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Dyadic operators and the T (1) theorem

In Chapter 11, we have mainly dealt with a situation, where a bounded linear
operator on some Lp0(Rd;X) space is given, and we have then explored its
bounded extensions to other spaces including Lp(Rd;X) for p 6= p0. We now
turn to a somewhat different (and often more difficult) question of recognising
such bounded operators to begin with.

Before addressing this question for the Calderón–Zygmund type operators
of the kind studied in Chapter 11, we investigate a number of related objects
in a simpler dyadic model. Besides serving as an introduction to some of the
key techniques, it turns out that these dyadic operators can be, and will be,
also used as building blocks of the proper singular integral operators towards
the end of the chapter.

The dyadic operators will be of two essentially different types. The first
class, which we vaguely refer to as “dyadic singular integrals” in Section 12.1,
consist of a somewhat diverse family of relatives of the prototype dyadic shifts
encountered in Chapter 5, where they we used to represent the prototype sin-
gular integral given by the Hilbert transform. It is thus only natural that a
family of dyadic operators generalising this basic dyadic shift will serve as
building block of the Calderón–Zygmund family of singular integrals gener-
alising the Hilbert transform. Martingale techniques vaguely reminiscent of
those in Section 5.1, but of somewhat higher complexity probably by neces-
sity, will feature in the argument to put the UMD property of the underlying
Banach space into action.

The second class of dyadic operators consists of so-called paraproducts,
which we discuss in Section 12.2. These are new creatures of the non-
convolution realm that we have entered and they will vanish (as we will see) as
soon as we occasionally specialise our considerations to singular integral of the
convolution form. However, for the representation the full class of Calderón–
Zygmund operators they will turn out be quite essential.

The chapter will culminate in a lengthy treatment of the so-called T (1)
theorem, a general criterion for boundedness of singular integral operators.
We will first discuss a version for abstract bilinear form in Section 12.3, and
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88 12 Dyadic operators and the T (1) theorem

only then, in the final Section 12.4, turn to the task of checking the assump-
tions of the abstract result for singular integral operators with a Calderón–
Zygmund kernel, of the kind that we met Chapter 11. However, in order to
establish boundedness on Lp(Rd;X) from scratch, rather than extrapolating
it from another Lp0(Rd;X) space where it was already known (as in Chapter
11), somewhat stronger versions of the Calderón–Zygmund conditions will be
needed, and the notion of R-boundedness from Chapter 8 will, once again,
play a prominent role. While the results of this chapter will generically be
established in arbitrary UMD spaces, it turns out that additional information
about type and cotype, as studied in Chapter 7 can be traded against the pre-
cise kernel conditions, so that slightly larger classes of kernels are admissible
under conditions of type and cotype of the underlying space.

12.1 Dyadic singular integral operators

In this section, we introduce and study a family of dyadic models of singular
integrals, starting from the simplest case of Haar multipliers and proceeding
to their more complicated relatives. All these operators will eventual come
together as parts of a decomposition of general singular integral operators
towards the end of the chapter.

Since our aim is not to assume, but to prove, the Lp-boundedness of the
relevant operators, we will first define their action on appropriate spaces of
test functions only.

Definition 12.1.1 (Classes of simple functions). For a collection C of
bounded Borel subsets of Rd, let

S(C ;X) := span
{

1C ⊗ x : C ∈ C , x ∈ X
}
,

S0(C ;X) :=
{
f ∈ S(C ;X) :

∫
Rd
f(t) dt = 0

}
,

Sloc(C ;X) := {f ∈ L1
loc(Rd;X) : 1Cf ∈ S(C ;X) for all C ∈ C },

S∞(C ;X) := Sloc(C ;X) ∩ L∞(Rd;X).

It is easy to see that S(C ;X) ⊆ Lp(Rd;X) for all p ∈ [1,∞], and that

S0(C ;X) ⊆ S(C ;X) ⊆ S∞(C ;X) ⊆ Sloc(C ;X).

Our primary case of interest will be when C = D is a collection of dyadic
cubes of Rd in the sense of Definition 11.1.6. In this case, S(C ;X) is dense
in Lp(Rd;X) for all p ∈ [1,∞). In (12.2) below, we will add yet another
space S00(D ;X) ⊆ S0(D ;X) to this list, but its introduction requires some
preliminaries.
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12.1.a Haar multipliers

We begin with what is arguably the simplest class of operators deserving the
name of “dyadic singular integrals”. In essence, we have encountered these
operators already, at least implicitly on the one-dimensional domain space
R1, where we dealt with operators of the form

f 7→
∑
I∈D

εI〈f, hI〉hI

and showed their uniform boundedness on Lp(R;X) for arbitrary unimodular
coefficients εI , assuming that p ∈ (1,∞) and X is a UMD space (see Theorem
4.2.13). We now wish to extend these consideration to the general Euclidean
domain Rd. This hardly presents any new challenges, and mainly serves as a
warm-up for the subsequent considerations.

We first recall and extend the notation related to conditional expectations
and martingale differences over the dyadic filtration of Rd. For any cube

Q = aQ + `(Q)[0, 1)d,

with sidelength `(Q) > 0 and “lower left” corner aQ ∈ Rd, we denote by

ch(Q) :=
{
aQ +

1

2
`(Q)([0, 1)d + α) : α ∈ {0, 1}d

}
the collection of its 2d “children” obtained by bisecting each of the intervals
in the Cartesian product defining Q. In particular, for

Q ∈ Dk := {2−k([0, 1)d + n) : n ∈ Zd},

we have
ch(Q) = {Q′ ∈ Dk+1 : Q′ ⊆ Q}.

For every cube Q, we define the conditional expectation and martingale
difference projections (acting on f ∈ L1

loc(Rd;X))

EQf := 1Q−
∫
Q

f dx, DQf :=
∑

Q′∈ch(Q)

EQ′f − EQf. (12.1)

Then for every k ∈ Z, we let

Ekf := E(f |σ(Dk)) =
∑
Q∈Dk

EQf,

Dkf := Ek+1f − Ekf =
∑
Q∈Dk

DQf.

We still want to express the martingale difference projections DQ in terms
of vector-valued extensions of rank-one operators on scalar-valued functions.
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In dimension d = 1, the operators already have this form, as we recall from
Lemma 4.2.11 and the preceding discussion:

DIf = 〈f, hI〉hI , hI = |I|−1/2(1I− − 1I+),

where hI is called the Haar function associated with the interval I.
In higher dimensions, there are various ways of constructing analogues of

the Haar functions. For the present purposes, a standard tensor construction
suffices. In d = 1, we denote

h1
I := hI , h0

I := |I|−1/21I .

Lemma 12.1.2. In general dimension d > 1, the (tensor-)Haar functions

hαQ(x) = h
(α1,...,αd)
I1×···×Id (x1, . . . , xd) :=

d∏
i=1

hαiIi (xi), α = (α1, . . . , αd) ∈ {0, 1}d.

satisfy the following identity for all f ∈ L1
loc(Rd;X):

DQf =
∑

α∈{0,1}d\{0}

〈f, hαQ〉hαQ =:
∑

α∈{0,1}d\{0}

DαQf.

Proof. From the (obvious) orthogonality of one-dimensional Haar functions,
it follows that

〈hαQ, h
β
Q〉 =

d∏
i=1

〈hαiIi , h
βi
Ii
〉 =

d∏
i=1

δαi,βi = δα,β .

Let HQ be the space of scalar-valued functions supported on Q, constant on
each dyadic child of Q, and of mean zero. Clearly dimHQ = (2d − 1) and
hαQ ∈ HQ for each α ∈ {0, 1}d \ {0}. Since these hαQ are orthonormal and their
number is equal to dimHQ, they must form an orthonormal basis of HQ. On
the other hand, one easily verifies that DQ is the orthogonal projection of
L2(Rd) onto HQ, so in particular DQf = f for all f ∈ HQ. Since the hαQ
form an orthonormal basis, the claimed identity is true for all f ∈ HQ. If
f ∈ L1

loc(Rd;X) and x∗ ∈ X∗, then 〈DQf, x
∗〉 ∈ HQ and thus

〈DQf, x∗〉 =
∑

α∈{0,1}d\{0}

〈〈DQf, x∗〉, hαQ〉hαQ =
〈 ∑
α∈{0,1}d\{0}

〈DQf, hαQ〉hαQ, x∗
〉
,

where

〈DQf, hαQ〉 =
∑

Q′∈ch(Q)

〈EQ′f, hαQ〉 − 〈EQf, hQ〉

=
∑

Q′∈ch(Q)

〈f,EQ′hαQ〉 = 〈f, hαQ〉.

The claimed identity follows, since the functionals x∗ ∈ X∗ separate the points
x ∈ X by the Hahn–Banach theorem. �
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The functions hαQ, with α ∈ {0, 1}d \ {0}, are referred to as cancellative Haar

functions, as they all have vanishing mean. In contrast, h0
Q = |Q|−1/21Q is the

non-cancellative Haar function on Q. In the wavelet literature, the cancellative
Haar functions are special cases of mother wavelets, while the non-cancellative
Haar function is the father wavelet.

Lemma 12.1.3. Let X be a Banach space and p ∈ (1,∞). Then the space of
finite linear combinations of cancellative Haar functions with X-coefficients,

S00(D ;X) := span
{
hαQ ⊗ x : Q ∈ D , α ∈ {0, 1}d \ {0}, x ∈ X

}
, (12.2)

is dense in Lp(Rd;X).

Proof. The filtration generated by the dyadic cubes, (Fk)k∈Z := (σ(Dk))k∈Z is
σ-finite with respect to the Lebesgue measure on Rd, and F∞ := σ

(⋃
k∈Z Fk

)
is the Borel σ-algebra of Rd. Hence Ekf → f in Lp(Rd;X) as k → ∞ for all
f ∈ Lp(Rd;X) by the forward convergence of generated martingales (Theorem
3.3.2). On the other hand, F−∞ :=

⋂
k∈Z Fk contains only sets of Lebesgue

measure 0 (the empty set) or ∞ (the quadrants, and their unions), which
means (by definition) that the Lebesgue measure is purely infinite on F−∞.
Thus Ekf → 0 in Lp(Rd;X) as k → −∞ for all f ∈ Lp(Rd;X) by the
backward convergence of martingales (Theorem 3.3.5).

Combining these observation about the limits at ±∞, it follows that func-
tions of the form EMf −Emf =

∑M−1
k=m Dkf are dense in Lp(Rd;X). Next, we

make the following observations about each Dk appearing in this expansion.
First, for any P ∈ Dm, multiplication with 1P commutes with Dk; second,
1PDkf is a finite linear combination of some DQf , and finally, if (Pi)

∞
i=1 is

an enumeration of Dm, then
∑N
i=1 1Pif → f in Lp(Rd;X) as N → ∞. Thus

finite linear combinations of DQf are dense in Lp(Rd;X). Finally, Lemma
12.1.2 shows that DQf ∈ S00(D ;X), and completes the proof. �

Remark 12.1.4. One can check that

S00(D ;X) =
{
f ∈ S(D ;X) :

∫
D

f = 0 for each quadrant D of Rd
}
.

In particular, if D is a connected tree of dyadic cubes (i.e., every two cubes
are contained in a common bigger dyadic cube), then S00(D ;X) = S0(D ;X).
Making this connectedness assumption would slightly simplify some consid-
erations, but have the disadvantage of excluding the standard dyadic system
(cf. Remark 11.1.9).

After these preparatory considerations, we are in a position to prove the first
non-trivial estimates for operators of dyadic singular integral type. As one
expects, the UMD property is used, but in this first estimate still in a relatively
straightforward manner.
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Proposition 12.1.5. Let X be a UMD space, p ∈ (1,∞), and f ∈ S00(D ;X).
For any any α ∈ {0, 1}d \ {0} and coefficients λQ ∈ K, we have the estimates∥∥∥ ∑

Q∈D

λQ〈hαQ, f〉hαQ
∥∥∥
Lp(Rd;X)

6 βp,X sup
Q∈D

|λQ|‖f‖Lp(Rd;X),∥∥∥ ∑
Q∈D

εQ〈hαQ, f〉hαQ
∥∥∥
Lp(Ω×Rd;X)

6 β+
p,X‖f‖Lp(Rd;X).

Proof. Let us denote

DαQf := 〈hαQ, f〉hαQ, D−αQ f := DQf − DαQf =
∑

γ∈{0,1}d\{0,α}

〈hγQ, f〉h
γ
Q.

Then (DαQf,D
−α
Q f) is a martingale difference sequence on Q, as each hγQ with

γ /∈ {0, α} has average zero on the sets where hαQ is constant. Appropriately

enumerated, (DαQf,D
−α
Q f)Q∈D also forms a martingale difference sequence.

Estimating its martingale transform by a multiplying sequence of 0’s and 1’s,
we obtain∥∥∥ ∑

Q∈D

λQDαQf
∥∥∥
Lp(Rd;X)

=
∥∥∥ ∑
Q∈D

(
λQ · DαQf + 0 · D−αQ f

)∥∥∥
Lp(Rd;X)

6 βp,X
∥∥∥ ∑
Q∈D

(
DαQf + D−αQ f

)∥∥∥
Lp(Rd;X)

,

For the other claim, we argue by the contraction principle and the ran-
domised UMD inequality to see that∥∥∥ ∑

Q∈F

εQDαQf
∥∥∥
Lp(Ω×Rd;X)

6
∥∥∥ ∑
Q∈D

(
εQDαQf + ε′QD

−α
Q f

)∥∥∥
Lp(Ω×Rd;X)

6 β+
p,X

∥∥∥ ∑
Q∈D

(
DαQf + D−αQ f

)∥∥∥
Lp(Rd;X)

,

and in both cases we conclude by observing that∑
Q∈D

(
DαQf + D−αQ f

)
=
∑
Q∈D

DQf = f.

�

For operator-valued coefficients λQ ∈ L (X,Y ), the following variants of R-
boundedness turn out to be relevant:

Definition 12.1.6. For p ∈ (1,∞) and an operator family λ = (λQ)Q∈C ⊆
L (X,Y ) indexed by a collection C of bounded Borel subsets of Rd, we de-
note by DRp(λ) and E Rp(λ) the smallest admissible constants such that the
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following estimates hold for all finitely non-zero families (xQ)Q∈C ⊆ X and
(y∗Q)Q∈C ⊆ Y ∗:∑

Q∈C

|Q||〈λQxQ, y∗Q〉|

6 DRp(λ)
∥∥∥ ∑
Q∈C

εQxQ1Q

∥∥∥
Lp(Ω×Rd;X)

∥∥∥ ∑
Q∈C

εQy
∗
Q1Q

∥∥∥
Lp′ (Ω×Rd;Y ∗)

,

and ∥∥∥ ∑
Q∈C

εQλQxQ1Q

∥∥∥
Lp(Ω×Rd;Y )

6 E Rp(λ)
∥∥∥ ∑
Q∈C

εQxQ1Q

∥∥∥
Lp(Ω×Rd;X)

.

We refer to DRp(λ) as the DRp-bound of λ, and say that λ is DRp-bounded
if DRp(λ) <∞. The same convention applies to E Rp in place of DRp.

Remark 12.1.7. The primary case of interest will be when C = D is a system
of dyadic cubes. In this case, it is useful to observe at once that the defining
inequality of E Rp(λ) immediately extends to Haar functions hαQ in place of
the indicators 1Q:∥∥∥ ∑

Q∈D

εQλQxQh
γ
Q

∥∥∥
Lp(Ω×Rd;Y )

6 E Rp(λ)
∥∥∥ ∑
Q∈D

εQxQh
α
Q

∥∥∥
Lp(Ω×Rd;X)

.

Proof. We have hαQ = sgn(hαQ)|Q|−1/21Q and hence, by the contraction prin-
ciple, ∥∥∥ ∑

Q∈D

εQzQh
α
Q

∥∥∥
Lp(Ω×Rd;Z)

=
∥∥∥ ∑
Q∈D

εQ|Q|−1/2zQ1Q

∥∥∥
Lp(Ω×Rd;Z)

for both (zQ, Z) = {(xQ, X), (λQxQ, Y )}. Using this twice, with both α and
γ, and in between the defining inequality of E Rp(λ) for |Q|−1/2xQ in place
xQ, yields the claim. �

These notions are weaker than R-boundedness; we will shortly see that the
converse fails in general.

Lemma 12.1.8. For all Banach spaces X and Y , all operator families λ =
(λQ)Q∈C ⊆ L (X,Y ) and their adjoints λ∗ := (λ∗Q)Q∈D ⊆ L (Y ∗, X∗), and
all p ∈ (1,∞), we have

sup
Q∈C
‖λQ‖ 6 DRp(λ) 6 min{E Rp(λ),E Rp′(λ

∗)},

E Rp(λ) 6 ‖x 7→ Rp({λQ : Q 3 x})‖L∞(Rd) 6 Rp(λ).

Proof. The last two estimates are immediate. The first estimate follows by
testing the defining condition of DRp with only one non-zero pair (xQ, y

∗
Q) at

a time. To see that DRp(λ) 6 E Rp(λ), for suitable scalars |ηQ| = 1, we have
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Q∈C

|Q||〈λQxQ, y∗Q〉| =
∑
Q∈C

∫
ηQ〈λQxQ1Q, y

∗
Q1Q〉

= E
∫ 〈 ∑

Q∈C

εQηQλQxQ1Q,
∑
R∈C

εRy
∗
R1R

〉
6
∥∥∥ ∑
Q∈C

εQηQλQxQ1Q

∥∥∥
Lp(Ω×Rd;X)

∥∥∥ ∑
R∈C

εRy
∗
R1R

∥∥∥
Lp′ (Ω×Rd;Y ∗)

6 E Rp(λ)
∥∥∥ ∑
Q∈C

εQxQ1Q

∥∥∥
Lp(Ω×Rd;X)

∥∥∥ ∑
R∈C

εRy
∗
R1R

∥∥∥
Lp′ (Ω×Rd;Y ∗)

,

where we used Kahane’s contraction principle and the definition of E Rp(λ)
to pull out the scalar ηQ and the operators λQ in the last step. Since
〈λQxQ, y∗Q〉 = 〈xQ, λ∗Qy∗Q〉, and DRp′(λ) is defined by testing the expressions
on the right over a more general choice of x∗∗Q ∈ X∗∗ in place of xQ ∈ X, it
follows that

DRp(λ) 6 DRp′(λ
∗) 6 E Rp′(λ

∗)

by using what we already proved, but with λ∗ in place of λ. �

Corollary 12.1.9. If λ = (λQ)Q∈C ⊆ L (X) consists of scalar multiples of
the identity, then

sup
Q∈C
|λQ| = DRp(λ) = E Rp(λ) = Rp(λ).

Proof. Lemma 12.1.9 shows that we have this chain with “6” in place of “=”
throughout. On the other hand, Kahane’s contraction principle guarantees
that Rp(λ) = supQ∈C |λQ|. Thus we have equality throughout. �

The following example of DRp-bounded families will play a role in our inves-
tigation of criteria for boundedness of singular integral operators; the uniform
boundedness of the quantities |Q|−1〈T1Q,1Q〉 is classically known as the weak
boundedness property of the operator T .

Example 12.1.10. Suppose that T ∈ L (Lp(Rd;X), Lp(Rd;Y )), and define
〈T (1Q),1Q〉 ∈ L (X,Y ) by

〈T1Q,1Q〉 : x 7→ 〈T (1Qx),1Q〉 =

∫
Q

T (1Qx) ∈ Y.

For any collection C of bounded Borel subsets of Rd, it follows that

DRp

({ 〈T1Q,1Q〉
|Q|

}
Q∈C

)
6 ‖T‖L (Lp(Rd;X),Lp(Rd;Y )).

Proof. With suitable scalars |ηQ| = 1, we have
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Q∈C

|Q|
∣∣∣〈 〈T1Q,1Q〉

|Q|
xQ, y

∗
Q

〉∣∣∣ =
∑
Q∈C

ηQ〈T (1QxQ),1Qy
∗
Q〉

= E
〈
T
∑
Q∈C

εQηQxQ1Q,
∑
R∈C

εRy
∗
R1R

〉
6
∥∥∥T ∑

Q∈C

εQηQxQ1Q

∥∥∥
Lp(Ω×Rd;Y )

∥∥∥ ∑
R∈C

εRy
∗
R1R

∥∥∥
Lp′ (Ω×Rd;Y )

,

where ∥∥∥T ∑
Q∈C

εQηQxQ1Q

∥∥∥
Lp(Ω×Rd;Y )

6 ‖T‖L (Lp(Rd;X),Lp(Rd;Y ))

∥∥∥ ∑
Q∈C

εQxQ1Q

∥∥∥
Lp(Ω×Rd;X)

by the assumed boundedness of T and Kahane’s contraction principle with
the coefficients ηQ. �

While Example 12.1.10 will only play a role later, the weakening of R-
boundedness has the following immediate application:

Theorem 12.1.11 (Haar multipliers). Let X and Y be UMD spaces and
p ∈ (1,∞). For α, γ ∈ {0, 1}d \ {0} and λ = (λQ)Q∈D ⊆ L (X,Y ) , consider
the operator

Hαγλ : f 7→
∑
Q∈D

λQ〈f, hαQ〉h
γ
Q, (12.3)

initially mapping S00(D ;X) into S00(D ;Y ). Then Hαγλ extends to a bounded
operator on Lp(Rd;X) if and only if DRp(λ) <∞, and in this case

DRp(λ)

β−p,Xβ
−
p′,Y ∗

6 ‖Hαγλ ‖L (Lp(Rd;X),Lp(Rd;Y )) 6 β
+
p,Xβ

+
p′,Y ∗DRp(λ). (12.4)

Proof. Dualising Hαγλ f ∈ S00(D ;X) ⊆ Lp(Rd;X) with g ∈ S00(D ;Y ∗) ⊆
Lp
′
(Rd;Y ∗), we arrive at

|〈Hαγλ f, g〉| =
∣∣∣ ∑
Q∈D

〈
λQ〈f, hαQ〉, 〈h

γ
Q, g〉

〉∣∣∣
=
∣∣∣ ∑
Q∈D

|Q|
〈
λQ
〈f, hαQ〉
|Q|1/2

,
〈hγQ, g〉
|Q|1/2

〉∣∣∣
6 DRp(λ)

∥∥∥ ∑
Q∈D

εQ〈f, hαQ〉
1Q
|Q|1/2

∥∥∥
Lp(Ω×Rd;X)

×

×
∥∥∥ ∑
Q∈D

εQ〈g, hαQ〉
1Q
|Q|1/2

∥∥∥
Lp′ (Ω×Rd;Y ∗)

.

(12.5)
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For a fixed s ∈ Rd, the sequences (εQ1Q(s)/|Q|1/2)Q∈D and (εQh
α
Q)Q∈D have

equal distribution; thus∥∥∥ ∑
Q∈D

εQ〈f, hαQ〉
1Q
|Q|1/2

∥∥∥
Lp(Ω×Rd;X)

=
∥∥∥ ∑
Q∈D

εQ〈f, hαQ〉hαQ
∥∥∥
Lp(Ω×Rd;X)

6 β+
p,X‖f‖Lp(Rd;X)

by Proposition 12.1.5 in the last step. Similarly, the last term in (12.5) is
dominated by β+

p′,Y ∗‖g‖Lp′ (Rd;Y ∗). Hence

|〈Hαγλ f, g〉| 6 DRp(λ)β+
p,Xβ

+
p′,Y ∗‖f‖Lp(Rd;X)‖g‖Lp′ (Rd;Y ∗),

which proves the second estimate in (12.4).
Conversely, for finitely non-zero families (xQ)Q∈D ⊆ X and (y∗Q)Q∈D ⊆

Y ∗, we choose scalar |ηQ| = 1 such that |〈λQxQ, y∗Q〉| = ηQ〈λQxQ, y∗Q〉 and
consider the functions

f :=
∑
Q∈D

|Q|1/2ηQxQhαQ ∈ S00(D ;X), g :=
∑
Q∈D

|Q|1/2y∗Qh
γ
Q ∈ S00(D ;Y ∗).

Then

Hαγλ f =
∑
Q∈D

|Q|1/2ηQλQxQhγQ,

〈Hαγλ f, g〉 =
∑
Q∈D

|Q|ηQ〈λQxQ, y∗Q〉,

and hence∑
Q∈D

|Q||〈λQxQ, y∗Q〉| 6 ‖H
αγ
λ ‖L (Lp(Rd;X),Lp(Rd;Y )‖f‖Lp(Rd;X)‖g‖Lp′ (Rd;Y ∗),

where

‖f‖Lp(Rd;X) 6 β
−
p,X

∥∥∥ ∑
Q∈D

εQ|Q|1/2ηQxQhαQ
∥∥∥
Lp(Ω×Rd;X)

= β−p,X

∥∥∥ ∑
Q∈D

εQxQ1Q

∥∥∥
Lp(Ω×Rd;X)

by a similar equidistribution property as before. Similarly, we have

‖g‖Lp′ (Rd;Y ∗) 6 β
−
p′,Y ∗

∥∥∥ ∑
Q∈D

εQy
∗
Q1Q

∥∥∥
Lp′ (Ω×Rd;Y ∗)

,

and combining the bounds, we have proved the first estimate in (12.4). �

Remark 12.1.12. Under stronger assumptions on the coefficients λ, one can
improve the dependence on the UMD constants:
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(1) If X = Y , α = γ, and λ ⊆ K · IX is bounded, then Hααλ extends to a
bounded operator on Lp(Rd;X) of norm at most

‖Hααλ ‖L (Lp(Rd;X)) 6 βp,X‖λ‖∞.

(2) If λ ⊆ L (X,Y ) is R-bounded, then Hαγλ extends to a bounded operator
from Lp(Rd;X) to Lp(Rd;Y ) of norm at most

‖Hαγλ ‖L (Lp(Rd;X),Lp(Rd;Y )) 6 β
−
p,Y β

+
p,XE Rp(λ),

where a partial advantage over Theorem 12.1.11 comes from β−p,Y 6 β
+
p′,Y ∗ .

Proof. (1): This is a restatement of the first estimate in Proposition 12.1.5.

(2): Since (hγQ)Q∈D is a martingale difference sequence, using the defin-
ing properties of various constants and the definition of E Rp(λ) via Remark
12.1.7, we have∥∥∥ ∑

Q∈D

λQ〈f, hαQ〉h
γ
Q

∥∥∥
Lp(Rd;Y )

6 β−p,Y

∥∥∥ ∑
Q∈D

εQλQ〈f, hαQ〉h
γ
Q

∥∥∥
Lp(Ω×Rd;X)

6 β−p,Y E Rp(λ)
∥∥∥ ∑
Q∈D

εQ〈f, hαQ〉hαQ
∥∥∥
Lp(Ω×Rd;Y )

6 β−p,Y E Rp(λ)β+
p,X‖f‖Lp(Rd;X),

where, in the last step, we used the second estimate in Proposition 12.1.5. �

Here is a nice class of examples of coefficients satisfying the dyadic R-
boundedness condition:

Proposition 12.1.13. Let Y be a UMD space and p ∈ (1,∞). Let b ∈
L∞(Rd; L (X,Y )), let a = (aQ)Q∈D ∈ `∞(D ;L∞(Rd)), and

λ := (λQ)Q∈D := (〈aQb〉Q)Q∈D .

Then
E Rp((〈aQb〉Q)Q∈D) 6 β+

p,Y ‖a‖`∞(L∞)‖b‖L∞(Rd;L (X,Y ))

Thus, for α, γ ∈ {0, 1}d\{0}, the Haar multiplier Hαγλ extends to a bounded
operator from Lp(Rd;X) to Lp(Rd;Y ) of norm at most

‖Hαγλ ‖L (Lp(Rd;X),Lp(Rd;Y )) 6 β
−
p,Y β

+
p,Y β

+
p,X‖a‖`∞(L∞)‖b‖L∞(Rd;L (X,Y )).

