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Abstract
We prove that five ways to define entry A086377 in the OEIS do lead to the same
integer sequence.

– Dedicated to Je↵ Shallit on the occasion of his 60th birthday

1. Introduction

In September of 2003 Benoit Cloitre contributed a sequence to the On-Line Ency-
clopedia of Integer Sequences [4], defined by him as a1 = 1, and for n � 2 by

an =

8><
>:

an�1 + 2 if n is in the sequence,
an�1 + 2 if n and n�1 are not in the sequence,
an�1 + 3 if n is not in the sequence,but n�1 is in the sequence.

(1)

The first 25 values of this sequence are

1, 4, 6, 8, 11, 13, 16, 18, 21, 23, 25, 28, 30, 33, 35, 37, 40, 42, 45, 47, 49, 52, 54, 57, 59.

The purpose of this paper is to prove the equivalence of five ways to define this
integer sequence, most of them already conjecturally stated in the OEIS article
on A086377. Besides a simplified recursion, the alternatives involve statements in
terms of a morphic sequence, of a Beatty sequence, and of approximation properties
linking a classical continued fraction of 4

⇡ to that of
p

2.
1Supported by the ANR project ‘Dyna3S’ (ANR-13-BS02-0003).
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2. The Theorem

Theorem 1. The following five definitions produce the same integer sequence:

(an) defined by a1 = 1 and for n � 2:

an =

8><
>:

an�1 + 2 if n is in the sequence,
an�1 + 2 if n and n�1 are not in the sequence,
an�1 + 3 if n is not in the sequence,but n�1 is in the sequence;

(bn) defined by b1 = 1 and for n � 2:

bn =

(
bn�1 + 2 if n�1 is not in the sequence,
bn�1 + 3 if n�1 is in the sequence;

(cn) for n � 1 defined as the position of the n-th zero in the fixed point of the
morphism

� :

(
0 7! 011
1 7! 01

;

(dn) defined by dn =
⌅
(1 +

p
2) · n� 1

2

p
2
⇧

for n � 1;

(en) defined by en = drnc = brn + 1
2c, with r1 =

4
⇡

and rn+1 =
n2

rn � (2n� 1)
, for

n � 1.

At first we found it hard to believe the equivalence of these definitions, but a
verification of the first 130000 terms (a130000 = 313847) convinced us to look for
proofs.

3. Simplification and a Morphic Sequence

To show that (bn) defines the same sequence as (an), simply note that an�an�1 � 2
for all n: hence if n is in the sequence then n � 1 is not, and we can combine the
first two cases in Equation (1).

In a comment to sequence A086377, Clark Kimberling asked if the integers in
this sequence coincide with the positions of the zeroes in sequence A189687, which
is the fixed point of the substitution

� :

(
0 7! 011
1 7! 01

,
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defining the sequence (cn) in the Theorem. It is not hard to see that this indeed
produces the same as sequence (bn); repeatedly applying the morphism � to 0
produces after a few steps the initial segment

0110101011010110101101010110101101010110101101010110101101011· · · .

The position cn of the n-th zero is 2 ahead of cn�1 precisely when the latter is
followed by a single 1, that is, when there is a 1 at position n � 1, and it is 3
ahead of cn�1 if that zero is followed by 11, which means that there was a 0 at
position n� 1. Thus the rule is exactly that defining (bn).

4. Beatty Sequence

Every pair of real numbers ↵ and � determines a Beatty sequence by

B(↵,�)n := bn↵+ �c, n = 1, 2, . . . .

The numbers ↵ and � also determine sequences by

St(↵,�)n := b(n + 1)↵+ �c � bn↵+ �c, n = 1, 2, . . . ,

which is a Sturmian sequence (of slope ↵), over the alphabet {0, 1}, provided that
0  ↵ < 1.

Thus Sturmian sequences are first di↵erences of Beatty sequences (when 0  ↵ <
1), but Beatty sequences and Sturmian sequences are also linked in another way.

Lemma 1. Let ↵ > 1 be irrational, and let (sn)n�1 be given by sn = St( 1
↵ ,��

↵ )n,
for some real number � with ↵ + � > 1 and such that k↵ + � 62 Z for all positive
integers k. Then B(↵,�) is the sequence of positions of 1 in (sn).

