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A unified Maximum Likelihood framework for
simultaneous motion and T1 estimation in

quantitative MR T1 mapping
Gabriel Ramos-Llordén*, Member, IEEE, Arnold J. den Dekker, Gwendolyn Van Steenkiste, Ben Jeurissen,

Floris Vanhevel, Johan Van Audekerke, Marleen Verhoye and Jan Sijbers

Abstract—In quantitative MR T1 mapping, the spin-lattice
relaxation time T1 of tissues is estimated from a series of T1-
weighted images. As the T1 estimation is a voxel-wise estimation
procedure, correct spatial alignment of the T1-weighted images
is crucial. Conventionally, the T1-weighted images are first
registered based on a general-purpose registration metric, after
which the T1 map is estimated. However, as demonstrated in
this paper, such a two-step approach leads to a bias in the final
T1 map. In our work, instead of considering motion correction
as a preprocessing step, we recover the motion-free T1 map
using a unified estimation approach. In particular, we propose a
unified framework where the motion parameters and the T1 map
are simultaneously estimated with a Maximum Likelihood (ML)
estimator. With our framework, the relaxation model, the motion
model as well as the data statistics are jointly incorporated to
provide substantially more accurate motion and T1 parameter
estimates. Experiments with realistic Monte Carlo simulations
show that the proposed unified ML framework outperforms the
conventional two-step approach as well as state-of-the-art model-
based approaches, in terms of both motion and T1 map accuracy
and mean-square error. Furthermore, the proposed method was
additionally validated in a controlled experiment with real T1-
weighted data and with two in vivo human brain T1-weighted
data sets, showing its applicability in real-life scenarios.

Index Terms—T1 mapping, Maximum Likelihood, motion cor-
rection, dynamic MRI, registration

I. INTRODUCTION

Quantitative T1 mapping is a Magnetic Resonance Imaging
(MRI) technique in which the spin-lattice relaxation time T1
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of tissues is measured [1]. Because T1 depends on biophysical
properties, it is used as biomarker in a broad range of diseases,
such as multiple sclerosis [2], epilepsy [3] and Alzheimer’s
disease [4], as well as in the measurement of perfusion [5] and
blood flow [6]. Hence, its accurate and precise estimation is
of uttermost importance [1], [7]. In order to quantify T1, a set
of T1-weighted images with different sequence settings needs
to be acquired [1], [8], [9]. From this set, a spatial map of T1
values can be calculated by fitting a known relaxation model
at every voxel. Evidently, to obtain a meaningful T1 map,
spatial correspondence between the images in the acquired
series is crucial [10]. However, due to patient motion and/or
apparent spatial shifts introduced by the scanner (e.g., scanner
drift [11]), T1-weighted images are often misaligned.

To deal with this problem, T1-weighted images are com-
monly spatially registered prior to the estimation of the T1 map
[12], [13]. This is often done by choosing one T1-weighted
image as a target and subsequently registering the remaining
T1-weighted images to this target image by using a similarity
measure such as Mutual Information (MI) [14], [15].

Such an approach, however, suffers from inherent problems.
First, the specific relation between the intensity value as a
function of time of the (aligned) voxels is ignored. Second,
the registration is not driven by a global optimization criterion
that considers all T1-weighted images simultaneously. Even
more problematic is the fact that current motion correction
is a preprocessing step prior to the estimation of the T1
values. Such a two-step processing pipeline lacks a feedback
mechanism between the image registration and the T1 map
estimation step. As a result, registration errors will propagate
to the estimation step, leading to biased estimates [16].

Recently, progress in registration of T1-weighted images
was made by the introduction of model-based approaches.
Such techniques integrate the signal model connecting the
series of images (such as a T1 relaxation model) into the
registration step. State-of-the-art model-based methods have
shown to outperform the conventional two-step approach in
terms of accuracy, for example, in myocardial T1 mapping
[17], [18]. Unfortunately, they all come with serious limita-
tions for precise and accurate T1 mapping, mainly because
different criteria for registration and estimation are heuris-
tically combined [17], [18]. Since they do not constitute a
truly unified framework, the output of the algorithms cannot
be related to the optimal value of a given global information-
based criterion. As a consequence, it is doubtful whether all
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the information gathered in the series of T1-weighted images,
including the data statistics [7], [19], is optimally exploited.

In our work, we propose an integrated model-based image
registration and T1 estimation approach, where the motion
parameters and T1 map are jointly estimated using a unified
global information criterion, more specifically, the maximum
likelihood (ML) criterion [19]–[21]. By combining models of
T1 relaxation, motion, and noise into one statistical model of
the T1-weighted images, we are able to restore the original
motion-free T1 map using a joint ML estimator. The unified
ML framework allows to account for the statistical noise
model, the relaxation model and the motion model simulta-
neously, exploiting, in addition to the temporal information,
knowledge on data statistics. The large-scale ML optimization
problem is solved by alternating between the estimation of
motion and relaxation parameters in an efficient and robust
manner, making use of block coordinate descent [22] and
Majorize-Minimize (MM) algorithms [23]. Exact convergence
properties of the algorithm are presented, demonstrating that
the proposed iterative procedure leads to the ML estimates in
a computationally efficient way.

We thoroughly validate the proposed joint maximum likeli-
hood estimator (MLE) with realistic Monte Carlo (MC) simu-
lations and compare it with the conventional two-step approach
as well as the newest state-of-the-art model-based approach
of Hallack [18]. We show that substantially more accurate
T1 maps as well as motion parameters can be obtained with
our proposed joint MLE. Additionally, the T1 maps estimated
with the joint MLE are superior in terms of the root-mean-
square error (RMSE). Apart from simulation experiments, we
also quantitatively evaluate the performance of the joint MLE
in a controlled experiment involving real T1-weighted data.
Further, we validate it with two in vivo human brain T1-
weighted data sets corrupted by patient motion, showing its
applicability in real-life scenarios.

The remainder of the paper is organized as follows. In
Section II, the image model used to construct the joint MLE is
presented. Section III is devoted to the joint MLE algorithm.
Section IV describes the experiments of which the results are
presented in Section V, which is followed by a discussion in
Section VI. Finally, conclusions are drawn in Section VII.

II. THEORY

The derivation of the joint MLE requires a parametric
statistical model of the images. This section is devoted to
the derivation of such a model, which comprises a relaxation
signal model, a motion model, and a statistical noise model.

A. Relaxation signal model

In the absence of noise, the evolution of the magnitude MRI
signal in each voxel of a series of N T1-weighted images can
be described by a parametric model {fn(κ, T1)}Nn=1, where κ
denotes a vector of nuisance parameters. The exact expression
for this T1-relaxation model depends on the pulse sequence
that is used. In this work, we will use the Inversion Recovery
(IR) sequence, being the gold standard for T1-mapping [1].
Note that signal models corresponding with other sequences,

such as SPoiled Gradient Recalled echo (SPGR) [12] or
MOdified Look-Locker Inversion recovery (MOLLI) [24], can
be accommodated within our framework as well. For the IR
sequence, a common magnitude relaxation model is given by
[25]:

fn(a, b, T1) = |a+ be−
TIn
T1 |, with n = 1, ..., N, (1)

where {TIn}Nn=1 are the inversion times. The other parameters
a and b are related to, among others, the repetition time (TR),
radio frequency (RF) pulse angles and the tissue-dependent
proton density. The mathematical expressions that relate a
and b to these quantities for the case of gradient-recalled-echo
(GRE) IR and spin-echo (SE) IR can be found in [25].

To model the noiseless T1-weighted images, we use a vector
notation for the spatially varying parameters T1, a and b. Let
r = (x, y, z)

T be a vector in the Cartesian coordinate system
in which they are defined. Then, a 3D spatial T1 map of M
voxels can be defined as a column vector, T1 ∈ RM×1, where
[T1]m represents T1 defined at the spatial point rm, indexed
by voxel m. Similarly, we define a ∈ RM×1 and b ∈ RM×1 as
the parameter maps of a and b. For ease of readability and to
alleviate the notation, we introduce the parameter vector κ =
(aT , bT )T ∈ R2M×1. The relaxation model for the noiseless
n-th T1-weighted image is then given by

fn(κ,T1) = |a+ b� e−
TIn
T1 |, (2)

where � and | · | denote the point-wise multiplication and
point-wise modulus operator, respectively.

B. Motion model

In what follows, we will restrict the motion model of
the unified ML framework to inter-image motion, that is,
motion between the 3D T1-weighted images, as in [18]. In
the discussion section (Section VI), we further elaborate on
extensions of the unified ML framework in which intra-image
motion is incorporated, in particular, motion between the slices
of a multi-slice T1-weighted image.

