two specific beacons. Based on these
range measurements, a position can be calculated.

Technologies that fall into this category are Bluetooth [21], Wi-Fi [22] and Ultra-
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Wideband (UWB) [23]. For all of these technologies, the Received Signal Strength (RSS)
gives a good indication of the distance between the communicating devices. However,
this method is not very accurate since walls and other objects can reflect or block part
of the signal. A better option can be the use of transmission and reception timestamps
that allow for the calculation of the time of flight for a signal. Since the signals travel at
the speed of light, the distance between devices can be calculated easily. Time-based
protocols that are commonly used are Two-Way Ranging (TWR) and Time-Difference of
Arrival (TDoA) [24]. These protocols work best for signals with a large bandwidth, since
they offer a better time-resolution.

In this research, we are using Ultra-Wideband as the technology of choice. Ultra-
Wideband is a communication technology that uses frequencies in the 3-10 GHz range
to exchange messages. Due to the large bandwidth of the channels, UWB can achieve
high timing accuracy. This makes it well suited for time-based ranging protocols such
as TWR or TDoA, with which it can achieve centimeter level accuracy [23]. In addition
to leading to high accuracy in ranging, UWB can be used to communicate information
at data-rates of several Mbps. This is of special interest in swarming applications, where
agents might need to communicate anyway.

1.3.2. STATE ESTIMATION ALGORITHMS

Typically, a drone will carry more than just one sensor that can give information on its
position. For example, our drones might carry an IMU and at the same time perform
ranging with Ultra-Wideband. State estimation algorithms are designed to use a sys-
tem model with which they combine measurements from different sources. This allows
them to return a better state estimate than what we could get from one single type of
measurement alone.

The most commonly used algorithm is the Kalman Filter [25][15]. The Kalman Filter
returns the best linear combination of measurements that minimizes a weighted two-
norm of the estimation error [26]. The Kalman Filter works best for linear systems that
exhibit uncorrelated, white Gaussian noise, but various adaptations were devised to bet-
ter deal with systems where this is not the case [27][28]. Due to the iterative calculation
of estimates at each time step, the Kalman Filter is extremely efficient in terms of com-
putational cost.

For highly non-linear systems and systems that exhibit non-Gaussian or unknown
noise, alternative filters exist. In chapters 2 and 3, we will specifically look at an opti-
mization based approach, known as Moving Horizon Estimation (MHE)[29]. The ad-
vantage of this approach is, that it is well suited to deal with non-linear systems (such
as drones) and non-Gaussian noise (as the noise present in UWB measurements). The
main disadvantage is, that as an optimization based method, it comes at a much higher
computational cost.

1.4. RESEARCH OBJECTIVE
After this initial overview regarding the current state of swarms of micro-air vehicles,
it is possible to formulate the objective for this research. Having identified UWB as a
promising technology for these swarms, we also recall that scalability is a major concern



1

6 1. INTRODUCTION

in swarming applications. The following research objective is therefore formulated:

Research Objective

Provide robotic swarms with scalable means to determine their position in the
environment, and with respect to each other, using Ultra-Wideband ranging.

To approach this problem step by step, we split this large objective into several more
precise research questions, that will each address a part of the general research objective.

Indoor localization of individual drones using Ultra-Wideband has already been in-
vestigated by several other authors and therefore lends itself as a convenient entry point
into this research [15][30]. Most of the previous research focuses on the use of Kalman
Filters, which have known limitations when it comes to non-linear dynamics and non-
Gaussian noise [26]. Given that drones are highly non-linear platforms and UWB ranging
exhibits non-Gaussian noise, we want to start by investigating an alternative filter for this
purpose, specifically the Moving Horizon Estimator[29]. Due to the computational com-
plexity of this estimator, we place a specific focus on reducing the computational load
on the drone.

Research Question 1

How can Moving Horizon Estimation be used to improve localization with Ultra-
Wideband on platforms with limited computational resources?

The second aspect of the research objective is related to relative localization with
respect to other agents in a swarm. We will first approach this problem in a setting with
few drones to avoid the problem of scalability. Instead we will investigate how these
small groups of drones can determine their relative positions, and use that information
to perform coordinated maneuvers.

Research Question 2

How can Ultra-Wideband be used to achieve spatial coordination in small groups
of aerial robots?

Finally, we will tackle the problem of extending these methods to larger, potentially
infinite swarms. While infinite swarms of course don’t exist, they force us to think of
solutions that work in swarms, where you can always add an additional agent without
breaking the system.

Research Question 3

How can relative localization be achieved in potentially infinite swarms, despite
physical limitations of the individual agents and their communication channel?
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1.5. THESIS OUTLINE
Following this introduction to the topic and the research objective, Chapter 2 and Chap-
ter 3 will address Research Question 1 by exploring the use of Moving Horizon Estimation
for localization with Ultra-Wideband ranging. In a first step, Chapter 2 will focus on the
computationally efficient formulation of the Moving Horizon estimator. Subsequently,
Chapter 3 will refine this estimator by improving robustness and further reducing the
computational requirements.

Research Question 2 will be addressed in Chapter 4, which presents a relative po-
sition estimator for agent-to-agent localization in three dimensions. In addition to an
observability analysis and the design of the estimator, the chapter also includes phys-
ical experiments, using the relative position estimates to implement a leader-follower
behavior.

Chapter 5 will then cover the design and evaluation of a relative position estimator
for large, dynamic swarms. Furthermore, the chapter addresses the localization ambigu-
ities that appear due to the use of secondary range measurements and can lead to stable
but wrong estimates.

Finally, 6 will conclude this dissertation by looking back at the main results and plac-
ing them into a larger context. It will also outline several related investigations that were
conducted by Master students under our supervision.
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2
A COMPUTATIONALLY EFFICIENT

MOVING HORIZON ESTIMATOR FOR

ULTRA-WIDEBAND LOCALIZATION

ON SMALL QUADROTORS

We present a computationally efficient moving horizon estimator that allows for real-time
localization using Ultra-Wideband measurements on small quadrotors. The estimator
uses a single iteration gradient descent method to optimize the state estimate based on
past measurements, while using random sample consensus to reject outliers. We com-
pare our algorithm to a state-of-the-art Extended Kalman Filter and show its advan-
tages when dealing with heavy-tailed noise, which is frequently encountered in Ultra-
Wideband ranging. Furthermore, we analyze the algorithm’s performance when reducing
the number of beacons for measurements and we implement the code on a 30 g Crazyflie
drone, to show its ability to run on computationally limited devices.

Parts of this chapter have been published in IEEE Robotics and Automation Letters 6, 4 (2021) [1].
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2.1. INTRODUCTION
Over the past few years, the continuing miniaturization of computational hardware has
advanced the development of small, agile quadrotors. This new generation of flying
robots performs tasks in environments, that were previously inaccessible to them due
to size and safety constraints. Most notably, this concerns indoor environments, such as
warehouses, greenhouses or industrial facilities, which present numerous new potential
use-cases.

A key component required for autonomous operation in these environments is a
robust and accurate localization system. Ultra-Wideband (UWB) technology has been
gaining a lot of attention for indoor positioning, as it offers high accuracy at an afford-
able cost. UWB systems allow for the localization of a mobile tag, by exchanging mes-
sages with a set of static beacons at known locations in the environment. Although a po-
sition can be calculated from a sufficient number of independent UWB measurements
through multilateration, better results can be achieved when using additional filtering.
Commonly, a state estimator that can fuse the UWB measurements with data collected
by the on-board inertial measurement unit (IMU) is employed.

For linear systems with Gaussian noise, the Kalman Filter yields an optimal estimate
in the sense that it minimizes a weighted two-norm of the expected value of the estima-
tion error [2]. Different formulations have been developed to approximate this result for
more general systems, while retaining the computationally efficient, iterative structure
of the Kalman Filter. The Extended Kalman Filter (EKF) [2] or Unscented Kalman Fil-
ter (UKF) [3] are often used to address non-linearities, but may fail to address the issues
that can arise from uncertain system models and unknown or non-Gaussian noise. Since
UWB measurements often exhibit heavy-tailed noise due to multi-pathing and non-line-
of-sight (NLOS) conditions [4, 5], this can be a significant shortcoming.

For highly non-linear problems and systems with non-Gaussian noise, Moving Hori-
zon Estimation (MHE) yields better results at the cost of requiring more computational
power. MHE aims at finding a sequence of states, that minimizes the noise and distur-
bances required to explain the observed measurements over a moving time horizon [6].
A multitude of options exist for the formulation of the cost-function to this minimization
problem, but most commonly, a batch least-squares formulation is used [7]. In addition,
past data can be included in the cost-function through an "arrival cost". Unfortunately,
the requirement of solving an optimization problem at every time step currently make
MHE impractical for real-time applications on computationally limited devices or for
systems with fast dynamics.

This chapter presents a computationally efficient Moving Horizon Estimator with
RANSAC [8] outlier rejection that can perform real-time localization with UWB on a
small quadrotor with limited computational power. We compare it with a state-of-the-
art EKF in simulated noise environments and show its advantages when dealing with
heavy-tailed noise, which is observed on UWB measurements when multi-pathing and
NLOS effects occur. We also show that the MHE is still able to perform state estimation
when the number of UWB beacons in the environment is drastically reduced.

In Section 2.2 we will present an overview of the related work. Section 2.3 outlines the
design of our computationally efficient moving horizon estimator, while Section 2.4 will
cover its implementation for position estimation with UWB. We will then compare our
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Figure 2.1: Moving horizon estimators can optimize the evolution of a drone’s trajectory based on a limited
number of previous UWB measurements. We propose a novel formulation for UWB localization that is effi-
cient enough to run on a 30 g Crazyflie drone and performs robustly in scenarios with very noisy or limited
measurements. In the plot, ξ stands for the state and y for a measurement of the state.

MHE with a state-of-the-art EKF in Section 2.5. Finally we will conclude on our findings
in Section 2.6.

2.2. RELATED WORK
Shortly after the original paper on the Kalman Filter appeared in 1960 [9], the concept
of limited memory filters was introduced by Andrew Jazwinski to address cases in which
the Kalman Filter diverges due to modelling errors [10]. Several strategies have since
been proposed to reduce the high computational cost of such limited memory filters.

The Unbiased Finite Impulse Response (UFIR) Filter was developed with a compu-
tationally efficient iterative structure like the Kalman Filter. It offers robustness with re-
spect to unknown noise and initial position, but still relies on linearization when dealing
with non-linear system models. Furthermore, the UFIR filter is only unbiased and not
optimal [11].

Moving Horizon Estimation (MHE) on the other hand solves an online optimization
problem and can therefore accomodate non-linear system models. However, the solu-
tion of these optimization problems can quickly become expensive, which has mostly
limited the use of MHE to slow processes, e.g. in the chemical industry. There are how-
ever approaches to improve the computational complexity of moving horizon estima-
tion. Zavala, Laird and Biegler [12] have used sensitivity analysis to formulate and solve
a reference optimization problem based on previous measurements, while waiting for
a new measurement to arrive. Once the new measurement is known, the solution to
the real problem can be calculated more quickly. Kühl et al. [13] have demonstrated
a scheme that only relies on a single iteration of a sequential quadratic programming
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method per time step. Both papers demonstrate performance on examples from the
chemical industry, which deal with more states but involve significantly slower dynam-
ics than quadrotors.

For this work, the use of computationally more efficient gradient descent methods
was investigated, which where proven to be stable by Alessandri and Gaggero [14]. Sim-
ilar to Kühl et al. they were able to show, that also with simple gradient descent mini-
mization, a single iteration at every time step is sufficient to get a stable state estimate.

On autonomous flying robots, MHE is rarely used due to the before mentioned com-
putational complexity. Girrbach et al. have investigated the influence of horizon length
when fusing GNSS and IMU with MHE, but only perform comparisons offline and with-
out addressing the challenges of computational cost [15]. Shuo et al. formulate the MHE
problem with position measurements and a simplified model in such a way, that there is
an analytical solution to the optimization problem. This allows them to use their MHE
on a 72 g quadrotor in a drone racing context [16].

Instead of using MHE, state estimation with UWB measurements on quadrotors is
usually based on variations of the Kalman Filter. The Crazyflie drone which we use as
our testing platform in this work for example uses an EKF for fusing data from a wide
variety of on-board sensors [17]. As an alternative to Kalman Filters, Xu et al. [18, 19]
recently started to investigate different forms of UFIR filters for the purpose of fusing
UWB and IMU on drones.

In our work, we are approaching the problem of sensor fusion on quadrotors by us-
ing a moving horizon estimator, which uses a single iteration gradient descent algorithm
to optimize its state-estimate. We will show that this reduces the computational load of
MHE sufficiently, while providing accurate position estimates on computationally lim-
ited drones.

2.3. MOVING HORIZON ESTIMATOR

2.3.1. PROBLEM FORMULATION
Let us consider a non-linear, discrete-time dynamic system as described by (2.1):{

ξt+1 = f (ξt ,u t )+w t

y t = h(ξt ,u t )+v t
(2.1)

where t = 0,1, . . . is the time step, ξt ∈Rn is the state vector, u t ∈Rp is the (control) input
vector, and y t ∈ Rm is the measurement vector. Finally w t ∈ Rn and v t ∈ Rm are the
process and measurement noise vectors, all at time step t respectively. The evolution of
the state is described by the non-linear prediction equation f , while the measurements
are described by the non-linear measurement equation h.

The classical MHE problem can be formulated, as finding the state ξ̂t−N |t , that min-

imizes the cost function J (ξ̂t−N |t ), where ξ̂t−N |t is the estimated state at time step t −N ,
based on information available at time step t , N being the length of the moving horizon.
The cost function typically includes an arrival cost, which takes into account a prior esti-
mate of the state, ξ̄t−N |t , the sum of squares of the process noise and the sum of squares
of the measurement noise. In this work, we simplify the problem to an output noise
MHE, which neglects the process noise terms. This simplification is necessary to reduce
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the size of the optimization problem sufficiently for it to be solved on an embedded sys-
tem. It removes the ability of the estimator to adjust inputs to better fit the measure-
ments and is therefore likely to reduce the accuracy of the estimate. Since it does how-
ever not impact the convergence of the estimate, this can be an acceptable trade-off for
many systems.

Since the measurement frequency of UWB varies unpredictably, some measurements
in y k might be outdated. We can accommodate for this fact, by writing the cost function
in terms of individual measurements yi , i = 0, . . . ,m, and including the binary switching
sequences θi ,k , which are equal to 1 if a new measurement arrives and 0 otherwise [20].

θi ,k =
{

1 if yi ,k ̸= yi ,k−1

0 otherwise
(2.2)

To express the cost function in term of the state at the beginning of the horizon,
ξ̂t−N |t , it is helpful to define the composite prediction and measurement equations at
time step k:

F k (ξ̄t−N |t ) = f uk ◦ . . .◦ f ut−N (ξ̄t−N |t ) (2.3)

H i ,k (ξ̄t−N |t ) = huk
i ◦F k−1(ξ̄t−N |t ) (2.4)

For compactness, we omit the input vectors u t−N to uk in the composite functions,
as the output error structure of the MHE does not allow them to change anyway. For the
composing functions we note the corresponding input vector in the superscript. This
results in the final cost function shown in (2.5).

Jt (ξ̂t−N |t ) =µ∥ξ̂t−N |t − ξ̄t−N |t∥2 +
t∑

k=t−N

m∑
i=1

(
θi ,k · ∥yi ,k −H i ,k (ξ̂t−N |t )∥2

)
(2.5)

2.3.2. COMPUTATIONALLY EFFICIENT MHE
To solve the MHE problem efficiently, we use a single iteration of the gradient method
at every time step [14]. The prior estimate ξ̄t−N |t is obtained by applying the prediction
equations on the last available state estimate.

ξ̂t−N |t = ξ̄t−N |t −α∇Jt (ξ̄t−N |t ) (2.6)

ξ̄t−N |t = f (ξ̂t−N−1|t−1,u t−N−1) (2.7)

If the number of states n becomes large, the numerical calculation of ∇Jt (ξ̄t−N |t ) be-
comes very expensive. This is due to the fact, that every evaluation of Jt (ξ̄t−N |t ) requires
the prediction of the state vector’s evolution over the complete horizon. We are there-
fore using an iterative, analytical solution based on the chain rule, which only requires a
single prediction cycle over the full horizon.

In the analytical expression of the gradient of the cost function, the first term (arrival
cost) disappears since we evaluate the gradient at ξ̄t−N |t . What remains is a sum of terms
that stem from the individual measurements:

∇Jt (ξ̄t−N |t ) =−2
t∑

k=t−N

m∑
i=1

[
θi ,k

(
yi ,k −H i ,k (ξ̄t−N |t )

)∇H i ,k (ξ̄t−N |t )
]

(2.8)
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By stepping through the full horizon, we can calculate the sequence of prior estimates
ξ̄k|t , k = t −N , . . . , t in an iterative manner, which makes calculating the predicted mea-
surement H i ,k (ξ̄t−N |t ) = hi (ξ̄k|t ,uk ) trivial.

To calculate the gradient of H i ,k , we use the chain rule and split the equation into
two factors: The gradient based on the current predicted state and input, ∇hi (ξ̄k|t ,uk ),
and the Jacobian of the composite prediction equation DF k−1(ξ̄t−N |t ):

∇H i ,k (ξ̄t−N |t ) = (
DF k−1(ξ̄t−N |t )

)T ·∇hi (ξ̄k|t ,uk ) (2.9)

DF k−1(ξ̄t−N |t ) = Df
(
ξ̄k−1|t ,uk−1

) ·Df
(
ξ̄k−2|t ,uk−2)

) · . . . ·Df
(
ξ̄t−N |t ,u t−N

)
(2.10)

Similar to the predicted state, the Jacobians of the prediction equation can be calculated
in an iterative manner by premultiplying the previous value with the Jacobian evalu-
ated at the current prediction. In the end, calculating the Jacobian of the cost function
therefore requires the following computations for each time step k in the horizon (i.e. N
times):

• Forward prediction of the prior estimate

ξ̄k|t = f (ξ̂k−1|t ,uk−1) (2.11)

• Calculation of the n ×n Jacobian of the prediction function f at t = k −1

Df(ξ̄k−1|t ,uk−1) = ∂ f

∂ξ
(ξ̄k−1|t ,uk−1) (2.12)

• Calculation of the composite Jacobian of F k−1 by multiplication of two n ×n ma-
trices (chain rule)

DF k−1(ξ̄t−N |t ) = Df(ξ̄k−1|t ,uk−1) ·DF k−2(ξ̄t−N |t ) (2.13)

• Up to m measurement predictions for measurements that arrived at t = k,

hi (ξ̄k|t ,uk ) (2.14)

• Calculation of up to m measurement gradients for measurements that arrived at
t = k,

∇hi (ξ̄k|t ,uk ) = ∂hi

∂ξ
(ξ̄k|t ,uk ) (2.15)

• Calculation of up to m composite measurement gradients by multiplication of an
n ×n matrix with a size n vector, (2.9)

• Up to m subtractions, m ·n multiplications and m ·n additions to form the full
measurement sum at t = k, (2.8)
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To complete the estimation process, the gradient descent step needs to be performed
(2.6), which requires n multiplications and n subtractions. Finally, a forward prediction
of ξ̂t−N |t must be performed to actually know the current state ξ̂t |t , which requires k
evaluations of the prediction equation f .

From these steps, the most expensive calculation in terms of computational com-
plexity is the multiplication of two n×n matrices, which behaves as O (n3) without using
specialized algorithms. Neglecting lower order terms, our MHE therefore ends up with a
computational complexity of O (N ·n3). With respect to the number of states, our MHE
therefore scales just as well as the EKF and the increase in complexity only comes from
the number of time steps in the moving horizon.