Proof. The second claim is immediate from the first one in combination with
Remark 12.1.12(2), so we concentrate on the first one. We may assume by
scaling that ‖aQ‖L∞(Rd) 6 1. Then
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Q∈D

εQ〈aQb〉QxQ1Q

∥∥∥
Lp(Rd;Y )

=
∥∥∥ ∑
Q∈D

εQEQ(aQbxQ1Q)
∥∥∥
Lp(Rd;Y )

6 β+
p,Y

∥∥∥b ∑
Q∈D

εQxQ1Q

∥∥∥
Lp(Rd;Y )

6 β+
p,Y ‖b‖L∞(Rd;L (X,Y )

∥∥∥ ∑
Q∈D

εQxQ1Q

∥∥∥
Lp(Rd;Y )

,

where, in the first estimate, we applied Stein’s inequality (Theorem 4.2.23)
followed by Kahane’s contraction principle with the scalar coefficients aQ. �

The following result shows that result of Proposition 12.1.13 cannot be im-
proved to usual R-boundedness; thus the notions DRp and E Rp represent
genuine relaxations:

Proposition 12.1.14. For non-zero Banach spaces X and Y , the following
are equivalent:

(1) X has type 2 and Y has cotype 2;
(2) for every b ∈ L∞(0, 1; L (X,Y )), the set {〈b〉Q : Q ∈ D([0, 1))} is R-

bounded;
(3) for every b ∈ L∞(0, 1; L (X,Y )), the function

x 7→ R
({
〈b〉Q : x ∈ Q ∈ D([0, 1))

})
is essentially bounded.

Proof. (1)⇒(2): For b ∈ L∞(0, 1; L (X,Y )), it is clear that the {〈b〉Q : Q ∈
D([0, 1))} is uniformly bounded. Under the assumption (1), this implies R-
boundedness by Proposition 8.6.1.

(2)⇒(3): This is clear.

(3)⇒(1): From the definition of R-boundedness, it is immediate that
R(T ) = sup({R(F ) : F ⊆ T finite}). So if some collection T is not R-
bounded, it has finite subcollections Fn with R(Fn)→∞. Then the count-
able collection

⋃∞
n=1 Fn ⊆ T also fails to be R-bounded.

If (1) is not satisfied, then Proposition 8.6.1 says that the unit ball of
B̄L (X,Y ) of L (X,Y ) is not R-bounded. By what we just observed, this means
that we can find a sequence {uk}∞k=0 ⊆ B̄L (X,Y ) that fails to be R-bounded.

Let vk := 4
3uk −

1
3uk+1 and

b :=
∞∑
j=0

vj1[4−j−1,4−j).

Then b ∈ L∞(Rd; L (X,Y )) and ‖b‖∞ = supk ‖vk‖ 6 5
3 supk ‖uk‖ = 5

3 .
Moreover,
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〈b〉[0,4−k) = 4k
∞∑
j=k

3

4
4−jvj = 4k

3

4

( ∞∑
j=k

4−j
4

3
uj −

∞∑
j=k

4−j
1

3
uj+1

)
= uk.

Then for each n, we have

‖x 7→ R({〈b〉I : x ∈ I ∈ D([0, 1))})‖L∞(0,1)

> R({〈b〉I : [0, 4−n) ∈ I ∈ D([0, 1))}) > R({〈b〉[0,4−k)}nk=0) = R({uk}nk=0),

and hence

∞ = R({uk}∞k=0) = sup
n∈N

R({uk}nk=0)

6 ‖x 7→ R({〈b〉I : x ∈ I ∈ D([0, 1))})‖L∞(0,1).

Thus (3) fails, and by contraposition this proves the claimed implication. �

Comparison of DRp and E Rp

In the rest of this section, we make a further comparison of the two relaxed
notions of R-boundedness from Definition 12.1.6.. When Y is a UMD space—
an assumption that we make a good part of the time—, these notions turn
out to be equivalent. The universal bound DRp(λ) 6 E Rp(λ) was already
observed in Lemma 12.1.8. The reverse estimate could be achieved essentially
by concatenating a couple of results that we have treated earlier in these
volumes, but it turns out that a slightly sharper quantitative bound can be
achieved by also revisiting their proofs to establish the following proposition:

Proposition 12.1.15. Let Y be a UMD space and p ∈ (1,∞). Let E0 :=
{∅, Ω} be the trivial σ-algebra of a probability space (Ω,A ,P) supporting a
Rademacher sequence (εn)Nn=1, and (Fn)Nn=1 be a σ-finite filtration of some
measure space (S,F , µ). Then, for all f ∈ Lp(Ω × S;Y ), we have∥∥∥ N∑

n=1

εnE(εnf |E0 ×Fn)
∥∥∥
Lp(Ω×S;Y )

6 β+
p,Y ‖f‖Lp(Ω×S;Y ).

Proof. Let En := σ(ε1, . . . , εn) for n = 1, . . . , N . Then

E(εnf |E0 ×Fn) = E(E(εnf |En ×Fn)|E0 ×Fn)

= E(εnE(f |En ×Fn)|E0 ×FN ),

where in the last step we note that for both k ∈ {n,N}, the conditional expec-
tation of the function inside, given E0×Fk, is obtained by simply integrating
out the dependence on ω ∈ Ω. On the other hand, we have

E(εnE(f |En−1 ⊗Fn)|E0 ×FN )

= E(E(εnE(f |En−1 ×Fn)|En−1 ×FN )|E0 ×FN )

= E(E(εn|En−1 ×FN )E(f |En−1 ×Fn)|E0 ×FN )

= E(0 · E(f |En−1 ×Fn)|E0 ×FN ) = 0.
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Thus

E(εnf |E0 ×Fn) = E(εn[E(f |En ×Fn)− E(f |En−1 ×Fn)]|E0 ×FN )

= E(εn[E(f |G2n)− E(f |G2n−1)]|E0 ×FN )

= E(εnd2n|E0 ×FN ),

where

dk :=

{
E(f |Gk)− E(f |Gk−1), k = 2, . . . , 2N,

E(f |G1), k = 1,

are martingale differences relative to a filtration (Gk)2N
k=1 on Ω×S defined by

G2n := En ×Fn, G2n−1 := En−1 ×Fn.

Then, noting that E( |E0 ×FN ) is constant in ω ∈ Ω, and denoting by
(ε′k)2N

k=1 another Rademacher sequence on some (Ω′,A ′,P′), we have

∥∥∥ N∑
n=1

εnE(εnf |E0 ×Fn)
∥∥∥
Lp(Ω×S;Y )

=
∥∥∥ N∑
n=1

ε′2nE(εnd2n|E0 ×FN )
∥∥∥
Lp(Ω′×Ω×S;Y )

=
∥∥∥E(

N∑
n=1

ε′2nεnd2n|E0 ×FN )
∥∥∥
Lp(Ω′×Ω×S;Y )

6
∥∥∥ N∑
n=1

ε′2nεnd2n

∥∥∥
Lp(Ω′×Ω×S;Y )

=
∥∥∥ N∑
n=1

ε′2nd2n

∥∥∥
Lp(Ω′×Ω×S;Y )

6
∥∥∥ 2N∑
k=1

ε′kdk

∥∥∥
Lp(Ω′×Ω×S;Y )

6 β+
p,Y

∥∥∥ 2N∑
k=1

dk

∥∥∥
Lp(Ω×S;Y )

= β+
p,Y ‖E(f |G2N )‖Lp(Ω×S;Y ) 6 β

+
p,Y ‖f‖Lp(Ω×S;Y ),

where, in the four estimates, we applied the contractivity of conditional ex-
pectation on Lp, Kahane’s contraction principle with coefficients {0, 1}, the
definition of the UMD constant β+

p,Y , and again the contractivity of condi-
tional expectation on Lp. �

Remark 12.1.16. Proposition 12.1.15 is a simultaneous generalisation of Stein’s
inequality (Theorem 4.2.23),

∥∥∥ N∑
n=1

εnE(fn|Fn)
∥∥∥
Lp(Ω×S;Y )

6 β+
p,Y

∥∥∥ N∑
n=1

εnfn

∥∥∥
Lp(Ω×S;Y )

, (12.6)

for all fn ∈ Lp(S;Y ), and the K-convexity inequality for UMD spaces (Propo-
sition 4.3.10),
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∥∥∥ N∑
n=1

εnE(εnf)
∥∥∥
Lp(Ω;Y )

6 Kp,Y ‖f‖Lp(Ω;Y ), Kp,Y 6 β
+
p,Y , (12.7)

for all f ∈ Lp(Ω;Y ).
Namely, (12.6) is obtained from Proposition 12.1.15 by taking f =∑N
k=1 εk ⊗ fk, in which case E(εnf |E0 × Fn) = E(fn|Fn), while (12.7) is

the special case where S = {s} is a singleton, or in other words f is indepen-
dent of s ∈ S. Moreover, Proposition 12.1.15 shows that (12.7) holds equally
well with real or complex Rademacher variable εn, provided only that we use
the UMD constant β−p,Y defined in terms of the same variables; in contrast,
the proof of Proposition 4.3.10 was written for the real Rademacher variables
rn and made some explicit (although not essential) use of this choice.

Qualitatively, Proposition 12.1.15 could also be derived from the said two
results, but with a quantitatively weaker conclusion; namely,

∥∥∥ N∑
n=1

εnE(εnf |E0 ×Fn)
∥∥∥
Lp(Ω×S;Y )

=
∥∥∥ N∑
n=1

ε′nE(E(εnf |E0 ×F )|E0 ×Fn)
∥∥∥
Lp(Ω′×Ω×S;Y )

6 β+
p,Y

∥∥∥ N∑
n=1

ε′nE(εnf |E0 ×F )
∥∥∥
Lp(Ω′×Ω×S;Y )

= β+
p,Y

∥∥∥ N∑
n=1

εnE(εnf |E0)
∥∥∥
Lp(S;Lp(Ω;Y ))

6 β+
p,YKp,Y ‖f‖Lp(S;Lp(Ω;Y )),

using the K-convexity inequality in Lp(Ω;Y ), pointwise at each s ∈ S, in the
last step.

Corollary 12.1.17. If Y is a UMD space and λ = (λQ)Q∈D ⊆ L (X,Y ),
then

DRp(λ) 6 E Rp(λ) 6 β+
p′,Y ∗DRp(λ).

Proof. We already proved the first inequality in Lemma 12.1.8. For the second
inequality, we first note that, by Fubini’s theorem,∥∥∥ ∑

Q∈D

εQzQ1Q

∥∥∥
Lp(Ω×Rd;Z)

=
∥∥∥ ∑
Q∈D

εn(Q)zQ1Q

∥∥∥
Lp(Ω×Rd;Z)

, (12.8)

where n(Q) ∈ Z is such that Q ∈ Dn: This is because, pointwise at each
s ∈ Rd, there is exactly one dyadic Q 3 s of each generation n ∈ Z, and we
can replace the sequence (εQ)Q3s by the equidistributed sequence (εn)n∈Z =
(εn(Q))Q3s. For zQ = λQxQ and Z = Y , we then dualise the right-hand side

of (12.8) with G ∈ Lp′(Ω × Rd;Y ∗):
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Q∈D

εn(Q)λQxQ1Q, G
〉∣∣∣ =

∣∣∣ ∑
Q∈Dn

〈
λQxQ, 〈E(εn(Q)G)〉Q

〉
|Q|
∣∣∣

6 DRp(λ)
∥∥∥ ∑
Q∈D

εn(Q)xQ1Q

∥∥∥
Lp(Ω×Rd;X)

×

×
∥∥∥ ∑
Q∈D

εn(Q)〈E(εn(Q)G)〉Q1Q

∥∥∥
Lp′ (Ω×Rd;Y ∗)

.

(12.9)

In the Lp
′
(Ω × Rd;Y ∗) norm on the right, we write∑

Q∈D

εn(Q)〈E(εn(Q)G)〉Q1Q =
∑
n∈Z

εn
∑
Q∈Dn

E(E(εnG)|σ(Dn))1Q

=
∑
n∈Z

εnE(E(εnG)|σ(Dn)) =
∑
n∈Z

εnE(εnG|{∅, Ω} × σ(Dn)).

Thus, by a direct application of Proposition 12.1.15 in the UMD space Y ∗ in
place of Y , it follows that∥∥∥ ∑

Q∈D

εn(Q)〈E(εn(Q)G)〉Q1Q

∥∥∥
Lp′ (Ω×Rd;Y ∗)

6 β+
p′,Y ∗‖G‖Lp′ (Ω×Rd;Y ∗).

Substituting back to (12.9), it follows by duality that∥∥∥ ∑
Q∈D

εn(Q)λQxQ1Q

∥∥∥
Lp(Ω×Rd;Y )

6 β+
p′,Y ∗DRp(λ)

∥∥∥ ∑
Q∈D

εn(Q)xQ1Q

∥∥∥
Lp(Ω×Rd;X)

,

and we can replace n(Q) by Q on both sides according to (12.8) to obtain the
claimed result. �

12.1.b Nested collections of unions of dyadic cubes

Before proceeding to more complicated dyadic singular integrals, we de-
vote this intermediate section to elementary, although not entirely trivial,
geometric–combinatorial considerations related to the dyadic cubes. Collect-
ing the relevant auxiliary results here for easy reference will allow our subse-
quent analysis to flow with a nice tempo without annoying interruptions.

Definition 12.1.18 (Nestedness). We say that two set E,F are nested if
E ∩ F ∈ {∅, E, F}. A collection E of sets is called nested if any E,F ∈ E
have this property.

The fact that the collection D of dyadic cubes enjoys this property underlies
many considerations that we have encountered in these volumes.
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In the dyadic analysis of a singular integral operators that we undertake
in this section, we will also need to deal with unions Q1 ∪ Q2 of two dyadic
cubes of the same size. A moment’s thought confirms that two such sets will
not be nested in general, yet quite frequently they still enjoy this property.
Accordingly, a key to the related considerations will be the decomposition
of collections of pairs of dyadic cubes into controllably many subcollections,
where the nestedness of the unions Q1 ∪Q2 is valid.

Definition 12.1.19 (Strong nestedness). Let Q1 ∪Q2 and R1 ∪R2 be two
unions of some Qi, Ri ∈ D with `(Q1) = `(Q2) and `(R1) = `(R2). We say
that E and F are strongly nested if they are equal, or disjoint, or one of them,
say Q1∪Q2, is contained not just in R1∪R2 but in a dyadic child of R1 or R2.
A collection of such unions is called strongly nested if any two of its members
have this property.

Note that the dyadic cubes themselves, contained in this definition as a degen-
erate case with Q2 = Q1, clearly satisfy this strong nestedness. This notion
is relevant for considerations dealing with Haar functions which, as we recall,
are constant on the dyadic children of their supporting dyadic cubes; thus,
if Q1 ∪ Q2 and R1 ∪ R2 are strongly nested, unequal but intersecting, then
the smaller union is entirely contained in a set of constant value for any Haar
function related to the larger union.

Our first (relatively simple) decomposition into strongly nested subcollec-
tions is the following:

Lemma 12.1.20. Suppose that, for some n ∈ N:

(a) F ⊆ D is a finite subcollection;
(b) φ : F → D is an injection with `(φ(Q)) = `(Q) for all Q ∈ F ;
(c) if Q,R ∈ F and `(Q) < `(R), then `(Q) < 2−n`(R);

and
φ(Q) ⊆ Q(n) ∀ Q ∈ F . (12.10)

Then F can be partitioned into 3 subcollections Fi such that each collection
{Q ∪ φ(Q) : Q ∈ Fi} is strongly nested.

Proof. Step 1 – Let all assumptions of the lemma be in force until further
notice. For each Q ∈ F ∪ φ(F ), we define a label r(Q) ∈ {0, 1, 2} such that
r(Q) 6= r(φ(Q)) for every Q ∈ F unless φ(Q) = Q. This ensures that Q∪φ(Q)
and R ∪ φ(R) are disjoint whenever Q,R ∈ F are two different cubes with
r(Q) = r(R) and `(Q) = `(R).

Indeed, Q 6= R implies φ(Q) 6= φ(R). Since different dyadic cubes of equal
size are disjoint, this implies that Q ∩ R = ∅ = φ(Q) ∩ φ(R). If φ(Q) = Q
or φ(R) = R, this already shows that Q ∪ φ(Q) and R ∪ φ(R) are disjoint. If
φ(Q) 6= Q and φ(R) 6= R, then r(φ(Q)) 6= r(Q) = r(R) implies φ(Q) 6= R and
similarly φ(R) 6= Q. By equal size again, this implies that φ(Q) ∩ R = ∅ =
Q ∩ φ(R), giving the (strong) nestedness when `(Q) = `(R).
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To define such r(R), let us denote φ◦0(Q) = Q, φ◦k(Q) = φ(φ◦(k−1)(Q))
for k > 1. An orbit of φ is a set {φ◦k(Q) : k = 0, . . . ,K}, where Q ∈ F and
either φ◦(K+1)(Q) = Q (in this case the orbit is cyclic), or Q /∈ φ(F ) and
φ◦K(Q) /∈ F . For all Q ∈ F ∪φ(F ), we define r(Q) ∈ {0, 1, 2} by alternating
the values 0 and 1 on both non-cyclic orbits and cyclic orbits of even length,
and in addition using the value 2 once on cyclic orbits of odd length. In this
way, we ensure that r(Q) 6= r(φ(Q)) for any Q ∈ F unless Q = φ(Q).

Step 2 – It remains to check the strong nestedness in the case of Q,R ∈ F
with `(Q) < `(R), hence `(Q) < 2−n`(R). If Q∪φ(Q) intersect R∪φ(R), then
one of P ∈ {Q,φ(Q)} intersects one of S ∈ {R,φ(R)}. Since `(P ) < 2−n`(S)
and the cubes are dyadic, this implies that P (n) ( S. Since φ(Q) ⊆ Q(n), we
have φ(Q)(n) = Q(n), and hence Q ∪ φ(Q) ⊆ Q(n) ( S, confirming strong
nestedness in the case of `(Q) < `(R). �

In the lack of (12.10), the situation is somewhat more complicated. Suitable
substitute conditions are provided in the following:

Lemma 12.1.21. Assume conditions (a) through (c) as well as:

(d) φ(Q) ⊆ 3Q(n) for all Q ∈ F ;
(e) 3Q ⊆ Q(n) for all Q ∈ F ∪ φ(F ).

Then F can be partitioned into nine subcollections Fi such that each collection
{Q ∪ φ(Q) : Q ∈ Fi} is strongly nested.

Proof. Step 1 – We define the label r(Q) ∈ {0, 1, 2} exactly as in the proof of
Lemma 12.1.20 to ensure that r(Q) 6= r(φ(Q)) unless Q = φ(Q). This gives
the nestedness of the sets Q ∪ φ(Q) for cubes of a fixed sidelength, as before.

Step 2 – We claim that, for each Q ∈ F ∪φ(F ), there can be at most one
R ∈ F ∪ φ(F ) such that

Q ( R, 3Q(n) 6⊆ RQ, (12.11)

where RQ is the unique dyadic child of R that contains Q ( R.
In fact, let R be as above, and Q ( R ( S ∈ F ∪ φ(F ), thus Q(n) ( R,

R(n) ( S by (c). By (e) applied to the cube R, we then have 3Q(n) ⊆ 3R ⊆
R(n) ⊆ SR, so indeed S will not satisfy the condition (12.11) that R does, and
this proves the uniqueness of R.

Step 3 – For each P ∈ F , we define a second label s(P ) ∈ {0, 1, 2} in such
a way that if (r(P ), s(P )) = (r(S), s(S)), then (12.11) does not hold for either
R = S or R = φ(S). This will ensure strong nestedness for the subcollection
with constant pairs of labels (r(P ), s(P )).

Indeed, suppose that P, S ∈ F have (r(P ), s(P )) = (r(S), s(S)) where
`(P ) < `(S) and P ∪ φ(P ) intersects S ∪ φ(S). Hence (at least) one of Q ∈
{P, φ(P )} intersects (at least) one of R ∈ {S, φ(S)} and thus Q ( R. By (d)
and the failure of (12.11), we have P ∪ φ(P ) ⊆ (1 + 2n+1Q) ⊆ RQ.
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The required second label s(P ) is defined for each P ∈ F as follows. For
all P ∈ F of maximal size, let s(P ) := 0. Recursively, we proceed to the unla-
belled cubes P ∈ F of maximal size. For these cubes, we first check whether
(12.11) occurs with either Q = P or Q = φ(P ), and some R ∈ F ∪ φ(F ).
It could happen that R ∈ F , or R = φ(S) with S ∈ F , or both. We then
require that s(P ) is chosen so that (r(P ), s(P )) /∈ {(r(R), s(R)), (r(S), s(S))}.
If S = R, this is clearly one restriction on S(P ). But if S 6= R = φ(S), then
r(R) 6= r(S) by the alternating choice of r along the orbits, and we still get
at most one restriction of the possible value of s(P ). Since different R and S
may arise from the case Q = P and Q = φ(P ) we get altogether at most two
restrictions on s(P ), and we can declare that s(P ) is the smallest remaining
number in {0, 1, 2}. �

The next result relaxes the assumptions even further, at the cost of compli-
cating the conclusions:

Lemma 12.1.22. Assume conditions (a) through (d). Then F can be par-
titioned into 144 subcollections Fi, and on each of them we have injections
φi,j : Fi → D , j = 0, 1, 2, 3, where φi,0(Q) = Q and φi,3(Q) = φ(Q) such that
each collection

{φi,j(Q) ∪ φi,j+1(Q) : Q ∈ Fi} (12.12)

is strongly nested.

Proof. The idea is to combine the special cases treated in the two previous
Lemmas 12.1.20 and 12.1.21, which had the additional assumptions (12.10)
and (e), respectively; neither is assumed now.

For every R ∈ D , consider the 2nd cubes Q ∈ D with Q(n) = R. Among
them, there are (2n − 2)d off-boundary cubes Q with 3Q ⊆ R, while the
number of boundary cubes is then

2nd − (2n − 2)d = 2nd[1− (1− 21−n)d] 6 2nd · 21−nd 6
1

2
2nd

if n > log2(4d). When this is the case, we can define a permutation ψ : D → D
with `(ψ(Q)) = `(Q), ψ(Q) ⊆ Q(n) (as in (12.10)) such that ψ(Q) is an off-
boundary cube in Q(n) whenever Q is a boundary cube in Q(n).

Let us first divide F into four subcollection Fu,v, where u, v ∈ {0, 1}, so
that Q ∈ Fu,v is a boundary cube in Q(n) if and only if u = 1, whereas φ(Q)
is a boundary cube in ψ(Q)(n) if and only if v = 1.

Case F0,0 : By Lemma 12.1.21, we can divide F0,0 into nine subcollections Fi

such that {Q∪φ(Q) : Q ∈ Fi} is strongly nested. Letting φi,1 = φi,2 = φi,3 =
φ in this case, we trivially have the strong nestedness of {φi,j(Q)∪φi,j+1(Q) :
Q ∈ Fi} for j = 1, 2 (since the collection is simply φ(Fi) ⊆ D in this case.
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Case F0,1 : On the collection F0,1, we consider the map ψ ◦ φ and observe
that it also satisfies (d); indeed, φ(Q) ⊆ 3Q(n) lies inside one of the dyadic
neighbours of Q(n), and ψ keeps it inside this same nth generation ancestor.
Since φ(Q) is a boundary cube in φ(Q)(n) for Q ∈ F0,1 by definition of this
collection, ψ(φ(Q)) is off-boundary in φ(Q)(n) = ψ(φ(Q))(n) by definition of
ψ, and hence (F0,1, ψ ◦ φ) also satisfies (e) in place of (F , φ). Then Lemma
12.1.21 shows that F0,1 can be divided into nine subcollections F ′a such that
each {Q ∪ ψ(φ(Q)) : Q ∈ F ′a} is strongly nested. On the other hand, we can
write

{ψ(φ(Q)) ∪ φ(Q) : Q ∈ F0,1} = {R ∪ ψ(R) : R ∈ φ(F0,1)}.

Here (F0,1, ψ) satisfies the assumptions of Lemma 12.1.20, and hence φ(F0,1)
can be divided into three subcollections Gb such that {R ∪ ψ(R) : R ∈ Gb)} is
strongly nested. This since φ is injective, this induces a decomposition of F0,1

into three subcollections where F ′′b such that {ψ(φ(Q)) ∪ φ(Q) : Q ∈ F ′′b }
is strongly nested. Then, defining Fi = F ′a ∩F ′′b for i = (a, b), we find that
both

{Q ∪ ψ(φ(Q)) : Q ∈ Fi}, {ψ(φ(Q)) ∪ φ(Q) : Q ∈ Fi}

are strongly nested, and there is in total 9 ·3 such collections Fi decomposing
F0,1. So taking φi,1 = ψ ◦ φ and φi,2 = φi,3, we have the strong nestedness of
the collections in (12.12), the case j = 2 for trivial reasons as in case F0,0.

Case F1,0 : Similarly, on the collection F1,0, Lemma 12.1.20 applies to the
mapping ψ to provide three subcollection F ′a such that {Q∪ψ(Q) : Q ∈ F ′a}
is strongly nested. And Lemma 12.1.21 applies to (ψ(F1,0), φ◦ψ−1) to provide
nine subcollections F ′′b such that {ψ(Q)∪φ(Q) : Q ∈ F ′′b } is strongly nested.
So altogether we have 3 · 9 subcollection Fi = F ′a ∩F ′′b such that

{Q ∪ ψ(Q) : Q ∈ Fi}, {ψ(Q) ∪ φ(Q) : Q ∈ Fi}

are strongly nested. We can hence define φi,1 = ψ, φi,2 = φi,3 = φ to get the
claimed conclusions.

Case F1,1 : Finally, on the collection F1,1, Lemma 12.1.20 applies to both
(F1,1 : ψ) and to (ψ ◦ φ(F1,1 : ψ−1) to provide three subcollections F ′a and
three other F ′′b such that {Q ∪ ψ(Q) : Q ∈ F ′a} and {ψ(φ(Q)) ∪ φ(Q) :
Q ∈ F ′′b } are strongly nested. And we check that Lemma 12.1.21 applies to
(ψ(F1,1), ψ◦φ◦ψ−1) to provide nine subcollections F ′′′c such {ψ(Q)∪ψ(φ(Q)) :
Q ∈ F ′′′c } is strongly nested. Then with Fi = F ′a ∩F ′′b ∩F ′′′c we obtain 32 · 9
subcollections such that {Q∪ψ(Q) : Q ∈ Fi}, {ψ(Q)∪ψ(φ(Q)) : Q ∈ Fi}, and
{ψ(φ(Q)) ∪ φ(Q) : Q ∈ Fi} are strongly nested, and we can define φi,1 = ψ,
φi,2 = ψ ◦ φ, φi,3 = φ in this case.

