

Delft University of Technology

An Efficient GPU-based de Bruijn Graph Construction Algorithm for Micro-Assembly

Ren, Shanshan; Ahmed, Nauman; Bertels, Koen; Al-Ars, Zaid

DOI
10.1109/BIBE.2018.00020
Publication date
2018
Document Version
Accepted author manuscript
Published in
Proceedings - 2018 IEEE 18th annual IEEE International Conference on BioInformatics and BioEngineering
(BIBE 2018)

Citation (APA)
Ren, S., Ahmed, N., Bertels, K., & Al-Ars, Z. (2018). An Efficient GPU-based de Bruijn Graph Construction
Algorithm for Micro-Assembly. In N. G. Bourbakis, & D. Kavraki (Eds.), Proceedings - 2018 IEEE 18th
annual IEEE International Conference on BioInformatics and BioEngineering (BIBE 2018) (pp. 67-72).
Article 8567459 IEEE. https://doi.org/10.1109/BIBE.2018.00020
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/BIBE.2018.00020
https://doi.org/10.1109/BIBE.2018.00020

An Efficient GPU-based de Bruijn Graph

Construction Algorithm for Micro-Assembly
Shanshan Ren Nauman Ahmed Koen Bertels Zaid Al-Ars

Quantum & Computer Engineering Dept.

Delft University of Technology, 2628 CD Delft, The Netherlands

{s.ren, n.ahmed, k.l.m.bertels, z.al-ars}@tudelft.nl

Abstract—In order to improve the accuracy of indel detection,
micro-assembly is used in multiple variant callers, such as the
GATK HaplotypeCaller to reassemble reads in a specific region of
the genome. Assembly is a computationally intensive process that
causes runtime bottlenecks. In this paper, we propose a GPU-
based de Bruijn graph construction algorithm for micro-assembly
in the GATK HaplotypeCaller to improve its performance.
Various synthetic datasets are used to compare the performance
of the GPU-based de Bruijn graph construction implementation
with the software-only baseline, which achieves a speedup of up
to 3x. An experiment using two human genome datasets is used
to evaluate the performance shows a speedup of up to 2.66x.

Index Terms—GPU acceleration; de Bruijn graph construc-
tion; micro-assembly; repeat k-mers

I. INTRODUCTION

Alignment-based variant discovery is a widely used ap-

proach to identify variants in genomic data. This approach

first aligns the sequencing dataset of a sample genome to

a reference genome using alignment tools. It then compares

the aligned dataset to the reference genome and extracts the

genome positions where the sample genome differs from the

reference genome using variant callers. The variants found

through this approach include single nucleotide variations

(snv’s), small insertions/deletions (indels) and structural vari-

ations (svs). However, reads with indels are easily misaligned

during the alignment step, leading to low accuracy of indel

detection.

In order to improve the accuracy of variant detection of in-

dels in particular, various local assembly based variant callers

are proposed to correct the misalignment errors of alignment-

based variant discovery approach, such as Scalpel [1], Platy-

pus [2] and GATK HaplotypeCaller (HC) [3], [4]. In local

assembly based variant callers, reads aligned to a certain

region of the reference genome are assembled into a long

DNA sequence covering this region. This process is referred to

as micro-assembly or local assembly. Assembly based variant

callers not only improve the accuracy of indel detection, but

also enhance the accuracy of snv detection by making use of

linkage disequilibrium between nearby variants.

One of the challenges of genome assembly is repeats in

the genome. In most of local assembly based variant callers,

a popular method to handle repeats is to avoid cycles in the

graph [5], used in Scalpel, GATK HC, and ABRA. If cycles are

detected in the graph, the region is reassembled using higher

k-mer sizes until there are no cycles in the graph. GATK HC,

which is widely used in many large-scale sequencing project,

takes more measures to handle repeats. In GATK HC, k-mers

are classified into two groups: unique k-mers and repeat k-

mers. If a k-mer occurs twice or more than twice in a read, it is

a repeat k-mer; otherwise, it is a unique k-mer. During graph

construction, unique k-mers are collapsed into single nodes,

while repeat k-mers are not collapsed into single nodes. In this

way, some cycles in the graph caused by repeats are avoided,

which reduces the probability of reassembly with larger k-mer

sizes.