2.3.3. RANSAC OUTLIER REJECTION
The occurrence of outliers in UWB measurements is a problem for any state estimator,
as they can have a big impact on the estimated state. To deal with outliers, other au-
thors have used the Mahalanobis distance [17, 18], which weighs the measurement error
with its variance. To eliminate any reliance on the knowledge of error statistics, we have
decided to use a random sample consensus (RANSAC) scheme instead.

To do this in an efficient manner, we split the measurement terms in (2.8) in two
sums: A common sum and a RANSAC sum. The common sum includes measurements
that are not subject to RANSAC outlier rejection (e.g. altitude measurements) while the
RANSAC sum includes only a fraction of the terms from UWB measurements. By adding
to multiple RANSAC sums at the same time, multiple gradients of the cost function can
be computed after going through only one prediction cycle for the full horizon.

Since this removes the need to step through the full horizon several times, the only
real contribution of the outlier rejection to the computational cost is from the evalua-
tion of the different RANSAC estimates. The evaluation of every RANSAC estimate still
requires an independent prediction cycle over the full horizon, to choose the best esti-
mate.

2.4. IMPLEMENTATION
In our implementation we limit ourselves to the estimation of the drone’s position and
velocity, while the attitude is estimated using Mahony’s AHRS algorithm [21].

2.4.1. PREDICTION EQUATIONS
We use a slightly simplified version of the model in [17], where we represent the attitude
with quaternions and neglect the dependence of the drag on the propellers’ angular ve-
locities.

ẋ =
[

q ⊗
[

0
ρ

]
⊗q−1

]
v

(2.16)

ρ̇ = f

m
e3 + (Ka − [[ω×]])ρ−

[
q−1 ⊗

[
0
g

]
⊗q

]
v

(2.17)

In this model, our six dimensional state ξ= [xT ,ρT ]T encompasses the position x ∈
R3 in the global frame and the local velocities ρ ∈R3 in the body frame. The inputs to the
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Algorithm 1: Computationally efficient MHE

input : ut , yt

output: ξ̂t

1 Nt ← 0
2 ū ← [ ], ȳ ← [ ]

3 ξ̄prior ← ξ0

4 while true do
5 Update the moving window
6 if Nt < Nmax then
7 ū[Nt ] ← ut

8 ȳ[Nt ] ← yt

9 Nt ← Nt +1

10 else
11 ξ̄prior ← f (ξ̂t−N , ū[0])
12 shift_left(ū)
13 shift_left(ȳ)
14 ū[Nt ] ← ut

15 ȳ[Nt ] ← yt

16 Calculate the gradient of the cost function

17 ξ← ξ̄prior

18 DF ←In×n

19 MΣ← 0
20 for k ∈ [0, . . . , Nt ] do
21 if k ̸= 0 then
22 DF ← Df(ξ, ū[k −1]) ·DF
23 ξ← f (ξ, ū[k −1])

24 for i ∈ [0, . . . ,m −1] do
25 H i ,k = hi (ξ, ū[k])

26 ∇H i ,k = DFT ·∇hi (ξ, ū[k])
27 MΣ← MΣ−θi ,k

(
ȳ[k][i ]−H i ,k

) ·∇H i ,k

28 Calculate the new estimate
29 ∇J ←−2 ·MΣ

30 ξ̂t−N ← ξ̄prior −α∇J

31 ξ̂t ← ξ̂t−N

32 for k ∈ [0, . . . , Nt ] do
33 ξ̂t ← f (ξ̂t , ū[k])

34 yield(ξ̂t )
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system are the total thrust f , the attitude quaternion q ∈ R4, and the angular velocities
as measured by the gyroscopes, ω ∈ R3. The drone’s mass m and drag coefficients Ka =
diag(k⊥,k⊥,k∥) enter as parameters. ⊗ is the quaternion product and the subscript 0 and
v refer to the scalar and vector portion of the quaternion respectively. Finally, g is the
directed acceleration of gravity and [[ω×]] is the skew symmetric matrix defined as

[[ω×]] =
 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2.18)

Since inputs are usually available at higher rates than the estimator’s update rate,
we accumulate these inputs between two estimation cycles and average them to reduce
input noise. For the thrust and each of the gyroscope’s axes, this is done by simply cal-
culating the mean, while for the attitude quaternion, the average is found by calculating
the dominant eigenvector of the matrix Q [22]:

Q =∑
i

q i q T
i (2.19)

2.4.2. MEASUREMENT EQUATIONS

We consider two different types of UWB measurements that can be used with the esti-
mator. In two-way ranging (TWR), the UWB system returns the distance between the tag
at its current position, and the (known) location of an anchor, puwb,i . The measurement
equation, including measurement noise ηtwr is then given by

ytwr = ∥puwb,i −x∥+ηtwr (2.20)

Alternatively, time-difference of arrival (TdoA) measurements can be used. In TdoA
schemes, the measurement yields the difference between the distances to two different
anchors:

ytdoa,i j = ∥puwb,i −x∥−∥puwb, j −x∥+ηtdoa (2.21)

Since in most indoor environments, the distribution of anchors is mostly in the xy-
plane with comparatively small variations in height, altitude estimation based on UWB
alone is often difficult and noisy. We therefore also include the measurement equations
for dedicated altitude measurements from a barometer or from laser time-of-flight (ToF)
measurements:

ybaro = x3 + zref +ηbaro (2.22)

ytof = x3 ·cosθcosφ+ηtof (2.23)

Note that the ToF measurement equation must take into account the current pitch θ
and current roll φ since the laser is not measuring the shortest distance to the ground,
but the distance on the body frame’s z-axis.
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2.5. RESULTS

2.5.1. SETUP

Figure 2.2: Flight data was collected in the "Cyberzoo" at TU Delft using a Crazyflie drone and the loco posi-
tioning system by bitcraze. Groundtruth is provided by an Optitrack motion capture system.

For testing and evaluation, we implemented our own algorithm and the EKF from
[17] (which is used on the Crazyflie) in Python1. We compared their real-time position
estimates at each timestep t , ξ̂t |t , with ground-truth from an optitrack motion capture
system. The evaluation was performed on real IMU and UWB data, which was collected
on a Crazyflie drone at 100 Hz, and optitrack data collected in the "Cyberzoo" testing
area at the Aerospace Faculty of TU Delft2(seen in Fig. 2.2). In total, 24 data sets were
gathered on 6 different trajectories, containing either two-way ranging (TWR) or time-
difference of arrival (TdoA) data from the UWB system. The different trajectories used
were a square, a triangle, an octagon, an hourglass, a five-pointed star and a random
sequence of points. On each trajectory, we recorded four runs, two for TWR data and
two for TdoA data. The UWB setup included eight beacons, positioned roughly in the
eight corners of a cube, enclosing our testing area (cf. Table 2.1). An example for a run of
the Octagon trajectory where we test the estimator performance offline but on real TWR
data is shown in Fig. 2.3.

2.5.2. HEAVY-TAILED MEASUREMENT NOISE
While the noise on TWR measurements can be assumed to be Gaussian in an ideal sce-
nario, it is more realistically modelled as being heavy-tailed. This is due to multi-pathing
and non-line-of-sight (NLOS) effects, which cause UWB signals to arrive with a slight
delay compared to the shortest path [4, 5]. To simulate heavy-tailed noise for TWR, we

1https://github.com/SUPfeiffer/uwb-simulator
2Data available at https://doi.org/10.4121/14827680
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ID x [m] y [m] z [m]
0 -4.48 -4.87 1.16
1 -4.78 4.52 0.67
2 4.81 4.57 0.81
3 4.91 -4.77 0.96
4 -4.34 -5.05 2.60
5 -4.91 4.41 2.65
6 4.56 4.77 2.59
7 4.91 -4.77 2.53

Table 2.1: UWB Beacon Positions

−2 −1 0 1 2

x [m]

−2

−1

0

1

2

y
[m

]

Ground truth

MHE

EKF

Figure 2.3: Example of one of the collected trajectories (Octagon) with offline performance of MHE and EKF
on real TWR data from 4 beacons.

adapt the noise model by Jimenez and Seco [4], which models the heavy-tailed noise as
the sum of a Gaussian distribution for the LOS component, a Gamma distribution for
the NLOS component, and a constant for outliers. To avoid dealing with a probability
density function (PDF) that does not integrate to 1, we remove the constant, and rely on
getting outliers from the Gamma distribution alone. To show the effect of an increasingly
non-Gaussian distribution, we multiply the Gamma distribution with a scale factor sht,
which we vary between 0 and 1.25. Since a reduction in the NLOS component should
also cause the mean to go towards zero, we multiply µ by the same factor, which causes
the noise distribution to represent the ideal LOS condition (i.e. a pure, zero-mean Gaus-
sian) for sht = 0. Finally, we divide the PDF by (1+ sht), which causes the integral to be
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equal to 1. The resulting model is given in (2.24).

f (x) = 1

1+ sht
· 1

σ
p

2π
exp

(
− (x − shtµ)2

2σ2

)
+ sht

1+ sht
· λk

(k −1)!
xk−1 exp(−λx) (2.24)
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Figure 2.4: Probability Density Function (PDF) of the heavy-tailed noise distribution used for generating UWB
measurements. The scale factor sht is used to change the influence of the heavy-tailed Gamma distribution
added to the underlying Gaussian.

Even though there are significant differences between individual anchors, we find
that using the parameters suggested by Jimenez and Seco (µ = 0.1, λ = 3.5, k = 2) and a
standard deviation of σ = 0.1 (determined from our own data), our TWR data is best fit
with a heavy-tail scale factor of sht = 0.2. The main differences between anchors are the
need for some higher values for λ and k, but we also noted some anchors with shifted
or multiple peaks in the noise distribution. These odd behaviours might originate from
localized biases on different trajectories and were not modeled in this research.

Since TdoA measurements can be seen as resulting from two TWR measurements to
different beacons, the heavier tail appears on both sides and is better modeled by using
a Cauchy distribution. To vary the intensity of the heavy-tail, we model the noise distri-
bution for TdoA as the weighted sum of a Cauchy distribution (γ = 0.3) and a Gaussian
distribution (σ= 0.3), both centered around µ= 0. The resulting noise model, shown in
(2.25) best matches the recorded TdoA data for a relative weight of the Cauchy distribu-
tion of rht = 0.5.

f (x) = (1− rht) ·
1

σ
p

2π
exp

(
− x2

2σ2

)
+ rht ·

[
πγ

(
1+

(
x

γ

)2)]−1

(2.25)

Using these noise models, we compare the performance of MHE and EKF on a mix
of real IMU data combined with simulated UWB measurements from 4 anchors (IDs
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1,3,4,6) that provide measurements on average every 0.05 s (TWR) or 0.1 s (TdoA) each.
We run the simulation 5 times on every set of IMU data collected, for a total of 120 runs
per value of sht and rht. Fig. 2.5 and Fig. 2.6 show the average RMSE of these runs for
TWR and TdoA measurements respectively, with the shaded regions representing the
standard error of the mean.

In the case of TWR, both estimators perform similarly well, with the EKF having
a slight edge for Gaussian noise and the MHE showing an advantage for noise with a
stronger heavy tail. In the case of TdoA, the MHE performs better over the full range of
simulated noise, with the difference increasing at higher values of rht. The cause for this
difference between TWR and TdoA (also for the Gaussian noise) most likely stems from
the larger standard deviation for TdoA, which also leads to more outliers.

2.5.3. REMOVING UWB ANCHORS

Of particular interest in the field of UWB localization is the reduction of required fixed in-
frastructure, namely the number of beacons that need to be placed in the environment.
To assess the performance of our estimator in applications with respect to the number of
beacons, we use our full data sets (IMU and UWB) and remove the measurements from
randomly selected beacons. Specifically, we run the filters with real UWB data with the
number of enabled beacons ranging from 1-8 for TWR and 2-8 for TdoA (TdoA measure-
ments require two beacons). We perform 10 runs for every number of beacons on each
of the 12 corresponding (TWR or TdoA) data sets, for a total of 120 runs per number of
beacons. For each individual run, we randomly select the beacons used, since the place-
ment of beacons with respect to the trajectory was found to have a significant effect on
performance for low numbers of beacons. Due to beacons losing connection on three
TdoA trajectories, we only use 9 of the 12 data sets for the TdoA comparison. Results of
these runs are shown in Fig. 2.7 and Fig. 2.8 respectively.

One of the downsides of the proposed gradient-descent method is that the magni-
tude of the cost function’s gradient ∇J (ξ̂t−N |t ) varies with the number of measurements.
This means that the value of the step size α had to be slightly adjusted depending on the
number of beacons.

As was to be expected, the lower number of beacons causes a significant increase in
the estimation error. While the MHE still shows an advantage, the observed errors are
higher than with simulated measurements. This is likely due to inaccuracies in mea-
suring out the anchor positions, and spatially varying biases that have also been men-
tioned by [17]. In fact, we found that measurements from some beacons exhibit far more
challenging noise than what is modeled by a heavy-tailed distribution, such as multiple
peaks. For TDOA measurements, both estimators are failing quite often. Indeed, there
seems to be a much larger discrepancy between simulated and real TDOA data than for
TWR. This is probably due to the fact, that with a large number of beacons, the TDOA
algorithm requires a lot of communication between beacons, causing the frequency of
the individual measurements to go down as more beacons are present. When remov-
ing beacons after the measurements were taken, this leads to much lower measurement
frequencies than otherwise expected. It is however still visible, that the reduced mea-
surement frequency seems to have a smaller effect on the MHE’s performance.
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Figure 2.5: Estimator performance on TWR measurements with increasingly heavy-tailed noise. Shaded re-
gions represent the standard error of the mean.
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Figure 2.6: Estimator performance on TdoA measurements with increasingly heavy-tailed noise. Dashed lines
show success rate of the estimator (RMSE<1 m). Unsuccessful runs are excluded from the calculation of the
mean RMSE.
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Figure 2.7: Estimator performance on TWR measurements with varying number of beacons. Dashed lines
show the success rate (RMSE<1 m), shaded regions represent the standard error of the mean.
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Figure 2.8: Estimator performance on TdoA measurements with varying number of beacons. Dashed lines
show the success rate (RMSE<1 m), shaded regions represent the standard error of the mean.
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2.5.4. COMPUTATIONAL COMPLEXITY
To compare the computational complexity, we implement our algorithm as a separate
task on a Crazyflie drone which performs these computations on an STM32F405 micro-
controller. This task replaces the EKF task in the original Crazyflie firmware, so that only
one estimator is running at the same time.

By analyzing task dumps, we can identify how much of the available computational
resources a task uses. When using the same settings as in simulation, the MHE task
accounted for about 15% of the CPU load, while the EKF only accounted for about 11%.
This shows the potential of the algorithm to indeed be used on computationally limited
devices. With more potent microprocessors being released continuously, we believe that
computationally efficient MHE algorithms can become useful for many applications, for
which they were previously considered too expensive.

2.6. CONCLUSION
A computationally efficient MHE algorithm for quadrotor localization with UWB was
developed and tested. We showed that by simplifying the problem to an output noise
MHE and using a single-iteration gradient descent method, MHE can yield good results
on computationally limited devices. While these simplifications helped us in reducing
the computational cost of MHE, they also pose some limitations on the applications of
the algorithm.

The simplification to an output noise MHE assumes that the process model is per-
fectly known and does not exhibit any process noise, which is rarely the case. Even
though the algorithm performed well, there is potential for improvement, especially
when only few measurements are available.

Using a simple single-iteration gradient descent algorithm causes the optimization
for the correct state to happen over several time steps, and requires the step-size α to be
well chosen to keep the algorithm stable. Especially when the number of measurements
is varying, this can become difficult, due to the varying magnitude of the gradient of the
cost function. We found that conservative values of α can yield stable results for large
variations in the number of measurements, but the performance will be worse when
fewer measurements are available.

We plan to address these issues in future research to further improve the accuracy of
the proposed method and make it useful for a wider variety of tasks.
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3
IMPROVED MOVING HORIZON

ESTIMATION FOR

ULTRA-WIDEBAND LOCALIZATION

ON SMALL DRONES

Moving Horizon Estimation (MHE) offers multiple advantages over Kalman Filters when
it comes to the localization of drones. However, due to the high computational cost, they
can not be used on Micro Air Vehicles (MAVs) with limited computational power. In Chap-
ter 2 we have shown, that with a few assumptions and simplifications, MHE can be made
more efficient while retaining good localization performance. In this chapter, we present
two additional improvements: the introduction of dynamic step sizes to the gradient de-
scent algorithm, which leads to a significant increase in robustness, and the use of switch-
ing variables for outlier rejection, which further reduces the computational load. Both
improvements are implemented and assessed in simulation and experiments. Using dy-
namic step sizes makes it possible to reliably use the estimator on board of a real drone,
and the use of Newton’s method specifically opens the option to add different types of mea-
surements. The new outlier rejection method on the other hand is shown to reduce the
computational load significantly while having no big impact on accuracy.

Parts of this chapter have been published at the International Micro Air Vehicles Conference 2023.
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Figure 3.1: Moving Horizon Estimators (MHEs) usually requires a lot of computational power. Improvements
to our previous work on computationally efficient MHEs allow for on-board execution of the algorithm to
localize a nano-copter using Ultra-Wideband measurements.

3.1. INTRODUCTION
Self-localization is an important task for autonomous drones, especially when operat-
ing in indoor environments. Since navigation using Global Navigation Satellite Systems
(GNSS) exhibits a significant decrease in performance when used inside of buildings,
an alternative solution is needed. Ultra-Wideband (UWB) technology has been investi-
gated as a promising alternative in scenarios where the environment can be prepared in
advance. UWB localization works in a similar fashion as GNSS, but instead of ranging
with respect to satellites, it uses fixed beacons at known locations in the environment
[1].

The UWB range measurements can be used for triangulation [2], but are more com-
monly fused with measurements from an inertial measurement unit (IMU) for more ac-
curate results [3]. Kalman filter variants such as the Extended Kalman Filter (EKF) are
often used due to their speed and efficiency. However, they are not ideal when working
with highly non-linear dynamics or non-Gaussian noise, both of which are present in
the system in question.

Moving Horizon Estimators (MHEs) are well suited for state estimation in non-linear
systems with non-Gaussian noise, but are computationally expensive, which makes them
impractical to use on small drones with limited computational power. In Chapter 2, we
have investigated several simplifications that reduce the load for localization of small
drones using an MHE. While the resulting estimator performed well in offline evalua-
tions on real measurement data, its robustness was found to be lacking. Specifically in
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situations where the number of incoming measurements varies a lot, the tuning had
to be quite conservative to avoid unstable behaviour when many measurements were
coming in. Furthermore, while we were happy with the performance of Random Sam-
ple Consensus (RANSAC) for outlier rejection, its computational cost was quite high
for an algorithm aimed at computationally extremely limited systems, like the micro-
controllers on board of nano-drones.

In this chapter we will present the following two improvements to efficient moving
horizon estimation for localization with UWB:

• Using a dynamic step size in the gradient-descent step to improve robustness

• Outlier rejection based on switching variables to further improve the computa-
tional efficiency

3.2. PRELIMINARIES

3.2.1. COMPUTATIONALLY EFFICIENT MHE
Let us quickly review the computationally efficient MHE presented in Chapter 2 to high-
light some of its shortfalls. We again consider the discrete-time non-linear dynamic sys-
tem given by (3.1), with prediction equation f and measurement equation h, expressed
in terms of the system state ξt , input vector u t , measurement vector y t , process noise
w t and measurement noise v t , all at timestep t respectively.{

ξt+1 = f (ξt ,u t )+w t

y t = h(ξt ,u t )+v t
(3.1)

The full MHE problem for a horizon of length N+1 is given by the optimization prob-
lem (3.2), formulated in terms of the decision variables ξ, w and v . Put into words, the
MHE tries to minimize the squared observed process and measurement noise, as well as
changes to the prior estimate (also called the arrival cost). The prior ξ̄t−N is calculated
from the previous estimate using the prediction equation, ξ̄t−N = f (ξ̂t−N−1).

min
ξ,w ,v

µ∥ξt−N − ξ̄t−N∥2 +
t−1∑

k=t−N
w 2

k +
t∑

k=t−N
v 2

k

s.t. ξk+1 = f (ξk ,uk )+w k

y k = h(ξk ,uk )+v k

(3.2)

By assuming negligible process noise (w = 0), the problem can be reduced to an
output error MHE. Furthermore, by defining the composite prediction and measure-
ment equations F k (ξt−N ) and H i ,k (ξt−N ), we can merge the constraints into the cost-
function J , which now only depends on the decision variable ξt−N . Note that the number
of measurements mt can differ between timesteps.