Proof. This is a generalization of Lemma 9.1.3 in [1], from homogeneous to inho-
mogeneous Sturmian sequences. The proof also generalizes:

there exists k � 1 : n = bk↵+ �c if and only if

there exists k � 1 : n  k↵+ � < n + 1 if and only if

there exists k � 1 :
n� �

↵
 k <

n + 1� �

↵
if and only if

there exists k � 1 :
�

n� �

↵

⌫
= k � 1 and

�
n� �

↵
+

1
↵

⌫
= k if and only if

�
n + 1
↵

� �

↵

⌫
�

�
n

↵
� �

↵

⌫
= 1 if and only if

St
� 1
↵

,��
↵

�
n

= 1.
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Our goal in this section is to prove that (cn) = (dn). Let  be the morphism

 :
n 0 ! 10

1 ! 100, and let w be the fixed point. Then

w = 1001010100101001010010101001010010101001010010101001010010100· · · ,

which is obtained by exchanging 0s and 1s in the fixed point of �, i.e.,  = E�E,
with E the exchange morphism given by E(0) = 1, E(1) = 0. So the positions of 0
in the fixed point of � correspond to the positions of 1 in the fixed point w of  .

Let ↵d = 1 +
p

2 and �d = �1
2

p
2; then dn = B(↵d,�d)n, for n � 1.

Applying Lemma 1, we deduce that dn also equals the position of the n-th 1 in
the Sturmian sequence St(↵,�), generated by

↵ =
1
↵d

=
p

2� 1, � =
��d

↵d
= 1� 1

2
p

2.

Lemma 2. St
�p

2�1, 1� 1
2

p
2
�

= w.

Proof. This was already proved by Nico de Bruijn in 1981 ([2]), where it is the main
example. See also Lemma 2 in [6]. Note, however, that our Sturmian sequences
start at n = 1.

For a ‘modern’ proof as suggested by [3, Section 4], let  1 and  2 be the elemen-
tary morphisms given by  1(0) = 01, 1(1) = 0, and  2(0) = 10, 2(1) = 0. Then
 =  2 1E. This implies that the fixed point w of  is a Sturmian word (see [5,
Corollary 2.2.19]). To find its parameters (↵,�), use the 2D fractional linear maps
that describe how the parameters of a Sturmian word change when one applies an
elementary morphism. For Sturmian words starting at n = 0, the maps for E, 1

and  2 are2 respectively (see [5, Lemma 2.2.17, Lemma 2.2.18, Exercise 2.2.6])

T0(x, y) = (1�x, 1�y), T1(x, y) =
✓

1� x

2� x
,
1� y

2� x

◆
, T2(x, y) =

✓
1� x

2� x
,
2� x� y

2� x

◆
.

The change of parameters by applying  is therefore the composition

T210(x, y) := T2T1T0(x, y) =
✓

1
2 + x

,
2 + x� y

2 + x

◆
.

But the parameters ↵ and � of w do not change when one applies  . This means
that (↵,�) is a fixed point of T210, and one easily computes ↵ =

p
2� 1, and then

� = 1
2

p
2. Since our Sturmian words start at n = 1, we have to subtract ↵ from �

and obtain that w = St
�p

2�1, 1� 1
2

p
2
�
.

2Actually there is a subtlety here involving the ceiling representation of a Sturmian sequence,
but that does not apply in our case since � 62 Z↵ + Z.
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5. Converging Recurrence

In a comment to entry A086377, Joseph Biberstine conjectured a beautiful con-
nection with the infinite continued fraction expansion

4
⇡

= 1 +
12

3 +
22

5 +
32

7 +
42

9 +
52

11 +
62

. . .

,

derived from the arctangent function expansion. If we define Rn for n � 1 by

Rn = 2n� 1 +
n2

2n + 1 +
(n + 1)2

2n + 3 +
(n + 2)2

2n + 5 +
(n + 3)2

. . .

,

then R1 = 4/⇡ and Rn = 2n� 1 +
n2

Rn+1
. We see that

Rn

n

Rn+1

n + 1
� 2n� 1

n

Rn+1

n + 1
� n2

n(n + 1)
= 0.