Existing assembly algorithms used by many genome as-

semblers use de Bruijn graphs (DBGs) construction methods.

However, since previous efforts to accelerate DBG construc-

tion on GPU (such as [6], [7] and [8]) collapse repeat k-mers

into single nodes, these methods are not suitable for DBG

construction of micro-assembly in GATK HC. In this paper, we

propose a novel GPU-based algorithm for DBG construction

for micro-assembly in GATK HC.

The rest of this paper is organized as follows. Section II

describes the algorithm of DBG construction in GATK HC.

Section III presents the proposed algorithm of DBG con-

struction. Section IV presents and discusses the experimental

results. Finally, Section V concludes this paper.

II. DBG CONSTRUCITON IN GATK HC

The DBG construction for micro-assembly in GATK HC is

divided into two main steps.

In step 1, each read aligned to a region is decomposed into

multiple k-mers and each k-mer is checked to find repeat k-

mers. A region is identified based on significant evidence of

variation, which is referred to as active region.

In step 2, each read is then considered as a candidate to

create new nodes, create new edges and increase edge weights.

For a read, the first unique k-mer is identified ignoring the

repeat k-mers before it. From this unique k-mer, the k-mers

in this read and the overlap relationships between k-mers are

used to construct the de Bruijn graph. This construction is

performed as follows: (a) If the node mapped by this unique

k-mer has not been created, a new node mapped by this unique

k-mer is created. Otherwise, the node mapped by this unique

k-mer is identified. Let the node obtained be Node A. (b) The

program then checks whether Node A has an edge, which

connects Node A and the node mapped by the next k-mer.

If this edge is found, the weight of the edge is increased.

Otherwise, the program checks whether the next k-mer is a

unique k-mer or a repeat k-mer. If it is a unique k-mer, the

program finds or creates a node mapped by the next k-mer.

If it is a repeat k-mer, a node mapped by the next k-mer is

Read 1: ACGTCGTCA

Read 2: AGTCGTC

k-mers: ACG, CGT, GTC, TCG, CGT, GTC, TCA

k-mers: AGT, GTC, TCG, CGT, GTC

(a) Classification of k-mers

ACG CGT GTC TCG CGT GTC TCA
1 1 1 1 1 1

(b) DBG of Read 1

ACG CGT GTC TCG CGT GTC TCA

AGT GTC

1 1 1 2 2 1

1

1

(c) DBG of Read 1 and Read 2

Fig. 1. Illustration of a simple DBG construction in GATK HC

created. An edge connecting this node and the node mapped

by the next k-mer is then created and the weight is set to 1.

In this step, the node mapped by the next k-mer is obtained.

(c) Let the node obtained in step (b) be Node A and repeat

step (b) until there are no k-mers in the read.

Fig. 1 shows a simple example of DBG construction in

GATK HC for two reads using a k-mer size of 3. The two reads

are first decomposed into multiple k-mers, which are then

classified into unique k-mers and repeat k-mers. The repeat

k-mers are marked in red. The two reads are then taken in turn

to construct the graph. In the graph, black nodes and red nodes

represent nodes mapped by unique k-mers and repeat k-mers,

respectively. Edges represent overlap relationships between k-

mers and the numbers above these edges represent occurrences

of the overlap relationships, referred to as edge weights. As

shown by Fig. 1, the unique k-mers with the same value are

mapped to single nodes in the graph, such as “TCG’. However,

the repeat k-mers with the same value are mapped to multiple

nodes in the graph, such as “CGT” and “GTC”. Moreover,

the repeat k-mers with the same value from different reads

may be collapsed into single node. For example, the second

“CGT” in Read 1 and “CGT” in read 2 are mapped to one

node. This is because the node mapped by the second “CGT”

in Read 1 is created in Fig. 1 (b) and when Read 2 are taken

to construct a graph, there is already an edge connecting the

node mapped by “TCG” and the node mapped by “CGT” in

the graph. As explained in the workflow, the node mapped

by a repeat k-mer is created when there is no edge connecting

Node A and the node mapped by the repeat k-mer in the graph.