The effect of inter-image motion is modeled by assuming
that fn(κ,T1) is observed in a different Cartesian coordinate
system rn for each acquisition n = 1, ..., N . In this work, we
illustrate the joint MLE with rigid motion. Hence, the spatial
point rnm, with m = 1, ...,M , is related to the reference-system
point rm, through a rigid transformation matrix, Mθn ∈ R4×4

(in homogeneous coordinates), parameterized by

θn = (txn, tyn, tzn, αn, βn, γn)T , (3)

with txn, tyn, tzn the translation parameters and αn, βn, γn
are the Euler angles of the three elementary rotation matrices
around axis x, y and z, respectively [26]. In our work, the
reference system r is defined similarly as the intrinsic coor-
dinate system which MATLAB uses to represent 3D images.
That is, axis x points in the direction of increasing column
index while y points in the direction of increasing row index.
Finally, the axis z is aligned with the direction of increasing
index of the third dimension. The origin of this coordinate
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system is the center of the 3D image. Furthermore, in multi-
slice acquisitions the axis z is aligned with the slice-encoding
direction.

The noiseless T1-weighted image observed at rn can be
modeled as the output of a linear operator that performs
rigid motion, Hθn{·}, and whose input is the unobserved
fn(κ,T1). Because Hθn{·} is linear, the input-output relation
can be concisely written in matrix form as:

f̃n(θn,κ,T1) = Hθnfn(κ,T1), (4)

where f̃n(θn,κ,T1) is the motion-corrupted noiseless
T1-weighted image acquired at TIn and Hθn ∈ RM×M is the
matrix representation of the linear motion operator Hθn{·}.

To design Hθn ∈ RM×M , we use the method proposed
in [27], where it was demonstrated that each of the rotation
matrices of Mθn can be decomposed as the product of three
shear matrices. Each of the shearings is implemented very
efficiently with Fast Fourier Transforms (FFT). Translation is
implemented using an FFT as well.

With the FFT approach, the motion operator Hθn can be
shown to be unitary, which means that its inverse is given
by HH

θn
, where the superscript H denotes the Hermitian

conjugate. Hence, the motion operator Hθn is reversible, i.e.,
when applied to an image, this image can be retrieved by
applying HH

θn
to the output of this operation. The unitarity

property of the motion operator will turn out to be useful in
the derivation of the joint MLE algorithm. Details of the exact
analytical expression of Hθn and the proof of the unitarity
property are provided in Section I of the additional document
which is included as part of the downloadable supplementary
material which accompanies this paper.

C. Statistical noise model

In practice, acquired T1-weighted images are inherently
disturbed by noise. A typical data distribution for (single-coil)
magnitude T1-weighted images is the Rice distribution [28]:

ps(s|µ, σ) =
s

σ2
e

−(s2+µ2)

2σ2 I0

(sµ
σ2

)
u(s), (5)

with µ the noiseless magnitude signal in a voxel, s the
noise disturbed signal, I0(·) the zeroth order modified Bessel
function of the first kind, and σ the standard deviation of
the Gaussian noise disturbing the underlying complex data
[21]. The unit step function u(·) is used to indicate that the
expression for the probability density function (PDF) of s is
valid for nonnegative values of s only. Note that for high
signal-to-noise ratio µ

σ > 3, the Rician PDF becomes quasi
Gaussian [29]. If multiple - instead of just one - receiving coils
are used to acquire the data and the k-space is fully sampled
(by each coil), the magnitude image that is reconstructed
using the Sum of Squares (SoS) method obeys a noncentral
chi (nc-χ) distribution, being the natural extension of the
Rician distribution for the single-coil case [30]. When parallel
MRI techniques that undersample the k-space to decrease the
acquisition time are performed, such as SENSE or GRAPPA,
other distributions may apply [31]. For a recent review on data
distributions in MRI, the reader is referred to [21]. In this
work, we will illustrate the proposed joint MLE by deriving

it for the case of independent Rician distributed voxels, with
different noise standard deviation σ for each voxel m and
for each acquisition n. This is an accurate noise model for
magnitude images that are reconstructed with SENSE [31].
It is also a valid noise model for magnitude images that are
reconstructed with GRAPPA jointly with a spatial-matched-
filter (SMF) data combination [32]. If, instead of SMF, SoS
is used in combination of GRAPPA, the data distribution can
be well approximated at high SNR by a Gaussian distribution
with a spatially variant variance [33]. The derivation of the
joint MLE for Gaussian distributed data will be covered in
subsection III-E.

III. JOINT MLE
Let sn ∈ RM×1, with n = 1, ..., N , denote an actual, noisy

T1-weighted image acquired at inversion time TIn. Assuming
Rician distributed data, it follows from Eq. (5) and the motion-
corrupted noiseless T1-weighted model Eq. (4) that the PDF
of the voxels [sn]m, m = 1, . . . ,M , of this image is given by

p[sn]m([sn]m|[f̃n]m, [σn]m) =
[sn]m
[σn]

2
m

e
−([sn]2m+[f̃n]2m)

2[σn]2m

× I0

(
[sn]m[f̃n]m

[σn]
2
m

)
u([sn]m).

(6)

Furthermore, if all voxels are assumed to be independent,
the joint PDF of the voxels constituting the image sn is
given by the product of the PDFs of the individual voxels,
i.e., psn(sn|f̃n,σn) =

∏M
m=1 p[sn]m([sn]m|[f̃n]m, [σn]m).

Similarly, the joint PDF of the supposedly independent voxels
of a set of N T1-weighted images {sn}Nn=1 is given by

ps(s|f̃ ,σ) =

N∏
n=1

psn(sn|f̃n,σn) (7)

with s = (sT1 , . . . , s
T
N )T , f̃ = (f̃T1 , . . . , f̃

T
N )T and

σ = (σT1 , . . . ,σ
T
N )

T . Note that this joint PDF depends on the
unknown parameters θ = (θT1 ,θ

T
2 , ...,θ

T
N )

T
,κ and T1 via f̃

and can hence be written as ps(s|θ,κ,T1,σ). To construct
the MLE of these parameters, the likelihood function must
be derived. The likelihood function is obtained from the joint
PDF, Eq. (7), by replacing the independent variables s by the
actual acquired voxel intensity values - that is, by numbers
- and the supposedly fixed, exact parameters θ,κ and T1 by
independent variables. The likelihood function is, therefore, a
function of the parameters considered as independent variables
and is parametric in the acquired voxel intensities, from now
on called observations [7]. To express this, the likelihood
function is written as L(θ,κ,T1|s). Strictly speaking, the
likelihood function also depends on σ. However, in our work,
we assume that σ can be estimated prior to the construction
of the joint MLE using tailored noise estimation techniques
[33], [34]. Hence, we omit the explicit σ-dependence in the
notation.

To simplify the notation, let us define the parameter vector
τ = (θT ,κT ,T T1 )T . The joint MLE τ̂ML of τ from the
observations s is that value of τ that maximizes the likelihood
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function L(τ |s), or equivalently, minimizes the so-called
negative log-likelihood function Ls(τ |s) , − logL(τ |s) with
respect to τ , i.e.,

τ̂ML = arg min
τ
Ls(τ |s). (8)

It follows from Eq. (7) that Ls(τ |s) can be written as

Ls(τ |s) =
N∑
n=1

Lsn(θn,κ,T1|sn), (9)

with Lsn(θn,κ,T1|sn) = − log psn(sn|f̃n,σn).
As the joint MLE can not be found analytically, one has to

resort to numerical optimization algorithms. In order to solve
this very-large-scale optimization problem, a cyclic block-
coordinate descent (cBCD) method was used [22]. cBCD
methods work by iteratively minimizing the cost function
Ls(θ,κ,T1|s) with respect to a subset of the optimization
variables, holding the remaining variables fixed [35], where in
each iteration, the roles of the optimization and fixed variables
are reversed [35]. The utility of the cBCD algorithm relies on
a smart selection of the subset of optimization variables. In
the case of our joint MLE, this subset is chosen to contain
the motion parameters or the relaxation parameters. In this
way, the very-large-scale optimization problem is separated
into more easily solvable problems.

Indeed, alternating between the motion estimation problem
and the relaxation estimation problem, the joint MLE is found
in an efficient way. Moreover, the cBCD method assures that
Ls(θ,κ,T1|s) decreases at every iteration [22]. Therefore,
convergence to at least a local minimum is guaranteed [36].
In summary, the cBCD-based joint MLE is obtained by the
following iterative recursive procedure:

θ̂(t+1) = arg min
θ

N∑
n=1

Lsn(θn, κ̂
(t), T̂1

(t)
|sn), (P.1)

κ̂(t+1), T̂1
(t+1)

= arg min
κ,T1

N∑
n=1

Lsn(θ̂(t+1)
n ,κ,T1|sn), (P.2)

with θ̂(0) = θini, κ̂(0) = κini and T̂1
(0)

= T1ini the initial
values of the parameters θ, κ and T1, respectively. This
procedure is terminated when the number of iterations exceeds
tmax or the relative decrease E(t) of Ls(θ,κ,T1|s) between
two consecutive iterations is below a fixed tolerance, Emin.