F k (ξt−N ) = f uk ◦ . . .◦ f ut−N (ξt−N ) (3.3)

H i ,k (ξt−N ) = huk
i ◦F k−1(ξt−N ) (3.4)
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J (ξt−N ) =µ∥ξt−N − ξ̄t−N∥2 +
t∑

k=t−N

mt∑
i=1

(∥yi ,k −H i ,k (ξt−N )∥2) (3.5)

To save computation time, instead of fully solving the optimization problem at every
timestep, only a single gradient descent step is performed as suggested by [4].

ξ̂t−N = ξ̄t−N −α∇J (ξ̄t−N ) (3.6)

Using the chain rule, the gradient of the cost function is easily calculated analytically.
When using only a single iteration, the gradient is calculated with the prior best estimate
ξt−N = ξ̄t−N , thus the arrival cost term is zero.

∇J (ξ̄t−N ) =−2
t∑

k=t−N

mt∑
i=1

[(
yi ,k −H i ,k (ξ̄t−N )

)∇H i ,k (ξ̄t−N )
]

(3.7)

To save computational power, the gradient of the composite measurement equation
can be simplified by iterative computation of the Jacobian of the composite prediction
equation (chain rule):

∇H i ,k (ξ̄t−N ) = (
DF k−1(ξ̄t−N )

)T ·∇hi (ξ̄k ,uk ) (3.8)

DF k−1(ξ̄t−N ) = Df (ξ̄k−1,uk−1) ·DF k−2(ξ̄t−N ) (3.9)

For outlier rejection, a RANSAC scheme was used, which can identify outliers very
well but requires a significant amount of computational power.

3.2.2. DRONE AND MEASUREMENT MODEL
We use the drone model in [3], but represent the attitude in quaternions and simplify the
drag forces. For the use in our estimator, we discretize the model using the forward Euler
method.

ẋ =
[

q ⊗
[

0
ρ

]
⊗q−1

]
v

(3.10)

ρ̇ = f

m
e3 + (Ka − [[ω×]])ρ−

[
q−1 ⊗

[
0
g

]
⊗q

]
v

(3.11)

The six dimensional state vector ξ= [xT ,ρT ]T contains the position x ∈ R3 in the global
frame and the drone’s velocitiesρ ∈R3 in the body frame. The system inputs are the total
thrust f , the attitude quaternion q ∈R4, and the angular velocities measured by the IMU,
ω ∈ R3. m is the drone’s mass and Ka = diag(k⊥,k⊥,k∥) are the linear drag coefficients.
The quaternion product is noted as ⊗, while the subscript 0 and v refer to the scalar and
vector portion of the quaternion respectively. Finally, g is the acceleration due to gravity
and [[ω×]] is the skew-symmetric matrix defined as

[[ω×]] =
 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (3.12)
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We consider two different types of UWB measurements. Two-way ranging (TWR)
can be used to determine the distance between the drone and a fixed beacon located at
p A . Time-difference of Arrival (TDOA) measurements on the other hand represent the
difference in the distance of the drone to two fixed beacons at positions p A and pB . The
measurement noise is represented by ηtwr and ηTDOA respectively.

ytwr = ∥p A −x∥+ηtwr (3.13)

yTDOA = ∥p A −x∥−∥pB −x∥+ηTDOA (3.14)

3.3. DYNAMIC STEP SIZE
A serious problem with the approach in Chapter 2 is the fixed step size used in the gra-
dient descent algorithm. Specifically in situations where the numbers of measurements
mt varies between steps, the fact that the gradient of the cost function is the sum of mt

individual measurement terms can lead to large variations in the gradient’s magnitude.
As a result, a value for α that is optimal with 4 UWB beacons, might cause the estimator
to become unstable for 8 beacons. A solution to this problem is to dynamically adjust
the step size of the gradient descent algorithm. We investigated two options for choos-
ing the step size dynamically: linesearch and Newton’s method. While robustness is of
course an important property of any state estimation algorithm, it should be noted that
we are sacrificing computational efficiency to achieve it.

3.3.1. LINESEARCH
With the linesearch method, different values for the step size α are tested at each time
step. The step size resulting in the estimate with the lowest cost is then retained for the
next step. The algorithm is laid out in Algorithm 2.

Algorithm 2: Linesearch Method

1 t ← 0 ξ← ξ0 α←α0

2 s ← {0.5,0.8,1.0,1.25,2.0}
3 while true do
4 t ← t +1
5 calculate ∇J (ξt−N )
6 for si ∈ s do
7 ξi = ξt−N − si ·α∇J (ξt−N )
8 calculate Ji (ξi )

9 iopt ← argmini (Ji )
10 ξt−N ← ξiopt

11 α← siopt ·α

The linesearch method is easy to implement in the existing algorithm, but has the
downside of scaling the step size for all state variables at once. If different types of mea-
surements are available, this can lead to problems. As an example, if a lot of velocity
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estimates are available but only few position estimates, it would be good to choose dif-
ferent step sizes for the different states. An approach that allows for this flexibility is the
use of Newton’s method.

3.3.2. NEWTON’S METHOD
Newton’s method is more complex to implement than linesearch, but offers two addi-
tional advantages. First, there is no need to calculate the cost of multiple estimates
(which requires several predictions through the complete horizon) and second, New-
ton’s method allows to adjust the step size along different axes. Specifically, instead of
using a scalar step size α, the gradient of the cost function is multiplied by the inverse
Hessian matrix of the cost function:

ξ̂t−N = ξ̄t−N − (
D2J (ξ̄t−N )

)−1∇J (ξ̄t−N ) (3.15)

The Hessian matrix of the cost function can be obtained by calculating the Jacobian
of the cost function gradient.

D2J (ξ̄t−N ) = 2µI −2
t∑

k=t−N

mt∑
i=0

(
yi ,k D2H i ,k (ξ̄t−N )

−∇H i ,k (ξ̄t−N )∇H i ,k (ξ̄t−N )T

−H i ,k (ξ̄t−N )D2H i ,k (ξ̄t−N )
) (3.16)

As with the gradients, the Hessian matrices of the cost and measurement functions
can be calculated algebraically in an iterative manner while stepping through the hori-
zon. Making use of the chain rule, we find the following expression [5]:

D2H i ,k (ξ) = (DF k−1(ξ))T ·D2h (F k−1(ξ)) ·DF k−1(ξ)

+
n∑

j=1

∂h

∂ξ j
(F k−1(ξ)) ·D2F

j
k−1(ξ)

(3.17)

Luckily, many of the terms appearing in this equation are already needed when cal-
culating the cost function gradient. Furthermore, since the prediction model we use is
linear in terms of the states, the Hessian matrix of the composite prediction equations
turns out to be zero. The simplified expression for the Hessian matrix of the cost function
thus only depends on the Hessian matrix of the measurement function and the Jacobian
matrix of the composite prediction equation:

D2H i ,k (ξ) = (DF k−1(ξ))T ·D2h(F k−1(ξ)) ·DF k−1(ξ) (3.18)

3.4. SWITCHING VARIABLE OUTLIER REJECTION
Since using RANSAC for outlier rejection has the disadvantage of being computationally
heavy, we decided to look for a more efficient method. The need for outlier rejection in
optimization problems also arises in Simultaneous Localization and Mapping (SLAM),
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where incorrectly identified loop-closures can cause large errors in the resulting map. A
possible approach to deal with this issue is the addition of switching variables that mul-
tiply the constraints in question [6]. Applying this concept to our MHE, we introduce for
each measurement yi ,k an associated switching variable si ,k . By giving the optimization
algorithm the ability to change these switching variables, the algorithm can enable and
disable measurements based on how they impact the value of the cost function.

To use the switching variables as decision variables, they must be continuous. At
the same time, for their function to enable and disable measurements, binary values
would be more useful. Following [6], we use a sigmoid function to convert the continu-
ous switching variables into values between 0 and 1, which then multiply the measure-
ment equation. A simple sigmoid function to use is the logistic function (3.19).

sig(si ,k ) = 1

1+e−si ,k
(3.19)

In the context of calculating gradients, it is also helpful to note the derivative of the
logistic function (3.20).

∂

∂si ,k
sig(si ,k ) = sig(si ,k )

(
1− sig(si ,k )

)
(3.20)

It is important to penalize the estimator for ignoring a measurement. We do this by
adding a term similar to the arrival cost, that penalizes switching variables that deviate
from a prior value s̄, which enables the measurement (e.g. s̄ = 5). To simplify notation,
we collect all switching variables in a single column vector s = [si , j ]. The resulting cost
function including switching variables then looks like this:

J (ξt−N , s) =µ∥ξt−N − ξ̄t−N∥2

+µs ·
t∑

k=t−N

m∑
i=1

(
si ,k − s̄

)2

+
t∑

k=t−N

m∑
i=1

(
sig(si ,k ) · ∥yi ,k −H i ,k (ξt−N )∥2)

(3.21)

When calculating the gradient of the cost function, we now also need to consider
the derivative with respect to the individual switching variables. Luckily, each switching
variable only appears once in each of the two sums and the corresponding derivative is
easily calculated:

∂J

∂si ,k
(ξt−N , s) = 2µs

(
si ,k − s̄

)+ sig(si ,k )
(
1− sig(si ,k )

) · ∥yi ,k −H i ,k (ξt−N )∥2 (3.22)

The changes to the derivatives with respect to ξt−N are also small, one only has to
add the sigmoid multiplication to each of the terms of the sums:

∂J

∂ξt−N
(ξt−N , s) =−2

t∑
k=t−N

m∑
i=1

[
sig(si ,k )

(
yi ,k −H i ,k (ξ̄t−N )

)∇H i ,k (ξ̄t−N )
]

(3.23)
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The full gradient could now be formed from the partial derivatives with respect to
the state and the individual switching variables, but since the switching variables are
decoupled from the rest of the system, it makes sense to update them individually using
Newton’s method:

ŝi ,k = ŝi ,k−1 −
(
∂2

∂s2
i ,k

J (ξ̄t−N , ŝ)

)−1
∂

∂si ,k
J (ξ̄t−N , ŝ) (3.24)

For large outliers, even with the use of a switching penalty, the switching variable
can take very large negative values, resulting in a variable overflow for the intermediate
result of e−si ,k . To avoid this issue, it makes sense to place a lower limit on the value of
si ,k .

There is one final consideration regarding switching outlier rejection, which is the
initial value of the switching variable. For simplicity, we decided to use the Mahalanobis
distance based on only the measurement noise (the MHE doesn’t estimate state covari-
ance) of the associated measurement.

3.5. OFFLINE EVALUATION
The presented improvements were evaluated offline, using real UWB measurements
gathered in the "Cyberzoo" test arena at TU Delft [7]. We simulated the performance
on 12 different flights for TWR and 9 different flights for TDOA. The simulations were
performed 10 times with different seeds for the random number generator, for a total of
120 simulations for TWR and 90 simulations for TDOA. For every simulation, all estima-
tors were executed in parallel and saw therefore the same noise. For comparison, we also
simulated the initial version of the MHE using the simple gradient (SG) method with a
fixed step size and RANSAC for outlier rejection from Chapter 2, as well as the EKF from
[3].

We compared the different estimators based on three metrics, which are presented
in Figure 3.2 for TWR and in Figure 3.3 for TDOA.

• Success rate: We defined a run to be successful if the root-mean-square error
(RMSE) on the position stays below 0.5 m. This definition is somewhat arbitrary
but is meant to reflect a value at which the estimator’s accuracy is good enough to
allow navigation in spacious indoor environments.

• Accuracy: The accuracy of the estimators is assessed using the position RMSE. Un-
successful runs were removed from the data prior to plotting the accuracy statis-
tics, since unsuccessful runs for only a few beacons can easily reach errors of tens
of meters and therefore have a tendency to distort the plots.

• Normalized computation time: To assess the computational efficiency, we cal-
culated the average computation time per step. For every run, we normalize the
average by dividing by the average computation time of the EKF. This was done to
reduce the effect of the hardware used and the system load from other sources.

At first glance we can see, that TWR yields more stable results. The success rate of all
estimators is near identical and reaches 100% at 5 or 6 beacons. Looking at the accuracy,
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Figure 3.2: Performance of MHE configurations in simulation using TWR measurements: Simple gradient
(SG), linesearch (LS) and Newton’s method to solve the minimization problem, random sample consensus
(RANSAC) and switching variable outlier rejection (SVOR) for outlier rejection. Shaded regions represent the
standard error of the mean.
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Figure 3.3: Performance of MHE configurations in simulation using TDOA measurements: Simple gradient
(SG), linesearch (LS) and Newton’s method to solve the minimization problem, random sample consensus
(RANSAC) and switching variable outlier rejection (SVOR) for outlier rejection. Shaded regions represent the
standard error of the mean.
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we can see that all MHE versions outperform the EKF slightly, but no difference can be
seen between the different versions.

The TDOA results are a bit messier. The success rate is quite different between differ-
ent versions and for many estimators never reaches 100%. It is therefore more interesting
to compare the quality of the estimates based on the success rate, rather than based on
the accuracy of the successful runs. All MHE variants surpass the EKF in terms of success
rate up to 7 beacons. The effect of a constant step size for varying numbers of measure-
ments can be seen in the decreased performance of the simple gradient MHE when the
number of beacons increases to 8. Interestingly, using switching variables for outlier re-
jection (SVOR) seems to be another suitable method for reducing this problem, as seen
in the higher success rate. This is likely due to the fact, that SVOR can turn off mea-
surements to keep the magnitude of the gradient closer to constant. This does however
mean, that the estimator does not profit from the increased number of measurements,
which becomes apparent when looking at the accuracy plots. The most successful ap-
proach for dealing with variable gradient magnitudes seems to be the linesearch (LS)
approach. We suspect however, that in scenarios that incorporate other measurements
(e.g. velocity from optic flow), using Newton’s method will be advantageous.

Let’s finally have a look at the computational efficiency. The EKF clearly still outper-
forms all versions of the MHE, but as expected, SVOR clearly reduces the computation
time compared to RANSAC. Looking at the methods for choosing dynamic step sizes,
Newton’s method is more efficient than Linesearch, but still adds some additional cost
compared to the simple gradient method.

3.6. ON-BOARD EXPERIMENTS
To verify our simulation results and demonstrate that the MHE is indeed capable of run-
ning on computationally limited devices, we implemented the code on a Crazyflie 2.1.
The Crazyflie 2.1. is a small (38 g), versatile platform that can be equipped with a variety
of expansion boards, such as the UWB Deck for UWB ranging and the Flow Deck, for
altitude and flow measurements. To make full use of the Flow Deck and challenge the
versatility of our estimator, we not only used the time-of-flight measurements for alti-
tude, but also incorporated the measurement equations for flow and adjusted the MHE
formulation to enable the use of measurements with different units (the flow measure-
ments are in pixels per second). Specifically, we use Newton’s method with SVOR and
introduce the inverse covariance matrix of the prior, P−1, and the inverse measurement
variance, σ2 as weights in the cost function [8]:

J (ξt−N , s) =µ(
ξt−N − ξ̄t−N

)T
P−1 (

ξt−N − ξ̄t−N
)

+µs ·
t∑

k=t−N

m∑
i=1

(
si ,k − s̄

)2

+
t∑

k=t−N

m∑
i=1

(
sig(si ,k ) · ∥yi ,k −H i ,k (ξt−N )∥2

σ2

) (3.25)

This way, the units of the measurement errors are removed and the measurements
are immediately weighted according to their reliability. Each estimator was flown at least
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Figure 3.4: Comparison of MHE and EKF using Two-Way Ranging (5 flights per setting)

five times for a given number of beacons (4, 6 and 8) with the UWB ranging set to TWR.
The results in Figure 3.4 show, that the MHE is indeed able to compete with the EKF in
terms of performance for the given scenarios. In terms of computational requirements,
we limited the number of measurements the MHE keeps in memory to 80 and used a
quality measure based on the switching variable to remove bad measurements before
they fall out of the window. With these changes, the MHE runs on-board, using about
25% of the available computational resources, whereas the EKF operates with only about
one-fifth of this number. This actually matches quite well with the observations from the
offline evaluation.

3.7. CONCLUSION

Moving Horizon Estimation holds a lot of potential, even for computationally limited
platforms. By simplifying the problem to an output error MHE and approximating the
optimization problem with a single-step gradient descent algorithm, the computational
requirements of MHE can be reduced significantly, albeit at the cost of a bit of accuracy.
In the end, the MHE slightly outperforms the extended Kalman Filter, which is a popular
option for any non-linear state estimation problem.

The use of dynamic step sizes in a single-step gradient descent algorithm helps alle-
viate problems that occur when the number of incoming measurements varies greatly.
Both a linesearch approach and Newton’s method are suitable, but Newton’s method of-
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fers more flexibility when dealing with different kinds of measurements.
To further reduce the computational cost, we employed outlier rejection based on

switching variables, which offers advantages over RANSAC in terms of computation time.
The improved MHE shows promise in simulation and experiments, where it outper-

forms a classical EKF and previous iterations of our computationally efficient MHE. The
main limitations of the approach are the more complex formulation and the still non-
negligible increase in computational cost.

In its current formulation, the MHE only estimates position and velocity, while atti-
tude estimates are provided by the complementary filter. This approach is suitable for
pitch and roll, since the gravitational pull can be used as reference. The yaw estimates
on the other hand are subject to drift and currently require proper initialization. This
problem should be addressed in future work by including yaw (error) as an additional
state in the model.
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4
RELATIVE LOCALIZATION AND

SYNCHRONIZED MOVEMENT IN

SMALL SWARMS

Relative localization is a key capability for autonomous robot swarms and it is a substan-
tial challenge especially for small flying robots, as they are extremely restricted in terms
of sensors and processing while other robots may be located anywhere around them in
three-dimensional space. In this chapter, we generalize wireless-ranging-based relative
localization to three dimensions. In particular, we show that robots can localize others in
three dimensions by ranging to each other and only exchanging body velocities and yaw
rates. We perform a nonlinear observability analysis, investigating the observability of
relative locations for different cases. Furthermore, we show both in simulation and with
real-world experiments that the proposed method can be used for successfully achieving
various swarm behaviors. In order to demonstrate the method’s generality, we demon-
strate it both on tiny quadrotors and light-weight flapping wing robots.

Parts of this chapter have been published in Swarm Intelligence 17, 1 (1906) [1].
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4.1. INTRODUCTION
Following recent technological developments, autonomous micro-air vehicles (MAVs)
have been getting increasing attention for a wide variety of tasks. These range from
monitoring crops [2] and inspecting power-plants [3] to acting as communication re-
lays in areas with damaged infrastructures [4]. For many of these tasks, using multiple
collaborating agents has advantages in terms of performance, robustness and flexibility.
These robotic swarms are inspired by self-organizing behaviour in animals and have the
potential to complete complex tasks by exploiting cooperation among team members
[5], [6]. It is important here to emphasize that we do not equate ’swarming’ with hav-
ing 1000s of robots in a tight space. For example, in exploration tasks, swarm members
should spread out as much as possible over the area of interest, hence there may well be
only small groups in the order of five or ten robots on a floor of a building.