This implies that if Rn/n converges, for n !1, then it does so to a (positive) zero
of x2 � 2x� 1, that is, to 1 +

p
2; cf. Lemma 3 below.

We consider now, conversely and slightly more generally, for any real h � 1, a
sequence of positive numbers rn satisfying

rn = hn� 1 +
n2

rn+1
(2)

for n � 1. We first show that this sequence is unique, i.e., there is a unique r1 > 0
such that rn > 0 for all n � 1, and give estimates for its terms.

Lemma 3. For each h � 1, there is a unique sequence of positive real numbers
(rn)n�1 satisfying the recurrence (2). Moreover, we have for this sequence, for all
n � 1,

0 < rn � ↵n + c <
(↵� c)(c� 1)

↵n
(3)

with ↵ =
h +

p
h2 + 4
2

and c =
1 + ↵

2↵� h
=

1
2

+
h + 2

2
p

h2 + 4
.
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Proof. Let fn(x) = hn � 1 + n2/x. Suppose that a sequence of positive numbers
rn satisfies (2), i.e., that fn(rn+1) = rn for all n � 1. Then we have rn > hn � 1
and thus rn < (h + 1/h)n for all n � 1. We deduce that there exists some � > 0
and N � 1 such that rn > (h + �)n for all n � N . Suppose that there is another
sequence of positive numbers r̃n satisfying (2). Since |f 0n(x)| = |n/x|2 < 1/(h + �)
for all x > (h + �)n, we have

|rN � r̃N | = |fNfN+1 · · · fn�1(rn)� fNfN+1 · · · fn�1(r̃n)|

<
|rn � r̃n|

(h + �)n�N
<

n/h

(h + �)n�N

for all n � N , hence rN = r̃N , which implies that rn = r̃n for all n � 1.
Next we show that

fn

�
↵(n + 1)� c

�
< ↵n� c +

(↵� c)(c� 1)
↵n

and
fn

⇣
↵(n + 1)� c +

(↵� c)(c� 1)
(n + 1)↵

⌘
> ↵n� c.

Indeed, using that ↵2 = h↵+ 1 and 2↵c� hc = 1 + ↵, we have

(↵n + ↵� c) fn

�
↵(n + 1)� c

�
= (hn� 1)(↵n + ↵� c) + n2

= (h↵+ 1)n2 + (h↵� hc� ↵)n� (↵� c)

< ↵2n2 + (↵2 � 2↵c)n� (↵� c) +
(↵� c)2(c� 1)

↵n

= (↵n + ↵� c)
⇣
↵n� c +

(↵� c)(c� 1)
↵n

⌘
,

and ⇣
↵n + ↵� c +

(↵� c)(c� 1)
↵(n + 1)

⌘
(↵n� c)

< ↵2n2 + (↵2 � 2↵c)n� (↵� c)� c(↵� c)(c� 1)
↵(n + 1)

< (h↵+ 1)n2 + (h↵� hc� ↵)n� (↵� c)� (↵� c)(c� 1)
↵(n + 1)

< (hn� 1)
⇣
↵n + ↵� c +

(↵� c)(c� 1)
↵(n + 1)

⌘
+ n2

=
⇣
↵n + ↵� c +

(↵� c)(c� 1)
↵(n + 1)

⌘
fn

⇣
↵(n + 1)� c +

(↵� c)(c� 1)
↵(n + 1)

⌘
.

As fn is monotonically decreasing for x > 0, we deduce that

0 < fn(x)� ↵n + c <
(↵� c)(c� 1)

↵n



INTEGERS: 18A (2018) 7

for all x with 0  x� ↵(n + 1) + c  (↵�c)(c�1)
↵(n+1) . Then we also have

0 < fnfn+1 · · · fn+k�1

�
↵(n + k)� c + x

�
� ↵n + c <

(↵� c)(c� 1)
↵n

for all k, n � 1, 0  x � ↵(n + k) + c  (↵�c)(c�1)
↵(n+k) . As fn is contracting for x �

↵(n+1)�c, the intervals [f1f2 · · · fn(↵(n+1)�c), f1f2 · · · fn(↵(n+1)�c+ (↵�c)(c�1)
↵(n+1) )]

converge to a point r1. Then the numbers rn given by (2) satisfy (3) for all n � 1.
By the first paragraph of the proof, this is the unique sequence of positive numbers
satisfying (2).

