
Delft Center for Systems and Control

Online Reinforcement Learning
Control of an Electromagnetic
Manipulator

C. Valentini

M
as

te
ro

fS
cie

nc
e

Th
es

is

Online Reinforcement Learning Control
of an Electromagnetic Manipulator

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

C. Valentini

August, 27, 2019

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.

Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled

Online Reinforcement Learning Control of an Electromagnetic
Manipulator

by

C. Valentini

in partial fulfillment of the requirements for the degree of

Master of Science Systems and Control

Dated: August, 27, 2019

Supervisor(s):
Prof. dr. R. Babuška Supervisor

T.D. de Bruin Second Supervisor

Reader(s):
Dr. ing. J. Kober

Dr. ir. A.J.J. van den Boom

Abstract

Machine Learning Control is a control paradigm that applies Artificial Intelligence methods
to control problems. Within this domain, the field of Reinforcement Learning (RL) is par-
ticularly promising, since it provides a framework in which a control policy does not have to
be programmed explicitly, but can be learned by an intelligent controller directly from real-
world data, allowing to control systems that are either arduous or even impossible to model
analytically. However, in spite of such considerable potential, the RL paradigm poses a num-
ber of challenges that effectively hinder its applications in the real-world and in industry. It
is therefore critical that research in this field is advanced until RL-based controllers can be
practically demonstrated to be real-world feasible and reliable. This thesis report presents
the attempts made at applying control strategies based on Reinforcement Learning to solve a
precise positioning task with a physical experimental setup. The setup at hand is a magnetic
manipulator (magman) characterized by a high degree of nonlinearity. The controller uses
the spatially continuous magnetic field generated by four actuators to displace a steel ball,
constrained to move in one dimension, towards a reference position. Two different implemen-
tations of the Q-learning algorithm (Sutton, Barto, et al., 1998) were deployed. In spite of the
good results obtained in a simplified simulated environment, both implementations failed on
the experimental setup. The negative outcome of these experiments is mainly due to the fact
that, since the task at hand is an accurate positioning task, the reward obtained by the learner
while interacting with the environment is too sparse for it to be able to learn a stabilizing
control policy. Other factors have presumably contributed to the controllers’ failure, such as
the circumstance that the agent does not have access to the full system state information
and a sub-optimal tuning of the algorithms’ hyper-parameters. Besides model-free RL, the
Value Iteration model-based method was successfully applied both in simulations and with
the experimental setup. The present findings suggest that, in order to solve the magman task
with model-free RL, more sophisticated algorithms need to be deployed, such as for example
an agent that can naturally deal with continuous state and action spaces, as the DDPG algo-
rithm (Lillicrap et al., 2015), with exploration carried out in the parameter-space rather than
in the control action space (Plappert et al., 2017), in addition to a more optimal exploitation
of the information extracted from the environment, for example using Hindsight Experience
Replay (Andrychowicz et al., 2017).

Master of Science Thesis C. Valentini

ii

C. Valentini Master of Science Thesis

Table of Contents

Preface v

1 Introduction and motivation 1
1-1 Research goal . 3
1-2 Thesis structure . 4

2 The Magman control benchmark 5
2-1 Experimental setup . 5
2-2 Dynamics model . 7

2-2-1 Validation of the legacy model . 8
2-2-2 New model and validation . 10

3 Reinforcement learning 13
3-1 Theoretical framework . 15
3-2 Model-based reinforcement learning . 17
3-3 Model-free reinforcement learning . 18
3-4 Value iteration methods . 18
3-5 Policy-based methods . 18
3-6 On-policy algorithms . 19
3-7 Off-policy algorithms . 19
3-8 Summary . 19

4 Q-Learning 21
4-1 The algorithm . 21

4-1-1 Exploration strategy . 22
4-1-2 The training algorithm . 22
4-1-3 Experience replay . 22
4-1-4 The target network . 23
4-1-5 Algorithm summary . 23

4-2 Model evaluation and tuning . 24
4-3 The grid-search method . 26

4-3-1 Grid-search for the ANN topology . 27
4-3-2 Grid-search for the remaining algorithm hyper-parameters 28

4-4 On the choice of the reward function . 29
4-5 Performance in simulations . 36
4-6 Performance comparison to other controllers . 41
4-7 Performance on the experimental setup . 43
4-8 Q-learning - Second implementation . 48
4-9 Discussion of the results . 50

4-9-1 Control input transportation delay . 50

Master of Science Thesis C. Valentini

iv Table of Contents

4-9-2 Markov Property . 51

5 Conclusions and recommendation for future work 57
5-1 Conclusions . 57
5-2 Recommendations . 58

A Value Iteration 61

B Hardware 65
B-1 Position measurement . 65
B-2 Actuation . 68
B-3 Connection between control boards and computer 70

References 71

C. Valentini Master of Science Thesis

Preface

This document is a report of the work carried out during my Master of Science graduation
project. When I accepted this thesis assignment, my knowledge of the field of Machine
Learning was close to non-existing, but my curiosity was great.

I would like to thank my supervisor, Professor R.Babuška for giving me the opportunity of
working on this challenging project and providing guidance and valuable insight throughout,
and I would like to thank T. De Bruin for co-supervising the thesis, providing valuable advice
based on his experience in the field, besides the baseline implementations of the Machine
Learning methods deployed.

I would also like to thank my family, for the unwavering support they gave me not only during
the writing of this thesis, but throughout the years of my academic formation.

Finally, I would like to thank Kallia, for the wholehearted support, and my friends Andrea,
Antonio, Arnau, Ben, Folkert, Francesco, Gianluca, Joris, Martijn and Tori, who contributed
to making the last three years more enjoyable than I could possibly have hoped.

Master of Science Thesis C. Valentini

vi Preface

C. Valentini Master of Science Thesis

“In theory, there is no difference between theory and practice. But, in practice,
there is.”

— Jan L. A. van de Snepscheut

Chapter 1

Introduction and motivation

Magnetic manipulation consists of accurately controlling the movement (position and veloc-
ity) of a ferromagnetic object in an environment, by creating and shaping dynamically a
magnetic field generated by the electric current running through one or more electromagnets.
This invisible force is essential to a large part of modern technology, from every-day use loud-
speakers to the leading-edge physics research carried out in the CERN Large Hadron Collider
experiments. The contact-less nature of the electromagnetic force in fact allows interactions
that would simply not be possible using traditional, contact force-based actuators.

Achieving accurate control of the electromagnetic force, however, is not a trivial undertaking.
The high degree of nonlinearity that characterizes the electromagnetic actuators intrinsically
calls for advanced control strategies that usually must rely on an accurate mathematical
model of the system dynamics. Nonetheless, there are many control tasks for which it can be
impractical or unfeasible to obtain such model. Magnetic manipulation is an example of such
a task. Other examples include robotic skills such as dexterous manipulation or navigation
in unknown dynamic environments, but also management of complex networks such as power
grids or road networks. Modeling explicitly similar systems may either require very specialized
domain expertise (and therefore be rather costly), or simply be impossible.

For such a system for which first principles modeling is not feasible, it is still possible to
measure and collect Input/Output data that hold valuable information about the system
itself. Data that can turn out to be even more valuable than an accurate system model.
Reinforcement learning control tries to use this data to derive control strategies (policies)
for complex systems (such as the electromagnetic manipulator used throughout this thesis)
without using an explicit system model.

There are many practical advantages to such an approach.

• Reinforcement-learning control allows to tackle problems that would be impractical or
unfeasible to tackle using traditional controllers.

Master of Science Thesis C. Valentini

2 Introduction and motivation

• Theoretically, an intelligent agent is able to learn a policy directly from real-world data,
with no need for a detailed system model, which would in turn require domain expertise,
which is often expensive in terms of time and effort.

• In most cases, the performance of a model-based controller designed by a human will
only be as good as the model of the system itself, which reflects the human understand-
ing of it. On the other hand, an artificial agent strictly speaking understands nothing
of the task it is dealing with. In this sense, it is not biased by prior knowledge, and
this can result in the development of behaviors that, although they might not seem
immediately intuitive to a human, would eventually lead to a better performance on
the task. A remarkable example is the AlphaGo AI developed by Deepmind to play the
boardgame Go, which eventually achieved super-human performance by pure reinforce-
ment learning, and even learned some game strategies unfamiliar to the best human
players (Silver et al., 2017).

• A well-tuned and stabilizing reinforcement learning controllers is intrinsically robust
to changes in the system. Usually, when a controller is to be deployed on a physical
system, its parameters are optimized to achieve the best performance possible. Real,
physical systems, however, are changing continuously. For example, if the system of
interest is a mechatronic system deployed in an industrial environment, the wear and
tear of the mechanical components will affect the system dynamics in the long run. The
original controller that was tuned for the original dynamics will no longer be able to
get the most out of the system. A learning controller, on the other hand, will naturally
adjust its policy without any human intervention, changing over time together with the
physical system, and always getting the full benefit of an optimally tuned controller.

Having made these considerations, reinforcement learning control clearly seems to be a very
appealing and promising paradigm, and to no surprise this field has drawn massive attention
from the research community worldwide in the recent years. However, judging from the lack
of real-world and industrial applications of this technology, one could be under the impression
that we have barely dipped our feet into the ocean of potential held by RL. In truth, this
control paradigm poses a number of challenges with respect to the application of classic
control theory, and until the day these challenges are overcome, traditional controllers will be
preferred.

• Most reinforcement learning algorithms and agents have a relatively large number of
hyper-parameters (high-level design choices and/or tunable parameters of the agent)
that affect the learning process. Finding an adequate model architecture/parameter
configuration is a critical factor to achieve satisfactory performance, and such configu-
ration largely depends on the characteristics of the particular task that the learner is
confronted with. Attaining a suitable configuration, however, largely remains an empir-
ical science (given the lack of theoretical foundations to guide most of the choices) and
usually a tremendously time-consuming process (in an inversely proportional manner
to the experience and skills of the machine learning practitioner).

• A reinforcement learning-based controller has always some intrinsic degree of stochas-
ticity. Where a traditional controller essentially reads the system state, performs some
predefined operations and computes an action in a deterministic way, the action that is
selected by an intelligent agent is the result of a learning process studded with stochastic

C. Valentini Master of Science Thesis

1-1 Research goal 3

elements, such as for example the random initialization of the policy at the beginning of
the process, or the random sequence of control actions that allow the agent to explore
its environment. Therefore, most of the process that leads the agent towards a policy
remains largely unpredictable, and clearly an intelligent controller is not as consistent
in delivering the same results in the same reliable fashion of a deterministic controller.

• The performance learned by an intelligent agent might not be better than the perfor-
mance of a traditional, state-of-the-art controller. In some other cases, a marginal per-
formance improvement simply would not justify the overhead of designing a reinforcement-
learning based controller instead of a traditional controller, usually simpler to imple-
ment.

• Writing a machine learning algorithm is not a simple task. It is indeed possible to find
an abundance of standard algorithms implementations and ML code in many public on-
line repositories to get started with, but unless one is interested in a few hackneyed toy
problems such as CartPole or Pendulum swing-up, actually implementing from scratches
an algorithm for a custom application is an endeavor that requires a fair amount of
expertise in the field.

Precisely because of the aforementioned drawbacks, control problems such as electromagnetic
manipulation constitute a particularly interesting challenge for academic research on machine
learning methods. A previous attempt at applying reinforcement learning to the magman ma-
nipulator is reported in (J. Damsteeg, 2015). In spite of the fact that a reasonable performance
level was achieved using an actor-critic algorithm in the simulated environment, the agent,
proved unable to converge to a stabilizing policy on the experimental setup. Furthermore, it
is noteworthy that the performance (in simulation) of the intelligent agent compared nega-
tively (in terms of settling time, overshoot and control effort) with respect to other nonlinear
controllers deployed.

Because of the interesting properties of this peculiar magnetic manipulator setup, it has
been used to benchmark both traditional, nonlinear controllers (J.-W. Damsteeg, Nageshrao,
& Babuska, 2017) and cutting-edge reinforcement learning controllers (Alibekov, Kubalík,
& Babuška, 2018), (De Bruin, Kober, Tuyls, & Babuška, 2018). The theoretical results
achieved by the aforementioned research in the RL field, however, were not validated by
real-world experimental results.

In the remainder of this thesis, reinforcement learning algorithms will be applied to solve
the problem of achieving linear electromagnetic regulation, in an attempt to bridge the gap
between what should theoretically be possible and the real-world.

1-1 Research goal

The first goal of the Master thesis presented in this report is to implement and deploy a
state-of-the-art controller based on Machine Learning methods to solve a regulation problem
using a linear magnetic manipulator.

The controller will at first be deployed in a physics simulation environment and then on the
experimental setup.

Master of Science Thesis C. Valentini

4 Introduction and motivation

Finally, the controller performance will be compared to the performance of traditional non-
linear controllers.

1-2 Thesis structure
The remainder of this thesis is structured as follows:

• Chapter 2 describes the linear magnetic manipulator experimental setup and its dy-
namics model used throughout this thesis work.

• Chapter 3 briefly introduces Reinforcement Learning (RL) and its main paradigms.

• Chapter 4 presents the Q-learning algorithm and the results obtained both in simula-
tions and on the experimental setup.

• Chapter 5 contains the conclusions drawn from this thesis project and some recom-
mendations for future work.

• Appendix A presents Value Iteration, a model-based RL method that was also applied
to the control task at hand, both in simulations and on the experimental setup.

• Appendix B gives some details on the hardware used and on the I/O interface.

C. Valentini Master of Science Thesis

Chapter 2

The Magman control benchmark

The magman (short for magnetic manipulator) control benchmark shown in Fig. 2-1 was used
throughout the thesis work presented in this report.

Figure 2-1: The magman experimental setup.

2-1 Experimental setup
The magman experimental setup consists of four linearly arranged electromagnets and a steel
ball that can move along a rail-like track positioned above them. The track constrains the
ball movement to a single dimension.

This setup has been widely used within the TU Delft DCSC (Delft Center for Systems and
Control) and CoR (Cognitive Robotics) departments for didactic purposes, as well as to serve
as nonlinear control test-bench and technology demonstrator.