A detailed description of the problems (P.1) and (P.2) is
provided in subsections III-A and III-B, respectively. Further-
more, a pseudo-code of the joint MLE algorithm is shown in
subsection III-C, whereas its implementation is described in
subsection III-D.

A. Problem 1 (P.1): estimation of the motion parameters

The motion estimation problem adopts a particularly simple
structure when the relaxation parameters are fixed. If no de-
pendence of {θn}Nn=1 through index n is assumed, as is done
here, the minimization can be decoupled into N optimization
problems, which can be implemented very efficiently by paral-
lel operations. The parameters {θn}Nn=1 enter the linear motion
operator in a non-trivial way, which renders the analytical

calculation of the derivatives infeasible. Fortunately, the low
dimensionality of the N minimization problems, involving
only six variables each, allows us to use a derivative-free
optimization method. In our approach, simulated annealing
(SA) minimization is performed [37], which is known for
its ability to avoid being trapped in local minima and its
robustness to functions with complex structure [37]–[40]. Each
time, motion estimates from the previous iteration t are used
as initial guesses.

B. Problem 2 (P.2): estimation of the relaxation parameters

In contrast to P.1, the relaxation parameter estimation prob-
lem is a very-large-scale minimization problem. Derivative-
free algorithms such as SA are therefore impractical to use.
Quasi-Newton algorithms, on the other hand, may produce
critical memory storage problems, due to the large dimension-
ality of the Hessian matrix approximation. Furthermore, line
searches dramatically slow down the algorithm [41].

The optimization method of choice for solving this min-
imization problem is the use of an MM framework [42],
which yields a voxel-wise independent algorithm, allowing a
computationally efficient implementation. Here, we sketch the
basics of the MM algorithm applied to the estimation problem
at hand. The reader is referred to [42] for further details.

Let J(κ,T1) =
∑N
n=1 Lsn(θ̂

(t+1)
n ,κ,T1|sn) be the cost

function of P.2 that we seek to minimize w.r.t. κ and T1.
MM algorithms are defined through the following recursive
minimization problem:

κk+1,T k+1
1 = arg min

κ,T1

G(κ,T1|κk,T k1 ), (10)

where G(κ,T1|κk,T k1 ) is a new user-designed cost func-
tion. It can be demonstrated that the sequence of iter-
ates κk,T k1 obtained from Eq. (10) converges to a lo-
cal minimum of J(κ,T1) if G(κ,T1|κk,T k1 ) is what is
called in the optimization literature a surrogate function
of J(κ,T1). The properties that characterize a surrogate
function are 1) J(κ,T1) ≤ G(κ,T1|κk,T k1 ) ∀κ,T1 and
2) J(κk,T k1 ) = G(κk,T k1 |κk,T k1 ).

Obviously, to really benefit from the MM algorithm, the
surrogate function G(κ,T1|κk,T k1 ) should be easier to min-
imize than the original cost function J(κ,T1). A key re-
sult is presented by Varadarajan and Haldar [23], showing
that the following function is a valid surrogate function of
− log p[sn]m([sn]m|[f̃n]m, [σn]m):

1

2[σn]
2
m

(
[f̃ (t+1)
n (θ̂(t+1)

n ,κ,T1)]m − [s̆kn]m
)2

+ Cmn (k) (11)

with Cmn (k) a constant independent of κ and T1,

f̃ (t+1)
n (θ̂(t+1)

n ,κ,T1) = H
θ̂
(t+1)
n

fn(κ,T1), (12)

and

[s̆kn]m = [sn]m

I1
( [sn]m[f̃(t+1)

n (θ̂(t+1)
n ,κk,T k1 )]

m

[σn]
2
m

)
I0
( [sn]m[f̃

(t+1)
n (θ̂

(t+1)
n ,κk,T k1 )]

m

[σn]
2
m

) . (13)

with I1(·) the first order modified Bessel function of the first
kind.
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Note that f̃
(t+1)
n (θ̂

(t+1)
n ,κ,T1) describes the motion-

corrupted synthetic T1-weighted image, whereas s̆kn, from now
on called the Bessel image, is the actual acquired image sn
corrected with a Bessel correction factor. A surrogate function
for Lsn(θn,κ,T1|sn) is now obtained by summing Eq. (11)
over m, i.e.,

Gn(κ,T1|κk,T k1 ) = ||W 1/2
n

(
H
θ̂
(t+1)
n

fn(κ,T1)− s̆kn
)
||
2

2

+ Cn(k) (14)

with Wn = diag{ 1
2σ2

n
}. By summing Gn(κ,T1|κk,T k1 ) over

n, we would obtain a global surrogate function for J(κ,T1).
At this point, the main benefit of applying the MM framework
is that the relaxation estimation problem has now been trans-
formed into a collection of weighted non-linear least squares
(NLLS) problems, avoiding complicated minimization with
Bessel functions. However, we still can further simplify the
problem and convert it into a fully separable (voxel-wise inde-
pendent) NLLS problem. To that end, we apply another surro-
gate function G∗

n(κ,T1|κk,T k1 ) to each Gn(κ,T1|κk,T k1 ). It
is easy to demonstrate that if G∗

n(κ,T1|κk,T k1 ) is a surrogate
function for Gn(κ,T1|κk,T k1 ), it is also a valid surrogate
function for Lsn(θn,κ,T1|sn). Therefore, we finally define
G(κ,T1|κk,T k1 ) as

G(κ,T1|κk,T k1 ) =
N∑
n=1

G∗
n(κ,T1|κk,T k1 ). (15)

The choice for G∗
n(κ,T1|κk,T k1 ) is a separable quadratic

surrogate (SQS) function [43], which, when applied to our
problem at hand, takes the expression,

G∗
n(κ,T1|κk,T k1 ) = ||fn(κ,T1)− ρn(κk,T k1 )||22 + C∗

n(k),
(16)

with

ρn(κk,T k1 ) = fn(κk,T k1 )

+ σ∗HH

θ̂
(t+1)
n

Wn

(
s̆kn −Hθ̂

(t+1)
n

fn(κk,T k1 )
)
(17)

and σ∗ = 2 min
n,m

[σn]
2
m. The complete derivation of

G∗
n(κ,T1|κk,T k1 ) can be found in Section II of the additional

document which is included as part of the downloadable
supplementary material. With G∗

n(κ,T1|κk,T k1 ), minimiza-
tion of Eq. (15) is nothing more than fitting the relaxation
model fn(κ,T1) to the “residual” images ρn(κk,T k1 ) with
n = 1, ..., N in a least squares sense. Therefore, it is a
completely separable optimization problem and hence it can
be implemented in parallel for every voxel m. This is the
main distinct characteristic of the joint MLE that we present
in this work, which makes it an efficient method to be used in
practice. Once the model-fitting is performed, the new iterate
serves to update the “residual” images. This process is repeated
until k > kmax or EJ (k) < EJ min where EJ (k) is the
analogous of E(t) for J(κ,T1). The final iterate yields the
new κ̂(t+1) and T̂1

(t+1)
, which are then used as input in the

motion estimation problem P.1.

C. Initialisation

Although convergence to a local minimum is guaranteed,
convergence to the global minimum, which corresponds with
the MLE estimate, cannot be proved, since Ls(θ,κ,T1|s) is
non-convex. To increase the chances of finding the global
minimum, providing good initial values is crucial. In our
approach, initial values were obtained using the conventional
approach (CA), which consists of image registration prior to
voxel-wise relaxation model fitting. A sequential estimation
to initialize unified motion model-based approaches was also
used in [44], with very good results, and we found it a robust
method to initialize our joint MLE. In particular, firstly, the
initial motion parameters θini were obtained by registering
the set of T1-weighted images based on maximization of
MI between the images [45], [46]. All images were pairwise
registered to the reference system r with a pyramidal multi
resolution scheme of three levels. The number of iterations
of the internal optimization algorithm was set to a very high
value (> 900) to ensure convergence of the motion parameter
estimation. Next, the relaxation parameters κini and T1ini
were voxel-wise estimated from the registered images using
the MLE based on Rician distributed data [20]. To com-
pute the MLE, a Broyden-Fletcher-Goldfarb-Shanno (BFGS)
quasi-newton algorithm [41] was used with exact analytical
derivatives. The spatially variant standard deviation, which is
required for the MLE, was estimated with the method of [33].
By using the CA as initialization, we have invariably found
that the estimated T1 maps, T1ML, are superior in terms of
accuracy and rMSE compared to those obtained with the CA.

Furthermore, simulation results have shown that the joint
MLE is stable and robust to occasional inaccuracies in the
CA-based initial motion parameters.