Thus, the repeat k-mer “CGT” in Read 2 do not create new

nodes and the weight of the edge is increased to two. This

example indicates that the creation of the node mapped by a

repeat k-mer depends on the early computation results.

III. GPU-BASED DBG CONSTRUCTION

A. Algorithm idea

There are two kinds of nodes in the graph: unique nodes,

which are nodes mapped by unique k-mers, and repeat nodes,

which are nodes mapped by repeat k-mers. Hence, there are

four kinds of edges in the graph: U-U, U-R, R-R and R-U.

U-U edge stands for an edge that starts from a unique node

and ends with a unique node, etc.

DBG construction can be divided into two parts. One part

is to create repeat nodes and U-R, R-R and R-U edges, while

the other part is to create unique nodes and U-U edges. The

former can be calculated by handling the special subsequences

of reads using the method in GATK HC. The special subse-

quences are defined as two kinds of subsequences: (a) the

subsequence having at least three k-mers, among which the

first and last k-mers are unique k-mers and the other k-mers

are repeat k-mers, and (b) the subsequence having at least two

k-mers, among which the first k-mer is a unique k-mer and

the other k-mers are repeat k-mers and the last repeat k-mer is

the last k-mer of the read where the subsequence comes from.

The later is similar to the common way of DBG construction,

where the same k-mers are collapsed into single nodes. One

of the most popular acceleration methods of the common way

of DBG construction is to calculate the occurrences of (k+1)-

mers in parallel.

Thus, in this paper we propose the following GPU-based

algorithm for DBG construction. First, we assume there are no

repeat k-mers and calculate the occurrences of (k+1)-mers in

parallel on the GPU. We then check whether there are repeat

k-mers. If there are no repeat k-mers, (k+1)-mers and their

occurrences are used to construct the graph. Otherwise, (k+1)-

mers having one or two repeat k-mers are deleted and the

special subsequences are identified. The remaining (k+1)-mers

and their occurrences and the special subsequences are then

used to construct the graph.

B. Workflow of GPU-based algorithm

Fig. 2 shows the workflow of the GPU-based DBG construc-

tion algorithm. The input data are the reads aligned to multiple

active regions. The output data are the de Bruijn graphs stored

using ReadThreadingGraph in GATK HC.

The DBG construction algorithm is implemented through a

C program, a CUDA program and a Java program together.

There are in total twelve steps. Since GATK HC is a Java-

based program, the input data are transferred to the C program

through JNI (Java Native Interface) and then transferred to

GPU. On the GPU, the 64-bit values of k-mers and (k+1)-mers

are generated. The 64-bit values of (k+1)-mers are processed

to obtain their occurrences, while the 64-bit values of k-mers

are handled to calculate the number of k-mers in each active

region after reducing the repeat k-mers in each sequence,

which is used to check whether there are repeat k-mers in each

active region. The computation results on the GPU are then

transferred back to the host. For each active region, if there

are repeat k-mers in the active region, the repeat k-mers are

found and the special subsequences are identified. Moreover,

the 64-bit values of (k+1)-mers having repeat k-mers and their

occurrence are deleted. The remaining 64-bit values of (k+1)-

mers are transferred to GPU, then transformed into (k+1)-mers

and transferred back to the host. The computation results of

the C program are transferred to the Java program and used

to construct the graphs.