Relative localization of other agents is a key component of MAVs operating in swarms
[7]. It is required for a variety of tasks, from avoiding collisions between swarm members
to enabling complex swarming behaviours such as flocking, and a multitude of options
are available when it comes to sensors being used [8]. In outdoor areas and in adequately
equipped indoor environments, agents can communicate absolute positioning informa-
tion, for example from GNSS (Global Navigation Satellite System) [9], motion-tracking
cameras [10] or beacon based systems [11][12]. In GNSS denied environments that can-
not be prepared in advance, cameras [13][14], infrared sensors [15] and microphones
[16] have been used for relative localization with varied success.

Based on knowledge of the distances between all swarm members, the morphology
of a rigid swarm can be determined with the exception of rotation and translation. If the
position of 4 nodes (in 3D) is known in a common reference frame, the network localiza-
tion problem can be solved completely, yielding the position of each node in the same
reference frame [17][18].

In our work, we are interested in building swarms based on small and lightweight
agents. This is not only advantageous for monetary and logistic reasons, but it also
makes the system inherently safe. Simply put, a tiny drone can’t build enough momen-
tum to cause serious damage to people, infrastructure or other assets in the operational
area. The drones we are working with in this research weigh ≤ 100 g (including battery)
and do most of their processing on a STM32F4 series microcontroller (192 kB mem-
ory, 168 MHz processor). As a result, most of the previously mentioned strategies are
difficult to implement due to the weight of the sensors or the computational require-
ments of the processing. A relative localization approach based on odometry and rang-
ing between agents, while being less accurate, can be implemented with lightweight and
energy-efficient hardware such as Ultra-Wideband (UWB) communication chips.

Some relevant work in this direction has been carried out by Trawny in [19] and [20],
where the authors aim at finding a solution for the 6-degree of freedom relative-pose es-
timation problem in 3D based on odometry and inter-agent ranging. In their work, they
also include a nonlinear local weak observability analysis to find sufficient conditions
for the 3D relative pose to become locally weakly observable. However, their theoret-
ical approach relies on a large set of distance measurements (10), which results into a
computationally heavy polynomial system of equations.

More recently, several authors have worked on performing relative localization more
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efficiently, so that it can be used on smaller MAVs. For example, Coppola et al. imple-
mented a relative localization algorithm for collision avoidance based on signal strength
measurements with Bluetooth [21]. The use of received signal strength (RSSI) and Blue-
tooth does however impose significant limitations on the range and accuracy of the sys-
tem. In [22], Guo et al. present a 2D localization system based on UWB that does not
suffer from these limitations, but requires the agents to determine their displacement in
a common frame of reference. Li et al., on the other hand, use an Extended Kalman Fil-
ter (EKF) and UWB ranging to estimate relative position and heading in 2D, removing the
need for a common orientation reference [23]. While the above-mentioned, real-world
studies on flying robots have focused on 2D localization, where the robots measured
and controlled their height to a flat ground surface, some recent efforts have been made
to perform relative localization in 3D as well. Cossette et al. present a ranging-based
3D relative localization scheme, which does however require a common orientation ref-
erence [24]. The same goes for Shalaby et al., which additionally makes use of multi-
ple UWB tags per agent. Using a common orientation reference requires exteroceptive
sensors which often require proper initialization and can be subject to external distur-
bances. Specifically, the magnetometers used in the aforementioned papers are affected
when operating in proximity of hard-iron objects or electrical transmission lines. For
higher robustness in GPS-denied, unprepared environments, the 3D relative localiza-
tion without common orientation reference has been studied, using multiple consec-
utive distance measurements and computationally expensive optimization algorithms
[25][26][27].

In this work, we perform wireless-ranging-based relative localization for drones in
three dimensions, without the need for a common orientation reference or extensive
computational resources. With Lie derivatives [28][29], we study the system observabil-
ity and find favorable trajectories with high localization observability. Our contributions
are thus:

• A formulation for a wireless-ranging-based 3D relative localization system which
does not require a common orientation reference and can be solved efficiently on
computationally limited devices.

• An observability analysis of the system

• Experimental validation and comparison of open- and closed-loop performance

• The first experimental results of relative localization on flapping-wing drones

This chapter will be structured as follows: In Sec. 4.2 we introduce the relative local-
ization problem, the sensory information available to the drones, the continuous-time
model and the EKF that performs the estimation. Sec. 4.3 presents the observability
analysis carried out to evaluate the quality of the information provided by the filter and
to detect conditions that may cause a degradation of the degree of observability of the
system. The theoretical analysis from Sec. 4.3 is verified by means of simulation in Sec.
4.4 and by means of real-world robotic experiments in Sec. 4.5 and 4.6. Finally we draw
conclusions in Sec. 4.7.
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(a) Crazyflie (b) Flapper Drone

Figure 4.1: Illustration of the coordinate system conventions shown on the drones used in this chapter

4.2. RANGE-BASED RELATIVE LOCALIZATION IN 3D
4.2.1. NOTATION AND CONVENTIONS

Let us first introduce some notation and conventions. Throughout this chapter, we use
right-handed coordinate systems with the x-axis pointing forward, the z-axis pointing
up and the y-axis completing the right-handed system as shown in Figure 4.1. When
expressing the orientation of the MAV in Tait-Bryan angles (roll φ, pitch θ, yaw ψ) we
follow the sequence ZYX from global to body frame, leading to the following expression
for the rotation matrix:

uG = Rz (ψ)Ry (θ)Rx (φ)uB = Rg b uB (4.1)

Rg b =
 cψcθ cψsθsφ− sψcφ cψsθcφ+ sψsφ

sψcθ sψsθsφ+cψcφ sψsθcφ−cψsφ
−sθ cθsφ cθcφ

 (4.2)

Rx (φ), Ry (θ) and Rz (ψ) are the rotation matrices for the elemental rotations around
the local x, y and z axis, respectively, and we use shorthands for sines and cosines (sx =
sin x,cx = cos x).

Since there is no common inertial reference frame, each agent i must be able to de-
termine the relative position of the other robots in a body centered frame. However, in-
stead of working in the drone’s body frame Bi , we mainly work in a drone-centered hor-
izontal frame Hi . In this horizontal frame, the xy-plane is parallel to the ground and the
z-axis points upwards. Since roll and pitch can be accurately estimated from IMU data
thanks to the gravitational force [30], any vector uB expressed in Bi can be expressed in
Hi by multiplication with the following rotation matrix:

Rhb =
 cθ sθsφ sθcφ

0 cφ −sφ
−sθ cθsφ cθcφ

 (4.3)
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4.2.2. SYSTEM MODEL
The 3D relative localization problem can be described as determining the 3D relative
position of a tracked drone D j in the body frame of a tracking drone Di , { j | j ∈N, j ̸= i }
where N = {1,2, ..., N } and N is the number of robots in the flock within sight of Di . We

define the relative state vector for the tracking drone as Xi j =
[
xi j , yi j , zi j ,ψi j

]T , where

pi j =
[
xi j , yi j , zi j

]T is the relative position along the three axes of the tracking drone’s
horizontal frame Hi and ψi j is the relative yaw.

Figure 4.2: Relative localization problem, seen from above

The continuous-time kinematic model f (Xi j ) describing the relative motion of the
drones in the three dimensions can be derived using the Newton formula [23]. The full
model, including the measurement equation is then:

Ẋi j = f (Xi j ) =
[

Rz (ψi j )v
H j

j −v Hi
i −Sψ̇G

i p i j

ψ̇G
j − ψ̇G

i

]
(4.4)

h(Xi j ) = ∥p i j ∥ =
√

x2
i j + y2

i j + z2
i j (4.5)

S =
 0 −1 0

1 0 0
0 0 0

 (4.6)

The inputs to this model are the horizontal velocities v Hi
i and v Hi

j (expressed in Hi

and H j , respectively) as well as the yaw rates ψ̇G
i and ψ̇G

j in the global frame. Each drone

can estimate its own horizontal velocity and yaw rate from on-board measurements and
communicates them to the other drones by including them in the same UWB messages
that are used for ranging. Furthermore, the ranging messages are used to calculate a
measurement of the distance between the drones, di j . Estimation of the horizontal ve-
locity can vary depending on the drone platform and available on-board sensors. Two
examples will be presented in section 4.5.2. The flow of data on-board and between the
drones is shown in Figure 4.3.

Note that the yaw rate ψ̇ is defined around an intermediate axis of rotation and does
therefore not directly correspond to the angular velocity around the z axis, ωz , mea-
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Figure 4.3: Data flow on-board and between drones

sured on-board the drone. Specifically, the relation between the angular rates around
the body-frame axes,ω, and the Euler angle rates (ZYX sequence) are given by: ωx

ωy

ωz

=
 φ̇

0
0

+R−1
x (φ)

 0
θ̇

0

+R−1
x (φ)R−1

y (θ)

 0
0
ψ̇

 (4.7)

This relation can be expressed using a single matrix, which is easily inverted to find the
expression for the Euler angle rates in terms of the gyro measurements: ωx

ωy

ωz

=
 1 0 −sθ

0 cφ sφcθ
0 −sφ cφcθ

 φ̇

θ̇

ψ̇

↔
 φ̇

θ̇

ψ̇

=

 1 sθsφ
cθ

sθcφ
cθ

0 cφ −sφ

0 sφ
cθ

cφ
cθ


 ωx

ωy

ωz

 (4.8)

4.2.3. EKF FOR RELATIVE LOCALIZATION
To estimate the relative state vector X i j using the system model (4.4) and the measure-
ment equation (4.5), an EKF is used [31]. For the prediction step, we discretize (4.4) using
the forward Euler method and linearize the system for the covariance update. In what
follows, Ts is the sampling time, P is the state covariance matrix and Q is the process
noise covariance matrix. The input vector U is defined as U = [v T

i , v T
j ,ψ̇i ,ψ̇ j ]T . To sim-

plify notation, we drop the indices i j for the state vector X .

X̂k+1|k = F (X̂k ,Uk ) = X̂k + Ẋk Ts

Pk+1|k = Ak Pk|k AT
k +Bk QBT

k

(4.9)
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with

A = ∂F

∂X
=


1 ψ̇i Ts 0 Ts (−sψi j v x

j −cψi j v y
j )

−ψ̇i Ts 1 0 Ts (cψi j v x
j − sψi j v y

j )

0 0 1 0
0 0 0 1

 (4.10)

B = ∂F

∂U
=


−Ts 0 0 Ts cψi j −Ts sψi j 0 Ts yi j 0

0 −Ts 0 Ts sψi j Ts cψi j 0 −Ts xi j 0
0 0 −Ts 0 0 Ts 0 0
0 0 0 0 0 0 −Ts Ts

 (4.11)

The UWB measurement of the distance between the drones is the only measurement
considered for the correction step of the EKF. The Jacobian matrix of the corresponding
measurement equation (4.5) is given by

H = ∂h

∂X
=

pT
i j

∥p i j ∥
= 1√

x2
i j + y2

i j + z2
i j

· [xi j , yi j , zi j ] (4.12)

Given a noisy distance measurement di j with variance σ2
d , it is then possible to cal-

culate the Kalman gain K and apply the measurement update to the state vector and the
state covariance matrix. Note that since we work with a scalar measurement, no matrix
inversion is necessary to compute the Kalman gain.

Kk = Pk|k−1HT
k

(
Hk Pk|k−1HT

k +σ2
d

)−1
(4.13)

X̂k = X̂k|k−1 +Kk
(
di j −h

(
X̂k|k−1

))
(4.14)

To use this approach with multiple drones, a filter bank of several EKFs that run in
parallel can be used. This approach was demonstrated successfully for a swarm of five
drones in 2D [23]. While this approach does not leverage additional information from
distances between other drones, it is highly flexible and thus suited for dynamic swarms.
Furthermore, this approach is computationally efficient as there is no need to track co-
variances between the relative states, preventing large matrix operations.

4.2.4. ULTRA-WIDEBAND COMMUNICATION PROTOCOL

In large part, the UWB communication protocol used is the same as described in [23].
On a high level, access to the communication channel is managed using a token ring

protocol. Every agent has its own ID and ranges to a set of predetermined other agents.
After ranging and exchanging information with those agents, control of the communi-
cation channel is passed on to the next agent, which then performs its own ranging and
communication. By sharing ranging information with the agent that is being ranged to,
each link only needs to be initiated from one side and the control can be passed around
in a circle.
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The lower level ranging protocol is an extension to the standard symmetrical double-
sided two-way ranging (SDS-TWR). The "Report" message now also includes the report-
ing drone’s velocity and yaw rate estimates. Furthermore, an additional "dynamic" mes-
sage is returned by the agent that initiated the ranging which also transmits velocity es-
timates and yaw rate alongside the calculated range. Finally, the "Dynamic" message is
also used to pass control of the communication channel to the next agent.

(a) Token-Ring Protocol

Agent A Agent B

Poll

Answer

Final

Report

Dynamic

(b) SDS-TWR with additional "Dynamic" Message

Figure 4.4: Ultra-Wideband communication protocols

4.3. OBSERVABILITY ANALYSIS
It is important to be aware of the potential dangers resulting from rapidly degrading rel-
ative position estimates in a robotic swarm. This can result from a lack of observability
of the system, that is, when the combination of inputs and measurements is not suffi-
cient to infer the full state of the system. To identify these situations, we proceed with an
observability analysis of the system.

Based on [32] and [33], we study the local weak observability of the system described
by (4.4) and (4.5) in Lie derivatives, by computing the observability matrix O. The system
is termed observable if O is full rank. To simplify the expressions in this chapter, we
consider the measurement equation (4.5) in power form, i.e.

h(X) =
pT

i j p i j

2
= 1

2

(
x2

i j + y2
i j + z2

i j

)
(4.15)

hence

O =


∇L 0

f h

∇L 1
f h

∇L 2
f h

∇L 3
f h

=


p i j 0

(Rz v j −v i )T pT
i j Rz Sv j

(ψ̇ j Rz Sv j − ψ̇i Sv i )T −2v T
i Rz Sv j + ψ̇ j pT

i j Rz S2v j

(ψ̇2
j Rz S2v j − ψ̇2

i S2v i )T −3(ψ̇ j − ψ̇i )v T
i Rz S2v j − ψ̇2

j pT
i j Rz Sv j

 (4.16)

Without delving into an exhaustive analysis of all the states that would cause matrix
[4.16] to lose its rank, some unobservable conditions can be highlighted by observing
its structure and computing its determinant |O|. While more conditions exist, they in-
volve more complicated combinations of states and inputs that are unlikely to occur for
longer time spans anyway. Specifically, the following conditions will result in a full row or
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column of zeros which in turn will result in |O| = 0. This can easily be seen by performing
a cofactor expansion following a particular row or column:

• Identical velocities: v i = Rz v j

This condition could potentially be problematic for missions that require leader-
follower or flocking behaviour, where the drones are expected to move at identical
velocities.

• Same altitude and no relative motion along z: zi j = 0 and v z
i = v z

j
Similar to the condition of identical velocities, this situation could occur in multi-
ple scenarios.

• Tracked drone not moving: v j = 0
This is a very relevant condition, as it means that the agents should be constantly
moving in order to be able to determine their relative positions.

• Identical positions: p i j = 0
While this condition will in theory cause the system to become unobservable, it is
not relevant in practical applications, where it is impossible for two agents to be
located in the same position in space.

It is also interesting to evaluate not only if, but how well the system is observable. To
this end it is possible to employ the local estimation condition number C , defined as the
ratio between the largest singular value σmax and the smallest singular value σmin of O
([34]). To avoid division by zero if O loses rank, we will actually consider the inverse of
the local estimation condition number, C−1:

C−1 = σmin(O)

σmax(O)
(4.17)

Favourable conditions on the system will result in a small C−1, while an ill-conditioned
estimation problem will entail a rather large C−1. The inverse local estimation condition
number can be used to understand how the addition of the third dimension affects the
observability of the system. We do this by varying one parameter of matrix O at a time
and comparing the values of C−1 when estimating relative position in x and y , as well as
the relative yaw. Fig. 4.5 shows an example of the study. It can be noticed that the max-
imum value of C−1 is significantly lower for the 3D case compared to the 2D one, which
means that adding the third dimension decreases the observability of the system in gen-
eral. This can be explained by the higher ambiguity when determining the true states
by relying on the same measurement: In 3D, any relative position on a sphere around
the agent can result in a given measurement, while in 2D, this uncertainty is limited to a
circle.

4.4. SIMULATION RESULTS
In this section we discuss results obtained by simulating the multi-agent system in Python
to validate the relative localization method. The EKF performance is assessed in terms
of quality of estimation and consistency. For comparison, we also implemented the
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sliding-window estimator (SWE) presented in [24]. The parameters for the EKF are com-
puted as follows:

Q = diag([σ2
v ,σ2

v ,σ2
v ,σ2

v ,σ2
v ,σ2

v ,σ2
w ,σ2

w ]) (4.18)

R =σ2
r (4.19)

where the input noise deviation of velocity and yaw rate are respectively σv = 0.15 m/s
and σw = 0.1 rad/s, the measurement noise deviation is σr = 0.1 m and the sampling
time is Ts = 0.01 s, which is similar to the values observed in logs of the real systems.

The state vector X is initialized to a random initial relative position (xi j , yi j , zi j ,ψi j in
the vicinity of the true relative position. The covariance matrix P, is set according to the
random noise added to the initial position value. The horizontal velocity of the drones
which serves as input to the EKF can stem from different sources, that can affect the con-
sistency of the estimator. The most general approach is to use a velocity that is provided
from an on-board estimator. While this approach has the advantage of being applicable
to almost any drone imaginable, it results in a cascaded setup of filters, which is known
to lead to problems regarding the estimator’s consistency [35]. To avoid this problem, we
compare the performance of the naive (simple) approach with the two variations. The
Sigma-Point Covariance-Intersection (SPCI) variant uses covariance intersection with a
sigma-point approach to avoid having to estimate cross-covariances [35][7]. Further-
more, a direct approach can be used on platforms where direct velocity measurements
are available, e.g. in form of optic flow measurements.

For the first test, the robots are assigned a random trajectory. The test is repeated ten
times with different seeds for the random number generator that is used to add noise to
the inputs and measurements. Fig. 4.6 shows the estimated relative positions of both
estimators compared to the groundtruth. Furthermore, we compare the absolute rel-
ative position error ei j and the normalized estimation error squared N EESi j to assess
the performance and consistency of the estimators, as well as the inverse of the local
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Figure 4.6: Simulated performance of simple EKF and SWE for the three states xi j , yi j , zi j for 10 runs on a
random trajectory.

estimation condition number C−1 (Figure 4.7). Note that only the error in position is
considered to allow a comparison between the different estimators.

As can be seen, the EKF getting direct velocity measurements performs best, both
in terms of error and consistency. The simple EKF using estimated velocities is highly
inconsistent and does not provide the same quality of estimation. Using the SPCI ap-
proach improves the consistency in a cascaded setup, but does increase the error on this
trajectory. We therefore conclude that where possible, direct velocities should be used.

It is interesting to verify the link between observability index and the filter perfor-
mance. In the first test, we can already see that all filters perform better in the first half
of the simulation, where the observability is better (larger values of C−1. In a second test,
the system is simulated with trajectories designed to maximize the observability of the
system. The favourable trajectories are realized by making MAV i fly along a clockwise
circular trajectory of radius ρi at an angular velocity ω at a height zi , which oscillates in
a sinusoidal way. MAV j , on the other hand, follows a circular path concentric to MAV
i , counterclockwise, with a radius ρ j > ρi , an angular velocity 2ω and a height z j ̸= zi .
With this setup, parallel velocities are avoided, as well as possible hits between the MAVs.
Moreover, the difference in the velocity magnitude allows to excite the system with suf-
ficient dynamics. The favorable trajectories are shown in Figure 4.8.