In total we have divided F into 9 + 2 · 9 · 3 + 9 · 32 = 144 subcollections
Fi with required properties. �

Another variant of the conclusion with the same assumptions is as follows:
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Lemma 12.1.23. Assume conditions (a) through (d). Then F can be parti-
tioned into 33d+1 subcollections Fi such that each collection

{Q[m(i)] ∪ φ(Q)[m(i)] : Q ∈ Fi} ⊆ Dm(i);3

is strongly nested, where

(1) Dm(i);3 is one of the dilated dyadic systems from Proposition 11.3.11;
(2) for each P ∈ D , we denote by P [m] the unique

P [m] ∈ Dm;3 with P [m] ⊇ P and `(P [m]) = 3`(P ). (12.13)

Proof. We have Q ∪ φ(Q) ⊆ (1 + 2n+1)Q ⊆ 3Q(n), where Q(n) is the nth
generation dyadic ancestor of Q. Recall that the cubes 3R, R ∈ D , can be
split into 3d new dyadic-like systems Dm;3 by Proposition 11.3.11. For each
Q ∈ F , let mQ be the index such that 3Q(n) ∈ DmQ;3, and let Q′ = Q[mQ],
Q′′ = φ(Q)[mQ] be as in (12.13). (Thus Q′ is the three-fold expansions of one
of the neighbours of Q; any of these contains Q, and exactly one of them
belongs to the correct DmQ;3; the same remark applies to Q′′ and φ(Q) in
place of Q′ and Q.) Note that the same Q′ can arise from 3d different cubes
Q, and the same Q′′ from 3d different φ(Q); however, by dividing F into 9d

subcollections F a, we ensure that Q is uniquely determined by Q′, and φ(Q)
by Q′′, within each F a.

Let us then consider the collections F a,m = {Q′ : Q ∈ F a,mQ = m} ⊆
Dm;3 for the 3d different values of m. We can define Φ : F a,m → Dm;3 by
Φ(Q′) = Q′′; this is well-defined since Q′ uniquely determines Q, which de-
termines φ(Q) and then Q′′. The map Φ is also injective, since Q′′ uniquely
determines φ(Q), which (since φ is injective) determines Q and then Q′. More-
over, we have

`(Φ(Q′)) = `(Q′′) = 3`(φ(Q)) = 3`(Q) = `(Q′).

Thus F a,m ⊆ Dm;3 and Φ satisfy properties (a) and (b) in place of F ⊆ D
and φ, and the scale-separation property (c) is clearly inherited by Φ from φ.
Moreover, the nth Dm;3-ancestor of both Φ(Q′) = Q′′ and Q′ is clearly 3Q(n)

by construction, and hence Φ satisfies condition (12.10) of Lemma 12.1.20. The
said lemma guarantees that F a,m can be split into 3 subcollections F a,m

j , so
that each

{Q′ ∪ Φ(Q′) : Q′ ∈ F a,m
j } ⊆ Dm;3

is strongly nested. Writing i = (a,m, j), and defining

Fi := {Q ∈ F : mQ = m,Q[m] ∈ F a,m
j },

these are precisely the collections that we wanted to construct. Since a takes 9d

values, m takes 3d values, and j takes 3 values, the number of these collections
is 9d · 3d · 3 = 33d+1, as claimed. �
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Remark 12.1.24. In each of the Lemmas 12.1.20 through 12.1.23, we can drop
assumption (c) at the cost of multiplying the required number of decomposing
subcollections Fi by n+ 1.

Proof. For any F ⊆ D , consider the n + 1 subcollection F k := {Q ∈ F :
log2 `(Q) ≡ k mod (n+ 1)}. Each of these clearly satisfies (c). Moreover, any
of the other properties (a) through (e) as well as (12.10), if valid for F , is
clearly inherited by each F k. Thus, if F satisfies the assumptions of any of
these lemmas with the possible exception of (c), then each F k satisfies all of
the relevant assumptions, and the lemma in question provides a decomposition
of F k into some F k

i with appropriate nestedness conditions. The required
decomposition of the original F is then obtained simply as F =

⋃n
k=0

⋃
i F

k
i ,

and clearly the number of collections in this decomposition is n+ 1 times as
many as in the decompositions F k =

⋃
i F

k
i given by the lemmas. �

12.1.c The elementary operators of Figiel

We will now study another family of dyadic singular integral operators with
more complicated interactions between Haar functions at different locations.
The first class of these operators combines the action of a Haar multiplier
with a translation of the Haar functions. One might be tempted to refer to
such operators as dyadic or Haar “shifts”, but this name has been adopted
for a somewhat different class of operators in the literature.

While the parameter n attached with these operators may appear like a
technical detail at this point, it is essential for subsequent applications that
one obtains a good dependence on n.

Theorem 12.1.25 (Figiel). Let φ : D → D be an injection with `(φ(Q)) =
`(Q) and φ(Q) ⊆ 3Q(n) for some n ∈ N. Let X and Y be a UMD spaces, and
let p ∈ (1,∞). Let λ = (λQ)Q∈D ⊆ L (X,Y ). Consider the mapping

Tαγφλ f =
∑
Q∈D

λQ〈f, hαQ〉h
γ
φ(Q), (12.14)

initially from S00(D ;X) to S00(D ;Y ). Let Ad := 6 · (81)d.

(0) If λ is R-bounded, or more generally if

min{E Rp(λ),E Rp(λφ−1)} <∞, (λφ−1)Q :=

{
λφ−1(Q), Q ∈ φ(D),

0, else,

then Tαγφλ extends boundedly from Lp(Rd;X) to Lp(Rd;Y ), with norm

‖Tαγφλ ‖ := ‖Tαγφλ ‖L (Lp(Rd;X),Lp(Rd;Y )) 6 Ad(n+ 1)β−p,Y β
+
p,XC(X,Y, p;λ),

where

C(X,Y, p;λ) := min{β+
p,X · E Rp(λφ−1), β+

p,Y · E Rp(λ)}
6 min{β+

p,X , β
+
p,Y }Rp(λ);
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(1) If, in addition, Y has type t ∈ [1, p] and X has cotype q ∈ [p,∞], or one
of them has both, then we also have the estimate

‖Tαγφλ ‖ 6 Ad(n+ 1)1/t−1/qβ−p,Y β
+
p,XC(X,Y, p, q, t;λ)

where

C(X,Y, p, q, t;λ) := min
{
τt,X;p · β+

p,X · cq,X;p · E Rp(λφ−1),

τt,Y ;p · β+
p,X · cq,X;p · E Rp(λφ−1),

τt,Y ;p · β+
p,Y · cq,X;p · E Rp(λ),

τt,Y ;p · β+
p,Y · cq,Y ;p · E Rp(λ)

}
6 C(X,Y, p, q, t) ·Rp(λ),

and

C(X,Y, p, q, t) := min
{
τt,X;pβ

+
p,Xcq,X;p, τt,Y ;pβ

+
p,Xcq,X;p,

τt,Y ;pβ
+
p,Y cq,X;p, τt,Y ;pβ

+
p,Y cq,Y ;p

}
.

(12.15)

(2) If, in addition, λQ 6= 0 only when φ(Q) ⊆ Q(n), then we have the alterna-
tive norm estimate

‖Tαγφλ ‖ 6 3 · βp,Y β+
p,X min{cq,X;p, cq,Y ;p}(n+ 1)1/q′E Rp(λ).

(3) For all f ∈ Lp(Rd;X) and g ∈ Lp′(Rd;Y ∗), the extended operator has the
absolutely convergent representation

〈Tαγφλ f, g〉 =
∑
Q∈D

〈
λQ〈f, hαQ〉, 〈g, h

γ
φ(Q)〉

〉
.

When ‖f‖Lp(Rd;X) 6 and ‖g‖Lp′ (Rd;Y ∗) 6 1, the corresponding absolute
value series is dominated by the same upper bounds as those given for
‖Tαγφλ ‖L (Lp(Rd;X),Lp(Rd;Y )) above.

Remark 12.1.26. (1) In the prominent special case that X = Y , we have

C(X,X, p, q, t;λ) = C(X,X, p, q, t) ·min{E Rp(λφ−1),E Rp(λ)},
C(X,X, p, q, t) = τt,X;p · β+

p,X · cq,X;p.

(2) Case (0) of Theorem 12.1.25 is a special case of (1) using the trivial type
and cotype exponents t = 1, q = ∞ with corresponding constants equal
to one. The role of non-trivial type and cotype is to relax the dependence
on the parameter n. The estimate obtained in case (2) is not strictly
comparable to the other two bounds; its main advantage over the other
two is achieving a quadratic bound in terms of the UMD constants, in
contrast to the cubic bound in the other cases.
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(3) Recalling the Haar multipliers Hαγλ from Theorem 12.1.11, one can check
that, for any θ ∈ {0, 1}d \ {0},

Tαγφλ = T θγφ1 ◦ H
αθ
λ = Hθγλφ−1

◦ Tαθφ1

where 1 is the constant sequence of all ones. Hence, for the qualitative
conclusion of Theorem 12.1.25, it would suffice to consider just X = Y
and λ = 1, and then combine this special case with Theorem 12.1.11;
however, the reader will quickly realise that this approach would produce
a higher power of the UMD constants in the quantitative conclusion.

Before going into the proof, let us still formulate a corollary in the important
special case when φ : D → D is a bijection:

Corollary 12.1.27. Let φ : D → D be a bijection with `(φ(Q)) = `(Q) and
φ(Q) ⊆ 3Q(n) for some n ∈ N. Let X and Y be a UMD spaces, and let
p ∈ (1,∞). Suppose that Y has type t ∈ [1, p] and X has cotype q ∈ [p,∞], or
one of them has both. Let λ = (λQ)Q∈D ⊆ L (X,Y ) be R-bounded, consider
the mapping Tαγφλ as in (12.14), and let

‖Tαγφλ ‖ := ‖Tαγφλ ‖L (Lp(Rd;X),Lp(Rd;Y )).

(1) We have the norm estimate

‖Tαγφλ ‖ 6 6 · 34dβp,Xβp,Y (n+ 1)1/t−1/q min{CRp(λ), C∗R∗p′(λ)}

where

C = C(12.15)(X,Y, p, q, t), C∗ := C(12.15)(Y
∗, X∗, p′, t′, q′).

(2) If, in addition, λQ 6= 0 only when φ(Q) ⊆ Q(n), then we have the alterna-
tive norm estimate

‖Tαγφλ ‖ 6 3 · βp,Xβp,Y min
{
C(n+ 1)1/q′Rp(λ), C∗(n+ 1)1/tR∗p′(λ)

}
.

where

C = min{cq,X;p, cq,Y ;p}, C∗ = min{ct′,Y ∗;p′ , ct′,X∗;p′}

Proof. The first versions of both bounds (i.e, using the first item of the respec-
tive minimums) above are simply those of Theorem 12.1.25, cases (1) and (2),
where we estimated all UMD constants by β±p,Z 6 βp,Z . The second versions
of both bounds then follow by duality: When φ : D → D is a bijection, one
directly verifies that

(Tαγφλ )∗ = T γαφ−1,λ∗
φ−1

is an operator of the same form, acting from Q00(Rd;Y ∗) to Q00(Rd;X∗) and
eventually from Lp

′
(Rd;Y ∗) to Lp

′
(Rd;X∗). If Z ∈ {X,Y } has type t, then Z∗
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has cotype t′ with ct′,Z∗;p′ 6 τt,Z;p. (See Proposition 7.1.13; it is formulated
for p = t, but the same short argument is easily modified to give the general
statement.) If a UMD space Z has cotype q, then it has martingale type q
(Proposition 4.3.13), hence Z∗ has martingale cotype q′ (Proposition 3.5.29),
and thus cotype q′ (as observed right before Proposition 4.3.13). Thus we can
apply the case already handled, with (Y ∗, X∗, p′, t′, q′) in place of (X,Y, p, q, t),
to get

‖Tαγφλ ‖L (Lp(Rd;X),Lp(Rd;Y )) = ‖T γαφ−1,λφ−1
‖L (Lp′ (Rd;Y ∗),Lp′ (Rd;X∗))

6 6 · 34dβp′,Y ∗βp′,X∗(n+ 1)1/q′−1/t′C(Y ∗, X∗, p′, t′, q′)Rp′(λ
∗).

The claim then follows from βp′,Z∗ = βp,Z and 1/q′ − 1/t′ = 1/t− 1/q.
The second version of the second bound is obtained from the first version

in the entirely similar way by duality. �

Proof of Theorem 12.1.25. Claim (0) is the special case t = 1, q = ∞ of (1),
so we only need to prove the latter of the two. Let F be a finite collection of
dyadic cubes. Then F and φ satisfy the assumptions of Lemma 12.1.23, except
possibly the scale separation (c). By Remark 12.1.24, the lemma still applies
to produce 33d+1(n + 1) subcollections Fi ⊆ F with the properties given in
Lemma 12.1.23. Let us write xQ = 〈f, hαQ〉. Since the functions (hγQ)Q∈F form
a martingale difference sequence, we have∥∥∥ ∑

Q∈F

λQxQh
γ
φ(Q)

∥∥∥
Lp(Rd;Y )

6 β−p,Y

∥∥∥ ∑
Q∈F

εQλQxQh
γ
φ(Q)

∥∥∥
Lp(Ω×Rd;Y )

.

From this point on, we have some flexibility as to when we want to “pull out”
the coefficients λQ. For this reason, let us write zQ ∈ Z for a generic choice
of either zQ = λQxQ ∈ Y or zQ = xQ ∈ X. We then continue with∥∥∥ ∑

Q∈F

εQzQh
γ
φ(Q)

∥∥∥
Lp(Ω×Rd;Z)

=
∥∥∥∑

i

∑
Q∈Fi

ε′iεQzQh
0
φ(Q)

∥∥∥
Lp(Ω′×Ω×Rd;Z)

6 τt,Z;p

(∑
i

∥∥∥ ∑
Q∈Fi

εQxQh
0
φ(Q)

∥∥∥t
Lp(Ω×Rd;Z)

)1/t

,

where, in the two steps above, we used the facts that

1. when multiplied by the random sign εQ, both the independent random
sign ε′i and the possible difference of the signs of hαφ(Q)(t) and h0

φ(Q)(t) are
invisible to the norm; and

2. whenever Z has type t ∈ [1, p], then so has Lp(S;Z) (here: S = Ω × Rd),
and τt,Lp(S;Z);p 6 τt,Z;p by Proposition 7.1.4.

For Q ∈ Fi, let us denote by E(Q) = Q[m(i)]∪φ(Q)[m(i)] the sets provided
by Lemma 12.1.23 that form a strongly nested family, as guaranteed by the
said lemma. In particular E(Q) ⊇ Q ∪ φ(Q) and |E(Q)| 6 2 · 3d|Q|. (The
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inequality is due to the fact that the cubes Q[m(i)] and φ(Q)[m(i)] are not
necessarily different.) Hence

1φ(Q) 6 1φ(Q)
2 · 3d

|E(Q)|
|Q| = 1φ(Q)2 · 3d−

∫
E(Q)

1Q 6 2 · 3dEE(Q)1Q,

where the EE(Q) are conditional expectations associated with a nested family,
and hence with a filtration. This allows us to use Stein’s inequality (Theorem
4.2.23) to the effect that∥∥∥ ∑

Q∈Fi

εQzQh
0
φ(Q)

∥∥∥
Lp(Ω×Rd;Z)

6 2 · 3d
∥∥∥ ∑
Q∈Fi

εQzQEE(Q)h
0
Q

∥∥∥
Lp(Ω×Rd;Z)

6 2 · 3d · β+
p,Z

∥∥∥ ∑
Q∈Fi

εQzQh
0
Q

∥∥∥
Lp(Ω×Rd;Z)

(12.16)

Then(∑
i

∥∥∥ ∑
Q∈Fi

εQzQh
0
Q

∥∥∥t
Lp(Ω×Rd;Z)

)1/t

6 (33d+1(n+ 1))1/t−1/q
(∑

i

∥∥∥ ∑
Q∈Fi

εQzQh
0
Q

∥∥∥q
Lp(Ω×Rd;Z)

)1/q

6 (33d+1(n+ 1))1/t−1/qcq,Z;p

∥∥∥∑
i

ε′i
∑
Q∈Fi

εQzQh
0
Q

∥∥∥
Lp(Ω′×Ω×Rd;Z)

,

where, in the two steps above, we used

1. Hölder’s inequality and counting of terms in the other factor; and
2. an application of the cotype q property of Z, recalling that this implies

cotype q for Lp(S;Z) (here: S = Ω × Rd) with cq,Lp(S;Z);p 6 cq,Z;p when
q ∈ [p,∞] by Proposition 7.1.4.

By the invisibility of signs multiplying a random εQ, the last norm here is∥∥∥∑
i

ε′i
∑
Q∈Fi

εQzQh
0
Q

∥∥∥
Lp(Ω′×Ω×Rd;Z)

=
∥∥∥ ∑
Q∈F

εQzQh
α
Q

∥∥∥
Lp(Ω×Rd;Z)

.

If we did not already pull out the coefficients λQ, we do it at this point, after
which we are left with∥∥∥ ∑

Q∈F

εQxQh
α
Q

∥∥∥
Lp(Ω×Rd;X)

6 β+
p,X‖f‖Lp(Rd;X),

where the last step was a direct application of Proposition 12.1.5.
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It remains to collect the various coefficients that we accumulated. In any
case, the first estimate gave β−p,Y and the last one β+

p,X , but depending on
where we pull out the coefficients λQ, we may use the constant of the space
X or Y in place of the generic Z.

If we pull out the λQ before the application of Stein’s inequality in (12.16),
then λQ is the coefficient of hγφ(Q), hence the coefficient of hγR is λφ−1(R), and

thus an application of Remark 12.1.7 produces the factor E Rp(λφ−1). On the
other hand, pulling out the λQ only after (12.16) leads to a “direct” application
of Remark 12.1.7 and the factor E Rp(λ).

Aside from the numerical factors 2 · 3d and (33d+1(n + 1))1/t−1/q, we get
one of the following:

E Rp(λφ−1)× τt,X;p × β+
p,X × cq,X;p,

τt,Y ;p × E Rp(λφ−1)× β+
p,X × cq,X;p,

τt,Y ;p × β+
p,Y × E Rp(λ)× cq,X;p,

τt,Y ;p × β+
p,Y × cq,Y ;p × E Rp(λ),

where the order of the constants reflects the order of applying the related
estimates: Before pulling out the coefficients λQ, we apply estimates on the
Y side, and after that on the X side. Taking the minimum of the four terms,
we arrive at the assertion of the theorem.

The alternative estimate (2): In order to make efficient use of the additional
assumption φ(Q) ⊆ Q(n) when λQ 6= 0, we will need to modify the preceding
considerations at various points.

Let F be a finite collection of dyadic cubes, and Fλ := {Q ∈ F : λQ 6==
0}. Then Fλ and φ satisfy the assumptions of Lemma 12.1.20, except possibly
the scale separation (c). By Remark 12.1.24, the lemma still applies to pro-
duce 3(n + 1) subcollections Fλ

i ⊆ Fλ with the properties given in Lemma
12.1.20. Let us write xQ = 〈f, hαQ〉. In the first step, we simply use the triangle
inequality:∥∥∥ ∑

Q∈F

λQxQh
γ
φ(Q)

∥∥∥
Lp(Rd;Y )

6
∑
i

∥∥∥ ∑
Q∈Fλ

i

λQxQh
γ
φ(Q)

∥∥∥
Lp(Rd;Y )

.

The more interesting deviations from the previous case begin now.
Note that hαQ = |Q|−1/2(1Q+

α
− 1Q−α ) for suitable subsets Q±α ⊆ Q with

|Q±α | = 1
2 |Q|. If Q 6= φ(Q), we see that

d+
Q :=

1

2
(hαQ + hγφ(Q)) =

1

2
|Q|−1/2(1Q+

α∪φ(Q)+γ
− 1Q−α∪φ(Q)−γ

),

d−Q :=
1

2
(hαQ − h

γ
φ(Q)) =

1

2
|Q|−1/2(1Q+

α∪φ(Q)−γ
− 1Q−α∪φ(Q)+γ

)

form a martingale difference sequence (in either order) on Q ∪ φ(Q), since
either function has average zero on the sets where the other one is constant.
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If Q = φ(Q) but α 6= γ, then each of the sets Q±α ∩Q±γ has measure 1
4 |Q|,

and once again

d+
Q :=

1

2
(hαQ + hγQ) = |Q|−1/2(1Q+

α∩Q+
γ
− 1Q−α∩Q−γ ),

d−Q :=
1

2
(hαQ − h

γ
Q) = |Q|−1/2(1Q+

α∩Q−γ − 1Q−α∩Q+
γ

)

form a martingale difference sequence (in either order) on Q∪φ(Q) = Q, since
either function has average zero on the sets where the other one is constant.

Finally, if Q = φ(Q) and α = γ, then the same definition gives d+
Q = hαQ,

d−Q = 0, which is also a (rather trivial) martingale difference sequence.

The conclusion of Lemma 12.1.20, that each {Q ∪ φ(Q) : Q ∈ Fλ
i } is

strongly nested, guarantees that the whole collection {d+
Q, d

−
Q}Q∈Fλ

i
can be

organised into a martingale difference sequence. Hence∥∥∥ ∑
Q∈Fλ

i

λQxQh
γ
φ(Q)

∥∥∥
Lp(Rd;Y )

=
∥∥∥ ∑
Q∈Fλ

i

λQxQ(d+
Q − d

−
Q)
∥∥∥
Lp(Rd;Y )

6 βp,Y
∥∥∥ ∑
Q∈Fλ

i

εQλQxQ(d+
Q + d−Q)

∥∥∥
Lp(Ω×Rd;Y )

= βp,Y

∥∥∥ ∑
Q∈Fλ

i

εQλQxQh
α
Q

∥∥∥
Lp(Ω×Rd;Y )

,

(12.17)

where we used the definition of UMD with signs ±εQ multiplying the mar-
tingale differences d±Q, followed by taking an average over the εQ. (It might

appear at first glance that we could have used just the one-sided UMD− prop-
erty to arrive at the same conclusion with the smaller constant β−p,Y , but this

is not the case: an application of the one-sided UMD− property would give us
independent random signs, say ε±Q, in front of each d±Q, and this is not what
we want.)

For zQ ∈ {xQ, λQxQ} and Z ∈ {X,Y } we then have∑
i

∥∥∥ ∑
Q∈Fλ

i

εQzQh
α
Q

∥∥∥
Lp(Ω×Rd;Z)

6 (3(n+ 1))1/q′
(∑

i

∥∥∥ ∑
Q∈Fλ

i

εQzQh
α
Q

∥∥∥q
Lp(Ω×Rd;Z)

)1/q

6 (3(n+ 1))1/q′cq,Z;p

∥∥∥∑
i

ε′i
∑
Q∈Fλ

i

εQzQh
α
Q

∥∥∥
Lp(Ω×Rd;Z)

= (3(n+ 1))1/q′cq,Z;p

∥∥∥ ∑
Q∈Fλ

εQzQh
α
Q

∥∥∥
Lp(Ω×Rd;Z)

,

(12.18)
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using in the last step the fact that the Fλ =
⋃
i F

λ
i is a disjoint partition, so

the independent random signs εQ with Q ∈ Fλ do not “see” the multiplying
signs ε′i. Hence, pulling out the λQ either at the beginning or at the end of
(12.18) (but in any case only after having replaced the translated hγφ(Q) by

hαQ in (12.17), which in contrast to what happened in the previous case of the
proof), we obtain∥∥∥ ∑

Q∈F

λQxQh
γ
φ(Q)

∥∥∥
Lp(Rd;Y )

6 βp,Y
∑
i

∥∥∥ ∑
Q∈Fλ

i

εQλQxQh
α
Q

∥∥∥
Lp(Rd;Y )

6 βp,Y E Rp(λ)(3(n+ 1))1/q′ min{cq,X;p, cq,Y ;p}
∥∥∥ ∑
Q∈Fλ

εQxQh
α
Q

∥∥∥
Lp(Rd;X)

.

Finally, recalling that xQ = 〈f, hαQ〉 and using the contraction principle to

replace Fλ ⊆ F by the finite set F = {Q ∈ D : 〈f, hαQ〉 6= 0}, we obtain from
Proposition 12.1.5 that∥∥∥ ∑

Q∈Fλ

εQxQh
α
Q

∥∥∥
Lp(Rd;X)

6
∥∥∥ ∑
Q∈D

εQxQh
α
Q

∥∥∥
Lp(Rd;X)

6 β+
p,X‖f‖Lp(Rd;X),

which concludes the estimate.

The representation (3): Let first F ⊆ D be finite. For suitable ηQ ∈ K with
|ηQ| = 1, we have∑

Q∈F

∣∣∣〈λQ〈f, hαQ〉, 〈g, hγφ(Q)〉
〉∣∣∣ =

〈 ∑
Q∈F

ηQλQ〈f, hαQ〉h
γ
φ(Q), g

〉
= 〈Tαγηλ,φPFf, g〉,

where (ηλ)(Q) := ηQλQ, and

PFf :=
∑
Q∈F

θ∈{0,1}d\{0}

〈f, hθQ〉hθQ ∈ S00(D ;X)

is a Haar projection of f ; the action of Tαγηλ,φ is thus well-defined via the initial
definition on this space. From the previous part of the theorem that we already
proved, we have∑

Q∈F

∣∣∣〈λQ〈f, hαQ〉, 〈g, hγφ(Q)〉
〉∣∣∣

6 ‖Tαγηλ,φ‖L (Lp(Rd;X),Lp(Rd;Y ))‖PFf‖Lp(Rd;X)‖g‖Lp(Rd;Y ∗).

We now apply this estimate with the increasing sequence of finite sets

FN := {Q ∈ D : 2−N < `(Q) 6 2N , dist∞(Q, 0) 6 2N},
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whose union is

∞⋃
N=1

FN = D . The corresponding projection can be expressed

as
PFN

f = 1FN (EN − E−N )f, FN :=
⋃

Q∈D−N
dist∞(Q,0)62N

Q,

and this is seen to satisfy ‖PFN
f‖Lp(Rd;X) 6 2‖f‖Lp(Rd;X) and PFN

→ f in

Lp(Rd;X) as N →∞. Thus∑
Q∈D

∣∣∣〈λQ〈f, hαQ〉, 〈g, hγφ(Q)〉
〉∣∣∣

= lim
N→∞

∑
Q∈FN

∣∣∣〈λQ〈f, hαQ〉, 〈g, hγφ(Q)〉
〉∣∣∣

6 ‖Tαγηλ,φ‖L (Lp(Rd;X),Lp(Rd;Y )) lim
N→∞

‖PFf‖Lp(Rd;X)‖g‖Lp(Rd;Y ∗)

= ‖Tαγηλ,φ‖L (Lp(Rd;X),Lp(Rd;Y ))‖f‖Lp(Rd;X)‖g‖Lp(Rd;Y ∗),

where Tαγηλ,φ has the same norm estimate as Tαγλ,φ, since

E Rp(ηλ) = E Rp(λ), E Rp((ηλ)φ−1) = E Rp(λφ−1)

by the contraction principle.
Thus we have shown the claimed absolute convergence, and hence the

bilinear form
tαγλφ(f, g) :=

∑
Q∈D

〈λQ〈f, hαQ〉, 〈g, h
γ
Q〉〉

is well-defined and bounded from Lp(Rd;X)×Lp(Rd;Y ) to K. So is the bilinear
form 〈Tαγλφ f, g〉, where Tαγλφ denotes the bounded extension of the operator
initially defined on S00(D ;X). Moreover, these bilinear forms clearly coincide
when f ∈ S00(D ;X) and g ∈ S00(D ;Y ∗). By density, they must coincide for
all f and g, and the proof is complete. �

The second class of operators that we deal with in this section have the addi-
tional twist of “tearing apart” the supports of Haar functions. The relevance
of this feature will be justified in the appearance of this type of operators in
the proof of the T (1) theorem further below.

Theorem 12.1.28 (Figiel). Let φ : D → D be an injection with `(φ(Q)) =
`(Q) and φ(Q) ⊆ 3Q(n) for some n ∈ N. Let X and Y be a UMD spaces and
p ∈ (1,∞). Let λ = (λQ)Q∈D ⊆ L (X,Y ), and consider the mapping

Uγφλ : f 7→
∑
Q∈D

λQ〈f, hγQ〉(h
0
φ(Q) − h

0
Q), (12.19)

initially from S00(D ;X) to S0(D ;Y ). Let Bd := 5200 · (81)d.
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(0) If λ ⊆ L (X,Y ) is R-bounded, or more generally if E Rp(λ) < ∞, then
Uγφλ extends boundedly from Lp(Rd;X) to Lp(Rd;Y ) with norm

‖Uγφ‖ := ‖Uγφ‖L (Lp(Rd;X),Lp(Rd;Y ))

6 Bd · (n+ 1) · β−p,Y · β
+
p,X ·min{β+

p,XRp(λ), β+
p,Y E Rp(λ)}.