Pseudo-code of the joint MLE algorithm is presented in
Fig. 1 and an illustrative flow-chart is shown in Fig. 2. In
practice, the joint MLE requires as input, apart from the
initial motion and relaxation parameters, an estimate of the
spatially variant standard deviation σ, σ̂. Such an estimate
is obtained with the method of [33] directly applied on the
acquired images {sn}Nn=1.

D. Parameters selection, code implementation and computa-
tional cost

The proposed joint MLE was implemented in MATLAB
and run on a computer with an Intel i7-4770K processor
consisting of four cores at 3.5 GHz. The machine had 32
GB of RAM. The SA algorithm of P.1 was implemented
using the MATLAB routine simulannealbnd with the
default parameters. The NLLS fitting of P.2 was performed
by the MATLAB routine lsqnonlin using the Levenberg-
Marquardt (LM) [41] method, also with the default parameters.
The tolerance criteria and the maximum number of iterations
to halt the algorithm were chosen to be EJ min = 10−2

and Emin = 10−3, and tmax = kmax = 10, respectively. To
exploit the highly parallelizable structure of the joint MLE,
MATLAB parallel computing tools were used to estimate
θn for each value of n separately. Similarly, the voxel-wise
NLLS relaxation model fitting was performed in a parallel
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1: initialize t = 0, σ = σ̂, θ̂(0) = θini, T̂1
(0)

= T1ini and
κ̂(0) = κini

2: while E(t) ≥ Emin and t < tmax do
3: Solve (P.1) to get θ̂(t+1)

4: Set k = 0 (P.2 begins)
5: κk = κ(t) and T k1 = T

(t)
1

6: while EJ (k) ≥ EJ min and k < kmax do
7: Calculate f̃ (t+1)

n (θ̂
(t+1)
n ,κk,T k1 ) with Eq. (12)

8: Calculate ρn(κk,T k1 ) with Eq. (17)
9: Voxel-wise NLLS fitting of fn(κ,T1) to
ρn(κk,T k1 ) so as to get κk+1 and T k+1

1

10: Calculate EJ (k) and set k = k + 1
11: end while
12: Set κ̂(t+1) = κk and T̂1

(t+1)
= T k1 (P.2 ends)

13: Calculate E(t) and set t = t+ 1
14: end while
15: θML = θ̂(t) and T1ML = T̂1

(t)

Fig. 1: Pseudo-code of the joint MLE algorithm.

Fig. 2: Flow-chart of the joint MLE algorithm.

manner by dividing the spatial grid into 8 non-overlapping
3D blocks. Finally, a mask was used to avoid calculation of
the relaxation parameters in background areas, hence speeding
up the implementation.

The computational time per iteration of the joint MLE
algorithm is dominated by the voxel-wise T1 fitting, which
depends linearly on the number of voxels M , depending in
turn on the Field-of-View (FOV) and the voxel size. With
relatively little effort to optimize our code, and using the
MATLAB parallel tools mentioned earlier, the voxel-wise T1
fitting took approximately 8 min to process a series of N = 8
T1-weighted images with M ≈ 105 voxels. Overall, with the
tolerance criterion described above, the average number of
total iterations (external plus internal) were roughly 15, provid-
ing precise and accurate θML and T1ML in an average time of
2.2 hours. Note that migration of the MATLAB code to C++
would produce a much faster implementation, especially if
multi-threading is used for the highly parallelizable relaxation

estimation problem [44].

E. Gaussian approximation for GRAPPA+SoS

When GRAPPA reconstructed data is combined with SoS,
the statistical distribution of the composite magnitude image
can be well approximated with a non-stationary nc-χ distri-
bution, where both the variance and the (effective) degrees-
of-freedom parameter, Leff, are spatially non-stationary (i.e.,
vary from voxel to voxel) [31]. Since the MM framework was
originally developed for the nc-χ distribution [23], the appli-
cation of the proposed joint MLE is straightforward provided
an estimate of Leff for every voxel is available. Unfortunately,
practical estimators of spatial maps of Leff are, to the authors’
knowledge, not yet available in the literature. Nevertheless, for
high SNR, a Gaussian distribution with spatially variant σ has
been proved to be an accurate model in replacement of the
nc-χ model [33]. In this case, the joint MLE is even simpler
than it was for the Rician case. Indeed, it can easily be shown
that

Lsn(θn, κ̂
(t), T̂1

(t)
|sn) = ||W 1/2

n

(
Hθnfn(κ̂(t), T̂1

(t)
)− sn

)
||
2

2
(18)

and

Lsn(θ̂(t+1)
n ,κ,T1|sn) = ||W 1/2

n

(
H
θ̂
(t+1)
n

fn(κ,T1)− sn
)
||
2

2
.

(19)
The same SA optimization algorithm as before can be

used to minimize Eq. (18) for solving the motion estimation
problem (P.1). To simplify the minimization of Eq. (19) for
solving the relaxation parameter estimation problem (P.2), we
can apply directly the SQS function on Lsn(θ̂

(t+1)
n ,κ,T1|sn),

avoiding the Bessel correction step. Indeed, the relaxation
parameter estimation problem is again a NLLS fitting of
fn(κ,T1) to a different ρn(κk,T k1 ) where just s̆kn in Eq. (17)
has to be replaced by sn, the actual acquired images.

IV. EXPERIMENTS

The proposed joint motion and T1 MLE was validated using
both simulated and real data. Moreover, its performance was
compared to that of the CA with MI-based registration [46],
and a recently proposed model-based approach of Hallack et
al. [18].

A. Simulated T1-weighted data

A set of 3D IR-SE T1-weighted images {sn}Nn=1 affected
by inter-image motion (as in Eq. (4)) and noise was simulated
from ground truth T1 and proton density maps. The ground
truth T1 map was created from the BrainWeb anatomical
model, using reported T1 values in human brain tissue at 3T
[47], [48]. For the three main brain tissues, white matter, grey
matter and cerebrospinal fluid (CSF), the reference values were
838 ms, 1607 ms, and 4300 ms, respectively. The ground truth
proton density map was created in a similar fashion. The size
of both 3D maps was 111 × 93 × 71 with an isotropic voxel
size of 1.5 mm. From these maps, a set of IR-SE T1-weighted
images was simulated based on [25] with TR/TE = 10000 /14
ms, and N = 8 logarithmically equidistant inversion times
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{TIn}Nn=1 between 20 ms and 8000 ms. The three consecutive
RF pulse angles were set to 180◦, 90◦ and 180◦. In the next
step, we randomly generated ground truth motion parameters
{θn}Nn=1. Each of the six rigid motion parameters followed
an independent Gaussian Random Walk (RW) [44] along the
temporal dimension n.

More precisely, the motion parameters were generated as

θn = c+ θn−1 +wn, (20)

where c ∈ R6×1 denotes the motion drift and wn ∈ R6×1

a vector valued, zero mean, Gaussian random variable with
covariance matrix Σ = σ2

RWI , with σRW the standard deviation
of each of the elements of wn and I the 6 × 6 identity
matrix. The reference system r was chosen to be r1, hence
θ1 = 0. Finally, to account for noise, Rician distributed images
{sn}Nn=1 were simulated [49] with spatially variant noise
maps. Synthetic spatially variant noise maps were generated
based on a realistic noise pattern that was presented in [33].
This pattern was derived from a real parallel MRI acquisition
[50].

The proposed joint motion and T1 MLE was compared to
that of the CA with MI-based registration [46] (the initial-
ization technique for the joint MLE) and a recently proposed
inter-image model-based approach of Hallack et al. [18]. The
MI-based rigid registration step of the CA was implemented
using the first image of the series as a reference. Details of
the implementation were already given in subsection III-C.
The remaining MI registration parameters were set to those
provided in the MATLAB built-in code. Hallack’s method was
implemented by following the guidelines provided in [18].
Just like the joint MLE, it was initialized with the CA. The
parameters κ and T1 were estimated with the LM algorithm.
Hallack’s algorithm was stopped when either the decrease of
the cost function between iterations was below Emin, or the
number of iterations exceeded tmax.

Two types of simulation experiments were performed:
1) Exp.1: Performance as a function of SNR: In a first set

of experiments (Exp.1), the performance of the joint MLE
as a function of the SNR of the T1-weighted image data set
was tested. To that end, motion parameters {θn}Nn=1 were
generated with σRW = 0.4 mm/degree and no drift. After fixing
the motion parameters, T1-weighted image data sets with SNR
values between 20 and 100 were simulated, where the SNR
is defined as the spatial mean of the ratio of the reference
noise-free T1-weighted image and the standard deviation noise
map of this reference image. For each SNR, NMC = 15 MC
simulations were generated.