Master of Science Thesis C. Valentini

6 The Magman control benchmark

The two state variables are the ball position (measured by a laser sensor) and velocity (that
is not measured directly but needs to be reconstructed from the position measurements). The
four coils are used to generate a magnetic field that can be shaped to put the steel ball in
motion and steer it towards a reference position or to track a reference state. Therefore, the
setup is treated as a MISO (multiple-input, single-output) nonlinear dynamic system.

Appendix B can be consulted for some details on the system I/O interface.

Fig. 2-2 shows a schematic representation of the setup. The laser sensor is positioned in such
a way that its measuring range coincides with the mono-dimensional rail along which the
ball can move. The four coils are positioned at approximately 0.025m, 0.050m, 0.075m, and
0.100m from the beginning of the rail (point A in Fig. 2-2), where the laser sensor measures
0m.

Summarizing, the state and action spaces of the magman system are the following:

• The position is limited in the interval [0.0, 0.125]m.

• The length of the rail limits the velocity in the interval [−0.4, 0.4]m/s.

• The control action for each coil is a continuous value in the interval [0.0, 0.55]A2.

Figure 2-2: A schematic representation of the magman setup. The two points A and B indicate
the ball position range.

On a final note on the experimental setup, it is worth mentioning that it is essentially a sim-
plified version of the planar electromagnetic manipulator developed by Zemánek and Hurák
at the Czech Technical University shown in Fig. 2-3. See (Hurák & Zemánek, 2012) and
(Zemánek, Čelikovskỳ, & Hurák, 2017) for additional details.

C. Valentini Master of Science Thesis

2-2 Dynamics model 7

Figure 2-3: The planar magnetic manipulator setup. The ball rolls over a flat surface under the
influence of the electromagnetic field generated by the combined action of 16 coils.
Image source: (Simonian, 2014).

2-2 Dynamics model
As stated in the introduction chapter, the control strategies that will be deployed do not
require an accurate system model, strictly speaking. However, a mathematical model of the
system is of critical importance during the design and verification phases of the learning algo-
rithm, and is also instrumental to reducing the time necessary to perform model optimization.

The local interactions between an electromagnetic field and a ferromagnetic object have a
highly nonlinear nature. To further complicate the dynamics of the system, the dependency
of the intensity of the magnetic field generated by an electromagnet on the magnitude of
the current running trough its coils is also non-linear. Modeling these interactions from first
principles is a non-trivial task that would require advanced vector calculus analysis.

Studies on a setup using the same kind of actuator (Simonian, 2014) used an empirical
approach to identify the following force model for a single coil:

F (d, I) = g(d)I = −αd
(d2 + β)3 I (2-1)

With d the distance of the center of the steel ball from the center of the coil, I the intensity of
the current running through the coil and α and β two dimensionless parameters depending on
the physical properties of the ball and of the electromagnet. This model makes a simplification
assuming linear dependency of the exerted force on the current intensity, but higher order
dependencies are commonly used to describe such systems more accurately (Hammond, 2013).

Fig. 2-4 is a visual interpretation of the relation in Eq. 2-1.

Master of Science Thesis C. Valentini

8 The Magman control benchmark

Figure 2-4: 3D visualization of the nonlinear function linking the magnetic force exerted on the
steel ball to the current running through a single coil and on distance of the ball from the center
of the coil, according to the empirical model identified in (Simonian, 2014).

Since the coils have a similar construction, it is reasonable to assume that this model, with
the same parameters, can be used to represent the behavior of all the coils.

A further simplification that can be made is to assume that the superposition principle holds
for the force exerted on the ball by the spatially continuous magnetic field generated by the
four currents running through the four coils. In other words, we are assuming that the total
magnetic force exerted on the steel ball is equal to the sum of the four individual forces that
would be caused by the action of each of the four coils independently from each other.

It needs to be kept in mind, however, that the superposition principle is a property of linear
systems, but the effects of a dynamic magnetic field such as the one generated by the four
coils of the magman on a rigid body subject to physical constrains are highly nonlinear. Such
force is in fact a nonlinear function of the magnetic field, which is in turn a nonlinear function
of the electric currents flowing through the electromagnet. The empirical model therefore
makes quite a relevant simplification, and this is reflected in the results of an open loop
model validation.

2-2-1 Validation of the legacy model
With the assumptions and simplifications discussed, and assuming a simple viscous friction
model, the dynamics of the magman system are described by the following set of differential
equations: [

ẋ
ẍ

]
=

[
ẋ

− b
m ẋ+ 1

m

∑4
j=1 g(x, j)Ij

]
(2-2)

C. Valentini Master of Science Thesis

2-2 Dynamics model 9

The following parameters were used by a legacy model of the system:

• α = 5.52e− 10

• β = 1.74e− 4

• b = 0.0161

• m = 0.0563 (Please note that the legacy model actually used 0.032 kg for the ball mass,
since the ball used was different)

This system model was used in the past for the design of model-based nonlinear controllers,
see (J.-W. Damsteeg et al., 2017) for the details.

A Python implementation of the magman and other control benchmarks, developed by T. De
Bruin, can be found at https://github.com/timdebruin/CoR-control-benchmarks.

Fig. 2-5 shows a comparison between the system step response of the experimental setup and
the response of the legacy model. The Variance Accounted For (VAF) (Verhaegen & Verdult,
2007) is used to assess model accuracy, defined as:

V AF = 100 · (1− var(y − ŷ)
var(y)) (2-3)

Where y is the output of the real system and ŷ is the output of the system model. The closer
this value is to 100%, the more similar the identified model is to the actual system.

0 1 2 3 4 5 6 7 8 9 10

0

0.01

0.02

0.03

0.04

0.05

Simulation

Experiment

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.2

0

0.2

0.4

Simulation

Experiment

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

Simulation

Experiment

Figure 2-5: Step response open-loop validation of the legacy magman model - One coil. VAF
= 43.4124%

Fig. 2-6 shows a comparison of the step response when two coils are actuated. As it can be
seen, there is a more accentuated nonlinearity that is not captured by the legacy model. The
mismatch between the model output and the output of the experimental setup is significant,
which is reflected in the low VAF of 4.1480 obtained for the step response.

Master of Science Thesis C. Valentini

https://github.com/timdebruin/CoR-control-benchmarks

10 The Magman control benchmark

0 1 2 3 4 5 6 7 8 9 10

0

0.02

0.04

0.06
Simulation

Experiment

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.2

0

0.2

0.4

Simulation

Experiment

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

u
1
 - Simulation

u
2
 - Simulation

u
1
 - Experiment

u
2
 - Experiment

Figure 2-6: Step response open-loop validation of the legacy magman model - Two coils. VAF
= 4.1480%

As it can be seen from Fig. 2-5 and Fig. 2-6, this model is not quite representative of the actual
system. Eventually, however, it will only be used to provide a quick prototyping environment
to aid the implementation and testing of the learning algorithms, and not by the controller
itself. Therefore, having a mathematical model that is not completely accurate but can still
be considered illustrative of the system under investigation should not be a hinder to the
success of a learning agent.

Nevertheless, it was considered desirable to identify a new system model, closer to the actual
system.

2-2-2 New model and validation
The model in Eq. 2-2 was improved with a Coulomb friction model and a force model that
takes into account the true position of the coils, rather than the nominal positions. The new
model is the following:

[
ẋ
ẍ

]
=

 ẋ
1
m(−fbẋ− fcsgn(ẋ) + u1(−α x−0.0233

((x−0.0233)2+β)3 + u2(−α x−0.0505
((x−0.0505)2+β)3 +

u3(−α x−0.0770
((x−0.0770)2+β)3 + u4(−α x−0.1040

((x−0.1040)2+β)3)

 (2-4)

With the following parameters:

• α = 2.0821 · 10−9

• β = 3.0289 · 10−4

• Viscous friction coefficient fb = 0.0087

• Coulomb friction coefficient fC = 0.0034

C. Valentini Master of Science Thesis

2-2 Dynamics model 11

• Steel ball mass m = 0.0563 kg

Fig. 2-7 and Fig. 2-8 show that this model is much more representative of the actual system
with respect to the legacy model, specifically on the step response with two different coils, in
which the VAF value increases from 4.1480% to 80.5508%.

0 1 2 3 4 5 6 7 8 9 10

0

0.01

0.02

0.03

0.04

0.05

Simulation

Experiment

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.2

0

0.2

0.4

Simulation

Experiment

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

Simulation

Experiment

Figure 2-7: Step response open-loop validation of the new magman model - Single coil. VAF
= 70.8411%

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

Simulation

Experiment

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.2

0

0.2

0.4

Simulation

Experiment

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

u
1
 - Simulation

u
2
 - Simulation

u
1
 - Experiment

u
2
 - Experiment

Figure 2-8: Step response open-loop validation of the new magman model - Two coils. VAF
= 80.5508%

In spite of the fact that the new model is indeed a closer match to the actual system with

Master of Science Thesis C. Valentini

12 The Magman control benchmark

respect to the legacy model, the system dynamics are still not captured entirely.

However, getting a truly accurate model of the magman is unpractical and would require
a considerable effort. This is one of the reasons why it is desirable to deploy a model-free
reinforcement algorithm as an alternative to traditional control methods.

C. Valentini Master of Science Thesis

Chapter 3

Reinforcement learning

Reinforcement learning is a field of machine learning, part of the larger domain of Artificial
Intelligence. It can be defined as the art (and the science) of teaching a machine how to
perform complex tasks with no explicit programming. The machine shall be able to learn
from data extracted from the real world, improve its performance by interacting with its
environment and eventually become able to generalize the learned behavior to novel situations.

Research in this field has lately known a significant growth, both in the academia and in
the industry, with an ever-increasing number of researches being published and investments
being made. The enthusiasm for research in this domain is fueled by results that showed
in an unprecedented way the potential in machine learning to equal and exceed human-level
performance on a number of specific tasks. Among many other important accomplishments,
it is worth mentioning the following three:

• The Watson Artificial Intelligence developed by IBM, that won the popular television-
streamed game Jeopardy! playing against human players (Ferrucci, 2012).

• The DQN (Deep Q-Network) agent developed by Deepmind, that bested the top human
video-game players on most of the Atari 2600 console games (Mnih et al., 2015).

• The AplhaGo AI, also developed by Deepmind, that repeatedly beat the best human
players on the board game Go (Silver et al., 2016).

Conceivably, machine learning has also penetrated the realm of control engineering, leading to
the development of the Machine Learning Control (MLC) field. MLC is a rather vast concept,
with research branching in different directions and towards different paradigms. The three
main paradigms are the following:

• Supervised Learning, where the agent learns an input/output mapping from labeled
training data. Supervised learning provides an excellent tool to solve a broad range
of classification problems such as medical diagnostics, handwriting recognition, face
recognition etc.. However, supervised learning alone is not really useful for control
applications.

Master of Science Thesis C. Valentini

14 Reinforcement learning

If it was in fact possible to make an a priori distinction between good and less good
control actions or, in other words, if labeled data was available, a good control strat-
egy would be already known, and machine learning could only lead to some marginal
improvements. This was the case of the agent based on imitation learning (a branch of
supervised learning) that is described in (J. Damsteeg, 2015). This controller success-
fully learned a control policy imitating a tuned-down model-based controller. However,
the performance of the imitation learning controller was worse with respect to the per-
formance of a version of the model-based controller before it was down-tuned.

• Unsupervised Learning, where the agent is trained on unlabeled data. The goal of
unsupervised learning is to extrapolate the properties of an input dataset (distribution),
without any sort of feedback from a teacher/supervisor. The unsupervised learning
approach (by itself) is also not suitable to deal with a dynamic control problem, since it
is crucial that the behavior of the agent is reactive to the feedback received. However,
unsupervised learning could be used for example to pre-cluster the system state space
in a number of sub-spaces, and the global control policy could be the one resulting from
the integration of local policies defined by means of different strategies over the state
space segmentation.

Furthermore, unsupervised learning could be used to train Kohonen self-organizing maps
(Kohonen, 1982), that are able to represent the training sample in a low-dimensionality
space while maintaining the topological properties of the input space. Once the sys-
tem model is identified in this way, it could then be used to carry out model-based
controller design. Techniques such as the vector-quantized temporal associative mem-
ory (VQTAM) algorithm developed in (Barreto & Araujo, 2004) are also based on
self-organizing maps, but in the literature there is no report of the application of this
particular strategy to a real control problem.

• Reinforcement Learning is a machine learning paradigm that was originally inspired
by behavioral psychology and ethology (animal behavior). The neurological evidence
produced in these fields inspired computational models that seem to be able to process
high dimensional information in a similar way to the human brain. Chapters 14 and
15 of (Sutton & Barto, 2018) make an interesting parallel between psychology concepts
and engineering.

Reinforcement learning agents do not require any explicit programming (in the tradi-
tional sense) to carry out a task, but learn directly from interaction with an environment
(or exposition to datasets). Besides control tasks, reinforcement learning is also increas-
ingly being used to solve optimization problems (Sra, Nowozin, & Wright, 2012). If the
RL algorithm uses deep artificial neural networks (ANNs) as function approximators,
it is referred to as deep reinforcement learning.

Out of the three, reinforcement learning is conceivably the most fascinating approach, and
definitely the one that seemed to hold the greatest potential to solve the control problem at
hand, considering its characteristics. The next section will briefly describe the Reinforcement
Learning process and its framework.

C. Valentini Master of Science Thesis

3-1 Theoretical framework 15

3-1 Theoretical framework

The idea at the base of RL is the following: the RL agent observes the state of the environment
that it needs to solve and takes an action according to its internal control policy. Then, it
observes the consequences of its actions on the state of the system and adapts its behavior
accordingly, based on its programming. The effects of the learner’s actions are quantified in
a reward that implicitly shapes the agent’s behavior.

In this, the reinforcement learning agent is a state-feedback controller, and its environment
is the magman experimental setup. The reinforcement learning goal is for the agent to learn
a control strategy, also referred to as policy, that allows it to perform a regulation task.

The system state, observed at discrete time intervals, is denoted as sk, and the control action
determined by the deterministic policy π is denoted by ak = πk(sk). During a training
episode, the agent interacts with the environment as follows:

• Observe the system state, sk

• Take an action, ak

• Observe the system new state, sk+1

• Get an immediate reward for the interaction, rk+1

The reward is the feedback that agent receives from the environment for its immediate per-
formance. It is a scalar function of the system state and control action. The sum of all
the immediate rewards over the course of a training episode is referred to as return. The
agent learns a control policy by optimizing the reward gained from the system during the
interactions.