The results of the second test are shown in Fig. 4.9 and Fig. 4.10. As can be seen,
avoiding unobservable conditions leads to frequent high values of the inverse local es-
timation condition number, due to the better conditioning of matrix O. We continue
however to observe worse performance during times of lower observability, especially
for the SPCI EKF between 40s and 65s, with a drop around 55s. In addition to the im-
proved performance we also observe a higher consistency for all EKF variants.
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Figure 4.9: Simulated performance of simple EKF and SWE for the three states xi j , yi j , zi j for 10 runs on
favorable trajectories.
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The mean NEES after convergence is used as a measure of consistency. For a consis-
tent, approximately linear-Gaussian filter, the mean NEES is expected to tend towards
the number of states of the filter, which in our case is three [36]. In our simulation, all
estimators turn out to be overconfident to various degrees, with exception for the direct
EKF on the favorable trajectory. For the simple and SPCI EKF there is also an improved
consistency on the favorable trajectory, but the NEES still stays outside of the 95% confi-
dence interval most of the time. The advantage that the SPCI EKF offers over the simple
EKF in terms of consistency does unfortunately not lead to an improved performance.
Combined with the larger computational cost and the need to exchange covariance ma-
trices between drones, this means that in its current form, the SPCI EKF is not appropri-
ate for this problem.

4.5. EXPERIMENTAL SETUP

To test the proposed algorithm, we implemented our 3D relative localization on two dif-
ferent types of MAVs: Quadrotors (Crazyflie 2.11) and flapping wing drones (Flapper
Drones2), shown in Figure 4.11. While flapping wing drones offer many potential ad-
vantages such as energy efficiency, agility and robustness to collisions, they have so far
not received the same level of attention [37]. This might be due to additional challenges
arising from the use of a flapping wing platform. Specifically, the vibrations created from
the flapping of the wings results in more noise on IMU measurements. Furthermore, a
large horizontal drag leads to increased pitch and roll angles. By performing tests on
these vastly different platforms, we want to demonstrate the versatility and robustness
of our proposed method.

(a) Crazyflies (b) Flapper Drones

Figure 4.11: Drones used during experimental testing

1https://www.bitcraze.io/
2https://flapper-drones.com/wp/

https://www.bitcraze.io/
https://flapper-drones.com/wp/
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4.5.1. HARDWARE
The Crazyflie is a versatile, lightweight platform with open-source hardware and soft-
ware, whose capabilities can be extended by making use of expansion decks. In addition
to the STM32F405 MCU which runs the firmware, it also employs a nRF51822 MCU for
radio and power management. Since the Flapper Drones are based on the same Crazyflie
hardware, they run almost the same firmware and are compatible with the Crazyflie ex-
pansion decks. Both types of drones are equipped with an Inertial Measurement Unit
(IMU), containing a three-axis accelerometer and gyroscope (BMI088), and a baromet-
ric pressure sensor (BMP388). The Loco-Positioning Deck, which is used for UWB rang-
ing between the drones, is based on the Decawave DWM1000 module. On the original
Crazyflie, the Flow Deck V2 is used for optic flow measurements (PMW3901 optical flow
sensor) and height measurements with a time-of-flight distance sensor (VL53L1x). Un-
fortunately, due to the orientation of the autopilot on the Flapper Drones and the large
pitch and roll angles present during its flight, the Flow Deck V2 can’t be employed on
the Flapper Drones. As a result, it is more difficult to estimate the Flapper Drone’s body
velocity and altitude. To the best of our knowledge, this study is the first attempt to have
flapping wing robots perform relative localization with onboard means.

4.5.2. RELATIVE LOCALIZATION ALGORITHM
To estimate the relative position of two drones, the EKF presented in Section 4.2 requires
the yaw rate and horizontal velocities of both drones as input. Using (4.8), the yaw rate
can be easily obtained from gyro measurements. Especially on the flapping wing drones,
however, these measurements are extremely noisy and cause significant noise on the
relative position estimates. We therefore filter yaw rate measurements using a second
order Butterworth filter with a cutoff frequency of 5 Hz (lower than the ∼ 12 Hz flapping
frequency).

On the Crazyflie 2.1, we make use of the built-in EKF for on-board state estimation.
The EKF relies on measurements from the IMU and the Flow Deck to estimate the drones
attitude and velocity, which can then be used as inputs for the relative localization EKF
after rotating them into the horizontal frame.

On the Flapper Drones on the other hand, using the Flow Deck is not possible due
to the large vibrations and the drones architecture. Without optic flow and laser altime-
ter measurements, the on-board EKF cannot be used to calculate the inputs required
for relative localization. Instead, we use a complementary filter for attitude estimation
and predict the horizontal velocity as a function of attitude alone. For this model we
consider the drone as a rigid body subject to three principal forces acting on its center of
mass: thrust, drag and gravity. We further assume small pitch and roll angles and neglect
changes in altitude to arrive at a rather simple expression for the evolution of the drone’s
horizontal velocity.

vx,k+1 = vx,k +dt
(
tanθk ·

∣∣g ∣∣−cos2θk ·bx vx,k
)

(4.20)

vy,k+1 = vy,k +dt
(
− tanφk

cosθk

∣∣g ∣∣−cos2φk ·by vy,k

)
(4.21)

The drag coefficients bx and by are found empirically by solving a least-squares min-
imization on a data set with ground-truth. More details on the derivation of the model
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can be found in Appendix A.
Since this model assumes no changes in altitude during horizontal motion, it can not

be used to estimate the vertical velocity. Instead, we fuse barometer and accelerometer
data in a complementary filter following the approach of Wei et al. [38]. The resulting
filter equation is given by (4.22), where hacc is the accelerometer and hbaro the barometer
measurement. For the implementation on the drone, we discretize the filter using the
bilinear transform and a sampling period of Ts = 0.01 s. Note that the accelerometer
measurement must of course be rotated first to correct for the pitch and roll of the drone.

V̂z (s) = s2

s2 +k1s +k2
· hacc(s)

s
+ k1s +k2

s2 +k1s +k2
· s ·hbaro(s) (4.22)

Since the estimation of vz relies on different sensor inputs, it makes sense to assume
a different standard deviation of the error, when compared to vx and vy . Additionally,
due to the different dynamics of the flapper in x and y direction, it makes sense to use in-
dividual process noise parameters for the relative localization EKF. Specifically, the pro-
cess noise covariance matrix (4.18) is rewritten as (4.23), and is chosen independently
for the quadrotor and for the flapping wing drone respectively.

Q = diag([σ2
v x ,σ2

v y ,σ2
v z ,σ2

v x ,σ2
v y ,σ2

v z ,σ2
w ,σ2

w ]) (4.23)

To measure the distance between two MAVs and exchange their horizontal velocity
and yaw rate, we use UWB signals, employing the Crazyflie Loco-Positioning deck. The
ranging and communication protocol used is the same as in [23], with the sole addition
of also exchanging vertical velocity estimates.

The complete code used in the experiments is available on github for the crazyflies3

and the Flapper Drones4.

4.5.3. TEST ENVIRONMENT

The flight tests were performed in the "Cyberzoo" test arena at the TU Delft Faculty of
Aerospace Engineering. The "Cyberzoo" is a 10 m×10 m×5 m indoor arena equipped
with an optitrack motion capture system, that provides groundtruth with millimeter
level accuracy. Data was logged from the optitrack system and from the drone using
the Crazyflie Suite5.

4.6. RESULTS
In this section, we will present the results of our flight tests. The complete data under-
lying the plots and analysis has been published on 4TU Research Data6. Videos of the
experiments can be found on Youtube7.

3https://github.com/tudelft/crazyflie-firmware/tree/cf_swarm3d
4https://github.com/tudelft/crazyflie-firmware/tree/flapper_swarm3d
5https://github.com/tudelft/crazyflie-suite
6https://doi.org/10.4121/17372348
7https://www.youtube.com/playlist?list=PL_KSX9GOn2P-dzSwBvYYRZuKOiYvx0pIS

https://github.com/tudelft/crazyflie-firmware/tree/cf_swarm3d
https://github.com/tudelft/crazyflie-firmware/tree/flapper_swarm3d
https://github.com/tudelft/crazyflie-suite
https://doi.org/10.4121/17372348
https://www.youtube.com/playlist?list=PL_KSX9GOn2P-dzSwBvYYRZuKOiYvx0pIS
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4.6.1. HORIZONTAL VELOCITY ESTIMATION
Since the horizontal velocity of the drones is an important input to the relative local-
ization EKF, it makes sense to analyze the performance of the simplified velocity model
developed for the flapper. The flapper model was tuned offline on a dataset consisting of
3 trajectories, flown manually at almost constant altitude, resulting in drag coefficients
bx = 4.2 and by = 1.8. Using these parameters, the root mean squared error (RMSE)
was 0.13 m/s for vx and 0.22 m/s for vy on the training set. The RMSE for the vertical
velocity estimate using the manually tuned complementary filter was 0.20 m/s on the
same dataset. During the derivation of the model, a constant altitude was assumed,
which is often not the case. We therefore also validated the model on more aggressive
trajectories that included major variations in altitude. An example for the performance
in such a flight is shown in Figure 4.12. While the performance is slightly reduced in x
(RMSE=0.18 m/s), y (RMSE=0.31 m/s) and z (RMSE=0.26 m/s), the results still look good
enough to justify the use of the model on-board the drones.
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Figure 4.12: Offline performance of the horizontal velocity model for the Flapper Drone when flying with vary-
ing altitude.

We can now also compare the on-board performance of the flapper model with the
EKF of the Crazyflie 2.1. Figure 4.13 shows the aggregated performance data over 10
manual flights for the Crazyflie, Flapper Drones flying at almost constant altitude and
Flapper Drones flying with large changes in altitude. Due to range limitations of the
Flow Deck, it is not possible to fly large altitude variations with the Crazyflie while still
estimating its velocities.

The on-board performance of the Flapper Drone’s velocity estimation matches the
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observation from the offline testing. When flying aggressive trajectories with frequent
altitude changes, the performance of the model degrades particularly along the y and z
axis. It is however striking that, for similar conditions (level flight), the model performs
only slightly worse in x and y than the EKF on the Crazyflie, despite having no access to
optic flow.

vx vy vz vx vy vz vx vy vz
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Figure 4.13: RMSE of the horizontal and vertical velocity estimation on the Crazyflie 2.1 and on the Flapper
Drones aggregated over 10 trajectories

4.6.2. RELATIVE LOCALIZATION

To test the 3D relative localization, we performed manual flights with two MAVs without
following any particular patterns. Looking at the results for two individual flights using
Crazyflies (Figure 4.14) and Flapper Drones (Figure 4.15), we can observe that the relative
position estimate stabilizes within several seconds, which is similar to what we saw in
simulation.

Looking at the aggregated data over 5 flights in Figure 4.16, it can be seen that the per-
formance along different axes varies in a pattern similar to what could be observed for
the velocity estimation (figure 4.13). This makes sense, given that the velocity estimates
serve as the main input to determine the relative motion between the MAVs.

4.6.3. LEADER-FOLLOWER

Finally, to show the applicability of the proposed relative localization method to real
swarming scenarios, we performed leader-follower flights with two MAVs. In this sce-
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Figure 4.14: Relative Localization during free flight with two Crazyflies
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Figure 4.15: Relative Localization during free flight with two Flapper Drones
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Figure 4.17: Leader-Follower control layout. Blocks in yellow represent the physical systems.

nario, the first MAV is controlled manually while the second MAV tries to keep a con-
stant relative position. When the first MAV takes off manually, the second MAV receives
a command to start its flight via UWB. The second MAV then takes off as well and per-
forms a 20 s initialization sequence, during which it flies in random patterns based on
odometry alone. After the initialization sequence is complete, the second MAV switches
to follow mode, where it tries to stay in its desired relative position. This is done by cal-
culating velocity commands directly from the relative position error using a simple PID
controller along each individual axis. These velocity commands are then passed to the
inner control loop of the drones that control attitude as shown in Figure 4.17. Different
gains were used for the two types of drones as reported in Table 4.1. Note that for the
Flapper drone only a PD controller was used along the xy axes.

kP kD kI

Crazyflie 2.0 0.01 0.0001
Flapper Drone (xy) 3.5 0.06 0
Flapper Drone (z) 3.5 0.06 0.001

Table 4.1: PID gains for relative position control

During the experiments, it was found that large deviations from the target position
at the end of the initialization sequence could cause unstable behaviour, which is why
during the initialization sequence, the leader MAV was flown close to the desired relative
position. As can be seen in Figure 4.18, the Crazyflie follower can track the leader very
well after initialization, with errors rarely exceeding 1.0 in y and 0.5 m in x and z direc-
tions. The Flapper Drone on the other hand performs a bit worse in the sense that, while
the general shape of the trajectory is tracked, the offset from the desired position is larger
(figure 4.19). This could be due to the differences in relative localization accuracy, but is
also likely to result from sub-optimal controller tuning for this vehicle with more com-
plex dynamics. The large difference between the error in x and y direction, also seen
in Figure 4.16, can be explained by the desired position offset of the follower, causing
movement in x direction to be more observable than in y (movement perpendicular to
the UWB ranging).

Surprisingly, Figure 4.16 shows that the relative localization mostly performs better
(lower RMSE) in the leader-follower scenario than in free flight. Particularly for the ex-
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Figure 4.18: Optitrack leader and follower position during leader-follower experiment with Crazyflies (target
∆x=-2 m, ∆y=0 m, ∆z=-0.2 m)

periments on the crazyflie, improvements of around 0.3 m can be observed along all di-
rections. For the flapper drone the difference is not as clear and is most pronounced
along the z axis. This improvement is likely due to a self-stabilizing effect in the closed
loop system. In fact, if the relative position along a given axis becomes less observable,
its estimate will degrade. This results in a control input that excites that particular axis,
rendering it observable again. A more detailed look at this behaviour is given by Li et al.
[23]. In free flight on the other hand, the MAVs might fly in patterns that in which an axis
remains unobservable for longer periods of times.

4.6.4. MULTIPLE FOLLOWERS

One major concern in the development of algorithms for groups of robots is the scalabil-
ity. For this relative localization method, the communication frequency is considered the
main bottleneck. Specifically, the more drones are part of the swarm, the more messages
need to be exchanged. This will result in a reduced frequency of ranging between two
given drones. A naive, fully connected communication graph will drop below 5 Hz rang-
ing frequency for more than 12 drones [23]. Furthermore, small drones don’t carry a lot of
computational power, adding another limitation to the number of drones to which any
single drone is localizing. Advances in communication setup and flexible localization in
local neighbourhoods will be necessary to scale up the UWB-based relative localization
to much larger groups of robots. Here, to reduce the load on both communication and
computation, we tested the implementation of a filter bank with a group of 4 drones.
This limits the information that has to be exchanged through UWB and keeps the filter
matrices small, resulting in a better computational efficiency. For our experiments, we
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Figure 4.19: Optitrack leader and follower position during leader-follower experiment with Flapper Drones
(target ∆x=-2 m, ∆y=0 m, ∆z=-0.2 m)

let the followers fly behind the leader in a diamond formation with the following offsets:
(−1.0,−1.0) m, (0.0,−2.0) m and (−1.0,1.0) m. As can be seen in Figures 4.20 and 4.21,
the group is still capable of performing the leader-follower behaviour with a similar ac-
curacy as for the two drone case. Note that towards the end of the experiment, Follower
1 is running out of battery.

4.7. CONCLUSION
Relative localization is a key aspect of agents in robotic swarms. On a lower level, it helps
the robots to avoid collisions with their peers, while on a higher level, it is a prerequi-
site for most complex swarming behaviours. In this chapter, we presented a 3D relative
localization algorithm based only on inter-agent ranging and body-velocity estimates.
Due to its computational efficiency and the use of lightweight sensors, this algorithm is
particularly promising for swarms of MAVs, where individual agents have a very limited
payload capacity of only several grams and perform most of their computations on a
single core microcontroller.

To understand the limitations of the algorithm, we performed an observability anal-
ysis of the system and determined conditions in which observability is no longer guar-
anteed. We then validated the algorithm in simulation and investigated the effect of
choosing trajectories that maximize observability.

Finally, the algorithm was tested on two different types of drones: quadrotors and
flapping wing drones. These experiments not only demonstrated the platform inde-
pendence of the proposed algorithm, but also showed that purely IMU based velocity
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estimation is sufficiently accurate for relative localization on flapping wing drones. It
is however important to note, that the reliance on velocity estimates is a limitation of
our algorithm. In situations, where the body velocities of the drones are difficult to esti-
mate or are very noisy, the performance of the algorithm will start to deteriorate. While
an analysis of the consistency of our method shows overconfidence of the estimator, it’s
performance in simulation and practical experiments is in line with other algorithms de-
veloped for relative localization. It is however an aspect that would profit from additional
improvements.

A noteworthy observation is the improved performance of the relative localization in
a leader-follower scenario. While one would intuitively expect the algorithm to perform
worse in an unobservable configuration (identical velocities), the closed-loop system
exhibits a self-stabilizing behaviour that actually improves the localization accuracy. In
fact, the unobservability of the relative position leads to small excitations along the un-
observable axes. This in turn quickly makes the axes observable again, while for uncoor-
dinated flights, these unobservable configurations might persist for longer.

Since this research mainly focused on relative localization between two agents, it
makes sense to place this work in the larger swarming context. While our method can be
easily extended to small swarms by running multiple EKFs in parallel on each drone, this
would quickly strain memory and computation capacity if too many drones are added.
Furthermore, this method does not take advantage of additional measurements between
other drones like rigidity based methods do. However, it does allow drones to continue
tracking each other’s relative position, even in cases where communication links are in-
terrupted and the swarm loses it’s rigidity. As a result, real-world robotic swarms would
benefit from a combination of these two methods to improve the robustness of relative
localization in a wide variety of scenarios.

In addition to investigating mixed relative localization methods, the scalability of
these methods should further be improved. A critical bottleneck in wireless-ranging-
based relative localization is the communication channel which can quickly saturate as
more agents are added to the swarm. To resolve this issue, a reduction in the number of
required communication links within the swarm and in the amount of data exchanged
is required.
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Swarm Robotics, edited by E. Şahin and W. M. Spears (Springer Berlin Heidelberg,
Berlin, Heidelberg, 2005) pp. 10–20.

[7] J. Zhu and S. S. Kia, Cooperative localization under limited connectivity, IEEE Trans-
actions on Robotics 35, 1523 (2019).

[8] M. Coppola, K. N. McGuire, C. De Wagter, and G. C. H. E. de Croon, A survey on
swarming with micro air vehicles: Fundamental challenges and constraints, Fron-
tiers in Robotics and AI 7, 18 (2020).

[9] G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A. E. Eiben, and T. Vicsek, Opti-
mized flocking of autonomous drones in confined environments, Science Robotics
3, 1 (2018).

[10] J. A. Preiss, W. Hönig, G. S. Sukhatme, and N. Ayanian, Crazyswarm : A Large Nano-
Quadcopter Swarm, in 2017 IEEE International Conference on Robotics and Automa-
tion (ICRA) (2017) pp. 3299–3304.

[11] A. Ledergerber, M. Hamer, and R. D’Andrea, A robot self-localization system us-
ing one-way ultra-wideband communication, in 2015 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS) (2015) pp. 3131–3137.

[12] B. Vedder, H. Eriksson, D. Skarin, J. Vinter, and M. Jonsson, Towards collision avoid-
ance for commodity hardware quadcopters with ultrasound localization, in 2015 In-
ternational Conference on Unmanned Aircraft Systems (ICUAS) (2015) pp. 193–203.