Data

Java

C

GPU

Input data

Transfer data to C program

Transfer data to GPU

Generate 64-bit values of k-mers and (k+1)-mers

Compute the occurrences of (k+1)-mers

Handle k-mers

Transfer data to the host

Identify special subsequences and handle (k+1)-mers

Transfer 64-bit values of (k+1)-mer to GPU

Transform 64-bit values of (k+1)-mer to (k+1)-mer

Transfer (k+1)-mer to the host

Transfer data to Java program

Construct and store graphs

Output data

Fig. 2. Workflow of GPU-based DBG construction algorithm

C. Generate 64-bit values of k-mers and (k+1)-mers

This step is implemented on the GPU. Each thread block

takes charge of one read to generate 64-bit values of its k-

mers and (k+1)-mers, which is shown in Algorithm 1. Every

4 characters of the read are loaded by one thread and stored

in the shared memory (read s[]). Every character of the

read is transformed into one byte, which is 0, 1, 2, or 3,

and then stored in the shared memory (Rbyte[]) by one

thread. Finally, each thread performs bitwise operations to

generate the 64-bit values of one k-mer and one (k+1)-mer

and stores the 64-bit values in the global memory (kmer 64[]
and kmer add 64[]). Since reads are from multiple active

regions, two arrays (kmer active[] and kmer add active[])
are used to store the active region id of each k-mer and (k+1)-

mer, respectively. Moreover, one more array (kmer seq id[])
is used to store the sequence id of each k-mer.

D. Compute the occurrences of (k+1)-mers

This step is implemented on the GPU. Functions from the

Thrust library [9] are employed to compute the occurrences

of (k+1)-mers. Since (k+1)-mers are from multiple active

regions, the 64-bit value array of (k+1)-mers and the active

region id array of (k+1)-mers are handled together. This step

is implemented by three operations, which is shown with an

example in Fig. 3.

(1) The elements in the 64-bit value array of (k+1)-mers are

sorted in ascending order. In the meanwhile, the elements

in the active region id array change their placements in

correspondence to the sorting operations in the 64-bit

Algorithm 1 Generating k-mers and (k+1)-mers

1: function GENERATE(read[], length,k size active id, seq id,
kmer 64[], kmer active[], kmer seq id[], kmer add 64[],
kmer add active[])

2: h← (length+ 4− 1)/4
3: t← (h+ blockDim.x− 1)/blockDim.x
4: for i← 0, t− 1 do ⊲ Load and store a read
5: j ← threadIdx.x+ i ∗ blockDim.x
6: if j < h then
7: a← read[j] ⊲ type of a is char4
8: read s[j × 4]← a.x
9: read s[j × 4 + 1]← a.y

10: read s[j × 4 + 2]← a.z
11: read s[j × 4 + 3]← a.w

12: end for
13: syncthreads()
14: t← (length+ blockDim.x− 1)/blockDim.x
15: for i← 0, t− 1 do ⊲ Transform into bytes
16: j ← threadIdx.x+ i ∗ blockDim.x
17: if j < length then
18: b← read s[j]
19: c ← (b == 'A')?0 : ((b == 'C ')?1 : ((b ==

'G')?2 : 3))
20: Rbyte[j] = c

21: end for
22: syncthreads()
23: kmer number ← length− k size+ 1
24: t← (kmer number + blockDim.x− 1)/blockDim.x
25: for i← 0, t− 1 do ⊲ Generate 64-bit values
26: j ← threadIdx.x+ i ∗ blockDim.x
27: val← 0 ⊲ type of val is uint64 t
28: if j < kmer number then
29: for f ← 0, k size− 1 do
30: val← (val << 2)|(Rbyte[j + f]&3)
31: end for
32: kmer 64[j]← val
33: kmer active[j]← active id
34: kmer seq id[j]← seq id
35: if j! = kmer number − 1 then
36: val← (val << 2)|(Rbyte[j + k size]&3
37: kmer add 64[j]← val
38: kmer add active[j]← active id

39: end for
40: end function

value array of (k+1)-mers. This operation is implemented

by the sort by key() function.

(2) The elements in the active region id array are sorted

in ascending order, leading to corresponding changes

of element placements in the 64-bit value array of

(k+1)-mers. This operation is implemented by the

stable sort by key() function.

(3) A constant array is used to store the current occurrence

of each (k+1)-mer and the value of each element in this

array is 1. The Reduce by key() function is employed to

calculate the number of the consecutive equal elements in

the 64-bit value array of (k+1)-mers. The reduced results

of the 64-bit value array of (k+1)-mers are stored in a

new array and the occurrences of (k+1)-mers are stored

in another new array.