Fig. 3-1 illustrates the interaction between agent and environment in the context of reinforce-
ment learning.

Figure 3-1: A scheme of the RL framework. Image source: (Sutton et al., 1998).

An important assumption of RL is that the task at hand is a so-calledMarkov Decision Process
(satisfying the Markov Property (Puterman, 2014)), which means that the environment next
state sk+1 only depends on its current state sk and the action taken by agent, ak, and it is
therefore independent of previous system states and previous decisions of the agent. In other
words, the RL task needs to be causal and deterministic.

Master of Science Thesis C. Valentini

16 Reinforcement learning

Drawbacks of the approach

There are, however, a number of concerns about the applicability and actual usefulness of
Reinforcement Learning. A number of issues are known to be affecting the RL in general.

• Machine Learning is sample inefficient. In many cases, a reinforcement learning agent
might need a very large amount of data.

For many difficult problems, the number of samples necessary is well beyond a practically
acceptable level. In the case of the AlphaGo Zero agent (Silver et al., 2017), 29 million
games and 40 days of continued training on 64 GPU workers were necessary to learn
super-human performance. Such resources are well beyond what is normally available
to researchers.

• As a consequence of the sample inefficiency, the fact that many interactions with the
environment are needed substantially hinders many real-world applications, as in the
case of a robotic manipulator, for example, that would naturally suffer from wear and
tear and which maintenance costs would not justify the benefits of a learning controller
(Kober, Bagnell, & Peters, 2013).

• While RL is rightfully considered a fascinating research topic, the performance on many
control tasks of a ML-based controller is in most cases unlikely to be better than the
performance of a traditional, fine-tuned controller based on a domain-specific algorithm.
As an example, a Monte Carlo tree-search-based method (Guo, Singh, Lee, Lewis, &
Wang, 2014) has been shown to out-perform significantly the already mentioned DQN
agent (Mnih et al., 2015) on the Atari Arcade Learning Environment. When domain-
specific knowledge is available, model-predictive control can be applied to solve complex
tasks such as locomotion. In (Tassa, Erez, & Todorov, 2012), the model-predictive
paradigm is used to control the motion of a humanoid puppet in the MuJoCo physics
engine (Todorov, Erez, & Tassa, 2012). Other papers such as (Heess et al., 2017)
deployed Reinforcement Learning on a similar locomotion task, but most of the learned
gaits look rather unnatural, although the puppet is still able to navigate through complex
environments.

• ML algorithms are known to be very sensitive to changes in hyper-parameters and other
high-level design choices such as the topology of the ANN (if one is used), etc.. Tuning
such an algorithm is not a trivial task, requires considerable amount of expertise and is
a time-consuming process.

• The reward function is a critical factor that determines success at correctly solving the
environment. A misspecified reward function might in fact bias learning and is bound
to make the agent fail to learn the desired behavior. In many practical cases, designing
a reward function is not an easy task, as it is widely reported in the literature. For
example, a reward function that is defined too loosely might lead an optimizing RL
agent to learn quite different behaviors with respect to the desired ones, as reported in
(Popov et al., 2017), where the task at hand is robotic dexterous manipulation. The field
of evolutionary reinforcement learning (Lehman et al., 2018) provides plenty of other
examples in which the agent learns to trick the specified reward (reward hacking). In
other cases, the agent might simply fail at its task as a result of a poor trade-off between
exploration and exploitation, therefore learning to exploit local optima generated in turn

C. Valentini Master of Science Thesis

3-2 Model-based reinforcement learning 17

by a poorly specified reward function.

• Another drawback affecting Reinforcement Learning specifically is what is often referred
to as the exploration vs exploitation dilemma (Sutton et al., 1998). In control appli-
cations, the RL algorithm essentially boils down to solving a nonlinear optimization
problem by finding the policy that maximizes the return (the discounted sum of re-
wards expected from the system). As with all nonlinear optimization problems, there
are often many different local optima, and the RL agent might get irredeemably stuck
in one of those points. Therefore, the agent needs to be able to explore its action space,
while still exploiting what it has learned so far. On the other hand, if the scales tips
too much in favor of exploration, the agent will never converge to a stable policy.

Academic research is continuously striving to alleviate these and other obstacles to a wide-
spread use of RL in a number of different ways, leading to the development of various classes
of algorithms.

The first major distinction within the reinforcement learning paradigm can be made between
model-based and model-free algorithms, depending on weather a model of the environment is
used or not.

3-2 Model-based reinforcement learning
Model-based reinforcement learning (MBRL) is a popular research branch in RL. A model-
based agent explicitly uses a model of the interaction with the environment. In other words,
it predicts or approximates the expected environment response to its possible actions. The
optimal action or policy is derived from this model with an optimization over the action
space. The environment response is then observed, and the policy is updated accordingly, as
summarized in Fig. 3-2.

Figure 3-2: Pipeline of a model-based RL algorithm.
Image source: (Polydoros & Nalpantidis, 2017).

The literature concerning model-based reinforcement learning is extensive. This paradigm has
been successfully applied to several control tasks, with many real-world experiments ranging
from simple toy problems such as pendulum swing-up (Atkeson & Santamaria, 1997) to more
complex tasks such as agents deployed to learn learn hovering and acrobatic maneuvers (Kim,
Jordan, Sastry, & Ng, 2004) of a small helicopter. Numerous applications of Model-Based

Master of Science Thesis C. Valentini

18 Reinforcement learning

Reinforcement Learning are also found in the field of robotics (Kober et al., 2013), (Polydoros
& Nalpantidis, 2017), where the number of environment interactions necessary for the agent
to learn a good policy constitutes a significant cost factor.

The main advantage of model-based RL over direct RL lies in the fact that the number of
physical interactions necessary for the agent to learn a policy is reduced, since the agent can
use its internal model for learning. This feature makes MBRL particularly appealing for those
applications in which exploratory behavior might be not desirable and/or expensive. This
advantage comes at the cost of a strong dependence on the environment transition dynamics
model maintained by the agent, which is not easily obtained for systems such as the magman,
as aforementioned. Furthermore, the policy simulation and optimization process might be
computationally expensive for controllers with large action spaces, which might be a limiting
factor for a multiple-input, real-time, continuous system such as the magnetic manipulator.

3-3 Model-free reinforcement learning
In order to break the dependency of the agent on a transition model and also in order to over-
come the difficulties in exploiting the available problem-specific information, it was decided
to deploy model-free reinforcement learning to solve the magman problem.

A model-free agent does not rely on predictions made by an internal model of the system
to define a control policy. Q-learning methods such as DQN (Mnih et al., 2015) and policy
gradient methods such as REINFORCE (Williams, 1992) are two examples of model-free
algorithms.

An important distinction within the Model-free paradigm can be made between value iteration
(VI) and Policy gradient-based methods. Yet another distinction can be made between on-
policy and off-policy algorithms. In the following these definitions will be briefly explained.

3-4 Value iteration methods
Value iteration methods iteratively approximate a value function, while learning the control
policy at the same time. A value function essentially tells the agent how good it is to be
in a certain state, or alternatively how good it is to be in a certain state and take a certain
action. A state value function is denoted as V(s) and a state-action value function is denoted
as Q(s,a). The value function of the MDP is of course not known a priori, and needs to be

When the MDP has a limited number of states and actions, the estimate of Q(s,a) is usually
kept in a table, for example in the case of grid-world toy problems, or otherwise it can
be parametrized by an ANN. The value function is updated as the agent interacts with its
environment.

3-5 Policy-based methods
Alternatively, the policy can be searched directly. Usually, the policy is parametrized by a
DNN.

C. Valentini Master of Science Thesis

3-6 On-policy algorithms 19

Policy-based methods are clearly more suited for continuous control applications with respect
to state-value and state-action value functions, which are more appropriate for inherently
discrete problems. The concept of deterministic policy gradient (DPG) was introduced in
(Sutton & Barto, 2011), (Silver et al., 2014). The proposed method maximizes the expected
total return by estimating the policy gradient and moving their parameters in the direction
of gradient ascent (Schulman, Moritz, Levine, Jordan, & Abbeel, 2015). In other words,
a DPG agent does not try to find an approximation of the optimal Q value function, but
parametrizes directly the control policy π as πθ(s, a) = P[a|s, θ] as a probability distribution
over the actions by manipulating the parameters θ. The parameters are updated in such a way
that the policy moves in the direction that maximizes the return (gradient ascent strategy)
(Williams, 1992) (Baxter, Bartlett, et al., 2000). Since the DPG agent follows the positive
direction of the gradient, it usually has very good convergence-properties, but on the other
hand it is bound to remain stuck in a local optimum in case the exploratory behavior is not
handled correctly. This agent is also known for its good learning stability properties, due
to the fact that the policy is updated smoothly and incrementally. Furthermore, since the
policy is directly parametrized, it is not necessary to carry out the computationally expensive
optimization step over the whole action space necessary for a Q-learning agent. A policy-
based method can therefore be implemented effectively for a continuous action space such as
the magnetic manipulation setup.

3-6 On-policy algorithms
These algorithms usually attempt to improve the policy that is currently used for selecting
the control actions. Example of on-policy algorithms are REINFORCE, SARSA and actor-
critic schemes (Konda & Tsitsiklis, 2000). As already mentioned, an actor-critic algorithm
was deployed on a simulated environment of the magman in (J. Damsteeg, 2015), but failed
when deployed on the experimental setup.

3-7 Off-policy algorithms
The agents based on off-policy algorithms implement a different policy with respect to the one
that is being optimized. The main advantage of these methods over the on-policy algorithms
is that they are generally more sample-efficient.

Furthermore, since the experiences are collected following a policy that can be completely
arbitrary with respect to the one that is being optimized, it is possible to explore the action
space in ways that could not be possible if an on-policy strategy was followed.

3-8 Summary
Eventually, the algorithms deployed for control on the magman setup were:

• The offline, off-policy, model-based Value Iteration (VI) method, described in Ap-
pendix. A

• Two different online implementations of the model-free, off-policy Q-learning method,
described in Chapter 4

Master of Science Thesis C. Valentini

20 Reinforcement learning

Eventually, some experiments were also made with baseline implementations of the Deep
Deterministic Policy Gradient (DDPG) and the Normalized Advantage Functions
(NAF), but are not described in detail this paper. The main conclusions drawn from these
attempts is that Deep Learning proved to be less suitable with respect to simple Q-learning
to solve the task at hand.

C. Valentini Master of Science Thesis

Chapter 4

Q-Learning

The first machine learning algorithm deployed in an attempt to solve the magman problem
was an instance of the DQN (Deep Q-Networks) algorithm (Mnih et al., 2015). The DQN
agent is widely considered to be one of the most remarkable contributions to the field of ML,
since it demonstrated for the first time that (deep) reinforcement learning could be used to
successfully learn control policies for a complex environment, such as the Atari arcade games,
directly from high-dimensional sensory input.

4-1 The algorithm

This method belongs to the class of value-iteration methods. The Q-function (value function)
is a function of the environment state s and of the control actions a. The function output
is the expected return obtained from the environment if the agent takes action a when the
system is in state s and it follows the policy greedily from that moment on.

The optimal Q-function, denoted as Q∗ is of course not known a priori, but the DQN agent is
able to improve its approximation of it trough the rewards obtained while interacting with the
environment. The Q-values are updated iteratively using the Bellman optimality equation
(E. 4-1), until the approximation of the Q-function that is kept by the agent converges to the
optimal Q∗-function.

q(s, a) = E
[
Rk+1 + γmaxa′ q(s′, a′)

]
(4-1)

Once the Q-function is a good approximation of the optimal Q∗-function, a good control
policy follows as a consequence, as it is simply the action that maximizes the Q-function in
every state:

π = max
a

Q(s, a) (4-2)

In the DQN algorihtm, this value function is parametrized by a (deep) neural network.

Master of Science Thesis C. Valentini

22 Q-Learning

A few expedients that will be described in the following subsections are necessary to make
the DQN algorithm work in practice.

4-1-1 Exploration strategy

For the sake of simplicity, an ε-greedy exploration strategy was used. This basic form of
undirected exploration selects a random action (instead of the greedy action, associated to
the highest Q-value in a certain state) with a certain probability ε ∈ (0, 1). As the value
function is being learned by the agent over time, the probability of selecting a random action
is annealed (linearly or asymptotically) in order to balance exploration of the environment
and exploitation of the learned policy.

4-1-2 The training algorithm

The training algorithm used, also referred to as the optimizer, is the adaptive moment es-
timation (adam) algorithm (Kingma & Ba, 2014). It is an extension of the stochastic gra-
dient method which maintains separate learning rates for each weight of the value function
parametrization. It has been empirically shown that the adam optimizer performs better with
respect to other training algorithms such as AdaGrad, RMSProp, and is often suggested as
the standard choice for solving deep learning problems.

4-1-3 Experience replay

Machine learning training algorithms based on stochastic gradient descent as the adam opti-
mizer used in this case require to be trained on i.i.d. data samples. However, the sequence
of states and actions visited by a reinforcement learning agent as it is interacting with its
environment is naturally highly correlated.

Experience replay (Lin, 1992) was introduced as a strategy to break the correlation in the
training data, increasing the stability of the learning process and improving the chances of
convergence to a stabilizing policy.

An experience replay buffer is essentially a database that holds the agent’s past experiences,
where each experience is defined as a tuple that describes an interaction with the environment.
At time-step tk, an agent in state sk performing an action ak reaches state sk+1 and receives
a reward rk+1. The tuple e = {sk, ak, sk+1, rk+1} constitutes one experience. Over time, the
agent accumulates experiences and uses them to learn the behavior that leads it to maximize
the return over a training episode. In other words, the value function is not updated based
on the latest interaction, but it is updated based on past interactions.

Research has shown (De Bruin et al., 2018) that the definition of the experience replay strategy
(i.e., how big the buffer is, which experiences are added to it and how they are replayed) can
have a significant impact on the outcome of a training run and on the convergence time.