Now consider when ↵n � c + 1
2 is close to d↵n � c + 1

2e. Let pk/qk be the
convergents of the regular continued fraction ↵ = [h;h, h, . . .], i.e., q�1 = 0, q0 = 1,
qk+1 = hqk + qk�1 for k � 1, pk = qk+1. Then we have

qk =
↵k+1 + (�1)k/↵k+1

↵+ 1/↵

and thus

qk↵� pk =
(�1)k

↵k+1
. (4)

Lemma 4. Let h be a positive integer and ↵ =
h +

p
h2 + 4
2

. Then we have

d↵ne � ↵n =

8><
>:

j/↵2k if n = jq2k�1, k � 1, 1  j < ↵2k,

(↵� 1)/↵2k+1 if n = q2k�1 + q2k, k � 0,

(↵+ 1)/↵2k+2 if n = q2k+1 � q2k, k � 0,

and n(d↵ne � ↵n) � 1 for all other n � 1.

Proof. The formulas for n = jq2k�1, n = q2k�1 + q2k and n = q2k+1 � q2k are
immediate from (4). By [7, Ch. 2, §5, Theorem 2], we have n(d↵ne � ↵n) � 1 for
all n � 1 that are not of the form jqk, 1  j < ↵/

p
h, qk + qk�1 or qk � qk�1. Since

↵q2k � b↵q2kc = 1/↵2k+1, ↵(q2k + q2k+1) � b↵(q2k + q2k+1)c = (↵ � 1)/↵2k+2 and
↵(q2k � q2k�1) � b↵(q2k � q2k�1)c = (↵ + 1)/↵2k+1, we have d↵ne � ↵n > 1/2 for
n = jq2k, n = q2k + q2k+1 and n = q2k � q2k�1. If moreover n � 2, then we have
thus n(d↵ne � ↵n) � 1 for these n as well. Since q0 + q�1 = 1, the case n = 1 has
already been treated.

We obtain that

n
�
d↵ne � ↵n

�
=

8>>>>>><
>>>>>>:

j2(1� 1/↵4k)p
h2 + 4

if n = jq2k�1, k � 1, 1  j < ↵2k,

h� (↵� 1)2/↵4k+2

p
h2 + 4

if n = q2k�1 + q2k, k � 0,

h� (↵+ 1)2/↵4k+4

p
h2 + 4

if n = q2k+1 � q2k, k � 0.
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The worst case for n = q2k�1 + q2k or n = q2k+1� q2k is given by n = q�1 + q0 = 1,
hence

n
�
d↵ne � ↵n

�
� h + 1� ↵ = 1� 1

↵

for all n � 1 such that n 6= q2k�1 for all k � 1.
Now we come back to the case h = 2 and consider the distance of ↵n� c + 1

2 to
the nearest integer above ↵n� c + 1

2 . Note that c� 1
2 = 1p

2
. We have

2
⇣l
↵n� 1p

2

m
� ↵n +

1p
2

⌘
= 2

l
↵n� 1p

2

m
� 1� ↵(2n� 1)

� d↵(2n� 1)e � ↵(2n� 1) >
↵� 1
2↵n

,

where we have used that q2k�1 is even for all k � 1; thus
l
↵n� 1p

2

m
� ↵n +

1p
2

>
↵� 1
4↵n

.

Since (↵� c)(c� 1) =
1
4↵

, we have

↵n� 1p
2

< rn +
1
2

< ↵n� 1p
2

+
1

4↵n
< ↵n� 1p

2
+
↵� 1
4↵n

<
l
↵n� 1p

2

m

for all n � 1, thus dn = en. This completes the proof of Theorem 1.

We remark that h = 2 cannot be replaced by an arbitrary positive integer in
the previous paragraph. For example, for h = 1, we have ↵ = 1+

p
5

2 , c = ↵2
p

5
,

b137↵� c+ 1
2c = 220 and br137 + 1

2c = 221. However, computer simulations suggest
that (for any h) we always have b↵n� cc = brnc.
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