The new 64-bit value array of (k+1)-mers and the occur-

5

4

5

3

5

3

1

1

1

2

2

2

3

3

4

5

5

5

2

2

1

1

1

2

4

5

5

3

3

5

1

1

1

2

2

2

4

5

5

3

3

5

1

1

1

1

1

1

4

5

3

5

1

2

2

1

(1) (2)

(3)

Fig. 3. An example of calculating the occurrences of (k+1)-mers. Purple array
stores the 64-bit values of (k+1)-mers. Pink array stores the active region id
of each (k+1)-mer. Grey array stores the occurrences of (k+1)-mers. Yellow
array is a constant array.

rence array of (k+1)-mers are the computation results of this

step and will be used in the following steps.

E. Handle k-mers

This step is implemented on the GPU and also employs

functions from the Thrust library. The 64-bit value array of k-

mers, the sequence id array of k-mers and the active region id

array of k-mers are handled together. This step is implemented

by four operations, which is shown with an example in Fig. 4.

The first two operations (1) and (2) are similar to the first two

operations in Section III-D except the active region id array

of (k+1)-mers is replaced by the sequence id array of k-mers.

After the first two operations, the 64-bit values of the equal

k-mers from the same sequence are consecutive in the 64-bit

value array of k-mers.

The third operation (3) is to reduce the consecutive equal

elements in the 64-bit value array of k-mers and the sequence

id array is used to make sure only the consecutive equal

elements from the same sequence are reduced, which is

implemented by the Reduce by key() function. The result

of this operation is a new array, which stores the active region

ids of the remaining k-mers.

The fourth operation (4) is to calculate the number of k-

mers in each active region after reducing repeat k-mers in each

sequence, which is implemented by the Reduce by key()
function. The result is stored in a new array, the length of

which is equal to the number of active regions.

The array storing the number of k-mers in each active

region after reducing repeat k-mers in each sequence is the

computation result of this step and will be used in the

following steps.

F. Identify special subsequences and handling (k+1)-mers

This step is implemented by a C program, which is shown in

Algorithm 2. For each active region, if the number of k-mers

is equal to the number of k-mers calculated in Section III-E,

there are no repeat k-mers in the region. Otherwise, there

are repeat k-mers in the region. Each read is then checked

3

5

3

5

2

3

1

1

1

2

3

3

2

3

3

3

5

5

3

1

1

3

1

2

3

3

5

5

2

5

1

1

1

2

3

3

3

3

5

5

2

3

1

1

1

2

3

3

1

1

1

1

1

2

1

1

1

1

2

4

1

(1) (2)

(3) (4)

Fig. 4. An example of handling k-mers. Purple array stores the 64-bit values
of k-mers. Yellow and pink array stores the sequence id and the active region
id of each k-mer, respectively. Grey array stores the number of k-mers in each
active region after reducing repeat k-mer in each sequence.

to find repeat k-mers. After all the repeat k-mers in the region

are found, each read is checked again to identify the special

subsequences.

Since operation (3) in Section III-D does not make sure

that only the consecutive equal 64-bit values of (k+1)-mers

from the same active region are reduced, extra operations are

taken to remedy this, which are from line 11 to line 26 in

Algorithm 2. For each active region, if the sum of the weights

of existing (k+1)-mers of the region is smaller than the number

of (k+1)-mers in the region, a (k+1)-mer has a chance to be

added to the region and the weight of the (k+1)-mer added

to the region is calculated from line 14 to line 19. If the 64-

bit value of the (k+1)-mer has repeat k-mers, the (k+1)-mer

will not be added to the region and neither will the calculated

weight of the (k+1)-mer.