For what concerns the buffer size, the literature suggests that retaining all of the past ex-
periences is often a good baseline although for some problems, such as the linear magnetic
manipulator used in this thesis, a limited buffer leads to better performances. For what con-
cerns the composition and sampling of the buffer, some utility proxies, such as how surprising

C. Valentini Master of Science Thesis

4-1 The algorithm 23

is one experience with respect to the others already in the database or the element of ex-
ploration associated to it, can be used to give a score to each experience depending on the
characteristics of the data samples that are considered to be most important.

However, in order to avoid adding elements of complexity to the algorithm design, it was cho-
sen to keep a limited ER buffer updated with a FIFO (First-In-First-Out) rule, and to sample
experience mini-batches from it uniformly at random. The results obtained in the simulated
environment indicate that, at least for the mathematical model of the magman, a good policy
can be obtained within a reasonable time without the need for a more sophisticated strategy.

4-1-4 The target network
An important part of the DQN training process is the so called target network.

Computing the loss between the output Q-values and the target Q-values would require two
passes through the network parametrizing the policy, and then the function parameters would
be updated accordingly. However, in this way the loss is computed with respect to a constantly
moving target, which makes the learning unstable.

Therefore, the target Q-values needs to be obtained from a different network with respect to
the Q network. This new network, called target network used to calculate the max Q-value
for the system’s next state, is initialized at the beginning of the learning with a copy of the
weights of the Q network, and updated every once in a while. For the experiments, the
target network was always updated every 10000 steps, but the frequency of update is usually
considered a tunable hyperparameter of the RL model.

4-1-5 Algorithm summary
The following Table summarizes the algorithm used.

Master of Science Thesis C. Valentini

24 Q-Learning

Algorithm 1 DQN algorithm
1: Initialize ER memory buffer D to capacity N
2: Initialize the Q network (approximating the Q-value function Q) with random weights
3: Initialize the target network, cloning the weights of the Q networks
4: for episode = 1,M do
5: Initialize the system state
6: for timestep = 1,N do
7: Select and execute an action, depending on the exploration strategy or exploitation

of the current policy
8: Observe the system’s next state and compute the reward associated to the transition

(and add the experience to the ER database)
9: Sample a mini-batch of experiences from the replay memory

10: Pass the experiences batch to the Q network and calculate the loss between output
Q-values and target Q-values

11: Update the weights of the Q network (according to the training algorithm) to mini-
mize loss

12: Every x timesteps, clone the weights of the Q network to the target network
13: end for
14: end for

In the magman case, empirical tests suggested that the learning process did not benefit from
a deep NN parametrization of the policy, but it was instead better to parametrize the policy
using only the weights of the input and output layers of the neural network, which have linear
activation functions. Therefore, it would be more appropriate to call the strategy deployed a
Flat Q-network (FQN), since DNNs are not used.

4-2 Model evaluation and tuning

Throughout the thesis work here presented, a considerable amount of time and effort was
spent on testing different hyper-parameters configurations and exploring diverse high-level
design choices. Optimizing the parameters of a learning agent is usually a computationally
intensive task given the high dimensionality of the parameter vector and the time it takes
to evaluate the agent’s performance with every set. Finding an adequate tuning, however, is
just as crucial for the success of the agent as the selection of an adequate learning algorithm
itself.

For the DQN algorithm that was used during this thesis, the main hyper-parameters and
high-level design choices were the following ones:

• The system control frequency, at which the learner records the system state and interacts
with the environment by means of a control action.

• The sensor sampling frequency, at which the laser sensor is sampled by the data acqui-
sition board. Normally, control frequency and sampling frequency are the same, but in
the magman case, since part of the state vector is not measured directly but needs to
be reconstructed, the sampling frequency was also considered a design parameter.

C. Valentini Master of Science Thesis

4-2 Model evaluation and tuning 25

• The definition of a training run (i.e., initial state, target state, terminating condition)

• The number of episodes in each training run

• Definition of the system state (i.e., continuous or discretized state, resolution of the
discretization, etc.)

• Definition of the control actions (i.e., continuous or discrete actions, etc.)

• Definition of the reward function

• Training algorithm (and its settings)

• Parametrization of the value function approximator (e.g., ANN and its topology, etc.)

• Training strategy (e.g. online, quasi-online, at the end of an episode, number of updates
after each steps, etc.)

• Learning rate

• Discount factor

• Exploration strategy

• Definition of the experience replay buffer (size, update rule, sampling rule, mini-batch
size, etc.)

The machine learning practitioner can occasionally find (scattered throughout relevant liter-
ature and online journals or forums) some directions and lessons learned.

For example, when it comes to the choice of the neural network optimizer, the literature
(Kingma & Ba, 2014), (Bahar, Alkhouli, Peter, Brix, & Ney, 2017), (Basu, De, Mukherjee, &
Ullah, 2018) agrees that the adam algorithm outperforms all of the other first-order, gradient-
based optimization methods that are commonly used to train artificial neural networks, such
as AdaGrad, AdaDelta, Momentum, SGT, etc.. For most of the other parameters, however,
there is no silver bullet (a choice that has been proved to be working in the majority of
applications), but the optimal value depends on the control task at hand.

Therefore, tuning and optimizing a machine learning algorithm, largely remains an empirical
science. This is especially true when confronted with a problem that has not been solved with
RL before, as it is the case for the magman setup.

Although a machine learning specialist can usually find a valid hyper-parameter set by trial-
and-error, following the intuition developed over years of experience in the field, manually
looking for a configuration that yields solid performances has many drawbacks. It is not
a systematic approach and can be incredibly time-consuming, depending on the experience
of the experimenter. The optimal values of some parameters might not be intuitive, as the
performance of the learner is determined by the combination of all the parameters, whose
contributions to the learning process cannot be considered and assessed independently from
each other. Furthermore, keeping tracks of the many configurations tested, as the model
evolves and functionalities are added, can be challenging.

For these reasons, model optimization is usually carried out in a systematic fashion deploying
strategies such as grid-search, random-search or genetic algorithm-based optimization strate-

Master of Science Thesis C. Valentini

26 Q-Learning

gies, see (Bergstra, Bardenet, Bengio, & Kégl, 2011), (Friedrichs & Igel, 2005) and (Sehgal,
La, Louis, & Nguyen, 2019).

During this thesis, a grid-search-assisted manual optimization technique (simply referred to
as grid-search) was used, chosen over more complex evolution-based optimization algorithm
because of its ease of implementation. The following Section 4-3 describes the technique and
its application to the magman case in some detail.

4-3 The grid-search method
For an algorithm with N tuning parameters, a grid is defined over the N-dimensional param-
eter space. Every intersection corresponds to one of the configurations that will be tested
during the search and for which the learning process will be evaluated, according to some
pre-defined metric. Once all of the configurations have been tested, the results of each train-
ing run can be interpreted to gain more insight into how every parameter affects the learning
process and on the quality of the final policy.

As an example, let us consider the case of two parameters. The discount factor γ and the
learning rate α of the training algorithm are two critical parameters that determine how the
value function will be constructed, and updated.

The two parameter ranges are γ ∈ [0, 1) and α > 0 (the range α might be different for
different algorithms). It is common practice to construct the grid with parameter values
that are often encountered in literature and/or have been empirically found to be yielding
good results on tasks that are similar to the one of interest. Following this logic, a grid was
defined for values of γ in the set {0.8, 0.9, 0.95, 0.97, 0.99, 0.999} and values of α in the set
{0.00005, 0.0001, 0.0005, 0.001, 0.005}.

As an evaluation metric, the average score of the final policy over a number of tests in which
the system state is initialized in different initial positions evenly distributed throughout the
system state space was used. Additionally, in order to account for some degree of stochasticity
that is inherent to RL methods, such as the random initialization of the parameterization of
the value function and the randomness of the exploration process, the scores are averaged
over multiple training runs with the same hyper-parameter configuration.

The grid-search was performed to find good parameters for the Q-learning based algorithm
used. Fig. 4-1 shows the grid and the scores obtained by each configuration tested.

C. Valentini Master of Science Thesis

4-3 The grid-search method 27

0.75 0.8 0.85 0.9 0.95 1 1.05

0

1

2

3

4

5

10
-3

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

Figure 4-1: Scores obtained for every configuration tested by the grid-search for α and γ.

As it can be seen, the configuration γ = 0.8, α = 0.0001 eventually yielded the best policy.

The same concept can be extended to the remaining algorithm hyper-parameters, but the
computational time increases exponentially as more dimensions are added to the grid, and
clearly such method is not feasible for use with a real-world setup. More extensive grid-
searches were deployed first to determine the optimal topology of the Artificial Neural Network
used to parametrize the value function, and then to optimize the remaining hyper-parameters.

4-3-1 Grid-search for the ANN topology
The first grid-search was carried out to determine the most suitable topology for the neural
network approximating the value function in the DQN algorithm. The only hyper-parameters
that were changing were the number of hidden layers and the number of neurons in each hidden
layer, as illustrated in Table 4-1.

Table 4-1: Hyper-parameters grid search for the best ANN topology.

Parameter Number of hidden layers Size of the hidden layers

Values

0 [-]

1 [64]
[256]

2 [64, 32]
[128, 64]

3 [64, 64, 32]
[256, 128, 64]

4 [64, 64, 64, 32]

The relu activation function (Nair & Hinton, 2010) was used in each case. The other fixed
design parameters were the following:

Master of Science Thesis C. Valentini

28 Q-Learning

• Initial position picked uniformly at random in the system state space

• All four actuators in use

• Sampling rate = 50 Hz

• Number of episodes = 2000

• Episodes duration = 5 s

• Target position 0.0625 m, target velocity 0.0 m/s

• Number of RBFs used to represent the system state = 11

• Number of discrete actions for each coil = 5

• Discount factor γ = 0.99

• Learning rate α = 1 · 10−4

• Initial probability of selecting a random action ε0 = 0.45

• Final probability of selecting a random action εf = ε0/100

• ER buffer size = 1 · 105

• Sampled experiences mini-batch size = 128

• Linear reward function rk+1 = wx|xe| + wẋ|ẋe| +
∑2
i=1wi|ui|, with weights wx = 1,

wẋ = 0.01, w1 = w2 = 0.01

The score assigned to each different configuration was averaged over three training runs. The
outcome of this gridsearch indicated that the magman task does not benefit from a complex
ANN topology, but better policies were instead found for shallow (a single hidden layer) or
even flat (no hidden layer) networks. For this reason, it was decided not to pursue further
deep learning, and use a flat network topology, where the network parameters are simply the
weights on the linear activation functions of the input and output layers, with no hidden layer
in between.

4-3-2 Grid-search for the remaining algorithm hyper-parameters
Following the grid-search for the optimization fo the ANN topology, other searches followed
to optimize the remaining hyper-parameters. Tab. 4-2 shows the grid in which one of such
searches was performed.

The following other parameters were instead constant in all of the runs:

• Initial position 0.0025 m, initial velocity 0.0 m/s

• Target position 0.0625 m, target velocity 0.0 m/s

• Sampling rate = 50 Hz

• Number of episodes = 500

• Episodes duration = 2 s

• Final probability of selecting a random action, εf = ε0/100

C. Valentini Master of Science Thesis

4-4 On the choice of the reward function 29

Table 4-2: Grid of hyper-parameters selected to perform the grid-search.

Parameter Values
State space resolution (# of RBFs per state) 5 11 17
Number of discrete actions (per coil) 3 7 11
Discount factor, γ 0.9 0.99 0.999
Learning rate, α 1 · 10−5 1 · 10−4 1 · 10−3

Initial probability of selecting a random action, ε0 0.8 0.4 0.1
Size of the experience replay buffer 1 · 104 1 · 109

Mini-batch size of the replayed experiences 64 128 256

• Linear reward function rk+1 = wx|xe| + wẋ|ẋe| +
∑2
i=1wi|ui|, with weights wx = 1,

wẋ = 0.01, w1 = w2 = 0.01

The total number of configurations tested was equal to 1458, which required approximately
120 hours (wall-clock time). The following configuration proved to be the best one:

• State space resolution = 17

• Number of discrete actions per coil = 3

• Discount factor, γ = 0.999

• Learning rate, α = 1 · 10−4

• Initial probability of selecting a random action, ε0 = 0.1

• Size of the ER buffer = 1 · 104

• Mini-batch size of the replayed experiences = 64

Let it be noted that this configuration was not used throughout all the tests that followed,
but rather it was considered as a starting point for further fine-tuning.

The conclusions drawn from the grid-search were the following:

• Less than 70% of the 1458 combinations tested eventually led to a policy performing
better with respect to a random one.

• The resolution of the state space and action space proved to be respectively positively
and negatively correlated to the configuration score, in such a way that the best scores
were obtained with the largest number of RBFs representing the system state and the
lowest resolution of the control space.

• The characteristics of the ER buffer (i.e., mini-batch size and buffer size) did not have
a significant impact on the configuration score.

4-4 On the choice of the reward function
The reward function is another critical design parameter that deserves some special attention.

As already mentioned in Chapter 3, the reward function is essentially a mapping from the
system state and control action to a scalar value that measures how close the system is to the

Master of Science Thesis C. Valentini

30 Q-Learning

target state. Throughout every episode, a reward is given to the agent after every interaction.
The cumulative reward obtained at the end of every episode is an indication of the level of
performance achieved by the policy.

Therefore, the reward function implicitly describes the desired agent behavior, and is a de-
sign choice of paramount importance. It essentially determines if, what, and how the agent
eventually learns.

Reward functions can be classified in two main categories: sparse and shaped.

If the reward function is sparse, the learner is only rewarded when it achieves its target. In
the magman case, the sparse reward would be received when the system state is within a box
around the target state. Because the system state is continuous, the control task is accurate
positioning, and the probability of the agent casually stumbling upon a sequence of actions
that leads to the reward can be considered fairly low, using a box reward function was not
considered feasible in practice. Instead, a shaped reward function was used, that continuously
gives increasing feedback to the learner in an inversely proportional manner to the distance
from the system desired state. In this way, the agent learns to steer the system towards the
target state gradually, following the gradient of the reward function.