(1) If, in addition, X or Y has cotype q ∈ [p,∞], then we also have

‖Uγφ‖ 6 Bd(n+ 1)1−1/qβ−p,Y β
+
p,X

{
C(X,Y, p, q) ·Rp(λ),

β+
p,Y ·min{cq,X;p, cq,Y ;p} · E Rp(λ),

where

C(X,Y, p, q) := min
{
β+
p,Xcq,X;p, β+

p,Y cq,X;p, β+
p,Y cq,Y ;p

}
= C(12.15)(X,Y, p, q, 1).

(12.20)

(2) If, in addition, we have λQ 6= 0 only when φ(Q) ⊆ Q(n), then we have the
alternative norm estimate

‖Uγφ‖ 6 6 · (n+ 1)1−1/q · βp,Y · β+
p,X ·min{cq,X;p, cq,Y ;p} · E Rp(λ).

(3) For all f ∈ Lp(Rd;X) and g ∈ Lp′(Rd;Y ∗), the extended operator has the
absolutely convergent representation

〈Uγφλf, g〉 =
∑
Q∈D

〈
λQ〈f, hγQ〉, 〈g, h

0
φ(Q) − h

0
Q〉
〉
.

When ‖f‖Lp(Rd;X) 6 1 and ‖g‖Lp′ (Rd;Y ∗) 6 1, the corresponding absolute
value series is dominated by the same upper bounds as those given for
‖Uγφλ‖L (Lp(Rd;X),Lp(Rd;Y )) above.

Remark 12.1.29. We have observations analogous to Remark 12.1.26:

(1) When X = Y , we have C(X,X, p, q) = β+
p,Xcq,X;p.

(2) Case (0) of Theorem 12.1.28 is a special case of (1) using the cotype
exponent q = ∞ with corresponding constant equal to one. The role of
finite cotype is to relax the dependence on the parameter n. As in Theorem
12.1.25(2), the main point of the alternative bound (2) to improve the
cubic dependence on the UMD constants to a quadratic one; in contrast to
the situation in Theorem 12.1.25(2), when X = Y , the present alternative
bound (2) is a strict improvement of (1), in view of the fact that βp,X 6
β−p,Xβ

+
p,X (Proposition 4.2.3).

(3) Recalling the Haar multipliers Hαγλ from Theorem 12.1.11, one can check
that, for any θ ∈ {0, 1}d \ {0},

Uγφλ = Uθφ1 ◦ H
γθ
λ ,
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where 1 is the constant sequence of all ones. Hence, for the qualitative
conclusion of Theorem 12.1.28, it would suffice to consider just X = Y
and λ = 1, and then combine this special case with Theorem 12.1.11;
however, the reader will quickly realise that this approach would produce
a higher power of the UMD constants in the quantitative conclusion.

(4) In contrast to Theorem 12.1.25, our proof of Theorem 12.1.28 does not
allow replacing the assumptions on λ by E Rp(λφ−1) < ∞. The related
issue of when in the argument, and under what assumptions, we may pull
out the coefficients λQ, is shortly discussed inside the proof.

Proof of Theorem 12.1.28. Claim (0) is the special case q = ∞ of (1), so it
suffices to consider the latter of these two claims. Let F ⊆ D be finite. An
additional challenge compared to the proof of Theorem 12.1.25 is that, unlike
the Haar functions hαφ(Q), the functions h0

φ(Q) − h
0
Q do not necessarily form a

martingale difference sequence, preventing a straightforward introduction of
the random signs in the initial step. Instead, a decomposition of F is necessary
from the beginning.

Let us denote by F k = {Q ∈ F : log2 `(Q) ≡ k mod (n + 1)} the
scale-separated subcollections of F as in Remark 12.1.24. Then F k and φ
satisfy the assumptions of both Lemmas 12.1.22 and 12.1.23. Let us denote
the decomposing subcollections of Fk provided by Lemma 12.1.22 by A k

a and
those provided by Lemma 12.1.23 by Bk

b , let F k
i = A k

a ∩Bk
b for i = (a, b),

and let Fi consists of an enumeration of all these F k
i . The total number of

these Fi is then 144 · 33d+1 · (n+ 1), and they satisfy the conclusions of both
Lemmas 12.1.22 and 12.1.23.

We first make use of Lemma 12.1.22. For Q ∈ Fi, we have

h0
φ(Q) − h

0
Q = h0

φi,3(Q) − h
0
φi,0(Q) =

2∑
j=0

(h0
φi,j+1(Q) − h

0
φi,j(Q)),

where each collection {φi,j(Q) ∪ φi,j+1(Q) : Q ∈ Fi} is strongly nested. But
this implies that each

(h0
φi,j+1(Q) − h

0
φi,j(Q))Q∈Fi

is (or can be enumerated as) a martingale difference sequence. Note that here
it is important that a smaller union φi,j+1(Q)∪φi,j(Q) is not just contained in
a larger φi,j+1(R)∪φi,j(R), but entirely in (a dyadic child of) one of φi,j+1(R)
or φi,j(R), where the function h0

φi,j+1(R) − h
0
φi,j(R) is constant.

Using this martingale difference property, we can then proceed as in the
proof of Theorem 12.1.25. Let us abbreviate xQ := 〈f, hγQ〉 ∈ X and yQ :=
λQxQ ∈ Y .
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Q∈F

yQ(h0
φ(Q) − h

0
Q)
∥∥∥
Lp(Rd;Y )

6
2∑
j=0

∑
i

∥∥∥ ∑
Q∈Fi

yQ(h0
φi,j+1(Q) − h

0
φi,j(Q))

∥∥∥
Lp(Rd;Y )

6
2∑
j=0

∑
i

β−p,Y

∥∥∥ ∑
Q∈Fi

εQyQ(h0
φi,j+1(Q) − h

0
φi,j(Q))

∥∥∥
Lp(Ω×Rd;Y )

6 β−p,Y

3∑
j=0

αj
∑
i

∥∥∥ ∑
Q∈Fi

εQyQh
0
φi,j(Q)

∥∥∥
Lp(Ω×Rd;Y )

,

{
α0 = α3 = 1,

α1 = α2 = 2,

where the first and the last steps were simply triangle inequalities.
As in the proof of Theorem 12.1.25, we have some flexibility on when to

pull out the coefficients λQ, and we again proceed with a generic choice of
zQ ∈ Z for either yQ ∈ Y or xQ ∈ X. The norm to be estimated has exactly
the same form as what we estimated (12.16) in the proof of Theorem 12.1.25
(using Lemma 12.1.23 in this step), and we can there read the bound∥∥∥ ∑

Q∈Fi

εQzQh
0
φi,j(Q)

∥∥∥
Lp(Ω×Rd;Z)

6 2 · 3d · β+
p,Z

∥∥∥ ∑
Q∈Fi

εQzQh
0
Q

∥∥∥
Lp(Ω×Rd;Z)

.
(12.21)

By Hölder’s inequality, we have∑
i

∥∥∥ ∑
Q∈Fi

εQzQh
0
Q

∥∥∥
Lp(Ω×Rd;Z)

6
(
144 · 33d+1 · (n+ 1)

)1/q′(∑
i

∥∥∥ ∑
Q∈Fi

εQzQh
0
Q

∥∥∥q
Lp(Ω×Rd;Z)

)1/q

.

Invoking cotype q of Z, and recalling that this implies cotype q of Lp(S;Z)
(here: S = Ω × Rd) with constant cq,Lp(S;Z);p 6 cq,Z;p when q ∈ [p,∞] by
Proposition 7.1.4, we continue with(∑

i

∥∥∥ ∑
Q∈Fi

εQzQh
0
Q

∥∥∥q
Lp(Ω×Rd;Z)

)1/q

6 cq,Lp(Z);p

∥∥∥∑
i

ε′i
∑
Q∈Fi

εQzQh
0
Q

∥∥∥
Lp(Ω′×Ω×Rd;Z)

= cq,Lp(Z);p

∥∥∥ ∑
Q∈F

εQzQh
γ
Q

∥∥∥
Lp(Ω×Rd;Z)

.

It is no later than here that we should to pull out the coefficients λQ, after
which we are left with the final step, based on Proposition 12.1.5, that
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Q∈F

εQxQh
γ
Q

∥∥∥
Lp(Ω×Rd;X)

6 β+
p,X‖f‖Lp(Rd;X).

Under the assumption of R-boundedness of λ, depending on the moment
of pulling out the coefficients λQ, the constants that we accumulate in the
various steps with the option of estimating in Z ∈ {X,Y } produce, aside

from the numerical factors 2 · 3d and
(
144 · 33d+1 · (n + 1)

)1/q′
, one of the

products

Rp(λ) · β+
p,X · cq,X;p,

β+
p,Y ·Rp(λ) · cq,X;p,

β+
p,Y · cq,Y ;p ·Rp(λ).

In the latter two versions, i.e., pulling out the λQ only after making the step
(12.21) with Z = Y , we might as well replace Rp(λ) by E Rp(λ), thus leading
to the possible upper bounds

β+
p,Y · E Rp(λ) · cq,X;p,

β+
p,Y · cq,Y ;p · E Rp(λ).

(On the other hand, if we wanted to pull out the λQ before step (12.21), and
thus apply (12.21) with Z = X, the coefficient λQ would be multiplying a
Haar function h0

φi,j(Q); this would lead to a constant of the type E Rp(λφ−1
i,j

),

where φi,j need not be the original φ from the assumptions of the theorem, but
one of the auxiliary mappings produced by Lemma 12.1.22. This would lead
to an unreasonably technical formulation of probably little practical value,
which is why we have not included the resulting alternative upper bound in
the statement of the theorem.)

Altogether, choosing the best of the possible alternative estimates, we
arrive at ∥∥∥ ∑

Q∈F

xQ(h0
φ(Q) − h

0
Q)
∥∥∥
Lp(Rd;X)

‖f‖−1
Lp(Rd;X)

6 β−p,X

3∑
j=0

αj(2 · 3d)(144 · 33d+1 · (n+ 1)
)1/q′

β+
p,X×

×

{
C(X,Y, p, q)Rp(λ),

β+
p,Y min{cq,X;p, cq,Y ;p}E Rp(λ),

where C(X,Y, p, q) is as in the statement of the Theorem, and
∑3
j=0 αj =

1 + 2 + 2 + 1 = 6.

The alternative estimate (2): As in the previous proof of Theorem 12.1.25(2),
we construct some auxiliary martingale differences. The initial considerations
are identical:
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Let again F be a finite collection of dyadic cubes, and Fλ := {Q ∈ F :
λQ 6= 0}. Then Fλ and φ satisfy the assumptions of Lemma 12.1.20, except
possibly the scale separation (c). By Remark 12.1.24, the lemma still applies
to produce 3(n + 1) subcollections Fλ

i ⊆ Fλ with the properties given in
Lemma 12.1.20. Let us write xQ = 〈f, hαQ〉. In the first step, we simply use
the triangle inequality:∥∥∥ ∑
Q∈F

λQxQ(h0
φ(Q) − h

0
Q)
∥∥∥
Lp(Rd;Y )

6
∑
i

∥∥∥ ∑
Q∈Fλ

i

λQxQ(h0
φ(Q) − h

0
Q)
∥∥∥
Lp(Rd;Y )

.

The slight symmetry break between hαQ and h0
φ(Q) − h

0
Q is also reflected

in the construction of the auxiliary martingale differences. As in the proof of
Theorem 12.1.25(2), we denote Q±α := Q ∩ {sgn(hαQ) = ±1}. If φ(Q) 6= Q, we
choose

d1
Q :=

1

3
|Q|−1/2(1φ(Q)∪Q+

α
− 3 · 1Q−α ),

d2
Q :=

1

3
|Q|−1/2(−1φ(Q) + 2 · 1Q+

α
),

where d2
Q has average zero on the sets where d1

Q is constant; note that, unlike
in the proof of Theorem 12.1.25(2), the order matters now. Moreover, we can
recover the original functions by

d1
Q + d2

Q =
1

3
|Q|−1/2

(
(1− 1)1φ(Q) + (1 + 2)1Q+

α
− 3 · 1Q−α

)
= hαQ,

d1
Q − 2d2

Q =
1

3
|Q|−1/2

(
(1 + 2)1φ(Q)) + (1− 4)1Q+

α
− 3 · 1Q−α

)
= h0

φ(Q) − h
0
Q.

If φ(Q) = Q, then h0
φ(Q) − h0

Q = 0, and we can simply set d1
Q := hαQ and

d2
Q = 0, and the original functions are recovered by

hαQ = d1
Q = d1

Q + d2
Q, h0

φ(Q) − h
0
Q = 0 = 0 · d1

Q − 2d2
Q.

The conclusion of Lemma 12.1.20, that {Q ∪ φ(Q) : Q ∈ Fλ
i } is strongly

nested, ensures that the full collection {d1
Q, d

2
Q}Q∈Fλ

i
, appropriately enumer-

ated, is a martingale difference sequence. Hence∥∥∥ ∑
Q∈Fλ

i

λQxQ(h0
φ(Q) − h

0
Q)
∥∥∥
Lp(Rd;Y )

=
∥∥∥ ∑
Q∈Fλ

i

λQxQ
(
(1− δQ,φ(Q))d

+
Q − 2 · d−Q

)∥∥∥
Lp(Rd;Y )

6 2βp,Y

∥∥∥ ∑
Q∈Fλ

i

εQλQxQ(d+
Q + d−Q)

∥∥∥
Lp(Ω×Rd;Y )

= 2βp,Y

∥∥∥ ∑
Q∈Fλ

i

εQλQxQh
α
Q

∥∥∥
Lp(Ω×Rd;Y )

(12.22)
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as an application of the definition of UMD via martingale transforms with a
multiplying sequences of numbers {0, 1,−2} × εQ, and averaging over inde-
pendent random εQ.

Except for the factor 2, the right side of (12.22) coincides with the right
side of (12.17) from the proof of Theorem 12.1.25(2). Hence the rest of the
estimate can be concluded by repeating the said proof verbatim.

The representation (3): This is proved in the same way as the corresponding
part of Theorem 12.1.25. �

12.2 Paraproducts

The notion of paraproducts arises from a number of considerations. Here we
choose a point of departure that also motivates their name: they are objects
that arise from a decomposition of the ordinary pointwise product of functions.
While paraproducts certainly look more complicated than the regular product,
it turns out that in certain respects they actually behave better. Another
motivation is the key role that these objects play in the T (1) theorem in
Section 12.3. Some further connections will be discussed in the Notes.

Proposition 12.2.1. Let b ∈ L1
loc(Rd; L (X,Y )), where X and Y are Banach

spaces, and let f ∈ S00(D ;X). Then

bf =
∑

α,γ∈{0,1}d\{0}

Hαγb f +Πbf +Π∗b f, (12.23)

where Hαγb are Haar multipliers of the form

Hαγb f :=
∑
Q∈D

〈sgn(hαQh
γ
Q)b〉Q〈f, hαQ〉h

γ
Q,

and the remaining terms are the paraproducts

Πbf :=
∑
Q∈D

α∈{0,1}d\{0}

〈b, hαQ〉〈f〉QhαQ,

Π∗b f :=
∑
Q∈D

α∈{0,1}d\{0}

〈b, hαQ〉〈f, hαQ〉
1Q
|Q|

,

where the series of Π∗b f is finitely non-zero, and the non-zero terms in Πbf
are attached to cubes contained in finitely many maximal ones, and the series
converges (at least) conditionally along any decreasing order of the dyadic
cubes contained in these maximal ones.
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The notation Π∗b is motivated by the easily verified duality relation

〈Π∗b f, g〉 = 〈f,Πb∗g〉, f ∈ S00(D ;X), g ∈ S00(D ;Y ),

where b∗ ∈ L∞(Rd; L (Y ∗, X∗)) is the pointwise adjoint of b.

Remark 12.2.2. The diagonal α = γ of the sum in (12.23) is∑
α∈{0,1}d\{0}

Hααb f =
∑
Q∈D

α∈{0,1}d\{0}

〈b〉Q〈f, hαQ〉hαQ

This has formally the same structure as Πbf , but with the roles of b and f
reversed, and hence (12.23) could be also written in the form

bf =
∑

α,γ∈{0,1}d\{0}
α 6=γ

Hαγb f +Πfb+Πbf +Π∗b f,

where the summation is empty in dimension d = 1 (since there is only one
possible value of α ∈ {0, 1}\{0}). It is also evident that Π∗b f is symmetric in b
and f , and hence a more symmetric notation could also be preferred. However,
we shall not pursue this point of view any further, since the roles played by
the two functions b and f will be quite different in our main applications, so
that such symmetries would be only misleading.

Proof of Proposition 12.2.1. It suffices to prove this for f = x⊗ hθR. Then

bf = (b− 〈b〉R)f + 〈b〉Rf =
∑
Q⊆R

α∈{0,1}d\{0}

〈b, hαQ〉x⊗ hαQhθR + 〈b〉Rx⊗ hθR,

where the series converges (at least) conditionally along any decreasing order
of the dyadic cubes Q ⊆ R, by the Martingale Converge Theorem 3.3.2, since
this is a martingale difference expansion of the function 1R(b − 〈b〉R)x ∈
L1(Rd;Y ).

We observe that

hαQh
θ
R = hαQ〈hθR〉Q ∀Q ( R,

whereas

hθRh
θ
R =

1R
|R|

, hαRh
θ
R

hα+θ
R

|R|1/2
, ∀α 6= θ,

where we use modulo 2 addition in {0, 1}d. Hence∑
Q(R

α∈{0,1}d\{0}

〈b, hαQ〉x⊗ hαQhθR =
∑
Q∈D

α∈{0,1}d\{0}

〈b, hαQ〉〈f〉Q ⊗ hαQ = Πbf,
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observing that 〈f〉Q = 〈hθR〉Qx = 0 unless Q ( R. Moreover,∑
α∈{0,1}d\{0}

〈b, hαR〉x⊗ hαRhθR + 〈b〉Rx⊗ hθR

=
(
〈b, hθR〉x⊗

1R
|R|

+
∑

α∈{0,1}d\{0,θ}

〈b, hαR〉x⊗
hα+θ
R

|R|1/2
)

+
〈b, h0

R〉
|R|1/2

x⊗ hθR

= 〈b, hθR〉x⊗
1R
|R|

+
∑

α∈{0,1}d\{θ}

〈b, hαR〉x⊗
hα+θ
R

|R|1/2
.

Using the orthogonality of the Haar functions, we see that

〈b, hθR〉x⊗
1R
|R|

=
∑
Q∈D

α∈{0,1}d\{0}

〈b, hαQ〉〈f, hαQ〉 ⊗
1Q
|Q|

= Π∗b f.

Finally, with the change of variable γ := α+ θ

∑
α∈{0,1}d\{θ}

〈b, hαR〉x⊗
hα+θ
R

|R|1/2
=

∑
γ∈{0,1}d\{0}

〈b, hγ+θ
R 〉x⊗

hγR
|R|1/2

=
∑

γ∈{0,1}d\{0}

〈b sgn(hγRh
θ
R)〉Rx⊗ hγR =

∑
γ∈{0,1}d\{0}

〈aθγR b〉Rx⊗ h
γ
R

=
∑

α,γ∈{0,1}d\{0}

∑
Q∈D

〈aαγQ b〉Q〈f, hαQ〉 ⊗ h
γ
Q =

∑
α,γ∈{0,1}d\{0}

Hαγb f,

again by the orthogonality of the Haar functions in the penultimate step. �

Proposition 12.2.3. Let X and Y be UMD spaces and p ∈ (1,∞). Let
b ∈ L∞(Rd; L (X,Y )). Then Λb := Πb + Π∗b , initially defined on S00(D ;X),
extends to a bounded operator from Lp(Rd;X) to Lp(Rd;Y ) of norm

‖Λb‖L (Lp(Rd;X),Lp(Rd;Y )) 6
(

1 + (2d − 1)2β−p,Y β
+
p,Y β

+
p,X

)
‖b‖L∞(Rd;L (X,Y )),

and we have the identity

bf =
∑

α,γ∈{0,1}d\{0}

Hαγb f + Λbf ∀ f ∈ Lp(Rd;X).

We will obtain a far better estimate in Theorem 12.2.25, but it seems worth-
while recording this relatively simple bound as an illustration of the techniques
that we have developed thus far.

Proof of Proposition 12.2.3. It is clear that pointwise multiplication by b ∈
L∞(Rd; L (X,Y )) defines a bounded operator from Lp(Rd;X) to Lp(Rd;Y ),
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for any Banach spaces X,Y and all p ∈ [1,∞]. Moreover, the Haar multi-
plier Hαγb featuring in Proposition 12.2.3 have exactly the form considered in
Proposition 12.1.13, and hence

‖Hαγb f‖Lp(Rd;Y ) 6 β
−
p,Y β

+
p,Y β

+
p,X‖b‖L∞(Rd;L (X,Y ))‖f‖Lp(Rd;X).

By triangle inequality, it then follows from (12.23) that

‖Λbf‖Lp(Rd;Y ) 6 ‖bf‖Lp(Rd;Y ) +
∑

α,γ∈{0,1}d\{0}

‖Hαγb f‖Lp(Rd;Y )

6 ‖b‖L∞(Rd;L (X,Y ))

(
1 + (2d − 1)2β−p,Y β

+
p,Y β

+
p,X

)
‖f‖Lp(Rd;X)

for all f ∈ S00(D ;X), and hence Λb extends to a bounded operator from
Lp(Rd;X) to Lp(Rd;Y )) with the asserted norm estimate. Since the claimed
identity holds (by Proposition 12.2.1) for all f ∈ S00(D ;X), and each term is
continuous with respect to the Lp(Rd;X) norm of f (as we just showed), it is
immediate that this identity extends to all f ∈ Lp(Rd;X). �

As we shall see later, the operator Λb is not only as good as, but actually better
than the pointwise product f 7→ bf , in the sense that it remains a bounded
operator for a broader class of functions b than just the bounded ones. As
the reader will have guessed from the introduced notation, we will also be
interested in the mapping properties of the individual paraproducts Πb and
Π∗b .

While the paraproduct Πb arouse from our analysis of the pointwise prod-
uct with a multiplier b, in other considerations we will encounter similar series

Πf =
∑
Q∈D

α∈{0,1}d\{0}

παQ〈f〉Q ⊗ hαQ

with some coefficient παQ replacing the Haar coefficients 〈b, hαQ〉 of a function
b above. Formally, we always have παQ = 〈b, hαQ〉 by choosing

“ b := Π(1) =
∑
Q∈D

α∈{0,1}d\{0}

παQ ⊗ hαQ ”,

but giving a precise meaning for this series requires non-trivial considerations
in general, and it is hence useful not to insist in the a priori existence of
function b generating the coefficients in this way.

12.2.a Necessary conditions for boundedness

As we already saw in the analysis of the pointwise product bf , and we will
see again in the T (1) theorem below, paraproducts frequently appear in pairs
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of the form Π1 + Π∗2 , where Π1 is a paraproduct as in the previous section,
and Π∗2 is the formal adjoint of another paraproduct. In other words, we are
concerned with the operator

Λf :=
∑
Q∈D

α∈{0,1}d\{0}

(
π1,α
Q 〈f〉Qh

α
Q + π2,α

Q 〈f, h
α
Q〉

1Q
|Q|

)
. (12.24)

Of course this covers both Π1 and Π∗2 as special cases, by simply setting some
of the coefficients πi,αQ equal to zero.

Compared to the operator Λb featuring in Proposition 12.2.3, we now allow
possibly different coefficients π1,α

Q and π2,α
Q in the first and second term above,

as this will be relevant in the T (1) theorem. Via the duality relations

〈Λf, g〉 = 〈f, Λ∗g〉 = L(f, g), f ∈ S00(D ;X), g ∈ S00(D ;Y ∗),

we define the formal adjoint

Λ∗g :=
∑
Q∈D

α∈{0,1}d\{0}

(
(π1,α
Q )∗〈g, hαQ〉

1Q
|Q|

+ (π2,α
Q )∗〈g〉QhαQ

)
(12.25)

which has exactly the same form as Λ, only with different coefficients, and the
associated bilinear form

L(f, g) :=
∑
Q∈D

α∈{0,1}d\{0}

(〈
π1,α
Q 〈f〉Q, 〈h

α
Q, g〉

〉
+
〈
π2,α
Q 〈f, h

α
Q〉, 〈g〉Q

〉)
. (12.26)

Lemma 12.2.4. The series (12.26) is finitely non-zero whenever

(f, g) ∈
(
S00(D ;X)× S(D ;Y ∗)

)
∪
(
S(D ;X)× S00(D ;Y ∗)

)
.

In particular, we have

L(x⊗ 1R, y
∗ ⊗ hβR) = 〈π1,β

R x, y∗〉, L(x⊗ hβR, y
∗ ⊗ 1R) = 〈π2,β

R x, y∗〉

for all x ∈ X, y∗ ∈ Y ∗, R ∈ D and β ∈ {0, 1}d \ {0}.

Proof. By symmetry, it is enough to consider (f, g) ∈ S00(D ;X)× S(D ;Y ∗).
We may further assume that

f = x⊗ hβP , g = y∗ ⊗ 1R

for some x ∈ X, y∗ ∈ Y ∗, P,R ∈ D and β ∈ {0, 1}d \ {0}, since general f and
g are finite linear combinations of such functions.

For such f and g, the (Q,α) term in (12.26), is given by

〈π1,αx, y∗〉〈hβP 〉Q〈h
α
Q,1R〉+ 〈π2,αx, y∗〉〈hβP , h

α
Q〉〈1R〉Q,
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where 〈hβP 〉Q 6= 0 only if Q ( P , while 〈hαQ,1R〉 6= 0 only if R ( Q; finally,

〈hβP , hαQ〉 6= δP,Qδα,β . Thus

L(x⊗ 1P , y
∗ ⊗ hβR) :=

∑
Q∈D

R(Q(P
α∈{0,1}d\{0}

〈π1,α
Q x, y∗〉〈hβP 〉Q〈h

α
Q,1R〉+ 〈π2,β

P x, y∗〉〈1R〉P ,

which is clearly a finite sum. When P = R, the sum above is void, and we get

L(x⊗ 1R, y
∗ ⊗ hβR) = 〈π2,β

R x, y∗〉.

The other case follows by symmetry. �

Although our main concern is Lp boundedness, we formulate the following
lemma slightly more generally, since the additional generality comes essentially
for free.

Lemma 12.2.5. Let p, q ∈ [1,∞). A necessary condition for L to satisfy

|L(f, g)| 6 C‖f‖Lp(Rd;X)‖g‖Lq′ (Rd;Y ∗),

uniformly for all (f, g) of the form (x⊗ 1Q, y
∗ ⊗ hαQ) and (x⊗ hαQ, y∗ ⊗ 1Q),

is that

‖πi,αQ ‖L (X,Y ) 6 C|Q|γ , γ :=
1

p
− 1

q
+

1

2
<

3

2
. (12.27)

On the other hand, assuming the coefficient bound (12.27), the defining series
(12.26) of L(f, g) converges absolutely for all

(f, g) ∈ S(D ;X)× S(D ;Y ∗)

Proof. We have

|〈π1,α
Q x, y∗〉| = |L(x⊗ 1Q, y

∗ ⊗ hαQ)|
6 C‖x⊗ 1Q‖Lp(Rd;X)‖y∗ ⊗ hαQ‖Lq′ (Rd;Y ∗)

= C‖x‖X |Q|1/p‖y∗‖Y ∗ |Q|1/q
′−1/2

= C‖x‖X‖y∗‖Y ∗ |Q|1/p−1/q+1/2

and taking the supremum over ‖y∗‖Y ∗ 6 1 and ‖x‖X 6 1 proves the estimate
for i = 1. The case i = 2 is entirely symmetric. Finally, note that 1/p, 1/q ∈
(0, 1] so that 1/p− 1/q < 1.