2) Exp.2: Performance as a function of the type of motion:
In a second set of experiments (Exp.2), the performance of the
joint MLE was evaluated for different types of motion (and
fixed SNR = 40). For completeness, we also included a case
without motion.

a) Low Abrupt motion (LA-m). The motion parameters were
generated as in Exp. 1, i.e., without drift/tendency and
with σRW = 0.4 mm/degree.

b) High Abrupt motion (HA-m). The motion parameters were
generated without drift/tendency and with σRW = 1.5
mm/degree.

c) Rotational motion (R-m). The motion parameters
were generated with drift parameter vector c =
(0, 0, 0, 0.5, 0.5, 0.5)

T and σRW = 0.4 mm/degree. Note
that it follows from Eq. (20) and Eq. (3) that in this
scenario only the rotation parameters are affected by drift.

d) Translational motion (T-m). The motion parameters were
generated with c = (0.5, 0.5, 0.5, 0, 0, 0)

T and σRW = 0.4
mm/degree.

e) No motion (No-m). No motion was applied, i.e.,
f̃n(θn,κ,T1) = fn(κ,T1).

For all types of motion, extreme values as well as mean
values for each of the six rigid parameters along the temporal
dimension n are shown in the second column of Table I. For
each type of motion, NMC = 15 simulations, i.e., noisy T1-
weighted image data sets, were generated (with fixed motion
parameters and SNR= 40).

To assess the ability of each method to estimate the T1 map,
the following performance measures were used:
(a) Relative bias. The bias quantifies the accuracy of the

estimator. For each voxel, the relative sample bias was
calculated as (

¯̂
T1 − T1)/T1, where ¯̂

T1 is the sample
mean of the NMC estimates T̂1 and T1 is the true value.
A measure of the overall accuracy of the T1 map was
obtained by calculating the spatial mean of the absolute
value of the relative sample bias, using a brain mask to
avoid the skull.

b) Relative standard deviation. The standard deviation quan-
tifies the precision of the estimator. For each voxel
the relative sample standard deviation was calculated
as std(T̂1)/T1, and an overall precision measure was
obtained by taking the spatial mean of these relative
sample standard deviations, using the same brain mask.

c) Relative root-mean-square error (relative RMSE). The
RMSE is a measure that incorporates both accuracy and
precision. For each voxel, the relative sample RMSE

was calculated as
√

(T̂1 − T1)2/T1. An overall RMSE
measure was obtained by calculating the spatial mean
of these relative sample RMSE values, again within the
same brain mask.

To assess the ability of each method to estimate motion, the
following performance measures were used:

d) Relative motion error, defined as

||θ̂ − θ||2/||θ||2. (21)

e) Motion component relative bias, defined as

1

N

N∑
n=1

|([θ̂n]j − [θn]j)/[θn]j |, (22)

with [θn]j the jth component of θn and [θ̂n]j the sample
mean of the NMC estimates [θ̂n]j .

B. Ground-truth based real experiment

In order to assess the performance of the joint MLE with
an actual T1-weighted data set corrupted by motion, we
performed a controlled experiment. The experiment comprised
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the acquisition of two data sets. Firstly, we acquired an IR
T1-weighted data set of a (static) watermelon. In a second step,
we deliberately introduced motion between the acquisition of
each of the acquired 2D multi-slice T1-weighted images. In
particular, we manually translated and rotated the watermelon
after the complete acquisition for a fixed TI. From this data,
estimated T1 maps were obtained with the CA, Hallack’s
method and the joint MLE. We then quantitatively compared
these T1 maps to the estimated T1 map of the first dataset,
which was unaffected by motion and hence can be considered
as a reasonable ground-truth.

Both IR T1-weighted data sets were acquired with a 3T MRI
scanner (MAGNETOM Prismafit, Siemens) using a 32-channel
head coil. The IR T1-weighted data sets comprised N = 8
T1-weighted multi-slice images whose inversion times were
logarithmically spaced between 300 and 6000 ms. For each
inversion time, we acquired a 2D multi-slice image with
a 2D interleaved multi-slice IR Turbo Spin Echo (TSE)
sequence [51]. The Echo Train Length (ETL) was 10 and
TR/TE = 7920/8.8ms. Each multi-slice image was acquired
within approximately 3 min. The total scan time was about 24
minutes. The acquisition plane was axial and the acquisition
matrix was 256 × 256 × 40 with an anisotropic voxel size
of 1 × 1 × 4 mm3 and no slice gap. Magnitude data were
reconstructed using the SENSE method (acceleration factor of
2) [52]. The coordinate system of the image with the highest
inversion time was chosen to be the reference system r. An
estimated SNR of the reference image, as defined in subsection
IV-A1, was found to be 26. The estimation of the SNR was
performed with the Expectation-Maximization-based method
of De Vore [53] adapted for local estimation [33] to work
with one single image (3× 3 neighborhoods were used). The
ground-truth T1 map was estimated with a voxel-wise MLE
based on Rician data [20], where the noise standard deviation
map was estimated in a preprocessing step using the method
described in [33].

C. In vivo T1-weighted data

We validated the joint MLE with two in vivo human brain
data sets suffering from involuntary patient motion.

1) In vivo axial human brain data: An IR T1-weighted
data set of a healthy 26-year old male volunteer was acquired
with a 3T MRI scanner (MAGNETOM Skyra, Siemens)
using a 20-channel head coil. For each inversion time, we
acquired a 2D multi-slice image with an interleaved 2D multi-
slice IR TSE sequence [51], [54]. The sequence parameters
were: ETL = 4 and TR/TE = 8040/18 ms. Each multi-
slice image was acquired within 2.5 min approximately. The
IR T1-weighted data set comprised N = 7 T1-weighted
multi-slice images whose inversion times were logarithmically
spaced between 50 and 3200 ms. The total scan time was about
19 minutes. The acquisition plane was axial and the acquisition
matrix was 128 × 128 × 25 with an anisotropic voxel size
of 1.9 × 1.9 × 6 mm3 and a slice gap of 10%. The SENSE
method was employed to reconstruct the magnitude data with
an acceleration factor of 3. Noise maps were obtained with
the method of [33]. We estimated an SNR of 24.3 with the

method of [53]. In this case, the reference image was the one
with lowest inversion time.

2) In vivo sagittal human brain data: An IR T1-weighted
data set of a healthy 28-year old male volunteer was acquired
with a 3T MRI scanner (MAGNETOM Prismafit, Siemens)
using a 32-channel head coil. As in the previous in vivo exper-
iment, we acquired for each inversion time a 2D multi-slice
image with an interleaved 2D multi-slice IR TSE sequence
[51]. The sequence parameters were: ETL = 10 and TR/TE
= 5000/4.8 ms. Each multi-slice image was acquired within 2
min approximately. The IR T1-weighted data set comprised
N = 14 T1-weighted images whose inversion times were
logarithmically spaced between 100 and 3000 ms, giving a
total acquisition time of 28 min. The acquisition plane was
sagittal and the acquisition matrix was 256 × 256 × 40 with
an anisotropic voxel size of 1 × 1 × 4 mm3 and no slice
gap. Magnitude data were reconstructed with the GRAPPA
method with SoS reconstruction (acceleration factor of 3)
[55]. The image with the lowest inversion time was chosen
as a reference. We estimated an SNR of 55 with a locally
adapted ML estimator (3× 3 neighborhoods) assuming a nc-
χ distribution. Due to the high SNR, we relied on results of
[33] and used the version of the joint MLE algorithm adapted
for spatially variant Gaussian noise (subsection III-E). Noise
maps were obtained with the method of [33]. The CA was
implemented with a Gaussian MLE where the noise standard
deviation was estimated with the method described in [33].

V. RESULTS

A. Simulated T1-weighted data

1) Exp.1: Performance as a function of SNR:
Overall relative T1 bias, standard deviation and RMSE

results are shown in Fig.3(a-c). For the whole range of SNR,
the joint MLE allows a much more accurate estimation of the
T1 map than Hallack’s method and especially than the CA.

In terms of precision, CA obtains the best result, followed
by the joint MLE and Hallack’s method. However, in terms of
the overall RMSE, the joint MLE performs best for all values
of the SNR. Furthermore, the box-plot shown in Fig. 3(d)
demonstrates the superiority of the proposed joint MLE in
terms of motion estimation.

To complement the results, maps of the absolute value of
the relative sample bias for the three methods are shown in
Fig. 4(b-d), along with the simulated ground truth in Fig. 4(a).
A close look at the bias maps corroborates the poor per-
formance of the CA compared to the joint MLE. It is also
clearly seen that the bias map of Hallack’s method presents
much higher values than that of the joint MLE, especially in
white/grey matter surroundings.

2) Exp.2: Performance as a function of the type of motion:
Bar charts representing the overall T1 accuracy, precision and
rMSE for the four cases of motion and the no-motion scenario
are shown in Fig. 5.

In light of these results, it can be concluded that the
joint MLE yields the most accurate T1 maps in all the four
considered motion scenarios, followed by Hallack’s method.
Furthermore, the performance of all methods seems to be
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(a) (b) (c)

Fig. 5: Results of Exp.2: (a) relative T1 bias, (b) relative T1 standard deviation and (c) relative T1 RMSE.