Fig. 4-2 and Fig. 4-3 show the learning curves of two identical DQN agents trained on 2000 3-
second episodes (sampling frequency 50Hz, state represented with 18RBFs, 5 discrete actions,
FIFO ER buffer composed of 100000 experiences, trained in mini-batches of 128 experiences by
an adam optimizer with discount factor 0.99 and learning rate 0.0001, with linearly annealed ε-
greedy exploration strategy from ε0 = 0.6 to εf = 0.0001) with two different reward functions.
As it can be seen, there is a significant difference in the two learning curves. While the agent
trained with the shaped reward function successfully learns the control task, the agent trained
with the sparse reward function fails to improve the agent’s policy in the same number of
interactions with the environment.

C. Valentini Master of Science Thesis

4-4 On the choice of the reward function 31

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

Cumulative reward

Cumulative reward (smooth)

Figure 4-2: Learning curve of a DQN agent receiving linear reward from the environment.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-152

-151

-150

-149

-148

-147

-146

-145

-144

-143

Cumulative reward

Cumulative reward (smooth)

Figure 4-3: Learning curve of a DQN agent receiving a sparse (binary) reward from the environ-
ment.

During this thesis, different reward functions were used in an attempt to facilitate the learning
task for the DQN agent agent deployed. Fig. 4-4 shows two such functions that are commonly
used in reinforcement learning.

Master of Science Thesis C. Valentini

32 Q-Learning

Figure 4-4: Two commonly used reward functions for reinforcement learning

Fig. 4-5 shows three somewhat more complex reward functions that were designed to reduce
training time on the magman control task. With respect to the standard linear and quadratic
reward functions, the gradients of these more complex functions get sharper as the state
error gets smaller. The steepness of the gradient shall ensure that the learning agent focuses
on achieving accurate positioning, and disregards any local optima that it might find in the
proximity of the target state.

-1
-1

-0.8

-0.6

0-1

-0.4

-0.2

0

-0.5

0.2

0 0.5 11

Reward function

Target state

Target position

Target velocity

Heatmap

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

R
e

w
a

rd
 v

a
lu

e

-1
-1

-0.8

-0.6

0-1

-0.4

-0.2

0

-0.5

0.2

0 0.5 11

Reward function

Target state

Target position

Target velocity

Heatmap

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

R
e

w
a

rd
 v

a
lu

e

-1
-1

-0.8

-0.6

0-1

-0.4

-0.2

0

-0.5

0.2

0 0.5 11

Reward function

Target state

Target position

Target velocity

Heatmap

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

R
e

w
a

rd
 v

a
lu

e

Figure 4-5: Some more complex reward functions designed for the magman task

The following Figures (4-6 to 4-10) show the effect of using these reward functions on the

C. Valentini Master of Science Thesis

4-4 On the choice of the reward function 33

learning process and on the performance of the final policy with different system initial con-
ditions (only the position trajectory is shown for convenience). The agent is the same used
to compare binary and linear reward.

As it can be seen, the linear and quadratic reward functions are the ones that are more
efficient in allowing the agent to gradually learn a good policy within the same number of
iterations. The agents trained with the other reward functions perform significantly worse.

The task at hand is accurate positioning the steel ball in an inter-coils position. Positioning the
ball on top of the coils would be an easier task for the agent, since the magnetic field generated
by the coil is very strong and naturally attracts the ball towards it. If the target is defined
on any other point of the state space, the value associated to the coil-top locations intuitively
will not be good, since there is a great chance that the steel ball gets stuck there and is
eventually not able to reach the reference state. Therefore, it seemed intuitive that a suitable
reward function for the magman task would give a big reward only in the close proximity
of the target state, and would therefore have a relatively steep gradient to avoid giving the
agent excessive reward when the ball is in a coil-top position. Therefore, the step-pyramid,
shaped and super-quadric reward functions were designed. Although intuitively seemed to
be more suitable to learn the accurate positioning task described, they actually proved to
be unlearnable by the agent already at simulation stage, because the reward obtained is too
sparse.

Therefore, it was decided to compute the reward for the agent according to the linear reward
function (Fig. 4-6), which in simulation led to the fastest training and to the best policy.
Another factor that led to this choice is that the linear reward function only has two tuning
parameters. Let it be noted, however, that the other cost functions shall not be considered
bad in an absolute sense, but they could still lead to meaningful results if tuned more carefully
and/or if the agent is allowed for more interactions with the environment, maybe under a
different exploration strategy.

Master of Science Thesis C. Valentini

34 Q-Learning

Figure 4-6: Effects of training an agent with a linear reward function.

Figure 4-7: Effects of training an agent with a quadratic reward function.

C. Valentini Master of Science Thesis

4-4 On the choice of the reward function 35

Figure 4-8: Effects of training an agent with a step-pyramid reward function.

Figure 4-9: Effects of training an agent with another shaped reward function.

Master of Science Thesis C. Valentini

36 Q-Learning

Figure 4-10: Effects of training an agent with a superquadric reward function.

4-5 Performance in simulations
The algorithm described in the previous section was optimized with the aforementioned grid-
search method.

The following experiment was defined:

• All four coils (labeled as A, B, C and D) in use, positioned in {0.025, 0.050, 0.075, 0.100}m

• Initial states picked uniformly at random in the state space (x0 ∈ [0.0, 0.125]m, ẋ0 ∈
[−0.4, 0.4]m/s)

• Target state xf = 0.0625m, ẋf = 0.0m/s

• Sampling frequency = 50Hz

• Number of episodes in the training run = 20000

• Training starting at episode 50 (to initialize the ER buffer with some experiences)

• Episodes duration = 3 s

• ε−greedy exploration strategy. ε linearly annealed from 0.6 to 0.00001

• DQN algorithm trained with the adam optimizer (learning rate = 0.0001)

• Discount factor = 0.95

• System state represented with 11 RBFs per state

• 3 discrete control actions

• Agent trained (Q network updated) once at every time-step

C. Valentini Master of Science Thesis

4-5 Performance in simulations 37

• Linear reward function (rk = wx|xe|+wẋ|ẋe|+wu
∑4
i=1 |uei |), with wx = 1.0, wẋ = 0.03

and wu = 0.015

As shown in Fig. 4-11, the cumulative reward obtained by the agent in every episode increases
steadily throughout the training run, getting from an average starting value of −7 to an
average final value of −1. As it can be seen, however, the learning curve has not plateaued
around a constant value, and is still increasing. Since the final probability of choosing a
random action (ε) is relatively low, this indicates that the Q-function has not yet converged
to the optimal value function, in spite of the large amount of training that the agent has
received.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
4

-12

-10

-8

-6

-4

-2

0

Cumulative reward

Cumulative reward (smooth)

Figure 4-11: Cumulative reward over the 20000 training episodes.

At the end of the training, the final policy is evaluated on a number of tests where the
environment is initialized in different states. As it can be seen in Fig. 4-12, the policy
achieves position regulation in a consistent way across the state space, from all the initial
states considered.

Master of Science Thesis C. Valentini

38 Q-Learning

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.4

-0.2

0

0.2

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.05

-0.04

-0.03

-0.02

-0.01

0

Figure 4-12: Performance of the final policy with the environment initialized in 15 different
points chosen across the state space.

Fig.4-13 and Fig.4-14 show the state, control and reward trajectories of the first two of these
tests individually.

In the first test (Fig.4-13), the system is initialized in x = 0.0m, ẋ = 0.0m/s. The response
shows a small steady state error of 0.00127m, a percentage overshoot of 0.037%, a rise time
of 0.22 s and a settling time of 0.54 s. As it can be seen, the agent learns what intuitively
seems to be a reasonable strategy. First, it powers the two coils that are in between the
initial position and the target position to move the ball towards the target. Then, it uses the
second coil to decelerate the ball until it stops in the close proximity of the target, therefore
switching off all of the coils.

C. Valentini Master of Science Thesis

4-5 Performance in simulations 39

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.4

-0.2

0

0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.1

-0.05

0

Figure 4-13: Performance of the final policy during an episode where the system state is initialized
in x = 0.0m, ẋ = 0.0m/s.

The second test (Fig.4-13) is perhaps more interesting to look at, since the behavior learned
by the agent is not intuitive and clearly suboptimal. The system is initialized in x = 0.0125m,
ẋ = 0.0m/s. The response shows again a steady state error of approximately 0.00125m, a
negligible percentage overshoot of 0.0033%, a rise time of 0.2 s and a settling time of 0.58 s.
What is interesting is that the agent does not power on the first coil immediately, but instead
powers on the second coil with half of the maximum available current, and then uses the
second and the fourth coils to stop the ball on the reference position, before turning off all of
the coils.

Master of Science Thesis C. Valentini

40 Q-Learning

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.4

-0.2

0

0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.06

-0.04

-0.02

0

Figure 4-14: Performance of the final policy during an episode where the system state is initialized
in x = 0.0125m (on top of the first coil), ẋ = 0.0m/s.

Fig. 4-15 shows the final policy for each of the four coils. As it can be seen, the policy is not
exactly coherent, in spite of the fact that the agent seems to be doing what it is supposed
to, its approximation of the value function is clearly not optimal. Such shape of the control
policy is due to the choice to represent the system state as RBFs.

C. Valentini Master of Science Thesis

4-6 Performance comparison to other controllers 41

Figure 4-15: Final policy learned by the agent for the four actuators (from coils A to D from
right to left).

4-6 Performance comparison to other controllers
At this point it was considered interesting to compare the performance of the controller
achieved so far to the performance of two other controllers designed for the magman setup
and described in (J. Damsteeg, 2015).

In order to allow for a comparison, the experiment was redefined and the agent presented in
the previous section was retrained from scratches with:

• Initial state x0 = 0.075m, ẋ0 = 0m/s (steel ball at rest top of the third coil) in all of
the episodes

• Target state xf = 0.025m, ẋf = 0.0m/s (steel ball on top of the first coil with zero
velocity)

The system model on which the agent was trained was also changed back to the legacy model
used by Damsteeg (2-2).

The RL controller is compared to:

Master of Science Thesis C. Valentini

42 Q-Learning

• A nonlinear controller based on Constrained State-Dependent Riccati Equa-
tions (C-SDRE)

• An imitation learning controller based on Local Linear Regression (LLR)

The comparison was carried out on the basis of the following characteristics of the closed loop
response:

• Rise time, defined as the time necessary for the ball position to raise from 10% to 90%
of the steady state value.

• Settling time, defined as the time when the position error becomes less than 2% of
the steady state value (the target state).

• Overshoot, defined as the percentage overshoot relative to the steady state ball posi-
tion.

The agent was trained for 10000 episodes of the duration of 50Hz each. Fig. 4-16 shows the
learning curve of the training run.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-12

-10

-8

-6

-4

-2

0

Cumulative reward

Cumulative reward (smooth)

Figure 4-16: Learning curve of the agent trained with reference state for the steel ball position
of 0.025m.

Fig. 4-17 shows the step-response in the time domain of the policy learned by the agent.

C. Valentini Master of Science Thesis

4-7 Performance on the experimental setup 43

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.4

-0.2

0

0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.06

-0.04

-0.02

0

Figure 4-17: Policy learned by the agent for a target state of 0.025m and an initial state of
0.075 m

Table 4-3 compares the performance (in the simulated environment) of the RL agent with the
performance of the two controllers designed by Damsteeg. As it can be seen, the RL agent

Table 4-3: Performance comparision of the RL controller with two traditional controllers.

Controller: Q-learning C-SDRE LLR
Rise time [s] 0.28 0.32 0.33
Settling time [s] 1.66 0.98 0.65
Overshoot [%] 10.6 0 3.2

performs worse compared to the two other controllers, with a significant overshoot of around
10% and a longer settling time.

4-7 Performance on the experimental setup
The same agent described in Sec. 4-5 was deployed on the experimental setup, but the observed
behavior was quite different with respect to what had been observed in the simulation. In
fact, the agent deployed, even after a fairly large number of interactions with the environment,
would not show any improvement in its behavior.

Therefore, the reinforcement learning task was scaled down to a simpler problem in order to
try to understand better where the bad performance of the agent were stemming from.

• The ball position was constrained to a subset of the original space, from [0.0, 0.125] m
to [0.025, 0.100] m.

Master of Science Thesis C. Valentini

44 Q-Learning

• Only the two middle actuators (coil B and coil C) were used for control.

• At the beginning of each episode, the steel ball was initialized at the beginning of
the reduced-length rail, on top of the first coil with zero velocity, rather than in a
random position of the state space, as in the case of the agent trained in the simulated
environment.

Initially, it was assumed that the poor agent’s performance could be due to a poor tuning of
the algorithm hyper-parameters. The literature on the topic indicates that RL algorithms in
general are quite sensitive to changes in the hyper-parameters. Therefore, it was considered
that the parameters setting that had been found for the simulated environment could not be
optimal also for the experimental setup, because of the model-plant mismatches.

Therefore, after a conspicuous time spent on fine-tuning the hyper-parameters, the following
experiment was defined:

• Only the two middle coils (labeled as B and C) in use, positioned in {0.050, 0.075}m

• System state initialized on top of the first coil with zero velocity (x0 = 0.025m, ẋ0 =
0.0m/s).

• Target state xf = 0.0625m, ẋf = 0.0m/s

• Sampling frequency = 50Hz

• Number of episodes in the training run = 3000

• Episode duration = 3 s

• ε−greedy exploration strategy. ε asymptotically annealed from ε0 = 0.6 to εf = 0.0005

• DQN algorithm trained with the adam optimizer (learning rate = 0.0001)

• Discount factor = 0.95

• System state represented with 5 RBFs per state

• 13 discrete control actions

• Agent trained (Q-network updated) four times at every time-step

• Linear reward function (rk+1 = wx|xek + 1| + wẋ|ẋek + 1| + wu
∑2
i=1 |uei |), with wx =

1.0, wẋ = 0.1 and wu = 0.01

With this definition of the high-level experiment and with these hyper-parameters, the agent
showed an interesting behavior. As it can be seen from Fig. 4-18, the cumulative reward
obtained by the agent during the training run increases steadily from an average of −5 to an
average of −2.

C. Valentini Master of Science Thesis

4-7 Performance on the experimental setup 45

0 500 1000 1500 2000 2500 3000
-7

-6

-5

-4

-3

-2

-1

0

Cumulative reward

Cumulative reward (smooth)

Figure 4-18: Learning curve of an agent trained online on data extracted from the experimental
setup in a scaled-down version of the experiment.

Fig. 4-19 shows the distribution of the final states in the system state space. As it can be
seen, they are essentially distributed in the close proximity of the target state, but still not
close enough.