To prove the convergence, it is enough to consider f = x⊗1P , g = y∗⊗1R,
and moreover, by symmetry, just the first half of L (f, g) with coefficients π1,α

Q .
Now

|〈π1,α
Q 〈f〉Q, 〈g, h

α
Q〉〉| = |〈π

1,α
Q x, y∗〉|〈1P 〉Q|〈1R, hαQ〉|,
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where

|〈π1,α
Q x, y∗〉| 6 C|Q|γ‖x‖X‖y∗‖Y ∗ , 〈1P 〉Q 6

|P |
|Q|

, |〈1R, hαQ〉| 6
|R|
|Q|1/2

,

and moreover the last pairing is non-zero only if Q ) R. Hence the absolute
convergence of the series follows from the convergence of

∑
Q∈D
Q)R

|Q|γ−3/2 = |R|γ−3/2
∞∑
k=1

2kd(γ−3/2) <∞,

since this is as a geometric series with γ − 3/2 < 0. �

Lemma 12.2.6. Suppose that the series defining Λf converges (even just con-
ditionally) in Lp(Rd;Y ) for some f = 1R⊗x, where R ∈ D and x ∈ X. Then

(1R − ER)Λ(1R ⊗ x) =
∑
Q⊆R

α∈{0,1}d\{0}

π1,α
Q x⊗ hαQ

Proof. We have

1R

(
π1,α
Q 〈1R ⊗ x〉Qh

α
Q + π2,α

Q 〈1R ⊗ x, h
α
Q〉

1Q
|Q|

)
=

{
π1,α
Q x⊗ hαQ + 0, Q ⊆ R,
yαQ,R ⊗ 1R, Q 6⊆ R,

for some yαQ,R ∈ Y , which is not difficult to find explicitly, but it is irrelevant

for the present purposes. The assumed convergence in Lp(Rd;Y ), and the
boundedness of the conditional expectation ER and the pointwise multiplier
1R on Lp(Rd;Y ) guarantee that we can move (1R − ER) inside the defining
series. Since ER(yαQ,R ⊗ 1R) = yαQ,R ⊗ 1R, we have

(1R − ER)Λ(1R ⊗ x) =
∑
Q⊆R

α∈{0,1}d\{0}

π1,α
Q x⊗ hαQ,

as claimed. �

Lemma 12.2.7. Let Y be a Banach space, and p ∈ [1,∞). Let yαQ ∈ Y for

all Q ∈ D , α ∈ {0, 1}d \ {0}. For each R ∈ D and n ∈ N, consider the sum

BnR :=
∑
Q⊆R

`(Q)>2−n`(R)

α∈{0,1}d\{0}

yαQ ⊗ hαQ

Suppose that, for every R ∈ D , we have one of the following

(1) BR := limn→∞BnR exists in Lp(Rd;Y ), or
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(2) Y has the Radon–Nikodým property, and supn∈N ‖BnR‖Lp(Rd;Y ) <∞.

Then there exists a function b ∈ Lploc(Rd;Y ) such that

1R(b− 〈b〉R) = BR, 〈b, hαR〉 = yαR, ∀R ∈ D , α ∈ {0, 1}d \ {0}.

If, moreover, the supremum below is finite, then b ∈ BMOD(Rd;Y ) and

sup
Q∈D

α∈{0,1}d\{0}

‖yαQ‖Y
|Q|1/2

6 ‖b‖BMOpD(Rd;Y ) = sup
R∈D

inf
c∈Y

‖BR − c‖Lp(Rd;Y )

|R|1/p
(12.28)

Proof. It is immediate to verify that (BnR)∞n=0 is a martingale in Lp(Rd;Y ).
By the Martingale Convergence Theorem 3.3.16, it follows that (2) implies
(1). Hence it suffices to prove the lemma under assumption (1).

We construct the function b via the correspondence established in Lemma
11.2.11. It is enough to construct b|S separately for each quadrant S ⊆ Rd.
So we fix a quadrant S ⊆ Rd, and let

∆(s, t) :=
∑

Q∈D(S)

α∈{0,1}d\{0}

(hαQ(s)− hαQ(t))yαQ,

where we need to justify the convergence of this series in some sense. We will
prove that it converges in Lploc(S×S;Y ). To this end, note that any bounded
subset of S × S is contained in R × R for some R ∈ D(S). For s, t ∈ R, only
Q ∈ D(S) with Q ∩ R 6= ∅ can contribute to the series; moreover, if Q ) R,
then hαQ is constant on R, and hence hαQ(s)− hαQ(t) = 0 for s, t ∈ R. Thus

(1R×R∆)(s, t) = 1R×R(s, t)
∑

Q∈D(R)

α∈{0,1}d\{0}

(hαQ(s)− hαQ(t))yαQ

= 1R×R(s, t)(BR(s)−BR(t)),

(12.29)

where the (conditional) convergence in Lp(R×R, ds dt;Y ) follows by Fubini’s
theorem from the assumed (conditional) convergence of each BR in Lp(R;Y ).

Now that the convergence of the defining series of ∆(s, t) has been justified,
it is immediate from the defining formula that ∆(s, t) +∆(t, u) = ∆(s, u) for
s, t, u ∈ S. By Lemma 11.2.11, we have the existence of b : S → Y such that
∆(s, t) = b(s)− b(t). substituting this into (12.29), we obtain

b(s)− b(t) = BR(s)−BR(t), for s, t ∈ R,

and hence b(·) = BR(·) + (b(t) − BR(t)) ∈ Lp(R;Y ) ⊆ L1(R;Y ). Taking the
average over t ∈ R, it follows that

b(s)− 〈b〉R = BR(s)− 〈BR〉R = BR(s), for s ∈ R,
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observing that 〈hαQ〉R = 0 for all Q ⊆ R that appear in the series of BR. Then
it also follows that

〈b, hαR〉 = 〈1R(b− 〈b〉R), hαR〉 = 〈BR, hαR〉 = yαR.

This also implies, for any c ∈ Y , that

‖yαQ‖Y
|Q|1/2

=
∥∥∥〈BQ − c, hαQ

|Q|1/2
〉∥∥∥

Y
6
∫
Q

‖BQ − c‖Y
1

|Q|
6
(
−
∫
Q

‖BQ − c‖pY
)1/p

,

and (12.28) follows from the identity BQ = 1Q(b− 〈b〉Q), which implies that

‖b‖BMOpD(Rd;Y ) : = sup
Q∈D

inf
c∈Y
‖1Q(b− c)‖Lp(Q;Y )

= sup
Q∈D

inf
c′∈Y
‖1Q(BQ − c′)‖Lp(Q;Y )

by a simple change of variable. �

Proposition 12.2.8. Let X and Y be Banach spaces and p ∈ (1,∞). Let
πi,αQ ∈ L (X,Y ), and let Λ be defined by the formal series in (12.24).

(1) If, for some x ∈ Xm the series (12.24) defining Λf converges (even just
conditionally) in Lp(Rd;Y ) whenever f = 1R ⊗ x for R ∈ D , and these
satisfy the testing condition

‖1RΛ(1R ⊗ x)‖Lp(Rd;Y ) 6 T x
Λ |R|1/p,

then ‖π1,α
Q x‖Y 6 T x

Λ |Q|1/2 and there is bx1 ∈ BMOD(Rd;Y ) of norm

‖bx1‖BMOpD(Rd;Y ) 6 T x
Λ such that π1,α

Q x = 〈bx1 , hαQ〉.
(2) If, in addition to (1), we have X = Y and π1,α

Q ∈ K, then bx1 = b1 ⊗ x for

some b1 ∈ BMOD(Rd) that is independent of x.
(3) If, for some y∗ ∈ Y ∗, the series (12.25) defining Λ∗g converges (even just

conditionally) in Lp
′
(Rd;Y ∗) whenever g = 1R ⊗ y∗ for R ∈ D , and these

satisfy the testing condition

‖1RΛ∗(1R ⊗ y∗)‖Lp′ (Rd;X∗) 6 T y∗

Λ∗ |R|
1/p′ ,

then ‖(π2,α
Q )∗y∗‖X∗ 6 T y∗

Λ∗ |Q|1/2 and there is by
∗

2 ∈ BMOD(Rd;X∗) with

‖by
∗

2 ‖BMOp
′

D (Rd;X∗)
6 T y∗

Λ∗ and (π2,α
Q )∗y∗ = 〈by

∗

2 , hαQ〉.

(4) If, in addition to (3), we have X = Y and π2,α
Q ∈ K, then by

∗

2 = b2 ⊗ y∗

for some b2 ∈ BMOD(Rd).

Proof. (1): Let us fix an x ∈ X. By assumption and Lemma 12.2.6, the series

BxR :=
∑
Q⊆R

α∈{0,1}d\{0}

π1,α
Q x⊗ hαQ = (1R − ER)Λ(1R ⊗ x)
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converges (conditionally) in Lp(Rd;Y ). Since ERΛ(1R ⊗ x) is constant on R,
we have the uniform estimate

inf
c∈Y
‖BxR − c‖Lp(Rd;Y ) 6 ‖1RΛ(1R ⊗ x)‖Lp(Rd;Y ) 6 T x

Λ |R|1/p.

By Lemma 12.2.7, there is a function bx1 ∈ BMOD(Rd;Y ) such that

‖bx1‖BMOpD(Rd;Y ) 6 T x
Λ , 〈bx1 , hαQ〉 = παQx

for all Q ∈ D and α ∈ {0, 1}d \{0},and ‖παQx‖Y 6 TΛ|Q|1/2‖x‖X , from which
the claimed bound for ‖παQ‖L (X,Y ) is immediate.

(2): Under the assumptions of this case, an inspection of the previous
argument shows that all auxiliary functions in the construction of bx1 have the
form φ ⊗ x for different scalar functions φ, and hence this form also remains
in the final result.

(3)–(4) follow by repeating the proof of (1)–(2) on the dual side. �

Remark 12.2.9. In the setting of Proposition 12.2.8, if we know a priori that
π1,α
Q x = 〈b1(·)x, hαQ〉 for some b1 ∈ L1

loc,so(Rd; L (X,Y )), then our conclusion

on bx1 implies that b1 ∈ BMOD,so(Rd; L (X,Y )) and

‖b1‖BMOpD,so(Rd;Y ) 6 TΛ.

According to Proposition 12.2.8, the following is a natural necessary con-
dition for the Lp boundedness of paraproducts, even when restricted to very
special functions only.

Definition 12.2.10. We say that a paraproduct Λ as in (12.24) satisfies the
weak coefficient bound if there is a finite constant C such that

‖πi,αQ ‖L (X,Y ) 6 C|Q|1/2 (12.30)

for all i = 1, 2, α ∈ {0, 1}d \ {0} and Q ∈ D .

While rather far from being a sufficient condition for any interesting bounded-
ness results, this weak coefficient bound nevertheless allows us to make sense
of the defining series of the paraproduct on a sufficiently rich class of functions
for our subsequent purposes.

We have the following useful convergence result for truncated paraproducts:

Lemma 12.2.11. Suppose that παQ ∈ L (X,Y ) satisfy (12.30). Let p ∈ (1,∞)

and f ∈ Lp(Rd;X) be boundedly supported, and consider the truncated para-
product

mΠf :=
∑
Q∈D

`(Q)>2−m

α∈{0,1}d\{0}

παQ〈f〉QhαQ.
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(1) For any m ∈ Z, the series defining mΠf converges absolutely in Lp(Rd;Y ).
(2) For 2−m > diam(supp f), we have

‖mΠf‖Lp(Rd;Y ) 6 cd,pC‖Emf‖Lp(Rd;X), (12.31)

and if g ∈ Lp′(Rd;Y ∗), then

|〈mΠf, g〉| 6 cd,pC‖Emf‖Lp(Rd;X)‖Emg‖Lp′ (Rd;Y ∗) −→m→−∞
0, (12.32)

where C is the constant in (12.30) and cd,p =
2d − 1

1− 2−d/p′
.

Proof. Let us first consider (2). When 2−m > diam(supp f), the support
supp f is contained in at most 2d cubes Ri ∈ D . Then in mΠf , we only
need to consider Q ∈ D with Q ) Ri for some (not necessarily unique)
i = 1, . . . , 2d. Then

‖mΠf‖Lp(Rd;Y ) =

2d∑
i=1

∑
Q∈D
Q)Ri

α∈{0,1}d\{0}

‖παQ〈f〉QhαQ‖Lp(Rd;Y ),

where

‖παQ〈f〉QhαQ‖Lp(Rd;Y ) 6 ‖παQ‖L (X,Y )‖〈f〉Q‖X‖hαQ‖Lp(Rd)

= ‖παQ‖L (X,Y )
1

|Q|

∥∥∥ ∫
Ri

f
∥∥∥
X

|Q|1/p

|Q|1/2
6

C

|Q|1/p′
∥∥∥ ∫

Ri

f
∥∥∥
X
,

and hence

‖mΠf‖Lp(Rd;Y ) 6
2d∑
i=1

(2d − 1)C
∥∥∥ ∫

Ri

f
∥∥∥
X

∑
Q)Ri

1

|Q|1/p′

=

2d∑
i=1

(2d − 1)C

|Ri|1/p′
∥∥∥ ∫

Ri

f
∥∥∥
X

∞∑
k=1

2−kd/p
′

=
2d − 1

2d/p′ − 1
C

2d∑
i=1

|Ri|1/p
∥∥∥−∫
Ri

f
∥∥∥
X
,

where

2d∑
i=1

|Ri|1/p
∥∥∥−∫
Ri

f
∥∥∥
X
6 2d/p

′
( 2d∑
i=1

|Ri|
∥∥∥−∫
Ri

f
∥∥∥p
X

)1/p

= 2d/p
′
‖Emf‖Lp(Rd;X).

This proves both the convergence of the series and the claimed bound (12.31).
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Each term in the series defining mΠf is constant on cubes R ∈ Dm. Hence

mΠf = Em(mΠf), and thus

|〈mΠf, g〉| = |〈mΠf,Emg〉| 6 ‖mΠf‖Lp(Rd;Y )‖Emg‖Lp′ (Rd;Y ∗),

so that (12.32) follows from (12.31).
Concerning (1), it only remains to consider the part of the series with

2−m < `(Q) 6 diam(supp f). But there are only finitely many cubes Q of
fixed side-length that intersect supp f , and hence only finitely many cubes
altogether that contribute to this remaining sub-series. Thus the absolute
convergence is trivial. �

Corollary 12.2.12. Suppose that παQ ∈ L (X,Y ) satisfy (12.30). Then the
series ∑

Q∈D
α∈{0,1}d\{0}

〈
παQ〈f〉Q, 〈hαQ, g〉

〉

defining 〈Πf, g〉 converges absolutely for all f ∈ S(D ;X) and g ∈ S(D ;Y ∗),
and

〈Πf,Emg〉 = 〈mΠf, g〉.

Proof. Let v := g−Emg. Then v ∈ S00(D ;Y ∗), and hence only finitely many
of the terms 〈hαQ, v〉 are non-zero. Hence it is enough to prove the convergence

with Emg in place of g. Since 〈hαQ, Emg〉 = 0 when `(Q) 6 2−m, this coincides

with the series of 〈mΠf,Emg〉. Since f ∈ S(D ;X) ⊆ Lp(Rd;X) is bound-
edly supported, the series defining mΠf converges absolutely in Lp(Rd;Y ) by
Lemma 12.2.11. Since Emg ∈ S(D ;Y ∗) ⊆ Lp

′
(Rd;Y ∗) ⊆ (Lp(Rd;Y ))∗, the

series of the bilinear form converges absolutely in K.
The last identity follows by observing that

〈hαQ, Emg〉 =

{
〈hαQ, g〉, `(Q) > 2−m,

0, `(Q) 6 2−m,

and the proof is complete. �

Corollary 12.2.13. Suppose that πi,αQ ∈ L (X,Y ) satisfy (12.30). Then the
two series∑

Q∈D
α∈{0,1}d\{0}

〈
π1,α
Q 〈f〉Q, 〈h

α
Q, g〉

〉
+

∑
Q∈D

α∈{0,1}d\{0}

〈
π2,α
Q 〈h

α
Q, f〉, 〈g〉Q

〉

defining 〈Λf, g〉 converge absolutely for all f ∈ S(D ;X) and g ∈ S(D ;Y ∗).

Proof. The convergence of the first series is the content of Corollary 12.2.12.
The convergence of the second series follows by permuting the roles of
f ∈ S(D ;X) and g ∈ S(D ;Y ∗), and transposing π2,α

Q to the dual side, since

(π2,α
Q )∗ ∈ L (Y ∗, X∗) satisfies the same estimate. �
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12.2.b Sufficient conditions for boundedness

We will then turn to exploring conditions that ensure the boundedness of the
full paraproduct Π. The obtained necessary conditions serve as a model for
the type of sufficient conditions that we are looking for.

It is convenient to begin with a reduction to finite series. When Y is
reflexive, we have

Lp(Rd;Y ) = Lp(Rd;Y ∗∗) ' (Lp
′
(Rd;Y ∗))∗.

Since S00(D ;Y ∗) is dense in Lp
′
(Rd;Y ∗), it is enough to show that the action

of Πf is bounded on S00(D ;Y ∗) with respect to the norm of Lp
′
(Rd;Y ∗),

uniformly for f in the unit ball of Lp(Rd;X). Since any fixed g ∈ S00(D ;Y ∗)
only “sees” a finite part of Πf , it is enough to prove a uniform Lp(Rd;Y ) esti-
mate for the finite sums

∑
παQ〈f〉QhαQ. A key initial estimate in this direction

is the following:

Lemma 12.2.14. Let X be a Banach space, Y be a UMD space, and p ∈
(1,∞). Let F be a finite collection of dyadic cubes. For all f ∈ Lp(Rd;X)
and παQ ∈ L (X,Y ), we then have∥∥∥ ∑

Q∈F

παQ〈f〉QhαQ
∥∥∥
Lp(Rd;Y )

6 β−p,Y β
+
p,Y

∥∥∥( ∑
Q∈F

εQπ
α
Qh

0
Q

)
f
∥∥∥
Lp(Rd;Y )

.

Proof. Since (παQ〈f〉QhαQ)Q∈F is a martingale difference sequence in Lp(Rd;Y ),
we have∥∥∥ ∑

Q∈F

παQ〈f〉QhαQ
∥∥∥
Lp(Rd;Y )

6 β−p,Y

∥∥∥ ∑
Q∈F

εQπ
α
Q〈f〉QhαQ

∥∥∥
Lp(Rd×Ω;Y )

.

Rewriting the Lp norm on the product Rd ×Ω with the help of Fubini’s the-
orem, we observe that at each fixed t ∈ Rd, the sequence of random variables

εQπ
α
Q〈f〉QhαQ(t)

has the same joint distribution as

εQπ
α
Q〈f〉Qh0

Q(t) = εQEQ(παQfh
0
Q)(t),

since the possibly different sign of hαQ(t) and h0
Q(t) is invisible after multipli-

cation by εQ. Using this and Stein’s inequality (Theorem 4.2.23), we conclude
that∥∥∥ ∑

Q∈F

εQπ
α
Q〈f〉QhαQ

∥∥∥
Lp(Rd×Ω;Y )

=
∥∥∥ ∑
Q∈F

εQEQ(παQfh
0
Q)
∥∥∥
Lp(Rd×Ω;Y )

6 β+
p,Y

∥∥∥ ∑
Q∈F

εQπ
α
Qfh

0
Q

∥∥∥
Lp(Rd×Ω;Y )

= β+
p,Y

∥∥∥( ∑
Q∈F

εQh
0
Qπ

α
Q

)
f
∥∥∥
Lp(Rd×Ω;Y )

.

�
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The previous lemma motivates the following. A background for the nomen-
clature will be discussed in the Notes.

Definition 12.2.15. Let p ∈ (1,∞). For an indexed family (πQ)Q∈D in a
Banach space Z, we define the Carleson norm

‖(πQ)‖Carp(Rd;Z) := sup
Q0∈D

sup
F⊆D
finite

1

|Q0|1/p
∥∥∥ ∑
Q⊆Q0

Q∈F

εQh
0
QπQ

∥∥∥
Lp(Q0×Ω;Z)

.

With the help of Theorem 3.2.17 (the John–Nirenberg inequality for adapted
sequences), one can check that any these Carleson norms are actually equiv-
alent for different values of p. We will not need this observation, since the
following proof directly shows that we can use any of these norms in our upper
bound, as we like. Our first sufficient condition for paraproduct boundedness
is stated in terms of this notion as follows:

Proposition 12.2.16 (Paraproducts vs. Carleson norms). Let X be a
Banach space, Y be a UMD space, and p, q ∈ (1,∞). Let Π be the paraproduct
defined by an indexed family (παQ)Q∈D,α∈{0,1}d\{0}. In order that Π is bounded

from Lp(Rd;X) to Lp(Rd;Y ), it is sufficient that (παQ)Q∈D satisfies the Carp

condition for every α ∈ {0, 1}d \ {0}. Moreover, we have the bound

‖Π‖L (Lp(Rd;X),Lp(Rd;Y )) 6 32 · 4dpp′β−q,Y β
+
q,Y

∑
α∈{0,1}d\{0}

‖(παQ)‖Carq(Rd;L (X,Y )).

Proof. We are going to estimate

〈Παf, g〉 =
∑
Q∈D

〈
παQ〈f〉Q, 〈hαQ, g〉

〉
(12.33)

for f ∈ S00(Rd;X) and g ∈ S00(Rd;Y ∗); the latter guarantees that the sum
is finitely nonzero. We may thus replace παQ by 1F (Q)παQ for some finite set
F ⊆ D , but we do not indicate this explicitly in the notation.

Part I: Construction of principal cubes

Let P0 be the maximal cubes appearing in this sum. We then construct cube
families Pn inductively as follows. For each P ∈ Pn, let chP(P ) be the
maximal dyadic subcubes P ′ of F such that either

−
∫
P ′
‖f‖X > 4−

∫
P

‖f‖X or −
∫
P ′
‖g‖Y ∗ > 4−

∫
P

‖g‖Y ∗ .

For each such P ′, we have

|P ′| 6 1

4
max

{∫
P ′
‖f‖X

−
∫
P
‖f‖X

,

∫
P ′
‖g‖Y ∗

−
∫
P
‖g‖Y ∗

}
.
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Since these P ′ are pairwise disjoint, we have∑
P ′∈chP(P )

∫
P ′
‖f‖X 6

∫
P

‖f‖X = |P |−
∫
P

‖f‖X

and similarly with g, and hence∑
P ′∈chP(P )

6
1

4
(|P |+ |P |) =

1

2
|P |.

Thus

EP(P ) := P \
⋃

P ′∈chP(P )

satisfies |EP(P )| > 1

2
|P |.

Then we let

Pn+1 :=
⋃

P∈Pn

chP(P ), P :=
∞⋃
n=0

Pn,

and the sets EP(P ), P ∈P, are seen to be pairwise disjoint.
Now every Q with a nonzero contribution to (12.33) will be contained in

some P ∈P0 ⊆P. Let parP P ∈P be the minimal such P . By construction,
it follows that

−
∫
Q

‖f‖X 6 4−
∫
P

‖f‖X , −
∫
Q

‖g‖Y ∗ 6 4−
∫
P

‖g‖Y ∗ , if parP Q = P.

For P ∈P, let

PPh :=
∑

P ′∈chP(P )

1P ′〈h〉P ′ + 1EP(P )h.

Let h ∈ {f, g}. If u ∈ EP be a Lebesgue point of h, then all Q with u ∈ Q ⊆ P
fail the stopping criterion, and hence

‖PPh(u)‖ = ‖h(u)‖ = lim
Q→u

‖〈h〉Q‖ 6 4〈‖h(·)‖〉P .

On the other hand, if u ∈ P ′ ∈ chP(P ), then its dyadic parent P̂ ′ fails the
stopping criterion, and hence

‖PPh(u)‖ = ‖〈h〉P ′‖ 6 〈‖h(·)‖〉P ′ 6 2d〈‖h(·)‖〉
P̂ ′
6 2d · 4〈‖h(·)‖〉P .

Hence we conclude that

‖PPh(u)‖ 6 4 · 2d · 1P (u)〈‖h‖〉P , h ∈ {f, g}.

If parP Q = P and Q′ ∈ chD Q, then each P ′ ∈ chP P is either disjoint
from Q (thus a fortiori from Q′), or strictly contained in Q, hence contained
in Q′. Thus
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Q′

PPh =
∑

P ′∈chP(P )
P ′(Q′

|P ′|〈h〉P ′ +

∫
Q′∩EP(P )

h =

∫
Q′
h, parP Q = P.

Since both 1Q and hαQ are linear combination of Q′ ∈ chD Q, this implies in
particular that

〈f〉Q = 〈PP f〉Q, 〈hαQ, g〉 = 〈hαQ,PP g〉, parP Q = P.

Part II: Estimates under the principal cubes

With the principal cubes P ∈P just constructed, we can now rearrange the
sum (12.33) as

〈Παf, g〉 =
∑
P∈P

〈 ∑
Q∈D

parP Q=P

παQ〈PP f〉QhαQ,PP g
〉

=:
∑
P∈P

IP .

By Lemma 12.2.14 at the key step introducing the UMD constants, and ap-
plications of Hölder’s inequality and the properties of the principal cubes
elsewhere,

IP 6
∥∥∥ ∑

Q∈D
parP Q=P

παQ〈PP f〉QhαQ
∥∥∥
Lq(Rd;Y )

‖PP g‖Lq′ (Rd;Y ∗)

6 β−q,Y β
+
q,Y

∥∥∥( ∑
Q∈D

parP Q=P

εQπ
α
Qh

0
Q

)
PP f

∥∥∥
Lq(Rd×Ω;Y )

‖PP g‖Lq′ (Rd;Y ∗)

6 β−q,Y β
+
q,Y

∥∥∥ ∑
Q∈D

parP Q=P

εQπ
α
Qh

0
Q

∥∥∥
Lq(Rd×Ω;L (X,Y ))

‖PP f‖L∞(Rd;X)×

× ‖PP g‖L∞(Rd;Y ∗)|P |1/q
′

6 β−q,Y β
+
q,Y ‖(π

α
Q)‖Carq(Rd;L (X,Y ))|P |1/q × 4 · 2d〈‖f‖X〉P×

× 4 · 2d〈‖g‖Y ∗〉P |P |1/q
′

= 16 · 4d · β−q,Y β
+
q,Y ‖(π

α
Q)‖Car2(Rd;L (X,Y ))〈‖f‖X〉P 〈‖g‖Y ∗〉P |P |

=: 16 · 4d · β−q,Y β
+
q,Y ‖(π

α
Q)‖Car2(Rd;L (X,Y )) × IIP .

(Note that, in the step that lead to the appearance of the Carleson norm,
we made use of our implicit replacement of παQ by 1F (Q)παQ, for some finite
F ⊆ D , in the beginning of the proof.)