(a) (b)

(c) (d)

Fig. 3: Results of Exp.1: (a) relative T1 bias, (b) relative T1
standard deviation, (c) relative T1 RMSE and (d) box plots of
the relative motion error, as a function of the SNR.

fairly insensitive to the type of motion considered. Even
though the highest precision was consistently obtained with
the CA, its overall relative RMSE is much higher compared
to Hallack’s method and especially to the joint MLE, which
again produces the best T1 maps in RMSE sense. The case
of no-motion is particularly interesting. In such a scenario,
the CA performance drastically improves in terms of accuracy
and RMSE, though its precision decreases. In the absence of
motion, the error propagation of the CA approach is negligible,
and hence, the overall relative accuracy of the CA approaches
the one obtained with the joint MLE, which is yet the highest.
The decrease in precision of the CA can be understood as
follows. In the absence of motion, the interpolation (and
hence smoothing) effects that are inherent to the registration
step of the conventional two-step approach become marginal,
hence not contributing to a reduction in the variability of the
estimates.

The motion component relative bias for each of the six
components are reported in Table I. For the no-motion case, the
motion component relative bias is not well-defined (division

Fig. 4: Results of Exp.1: (a) Mid-axial slice of the 3D ground
truth T1 map, and maps of the absolute value of the relative
sample bias [in %] for (b) CA, (c) Hallack’s method and (d)
joint MLE, for SNR = 40.

by zero). Instead, we report the motion component absolute
bias.

The best results are highlighted in shaded gray. In 27 of 30
cases, the joint MLE achieved the highest accuracy in both the
translation and rotation parameters. Sometimes, this improve-
ment is even more than 5-fold compared to the CA. In general,
Hallack’s method provides more accurate T1 estimates than
CA, which is in agreement with previously reported results
[10], [18]. Nonetheless, further substantial improvement can
be obtained if the joint MLE is used. To illustrate the quality of
the motion estimation, we have shown graphs, as a function of
n, of the ground-truth and estimated motion parameters for one
of the rotational motion (R-m) simulations in the additional
document (Fig.1) of the downloadable supplementary material.

It is also important to notice that the occasionally poor
CA-based motion initialization does not prevent the joint
MLE from producing the most accurate motion estimates.
This highlights another feature of the joint MLE: it is fairly
robust to scenarios where the CA-based motion initialization
is relatively poor.
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Fig. 6: Two axial slices of a watermelon T1 map. Top-axial slice: (a) ground-truth (no motion), (b) without motion correction,
(c) CA, (d) Hallack’s method, (e) joint MLE. Magnified regions are shown in (f-j). Mid-axial slice: (k) ground-truth (no
motion), (l) without motion correction, (m) CA, (n) Hallack’s method, (o) joint MLE. Magnified regions are shown in (p-t).

B. Ground-truth based real experiment

A top-axial and a mid-axial slice of the estimated T1 maps
for the CA, Hallack’s method and the joint MLE are shown
in Fig. 6(c-e) and Fig. 6(m-o), whereas the ground truth T1
map and the T1 map estimated without motion correction
are displayed in Fig. 6(a-b) for the top-axial slice and in
Fig. 6(k-l) for the mid-axial slice. From this experiment, it
can be observed that more detailed T1 maps can be obtained
with the joint MLE in comparison to Hallack’s method and
especially to the CA. Aside from the presence of a large
number of outliers in the T1 maps obtained with the CA and
Hallack’s method, which are drastically reduced with the joint
MLE, fine structural details seem better preserved with our
proposed method. This observation is confirmed by inspecting
the magnified regions. The heterogeneity of the T1 values in
those regions, as noticed from the ground-truth T1 map, is
better maintained with the joint MLE. See for instance the
delineation of low T1 value structures in Fig. 6(f-j). Note as

well that artifacts in the T1 maps, as shown in Fig. 6(p-t)
(green arrow), are considerably mitigated with the joint MLE.
Quantitative validation of the estimated T1 maps was based
on spatial maps of the absolute value of the relative errors
[%](Fig. 7).

In accordance to our previous discussion, the spatial dis-
tributions of the relative errors further indicate the good
performance of the joint MLE in comparison to competing
methods. It is manifestly clear that the error maps of Hallack’s
method and the CA present much higher values than that of
the joint MLE. To complement the quantitative analysis, we
calculated an overall relative error, within a mask neglecting
the background, in a similar fashion as done in Exp.1. Nu-
merical results are in agreement with the observation made
from the spatial maps. We found that the joint MLE produced
the T1 map with the lowest overall relative error. Indeed, the
overall relative error for the without motion correction case,
the CA, Hallack’s method and the joint MLE was 87%, 20.2%,
19.7% and 15.1%, respectively. To further complement the
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Type Motion (max / mean) CA Hallack Joint MLE

LA-m

tx (2.5 / 0.98 mm) 8.4 % 4 % 1.1 %
ty (1.4 / 0.88 mm) 1.4 % 2.1 % 0.4 %
tz (1 / 0.38 mm) 33.5 % 30.9 % 5.3 %
α (0.2 / 0.003 degree) 63.5 % 20.6 % 9.5 %
β (-0.2 / -0.06 degree) 90 % 43.8 % 19.1 %
γ (0.57 / 0.26 degree) 75.4 % 57.5 % 6.8 %

HA-m

tx (-9.4 / -4.4 mm) 2.3 % 3.9 % 0.1 %
ty (-2.3 / 0.08 mm) 30 % 12.9 % 2.4 %
tz (4.6 / 2 mm) 27 % 19.8 % 13.5 %
α (-2.1 / -0.51 degree) 4.9 % 10.5 % 6.4 %
β (3.7 / 1.9 degree) 1.4 % 2 % 0.9 %
γ (1.3 / 0.5 degree) 4.9 % 18.2 % 19.6 %

R-m

tx (-0.8 / -0.4 mm) 5.5 % 3.4 % 1.2 %
ty (1.1 / 0.8 mm) 2.3% 3.1 % 1.1 %
tz (0.3 / 0.02 mm) 466 % 166 % 29.8 %
α (3.2 / 1.5 degree) 2.1 % 1.3 % 0.7 %
β (3.1 / 1.5 degree) 1.6 % 0.9 % 1.1 %
γ (1.9 / 1.1 degree) 2.9 % 5 % 0.13 %

T-m

tx (2.9 / 1.4 mm) 1.3 % 1.9 % 0.8 %
ty (2.8 / 1.9 mm) 1.2 % 3 % 1.1 %
tz (2.1 / 1.2 mm) 2 % 2.6 % 0.8 %
α (-0.3 / -0.2 degree) 26.7 % 64.7 % 20.7 %
β (-0.8 / -0.3 degree) 121.15 % 17.2 % 4.7 %
γ (-0.5 / -0.2 degree) 91.1 % 27.1 % 21.7 %

No-m

tx (0 / 0 mm) 0.012 0.032 0.009
ty (0 / 0 mm) 0.112 0.077 0.03
tz (0 / 0 mm) 0.078 0.159 0.086
α (0 / 0 degree) 0.0281 0.0133 0.01
β (0 / 0 degree) 0.083 0.057 0.019
γ (0 / 0 degree) 0.0201 0.0183 0.011

TABLE I: Results of Exp.2: for four types of motion (column
1), the maximum and mean values of the motion parameters
(column 2), and the motion component relative bias for each
of the six components for CA, Hallack’s and the joint MLE
method (columns 3-5) are shown. For the no-motion case,
the motion component absolute bias is reported instead of the
motion component relative bias since the latter metric is not
well-defined for parameters that are equal to zero.

quantitative analysis, graphs of the motion parameter estimates
for the three methods are shown in Fig. 2 of the additional
document which is included as part of the downloadable
supplementary material which accompanies this paper.

C. In vivo T1-weighted data

1) In vivo axial human brain data: A mid-axial and a top-
axial slice of the estimated T1 map for the three methods
are shown in Fig. 8(b-d) and Fig. 8(f-h), respectively. The
estimated T1 maps without motion correction are shown in
Fig. 8(a) and Fig. 8(e). The presence of outliers in the T1
map when motion correction is not applied is not completely
avoided with the CA. Indeed, it can be clearly observed that
outliers are still present, in particular at the interfaces between
ventricles and white matter (green arrow) for the mid-axial
slice, and in the interfaces between white and grey matter for
the top-axial slice Fig. 8(f). The T1 map produced by Hallack’s
method seems free from outliers in the mid-axial but not in
top-axial slice Fig. 8(g) (green arrow). The joint MLE provides
T1 maps which does not suffer from this issue. The motion
parameter estimates obtained with the three methods are shown
in the additional document (Fig. 3) which is included as part
of the supplementary material which accompanies this paper.