Master of Science Thesis C. Valentini

46 Q-Learning

Figure 4-19: Distribution of the final states at the end of each episode in the training run. The
darker dots indicate the final state towards the end of the training run.

Fig. 4-20 shows the performance of the policy in the last 10 episodes, when the probability
of selecting a random action is the smallest and the agent is essentially following the policy
learned by the agent. As it can be seen, the agent successfully actuates the two coils to bring
the ball towards the reference position and does not allow it to overshoot beyond the position
of the second coil, slowing it down to zero velocity. Hovewer, it does not really manage to
achieve accurate positioning.

C. Valentini Master of Science Thesis

4-7 Performance on the experimental setup 47

0.5 1 1.5 2 2.5 3

0

0.05

0.1

0.5 1 1.5 2 2.5 3

-0.4

-0.2

0

0.2

0.4

0.5 1 1.5 2 2.5 3

-0.06

-0.04

-0.02

0

Figure 4-20: Time-domain plot of the last 10 episodes of the training run, when the exploration
probability has died out.

Fig. 4-21 shows the policy learned by the agent at the end of the training.

0.025 0.0565 0.088
Position [m]

-0.4

0.0

0.4

Ve
lo
cit

y
[m

/s
]

Coil B

0.025 0.0565 0.088
Position [m]

Coil C
Position coil B
Position coil C
Initial state
Target state

0.0

0.3

0.6

Cu
rre

nt
 [A

]

Final policy

Figure 4-21: Final policy learned by the agent.

More effort and time was therefore put into fine-tuning the hyper-parameters in an attempt

Master of Science Thesis C. Valentini

48 Q-Learning

to improve the performance of the agent, and particularly the reward function was modified
in such a way to have a steeper gradient towards the target state, in such a way to encourage
the desired behavior, but the performance of the agent got worse rather than improving.

4-8 Q-learning - Second implementation
Another controller based on Q-learning was implemented from scratch with only the essential
components of the algorithm, without relying on grey-box models based on the Tensorflow
and Keras libraries. The algorithm is the following.

Algorithm 2 DQN algorithm - second implementation
1: Initialize ER memory buffer D to capacity D
2: Initialize the parameters of the Q-network, Θ(s, a) pessimistically
3: for episode = 1, Ne do
4: Initialize the system state
5: for timestep = 1,K do
6: Select and execute an action, depending on the exploration strategy or exploitation

of the current policy
7: Observe the system’s next state and compute the reward associated to the transition

(and add the experience to the ER database)
8: Sample a single experience from the replay memory
9: Use the sampled experience to update the Q-network parameters according to the

Bellman equation, with a the action that led to the state transition, s the initial state, s′
the new state, r(s′, a) the reward associated to the transition, γ the discount factor and
α the learning rate
Q(s, a)←− Q(s, a) + αφ(s)

[
r(s′, a) + γmaxa′(Q(s′, a′))−Q(s, a)

]
10: end for
11: end for

The system continuous state is represented by radial basis functions fuzzy approximators
(Buşoniu, Ernst, De Schutter, & Babuška, 2005) with N cores along each state-dimension, in
such a way that the 2-dimensional state will be represented by a 2Nx1 vector containing the
membership degrees.

The Q-network is therefore parametrized by a matrix Θ having dimension 2NxM , where M
is the number of possible discrete actions.

The following experiment was therefore defined:

• Only the two middle coils (labeled as B and C) in use, positioned in {0.050, 0.075}m

• System state initialized on top of the first coil with zero velocity (x0 = 0.025m, ẋ0 =
0.0m/s).

• Target state xf = 0.0625m, ẋf = 0.0m/s

• Sampling frequency = 50Hz

• Number of episodes in the training run = 3000

C. Valentini Master of Science Thesis

4-8 Q-learning - Second implementation 49

• Episodes duration = 3 s

• ε−greedy exploration strategy. ε linearly annealed from ε0 = 0.9 to εf = 0.1

• Learning rate α = 0.1

• Discount factor γ = 0.95

• System state represented with 17 RBFs per state

• 3 discrete control actions for each coil (9 in total)

• Linear reward function (rk+1 = wx|xek + 1| + wẋ|ẋek + 1| + wu
∑2
i=1 |uei |), with wx =

100, wẋ = 0.0 and wu = 0.1

Fig. 4-22 shows the learning curve of the training run. Clearly, the agent does not show signs
of improvement and does not converge to a stabilizing policy. It is however more interesting to
analyze the evolution of the values of the Q-network parametrization throughout the training
run, shown in Fig. 4-23. Approximately 2400 out of the 3600 parameters, in fact, do not
change much from their initial values, in spite of the relatively large number of training
episodes. This suggests that this algorithm implementation is very sample-inefficient, and a
much longer training time is necessary for the value function and the policy to converge.

0 500 1000 1500 2000 2500 3000
-550

-500

-450

-400

-350

-300

-250

-200

-150

Cumulative reward

Cumulative reward (smooth)

Figure 4-22: Learning curve of an agent based on a simplified implementation of the Q-learning
algorithm.

Master of Science Thesis C. Valentini

50 Q-Learning

Figure 4-23: Evolution of the Q-function parameters during a training run.

4-9 Discussion of the results

Eventually, it became clear that the chosen approach would not be rewarding, and that
the issue with the learning process had little to do with the control algorithm of choice
or the inability to find the right tuning of its parameter, since the experimental setup was
unjustifiably exhibiting a radically different behavior with respect to the simulations.

Therefore, it was considered necessary to review the assumptions made about the experimental
part of the thesis, focusing on the differences between the system model and the setup.

4-9-1 Control input transportation delay

A first assumption was the lack of transportation delay. It was therefore considered that
the control input commanded by the algorithm at any given timestep would cause a current
running in the magman coils at the next discrete time-step.

In other reports of tests and studies carried out on the magman setup there is no record of a
significant transportation delay. For this project, however, it was necessary to design a new
I/O interface, in order to have all the necessary software within a single Python IDE, and
there was the possibility that the novel interface would be handling poorly the communication
between the computer and the control boards, introducing unwanted delays in the control
signals.

Therefore, a test was made where the voltage on the cable delivering current to the first
coil was connected to the data acquisition board (with a potentiometer in order to avoid
saturating the board), logged and compared to the step signal used as control input for the
coil.

C. Valentini Master of Science Thesis

4-9 Discussion of the results 51

From the test, it was concluded that the control input does not suffer from any relevant
transportation delay, for the control frequency of 50Hz used during the experiments with the
RL algorithm (Fig. 4-24).

The dynamics of the transportation delays for the remaining three actuators were assumed
to be similar to the ones of the tested coil, and therefore not tested specifically.

0 1 2 3 4 5 6 7 8 9 10
-4

-3

-2

-1

0

1

2

3

4

5

6

Control input

Measured voltage

4.97 4.98 4.99 5 5.01 5.02 5.03 5.04 5.05 5.06 5.07
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Control input

Measured voltage

Figure 4-24: Experiments showed that the control input does not suffer from a significant
transportation delay.

4-9-2 Markov Property

The second important assumption was that the Reinforcement Learning task at hand is a
Markov Decision Process. The magman setup itself can reasonably be considered to satisfy
the Markov Property, as the dynamics of motion of the steel ball under the influence of
the magnetic field are prominently causal and deterministic, although highly nonlinear and
impossible to describe analytically. Clearly, as for all physical phenomena, there are some
elements of stochasticity, such could be the constant change in the Earth magnetic field,
frequency fluctuations in the power-grid to which the power supply powering the coils is
connected, variations in the temperature of the room in which the experiments are carried
out that affects some physical properties of the electromagnets, etc., but the contribution of
all these processes to the system dynamics can be considered negligible.

However, this consideration does not imply that the RL task is itself a Markov Decision
Process. With the current implementation of the setup, in fact, it is only possible to measure
the steel ball position, but the velocity needs to be reconstructed. Therefore, the learner
sees a state vector that is partially representing the actual state of the system and partially
reconstructed from noisy measurements of past input states. One-step dynamics are not
sufficient to determine the evolution of the system. Strictly speaking, achieving regulation
control with the magman setup cannot be considered a Markov decision process, given the

Master of Science Thesis C. Valentini

52 Q-Learning

current setup and task definition.

Although this consideration had already been made before the beginning of the experimental
phase, it was not expected to affect the learning process dramatically, as the reconstructed
state was expected to be close enough to the actual state of the system not to jeopardize the
whole learning process. Experiments carried out in the simulation environment showed quite
the opposite.

The simulated environment was therefore modified to gain an understanding of what would be
the consequences of discarding the MDP assumption. The following experiment was defined:

• Coils B and C in use (positioned in {0.050, 0.075}m)

• Initial states picked uniformly at random in the state space (x0 ∈ [0.0, 0.125]m, ẋ0 ∈
[−0.4, 0.4]m/s)

• Target state = 0.0625m, 0.0m/s

• Sampling frequency = 50Hz

• Number of episodes in the training run = 2000

• Episodes duration = 3 s

• ε−greedy exploration strategy. ε linearly annealed from 0.6 to 0.001

• DQN algorithm trained with the adam optimizer (learning rate = 0.0001)

• Discount factor = 0.95

• System state represented by RBFs (11 for each state)

• 6 discrete control actions

• Value function updates per step = 2

• Linear reward function (rk = wx|xe| + wẋ|ẋe| + wu|ue|), with wx = 1, wẋ = 0.05 and
wu = 0.01

Two different versions of the experiment were carried out. In the first version, the state seen
by the RL agent was the true state of the environment, solution of the differential equations
of the system model. In the second experiment, the first state seen by the RL agent was
the true ball position, and the second state was the velocity reconstructed from the past
measurements, as it is the case for the experimental setup. The measurement noise affecting
the actual system was not modeled.

In the first case, the agent is able to continuously improve the cumulative reward obtained over
every episode on average, eventually achieving regulation control and a cumulative reward
per episode around −1 (Fig. 4-25). The fact that the trend is still increasing indicates that
the algorithm has not converged yet and it requires more training.

C. Valentini Master of Science Thesis

4-9 Discussion of the results 53

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-7

-6

-5

-4

-3

-2

-1

0

Cumulative reward

Cumulative reward (smooth)

Figure 4-25: Learning curve of an agent that sees the true system state.

In the second case, the exact same agent is simply unable to learn the task from the data it is
presented with (Fig. 4-26), although the learning curve is increasing with a very mild slope,
towards the end of the training, average cumulative reward per episode is around −4. It is
noteworthy that the performance of this agent is far worse with respect to the performance
of the first agent, but still better with respect to the average performance of an agent acting
following a random policy (considered as a baseline for comparison).

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-7

-6

-5

-4

-3

-2

-1

0

Cumulative reward

Cumulative reward (smooth)

Figure 4-26: Learning curve of an agent that sees the partially reconstructed system state.

Another test showed that the agent does not improve its performance on the task even when

Master of Science Thesis C. Valentini

54 Q-Learning

it receives much more extensive training (50000 episodes).

In order to understand why this is such an issue for the learner, it is useful to considered the
data logged during a randomly chosen episode from the second training run (with the partially
observed state vector). During this training run, also the true evolution of the system state
was logged to allow a comparison.

0 0.5 1 1.5 2 2.5 3
0.02

0.04

0.06

0.08

0.1

0 0.5 1 1.5 2 2.5 3
-0.4

-0.2

0

0.2

0.4

True velocity

Reconstructed velocity

0 0.5 1 1.5 2 2.5 3

-0.06

-0.04

-0.02

0

Reward obtained

True reward

Figure 4-27: State evolution and reward during a random episode of the second training run
(with the partially observed state vector).

As it appears from Fig. 4-27, the reconstructed velocity is constantly lagging one time-step
behind the true state of the system, as expected, but the two signals are not too dissimilar.

On the other hand, the effects of such discrepancy on the reward function are more dramatic,
as it can be observed in Fig. 4-28.

C. Valentini Master of Science Thesis

4-9 Discussion of the results 55

0 0.5 1 1.5 2 2.5 3

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

Reward obtained

True reward

0 0.5 1 1.5 2 2.5 3

0

0.005

0.01

0.015

0.02

0.025

Figure 4-28: Comparison of the reward obtained by the system and the reward that would be
given to the agent if it could observe the actual system state (Note that the contribution of the
control action is the same in both cases)

Such a significant difference (almost up to one fourth of the reward value) affects the update
of the value function, since the prediction of future rewards is affected, but this is not all.
When it is not exploring, the agent selects the policy action depending on the state it believes
the system is in. Fig. 4-29 shows the final policy learned by the agent. As it can be seen, the
control actions commanded by the policy are scattered in discontinuous patches across the
state space. Therefore, the action selected by the agent can be quite different with respect to
the one it should select if it thinks it is in a different state with respect to its actual state.

Master of Science Thesis C. Valentini

56 Q-Learning

Figure 4-29: Final policy learned by the agent that sees the true environment state for the four
coils (from coil A to coil D, from right to left).

The combination of these two elements make the task much harder, if not impossible, for the
agent to learn.

Furthermore, let it be noted that these simulations were carried out without modeling mea-
surement noise, and on the experimental setup the discrepancy between the reconstructed
velocity and the actual velocity, as well as the discrepancy between the reward obtained and
the reward corresponding to the actual state of the system, will be more accentuated.

The tests hereby described allowed to conclude that the same high-level definition of the RL
task, although is working perfectly well in a simulated environment that provides the learner
with full state information, is not suitable to solve the regulation problem on the experimental
setup, where part of the state vector is not observed directly.

Simply giving the agent a reward that is not dependent on the velocity but only on the ball
position would also not solve the problem, since the agent would still extract actions from
the policy based on an inaccurate reconstruction of the state.

C. Valentini Master of Science Thesis

Chapter 5

Conclusions and recommendation for
future work

This research project was developed with the goal to deploy a controller based on Rein-
forcement Learning (RL) methods to achieve accurate position regulation with a real-world
experimental magnetic manipulator (magman) setup.

5-1 Conclusions

During this thesis, several agents based on RL methods were deployed in an attempt to solve
the magman regulation problem, with the following conclusions.

• A model-based controller based on the Value Iteration algorithm was successfully de-
ployed, both in the simulated environment and on the experimental setup, achieving
acceptable performance level in both cases.