G. Transform 64-bit values of (k+1)-mer into (k+1)-mer

This step is implemented on the GPU, where each thread

takes charge of one (k+1)-mer. Each thread first loads the 64-

bit value of a (k+1)-mer into its registers and then transform

every 2 bits to a character, which is then stored in the shared

memory. After transformation, characters calculated by each

thread in one thread block are stored in the consecutive

addresses. Finally, each four characters composing a char4

value are stored in the global memory by one thread. In this

way, the global memory accesses of the threads in a warp

(32 consecutive threads) to store characters are coalesced. The

computation result of this step is an array storing the characters

of all (k+1)-mers.

H. Construct and store graphs

This step is implemented by a Java program. For each active

region, (k+1)-mers are used to create unique nodes and U-U

edges and occurrences of (k+1)-mers are the weights of U-

U edges. If the active region has repeat k-mers, the special

subsequences are handled using the method in GATK HC to

create repeat nodes and U-R, R-R and R-U edges and increase

the weights of these edges. All the nodes, edges and weights

of these edges are stored using ReadThreadingGraph.

Algorithm 2 Identifying special subsequences and handling

(k+1)-mers

1: function IDENTIFY(region number, k region[],
k add region[], k region GPU [], kmer add 64[],
k add number[], new 64, new number[])

2: t← 0, p← 0
3: for i← 1, region number do
4: if k region[i] == k region GPU [i] then
5: for reads in the region do
6: find repeat kmer()
7: end for
8: for reads in the region do
9: find subsequence()

10: end for

11: cur ← 0
12: while cur < k add region[i] do
13: cur+ = k add number[t]
14: if cur > k add region[i] then
15: sub← cur − k add region[i]
16: n← k add number[t]− sub
17: k add number[t]← sub
18: else
19: n← k add number[t]

20: if Not have repeat(kmer add 64[t]) then
21: new 64[p]← k add 64[t]
22: new number[p]← n
23: p++

24: if cur <= k add region[i] then
25: t← t+ 1
26: end while
27: end for
28: end function

IV. RESULTS AND DISCUSSION

A. Experimental setup

We compare the GPU-based DBG construction implemen-

tation and DBG construction implementation in GATK HC

(CPU benchmark) with both synthetic and real datasets. The

CPU implementation is achieved by modifying GATK HC 3.7

to read input datasets, construct DBGs and output graphs.

The input datasets are reads of multiple active regions.

In order to get the synthetic input datasets, we first use

Wgsim [10] to generate reads from a reference sequence,

which is chromosome 19 of the human genome (UCSC hg19),

then follow the GATK best practices pipeline to get the input

datasets for GATK HC and use GATK HC to produce reads of

multiple active regions. As to the real datasets, the processing

steps are the same as for the synthetic datasets except that we

use reads produced by an NGS platform instead of the reads

simulated by Wgsim.

The output datasets are DBGs of multiple active regions.

A simple program is designed to sort the nodes and edges

in each graph in order to compare the output and assure the

correctness of the results.

A server-class machine is used to perform all the experi-

ments. This machine has two Intel Xeon processors, each of

which has 14 two-way hyper-threaded cores running at 2.4

GHz, 192 GB of RAM, and an NVIDIA Tesla K40 card, which

consists of 2880 cores running at 745 MHz.

B. Impact of coverage on performance

We generated 8 synthetic datasets using Wgsim with dif-

ferent levels of read coverage, ranging from 10x to 80x. For

all these synthetic reads, we used the Wgsim parameters of

100bp for the read length, 0.01 for the mutation rate, and 0.15

for the indel fraction. The k-mer size is 10.

10 20 30 40 50 60 70 80
0

50

100

150

200

Coverage

E
x
ec

u
ti

o
n

ti
m

e
(s

)

CPU GPU

0

1

2

3

4

S
p

ee
d

u
pSpeedup

Fig. 5. Execution time and speedup vs coverage of the GPU and CPU
implementations with the synthetic datasets

Fig. 5 shows that the execution time and speedup of the

GPU and CPU implementations with respect to coverage of the

synthetic datasets. The figure indicates that the execution time

of both implementations increases with increasing coverage.

However, the execution time of the CPU implementation

increases faster than the GPU-based implementation. Thus, the

speedup of the GPU-based DBG construction implementation

increases with increasing coverage. When the coverage of the

synthetic dataset is 80x, the speedup is the highest at 3x.