Fig. 7: Maps of the absolute value of relative error with respect
to the ground-truth T1 map. Top-axial slice: (a) without motion
correction, (b) CA, (c) Hallack’s method, (d) joint MLE. Mid-
axial slice: (e) without motion correction, (f) CA, (g) Hallack’s
method, (h) joint MLE.

2) In vivo sagittal human brain data: Two mid-sagittal slice
of the estimated T1 map for the three methods are shown in
Fig. 9(b-d) and Fig. 9(j-l), respectively. In Fig. 9(a) and Fig. 9(i)
estimated T1 maps for the no motion correction case are
presented.

In this case, the estimated T1 map with the CA is almost free
from outliers, which are widespread when no motion correc-
tion is accomplished, see magnified regions in Fig. 9(e-f) and
Fig. 9(m-n). However, the CA sacrifices the final resolution
of the T1 map. It is clear that in the T1 map obtained with
Hallack’s method and especially in that obtained with the joint
MLE, structure details are better defined and contours better
delineated, particularly in the interfaces between white/grey
matter and CSF. Visual differences between the T1 maps
provided by Hallack’s method and the joint MLE can be
discerned as well. For example, the CSF infiltrating the cortical
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Fig. 8: Two axial slices of a whole human brain T1 map. Mid-
axial slice: (a) without motion correction, and corrected with
(b) CA, (c) Hallack’s method, (d) joint MLE. Top-axial slice:
(e) without motion correction, and corrected with (f) CA, (g)
Hallack’s method, (h) joint MLE.

folds (see Fig. 9(g-h)) seems better defined with the joint
MLE. In addition, yet a (reduced) number of outliers can be
detected in the T1 map estimated with the Hallack’s method.
See for example, Fig. 9(o). Such outliers, as in the in vivo axial
experiment, are not present provided the joint MLE is applied.
In Fig. 4 of the additional document, which is part of the
downloadable supplementary material, the motion parameter
estimates of this experiment are shown.

VI. DISCUSSION

We presented a unified model-based approach for simulta-
neous motion correction and T1 mapping that jointly estimates
the motion parameters and the T1 map using a maximum like-
lihood estimator (MLE). The proposed joint MLE possesses
optimal statistical properties, which are shared by neither
the conventional two-step approach (image registration prior
to T1 estimation) nor other heuristic integrated model-based
methods.

Using realistic MC simulation experiments, it was shown
that the proposed joint MLE outperforms existing T1 mapping
methods in terms of both accuracy and RMSE, next to
providing more accurate motion parameter estimates. Results
of the controlled experiment based on ground-truth real data
are in line with the findings of MC simulations. We have
shown that detailed and meaningful T1 map can be recovered
with the joint MLE under the influence of manually induced,
severe motion. Quantitative comparison against a ground-truth
T1 map demonstrates the superior quality in T1 map restoration
compared to CA and Hallack’s method.

Furthermore, the optimal unified ML framework has been
validated with in vivo human brain data experiments, suffering
form involuntary motion. From these experiments, it has
become evident that motion correction is indispensable in T1
mapping, even when subject motion is relatively small. Inter-
estingly, yet recognizing the limitation of visual assessment
in quantitative MRI, some of the rigorously derived statistical
conclusions from the MC simulations can be noticed in the two
whole brain human data sets. For instance, the arguably poorer
motion estimation performance of the CA compared to model-
based registration approaches, already reported by [10], [18]
and confirmed by our MC results (see Fig. 3(d) and Table I),
may be the cause of the presence of outliers in the estimated
T1 map and the loss of fine details. The presence of small
number of outliers in the estimated T1 map with Hallack’s
method can be attributed to its non-optimal/heuristic design.
While improvement in motion estimation compared to CA has
been demonstrated, optimality in terms of T1 estimation cannot
be theoretically and empirically guaranteed. In contrast, our
ML framework combines, in a single integrated approach, the
benefits of model-based registration techniques with optimal
T1 map restoration based on statistical theory, where the noise
statistics are properly accounted for.

On top of that, our careful algorithm design avoids heavy
computational burden. Note that the voxel-wise T1 fitting
task, which contributes most to the computational cost of the
proposed joint MLE, is often also included in the iterative
loop of other model-based integrated methods. Consequently,
the computation time per iteration is comparable.

The proposed ML framework can be extended in different
ways without compromising its optimal statistical properties.
Extension to other MRI sequences or modalities is straight-
forward by substituting a properly modified parametric signal
model for Eq. (1). Such potential extensions include T2 and
T ∗
2 mapping [29]. Moreover, multi-component T2 mapping

would benefit as well from the proposed ML framework [56].
Furthermore, it is worthwhile mentioning that when the joint
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MLE proposed in this work is applied to the particular case of
T1 mapping using the spoiled gradient recalled echo (SPGR)
sequence, its computational efficiency can even be further
improved by using the recently proposed fast non-linear least
squares T1 estimator NOVIFAST [57] for solving the voxel-
wise NLLS problems in P.2.

Extensions towards the inclusion of different types of mo-
tion, e.g., non-rigid motion, are also possible but require
further study, which is considered future work. In this work,
we have assumed a motion model which accounts for inter-
image motion, that is, motion between each of the 3D T1-
weighted images. Although this model left aside intra-motion
effects, which is known to affect the k-space reconstruction
process, we have not observed any derived ghosting artifacts
in the in vivo reconstructed T1-weighted images. It should be
noted that, to deal with such kind of motion, navigators [58]
or advanced k-space reconstruction methods with motion cor-
rection [59] can be applied in conjunction with the joint MLE.
However, though intra-image motion may be alleviated with
such techniques, image registration, that is, inter-image motion
correction, will remain necessary, which further emphasizes
the relevance of the unified ML framework. Finally, it is
relatively straightforward to extend the ML framework to cope
with inter-slice motion, that is, motion occurring between the
acquisition of 2D slices of a T1-weighted dataset. An outlook
to such an extension, which is especially relevant for image
acquisition methods that acquire 3D volumes slice by slice
sequentially, such as Echo Planar Imaging (EPI) sequences
[44], is given in the additional document (Section IV) which
is part of the downloadable supplementary material.

VII. CONCLUSION

In quantitative MR T1 mapping, it is common practice to
register the T1-weighted images prior to T1 map estimation.
However, as demonstrated in this paper, this conventional two-
step approach lacks high accuracy motion estimation and leads
to biased T1 estimates. Hence, we have proposed a rigorous
unified framework for simultaneous motion and T1 estimation
using a Maximum Likelihood (ML) estimator. It has been
demonstrated that the proposed joint MLE outperforms the
conventional approach as well as a recently proposed model-
based method [18] in terms of motion and T1 estimation accu-
racy and RMSE. Our ML framework, which uses an efficient
algorithm, has been validated in a controlled experiment with
real T1-weighted data and also with two in vivo human brain
data sets. We believe that the unified ML framework possesses
serious advantages over the conventional approach to replace
it in clinical scenarios where precise and accurate T1 estimates
are the ultimate goal.
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Fig. 9: Two mid-sagittal slices of a whole human brain T1 map.
First mid-sagittal slice: (a) without motion correction, (b) CA,
(c) Hallack’s method, (d) joint MLE. Magnified regions are
shown in (e), (f), (g) and (h), respectively. Second mid-sagittal
slice: (i) without motion correction, (j) CA, (k) Hallack’s
method, (l) joint MLE. Magnified regions are shown in (m),
(n), (o) and (p), respectively.
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Abstract—In Section I of this additional document we provide
details on the motion operator Hθn . In Section II, we prove
Eqs.(16-17) of the main body of the paper, which gives a complete
description of the MM framework used in P.2. In Section III, we
show graphs of estimated motion parameters for the in vivo
experiments and one of the simulation experiments described
in the main body of the paper. Finally, Section IV discusses an
extension of the joint MLE to account for intra-image motion.

I. DETAILS ON MOTION OPERATOR Hθn

In this section, an explicit expression of the motion operator
Hθn is derived. Furthermore, we sketch the proof for its
unitarity property, i.e., HH

θn
Hθn = HθnH

H
θn

= I , with I
the identity matrix. Specific details can be found in [1], [2]
and especially in [3].

Let rnm be a spatial point related to the reference-system
point rm through a rigid transformation matrix Mθn ∈ R4×4:(

rnm
1

)
= Mθn

(
rm
1

)
. (S1)

The rigid transformation matrix Mθn ∈ R4×4, which includes
3D rotation and translation, can then be written as [4]:

Mθn =

(
R(αn, βn, γn) tn
0T 1

)
, (S2)

with tn = (txn, tyn, tzn)
T a vector of translation parameters,

0T a 1×3 zero vector, and R(αn, βn, γn) ∈ R3×3 the product
of three elementary rotation matrices

(
Rx(αn), Ry(βn) and

Rz(γn)
)

describing rotations around the x, y and z axis, with
angles αn, βn and γn, respectively. With such parametrization,
we get

rnm = Rx(αn)Ry(βn)Rz(γn)rm + tn . (S3)

Let f(·) be spatially-continuous function (a relaxation
model in our problem). Then, to calculate f(rnm), the follow-
ing spatial transformations on f(·) are consecutively applied.