• A Q-learning agent (Sutton et al., 1998), tuned by grid-search assisted hyper-parameter
manual search, managed to learn the regulation task in a simulated physics environment,
but failed when deployed on the experimental setup

It was concluded that the failure of the agents deployed on the real-world setup is mainly due
to the following cause.

The physical characteristics of the setup simply make an accurate positioning task very hard
to learn. Intuitively, reward functions that would encourage the desired behavior would have a
steep gradient in the proximity of the target state. In the magman case, however, the target
state (an inter-coil position, with zero velocity) and its proximities are visited very rarely
during the exploration phase. Therefore, a high reward is not received often. In other words,
the reward obtained during interaction with the environment is too sparse for the agent to
be able to learn a stabilizing policy. On the other hand, reward functions with more gentle

Master of Science Thesis C. Valentini

58 Conclusions and recommendation for future work

gradient, such as the linear and quadratic ones, are learnable by the agent, but eventually do
not allow it to achieve a high return when deployed on the experimental setup.

The following three other factors are suspected to have contributed, to a lesser extent, to the
failure of the agent deployed on the experimental setup.

• The magman setup has a continuous action space, but the Q-learning algorithm operates
in environments with discrete action spaces. During this thesis work, the control space
was discretized with a relatively low resolution (three possible actions per each of the
two coils, and therefore nine possible control actions in total), and while this agent
obtained positive results in the simulated environment, empirical evidence suggests that
the actual system is more unstable and requires a more careful actuation. Using the
Q-learning agent with a finer discretization of the action space, however, is not really a
feasible solution, since the sample inefficiency of the algorithm increases exponentially
depending on the number of actuators used and on the resolution of the discretization.

• The agents deployed on the experimental setup were not optimally tuned. From the
literature, it is evident that RL methods are quite sensitive to hyper-parameters tuning,
that can completely jeopardize the learning process if not done properly. In spite of the
fact that the algorithm parameters have been carefully tuned in the simulated envi-
ronment, it is possible that the same parameters were not optimal for the experimental
setup, because of some model-plant mismatches. Since hyper-parameter tuning is largely
an empirical science, and testing out an extensive number of hyper-parameter configu-
rations on the experimental setup would have been exceptionally time-consuming, it is
likely that the tuning used for the agent deployed on the setup was sub-optimal.

• The agent interacting with the experimental setup does not have full access to system-
state information, and the steel ball velocity was therefore reconstructed at every time-
step by backward-difference of the position measurements. Not knowing the exact sys-
tem state affects to a lesser extent both the reward obtained by the agent and the greedy
action commanded by the policy.

5-2 Recommendations
In light of the conclusions reached, some suggestions are made for future research.

In order to successfully use RL to learn a magnetic manipulation task, it is advisable to
implement a strategy that allows to exploit optimally the experiences collected by the agent
during interaction with the environment. The Hindsight Experience Replay (Andrychowicz
et al., 2017) method, for example, would increase the sample-efficiency of the learning process
and solve the problem of dealing with sparse rewards.

Other techniques such as Prioritized Experience Replay (Schaul, Quan, Antonoglou, & Silver,
2015) could also help to increase the sample efficiency of the algorithms deployed, by replaying
more often the transitions that lead to the biggest rewards, from which the agent would learn
the most.

Furthermore, it is suggested to use an agent that can naturally work with continuous control
actions, such as the actor-critic Deep Deterministic Policy Gradient method (Lillicrap et al.,

C. Valentini Master of Science Thesis

5-2 Recommendations 59

2015) or the Normalized Advantage Functions (Gu, Lillicrap, Sutskever, & Levine, 2016)
method.

Eventually, advanced hyper-parameters tuning methods based on genetic algorithms (Sehgal
et al., 2019), that are not as time-inefficient as the grid-search or random search methods,
could be deployed to fine-tune the algorithm parameters for the experimental setup.

Finally, the experimental setup might be improved with an additional sensor measuring the
velocity, in such a way to give the agent access to the full state information, or alternatively,
more refined reconstruction methods such as an extended Kalman filter could be used instead
of the simple backward-difference estimation used in this thesis.

Master of Science Thesis C. Valentini

60 Conclusions and recommendation for future work

C. Valentini Master of Science Thesis

Appendix A

Value Iteration

Value iteration is a Reinforcement Learning method that can be used to solve a Markov
decision process. It is often used for discrete problems with a limited number of states and
actions.

Within this framework, the goal of the agent is to learn an approximation of the Value function
(V ∗) of the MDP. In other words, the agent needs to figure out what is the maximum expected
reward that it can obtain by acting optimally, for any given system state s. The optimal
control policy π∗(s) therefore simply consists of the sequence of actions that leads the agent
from an initial to the final state with the maximum return. The policy can be extracted from
the value function, once it is learned.

At the beginning, the reward function is used to initialize the V-function for every state.
Then, the value function is updated using the Bellman equation (A-1):

V ∗(s) = max
a

∑
s′

T (s, a, s′)
[
R(s, a, s′) + γV ∗(s′)

]
(A-1)

Where T (s, a, s′) is the transition function from one state of the MDP to the next, and
R(s, a, s′) is the reward associated to the transition.

A valuable characteristic of the VI method is that it is mathematically proven to converge.
Having a proof of convergence is almost never the case for most advanced RL and deep RL
algorithms.

The following table summarizes the Value Iteration algorithm:

Master of Science Thesis C. Valentini

62 Value Iteration

Algorithm 3 VI algorithm
1: Initialize the value function using the reward function, for each state.
V̂0 ← maxaR(s, a, s′),∀s

2: for k = 1, K do
3: Perform a value update (using the Bellman equation).
V̂k(s)← maxa(R(s, a, s′) + γ

∑
s′ T (s′|s, a) · V̂k−1(s′), ∀s)

4: end for
5: Extract the optimal policy from the value function.
π(s) = argmaxaR(s, a) + γ

∑
s′(T (s′|s, a) · V̂k−1(s′))

In the magman case, both the state space and the action space are continuous. For this reason,
they were represented by radial basis functions (RBFs). Each system state was represented
by a RBF approximation (a membership degree vector with 17 elements), and the continuous
action space of each actuator was discretized in 10 linearly spaced values. In order to simplify
the task, only the two middle coils (coil B and coil C) were used. A sampling frequency of
50Hz was chosen. The discount rate in the Bellman equation was set to 0.95. The reward
given to the agent during the value iterations was computed with a linear cost function,
rk = 100 · |xe| + 0.1 · (|u1| + |u2|). The target state for the system was set to x̂ = 0.0625m,
ˆ̇x = 0.0m/s. A threshold value εθ = 0.00001 was set to stop the algorithm when the change in
the parameters of the value function converge to their final value. As an alternative stopping
criterion in case the value function does not converge, the maximum number of iterations was
set to 1000.

As it is possible to see from Fig. A-1, the method converges in less than 100 value iterations.

0 50 100 150

-3

-2.5

-2

-1.5

-1

-0.5

0

Figure A-1: Convergence of the V-function parameters.

Fig. A-2 shows the final policy obtained for the two coils.

C. Valentini Master of Science Thesis

63

Figure A-2: Final policy obtained with the Value Iteration method

Fig. A-3 shows the performance of the agent in 11 tests where the agent is initialized in
different parts of the state space. As it can be seen, the performance is optimal in all tests.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.4

-0.2

0

0.2

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.2

-0.15

-0.1

-0.05

0

Figure A-3: The agent trained with model-based Value Iteration achieves optimal performance.

Eventually, the policy learned off-line was deployed on the experimental setup, and the policy
performance was tested against the results obtained in the simulated environment (Fig. A-4
and Tab. A-1).

Master of Science Thesis C. Valentini

64 Value Iteration

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.4

-0.2

0

0.2

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

Figure A-4: A comparison of the agent’s performance in the simulated environment and on the
experimental setup.

Table A-1: Performance comparison of the policy learned by VI on the simulated environment
and on the experimental setup.

VI-based agent performance Simulation Experimental setup
SS error [m] 0.000724 0.000544
Rise time [s] 0.22 0.18
Settling time [s] 0.38 0.6
Overshoot [%] 0 14.47

As it can be seen, the agent is able to achieve regulation with millimetric precision both in
the simulated environment and on the experimental setup. The main difference is that the
agent deployed on the experimental setup has a longer settling time because of a significant
percentage overshoot of around 14% which is not present in the simulated environment.

The success on the experimental setup of the agent trained off-line is due to the fact that the
state transition model (2-4) used by the Value Iteration method is quite representative of the
actual system, but there are however some model-setup mismatches that are not accounted
for by this kind of agent.

For this reason, it is still desirable to develop an agent that is able to learn by pure reinforce-
ment learning, interacting with the real experimental setup.

C. Valentini Master of Science Thesis

Appendix B

Hardware

This appendix briefly describes the sensor and actuators of the magman experimental setup
and the way the I/O devices are interfaced within the Python IDE.

B-1 Position measurement

The steel ball position along the mono-dimensional track is measured by a di-soric LAT 61 K
120/120 IUPN laser displacement sensor, with a frequency of 5kHz. The sampling period can
be adjusted depending on the brightness of the object reflecting the laser beam. The sensor
readings are acquired by a Humusoft MF634 data acquisition board which is connected to
the computer.

Let it be noted that, with factory settings, the voltage output of the laser sensor is in the
range [0, 11]V, but the data acquisition board has a maximum analog input voltage of 10V.
Therefore, in order to avoid clipping of the observable position range, the analog output range
of the laser sensor was changed to: [0.0,+9.5]V.

Furthermore, in order to ensure that the laser sensor is used as intended, it is important to
note that it features a moving-average filter that pre-processes and stabilizes the measure-
ments. The default window-size is 1024 samples. These factory settings are inadequate for
the relatively fast dynamics of the magman setup, and the filter was removed.

These settings can be modified navigating in the sensor menu using the LCD display and the
three buttons embedded on the side of the sensor, following the procedure described in detail
in the sensor user’s manual (“Compact Laser Displacement Sensor LAT 61 User’s Manual”,
n.d.), particularly in Sections 3-3-4 Data Processing Settings and 3-3-6 Analog settings.

The sensor can detect objects in the range [0.060, 0.180]m from the laser beam source. The
following equation shows how the sensor output (voltage Vout) is mapped to the ball position

Master of Science Thesis C. Valentini

66 Hardware

along the mono-dimensional rail (x).

x = vout
Xrange

Vrange
+ Xrange

2 + rb (B-1)

With:

• Xrange = 0.12m, the measurement range of the laser sensor

• Vrange = 9.5V, the voltage output range

• rb = 0.012m, the radius of the steel ball

As aforementioned, the sensor output is sampled and acquired by the Humusoft MF634 data
acquisition board (“MF 634 Multifunction I/O Card User’s Manual”, n.d.), which has a
maximum input frequency of 2.5MHz. The laser sensor and the data acquisition board are
shown in Fig. B-1.

Figure B-1: The laser displacement sensor and the data acquisition board used to measure the
magman position.

The data is acquired from the control software via a dedicated library written in the C
language called hudaqlib. In order to keep the I/O data handling and the control logic
within a single development environment, the Python library ctypes was used to use write
Python-compatible wrappers for the required functions from the original library, allowing to
access the device (HudaqOpenDevice), acquire the data (HudaqAIRead) and close the device
(HudaqCloseDevice). These wrapper functions allow for seamless integration between the
C-library and the Python Software.

Listing B.1: ctypes function wrappers that allow to read the laser sensor from wihtin Python.
1 import ctypes
2 from ctypes import ∗
3
4 # Open DAQ device handle
5 # ----------------------
6 def open_DAQhandle () :
7 # Usage: h = open_DAQhandle ()
8 # Opens an handle to access the DAQ device

C. Valentini Master of Science Thesis

B-1 Position measurement 67

9
10 libc = windll . hudaqlib # Include the header of the "hudaqlib.h" library
11
12 # HudaqOpenDevice CTYPES function signature
13 HudaqOpenDevice_func = libc . HudaqOpenDevice
14 HudaqOpenDevice_func . restype = ctypes . c_size_t # Function return type
15 HudaqOpenDevice_func . argtypes = [ctypes . c_char_p , ctypes . c_int , ctypes . c_int

] # Function argument type
16
17 handle = HudaqOpenDevice_func (b’MF634’ , 1 , 0)
18
19 return handle
20
21 # Read the laser displacement sensor
22 # ----------------------------------
23 def read_sensor (handle) :
24 # Usage: x = read_sensor(h)
25 # Reads the value measured by the sensor and converts it to position

measurement
26
27 libc = windll . hudaqlib # Include the header of the "hudaqlib.h" library
28
29 # HudaqAIRead CTYPES function signature
30 HudaqAIRead_func = libc . HudaqAIRead
31 HudaqAIRead_func . restype = ctypes . c_double # Function return type
32 HudaqAIRead_func . argtypes = [ctypes . c_size_t , ctypes . c_uint] # Function

argument type
33
34 V_range = 9.5 # [V] Output voltage range
35 x_range = 120 # [mm] Sensor measuring range
36 x_offset = 0.0 # [mm] Sensor measurement offset
37
38 value = HudaqAIRead_func (handle , 0) # Voltage measured by the sensor
39
40 x_out = value ∗(x_range/V_range) + x_offset # Map the voltage to position
41 x_out = x_out /1000 # Convert from mm -> m
42
43 return x_out
44
45 # Close DAQ device handle
46 # -----------------------
47 def close_DAQhandle (handle) :
48 # Usage: close_DAQhandle(h)
49 # Closes the handle to the DAQ device
50
51 libc = windll . hudaqlib # Include the header of the "hudaqlib.h" library
52
53 # HudaqCloseDevice CTYPES function signature
54 HudaqCloseDevice_func = libc . HudaqCloseDevice
55 HudaqCloseDevice_func . restype = ctypes . c_void_p # Function return type
56 HudaqCloseDevice_func . argtypes = [ctypes . c_size_t] # Function argument

type
57
58 HudaqCloseDevice_func (handle)
59
60 return None

Master of Science Thesis C. Valentini

68 Hardware

B-2 Actuation
The four coils of the magman setup are controlled by two identical control boards. The boards
and the four coils of the magman are powered by A 24V DC supply. Each module controls
two of the four coils with PWM current signals. The I/O module on the control boards uses
RS-232 communication protocol.