[13] J. Faigl, T. Krajník, J. Chudoba, L. Přeučil, and M. Saska, Low-cost embedded system
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5
RANGE-BASED RELATIVE

LOCALIZATION FOR LARGE AND

DYNAMIC ROBOTIC SWARMS

While robotic swarms have become more potent over recent years, scalability has remained
an issue for many types of swarming algorithms. Since the robotic agents making up the
swarms have limited computational power and communication bandwidth, decentral-
ized algorithms for large swarms must be efficient and should be bounded in terms of
computational power, no matter the size of the swarm. This is especially true for relative
localization algorithms, which are required to improve coordination and avoid collisions
between agents. In this chapter, we present a decentralized algorithm for relative localiza-
tion in large, dynamic swarms, where “dynamic” refers to changing connectivity between
agents in the swarm. This “Dynamic EKF” selects a subset of agents to localize in real-
time, according to the current neighborhood of the localizing agent. While designing the
algorithm, we also investigate and address localization ambiguities in the system that can
cause estimates to converge to wrong solutions. We evaluate the localization algorithm
in simulations with tens of agents and show that it can achieve comparable accuracy to
estimators for the full swarm. At the same time, we use the simulation to verify that the
new estimator requires less computational resources and is inherently able to adjust to
changing swarm connectivity.
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5.1. INTRODUCTION
Inspecting industrial facilities [1], monitoring crops [2] or searching for victims in disas-
ter zones [3]: the potential applications for small, autonomous drones are manifold. To
increase flexibility and improve robustness in these kinds of tasks, it is desirable to use
multiple cooperating drones at the same time, forming a robotic swarm [4]. For these
swarms to perform optimally, each individual agent needs to know the location of the
neighboring agents. On the one hand, this allows for better coordination and distribu-
tion of tasks, while on the other hand, it helps agents not to crash into each other [5].

For aerial swarms over open fields, this topic does not receive much attention, since
satellite-based positioning like GPS can give each agent an accurate, global position esti-
mate that can be broadcast to the other agents [6]. Inside or near buildings, however, the
performance of GPS suffers due to blocked or reflected signals, while at the same time,
the margins for error in an enclosed space are much smaller [7].

A simple approach that results in great localization in GPS-denied environments is
the use of external means of localization such as visual motion capture systems. These
systems have been used successfully to control swarms of up to 49 small drones [8][9],
but require prior modification of the environment and a centralized system to calculate
positions. For tasks in unknown environments, where a stable communication link to a
central base station cannot be guaranteed, the swarm should only rely on local sensing
and use decentralized localization algorithms.

On-board visual methods for example can be implemented completely decentralized
and without the need for any communication between agents [10][11]. These methods
use on-board cameras to detect other agents in images and calculate the relative position
from image coordinates. While allowing accurate relative localization in small swarms,
the main downside of these methods is that they struggle in bad lighting conditions and
are limited by the camera’s field of view.

Range-based methods, on the other hand, rely on knowledge of the distances be-
tween agents, which can, for example, be determined using infrared [12][13] (which
can also provide angle-of-arrival information but suffers from field-of-view limitations),
Bluetooth [14] or Ultra-Wideband [15][16][17]. There are multiple methods to determine
the relative position of another agent using range measurements, all with their advan-
tages and shortcomings. Using consecutive range measurements with knowledge of an
agent’s displacement, individual agents can be localized by minimizing an appropriate
cost function [15]. When having access to all range measurements in the system, the
connectivity of the swarm can even be used in an optimization-based approach to de-
termine the relative positions of all agents at once [18][17]. Since solving optimization
problems is often computationally expensive, the relative position of individual agents
can also be estimated using Kalman filtering [14], like we did in Chapter 4.

An important shortcoming of these current relative localization algorithms is scala-
bility. Most of the surveyed research papers on distributed algorithms with local sensing
only look at very small swarms, usually with a single-digit number of agents. Further-
more, little thought is usually put into the scalability of these methods, which is a key
aspect of their usefulness in robotic swarms [5]. One of the few investigations of scal-
ability was conducted by Li [19] for a UWB-based relative ranging and localization ap-
proach which could achieve the desired ranging frequency of 5 Hz with up to 12 agents
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in the swarm. In a very different context, Matsuka et al. [20] investigated scalable and
distributed relative pose estimation for swarms of spacecraft, using pose measurements
from a monocular camera.

Until recently, the same was also true for ranging protocols. The use of Master-Slave
topologies [15], multiple tag-anchor pairs [17] or token-ring protocols (Chapter 4) does
only really work for small and fully connected swarms. However, the recent work of Shan
et al. on the scalability of UWB ranging [21] has opened the door for ranging in large and
not fully connected swarms. With a scalable ranging protocol, it should now also be
possible to design scalable relative localization algorithms for large, dynamic swarms.

Based on our previous work on agent-to-agent relative localization in Chapter 4,
we will thus address the problem of range-based relative localization in large, dynamic
swarms. Different from a static swarm, a dynamic swarm is characterized by an ever-
changing connectivity matrix. Dynamic swarms may split and merge, while an individ-
ual agent might:

1. encounter an agent it has never seen before

2. see an agent for the last time ever

3. not be in contact with any agent at all for a while

As the size of any swarm grows, it becomes more likely that it will show some dynamic
behavior. This dynamic behavior can result from drones encountering obstacles that
block communication, or the swarm diameter exceeding the communication range. Our
key contributions are:

1. The design of a dynamic, relative localization EKF, that incorporates secondary
range measurements, reduces the computational requirements and enables easy
swapping of the tracked agents.

2. An analysis of localization ambiguities that can appear in the system, as well as the
presentation and evaluation of methods designed to resolve them.

This chapter is organized as follows: We will first formulate the relative localization
problem in Section 5.2, where we will also present the mathematical basis for the rel-
ative localization EKF as well as the associated problem of localization ambiguities. In
Section 5.3, we will present various methods to address these ambiguities, while in Sec-
tion 5.4, we show how we implemented scalable and dynamic relative localization in our
simulator. Finally, the results of the simulation experiments will be presented in Section
5.5.

5.2. PROBLEM FORMULATION

5.2.1. NOTATION
The state estimators presented in this chapter are designed for an agent s, (“self”) that
simultaneously estimates the relative position of n other agents in its neighborhood. For
a swarm with N agents, n ≤ N−1. For generality, we use the subscripts i , j when referring
to variables associated with other agents in the swarm.
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Figure 5.1: The relative localization problem shown with N = 3 agents. The goal is for agent s to reliably esti-

mate the relative positions of agents i and j , p si =
[
xsi , ysi

]
and p s j =

[
xs j , ys j

]
, based on direct (∥p si ∥,∥p s j ∥)

and secondary (∥p i j ∥) range measurements.

To simplify calculations, we break up vectors and matrices into blocks that corre-
spond to the different drones in the system. Full matrices and vectors will be written in
bold, while blocks will use regular capital letters and indices in the subscript. For exam-
ple, the covariance matrix P is broken down as follows:

P =


P00 . . . P0 j . . .

...
. . .

...
Pi 0 . . . Pi j . . .

...
...

. . .

 (5.1)

Blocks that only contain zeros will be denoted by 0 and I N is the N ×N identity matrix.
Finally, d t is the time between two consecutive predictions of the EKF. To keep equations
clean, we will omit the use of the subscript k for the current time when simplifying terms.

5.2.2. RELATIVE LOCALIZATION IN STATIC SWARMS
Let us first formulate the relative localization problem for a static swarm with N agents.
Since the main topic of this work is the scalability of relative localization, we consider the
simplified case of drones moving in two dimensions with access to a compass to deter-
mine a common reference orientation. Using the reference orientation, each drone can
estimate its global velocity from optic flow or IMU measurements [22]. Furthermore,
range measurements between drones can be made using Ultra-Wideband, which can
also be used for communicating global velocities. An illustration of the relative localiza-
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tion problem with all relevant variables is shown in Figure 5.1.
The full state vector on agent s is X and contains the relative positions of n ≤ N −1

tracked agents.

X = [X0, · · · , Xs−1, Xs+1, · · · , Xn−1] (5.2)

Xi =
[
xsi , ysi

]
(5.3)

The input vector U contains the global velocities measured by all of the drones. Note
that the velocities of drone s itself are appended at the end of the vector as they will
impact all of the relative positions.

U = [U0, · · · ,Us−1,Us+1, · · · ,Un−1,Us ] (5.4)

Ui =
[
vi ,x , vi ,y

]
(5.5)

The prediction equation for our EKF is then quite simple:

X −
k+1 = AX +

k +BU k (5.6)

A =I 2n (5.7)

B =


. . . 0 0

...
0 Bi 0 Bs

0 0
. . .

...

 (5.8)

Bi = d t ·I 2 Bs =−d t ·I 2 (5.9)

Even when using more complex system models (such as in Chapter 4), A and B will
remain sparse, since the relative positions of two agents are only linked through Us . That
means, that the computational cost of the prediction step can be decreased significantly
by propagating each block independently. Let’s therefore consider the more general case
where A is block-diagonal, B has the form shown in (5.8) and all drones experience the
same process noise, i.e. Qi =Qs =Q.

A =


. . . 0 0
0 Ai 0

0 0
. . .

 (5.10)

Q =


. . . 0 0
0 Q 0

0 0
. . .

 (5.11)

The covariance propagation for the prediction step is then

P−
k+1 = AP+

k AT +BQB T (5.12)
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[
P−

k+1

]
i j = Ai

[
P+

k

]
i j AT

j +δi j ·Bi QB T
i +BsQB T

s (5.13)

where δi j is the Kronecker delta. In our simplified 2D model with global velocities, this
further reduced to [

P−
k+1

]
i j =

[
P+

k

]
i j +

(
δi j +1

) ·d t 2 ·Q (5.14)

In the correction step, we can make use of direct range measurements between agents
s and i to refine the estimate. The measurement equation hD (X ) and its Jacobian H D (X )
are given by

hD (X ) = ∥p si∥ =
√

x2
si + y2

si (5.15)

H D (X ) =
[
∂hD (X )

∂X
+

]
= [

. . . ,0, HD,i ,0, . . .
]

(5.16)

HD,i =
[

xsi

∥p si∥
,

ysi

∥p si∥
]

(5.17)

In this work, we further want to take advantage of range measurements between two
other agents i and j (∥p i j ∥ in Figure 5.1)to improve the accuracy and convergence rate
of the estimator. We call these measurements secondary range measurements, which are
described by the following measurement equation and Jacobian:

hS (X ) = ∥p i j ∥ = ∥p s j −p si∥ =
√(

xs j −xsi
)2 + (

ys j − ysi
)2 (5.18)

H S (X ) =
[
∂hS (X )

∂X

]
= [

. . . ,0, HS,i ,0, . . . ,0, HS, j ,0, . . .
]

(5.19)

HS,i =
[
−(

xs j −xsi
)

∥p i j ∥
,
−(

ys j − ysi
)

∥p i j ∥

]
(5.20)

HS, j =
[(

xs j −xsi
)

∥p i j ∥
,

(
ys j − ysi

)
∥p i j ∥

]
(5.21)

Since measurements arrive asynchronously, they have to be applied consecutively.
This has the benefit of reducing the inversion of the innovation covariance matrix S to
the inversion of a scalar. The downside of this approach however is, that it neglects cor-
relations between measurements and can lead to an overconfident estimator. We will
partly address this problem when dealing with localization ambiguities in Section 5.3.

K = P−
k H T S−1 (5.22)

X +
k = X −

k +Kν (5.23)

P+
k = P−

k −K HP−
k

= P−
k −P−

k H T HP−
k S−1 (5.24)

Where the innovation ν and the innovation covariance S are given by

ν= y −h
(

X −
k

)
S = HP−

k H T +R (5.25)
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Given the sparsity of the measurement equations, it can again be useful to simplify
expressions. Since the covariance matrix is symmetric, we can reduce the number of
necessary matrix multiplications by writing

P−H T HP− = (
P−H T )(

P−H T )T
(5.26)

For direct measurements, we then have

P−H T
D =


P−

0i H T
D,i

P−
1i H T

D,i
...

 (5.27)

H D P−H T
D = HD,i P−

i i H T
D,i (5.28)

And for secondary measurements,

P−H T
S =


P−

0i H T
S,i +P−

0 j H T
S, j

P−
1i H T

S,i +P−
1 j H T

S, j
...

 (5.29)

H S P−H T
S = HS,i P−

i i H T
S,i +2HS,i P−

i j H T
S, j +HS, j P−

j j H T
S, j (5.30)

These simplified expressions can then be used in the measurement update equations
(5.22) to (5.24).

5.2.3. LOCALIZATION AMBIGUITIES
Recent work like the swarm in the wild utilize known initial positions to ensure a stable
swarm geometry [23]. However, this is not always desirable as it takes a longer time to
deploy the swarm in a new environment. Furthermore, this approach breaks down when
the swarm is not fully connected at start-up and new agents are encountered throughout
the mission.

The initialization time of a local agent-to-agent UWB-based localization scheme was
studied in [24] - showing that initialization can take on the order of half a minute. As soon
as the swarm reaches a size of three or more drones, secondary range measurements can
help to reduce the time needed for a new agent’s position estimate to converge. How-
ever, in our preliminary experiments we noticed that the use of secondary range mea-
surements also adds new problems in the form of rotation and flip ambiguities. These
can occur when a large number of secondary range measurements “overpower” crucial
information from direct range measurements and relative velocities. This can lead to
stable but wrong relative position estimates.

Let us have a quick look at how these ambiguities manifest. For this purpose, we will
consider the swarm a graph, where each agent represents a node, and each communi-
cation link represents an edge. In a fully connected static swarm, the shape of this graph
can be uniquely determined with the exception of translations, rotations and reflections.
This even holds true for not fully connected swarms, as long as their graphs are rigid [25].
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a.)

s

b.)

s

c.)

s

Figure 5.2: Ambiguities encountered in relative localization EKF with secondary range measurements: a.) Ro-
tation Ambiguity, b.) Global Flip Ambiguity, c.) Local Flip Ambiguity. Correct positions are in blue, and erro-
neous estimates are in red.

To fully localize a network of interconnected nodes without ambiguities, a rigidity-based
approach can be used in combination with knowledge of the positions of at least three
nodes (in 2D)[26]. Since we can define the position of the localizing drone as the origin,
we can at least remove translation ambiguity in our swarm. However, rotations around
the origin, as well as global and local flips (c.f. Figure 5.2), were regularly encountered
when testing our initial estimators.

Rotation ambiguities appear when after initialization or due to the accumulation of
small errors, the relative position estimate of all agents moves on a circle around the
localizing agent. With a growing number of secondary range measurements we ob-
serve that the estimator tends to become overconfident and the impact of direct range
measurements (which are the only measurements linking the swarm to the localizing
drone) becomes very small. Over long periods of time, rotation ambiguities can resolve
by themselves, but they usually stick around for several minutes (in simulation).

Flip ambiguities generally appear immediately after initialization, as soon as sec-
ondary range measurements are used. Global flips result in the state estimates of all
agents in the swarm being mirrored on an axis passing through the origin. These esti-
mates are very stable since there is no continuous sequence of states to move to the cor-
rect solution. They only resolve to the correct solution by themselves, when all agents
move onto the mirror axis, at which point the real and mirrored states coincide and the
estimate can transition seamlessly.

Finally, local flips only concern a single agent and are again the result of a critical
range measurement being “overpowered” by several other measurements. Due to the
incremental change of the position estimate in the EKF, an update to the state of the
drone pushing it out of the flip is then counteracted by multiple other range estimates
pushing back as illustrated in Figure 5.3 (the same principle applies to the stability of the
other ambiguities). Since fewer agents are involved in local flips, these tend to be less
stable than the other ambiguities however.
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a.) b.)

c.)d.)

s s

ss

Figure 5.3: Local flips can be stable due to the incremental corrections applied by the EKF: a.) Wrong estimate
(red) due to a local flip (correct location in green). b.) Beneficial correction is applied based on a large predic-
tion error. c.) The improved estimate after the beneficial correction. d.) Multiple counteracting corrections
are applied in the direction of observed prediction errors. These updates are correct, but cause the estimate to
return to the previous, wrong position.

5.3. RESOLVING AMBIGUITIES

To detect cases where the estimator has converged to the correct swarm geometry, but
incorrect relative positions, we can make use of the Normalized Innovation Squared
(NIS). The NIS is a measure of the consistency of the estimate and can be used to detect
if a new measurement ym is at odds with the current estimate [27][28]. It is computed by
normalizing the measurement innovation νm with the innovation covariance Sm :

N I Sm = νT
m S−1

m νm (5.31)

For a consistent estimator, the NIS should follow a χ2 distribution with d degrees of free-
dom (d being the dimension of the measurement vector, in our case d = 1). To improve
robustness, the NIS can be summed up over a window of length l , in which case that
sum follows a χ2 distribution with d · l degrees of freedom. A large NIS indicates that
the estimator is overconfident which can be caused by rotated or flipped estimates. To
avoid reacting to very noisy measurements and outliers, we track the NIS for each agent
individually over a window of 20 consecutive direct-range measurements.

In the following, we present several methods to avoid ending up with these stable
errors. Some of the methods aim at reducing the risk of stable errors appearing, while
others aim at resolving these errors when they appear nonetheless.
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5.3.1. IMPROVED INITIALIZATION

To increase the rate of convergence and reduce the risk of ending with flipped estimates,
it is important to initialize each agent as close as possible to its real location. When
working with static swarms where all agents are kept in the state-space at all times, it
is possible to initialize agents correctly at start-up, by placing the swarm in a predefined
pattern. For dynamic swarms, this approach is not sufficient. Instead, we have identified
two initialization methods that use the same information that is also used by the EKF.
Furthermore, we added a short stabilization period after an agent is initialized, during
which its estimate is only refined using direct measurements.

MULTILATERATION BASED INITIALIZATION

If there are already several agents whose relative location is known with sufficient accu-
racy (based on covariance and NIS), secondary range measurements can be used for a
multilateration approach [29]. In fact, two secondary range measurements and one di-
rect range measurement are enough to calculate an initial position estimate in 2D, while
in 3D a third secondary range measurement would be needed. Due to the better initial-
ization data, we can also reduce the stabilization time with this sort of initialization.

TRAJECTORY-BASED INITIALIZATION

If there are not enough other agents localized yet, we can resort to an initialization based
on the agent’s relative trajectory. More specifically, we can integrate the relative move-
ment between two direct range measurements, which leaves us with a triangle, in which
the lengths of all three sides are known. Due to knowledge of the orientation of the side
representing the relative movement, the agent’s relative position can be narrowed down
to at most two points in 2D, or a circle in 3D. This approach resembles a simplified ver-
sion of the relative localization in [15], and is presented in more detail in Appendix B.
This method is less accurate, more susceptible to measurement errors and rarely returns
only a single point. In this case, we choose to average between two equally likely points
or a circle in 3D. It is however much better than initializing the agent without any knowl-
edge at all, especially when the agent is not too far away.