The execution time of the GPU-based implementation is

divided into four parts: computation time on the GPU (in-

cluding data transfer to/from GPU), computation time of the

C program, computation time of the Java program and data

transfer time using JNI. Fig. 6 shows the percentage of the four

parts of the execution time of the GPU-based implementation

with the synthetic datasets for different coverage levels. The

computation time on the GPU occupies a large part of the total

execution time, which increases when the coverage increases.

This is because when the coverage increases, the number of

reads aligned to each active region increase as well, which

increases the number of k-mers and (k+1)-mers and in turn

increases the computation time on the GPU.

10 20 30 40 50 60 70 80
0

20

40

60

80

100

1.5 2 2.4 2.7 3 3.3 3.6 3.9

36
42.6 47.3 51 54.2 56.3 58.3 59.8

1.5
2.3

2.9
3.4

3.8 4.2 4.4 4.761
53.1 47.4 42.9 39 36.2 33.7 31.6

Coverage

P
er

ce
n

ta
g

e
(%

)

JNI

GPU

C

Java

Fig. 6. Percentage of the four parts of the execution time of the GPU-based
implementation with the synthetic datasets for different coverage levels

For the GPU-based implementation, the weights of edges

are calculated in parallel on the GPU by calculating the

occurrences of (k+1)-mers; while for the CPU implementation,

the weights of edges are serially increased. Thus, the different

methods of handling weights of edges make the execution time

growth rates of the two implementations different when the

coverage increases.

C. Impact of mutation rate on performance

We used a total of 16 synthetic datasets divided into 4

groups according to their coverage (20x, 40x, 60x and 80x).

Each group consists of 4 synthetic datasets with a different

mutation rate: 0.05%, 0.1%, 0.5% and 1%. The other parame-

ters of Wgsim for each dataset are kept the same: read length

is 100bp, indel fraction is 0.15. The k-mer size is 10.

0.05% 0.1% 0.5% 1%
0

50

100

150

200

Mutation rate

E
x
ec

u
ti

o
n

ti
m

e
(s

)

20x GPU 20x CPU 40x GPU 40x CPU

60x GPU 60x CPU 80x GPU 80x CPU

0

1

2

3

S
p

ee
d

u
p

20x GPU 40x GPU 60x GPU 80x GPU

20x CPU 40x CPU 60x CPU 80x CPU

20x speedup 40x speedup 60x speedup 80x speedup

Fig. 7. Execution time and speedup of the two implementations with the
synthetic datasets of different mutation rate

Fig. 7 shows the execution time and speedup of the two

implementations with all 16 synthetic datasets. The execution

time of the two implementations of different coverage in-

creases when the mutation rate increases. This is because when

the mutation rate increases, the number of regions which are

chosen based on the significant evidence of variation increases

and in turn the input data handled by the two implementations

increases. In addition, Fig. 7 shows that the speedup of the

GPU-based implementation does not change much when the

mutation rate increases. To explain this behavior, we take

the synthetic datasets with coverage 80x as an example. For

this coverage level, Fig. 8 shows that the percentage of the

computation time on the GPU changes a little when the mu-

tation rate increases, resulting in little change of the speedup

brought by GPU acceleration. In addition, the percentage of

the computation time of the C program slightly increases when

the mutation rate increases. This is because the number of

different k-mers and different (k+1)-mers increase as well

when the mutation rate increases.

0.05% 0.1% 0.5% 1%
0

20

40

60

80

100

4.96 4.94 4.92 4.83

58.3 59.2 60.2 59.4

2.54 2.73 3.38 4.07

34.2 33.1 31.5 31.7

Mutation rate

P
er

ce
n

ta
g

e
(%

)

JNI

GPU

C

Java

Fig. 8. Percentage of the four parts of the execution time of the GPU-based
implementation with different mutation rates for coverage 80x

D. Performance with real datasets

We use 2 real datasets to compare the performance of

the GPU and CPU implementations for a k-mer size of 10.