1) 3D translation: fT(r) = f(r + tn)
2) Rotation around x axis fRot-x(r) = fT(Rxr)
3) Rotation around y axis fRot-y(r) = fRot-x(Ryr)
4) Rotation around z axis fRot-z(r) = fRot-y(Rzr)

Indeed, by evaluating fRot-z(·) at rm, we get f(rnm).
In a discrete domain, each of the previous four operations is

represented by linear operators, hence matrices, that we denote
as HT, HRot-x, HRot-y, and HRot-z, respectively. Note that we

have omitted the dependence on the motion parameter for the
sake of notational convenience.

As a consequence, the motion operator, Hθn , can be written
as

Hθn = HRot-zHRot-yHRot-xHT (S4)

and its Hermitian transpose as

HH
θn = HH

T H
H
Rot-xH

H
Rot-yH

H
Rot-z. (S5)

It is clear that if HT , HRot-x, HRot-y and HRot-z are unitary,
Hθn is unitary as well.

Sketch of Proof 1: HT is unitary

The translation operator HT consists of 1) a 3D FFT, 2) a
voxel-wise multiplication with a purely complex exponential
whose phase depends linearly on the translation parameters,
and 3) an inverse 3D FFT [3]. By noting that the multidimen-
sional FFT is a unitary operator [2], the translation operator
can be succinctly written as

HT = FH
3D∆F3D , (S6)

where F3D is the 3D unitary Discrete Fourier Transform (DFT)
matrix and ∆ is a diagonal matrix whose entries are purely
complex exponentials.

It is known that ∆ is a unitary matrix if and only if the
modulus of each diagonal entries is one. Since this is always
true for purely complex exponentials, it demonstrates that HT
is unitary.

Sketch of Proof 2: HRot-x, HRot-y, and HRot-z are unitary.

For brevity, we present the proof only for HRot-x. The proof
for HRot-y and HRot-z is completely similar.

BecauseRx(αn) can be decomposed as the product of three
one-dimensional shear matrices [3], it is possible to write

HRot-x = SxSySx , (S7)

where Sx and Sy are fractional delay filters [1], which model
the shearings in the x and y dimension, respectively. Note
that these filters can be implemented efficiently with FFT [3].
If both Sx and Sy are unitary, HRot-x is unitary as well.
Indeed, Sx has essentially the same diagonal expression as
Eq. (S6), where the role of the 3D DFT matrices is fulfilled
by a (unitary) Fourier matrix which applies an FFT only
along the x direction. The phase of the complex exponential
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in the diagonal matrix now depends linearly on the shearing
parameter [3], which is a real value. Therefore, the associated
diagonal matrix is unitary. The unitarity property of Sx
follows immediately.

The proof for Sy is equivalent, with the exception that the
unitary Fourier matrix now represents an FFT along the y
direction. We can prove then that Sy is unitary and thusHRot-x
is unitary.

As already mentioned, the proof for HRot-y and HRot-z
are analogous. Combining Proof 1 and Proof 2, the unitary
property of Hθn is demonstrated.

II. SEPARABLE QUADRATIC SURROGATE (SQS) FUNCTION
DERIVATION FOR THE JOINT MLE

In order to get the final version of the joint MLE algorithm,
a necessary step was to obtain a surrogate function for

Gn(κ,T1|κk,T k
1 ) = ||W 1/2

n

(
H
θ̂
(t+1)
n

fn(κ,T1)− s̆kn
)
||
2

2

+ Cn(k) (S8)

with Wn = diag{ 1
2σ2

n
}.

The choice we made in this work was a SQS function [5],
that when applied to Eq.(S8), yields Eq.(16-17). Here, we
present the proof of these equations. To that end, we build
on results presented in [5]. In that work, a SQS function was
applied to a generic quadratic form 1

2 ||y −Ax||
2
2. Such SQS

function had the following expression:

1

2
||x−

(
xk −D−1

f AH
(
Axk − y

))
||
2

Df
+ ξ, (S9)

with ξ a constant independent of x and where the matrix Df
is defined in such way that it satisfies Df � AHA, that is,
Df −AHA is a positive-semidefinite matrix.

We can easily identify the terms of the quadratic form at
hand, i.e., Gn(κ,T1|κk,T k

1 ), with the terms of 1
2 ||y −Ax||

2
2,

and hence easily define our SQS function, G∗
n(κ,T1|,κk,T k

1 ),
as

G∗
n(κ,T1|κk,T k

1 ) = ||fn(κ,T1)− ρn(κk,T k
1 )||2Df

+C∗
n(k),
(S10)

with

ρn(κk,T k
1 ) = fn(κk,T k

1 )−D−1
f AH(Afn(κk,T k

1 )− y),

(S11)

C∗
n(k) a constant independent of κ and T1, and where
A = W

1/2
n H

θ̂
(t+1)
n

and y = W
1/2
n s̆kn.

After some algebra, we obtain

ρn(κk,T k
1 ) = fn(κk,T k

1 )

+D−1
f HH

θ̂
(t+1)
n

Wn

(
s̆kn −Hθ̂

(t+1)
n

fn(κk,T k
1 )

)
.

(S12)

Before giving an expression for Df satisfying
Df � AHA, first we recognize that

AHA = HH

θ̂
(t+1)
n

W 1/2
n

H
W 1/2

n H
θ̂
(t+1)
n

= HH

θ̂
(t+1)
n

WnHθ̂
(t+1)
n

.

(S13)

Furthermore, it is easy to show that the diagonal matrix
Wn fulfills Wn � (σ∗

n)
−1
I with (σ∗

n)
−1 being the maximum

value along its diagonal, which is,

(σ∗
n)

−1 ,
1

2 min
m

[σn]
2
m

. (S14)

Thus, if Wn � (σ∗
n)

−1
I , it follows that

HH

θ̂
(t+1)
n

WnHθ̂
(t+1)
n

� (σ∗
n)

−1
HH

θ̂
(t+1)
n

H
θ̂
(t+1)
n

= (σ∗
n)

−1
I ,

since the motion operator is unitary. Therefore, by defining
Df as Df , (σ∗

n)
−1
I , Df � AHA holds.

Note that previous Df definition depends on n and hence
the NNLS problem (Eq.S9) is weighted differently along
dimension n. To provide an unweighted NNLS problem, that
is, the version we have presented in the main body of the paper,
we set σ∗ = 2 min

n,m
[σn]

2
m. Clearly Wn � (σ∗)

−1
I for all n.

Hence, we redefine Df as Df , (σ∗)
−1
I , and trivially we

getDf � AHA as desired. By substitutingDf into Eq.(S11),
we arrive at the final expressions which are shown in the main
body of the paper.

III. GRAPHS OF MOTION
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Fig. 1: Graphs of the ground-truth and estimated motion
parameters for one realization of the simulation experiment
with rotational motion: (a) tx, (b) ty , (c) tz , (d) α, (e) β,
(f) γ.
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Fig. 2: Graphs of the estimated motion parameters for the
ground-truth watermelon experiment: (a) tx, (b) ty , (c) tz ,
(d) α, (e) β, (f) γ.

IV. EXTENSION OF THE JOINT MLE TO ACCOUNT FOR
INTRA-IMAGE MOTION

As mentioned in the discussion section of the main body
of the paper, the joint MLE can be extended to include intra-
image motion, in particular, motion between the acquisition
of the different slices of a multi-slice image. A brief outlook
to such an extension is given here. The implementation of
the extended algorithm should take into account the follow-
ing considerations. First, given an inversion time TIn, the
z-th noiseless and motion-corrupted 2D slice T1-weighted
f̃n,z(θn,z,κ,T1) is related to the unobserved 3D image,
fn(κ,T1), through the motion parameters θn,z . Note that the
number of motion parameters scales with Mz × N , where
Mz is the number of slices. Second, the mapping between a
2D slice T1-weighted image and the noiseless unobserved 3D
image also requires a slice-selective profile filter, which can be
included as a matrix δz [6], just after the motion operator, that
is, f̃n,z(θn,z,κ,T1) = δzHθn,zfn(κ,T1). The final details of
the derivation of the MM algorithm are beyond the scope of
this paper and therefore not presented here.
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Fig. 3: Graphs of the estimated motion parameters for the in
vivo axial human brain data experiment: (a) tx, (b) ty , (c) tz ,
(d) α, (e) β, (f) γ.
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Fig. 4: Graphs of the estimated motion parameters for in vivo
sagittal human brain data experiment. (a) tx, (b) ty , (c) tz ,
(d) α, (e) β, (f) γ.
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