5.3.2. COVARIANCE INFLATION

Given that the consecutive application of measurement updates can move an estimate
back and forth during the same update cycle (see Figure 5.3, our EKF tends to be over-
confident even for correct estimates. This reduces the estimator’s ability, to indepen-
dently correct wrong estimates with a larger Kalman gain. For example, note that in
Figure 5.3.b, a larger correction could have resolved the flip entirely. The same holds
for rotation ambiguities that are often not corrected because the estimator is overconfi-
dent. To address this issue, we suggest the use of Covariance Inflation, a method used to
prevent filter divergence in ensemble Kalman Filtering [30] and for state decorrelation
in Simultaneous Localization and Mapping (SLAM) [31]. We follow a similar approach
as Ghobadi et al. [32], but inflate the state covariance instead of the measurement co-
variance. In practice, we are looking to inflate the covariance of the prediction h (X k )
so that it includes the measurement y . The prediction covariance U that includes the
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measurement y is calculated using the Generalized Covariance Union [33] as

U =β(
R +ννT )

(5.32)

β=
{

2 if N I S > 1
(1+pN I S)2

1+N I S if N I S ≤ 1
(5.33)

With one-dimensional measurement updates, both U and the original prediction co-
variance are scalars. We can therefore also express the covariance inflation as a multipli-
cation with a scalar α:

U =α ·HP−H T (5.34)

Since we are only interested in inflating the state covariance while the Jacobian matrix
of the measurement equation remains constant, we apply this multiplicative inflation
directly to the relevant blocks of P−. For direct measurements,

P−
i ,i →α ·P−

i ,i (5.35)

while for secondary range measurements

P−
i ,i →α ·P−

i ,i P−
i , j →α ·P−

i , j

P−
j ,i →α ·P−

i , j P−
j , j →α ·P−

j , j
(5.36)

The calculation ofα itself can be performed from the original and inflated prediction
covariance as

α= U

HP−H T
(5.37)

Note that for secondary range measurements where the update to j is disabled, only
P−

i ,i is inflated (c.f. Section 5.3.3).
To improve the stability and smoothness of the estimates, we added two additional

modifications: First, we only inflate the covariance when a measurement has a high NIS.
Second, instead of inflating the covariance to the point where the measurement is in-
cluded within a single standard deviation σ, we reduce alpha to only include the mea-
surement within 3σ, by dividing α by 9 (the covariance is the square of standard devia-
tion).

α3σ = α

9
(5.38)

This of course only makes sense if α> 9, which is always the case if the NIS threshold is
set high enough. If α> 9, then α3σ < 1, and we would actually deflate the covariance.

5.3.3. SELECTIVE USE OF SECONDARY RANGES
When an agent i exhibits a high NIS over several consecutive direct range measurements,
it is likely that its position estimate is incorrect. To avoid propagation of these errors to
other estimates, we should disable secondary range updates involving this agent. How-
ever, since these measurements can help us fix the wrong estimate of agent i , we choose
to only partially disable these updates. Specifically, if we receive a new secondary range
measurement between agent i (high NIS) and agent j (low NIS), we disable updates to j
by setting HS, j = 0.
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5.3.4. WITHHOLD MEASUREMENTS
To directly address errors from rotation ambiguity, we propose to periodically withhold
secondary range measurements. This can be done continuously independent of the ob-
served NIS. In fact, when the estimates have converged to the correct graph, secondary
range measurements only serve to deal with unobservable situations and reduce small
fluctuations due to measurement errors. Withholding these measurements for several
seconds (in our case for 10 s every 30 s) does not noticeably degrade a correct estimate.
However, in combination with covariance inflation, direct measurements can be used
during this time to correct for rotations of the graph in most position estimates. Once
secondary ranges are added again, these changes are propagated even to estimates that
could not be directly improved.

5.3.5. RESET AGENTS
This is the final resort for agents that continue to display extremely high values for the
NIS over the window. By resetting the agent in question, the re-initialization can very
likely make use of the triangulation method, improving the initial estimate, and reducing
the time needed for the estimate to converge towards its true value.

5.4. IMPLEMENTATION

5.4.1. SIMULATION ENVIRONMENT

We implemented our algorithms in the “Swarmulator” simulation environment1, which
allows for the simulation of robotic swarms in 2D. We extended the swarmulator with
the possibility to simulate UWB communication and implemented a relative localization
EKF base class, on which all our EKF variations are based.

As of yet, we have not implemented any complex behaviors, instead, each agent sim-
ply chooses a random point in the arena as its new goal, every time its current goal is
reached. Between two points, agents accelerate linearly until they reach their maximum
velocity, and decelerate linearly to stop at their goal. This behavior is implemented with
ground truth knowledge of the absolute position in the arena.

The complete code used for the simulations in this chapter is available on Github2.

5.4.2. UWB RANGING
The scalability of the Ultra-Wideband ranging protocol is just as important as the scal-
ability of the relative localization estimator itself. In this work, we base ourselves on
the swarm ranging protocol developed by Shan et al.[21]. Our main modification lies in
adjusting the packet format to include the additional information required in our esti-
mator. For seamless integration with our primary test platform, the crazyflie3, we con-
sider the same implementation of the IEEE 802.15.4 MAC header, which is 21 Bytes long.
When keeping 2 Bytes for the MAC Footer, this leaves 104 Bytes for the payload. This
is respecting the 127 Byte data limit implemented on the DW1000 UWB transceiver in
accordance with the IEEE 802.15.4 UWB physical layer specification [34] [35].

1https://github.com/coppolam/swarmulator
2https://github.com/tudelft/swarmulator/tree/uwb_swarm_with_compass
3https://www.bitcraze.io/products/crazyflie-2-1/

https://github.com/coppolam/swarmulator
https://github.com/tudelft/swarmulator/tree/uwb_swarm_with_compass
https://www.bitcraze.io/products/crazyflie-2-1/
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Figure 5.4: Packet structure and block sizes for the adapted swarm ranging protocol (1 B = 1 Byte)

The available payload is split into three parts as shown in Figure 5.4: One byte to
communicate the number of “Agent” blocks in the message, then a block with informa-
tion from the sender, and finally up to 9 “Agent” blocks. The “Sender” Block contains
information from the sender s: An 8-bit sequence number, the transmission timestamp
of its previous message, and the sender’s global velocity estimates (2 Bytes per dimen-
sion). For a 2D implementation such as in our case, the z dimension is not necessary,
however, when working with drones in 3D, it would be sensible to at least include an es-
timate of the current altitude in a real-world implementation. The sender does not need
to include its ID in the “Sender” block since it is already communicated in the header.
Subsequently, each “Agent” Block contains information that the sender collected about
another agent i , which is identified by its 16-bit ID. The block then includes the sequence
number and reception timestamp of the last message that s received from i . Finally, if s
was able to calculate a range measurement to i since its last communication, this mea-
surement is also included to serve as a secondary range measurement for other drones.
Both range and velocity measurements can be communicated with 16-bit integers in
mm or mm/s, as the uncertainty of these numbers does not require more accuracy.

In our current implementation, swarm-ranging pings are transmitted at regular in-
tervals, where each drone randomizes its transmission interval around a base value of
0.05 s. Since the DW1000 chip implements the ALOHA protocol, no additional care needs
to be taken about medium access control. By tracking the number and size of the mes-
sages sent and received by an individual agent, we can estimate the air utilization a in the
agent’s vicinity during a period T to ensure it stays below the 18% required for ALOHA to
work reliably [35].

aT = 1

T

NT∑
i=0

(
tPHY + bi

R

)
(5.39)

Here, tPHY is the duration of the physical layer synchronization header (Preamble, start
of frame delimiter and physical header) in seconds, bi is the payload size of message i in
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bits and R is the data rate in bits per second.

5.4.3. DYNAMIC EKF
In dynamic swarms, we can’t know in advance how many and which drones will be in
our communication range at any given moment. In principle, there are however only
two events that we need to be able to deal with: New agents entering the communication
range, and known agents leaving it. To limit computational cost in very large swarms, it
furthermore makes sense to put a limit on the agents that can be tracked at the same
time. This means that we have to implement a flexible state space, which allows adding,
removing and swapping agents.

By breaking up the state and input vector, as well as the covariance matrix into blocks,
we already created the flexibility to easily access and manipulate the data for individual
agents. Furthermore, if there are not enough agents in range to fill all slots, the blocks
corresponding to empty slots can simply be skipped in the prediction and correction
steps.

When messages are received from a new agent, the new agent can be assigned one
of a limited number of slots in the EKF memory. By saving the agent’s unique communi-
cation ID in that same slot, incoming inputs and measurements can be easily matched
to the slot index i , which is used to identify the agent in the EKF’s state space. The max-
imum number of slots can be set according to the processing power of the system, as
it determines the maximum dimension of the state space. Other relevant information
such as the last time an agent was seen, or the last recorded range to the target, can be
added to the same slot.

An important consideration is how to deal with new agents if all slots are already
used. To add new agents, we use the simple priority system, also shown in Fig. 5.5:

1. Empty Slot: Use the first empty slot encountered

2. Timeout: Use the slot of the agent that has been timed out for the longest. Agents
time out after no new message has been received for a specified timeout period.

3. Range: Use the slot of the furthest away agent. Only swap in the new agent if it is
sufficiently closer compared to the agent that is swapped out (Hysteresis).

When an agent leaves the communication range without another agent entering to
replace it, it can make sense to keep a loose estimate of that agent’s position in case
it enters the communication range again. This can be achieved by setting the agent’s
input velocities to zero while increasing the input uncertainty to the maximum veloc-
ity the agent can reach. The uncertainty of this agent’s position estimate will degrade
quickly, but the estimate can still be updated with secondary range measurements to
other agents that are still in communication range.

5.4.4. REFERENCE ESTIMATORS
For comparison with the final version of our dynamic EKF, we implemented three other
similar estimators. When comparing the estimators, all estimators are run at the same
time on each agent, i.e. they receive exactly the same inputs at the same time (with the
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Figure 5.5: Slot priority for new agents (red). Empty slots are always prioritized (left) before timeouts are con-
sidered (middle). If no empty slots are available and no slots have timed out, the last available range is consid-
ered after being multiplied by a hysteresis factor, to avoid constant switching (right)

exception of the centralized EKF, which receives additional inputs from agents that are
out of communication range).

CENTRALIZED EKF
While still running on each drone individually, this estimator represents a centralized
approach as it has access to all information collected by any agent in the simulation. It
uses a full state vector to track all other agents at all times while receiving all velocities
and range measurements calculated, independent of communication range limitations.
Furthermore, agents are initialized at their true relative positions at startup, meaning
that no time is needed for the filter to converge. The centralized EKF represents a best-
case scenario in terms of accuracy, but a worst-case scenario in terms of computational
cost (each additional agent adds up to N additional range measurements and increases
the size of the state vector and covariance matrix).

DECOUPLED EKF
The decoupled EKF does not use secondary range measurements and neglects any cou-
pling between different agents’ relative positions. It is therefore functionally equivalent
to running a filter bank with an independent EKF for each individual agent, such as we
did in Chapter 4. As a result, the number of states in each EKF is constant and the compu-
tational cost scales much slower due to the smaller matrices being multiplied. Further-
more, only one additional range measurement is added by any new agent, and agents
can leave the communication range. Since the decoupled EKF does not suffer from local
minima, we also stick with the “lazy” initialization used in Chapter 4 (all agents initial-
ized at the origin).

FULL-STATE EKF
The full-state EKF implements all the improvements we developed for the dynamic EKF,
but still uses a full-state vector (including all other agents). This means using trajectory-
or multilateration-based initialization for new agents, as well as covariance inflation,
NIS-based resets and temporarily disabling secondary range measurement to deal with
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localization ambiguities. It can therefore be seen as a variation of the centralized EKF
that only has access to limited information but is still suffering from the same scalability
limitations. It is however expected to perform better than our proposed dynamic EKF,
since it can track all other agents at the same time.

5.5. RESULTS
To evaluate the different estimators, we run each simulation five times for 300 s each,
while logging the relevant performance indicators.

For a fair comparison of the full state estimators with the dynamic EKF, which only
tracks a subset of agents, we compare the average performance for the 1, 3 and 5 closest
agents (according to ground truth). We call these C1, C3 and C5 errors. We also look
at the performance of all tracked agents in the communication range (ICR). For the ICR
error, the number of agents that contribute to the average depends on the estimator
and the current state of the simulation. While ICR does not take into account agents for
which there is no current estimate, the other errors will be marked as ’No estimate’ if
there is no valid estimate for all required agents (e.g. if there is no estimate for the 4th

closest agent, C5 will be invalid but C1 and C3 will still be computed correctly). This
situation can appear either when an agent is not tracked, or if the estimate is still in its
initial stabilization period.

When presenting the error distribution, we aggregate the data of all drones from all
relevant simulations, ignoring the first 60 s to allow the estimates to converge. This dura-
tion was chosen from several preliminary experiments to ensure that all estimators had
time to converge to reach an initial stable estimate. We show an example of the differ-
ences in initial convergence in Section 5.5.3, Figure 5.12. Since we found that errors de-
pend on the distance between agents (which can vary a lot, even for the closest agents),
we calculate the relative error by normalizing the absolute error with said distance.

esi ,rel =
esi ,abs

∥p si∥
(5.40)

5.5.1. RESOLVING AMBIGUITIES
In Section 5.3, we introduced a multitude of methods to detect and resolve cases in
which the estimator converges to a rotated or flipped estimate. We performed an abla-
tion study to determine the effect of each of those methods on the final results in both the
full-state EKF (Figure 5.6) and the proposed dynamic EKF (Figure 5.7) in a static swarm.
The figures show the distribution of the relative errors for all tracked agents with a valid
estimate. We find that when applying each method individually, only the improved ini-
tialization (A) and covariance inflation (B) methods lead to a better result in at least one
of the estimators. Selective use of secondary ranges (C), withholding measurements (D)
and resetting agents (E) rely on these first two methods to function properly and were
thus only evaluated in combination.

It can be seen that the combined use of all our suggested methods results in a large
improvement of localization performance. In the Full-state EKF, the fraction of errors
above 10% is reduced by about 40 percentage points moving from using none of the
methods to using all methods, while in the dynamic case, the difference is even bigger at
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Figure 5.6: Performance of different methods for resolving ambiguities in the Full State EKF when tracking 10
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use of secondary ranges, (D) Withhold measurements, (E) Reset agents

None A B A+B A+B
+C

A+B
+D

A+B
+E

All
0

20

40

60

80

100

F
ra

ct
io

n
of

re
la

ti
ve

er
ro

rs
[-

]

No estimate

error > 50%

error ≤ 50%

error ≤ 10%

error ≤ 5%

Figure 5.7: Performance of different methods for resolving ambiguities in the Dynamic EKF when tracking 10
out of 20 other agents (21 drones total): (A) Improved initialization, (B) Covariance inflation, (C) Selective use
of secondary ranges, (D) Withhold measurements, (E) Reset agents



5

88 5. SCALABLE RELATIVE LOCALIZATION

almost 90 percentage points.
There are significant differences in the effect of individual methods between the Full

State and Dynamic EKF. Specifically, the effect of individual methods seems much higher
in the Dynamic EKF than in the Full State EKF. This difference likely comes from the fact
that new agents are added to the Dynamic EKF all the time. In the Full State EKF, it
is very important to avoid any problems in the short initialization period at the start,
while in the Dynamic EKF, every new agent is another opportunity to resolve issues in
the estimates.

While one could argue that some methods are not needed in Dynamic EKF, it is im-
portant to remember that the Full-state EKF represents a special case of the Dynamic
EKF, in which the same 10 agents are in communication range for long periods of time.
To maximize robustness, we therefore argue that all methods should be active at all
times.

5.5.2. COMPUTATIONAL COST AND AIR UTILIZATION
Let’s now look at the scalability of the relative localization estimators. In the first step,
we evaluate how the computational cost of the different estimators varies for different
swarm sizes. We only evaluate the time each estimator takes to execute a single estima-
tion step consisting of prediction and measurement updates. This evaluation is more
qualitative than quantitative since the exact numbers will not only depend on the hard-
ware used but also on the computational load from other processes. In our case, we
performed the evaluation on a Dell XPS-15-7590 with 6 Intel Core i7-9750H processors
(12 threads). For this simulation setup, we limited the number of drones being tracked
in the dynamic EKF to n = 10. In this evaluation, we look at a static swarming setup
by setting the communication range to a value larger than the arena size. As could be
expected, the computational load of the centralized and full-state EKF initially grows ex-
ponentially, making them impossible to use for large swarms. It flattens out for larger
swarms, where the limiting factor becomes the number of range measurements that can
be performed by the UWB protocol (only 9 “Agent” blocks can be included at a time).
The computation time for the decoupled EKF on the other hand grows only linearly, and
the dynamic EKF reaches its peak around its number of tracked agents n. The drop for
higher numbers is the result of fewer measurements being processed since more esti-
mates are in their stabilization period at the same time (meaning that their secondary
range measurements are not processed).

This simulation setup also lends itself well to an investigation into the load of the
UWB channel. Although we do not simulate the physical UWB transmission process, we
can make some assumptions on the UWB settings to estimate the air utilization. Table
5.1 shows the settings that were chosen for good ranging performance with short trans-
mission ranges [35].

The transmission time of the physical header tPHY is then calculated as

tPHY = (LPMB +LSFD) · ts + bPHR

R
= 141.2µs (5.41)

where ts = 1.1017µs is the preamble symbol duration (PSD) for a PRF of 64 MHz. Using
this value, each agent in simulation can keep track of the air utilization at its location,
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Pulse Repetition Frequency (PRF) 64 MHz
Data Rate R 6.8 Mbps

Preamble Length LPMB 128 Symbols
Start of Frame Delimiter (SFD) LSFD 8 Symbols

Physical Header Length bPHR 19 bits

Table 5.1: Ultra-Wideband Settings for calculating air utilization

using the size of transmitted and received messages with equation 5.39. Based on the
observed values, we conclude that the ALOHA protocol should work well in settings with
up to 35 drones in the communication range using the current transmission interval of
0.05 s. Since the communication range can be easily varied between 0 m and (approxi-
mately) 60 m by adjusting the transmission power [35], this allows for the design of ex-
tremely dense dynamic swarms.

5.5.3. LOCALIZATION ACCURACY

Having shown that the dynamic EKF offers significant advantages in terms of computa-
tional cost compared to a centralized or full-state approach, it is now time to also com-
pare the accuracy of their localization accuracy. Comparing the performance in static
(Figure 5.10) and dynamic (Figure 5.11) swarms, we can see that the Dynamic EKF is
the only estimator that is not impacted by agents entering or leaving the swarm. Fur-
thermore, we see that the Dynamic EKF performs at a comparable level for the closest
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Figure 5.9: Air utilization of the modified swarm ranging protocol compared to the recommended limit of 18%
when using ALOHA for media access control

drones, even in static swarms.
Especially noteworthy is the comparison between the Dynamic EKF and the Decou-

pled EKF, which are the only practical options in large swarms due to computational
power requirements. It is clear that our proposed Dynamic EKF performs substantially
better in terms of localization errors. Furthermore, although the Decoupled EKF has ac-
cess to all estimates at all times, we argue that not having an estimate is not worse than
having a high error. On the contrary, a missing estimate can be used to command a more
careful behaviour, while wrong estimates could lead to dangerous maneuvers.

Looking at the effect of reducing the state-space from tracking all agents (Full-state
EKF) to only tracking a select few (Dynamic EKF), we note that for the closest drone (C1)
the difference is barely noticeable. Looking at the dynamic swarm, there is even a similar
C3 performance. Only as we look at even more agents (C5) do the differences become
clear. This is a trade-off that has been expected, given that agents are constantly being
swapped in an out of the estimator.

Finally, looking at the evolution of the state estimates on a single drone throughout
a simulation in Figure 5.12, we can verify that the use of secondary range measurements
indeed results in a significant reduction of the convergence time for the estimates. In the
same simulation run, we can also have a look at the qualitative evolution of the relative
position estimate shown in Figure 5.13. For clarity, we isolate the data from a 30 s interval
between 150 s and 180 s. During this period, we observe very good tracking by all estima-
tors, with exception for the decoupled estimate for agent 6, which is still converging at
this point. We also see, that the dynamic EKF is correctly tracking the five closest agents,
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while the tracking of agent 8 was terminated as it moved further away. At this point,
we can expect the initialization of agent 3 to be well underway, as it is approaching the
tracking agent.
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5.6. CONCLUSION
In this chapter, we presented and evaluated a relative localization algorithm for large, dy-
namic swarms. By adding secondary range measurements, we managed to significantly
reduce the convergence rate and improve accuracy when compared to simple agent-
to-agent schemes. Furthermore, our Dynamic EKF offers clear advantages in terms of
computational cost, while still providing a high level of accuracy when compared to a
centralized estimator tracking all agents in the swarm.