The first dataset is chromosome 20 of NA12878 downloaded

from the GATK resource bundle, coverage of which is ∼64x.

The second dataset is chromosome 17 of G15512.HCC1954.1,

coverage of which is ∼58x.

Table I shows the speedup of the two implementations with

respect to the real datasets. The speedup of the first dataset is

2.66x and the speedup of the second dataset is 2.47x.

TABLE I
PERFORMANCE COMPARISON FOR REAL DATASETS

Dataset CPU time (s) GPU time (s) Speedup

1 72.9 27.4 2.66x
2 53.8 21.7 2.47x

V. CONCLUSIONS

Micro-assembly is a widely used technique to increase

the accuracy of variant callers, such as the popular GATK

HC. This paper proposes a GPU-based DBG construction

algorithm for micro-assembly in GATK HC. The proposed

algorithm assumes that there are no repeat k-mers in the

dataset and calculates the occurrences of (k+1)-mers in parallel

on the GPU, thereby achieving high speedup. Then the dataset

is inspected for repeat k-mers, and only these repeats are

re-evaluated on the CPU. Experimental results show that

the speedup of our implementation compared with the CPU

benchmark implementation for synthetic datasets is up to 3x,

while the speedup achieved for real human genome datasets

can reach 2.66x.

REFERENCES

[1] H. Fang, E. A. Bergmann, K. Arora, V. Vacic, M. C. Zody, I. Iossifov,
J. A. O’Rawe, Y. Wu, L. T. Jimenez Barron, J. Rosenbaum, M. Ronemus,
Y. H. Lee, Z. Wang, E. Dikoglu, V. Jobanputra, G. J. Lyon, M. Wigler,
M. C. Schatz, and G. Narzisi. Indel variant analysis of short-read
sequencing data with Scalpel. Nat Protoc, 11(12):2529–2548, Dec 2016.

[2] A. Rimmer, H. Phan, I. Mathieson, Z. Iqbal, S.R.F. Twigg, WGS500
Consortium, A.O.M. Wilkie, G. McVean, and G. Lunter. Integrating
mapping-, assembly- and haplotype-based approaches for calling vari-
ants in clinical sequencing applications. Nat Genet, 46(8):912–918, 08
2014.

[3] G. A. Van der Auwera, M. O. Carneiro, C. Hartl, R. Poplin, G. Del An-
gel, A. Levy-Moonshine, et al. From FastQ data to high confidence
variant calls: the Genome Analysis Toolkit best practices pipeline. Curr

Protoc Bioinformatics, 43:1–33, 2013.
[4] S. Ren, K.L.M. Bertels, and Z. Al-Ars. Efficient acceleration of the pair-

hmms forward algorithm for gatk haplotypecaller on gpus. Evolutionary

Bioinformatics, 14, March 2018.
[5] G. Narzisi and M. C. Schatz. The challenge of small-scale repeats for

indel discovery. Front Bioeng Biotechnol, 3:8, 2015.
[6] Mian Lu, Qiong Luo, Bingqiang Wang, Junkai Wu, and Jiuxin Zhao.

GPU-Accelerated Bidirected De Bruijn Graph Construction for Genome

Assembly, pages 51–62. Springer Berlin Heidelberg, Berlin, Heidelberg,
2013.

[7] S. Qiu and Q. Luo. Parallelizing big de bruijn graph construction on
heterogeneous processors. In 2017 IEEE 37th International Conference

on Distributed Computing Systems (ICDCS), pages 1431–1441, June
2017.

[8] D. Li, C. M. Liu, R. Luo, K. Sadakane, and T. W. Lam. MEGAHIT:
an ultra-fast single-node solution for large and complex metagenomics
assembly via succinct de Bruijn graph. Bioinformatics, 31(10):1674–
1676, May 2015.

[9] Thrust: A productivity-oriented library for cuda. In GPU Computing

Gems, Jade Edition, pages 359 – 371. Morgan Kaufmann, Boston, 2012.
[10] Wgsim. https://github.com/lh3/wgsim. Accessed January 28, 2018.