Finally,
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P∈P

IIP 6 2
∑
P∈P

〈‖f‖X〉P 〈‖g‖Y ∗〉P |EP(P )|

6 2
∑
P∈P

∫
EP(P )

MDf ·MDg

6 2

∫
Rd
MDf ·MDg

6 2‖MDf‖Lp(Rd)‖MDg‖Lp′ (Rd)

6 2 · p′‖f‖Lp(Rd;X) · p‖g‖Lp′ (Rd;Y ∗),

by Doob’s maximal inequality in the last step.
A combination of the estimates proves the proposition. �

To compare the necessary and sufficient conditions for paraproduct bound-
edness, we have the following relation between bounded mean oscillation and
Carleson norms.

Proposition 12.2.17 (Carleson norms vs. BMO). Let Z be a UMD
space, and p ∈ (1,∞). If b ∈ BMOD(Rd;Z), then (παQ)Q∈D := (〈b, hαQ〉)Q∈D

satisfies the Carp condition for each α ∈ {0, 1}d \ {0}, and

max
α∈{0,1}d\{0}

‖(παQ)‖Carp(Rd;Z) 6 β
+
p,Z‖b‖BMOpD(Rd;Z).

This estimate also has a converse, but since it has no immediate use in the
present discussion, we leave the details to an interested reader.

Proof. This is a direct computation∥∥∥ ∑
Q⊆Q0

Q∈F

εQh
0
Q〈b, hαQ〉

∥∥∥
Lp(Q0×Ω;Z)

6 inf
c∈Z

∥∥∥ ∑
Q⊆Q0

Q∈F

εQh
α
Q〈1Q0

(b− c), hαQ〉
∥∥∥
Lp(Q0×Ω;Z)

6 inf
c∈Z

β+
p,Z‖1Q0

(b− c)‖Lp(Rd;Z) by Proposition 12.1.5

6 β+
p,Z |Q0|1/p‖b‖BMOpD(Rd;Z).

Taking the supremum over finite F ⊆ D and Q0 ∈ D , the claimed bound
follows from the definition of Carp. �

We can now formulate conditions for the boundedness of a paraproduct Πb

in terms of function space properties of b:

Theorem 12.2.18. Let X be a Banach space, Y be a UMD space, and p ∈
(1,∞). Let b ∈ L1

loc,so(Rd; L (X,Y )), and let Πb be the paraproduct defined
by the operators παQ : x 7→ 〈b(·)x, hαQ〉. In order that Πb is bounded from

Lp(Rd;X) to Lp(Rd;Y ), it is
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(1) necessary that b ∈ BMOD,so(Rd; L (X,Y )), and
(2) sufficient that b ∈ BMOD(Rd;Z) for some subspace Z ↪→ L (X,Y ) with

the UMD property.

Moreover, we have the quantitative bounds

‖b‖BMOD,so(Rd;L (X,Y )) 6 ‖Π‖L (Lp(Rd;X),Lp(Rd;Y ))

6 32 · 8dpp′β−q,Y β
+
q,Y ‖j‖L (Z,L (X,Y ))β

+
q,Z‖b‖BMOqD(Rd;Z),

where j : Z → L (X,Y ) is the embedding map and q ∈ (1,∞) is arbitrary.

Proof. The necessary condition and the lower bound for ‖Π‖ are just restate-
ments of Proposition 12.2.8 and Remark 12.2.9.

For the sufficient condition, from Proposition 12.2.16 we obtain

‖Π‖L (Lp(Rd;X),Lp(Rd;Y )) 6 32 · 4dpp′β−q,Y β
+
q,Y

∑
α∈{0,1}d\{0}

‖(παQ)‖Carq(Rd;L (X,Y )),

and the assumed embedding followed by Proposition 12.2.17 give us

‖(παQ)‖Carq(Rd;L (X,Y )) 6 ‖j‖L (Z,L (X,Y ))‖(παQ)‖Carq(Rd;Z)

6 ‖j‖L (Z,L (X,Y ))β
+
q,Z‖b‖BMOqD(Rd;Z).

The estimate is concluded by noting that #({0, 1}d \ {0}) = 2d − 1 < 2d. �

For paraproducts defined by scalar-valued coefficients, we now obtain a com-
plete characterisation of their boundedness on UMD spaces. For p = q, the
equivalence (1) ⇔ (4) provides a partial solution of the Lp extension prob-
lem, discussed in Section 2.1, in the particular case of the paraproducts. Note,
however, it does not exclude the possibility of Lp(Rd)-bounded paraproducts
extending boundedly to other classes of spaces besides UMD.

Corollary 12.2.19. Let X be a UMD space, and p, q ∈ (1,∞). Let Π1, Π∗2
and Λ := Π1 + Π∗2 be paraproducts with scalar coefficients π1,α

Q , π2,α
Q ∈ K.

Then the following are equivalent:

(1) Λ ∈ L (Lp(Rd;X));
(2) both Π1, Π

∗
2 ∈ L (Lp(Rd;X));

(3) for some bi ∈ BMO(Rd), we have

π1,α
Q = 〈b1, hαQ〉, π2,α

Q = 〈b2, hαQ〉, ∀Q ∈ D , α ∈ {0, 1}d \ {0};

(4) Λ ∈ L (Lq(Rd)).

Under these equivalent conditions, we have the estimates

max
i=1,2

‖bi‖BMO
pi
D (Rd) 6 ‖Λ‖L (Lp(Rd;X)),

‖Π̃i‖L (Lp(Rd;X)) 6 32 · 8d · pp′ · β2
q,X · βq,K · ‖bi‖BMO

qi
D (Rd),

‖Λ‖L (Lp(Rd;X)) 6 64 · 8d · pp′ · β2
q,X · βq,K · ‖Λ‖L (Lq(Rd)).

where Π̃1 := Π1, Π̃2 := Π∗2 , p1 := p, p2 := p′, q1 := q, q2 := q′.
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Proof. (1) ⇒ (3): The assumed boundedness (1) and duality clearly implies
the testing conditions

‖Λ(1Q ⊗ x)‖Lp(Rd,X) 6 ‖Λ‖L (Lp(Rd;X))‖1Q ⊗ x‖Lp(Rd;X),

‖Λ∗(1Q ⊗ x∗)‖Lp′ (Rd,X∗) 6 ‖Λ‖L (Lp(Rd;X))‖1Q ⊗ x∗‖Lp′ (Rd;X∗).

Condition (3) then follows from Proposition 12.2.8, which also provides the
bounds

max
(
‖b1‖BMOpD(Rd), ‖b2‖BMOp

′
D (Rd)

)
6 ‖Λ‖L (Lp(Rd;X)).

(3) ⇒ (2): We use Theorem 12.2.18 with Y = X and Z = K · IX , which
clearly embeds into L (X) with constant one. With this choice, the theorem
shows that

‖Π1‖L (Lp(Rd;X)) 6 32 · 8d · pp′β−q,Xβ
+
q,Xβ

+
q,K‖b1‖BMOqD(Rd).

6 32 · 8d · pp′β2
q,Xβq,K‖b1‖BMOpD(Rd),

where we also used β±p,X 6 βp,X . Similarly, we have

‖Π∗2‖L (Lp(Rd;X)) = ‖Π2‖L (Lp′ (Rd;X∗)) 6 32 · 8d · pp′β2
q,Xβq,K‖b2‖BMOq

′
D (Rd)

,

using the same bound on the dual side and recalling that βq′,X∗ = βq,X .

(2) ⇒ (1): This is trivial by the triangle inequality.

(3)⇔ (4): This is the already established equivalence (3)⇔ (1) specialised
to X = K. The final quantitative bound follows by combining the bounds
already established:

‖Λ‖L (Lp(Rd;X)) 6
2∑
i=1

‖Π̃i‖L (Lp(Rd;X))

6
2∑
i=1

32 · 8d · pp′β2
q,Xβq,K‖bi‖BMO

qi
D (Rd),

6
2∑
i=1

32 · 8d · pp′β2
q,Xβq,K‖Λ‖L (Lq(Rd))

and
∑2
i=1 32 = 64. �

12.2.c Symmetric paraproducts

In this section, we will take a closer look at the special case of the symmetric
paraproduct Λb with equal coefficients πi,αQ = 〈b, hαQ〉 for both i = 1, 2. Our
goal is to obtain a qualitative improvement of the earlier Proposition 12.2.3.
This will require developing modest prerequisites about the projective tensor
product of Banach spaces, and we first turn to this task.



12.2 Paraproducts 141

Definition 12.2.20. For two Banach spaces X and Z, and a bilinear form
λ : X × Z → K, we define

‖λ‖B(X,Z) := sup
{
|λ(x, z)| : ‖x‖X 6 1, ‖z‖Z 6 1

}
,

B(X,Z) :=
{
λ : X × Z → K bilinear

∣∣∣‖λ‖B(X,Z) <∞
}
.

Lemma 12.2.21. B(X,Z) ' L (X,Z∗) ' L (Z,X∗).

Proof. For u ∈ L (X,Z∗), we see that

Form(u) : X × Z → K, (x, z) 7→ 〈ux, z〉

defines Form(u) ∈ B(X,Z) of norm at most ‖u‖L (X,Z∗). For λ ∈ B(X,Z),
we see that Op(λ) : X → Z∗ : x 7→ λ(x, ·) defines Op(λ) ∈ L (X,Z∗) of norm
at most ‖λ‖B(X,Z). Both Form : L (X,Z∗)→ B(X,Z) and Op : B(X,Z)→
L (X,Z∗) are clearly linear and we just saw that they are contractive. Since
both Form ◦Op and Op ◦Form are identities of the respective spaces, they
must in fact be isometries. This proves the first identification, and B(X,Z) '
L (Z,X∗) follows by symmetry, since clearly B(X,Z) ' B(Z,X). �

Definition 12.2.22. For two Banach spaces X and Z, and elements x ∈ X
and z ∈ Z, we define x⊗ x ∈ B(X,Z)∗ by

x⊗ z : B(X,Z)→ K : λ 7→ λ(x, z).

Let further

X ⊗ Z := span{x⊗ z : x ∈ X, z ∈ Z} ⊆ B(X,Z)∗,

and, for all v ∈ X ⊗ Z,

‖v‖X⊗̂Z := inf
{ n∑
i=1

‖xi‖X‖zi‖Z : v =

n∑
i=1

xi ⊗ zi
}
,

where the infimum is over all possible representations of v of any length n.
Finally, let X⊗̂Z be the completion of X ⊗ Z with respect to this norm.

Proposition 12.2.23. For all Banach spaces X and Z, we have

(X⊗̂Z)∗ = B(X,Z),

in the following sense: For all v ∈ X ⊗ Z and λ ∈ B(X,Z), the pairing

〈v, λ〉 :=

n∑
i=1

λ(xi, zi), if v =

n∑
i=1

xi ⊗ zi,

is well defined and extends by continuity to all v ∈ X⊗̂Z. Conversely, every
element of (X ⊗ Z)∗ has this form, and

‖λ‖(X⊗Z)∗ = ‖λ‖B(X,Z).
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Proof. To check that 〈v, λ〉 is well-defined, we need to verify that two different
representations v =

∑na
i=1 x

a
i ⊗zai , a = 1, 2, result in the same right-hand side.

To see this, pick a basis (x0
j )
p
j=1 for span{xai : 1 6 i 6 na, a = 1, 2} and a basis

(z0
k)qk=1 for span{zai : 1 6 i 6 na, a = 1, 2} and expand all xai and zai in the

respective basis. With the help of the Hahn–Banach theorem, pick x∗m ∈ X∗
and z∗n ∈ Z∗ such that 〈x0

j , x
∗
m〉 = δj,m and 〈z0

k, z
∗
n,=〉δk,n, and consider the

forms λm,n( ·1, ·2) = 〈 ·1, x∗m〉〈 ·2, z∗n〉 ∈ B(X,Z) to see that x0
j⊗z0

k are linearly
independent in B(X,Z)∗. Hence their coefficients must be equal in the two
expansions of v. Make the same expansions on the right-hand side, using the
bilinearity of λ, to find that both expansions lead to linear combinations with
equal coefficients of the values λ(x0

j , z
0
k).

Having verified that the action of λ on X ⊗ Z is well defined, its linearity
is clear. Moreover,

n∑
i=1

|λ(xi, zi)| 6 ‖λ‖B(X,Z)

n∑
i=1

‖xi‖X‖zi‖Z ,

and taking the infimum over all representations of v shows that

|〈v, λ〉| 6 ‖λ‖B(X,Z)‖v‖X⊗̂Z
for all v ∈ X ⊗ Z. From this estimate, we can uniquely extend the action of
λ to all v ∈ X⊗̂Z by density, with the estimate

‖λ‖(X⊗Z)∗ 6 ‖λ‖B(X,Z).

On the other hand, we also have

|λ(x, z)| = |〈x⊗ z, λ〉| 6 ‖x⊗ z‖X⊗̂Z‖λ‖(X⊗Z)∗ 6 ‖x‖X‖z‖Z‖λ‖(X⊗Z)∗ ;

thus ‖λ‖B(X,Z) 6 ‖λ‖(X⊗Z)∗ , and hence in fact there is equality.
Conversely, if ξ ∈ (X ⊗ Z)∗, we can define λ ∈ B(X,Z) by λ(x, z) :=

〈x⊗ z, ξ〉. From the previous construction, it is then clear that 〈v, λ〉 = 〈v, ξ〉
for all v ∈ (X ⊗ Z), and hence every ξ ∈ (X ⊗ Z)∗ arises from the previous
construction. �

Corollary 12.2.24. ‖x⊗ z‖X⊗̂Z = ‖x‖X‖z‖Z .

Proof. We compute the norm by duality:

‖x⊗ z‖X⊗̂Z = sup
{
|〈x⊗ z, ξ〉| : ‖ξ‖(X⊗̂Z)∗ 6 1

}
= sup

{
|λ(x, z)| : ‖λ‖B(X,Z) 6 1

}
.

It is clear from the definition that |λ(x, z)| 6 ‖x‖X‖z‖Z for any λ as in the
last supremum. On the other hand, the Hahn–Banach theorem guarantees the
existence of x∗ ∈ X∗ and z∗ ∈ Z∗ of norm one such that 〈x, x∗〉 = ‖x‖X and
〈z, z∗〉 = ‖z‖Z . Then clearly λ( ·1, ·2) = 〈 ·1, x∗〉〈 ·2, z∗〉 has ‖λ‖B(X,Z) 6 1
and gives λ(x, z) = ‖x‖X‖z‖Z . �
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We are now ready to prove the following improvement of Proposition 12.2.3:

Theorem 12.2.25. Let X and Y be UMD spaces and p ∈ (1,∞). For every
function b ∈ BMOD(Rd; L (X,Y )), the symmetric paraproduct Λb defines a
bounded operator from Lp(Rd;X) to Lp(Rd;Y ) of norm

‖Λb‖L (Lp(Rd;X),Lp(Rd;Y )) 6 6 · 2d · (pp′ + β+
p,Xβ

+
p′,Y ∗)‖b‖BMOD(Rd;L (X,Y ))

6 30 · 2d · βp,Xβp,Y ‖b‖BMOD(Rd;L (X,Y ))

Proof. By density, it suffices to consider the action of Λb on f ∈ S00(D ;X),
paired with g ∈ S00(D ;Y ∗). We will rewrite this pairing with the help
of the projective tensor product duality between X⊗̂Y ∗ and B(X,Y ∗) '
L (X,Y ∗∗) = L (X,Y ), recalling that UMD spaces are reflexive (Theorem
4.3.3). In the following computation, the summation is always over Q ∈ D
and α ∈ {0, 1}d \ {0}.

〈Λbf, g〉 =
∑{〈

〈b, hαQ〉〈f〉Q, 〈hαQ, g〉
〉
X,Y ∗

+
〈
〈b, hαQ〉〈f, hαQ〉, 〈g〉Q

〉
X,Y ∗

}
=
∑〈

〈b, hαQ〉, 〈f〉Q ⊗ 〈hαQ, g〉+ 〈f, hαQ〉 ⊗ 〈g〉Q
〉

L (X,Y ),X⊗̂πY ∗

=
〈
b,
∑

hαQ

[
〈f〉Q ⊗ 〈hαQ, g〉+ 〈f, hαQ〉 ⊗ 〈g〉Q

]〉
=: 〈b, h〉.

On the last line, we are using the H1–BMO-duality from Theorem 11.1.30;
for f ∈ S00(D ;X) and g ∈ S00(D ;Y ∗), the summation is finite, and thus h ∈
L∞c (Rd;X⊗̂πY ∗). Since b ∈ BMOD(Rd; L (X,Y )) ⊆ L1

loc(Rd; L (X,Y )), the
pointwise duality product 〈b(u), h(u)〉 is integrable, and one find by dominated
convergence in the defining formula of Theorem 11.1.30 that the duality can be
computed simply as the integral of 〈b(u), h(u)〉 over Rd. Thus, an application
of Theorem 11.1.30 followed by Theorem 11.1.28 shows that

|〈Λbf, g〉| 6 ‖b‖BMO(Rd;L (X,Y ))‖h‖H1
at(Rd;X⊗Y ∗)

6 ‖b‖BMO(Rd;L (X,Y )) · 6 · 2d · ‖h‖H1
max(Rd;X⊗Y ∗),

and it remains to estimate the H1 norm here. Recall that

‖h‖H1
max(Rd;X⊗Y ∗) = ‖MDh‖L1(Rd) =

∥∥∥ sup
R∈D

1R‖〈h〉R‖X⊗Y ∗
∥∥∥
L1(Rd)

.

By the properties of Haar functions, we find that

〈h〉R =
∑
Q)R

∑
α∈{0,1}d\{0}

〈
hαQ

[
〈f〉Q ⊗ 〈hαQ, g〉+ 〈f, hαQ〉 ⊗ 〈g〉Q

]〉
R

=
∑
Q)R

[
〈f〉Q ⊗ (〈g〉QR − 〈g〉Q) + (〈f〉QR − 〈f〉Q)⊗ 〈g〉Q

]
,

where QR is the unique dyadic child of Q that contains R.
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Next, we make the following algebraic observation:

〈f〉QR ⊗ 〈g〉QR − 〈f〉Q ⊗ 〈g〉Q
= (〈f〉QR − 〈f〉Q + 〈f〉Q)⊗ (〈g〉QR − 〈g〉Q + 〈g〉Q)− 〈f〉Q ⊗ 〈g〉Q
= 〈f〉Q ⊗ (〈g〉QR − 〈g〉Q) + (〈f〉QR − 〈f〉Q)⊗ 〈g〉Q

+ (〈f〉QR − 〈f〉Q)⊗ (〈g〉QR − 〈g〉Q).

Thus

〈f〉R =
∑
Q)R

[
〈f〉QR ⊗ 〈g〉QR − 〈f〉Q ⊗ 〈g〉Q

]
+
∑
Q)R

(〈f〉QR − 〈f〉Q)⊗ (〈g〉QR − 〈g〉Q) =: IR + IIR.

The sum IR is telescopic and, since f ∈ S00(D ;X) (we don’t even need the
similar property of g at this point), its terms vanish for all large enough Q.
Thus in fact

IR = 〈f〉R ⊗ 〈g〉R, ‖IR‖X⊗̂πY ∗ = ‖〈f〉R‖X‖〈g〉R‖Y ∗

and ∥∥∥ sup
R∈D

1R‖IR‖X⊗̂πY ∗
∥∥∥
L1(Rd)

6 ‖MDf ·MDg‖L1(Rd)

6 ‖MDf‖Lp(Rd)‖MDg‖Lp′ (Rd)

6 p′‖f‖Lp(Rd;X) · p‖g‖Lp′ (Rd;Y ∗)

by Doob’s maximal inequality in the last step.
Turning to IIR, we note that 〈f〉QR−〈f〉Q is the constant value of DQf(u)

for any u ∈ R, and similarly for g. As before, the summation in IIR is finitely
non-zero, and we can disentangle it with the help of a Rademacher sequence
(εQ)Q∈D as

IIR = E
( ∑
P)R

εPDP f(u)
)
⊗
( ∑
Q)R

εQDQg(u)
)
.

Thus

‖IIR‖X⊗̂Y ∗ 6 E
∥∥∥ ∑
P)R

εPDP f(u)
∥∥∥
X

∥∥∥ ∑
Q)R

εQDQg(u)
∥∥∥
Y ∗

6
∥∥∥ ∑
P)R

εPDP f(u)
∥∥∥
Lp(Ω;X)

∥∥∥ ∑
Q)R

εQDQg(u)
∥∥∥
Lp′ (Ω;Y ∗)

6
∥∥∥ ∑
P∈D

εPDP f(u)
∥∥∥
Lp(Ω;X)

∥∥∥ ∑
Q∈D

εQDQg(u)
∥∥∥
Lp′ (Ω;Y ∗)

,

where the last step was an application of the contraction principle. Thus
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sup
R3u
‖IIR‖X⊗̂Y ∗ 6

∥∥∥ ∑
P∈D

εPDP f(u)
∥∥∥
Lp(Ω;X)

∥∥∥ ∑
Q∈D

εQDQg(u)
∥∥∥
Lp′ (Ω;Y ∗)

and ∥∥∥ sup
R∈D

1R‖IIR‖X⊗̂Y ∗
∥∥∥
L1(Rd)

6
∥∥∥ ∑
P∈D

εPDP f
∥∥∥
Lp(Rd×Ω;X)

∥∥∥ ∑
Q∈D

εQDQg
∥∥∥
Lp′ (Rd×Ω;Y ∗)

6 β+
p,X‖f‖Lp(Rd;X) · β+

p′,Y ∗‖g‖Lp′ (Rd;Y ∗).

A combination of the estimates of IR and IIR shows that

‖h‖H1
max(Rd;X⊗̂Y ∗)

6
∥∥∥ sup
R∈D

1R‖IR‖X⊗̂Y ∗
∥∥∥
L1(Rd)

+
∥∥∥ sup
R∈D

1R‖IR‖X⊗̂Y ∗
∥∥∥
L1(Rd)

6 (pp′ + β+
p,Xβ

+
p′,Y ∗)‖f‖Lp(Rd;X)‖g‖Lp′ (Rd;Y ∗),

and altogether we have proved the first estimate claimed in the theorem.
The final estimate is seen as follows: First, we have β+

p,X 6 βp,X and

β+
p′,Y ∗ 6 βp′,Y ∗ = βp,Y by the observation after Proposition 4.2.3, and Propo-

sition 4.2.17(2). Second, denoting p∗ = max(p, p′) > 2, we have βp,Z > βp,R =
p∗ − 1 > 1

2p
∗ by Theorem 4.5.7, and hence pp′ 6 (p∗)2 6 4βp,Xβp,Y . �

12.2.d Mei’s counterexample: no simple sufficient conditions

The following theorem shows the impossibility of obtaining simple upper
bounds for operator-valued paraproducts in infinite-dimensional spaces, even
by considering Hilbert spaces only, and even by replacing the bounded mean
oscillation conditions by the stronger L∞ norm.

Theorem 12.2.26 (Mei). Let φ be a function such that

‖Πb‖L (L2(R;`2N )) 6 φ(N)‖b‖L∞(R;L (`2N )) for all b ∈ L∞(R; L (`2N )).

Then

φ(N) > ‖4N‖L (L (`2N )) >
1

π
(logN − 1),

where 4N : L (`2N )→ L (`2N ) is the lower triangle projection defined by

4N (ei ⊗ ej) :=

{
ei ⊗ ej , if i > j,

0, else

and extended by linearity.
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Proof. For a ∈ L (`2N ) and u, v ∈ `2N , we have the tensor product u ⊗ v ∈
L (`2N ), and the trace duality 〈a, u⊗ v〉 = 〈au, v〉.

Let b ∈ L∞(R; L (`2N )), and f, g ∈ L2(R; `2N ). We can then write

〈Πbf, g〉 =
〈∑
I∈D

〈b, hI〉〈f〉IhI , g
〉

=
〈
b,
∑
I∈D

〈f〉I ⊗ 〈hI , g〉hI
〉

=: 〈b,Π⊗gf〉,

where suggestive notation Π⊗g is defined by the last identity. In the two right-
most expressions, the duality is that between L∞(R; L (`2N )) and its predual
L1(R; C 1(`2N )). (We recall from Theorem D.2.6 that (C 1(H))∗ = L (H) for
any Hilbert space H and from Theorem 1.3.10 that (L1(R;X))∗ = L∞(R;X∗)
when X∗ has the Radon–Nikodým property, which the finite-dimensional
(hence reflexive) X = L (`2N ) does by Theorem 1.3.21.)

Thus we deduce that

‖Π⊗gf‖L1(R;C 1(`2N )) = sup
{
|〈b,Π⊗gf〉| : ‖b‖L∞(R;L (`2N )) 6 1

}
= sup

{
|〈Πbf, g〉| : ‖b‖L∞(R;L (`2N )) 6 1

}
6 φ(N)‖f‖L2(R;`2N )‖g‖L2(R;`2N ).

We now apply this to a special choice of f, g ∈ L2(R; `2N ). Let (ri)
N
i=1

be the standard realisation of a Rademacher sequence on [0, 1), i.e., ri(t) :=

1[0,1)(t) sgn(sin(2iπt)). With u, v ∈ `2N , we take f =
∑N
i=1 ri〈u, ei〉ei and

g =
∑N
i=1 ri〈v, ei〉ei, where (ei)

N
i=1 is the standard orthonormal basis of `2N .

Then

Π⊗gf(t) =
N∑
j=1

j−1∑
i=1

ri(t)〈u, ei〉ei ⊗ rj(t)〈v, ej〉ej

= Dr(t)

( ∑
16i<j6N

〈u, ei〉〈v, ej〉ei ⊗ ej
)
Dr(t)

= Dr(t)

(
TN

N∑
i,j=1

〈u, ei〉〈v, ej〉ei ⊗ ej
)
Dr(t) = Dr(t)

(
TN (u⊗ v)

)
Dr(t)

where Dr(t) =
∑N
i=1 ri(t)ei ⊗ ei and 4̃N is the upper triangle projection

defined by

4̃N (ei ⊗ ej) :=

{
ei ⊗ ej , if i < j,

0, else

and extended by linearity. Since Dr(t) is unitary for every t ∈ [0, 1), it follows
that

‖Π⊗gf‖L1(R;C 1(`2N )) = ‖4̃N (u⊗ v)‖L1([0,1);C 1(`2N )) = ‖4̃N (u⊗ v)‖C 1(`2N ).

Dy Lemma D.1.1 and the definition of the Schatten class, every s ∈ C 1(`2N )
has a singular value decomposition
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s =

n∑
k=1

ak(s)uk ⊗ vk, ‖uk‖`2N = ‖vk‖`2N = 1,
n∑
k=1

ak(s) = ‖s‖C 1(`2N )

where ak(s) > 0 are the approximation numbers of s. Letting fk, gk ∈
L2(R; `2N ) of norm one be the functions corresponding to uk, vk, we find that

‖4̃Ns‖C 1(`2N ) 6
n∑
k=1

ak(s)‖4̃N (uk ⊗ vk)‖C 1(`2N )

=
n∑
k=1

ak(s)‖Π⊗gkfk‖L1(R;C 1(`2N ))

6
n∑
k=1

ak(s)φ(N) = φ(N)‖s‖C 1(`2N ).