During the design of our estimator, we observed how the use of secondary range
measurement could lead to the manifestation of localization ambiguities. We proposed
an approach based on tracking the Normalized Innovation Squared (NIS) of direct range
measurement updates to identify and correct situations in which localization ambigui-
ties led to stable but wrong position estimates. We specifically introduced improved ini-
tialization methods and covariance inflation, while also restricting the use of secondary
range measurements. We showed that these methods help significantly improve the per-
formance of the estimators using secondary range measurements.

While only evaluating the estimators in simulation, we tried to be as close to the
physical system during implementation to facilitate future tests on actual drones. The
only addition we would recommend is tracking the air utilization and adjusting the com-
munication range (transmission power) and transmission frequency in real-time, to op-
timize the use of the communication channel. Also, the effective maximum number of
agents that are tracked at a time should of course be adapted to the capabilities of the
physical system.
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6
CONCLUSION

6.1. ANSWERING THE RESEARCH QUESTIONS
So after four years of research and four chapters filled with results, where do we stand?
While our dream of autonomous drones searching for victims in a collapsed building still
seems out of reach, it is not a bad moment to look back to our initial objectives and sum-
marize our achievements. After all, autonomous search and rescue is a very challenging
task, and we never set out to solve all aspects of it. Our primary research objective was
much more specific and focused on localization with Ultra-Wideband ranging. Can we
say that we achieved this objective?

Research Objective

Provide robotic swarms with scalable means to determine their position in the
environment, and with respect to each other, using Ultra-Wideband ranging.

Our first research question pertained to the use of Ultra-Wideband ranging for abso-
lute localization. Specifically, we were interested in the compatibility with Moving Hori-
zon Estimation and its use on computationally limited platforms:

Research Question 1

How can Moving Horizon Estimation be used to improve localization with Ultra-
Wideband on platforms with limited computational resources?

In Chapters 2 and 3, we described computationally efficient approaches to Moving
Horizon Estimation, that can be used to fuse UWB and IMU measurements for accu-
rate position estimation on computationally limited platforms. Given the need to install
UWB anchors in the area of operation before deployment of the drones, this method for
absolute localization is mainly suited to applications in industrial environments (and
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not disaster zones). One key observation however, the better resilience of Moving Hori-
zon Estimation to unknown or non-Gaussian noise, could be of great use in complex and
unstructured environments too.

With our second research question, we wanted to guide our investigation into the
use of UWB ranging for swarming applications. Of specific interest at this stage of our
research was not so much the size of the swarm, but the mechanisms that allowed rela-
tive localization in three dimensions and coordination between individual agents.

Research Question 2

How can Ultra-Wideband be used to achieve spatial coordination in small groups
of aerial robots?

With our work in Chapter 4, we managed to demonstrate a working, three-dimensional
relative localization scheme in the real world. The results showed us, that UWB was well-
suited for this type of application, but that there were several severe shortcomings of the
current approach, mainly related to the scalability of the method. This inspired us to set
out onto our final research question, with the intent of developing a scalable scheme for
relative localization that is not impacted by the size of the swarm.

Research Question 3

How can relative localization be achieved in potentially infinite swarms, despite
physical limitations of the individual agents and their communication channel?

Our investigation led us to the development of a dynamic relative localization EKF,
that we tested extensively in simulation on large, dynamic swarms. By limiting the num-
ber of tracked drones and ensuring seamless switching between them, our previous re-
sults can be easily extended to potentially infinite swarms. With this work, we covered
the final aspects of our research objective, albeit for this last step, for now, only in simu-
lation.

6.2. PUSHING FURTHER
While I think it is fair to say that we accomplished our research objective, this is of course
not the end of the road. The algorithms we developed and presented in the scope of this
research still leave room for improvement and there are many alternative approaches
to these problems that might warrant a closer look. During the course of my research
at TU Delft, I have had the pleasure to work with several bright and enthusiastic Master
students on some of these topics, that should not go unmentioned.

Starting with the research on absolute localization, it is important to realize that with
the miniaturization of cameras, vision has become a very promising technology to use
for this purpose. While the computational complexity of Simultaneous Localization and
Mapping (SLAM) algorithms is too large for use on smaller platforms, there is poten-
tial for Visual-Inertial Odometry (VIO). Looking at the advantages and disadvantages of
VIO over UWB-based methods, there is an interesting case to be made for combining
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these two methods: VIO does not require any modification of the environment, but ex-
periences drift. This drift could be corrected using strategically placed UWB beacons, or
conversely, using VIO could help in reducing the number of beacons needed for success-
ful navigation.

Under my supervision, Stavrow Bahnam started investigations into improving state-
of-the-art stereo-VIO methods, and achieved impressive results. Not only did he manage
to significantly cut the computational cost, but he also improved accuracy in cases with
a low number of features [1]. I am proud to say that after successful publication of his
work, Stavrow has joined our Lab as a PhD candidate to continue his research into visual
navigation.

Another strategy to reduce the required number of beacons relies on the idea of ex-
tracting more information from each UWB message. Specifically, angle-of-arrival infor-
mation could provide extremely useful. Since specialized hardware that makes use of
two antennas to determine the phase-difference of arrival in the UWB signal is expen-
sive, inflexible and hard to come by, Bas van Beurden and I decided to look into an al-
ternative option. By combining two spatially separated UWB receivers, Bas tried to use
the two different position estimates to geometrically determine the angle of arrival from
the signal. Unfortunately, despite his hard work, the noise on the UWB measurements
required the two receivers to be too far apart for use on small drones. We therefore con-
cluded, that this method might only find successful use on larger fixed-wing UAVs, where
the beacons could be placed at least one meter apart.

Joining multiple drones to form a swarm offers new possibilities, also in terms of ab-
solute localization. Together with Fréderic Dupon, we looked at how being in a swarm
could improve individual agent’s absolute position estimates. By ranging to the other
drones, Fréderic managed to significantly improve absolute localization in scenarios
where large parts of the operational area were not covered by the stationary UWB bea-
cons. This was done by treating other drones as mobile beacons with uncertain posi-
tions.

On a more theoretical side, I worked with Changrui Liu, who delved deep into the
foundations of Kalman Filtering to find other ways to deal with the non-Gaussian noise
present in UWB ranging. Changrui looked at a modified Kalman filter that uses corren-
tropy instead of the mean-squared error as an error metric. Using a newly developed
kernel function, he designed a filter for relative localization that provides more robust-
ness against non-Gaussian measurement noise [2].

Finally, it should be mentioned that these algorithms have for the most part only
been tested in a scientific environment. The challenges that can arise from deploying
such a system in a real-world application are numerous and should not be underesti-
mated, as we have learned from our cooperation with Royal Brinkman. As a manufac-
turer and provider of greenhouse equipment, Royal Brinkman has been looking at better
ways of detecting pests and diseases on crops growing inside of greenhouses. By equip-
ping autonomous drones with cameras, they hope to identify affected plants early during
an infection, giving them the ability to react more quickly. During this cooperation, we
tested multiple types of drones, cameras and localization algorithms in Royal Brinkman’s
greenhouses. Together with the drone start-up Mapture, we supported the installation of
a prototype system that can be controlled and monitored through a web interface. The
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drone of this system was able to take off from its box, fly autonomously over flower fields
in a greenhouse with the help of UWB, and land in the box again. Images made during
the flight were then automatically uploaded to an online database.

6.3. WHAT COMES NEXT
Although I have already provided several suggestions for continuing the presented re-
search in the individual chapters, I would like to take this final opportunity to put all
of it into a bigger context. While pure UWB-based systems will likely find some use in
structured indoor environments, I believe that in the future, UWB will mostly be used
in combination with other technologies. These other technologies are often required for
different mission aspects, and UWB offers a light-weight and cheap option to cover their
shortcomings.

In many real-world scenario, drones must be able to navigate in an ever-changing
environment that presents unknown and potentially even dynamic obstacles. For sev-
eral years now, vision has been the method of choice for performing obstacle detection
and avoidance. As cameras are getting smaller, micro-processors are becoming more
powerful, allowing image processing even on small drones. It is therefore reasonable to
assume, that almost all drones will carry the necessary hardware to perform visual navi-
gation in the near future.

However, vision-based systems are severely impacted by adverse visual conditions
such as darkness or fog, while the need for energy-efficient, low-interference commu-
nication is a great reason to still carry an UWB transceiver on any drone. Furthermore,
there is also great potential in combining these two technologies outright for precise and
efficient localization solutions: For absolute localization, VIO can help significantly re-
duce the need for static UWB beacons, while the remaining UWB beacons can be used
to counter the drift that is inherent to odometry-based navigation. For relative localiza-
tion, the range information received through UWB can be complemented with bearing
information from a front-facing camera, allowing better accuracy in the cameras field-
of-view, while still tracking all other agents using the range measurements.

Even for outdoor applications, UWB has the potential to complement GPS-based
solutions: While GPS is very reliable over open fields, its estimates can degrade severely
in built environments. While an accuracy of a few meters might still be sufficient for
absolute navigation, UWB can be used to provide accurate, relative position estimates
needed to maintain dense formations in swarms.

In this context, I think the main focus for future research on Ultra-Wideband local-
ization should be on how it can best be integrated with other localization technologies.
Furthermore, I believe that the results from Chapter 5 should be followed up upon, not
just in the context of relative localization, but also in terms of how they can support ab-
solute localization of swarms.

Finally, let’s not forget that localization itself is not sufficient to make a drone truly
autonomous. In Chapter 4 we have seen the impact that “closing the loop” (i.e. using
the position estimate as an input for control) can have on the localization performance.
There are many different real-world applications that might affect the accuracy of the
presented algorithms in unexpected ways. The only way to find out how they perform in
a fully autonomous system, is using them in a fully autonomous system.
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A
DERIVATION OF A HORIZONTAL

VELOCITY MODEL FOR THE

FLAPPING WING DRONE

In this derivation we consider three main forces acting on the flapping wing drone. Since
we are mainly interested in accelerations, we already divide out the mass in the following
equations, i.e. f = F

m . First, the thrust along the drones central axis is given in the drones
body frame as

f b
T = |T | ·e3 (A.1)

Second, we consider a simple drag model with drag forces proportional and opposed to
the drone’s body velocity:

f b
d =

 −bx vb
x

−by vb
y

−bz vb
z

 (A.2)

Finally, the force of gravity is easily expressed directly in the horizontal frame

f h
g =− ∣∣g ∣∣ ·e3 (A.3)

The sum of acceleration in the horizontal frame experienced by the flapper is then
given by A.4.

ah =∑
f h = Rhb f b

T +Rhb f b
d + f h

g (A.4)

We can now put the drag coefficients into a diagonal matrix B = diag(b) and expand
the equation. Recall that rotation matrices are orthogonal, and therefore Rbh = R−1

hb =
RT

hb . To simplify notation, we will at this point drop the superscript h for vectors in the
horizontal frame.

a = |T | ·Rhb e3 −Rhb BRT
hb ·v − ∣∣g ∣∣ ·e3 (A.5)
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We now write out the equation for each individual axis in the horizontal frame.

ax = |T |sθcφ− (bx c2θ+by s2θs2φ+bz s2θc2φ) vx

− (by −bz )sθsφcφvy + (bx −by s2φ−bz c2φ)sθcθ vz (A.6)

ay =−|T |sφ− (by −bz )sθsφcφvx

− (by c2φ+bz s2φ) vy − (by −bz )cθsφcφvz (A.7)

az = |T |cθcφ+ (bx −by s2φ−bz c2φ)sθcθ vx − (by −bz )cθsφcφvy

− (bx s2θ+by c2θs2φ+bz c2θc2φ) vz −
∣∣g ∣∣ (A.8)

Assuming small roll and pitch angles, we can neglect any terms that include the mul-
tiplication of two sines (i.e. s2θ ≈ s2φ≈ sθsφ≈ 0)

ax = |T |sθcφ−bx c2θ vx + (bx −bz c2φ)sθcθ vz (A.9)

ay =−|T |sφ−by c2φvy − (by −bz )cθsφcφvz (A.10)

az = |T |cθcφ+ (bx −bz c2φ)sθcθ vx − (by −bz )cθsφcφvy −bz c2θc2φvz −
∣∣g ∣∣ (A.11)

Due to the difficulty of estimating the generated thrust of the flapper, we further sim-
plify the model by decoupling horizontal and vertical movement of the flapper, i.e. we
consider the vertical velocity to be negligible during horizontal motion. This allows us to
find an expression for the thrust in terms of

∣∣g ∣∣ and the horizontal velocities.

az = |T |cθcφ+ (bx −bz c2φ)sθcθ vx − (by −bz )cθsφcφvy −
∣∣g ∣∣= 0 (A.12)

|T | =
∣∣g ∣∣

cθcφ
− (bx −bz c2φ)sθ vx + (by −bz )sφvy (A.13)

This expression for the thrust can now be inserted into A.9 and A.10, while setting
vz = 0. In both cases, the thrust is multiplied with a sine, which again allows us to neglect
some terms due to our small angle approximation. As a result, only the gravity term
remains in the final expressions for the acceleration alongside the deceleration caused
by drag.

ax = sθ

cθ

∣∣g ∣∣−bx c2θvx (A.14)

ay =− sφ

cθcφ

∣∣g ∣∣−by c2φvy (A.15)

We can now integrate these accelerations using the forward Euler method to estimate
our horizontal velocities.

vx,k+1 = vx,k +dt
(

sθk
cθk

∣∣g ∣∣−bx c2θk vx,k

)
(A.16)

vy,k+1 = vy,k +dt
(
− sφk

cθk cφk

∣∣g ∣∣−by c2φk vy,k

)
(A.17)
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The drag coefficients bx and by can be estimated from a data set with ground truth
using a least squares approach. Specifically, for an overdetermined system of equations
y = Xβ the least-squares estimate for the parameters β is given by β̂ = (XT X)−1XT y . To
determine the drag coefficients in our horizontal velocity model, we solve two indepen-
dent least-squares problems with for bx

β= bx (A.18)

yk =−vx,k+1 − vx,k

dt
+ sθk

cθk

∣∣g ∣∣ (A.19)

Xk = c2θk vx,k (A.20)

and for by

β= by (A.21)

yk =−vy,k+1 − vy,k

dt
− sφk

cθk cφk

∣∣g ∣∣ (A.22)

Xk = c2φk vy,k (A.23)

From our data, we find bx = 4.2 and by = 1.8 for the Flapper Drones.





B
POSITION INITIALIZATION FROM

TWO RANGE MEASUREMENTS AND

INTEGRATED VELOCITIES

To better initialize a new agent in the relative position EKF, an initial relative position
estimate can be calculated heuristically from two range measurements r0 and r1, and
the difference between the corresponding relative positions (d x,d y). The difference in
relative positions can for example be estimated by integrating the relative velocities. The
geometric problem is shown in Figure B.1.

Our goal is to find x1 and y1, from the following system of equations describing the
situation:

r 2
0 = x2

0 + y2
0 (B.1)

r 2
1 = x2

1 + y2
1 (B.2)

x1 = x0 +d x (B.3)

y1 = y0 +d y (B.4)

Using B.3 and B.4, we can express B.1 in terms of x1 and y1:

r 2
0 = (x1 −d x)2 + (y1 −d y)2 (B.5)

= x2
1 −2x1d x +d x2 + y2

1 −2y1d y +d y2 (B.6)

Using B.2, we can now get to an equation with only x1 as unknown:

r 2
0 = x2

1 −2x1d x +d x2 + r 2
1 −x2

1 −2d y
√

r 2
1 −x2

1 +d y2 (B.7)

Rearranging and multiplying by itself to remove the square root:
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x

y

p0

x0

y0
r0

p1

x1

y1

r1

Figure B.1: Initialization from ranges and accumulated relative motion

r 2
0 − r 2

1 −d x2 −d y2 +2x1d x =−2d y
√

r 2
1 −x2

1 (B.8)(
r 2

0 − r 2
1 −d x2 −d y2 +2x1d x

)2 = 4d y2 (
r 2

1 −x2
1

)
(B.9)

Finally, we need to separate the terms including x1 and x2
1 . For clarity, we’ll substitute

the known term
u = r 2

0 − r 2
1 −d x2 −d y2 (B.10)

u2 +4ud x x1 +4d x2x2
1 = 4d y2r 2

1 −4d y2x2
1 (B.11)

4
(
d x2 +d y2)x2

1 +4ud x x1 +u2 −4d y2r 2
1 = 0 (B.12)

This results in a quadratic equation of the form

ax2 +bx + c = 0 (B.13)

with

a = 4
(
d x2 +d y2) (B.14)

b = 4
(
r 2

0 − r 2
1 −d x2 −d y2)d x (B.15)

c = (
r 2

0 − r 2
1 −d x2 −d y2)2 −4d y2r 2

1 (B.16)

This results in two solutions for x1, calculated as

x1 = −b ±
p

b2 −4ac

2a
(B.17)
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x

y

p0r0

p1

r1

Figure B.2: Second solution to the initialization problem

Receiving two solutions for this problem makes sense when looking at the problem
again, especially when we add circles with radius r0 and r1. Looking at Figure B.2 we see
that there are two places where we can connect the circles with a line of a given length
and direction. We can also see, that the distance between the two solutions dAB can
never be bigger than the diameter of the inner circle, i.e. dAB ≤ min(2r0,2r1).

From Figure B.2, one can also expect the special case where only one solution exists
when p0, p1 and the origin lie on a single line.

√
d x2 +d y2 = r0 + r1 (case 1)√
d x2 +d y2 = r0 − r1 (case 2)√
d x2 +d y2 = r1 − r0 (case 3)

 (B.18)

Mathematically, a single solution to B.17 means that the discriminant is 0. Keeping
our substituted term u from B.10, we can simplify the discriminant significantly:

b2 −4ac = 16u2d x2 −16
(
d x2 +d y2

)(
u2 −4d y2r 2

1

)
(B.19)

= 16
(
u2d x2 −u2

(
d x2 +d y2

)
+4d y2r 2

1

(
d x2 +d y2

))
(B.20)

=−16d y2
(
u2 −4r 2

1

(
d x2 +d y2

))
(B.21)

For the discriminant to be zero, we can thus conclude that either d y or u2 −4r 2
1 (d x2 +

d y2) must be zero. By substituting d x2 +d y2 from B.18 (case 2 and 3 being equivalent if
squared), one can easily verify that the latter is indeed the case.

Furthermore, it makes geometrical sense that for d y = 0 only one solution exists for
x and the second solution arises due to different and opposing values of y .

Having a solution for x1, the associated value for x0 is easily calculated from B.3. Us-
ing B.1 and B.2, there are then two possible solutions for y0 and y1, of which the correct
one has to be determined using d y . As an example, if we find y0 =±2 and y1 =±3 given
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d y = 1, B.4 dictates that the correct solution must be y0 = 2 and y1 = 3. In the special
case where d y = 0, both the positive and negative values represent a valid solution. In all
other cases, the second valid solution comes from the second solution for x1.

Geometrically, this problem should always have at least one solution. Unfortunately,
the existence of noise on both range measurements and the integrated relative velocity
can cause the problem to become unsolvable. Specifically, this happens when the trian-
gle inequality is violated by the measurements, causing the discriminant to be negative
(in our example in Figure B.1, that would mean |r1| > |r0| + |p1 −p0|). For such mea-
surements to appear, the triangle is likely close to a line, i.e. we observe a radial relative
movement. The best course of action is then to use the integral of relative velocity as
direction, and the second range measurement as distance.

p̂1 = r1√
d x2 +d y2

[
d x
d y

]
(B.22)
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