The following Python code snippet shows how the serial messages containing the commands
to the control boards are constructed. Although there was no available documentation on the
control boards, the communication protocol was extracted from legacy code.

Listing B.2: Code used to control the four actuators.
1 import numpy as np
2 import serial # PN: pip installation command of this package is <pip install

pyserial >
3
4
5 # Open serial ports
6 # -----------------
7 def open_serialport (portname , brate , t_out) :
8 # usage: ser1 = open_serialport ("COM11", 115200 , 1.0)
9 # ser2 = open_serialport ("COM12", 115200 , 1.0)

10 # Open two serial communication ports to the boards controlling the magnets
11
12 porthandle = serial . Serial (port=portname , baudrate=brate , timeout=t_out)
13
14 return porthandle
15
16 # Close serial ports
17 # -----------------
18 def close_serialport (porthandle) :
19 # usage: close_serialport(ser1)
20 # close_serialport(ser2)
21 # ser2 = open_serialport ("COM7", 115200 , 1.0)
22 # Close the serial communication ports to the boards controlling the magnets
23
24 porthandle . close ()
25
26 return None
27
28 # Send control input to the actuators
29 # -----------------------------------
30 def send_command (serialhandle1 , serialhandle2 , u_in) :
31 # usage: send_command(ser1 , ser2 , u)
32 # Send the desired control action u to the four actuators
33 # ser1 and ser2 are two handles to the serial ports used for communication (

which must be open). u is a vector with four control commands in the range
[0.0, 0.6] A

34
35 round_vec =np . vectorize (np . round) # vectorize the np.round function
36 fix_vec = np . vectorize (np . fix) # vectorize the np.fix function
37 fmod_vec = np . vectorize (np . fmod) # vectorize the np.fmod function
38

C. Valentini Master of Science Thesis

B-2 Actuation 69

39 # Sanity check and control input saturation
40 for idx in range (len (u_in)) :
41 if (u_in [idx] <0.0) or (u_in [idx] >0.61) :
42 print (’Control input OUT OF RANGE: ’ , u_in , ’ [A]’)
43 u_in [idx] = np . maximum (0 . 0 , np . minimum (u_in [idx] , 0 . 6)) # input saturation
44
45 # Form two string messages from the control input according to the

communication protocol extracted from the legacy code
46 u_send = 2048 + round_vec ((u_in /0 .55) ∗2048)
47
48 A1 = 33+fix_vec (u_send [0] / 8 0) # coil A
49 B1 = 33+fmod_vec (u_send [0] , 80)
50 C1 = 33+fix_vec (u_send [1] / 8 0) # coil B
51 D1 = 33+fmod_vec (u_send [1] , 80)
52
53 A2 = 33+fix_vec (u_send [2] / 8 0) # coil C
54 B2 = 33+fmod_vec (u_send [2] , 80)
55 C2 = 33+fix_vec (u_send [3] / 8 0) # coil D
56 D2 = 33+fmod_vec (u_send [3] , 80)
57
58 Str1 = "q " + chr (int (A1)) + chr (int (B1)) + chr (int (C1)) + chr (int (D1))
59 Str2 = "q " + chr (int (A2)) + chr (int (B2)) + chr (int (C2)) + chr (int (D2))
60
61 Str1_MSG = [ord (z) for z in Str1]
62 Str1_MSG . append (13)
63 Str2_MSG = [ord (z) for z in Str2]
64 Str2_MSG . append (13)
65
66 MSG1 = np . uint8 (Str1_MSG)
67 MSG2 = np . uint8 (Str2_MSG)
68
69 serialhandle1 . write (MSG1)
70 serialhandle2 . write (MSG2)
71
72 return None
73
74 # Power -off the coils
75 # --------------------
76 def poweroff_coils (serialhandle1 , serialhandle2) :
77 # usage: poweroff_coils(ser1 , ser2)
78 # Power -off the four coils
79
80 MSG_PowerOff = np . uint8 ([8 0 , 32 , 48 , 32 , 48 , 13 , 1 0]) # corresponds to the

control input [0.0, 0.0, 0.0, 0.0] A
81
82 serialhandle1 . write (MSG_PowerOff)
83 serialhandle2 . write (MSG_PowerOff)
84
85 print ("Coils powered off")
86
87 return None

Master of Science Thesis C. Valentini

70 Hardware

B-3 Connection between control boards and computer
Finally, it was necessary to substitute the USB cables connecting the control boards to the
computer due to obsolescence. The new cables are the FTDI TTL-232R-RPi cables (USB to
TTL level serial UART conversion). Fig. B-2 shows the pin-out of the PCB connector on the
boards.

Figure B-2: Pin-out scheme of the PCB connector. TXD indicates the transmission cable, RXD
indicates the receiver cable, GND indicates the ground cable.

C. Valentini Master of Science Thesis

References

Alibekov, E., Kubalík, J., & Babuška, R. (2018). Policy derivation methods for critic-
only reinforcement learning in continuous action spaces. Engineering Applications of
Artificial Intelligence, 69 , 178–187.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., . . . Zaremba,
W. (2017). Hindsight experience replay. In Advances in neural information processing
systems (pp. 5048–5058).

Atkeson, C. G., & Santamaria, J. C. (1997). A comparison of direct and model-based reinforce-
ment learning. In Proceedings of international conference on robotics and automation
(Vol. 4, pp. 3557–3564).

Bahar, P., Alkhouli, T., Peter, J.-T., Brix, C. J.-S., & Ney, H. (2017). Empirical investiga-
tion of optimization algorithms in neural machine translation. The Prague Bulletin of
Mathematical Linguistics, 108 (1), 13–25.

Barreto, G. A., & Araujo, A. F. (2004). Identification and control of dynamical systems using
the self-organizing map. IEEE Transactions on Neural Networks, 15 (5), 1244–1259.

Basu, A., De, S., Mukherjee, A., & Ullah, E. (2018). Convergence guarantees for rmsprop
and adam in non-convex optimization and their comparison to nesterov acceleration on
autoencoders. arXiv preprint arXiv:1807.06766 .

Baxter, J., Bartlett, P. L., et al. (2000). Reinforcement learning in pomdp’s via direct gradient
ascent. In Icml (pp. 41–48).

Bergstra, J. S., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-parameter
optimization. In Advances in neural information processing systems (pp. 2546–2554).

Buşoniu, L., Ernst, D., De Schutter, B., & Babuška, R. (2005). Continuous-state reinforce-
ment learning with fuzzy approximation. In Adaptive agents and multi-agent systems
iii. adaptation and multi-agent learning (pp. 27–43). Springer.

Compact laser displacement sensor lat 61 user’s manual [Computer software manual]. (n.d.).
Steinbeisstraße 6 DE-73660 Urbach.

Damsteeg, J. (2015). Nonlinear and learning control of a one-dimensional magnetic manipu-
lator (Unpublished doctoral dissertation). Master of Science thesis, Delft University of
Technology.

Damsteeg, J.-W., Nageshrao, S. P., & Babuska, R. (2017). Model-based real-time control of

Master of Science Thesis C. Valentini

72 References

a magnetic manipulator system. In 2017 ieee 56th annual conference on decision and
control (cdc) (pp. 3277–3282).

De Bruin, T., Kober, J., Tuyls, K., & Babuška, R. (2018). Experience selection in deep
reinforcement learning for control. The Journal of Machine Learning Research, 19 (1),
347–402.

Ferrucci, D. A. (2012). Introduction to “this is watson”. IBM Journal of Research and
Development, 56 (3.4), 1–1.

Friedrichs, F., & Igel, C. (2005). Evolutionary tuning of multiple svm parameters. Neuro-
computing, 64 , 107–117.

Gu, S., Lillicrap, T., Sutskever, I., & Levine, S. (2016). Continuous deep q-learning with
model-based acceleration. In International conference on machine learning (pp. 2829–
2838).

Guo, X., Singh, S., Lee, H., Lewis, R. L., & Wang, X. (2014). Deep learning for real-
time atari game play using offline monte-carlo tree search planning. In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, & K. Q. Weinberger (Eds.), Advances in neu-
ral information processing systems 27 (pp. 3338–3346). Curran Associates, Inc. Re-
trieved from http://papers.nips.cc/paper/5421-deep-learning-for-real-time
-atari-game-play-using-offline-monte-carlo-tree-search-planning.pdf

Hammond, P. (2013). Electromagnetism for engineers: an introductory course. Elsevier.
Heess, N., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa, Y., . . . others (2017). Emer-

gence of locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286 .
Hurák, Z., & Zemánek, J. (2012). Feedback linearization approach to distributed feedback

manipulation. In American control conference (acc), 2012 (pp. 991–996).
Kim, H. J., Jordan, M. I., Sastry, S., & Ng, A. Y. (2004). Autonomous helicopter flight

via reinforcement learning. In Advances in neural information processing systems (pp.
799–806).

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learning in robotics: A survey.
The International Journal of Robotics Research, 32 (11), 1238–1274.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological
cybernetics, 43 (1), 59–69.

Konda, V. R., & Tsitsiklis, J. N. (2000). Actor-critic algorithms. In Advances in neural
information processing systems (pp. 1008–1014).

Lehman, J., Clune, J., Misevic, D., Adami, C., Altenberg, L., Beaulieu, J., . . . others
(2018). The surprising creativity of digital evolution: A collection of anecdotes from
the evolutionary computation and artificial life research communities. arXiv preprint
arXiv:1803.03453 .

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., . . . Wierstra, D. (2015).
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971 .

Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning, planning
and teaching. Machine learning, 8 (3-4), 293–321.

Mf 634 multifunction i/o card user’s manual [Computer software manual]. (n.d.). Pobřežní
224/20, 186 00 Praha 8-Karlín, Czechia.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., . . . others
(2015). Human-level control through deep reinforcement learning. Nature, 518 (7540),
529.

C. Valentini Master of Science Thesis

http://papers.nips.cc/paper/5421-deep-learning-for-real-time-atari-game-play-using-offline-monte-carlo-tree-search-planning.pdf
http://papers.nips.cc/paper/5421-deep-learning-for-real-time-atari-game-play-using-offline-monte-carlo-tree-search-planning.pdf

References 73

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann ma-
chines. In Proceedings of the 27th international conference on machine learning (icml-
10) (pp. 807–814).

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R. Y., Chen, X., . . . Andrychow-
icz, M. (2017). Parameter space noise for exploration. arXiv preprint arXiv:1706.01905 .

Polydoros, A. S., & Nalpantidis, L. (2017). Survey of model-based reinforcement learning:
Applications on robotics. Journal of Intelligent & Robotic Systems, 86 (2), 153–173.

Popov, I., Heess, N., Lillicrap, T., Hafner, R., Barth-Maron, G., Vecerik, M., . . . Riedmiller,
M. (2017). Data-efficient deep reinforcement learning for dexterous manipulation. arXiv
preprint arXiv:1704.03073 .

Puterman, M. L. (2014). Markov decision processes.: Discrete stochastic dynamic program-
ming. John Wiley & Sons.

Schaul, T., Quan, J., Antonoglou, I., & Silver, D. (2015). Prioritized experience replay. arXiv
preprint arXiv:1511.05952 .

Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2015). High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438 .

Sehgal, A., La, H., Louis, S., & Nguyen, H. (2019). Deep reinforcement learning using genetic
algorithm for parameter optimization. In 2019 third ieee international conference on
robotic computing (irc) (pp. 596–601).

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., . . . others
(2016). Mastering the game of go with deep neural networks and tree search. nature,
529 (7587), 484.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., & Riedmiller, M. (2014). Deter-
ministic policy gradient algorithms..

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., . . . others
(2017). Mastering the game of go without human knowledge. Nature, 550 (7676), 354.

Simonian, A. (2014). Feedback control for planar parallel magnetic manipulation (Unpublished
doctoral dissertation). Master’s thesis, Czech Technical University in Prague.

Sra, S., Nowozin, S., & Wright, S. J. (2012). Optimization for machine learning. Mit Press.
Sutton, R. S., & Barto, A. G. (2011). Reinforcement learning: An introduction.
Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
Sutton, R. S., Barto, A. G., et al. (1998). Introduction to reinforcement learning (Vol. 2)

(No. 4). MIT press Cambridge.
Tassa, Y., Erez, T., & Todorov, E. (2012). Synthesis and stabilization of complex behaviors

through online trajectory optimization. In 2012 ieee/rsj international conference on
intelligent robots and systems (pp. 4906–4913).

Todorov, E., Erez, T., & Tassa, Y. (2012). Mujoco: A physics engine for model-based
control. In 2012 ieee/rsj international conference on intelligent robots and systems (pp.
5026–5033).

Verhaegen, M., & Verdult, V. (2007). Filtering and system identification: a least squares
approach. Cambridge university press.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8 (3-4), 229–256.

Zemánek, J., Čelikovskỳ, S., & Hurák, Z. (2017). Time-optimal control for bilin-
ear nonnegative-in-control systems: Application to magnetic manipulation. IFAC-
PapersOnLine, 50 (1), 16032–16039.

Master of Science Thesis C. Valentini

74 References

C. Valentini Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	Preface

	Main Matter
	Introduction and motivation
	Research goal
	Thesis structure

	The Magman control benchmark
	Experimental setup
	Dynamics model
	Validation of the legacy model
	New model and validation

	Reinforcement learning
	Theoretical framework
	Model-based reinforcement learning
	Model-free reinforcement learning
	Value iteration methods
	Policy-based methods
	On-policy algorithms
	Off-policy algorithms
	Summary

	Q-Learning
	The algorithm
	Exploration strategy
	The training algorithm
	Experience replay
	The target network
	Algorithm summary

	Model evaluation and tuning
	The grid-search method
	Grid-search for the ANN topology
	Grid-search for the remaining algorithm hyper-parameters

	On the choice of the reward function
	Performance in simulations
	Performance comparison to other controllers
	Performance on the experimental setup
	Q-learning - Second implementation
	Discussion of the results
	Control input transportation delay
	Markov Property

	Conclusions and recommendation for future work
	Conclusions
	Recommendations

	Appendices
	Value Iteration
	Hardware
	Position measurement
	Actuation
	Connection between control boards and computer

	Back Matter
	References