Noting that the lower triangle projection 4N on L (`2N ) = (C 1(`2N ))∗ is the

adjoint of the upper triangle projection 4̃N on C 1(`2N )), this implies that

‖4N‖L (L (`2N )) = ‖4̃N‖L (C 1(`2N )) 6 φ(N),

which is the first claimed inequality.
The final bound is essentially Lemma 7.5.12, where a variant

TN (ei ⊗ ej) :=

{
ei ⊗ ej , if i > j,

0, else

was considered instead. However, the lower bound for the norm of this operator
was achieved by testing with the Hilbert matrix AN = (1{i6=j}(i− j)−1)Ni,j=1

with vanishing diagonal; hence ∆N (AN ) = TN (AN ), and the same lower
bound follows for ∆N as well. �

12.3 The T (1) theorem for abstract bilinear forms

In Sections 11.2 and 11.3, the leading theme was extrapolating the bound-
edness of a singular integral operator from Lp0(Rd;X) to Lp(Rd;X), with
a different exponent p, or even to Lp(w;X), with a different weight w. A
question that was largely left open in these sections was how to verify the
assumed boundedness on some Lp0(Rd;X) to begin with. In the spirit of the
Lp-extension problem discussed in Section 2.1, we here obtain the following
useful answer that allows us to extrapolate the vast existing information about
scalar-valued singular integrals to the UMD-valued situation:

Theorem 12.3.1. Let p0 ∈ (1,∞), and let T ∈ L (Lp0(Rd)) be an operator
associated with a Calderón–Zygmund standard kernel K : Ṙ2d → K. Let X
be a UMD space and p ∈ (1,∞). Then T ⊗ IX extends to a bounded linear
operator on Lp(Rd;X).
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In fact, this result will be obtained as a corollary of general criteria, known as
“T (1) theorems”, for the boundedness of operators associated with Calderón–
Zygmund kernels; and we will also obtain versions dealing with operator-
valued kernels. However, the very statement of these results requires some
preparations that we take up next. Concerning the proofs, we only mention
at this point that the dyadic singular integral operators and paraproducts,
whose boundedness we already studied in Sections 12.1 and 12.2, will play
a significant role; indeed, our general strategy is to decompose a Calderón–
Zygmund operator into a convergent series of dyadic singular integral opera-
tors and paraproducts. Thus, this final section brings together several of the
themes developed in this chapter.

12.3.a Weakly defined bilinear forms

In order to make a non-tautological study of the question of boundedness of
an operator, we need to give a meaning to the notion of an “operator” before
its boundedness has been established. As usual, this will involve postulating
the action of the operator on a dense class of test functions from which we
wish to extend this action to the full space under consideration. For a dyadic
analysis of singular integral operators, it is convenient to adopt the following
framework:

Definition 12.3.2. For a Banach space Z, a Z-valued bilinear form on S(D)
is a bilinear mapping

t : S(D)2 → Z.

If Z = L (X,Y ), we extend the action of such a mapping to

t : S(D ;X)× S(D ;Y ∗)→ K

by letting

t(φ⊗ x, ψ ⊗ y∗) := 〈t(φ, ψ)x, y∗〉 ∈ K, φ, ψ ∈ S(D), x ∈ X, y∗ ∈ Y ∗,

and extending by bilinearity, observing that S(D ;X) = S(D)⊗X.

Remark 12.3.3 (S(D) vs. S00(D) in the definition). Since S00(D ;X) is al-
ready dense in Lp(Rd;X), in order to construct a bounded bilinear form on
Lp(Rd;X)×Lp′(Rd;Y ), it would be sufficient to have an a priori estimate on
S00(D ;X) × S00(D ;Y ∗). However, for the type of theorems that we have in
mind, we also like to make assumptions on the action of our bilinear forms
on functions like 1Q ∈ S(D) \ S00(D), and hence we need to have our initial
bilinear form defined on the larger product S(D ;X) × S(D ;Y ∗). This gives
rise to the following problem, where we take X = Y = K for simplicity, since
the issue is already present in this case:

Suppose that we have a bilinear form t : S(D)2 → K that satisfies the
estimate
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|t(f, g)| 6 C‖f‖p‖g‖p′ ∀(f, g) ∈ S00(D)2.

Thus there exists T ∈ L (Lp(Rd)) such that t(f, g) = 〈Tf, g〉 whenever (f, g) ∈
S00(D)2. Does it follow that t(f, g) = 〈Tf, g〉 for all (f, g) ∈ S(D)2?

Perhaps unexpectedly, the answer is “no”: Consider the bilinear form

t(f, g) :=

∫
Rd
f ·
∫
Rd
g, (f, g) ∈ S(D)2.

If (f, g) ∈ S00(D)2, we have the a priori bound |t(f, g)| = 0, and hence the
unique operator T ∈ L (Lp(Rd)) is given by T = 0. But of course t is not
identically zero on S(D)2. It is also clear that there cannot possible be any
T ∈ L (Lp(Rd)) with 〈Tf, g〉 = t(f, g) for all (f, g) ∈ S(D)2.

To avoid this problem, we make sure to get our a priori estimates on the
full set S(D ;X)× S(D ;Y ∗).

Definition 12.3.4. A bilinear form t : S(D)2 → L (X,Y ) is said to deter-
mine a bounded operator T ∈ L (Lp(Rd;X), Lp(Rd;Y )) provided that this
operator T satisfies

t(f, g) = 〈Tf, g〉

for all (f, g) ∈ S(D ;X)× S(D ;Y ∗).

In the case of reflexive spaces, the last-mentioned condition can be charac-
terised by an a priori estimate. Finding sufficient conditions for such an esti-
mate will be our primary concern below. The assumption of reflexivity is not
a serious restriction at this stage, since the deeper related considerations that
we shall encounter below will have much stronger assumptions, anyway.

Lemma 12.3.5. Let X and Y be reflexive Banach spaces, and let X0 ⊆ X
and Y 0 ⊆ Y ∗ be dense. Consider a bilinear form

t : S(D ;X0)× S(D ;Y 0)→ K.

Let C > 0 be a constant and p ∈ (1,∞). Then the following conditions, each
to hold for every choice of (f, g) ∈ S(D ;X0)× S(D ;Y 0), are equivalent:

(1) There is T ∈ L (Lp(Rd;X), Lp(Rd;Y )) of norm at most C such that

〈Tf, g〉 = t(f, g).

(2) There is T ∗ ∈ L (Lp
′
(Rd;Y ∗), Lp′(Rd;X∗)) of norm at most C such that

〈f, T ∗g〉 = t(f, g).

(3) There is a uniform estimate

|t(f, g)| 6 C‖f‖Lp(Rd;X0)‖g‖Lp′ (Rd;Y 0).
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Proof. (1)⇒ (3) and (2)⇒ (3) are immediate.

(3) ⇒ (1): Fix f ∈ Q(Rd;X0). Then g 7→ t(f, g) defines a bounded linear
functional on a dense subspace of Lp

′
(Rd;Y ∗), and hence on Lp

′
(Rd;Y ∗). Thus

there is Λf ∈ (Lp
′
(Rd;Y ∗))∗ such that

t(f, g) = 〈Λf , g〉.

Moreover, since Y = Y ∗∗ is reflexive, it has the Radon–Nikodým property
by Theorem 1.3.21, and hence Λf ∈ (Lp

′
(Rd;Y ∗))∗ ' Lp(Rd;Y ) by Theorem

1.3.10.
From the linearity of the left side in f , one deduces that f 7→ Λf is a

linear map from S(D ;X) ⊆ Lp(Rd;X) to Lp(Rd;Y ), and (3) shows that it is
bounded. Hence there is a bounded extension T ∈ L (Lp(Rd;X), Lp(Rd;Y ))
with the required identity for (f, g) ∈ S(D ;X0)× S(D ;Y 0).

(3)⇒ (2): This can be proved either similarly to the previous case, or using
the already proven implication (3) ⇒ (1) and the general existence result of
an adjoint

T ∗ ∈ L ((Lp(Rd;Y ))∗, (Lp(Rd;X))∗) ' L (Lp
′
(Rd;Y ∗), Lp

′
(Rd;X∗)),

where the identification of the spaces was again based on the assumed reflex-
ivity via Theorems 1.3.21 and 1.3.10. By definition, the adjoint satisfies

〈f, T ∗g〉 = 〈Tf, g〉

for all (f, g) in Lp(Rd;X)× Lp′(Rd;Y ∗) ⊇ S(D ;X0)× S(D ;Y 0). �

The very formulation of the conditions that give rise to the name “T (1) the-
orem” requires us to slightly extend the initial domain of weakly defined sin-
gular integral operators.

Definition 12.3.6. For a bilinear t : S(D)2 → Z, we say that t(hαQ,1) is
well-defined if the series

t(hαQ,1) :=
∑
R∈D

`(R)=`(Q)

t(hαQ,1R)

converges absolutely. We say that t(·,1) is well-defined if t(hαQ,1) is well-

defined for every Q ∈ D and α ∈ {0, 1}d \ {0}.
We define t(1, hαQ) and t(1, ·) analogously.

Lemma 12.3.7. If t(hαQ,1) is well-defined, then

(1) for every k ∈ Z with 2−k > `(Q), we have

t(hαQ,1) =
∑
R∈Dk

t(hαQ,1R),

where the series converges absolutely in the weak operator topology;
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(2) for every f ∈ S00(D), the series

t(f,1) :=
∑
R∈Dk

t(f,1R)

converges absolutely at least for all sufficiently negative k ∈ Z; moreover,
the value of the series is independent of k ∈ Z, as long as it converges
absolutely.

The analogous statements hold for t(1, ·).

Proof. (1): Let `(Q) = 2−j . For k = j, the claim of the lemma is just the
definition. For 2−k > 2−j and R ∈ Dk, we have

t(hαQ,1R) = t
(
hαQ,

∑
S∈Dj
S⊆R

1S

)
=
∑
S∈Dj
S⊆R

t(hαQ,1S).

With f = hαQ, we then have

t(f,1) =
∑
S∈Dj

t(f,1S) =
∑
R∈Dk

∑
S∈Dj
S⊆R

t(f,1S) =
∑
R∈Dk

t(f,1R), (12.34)

where the first equality holds by assumption, and the assumed absolute con-
vergence allows to make the rearrangements and to get the absolute conver-
gence also in the subsequent steps.

(2): Each f ∈ S00(D) is a linear combination of terms of the form hαiQi ,
where i ∈ F for some finite index set F . If Q0 ∈ Dj0 is the largest cube
appearing here, then by the previous part of the lemma we know that∑

R∈Dk

t(hαiQi ,1R)

converges absolutely for each k 6 j0. Hence also∑
R∈Dk

t(f,1R) =
∑
i∈F

〈f, hαiQi〉
∑
R∈Dk

t(hαiQi ,1R)

converges absolutely. If the absolute convergence holds for some j and k, the
equality of the corresponding series follows from (12.34).

The case of t(1, ·) is entirely analogous. �

As we shall see later, the forms t(1, ·) and t(·,1) are closely related to
paraproducts. Since the boundedness of paraproducts is tricky, it is use-
ful to be able identify situations, when they can be avoided, i.e., when
t(1, ·) = 0 = t(·,1).

With this goal in mind, we will now discuss an important case of trans-
lation-invariant bilinear forms. We first check that some natural candidates
for the definition are equivalent:
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Lemma 12.3.8. Let Z be a Banach space. The following conditions are equiv-
alent for a bilinear form t : S(D)2 → Z:

(1) t(1Q,1R) = t(1Q+̇m,1R+̇m) for all Q,R ∈ D with `(Q) = `(R), and all

m ∈ Zd, where Q+̇m := Q+m`(Q).
(2) t(f, g) = t(τhf, τhg) for all f, g ∈ S(D) and all dyadic rational vectors

h, i.e., all h of the form h = m2−k for some m ∈ Zd and k ∈ Z, where
τhf(s) := f(s− h).

If Z = L (X,Y ), these are also equivalent to a variant of (2) for all f ∈
S(D ;X) and g ∈ S(D ;Y ∗) instead.

Proof. (2)⇒(1): This is immediate by taking f = 1Q, g = 1R and h = m`(Q),
or f = 1Q ⊗ x, g = 1R ⊗ y∗ for arbitrary x ∈ X and y∗ ∈ Y ∗ in the variant
with Z = L (X,Y ).

(1)⇒(2): By definition, each f, g is a linear combination of some indicators
1Q (or 1Q ⊗ x resp. 1Q ⊗ y∗) with Q ∈ D (and x ∈ X, y∗ ∈ Y ∗), and we
have h = mh2−kh for some mh ∈ Zd and kh ∈ Z. Since any dyadic cube
is an exact union of dyadic cubes of any given smaller size, and h can be
expressed in a similar form h = (2(k−kh))2−k for any k > kh, we may assume
that we have Q ∈ Dk and h = m2−k for the same k ∈ Z to begin with.
By bilinearity of both sides of the claim in (2), we thus need to verify that
t(1Q,1R) = t(τh1Q, τh1R) = (1Q+̇m,1R+̇m) for each Q,R ∈ Dk, but this is
exactly what we assumed in (1). �

Definition 12.3.9. A bilinear form t : S(D)2 → Z is called translation-
invariant, if it satisfies the equivalent conditions of Lemma 12.3.8.

Formally, it is easy to see that t(1, ·) = 0 = t(·,1) if t is translation invariant.
Namely, if Q ∈ D , and Q1 is the “lower left quadrant” of Q, then

Q =
⋃

γ∈{0,1}d
(Q1+̇γ), hαQ =

∑
γ∈{0,1}d

〈hαQ〉Q1+̇γ1Q1+̇γ ,

where the coefficients 〈hαQ〉Q1+̇γ are equal to ±|Q|−1/2, with equally many of
each sign. Now, formally, we have

“ t(1,1Q1+̇γ) = t(τγ`(Q1)1, τγ`(Q)1Q1
) = t(1,1Q1

), ”

and hence

“ (1, hαQ) =
∑

γ∈{0,1}d
〈hαQ〉Q1+̇γt(1,1Q1+̇γ)

=
∑

γ∈{0,1}d
〈hαQ〉Q1+̇γt(1,1Q1

) = 0 · t(1,1Q1
) = 0. ”

Problems with this computation are:
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(1) While we defined t(1, hαQ) for cancellative Haar functions hαQ, the expres-
sions “t(1,1Q1+̇γ)” above need not even be defined; i.e., even if the series
defining the former converges, an analogous series for the latter need not.

(2) The assumption that t is translation invariant was made on the class of
functions S(D) only, and the constant function 1 is not in this class.

Nevertheless, under a mild decay assumption, and some care with limits, we
can bootstrap the above heuristics into a solid argument:

Proposition 12.3.10. Suppose that t : S(D)2 → Z is translation-invariant
and satisfies the decay assumption, for all Q ∈ D and m >MQ, that

‖t(1Q,1Q+̇m)‖ + ‖t(1Q+̇m,1Q)‖ 6 cQ|m|−d. (12.35)

Then t(1, ·) = 0 = t(·,1).

Proof. We fix some Q ∈ Dk and α ∈ {0, 1}d \ {0}. By definition, we have

t(1, hαQ) =
∑
m∈Zd

t(1Q+̇m, h
α
Q) = lim

M→∞

∑
m∈Zd
|m|∞6M

t(1Q+̇m, h
α
Q)

= lim
M→∞

∑
β,γ∈{0,1}d

〈hαQ〉Q1+̇γ

∑
m∈Zd
|m|∞6M

t(1Q1+̇β+̇2m,1Q1+̇γ),

where rearranging the order of the finite sums inside the limit presents no
issues. Here

t(1Q1+̇β+̇2m,1Q1+̇γ) = t(1Q1+̇(β−γ)+̇2m,1Q1),

and hence, noting that β − γ ∈ {−1, 0, 1}d,∑
m∈Zd
|m|∞6M

t(1Q1+̇β+̇2m,1Q1+̇γ) =
∑
n∈Zd

n∈[−2M,2M ]d+(β−γ)

t(1Q1+̇n,1Q1
)

=
( ∑

n∈Zd
n∈[−(2M−1),2M−1]d

+
∑
n∈Zd

n∈[−2M,2M ]d+(β−γ)

n/∈[−(2M−1),2M−1]d

)
t(1Q1+̇n,1Q1

)

=: IM + IIβ−γM .

In IIβ−γM , we note that at least one component ni of n must satisfy |ni| > 2M ,
and hence the decay assumption (12.35) ensures that

‖t(1Q1+̇n,1Q1
)‖ 6 cQ1

(1 + 2M)−d.

On the other hand, we have n ∈ [−(2M+1), 2M+1]d\[−(2M−1), (2M−1)]d,
and the total number of such n ∈ Zd is
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(1 + 2(2M + 1))d − (1 + 2(2M − 1))d = (4M + 3)d − (4M − 1)d

6 4d(4M + 3)d−1,

and hence

‖IIβ−γM ‖ 6 4d(4M + 3)d−1 × cQ1(1 + 2M)−d 6 cdcQ1M
−1.

Substituting back, it follows that

t(1, hαQ) = lim
M→∞

∑
β,γ∈{0,1}d

〈hαQ〉Q1+̇γ(IM + IIβ−γM )

= lim
M→∞

∑
β,γ∈{0,1}d

〈hαQ〉Q1+̇γII
β−γ
M = lim

M→∞
O(M−1) = 0.

The computation for t(hαQ,1) is entirely similar. �

Remark 12.3.11. It is easy to see from the proof that the decay assumption
(12.35) could be somewhat weakened. We have not strived for maximal gen-
erality at this point, but stated a condition that is both relatively simple to
formulate and easy to verify in our main application to Calderón–Zygmund
singular integrals.

12.3.b The BCR algorithm and Figiel’s decomposition

In order to analyse t(f, g), we will use the auxiliary operators

Ekf =
∑
Q∈Dk

EQf =
∑
Q∈Dk

〈f〉Q1Q, Dk = {Q ∈ D : `(Q) = 2−k}.

Dkf = Ek+1f − Ekf =
∑
Q∈Dk

( ∑
Q′∈ch(Q)

EQ′f − EQf
)

=
∑
Q∈Dk

DQf.

Our starting point for the analysis of a bilinear form is the following useful
identity:

Lemma 12.3.12 (Beylkin–Coifman–Rokhlin (BCR) algorithm). Let
X,Y be Banach spaces, and let t : S(D)2 → L (X,Y ) be bilinear. Suppose
that f ∈ S(D ;X) and g ∈ S(D ;Y ∗) are constant on all Q ∈ DM . Then for
all integers m < M ,

t(f, g) =
∑

m6k<M

t(Dkf,Dkg) +
∑

m6k<M

t(Dkf,Ekg)

+
∑

m6k<M

t(Ekf,Dkg) + t(Emf,Emg).
(12.36)
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Proof. That f is constant on all Q ∈ DM means that f = EMf , and similarly
g = EMg. Thus we have

t(f, g)− t(Emf,Emg) = t(EMf,EMg)− t(Emf,Emg)

=
∑

m6k<M

(t(Ek+1f,Ek+1g)− t(Ekf,Ekg)),

where

t(Ek+1f,Ek+1g) = t((Dk + Ek)f, (Dk + Ek)g)

= t(Dkf,Dkg) + t(Dkf,Ekg) + t(Ekf,Dkg) + t(Ekf,Ekg),

and hence

t(Ek+1f,Ek+1g)− t(Ekf,Ekg)

= t(Dkf,Dkg) + t(Dkf,Ekg) + t(Ekf,Dkg).

�

Remark 12.3.13. The upper bound k < M imposed on the summation vari-
ables above is redundant: the condition that f and g are constant on all
Q ∈ DM implies that Dkf = 0 = Dkg for k >M , so that the right side would
remain unchanged if we allow the summations to run to infinity.

The final term in the expansion 12.36 is an error term, and can be controlled
under the following mild conditions, which are obviously necessary for t to
define a bounded operator on Lp:

Definition 12.3.14. We say that a bilinear t : S(D)2 → Z satisfies

(1) the weak boundedness property if

‖t(1Q,1Q)‖Z 6 ‖t‖wbp|Q| ∀Q ∈ D ;

(2) the adjacent weak boundedness property if

‖t(1Q,1Q+̇n)‖Z 6 ‖t‖awbp|Q| ∀Q ∈ D , ∀n ∈ {−1, 0, 1}d. (12.37)

Lemma 12.3.15. Let X,Y be Banach spaces, and let a bilinear t : S(D)2 →
L (X,Y ) satisfy the adjacent weak boundedness property. Then for all f ∈
S(D ;X) and g ∈ S(D ;Y ), and all negative enough m, we have

|t(Emf,Emg)| 6 2d‖t‖awbp‖Emf‖Lp(Rd;X)‖Emg‖Lp′ (Rd;Y ∗) −→m→−∞
0.

Proof. We choose m so negative that the (bounded) supports of f ∈ S(D ;X)
and g ∈ S(D ;Y ∗) are both contained in the union of at most 2d cubes Q ∈ Dm

such that any two of them are related by R = Q+̇n for some n ∈ {−1, 0, 1}d.
We then have



156 12 Dyadic operators and the T (1) theorem

t(Emf,Emg) =
∑

Q,R∈Dm

t(EQf,ERg) =
∑

Q,R∈Dm

t(〈f〉Q1Q, 〈g〉R1R),

and thus

|t(Emf,Emg)| 6
∑

Q,R∈Dm

‖t(1Q,1R)‖L (X,Y )‖〈f〉Q‖X‖〈g〉R‖Y ∗

6
∑

Q,R∈Dm

‖t‖awbp|Q|‖〈f〉Q‖X‖〈g〉R‖Y ∗

= ‖t‖awbp
∑
Q∈Dm

|Q|1/p‖〈f〉Q‖X
∑
R∈Dm

|R|1/p
′
‖〈g〉R‖Y ∗

6 ‖t‖awbp2d/p
′
( ∑
Q∈Dm

|Q|‖〈f〉Q‖pX
)1/p

2d/p
( ∑
R∈Dm

|R|‖〈g〉R‖p
′

Y ∗

)1/p′

= 2d‖t‖awbp‖Emf‖Lp(Rd;X)‖Emg‖Lp(Rd;Y ∗),

which is the claimed bound. �

The other terms in (12.36) can be identified with the various operators that
we have studied in the previous sections:

Definition 12.3.16. Let X,Y be Banach spaces, let t : S(D)2 → L (X,Y )
be a bilinear form, and let t(·,1) and t(1, ·) be well-defined. We define the
following operators associated with t:

Ht :=
∑
α,γ

Hαγ
tα,γ0

, where Hαγ
tα,γ0

are Haar multipliers (12.3),

Tn,t :=
∑

α,γ∈{0,1}d\{0}

Tαγ
φn,t

α,γ
n
, where Tαγ

φn,t
α,γ
n

are Figiel’s operators (12.14)

with

{
φn(Q) := Q+̇n := Q+ n`(Q),

tα,γn (Q) := t(hαQ, h
γ

Q+̇n
),

U in,t :=
∑

α∈{0,1}d\{0}

Uα
φn,u

i,α
n
, where Uα

φn,u
i,α
n

are Figiel’s operators (12.19),

with ui,αn (Q) :=

{
t1,αn (Q)∗ := t(h0

Q+̇n
, hαQ)∗, i = 1,

t2,αn (Q) := t(hαQ, h
0
Q+̇n

), i = 2.

We also define the related paraproducts:

Π1
t := paraproduct with coefficients t(1, hαQ),

Π2
t := paraproduct with coefficients t(hαQ,1)∗,

Λt := bi-paraproduct with coefficients πα,1Q = t(1, hαQ) and πα,2Q = t(hαQ,1),

lt := the bilinear form of Λt.

We may drop the subscript t from these notations if it is obvious from the
context.



12.3 The T (1) theorem for abstract bilinear forms 157

Remark 12.3.17. Our indexing of the operators U in,t may appear counterin-
tuitive at first sight, as one might like to think of the operators U2

n,t, which

act on f ∈ Lp(Rd;X) with coefficients t(hαQ, h
0
Q+̇n

) ∈ L (X,Y ), as deserv-

ing to be the “primary” ones, rather than U1
n,t, which act on the dual side

g ∈ Lp
′
(Rd;Y ∗) with adjoint coefficients t(h0

Q+̇n
, hαQ)∗ ∈ L (Y ∗, X∗). How-

ever, this indexing is chosen, since the operators U in,t naturally arise in par-
allel with the paraproducts Πi of the same index i ∈ {1, 2}—see (12.42) and
(12.43) below—, and it turns out to have some other advantages in the sequel.

With this notation, we can formula Figiel’s decomposition of a bilinear form:

Proposition 12.3.18 (Figiel). Let X,Y be Banach spaces, let t : S(D)2 →
L (X,Y ) be a bilinear form, and let t(·,1) and t(1, ·) be well-defined. For all

f ∈ S(D ;X), g ∈ S(D ;Y ∗), m ∈ Z,

denoting

u := (I − Em)f ∈ S00(D ;X), v := (I − Em)g ∈ S00(D ;Y ∗),

we have the following identity with absolute convergence:

t(f, g) = 〈Htu, g〉+ 〈Π1
t f, v〉+ 〈u,Π2

t g〉+ t(Emf,Emg)+

+
∑
n∈Zd
n 6=0

{
〈Tn,tu, g〉+ 〈f, U1

n,tv〉+ 〈U2
n,tu, g〉

}
, (12.38)

where the operators on the right are as in Definition 12.3.16. If these coeffi-
cients satisfy

‖t(1, hαQ)‖, ‖t(hαQ,1)‖ 6 C|Q|1/2, (12.39)

then we have the further identity, with all terms below well defined:

〈Π1
t f, v〉+ 〈u,Π2

t g〉 = 〈Λtf, g〉 − 〈mΠ1
t f, g〉 − 〈f,mΠ2

t g〉. (12.40)

Remark 12.3.19. Since Hαγλ = Tαγφ0,λ
, we could have incorporated the Haar

multiplier into the second line of (12.38) as 〈Htu, g〉 = 〈T0,tu, g〉. But we
prefer to keep it separate, since its treatment will involve some differences
compared to the rest of the Tn,t.

Proof of Proposition 12.3.18. We start with the identity (12.36) of Lemma
12.3.12. Since the sums are finitely nonzero, we are free rearrange as follows,
observing that dyadic cubes Q,R of the same size are necessarily integer (times
side-length) translates of each other:∑

k>m

t(Dkf,Dkg) =
∑
k>m

∑
Q,R∈Dk

t(DQf,DRg)

=
∑
k>m

∑
Q∈Dk

∑
n∈Zd

t(DQf,DQ+̇ng) =
∑
Q∈D

`(Q)62−m

∑
n∈Zd

t(DQf,DQ+̇ng)
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and we can also switch the order of the last two sums. Observing that u =
(I−Em)f satisfies DQu = DQf for `(Q) 6 2−m and DQu = 0 for `(Q) > 2−m,
we find that, replacing f by u (and/or g by v) we can drop the restriction
`(Q) 6 2−m in the sum. Moreover, using the convention that summations
over α and γ are always over the set {0, 1}d \ {0},∑

Q∈D

t(DQu,DQ+̇ng) =
∑
α,γ

∑
Q∈D

〈
t(hαQ, h

γ

Q+̇n
)〈hαQ, u〉, 〈h

γ

Q+̇n
, g〉
〉

=
∑
α,γ

〈Tα,γ
φn,t

αγ
n
u, g〉 = 〈Tnu, g〉.

Hence ∑
k>m

t(Dkf,Dkg) =
∑
n∈Zd
〈Tnu, g〉 = 〈Hu, g〉+

∑
n∈Zd
n 6=0

〈Tnu, g〉
(12.41)

For the terms involving Ek, we begin in the same way but then introduce
an additional twist to force some cancellation:∑
k>m

t(Dkf,Ekg) =
∑
Q∈D

`(Q)62−m

∑
n∈Zd

t(DQf,EQ+̇ng)

=
∑
Q∈D

`(Q)62−m

∑
n∈Zd

(
t(DQf,1Q+̇n(〈g〉Q+̇n − 〈g〉Q)) + t(DQf,1Q+̇n〈g〉Q))

)
.

The assumption that t(·,1) is well-defined guarantees the absolute convergence
of ∑

n∈Zd
t(DQf,1Q+̇n〈g〉Q) =: t(DQf, 〈g〉Q).

Recalling that only finitely many DQf with `(Q) 6 2−m are non-zero, we also
get the absolute convergence of∑

Q∈D
`(Q)62−m

∑
n∈Zd

t(DQf,1Q+̇n〈g〉Q) =
∑
Q∈D

`(Q)62−m

t(DQf, 〈g〉Q) =: pm(f, g),

and hence, by triangle inequality, that of∑
n∈Zd

t(DQf,1Q+̇n(〈g〉Q+̇n − 〈g〉Q)).

Thus we can make the rearrangements∑
k>m

t(Dkf,Ekg) =
∑
n∈Zd
n 6=0

∑
Q∈D

`(Q)62−m

t(DQf,1Q+̇n(〈g〉Q+̇n − 〈g〉Q)) + pm(f, g)
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where adding the summation condition n 6= 0 was for free, since the factor
〈g〉Q+̇n − 〈g〉Q evidently vanishes when n = 0. Again, replacing f by u allows
us to drop the restrictions to `(Q) 6 2−m both in the sum spelled out above
and in pm(f, g). Moreover,∑

Q∈D

t(DQu,1Q+̇n(〈g〉Q+̇n − 〈g〉Q))

=
∑
α

∑
Q∈D

〈
t(hαQ, h

0
Q+̇n)〈hαQ, u〉, 〈h0

Q+̇n − h
0
Q, g〉

〉
=
∑
α

〈Uα
φn,t

α,0
n
u, g〉 = 〈U2

n,tu, g〉.

Directly from the definitions, we also have

pm(f, g) =
∑
Q∈D

t(DQu, 〈g〉Q)

=
∑
Q∈D

∑
α∈{0,1}d\{0}

t(hαQ〈hαQ, u〉, 〈g〉Q)

=
∑
Q∈D

∑
α∈{0,1}d\{0}

〈
t(hαQ,1)〈hαQ, u〉, 〈g〉Q

〉
=
∑
Q∈D

∑
α∈{0,1}d\{0}

〈
〈hαQ, u〉, t(hαQ,1)∗〈g〉Q

〉
= 〈u,Π2

t g〉.

In the computation above, the fact that u ∈ S00(D ;X) guarantees that all
summations are finite, and the last step is simply the definition of the para-
product via its action of the finitely non-zero Haar expansions in the dual
space. Hence we have verified that∑

k>m

t(Dkf,Ekg) =
∑
n∈Zd
n 6=0

〈U2
n,tu, g〉+ 〈u,Π2

t g〉, (12.42)

and the proof that∑
k>m

t(Ekf,Dkg) =
∑
n∈Zd
n 6=0

〈f, U1
n,tv〉+ 〈Π1

n,tf, v〉 (12.43)

is entirely analogous. Substituting the previous two identities and (12.41) into
(12.36), we obtain the claimed (12.38).

Under the additional assumption (12.39), we know from Corollary 12.2.12
that 〈Π1

t f, g〉 is well-defined and bilinear in (f, g) ∈ S(D ;X)×S(D ;Y ∗), and
hence

〈Π1
t f, v〉 = 〈Π1

t f, g〉 − 〈Π1
t f,Emg〉 = 〈Π1

t f, g〉 − 〈mΠ1
t f, g〉.

Similarly, 〈u,Π2
t g〉 = 〈f,Π2

t g〉 − 〈f,mΠ2
t g〉, and the previous two identities

combine to give (12.40), noting that 〈Π1
t f, g〉+ 〈f,Π2

t g〉 = 〈Λtf, g〉. �
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12.3.c Figiel’s T (1) theorem

The previous section culminated in Proposition 12.3.18, which established a
decomposition of a generic bilinear form t : S(D)2 → L (X,Y ) in terms of
various fundamental operators. This is as far as it seems useful to proceed with
identities, and we now turn to conditions that allow us to make meaningful
estimates of the terms in the obtained decomposition. For this purpose, we
introduce a certain family of norms. For a smooth discussion of a couple
of closely related variants, it is convenient to adopt the following general
framework.

Definition 12.3.20. Let Z be a Banach space, and P(Z) the collection of
all subsets of Z. We say that ℘ : P(Z)→ [0,∞] is a good set-bound on Z, if
it satisfies the following properties for all S ,T ⊆ Z:

(1) If S ⊆ T , then ℘(S ) 6 ℘(T ).
(2) ℘(S ∪T ), ℘(S + T ) 6 ℘(S ) + ℘(T ).
(3) If Z ⊆ K, then ℘(Z T ) 6 supz∈Z |z| × ℘(T ).
(4) ℘(T ) = ℘(conv T ) = ℘(abs conv T ).
(5) ℘(T ) = ℘(T ), where T denotes the norm-closure of T .

We primarily have in mind the following three cases:

Lemma 12.3.21. Let X and Y be Banach spaces and p ∈ [1,∞). Then each
of the following ℘ is a good set-bound on Z = L (X,Y ):

(a) ℘ = U , where U (T ) := sup{‖T‖ : T ∈ T },
(b) ℘ = Rp, the R-bound of order p,
(c) ℘ = R∗p , the dual R-bound defined by

R∗p(T ) := Rp(T
∗), T ∗ := {T ∗ ∈ L (Y ∗, X∗) : T ∈ T }.

Proof. (a): The verification of the properties is immediate.

(b): Properties (1) and (2) for ℘ = Rp are contained in the items with
same numbers in Proposition 8.1.19. Property (3) follows from

Rp(Z T ) 6 Rp(Z )Rp(T ), Rp(Z ) = sup
z∈Z
|z|,

where the first estimate is Proposition 8.1.19(3) and the second is immediate
from Kahane’s contraction principle (cf. the discussion right before Defini-
tion 8.1.1 of R-boundedness). Finally, properties (4) and (5) are contained in
Propositions 8.1.21 and 8.1.22, respectively.

(c): All properties are direct corollaries of the corresponding properties
in (b), since all set operations involved in these properties are well-behaved
under the adjoint operation:

(1) S ⊆ T if and only if S ∗ ⊆ T ∗,
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(2) (S ∪T )∗ = S ∗ ∪T ∗ and (S + T )∗ = S ∗ + T ∗,
(3) if Z ⊆ K, then (Z T )∗ = Z T ∗,
(4) (conv T )∗ = conv(T ∗) and (abs conv T )∗ = abs conv(T ∗),
(5) (T )∗ = T ∗.

�

Definition 12.3.22 (Figiel norms of a bilinear form). For a bilinear
form t : S(D)2 → L (X,Y ), let tαγn , ti,αn : D → L (X,Y ) be the associated
functions appearing in Proposition 12.3.18. For s > 0 and a good set-bound ℘
on L (X,Y ), we define

‖tθ‖Figs(℘) :=
∑
n∈Zd
n 6=0

(2 + log2 |n|)s℘(tθn), θ ∈ {(α, γ), (i, α)},

‖t(0)‖Figs(℘) :=
∑

α,γ∈{0,1}d\{0}

‖tαγ‖Figs(℘),

‖t(i)‖Figs(℘) :=
∑

α∈{0,1}d\{0}

‖ti,α‖Figs(℘), i ∈ {1, 2},

‖t‖Figs(℘) :=

2∑
i=0

‖t(i)‖Figs(℘).

When ℘ = U is as in Lemma 12.3.21(a), we write Figs(∞) := Figs(U ).

Remark 12.3.23. Referring to Proposition 12.3.18, one observes that the Figiel
norms impose control on pairings t(hαQ, h

γ
Q), where at least one of the Haar

functions is cancellative, i.e., (α, γ) 6= (0, 0). This is in contrast to the decay
condition (12.35), where α = γ = 0.

Since we also encountered the adjoint function u1,α
n (Q) := (t1,αn (Q))∗, we recall

the following results from the previous volumes:

Proposition 12.3.24. Let X and Y be Banach spaces, T ⊆ L (X,Y ), and
p ∈ (1,∞). If X is K-convex (resp. a UMD space), then

R∗p′(T ) 6 Kp,XRp(T )
(
6 β+

p,XRp(T )
)
.

If Y is K-convex (resp. a UMD space), then

Rp(T ) 6 Kp,Y R∗p′(T )
(
6 β+

p,Y R∗p′(T )
)
.

In particular, if both X and Y are K-convex (resp. UMD spaces), the set-
bounds Rp and R∗p′ are equivalent on L (X,Y ).

Proof. The first inequalities in both chains are restatements of bounds in
Proposition 8.4.1, and we have Kp,Z 6 β

+
p,Z by Proposition 4.3.10. �
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Thanks to Proposition 12.3.24, we would not need to distinguish (when work-
ing in UMD spaces) between direct and adjoint R-boundedness conditions, as
such assumptions are actually equivalent. Nevertheless, we choose to do so,
for twofold reasons. First, as far as quantitative conclusions are concerned, we
would lose a constant each time we pass to the dual side, whereas in many
applications, verifying the R-boundedness of concrete operators is just as easy
(or difficult) directly on the dual side, so that applying the general duality
result for R-boundedness is unnecessary. Second, writing the adjoint bounds
explicitly, where they are relevant, will hopefully better clarify the role of the
different assumptions in the estimates.

In the following lemma, we observe that Figiel norm estimates, of the type
we will need to assume any way, will also guarantee the well-definedness of
t(·,1) and t(1, ·)), which allows us to drop these as separate assumptions in
the sequel.

Lemma 12.3.25. Let X and Y be Banach spaces, and let t : S(D)2 →
L (X,Y ) be a bilinear form. If ‖t(2)‖Fig0(∞) < ∞ (resp. ‖t(1)‖Fig0(∞) < ∞),
then t(·,1) (resp. t(1, ·)) is well defined, and

‖t(hαQ,1)‖ 6 ‖t2,α‖Fig0(∞)|Q|1/2,(
‖t(1, hαQ)‖ 6 ‖t1,α‖Fig0(∞)|Q|1/2

)
.

(12.44)

Proof. For every Q ∈ D and α ∈ {0, 1}d \ {0}, we have∑
R∈D

`(R)=`(Q)

‖t(hαQ,1R)‖ =
∑
n∈Zd

‖t(hαQ, h0
Q+̇n)‖|Q|1/2

6
∑
n∈Zd

‖tα,0n (Q)‖|Q|1/2 = ‖t2,α‖Fig0(∞)|Q|1/2 <∞,

which shows both that t(·,1) is well defined and the related bound. The case
of t(1, ·) is analogous. �

Theorem 12.3.26 (T (1) theorem for bilinear forms). Let p ∈ (1,∞)
and 1 6 ti 6 p 6 qi 6∞, i = 0, 1, 2, where q1 =∞ and t2 = 1. Consider the
following conditions:

(i) X and Y are UMD spaces;
(ii) X has cotype qi and Y has type ti, or one of them has both, for each

i = 0, 1, 2,
(iii) t : S(D)2 → L (X,Y ) is a bilinear form with

∑
α,γ

DRp(t
αγ
0 ) +

2∑
i=0

‖t(i)‖Figσi (Rp) <∞,

where σi := 1/ti − 1/qi,
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(iv) t satisfies the adjacent weak boundedness property.

Under assumptions (i) through (iv), the bilinear form t− lt defines a bounded
operator T − Λt ∈ L (Lp(Rd;X), Lp(Rd;Y )) that satisfies

(a) the norm estimate:

‖T − Λt‖L (Lp(Rd;X),Lp(Rd;Y )) 6 βp,Xβp,Y
{∑
α,γ

DRp(t
α,γ
0 )+

+Ad min
i=1,2

C0,i‖t(0)‖Figσ0 (℘i) +Bd

2∑
i=1

Ci,i‖t(i)‖Figσi (℘i)

}
where Ad := 6 · (81)d, Bd := 5 200 · (81)d, ℘1 := R∗p′ , ℘2 := Rp, and

Ci,2 := C(12.15)(X,Y, p, qi, ti), Ci,1 := C(12.15)(Y
∗, X∗, p′, t′i, q

′
i),

(b) the representation formula, with absolute convergence for all f ∈ Lp(Rd;X)
and g ∈ Lp′(Rd;Y ∗):

〈(T − Λt)f, g〉 = 〈Htf, g〉+
∑
n∈Zd
n 6=0

(
〈Tn,tf, g〉+ 〈f, U1

n,tg〉+ 〈U2
n,tf, g〉

)
,

(12.45)

where the operators on the right are as in Definition 12.3.16.

Under assumptions (i) through (iii), the following conditions are equivalent:

(1) t defines a bounded operator T ∈ L (Lp(Rd;X), Lp(Rd;Y ));
(2) t satisfies (iv), and lt defines a bounded Λt ∈ L (Lp(Rd;X), Lp(Rd;Y )).

Under these equivalent conditions, we have both (a) and (b).

Remark 12.3.27. The assumptions of Theorem 12.3.26 allow a certain trade-
off between the Figiel norms that one imposes on the bilinear form t on the one
hand, and (co)type assumptions (and the size of the related constants) on the
spaces X and Y on the other hand. Indeed, the norms ‖ ‖Figσi become smaller
with decreasing σi = 1/ti − 1/qi, thus with increasing type ti or decreasing
cotype qi, but at the same time the related constants C(12.15) may increase.

Let 1 6 t 6 p 6 q 6 ∞ and suppose that X has cotype q and Y has
type t, or one of them has both. In Theorem 12.3.26, we will then choose
(t1, q1) = (t,∞) and (t2, q2) = (1, q); thus σ1 = 1/t and σ2 = 1/q′. However,
there are three prominent choices of the exponents t0 and q0:

(0) With (t0, q0) = (t, q), we have

σ0 =
1

t
− 1

q
6 min
i=1,2

σi,

with strict inequality if both t and q are chosen to be non-trivial (as one
always can for UMD spaces X and Y by Proposition 7.3.15). This shows
that a strictly weaker condition is required on t(0) than on t(i) with i = 1, 2,
but this seems to be largely a curiosity.
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(1) With (t0, q0) = (t1, q1) = (t,∞), we have σ0 = σ1. Thus, we impose a
stronger norm of t(0) than in case (0), but we achieve the following better
constants in Theorem 12.3.26(a) under this choice:

C0,1 = C(12.15)(Y
∗, X∗, p′, t′, 1) = C1,1,

while an inspection of (12.15) shows that C0,1 is larger than C1,1 in general.
(2) Similarly, with (t0, q0) = (t2, q2) = (1, q), we get

C0,2 = C(12.15)(X,Y, p, q, 1) = C2,2.

Using either choice (1) or (2) in Theorem 12.3.26, its key norm estimate admits
the following form, under the assumption (we recall) that X has cotype q and
Y has type t, or one of them has both,

‖T − Λt‖L (Lp(Rd;X),Lp(Rd;Y )) 6 βp,Xβp,Y
{∑
α,γ

DRp(t
α,γ
0 )+

+
2∑
i=1

Ci

(
Ad‖t(0)‖Figσi (℘i) +Bd‖t(i)‖Figσi (℘i)

)}
,

where σ1 = 1/t, σ2 = 1/q′, and

C1 := C(12.15)(Y
∗, X∗, p′, t′, 1), C2 := C(12.15)(X,Y, p, q, 1).

Proof of Theorem 12.3.26. The core of the proof will consist of establishing
claims (a) and (b) under the full set of assumptions (i) through (iv). Assuming
that this is already done, let us see how to conclude the rest of the proof.

The equivalence of (1) and (2) is asserted under the assumptions (i)
through (iii) only. However, the adjacent weak boundedness property (iv)
is clearly necessary for (1) and it is explicitly assumed in (2), so we can as-
sume that this condition is satisfied in any case, and so we are in fact working
under the full set of assumptions (i) through (iv) also in this remaining part
of the proof. Thus the consequences (a) and (b) of this assumption are valid.
In particular, since the bilinear form t − l defines a bounded operator under
this assumption, it is clear that t defines a bounded operator if and only if l
does.

We then turn to the actual proof of (a) and (b) under the assumptions (i)
through (iv). From Lemma 12.3.25, we get that t(·,1) and t(1, ·), and hence the
two paraproducts, are well defined, and their coefficients satisfy the bounds
(12.44). For f ∈ S(D ;X) and g ∈ S(D ;Y ∗), we then have both identities
(12.38) and (12.40) provided by Proposition 12.3.18. Combined together, they
read as

t(f, g) = 〈Hum, g〉+ 〈Λf, g〉+ Em(f, g)+

+
∑
n∈Zd
n 6=0

{
〈Tnum, g〉+ 〈f, U1

nvm〉+ 〈U2
num, g〉

}
, (12.46)



12.3 The T (1) theorem for abstract bilinear forms 165

where um := (I−Em)f ∈ S00(D ;X), vm := (I−Em)g ∈ S00(D ;Y ∗), and the
error term

Em(f, g) = 〈mΠ1f, g〉+ 〈f,mΠ2g〉+ t(Emf,Emg)

satisfies

|Em(f, g)| 6
(
cd,p

2∑
i=1

‖t(i)‖Fig0(∞) + 2d‖t‖awbp
)
×

× ‖Emf‖Lp(Rd;X)‖Emg‖Lp(Rd;Y ∗) −→
m→−∞

0

(12.47)

by Lemmas 12.2.11 and 12.3.25 for the paraproduct terms and Lemma 12.3.15
for both the final term and the limit.

Directly from Theorem 12.1.11, we deduce that

|〈Hum, g〉| 6
∑
α,γ

|〈Hαγ
tα,γ0

um, g〉|

6 β+
p,Xβ

+
p′,Y ∗

∑
α,γ

DRp(t
α,γ
0 )‖um‖p‖g‖p,

(12.48)

where, and in the rest of the proof, we abbreviate

‖ ‖p := ‖ ‖Lp(Rd;X), ‖ ‖p′ := ‖ ‖Lp′ (Rd;Y ∗).

Note that φn(Q) := Q+̇n satisfies φn(Q) ⊆ 3Q(N) provided that |n| 6 2N ;
thus in particular for N = dlog+

2 |n|e; this is relevant in view of applying
Corollary 12.1.27 and Theorem 12.1.28. From Corollary 12.1.27, we deduce
that

|〈Tnum, g〉| 6
∑
α,γ

|〈Tαγ
φn,t

α,γ
n
um, g〉|

6 Adβp,Xβp,Y (2 + log2 |n|)1/t0−1/q0 min
i=1,2

C0,i℘i(t
α,γ
n )‖um‖p‖g‖p′

using the notation of the statement of the theorem that we are proving. Hence∑
n∈Zd
n 6=0

|〈Tnum, g〉| 6 Adβp,Xβp,Y min
i=1,2

C0,i‖t(0)‖Fig1/t0−1/q0 (℘i)
‖um‖p‖g‖p′

Similarly, recalling that t2 := 1, Theorem 12.1.28 guarantees that

|〈U2
num, g〉| 6

∑
α

|〈Uα
φn,t

2,α
n
um, g〉|

6 Bdβp,Xβp,Y (2 + log2 |n|)1/t2−1/q2
∑
α

C2,2℘2(t2,αn )‖um‖p‖g‖p′

in the notation of the theorem, and hence
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n∈Zd
n 6=0

|〈U2
num, g〉| 6 Bdβp,Xβp,Y C2,2‖t(2)‖Fig1/t2−1/q2 (℘2)‖um‖p‖g‖p′ .

For the term 〈f, U1
nvm〉, we again apply Theorem 12.1.28 but on the dual

side, with X,Y, p replaced by Y ∗, X∗, p′. By assumption, Y has type t1 6 p,
and hence Y ∗ has cotype t′1 > p′ by Proposition 7.1.13. So we can indeed
apply Theorem 12.1.28 with X,Y, p, q replaced by Y ∗, X∗, p′, t′1. Recalling
that q1 :=∞, and noting that 1− 1/t′1 = 1/t1 = 1/t1 − 1/q1, this gives

|〈f, U1
nvm〉| 6

∑
α

|〈f, Uα
φn,(t

1,α
n )∗

vm〉|

6 Bdβp′,X∗βp′,Y ∗(2 + log2 |n|)1/t1−1/q1‖f‖p‖vm‖p′×
× C(Y ∗, X∗, p′, t′1)Rp′((t

1,α
n )∗),

where βp′,X∗βp′,Y ∗ = βp,Xβp,Y and

C(Y ∗, X∗, p′, t′1)Rp′((t
1,α
n )∗) = C1,1R

∗
p′(t

1,α
n ) = C1,1℘1(t1,αn )

in the notation of the theorem. Hence∑
n∈Zd
n 6=0

|〈f, U1
nvm〉| 6 Bdβp,Xβp,Y C1,1‖t(1)‖Fig1/t1−1/q1 (℘1)‖f‖p‖vm‖p′ .

Noting that ‖um‖p 6 2‖f‖p and ‖vm‖p′ 6 2‖g‖p′ , and using the assump-
tion about ‖t(i)‖Fig1/ti−1/qi (Rp) (combined with Proposition 12.3.24 in the case

of Rp′((t
1,α
n )∗)), it follows that the series in (12.46) are term-wise and uni-

formly in m dominated by absolutely convergent series. This allows us to pass
to the limit m→ −∞ in (12.46) with dominated convergence to deduce that

(t− l)(f, g) = RHS(12.45) ∀ f ∈ S(D ;X), g ∈ S(D ;Y ∗). (12.49)

Taking the same limit in the term-wise bounds above, we obtain

|(t− l)(f, g)| = |t(f, g)− 〈Λf, g〉|

6 βp,Xβp,Y
{∑
α,γ

DRp(t
α,γ
0 ) +Ad min

i=1,2
C0,i‖t(0)‖Fig1/t0−1/q0 (℘i)

+Bd

2∑
i=1

Ci,i‖t(i)‖Fig1/ti−1/qi (℘i)

}
‖f‖Lp(Rd;X)‖g‖Lp′ (Rd;Y ∗)

(12.50)

again for all f ∈ S(D ;X) and g ∈ S(D ;Y ∗), where Ad, Bd and Ci are as in
the statement of the Theorem.

This estimate shows that the bilinear form t− l satisfies a relevant a priori
bound, and hence defines an operator T − Λ ∈ L (Lp(Rd;X), Lp(Rd;Y )). By
density, it is immediate that (12.50) remains valid with general f ∈ Lp(Rd;X)
and g ∈ Lp′(Rd;Y ∗), and this proves the claimed norm bound (a) for T − Λ.
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We can then replace (t−l)(f, g) by 〈(T−Λ)f, g〉 in (12.49). Approximating
general f ∈ Lp(Rd;X) and g ∈ Lp′(Rd;Y ∗) by functions as in (12.49), and
using dominated convergence and the term-wise bounds recorded above, this
proves the representation (b). This completes the proof of the claims under
the assumption that t satisfies the adjacent weak boundedness property. �

12.3.d Improved estimates via random dyadic cubes

A feature of Theorem 12.3.26 is that it deals with a bilinear form adapted
to a fixed system of dyadic cubes D . This is an advantage in applications
to questions of intrinsically dyadic nature. But it is also a certain limitation
in view of applications to non-dyadic questions, in that the assumptions of
Theorem 12.3.26 fail to take advantage of possible information about non-
dyadic cubes. For example, with some effort, one could use Theorem 12.3.26
to re-derive the boundedness of the Hilbert transform on Lp(R;X), which
we proved in a different way in Theorem 5.1.13. However, the conclusion
derived from Theorem 12.3.26 would be quantitatively weaker, in terms of
the dependence on the UMD constant βp,X , which was quadratic in Theorem
5.1.13. For X = Y , Theorem 12.3.26 also features the explicit factor β2

p,X , but
there is another βp,X implicit in the constants C(12.15). On the other hand,
it is evident that, for t(f, g) := 〈Hf, g〉, there is no difference in estimating
t(hαI , h

γ
K) for dyadic or non-dyadic intervals I, J . But Theorem 12.3.26, as

formulated, makes no use of this additional information.
We now wish derive to variant of Theorem 12.3.26 to address these issues.

First of all, we need a straightforward generalisation to Rd of the random
dyadic systems that we used in the one-dimensional case in Section 5.1.

Lemma 12.3.28. Let D be a fixed dyadic system on Rd, in the sense of Def-
inition 11.1.6.

(1) For every ω = (ωj)j∈Zd ∈ ({0, 1}d)Z,

Dω :=
{
Q+̇ω : Q ∈ D

}
is another dyadic system on Rd, where

Q+̇ω := Q+ `(Q,ω), `(Q,ω) :=
∑

j:2−j<`(Q)

2−jωj .

(2) Conversely, every dyadic system D ′ has this form for some ω ∈ ({0, 1}d)Z.

Proof. Let D0 be the standard dyadic system, and consider a family of shifts
sj + D0

j . These clearly satisfy property (i) of Definition 11.1.6. A necessary
and sufficient condition for them to satisfy (ii) of Definition 11.1.6 is that
sj − sj+1 ∈ 2−j−1Zd.

If D is a dyadic system defined by shifts sj , then Dω is defined by the
shifts sj + ω(j), where
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ω(j) :=
∑
k>j

ωk2−k.

These satisfy (sj+ω(j))−(sj+1−ω(j+1)) = (sj−sj+1)+ωj+12−j−1 ∈ 2−j−1Zd,
and hence Dω is also a dyadic system, as claimed in (1).

Then suppose that D and D ′ are two dyadic systems defined by shifts sj
and s′j , respectively. It is clear that the family Dj = sj + D0

j only depends on

sj mod 2−j , and hence we may assume without loss of generality that both
sj ∈ [0, 2−j)d and tj := s′j − sj ∈ [0, 2−j)d. Since both sj − sj+1 ∈ 2−j−1Zd

and s′j − s′j+1 ∈ 2−j−1Zd, it follows that also tj − tj+1 ∈ 2−j−1Zd. Together

with the fact that tj ∈ [0, 2−j)d and tj+1 ∈ [0, 2−j−1)d, one finds that in
fact tj − tj+1 ∈ 2−j−1{0, 1}d. Denoting ωj+1 := 2j+1(tj − tj+1) ∈ {0, 1}d, we
obtain

tj = tj+1 + 2−j−1ωj+1 = . . . =
∑
k>j

2−kωk = ω(j),

and then
D ′j = s′j + D0

j = tj + sj + D0
j = ω(j) + Dj = Dω

j ,

as claimed in (2), and this completes the proof. �

Definition 12.3.29. For ω = (ωj)j∈Z ∈ ({0, 1}d)Z, let

jω := sup{j ∈ Z : ωj 6= 0} ∈ Z ∪ {−∞,∞},

({0, 1}d)Z0 :=
{
ω ∈ ({0, 1}d)Z : jω <∞

}
.

We say that ω ∈ ({0, 1}d)Z is eventually zero if ω ∈ ({0, 1}d)Z0 .

Lemma 12.3.30. For every ω ∈ ({0, 1}d)Z0 , we have

S(Dω) = S(D), S0(Dω) = S0(D).

Moreover, there exists an ω ∈ ({0, 1}d)Z0 such that S00(Dω) = S0(D).

Proof. Recall that S(D) is the span of indicators 1Q of Q ∈ D . Since every
Q ∈ Dj can be written as a union of smaller cubes Q′ ∈ Dk, for any k > j, we
see that, for any given j0 ∈ Z, the space S(D) only depends on

⋃
j>j0

Dj . On
the other hand, if ω is eventually zero, and jω is as in the definition of this
property, then Dω

j = Dj for j > jω. The first claimed identity thus follows.
The second identity follows by restricting to functions of vanishing integral

on both sides.
Finally, it is easy to choose ω ∈ ({0, 1}d)Z0 in such a way that Dω contains

an increasing sequence of cubes that exhausts all Rd. Then, given any f ∈
S(D), we can find some Q0 ∈ Dω that contains the support of f . If, in
addition, f ∈ S0(D) = S0(Dω), then f can be expanded in terms of finitely
many Haar functions hαQ with Q ⊆ Q0, and thus f ∈ S00(Dω). Since this
holds for every f ∈ S0(D), we obtain the final identity. �
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Remark 12.3.31. Without the assumption of eventually zero, the conclusion
of Lemma 12.3.30 fails in general. For instance, the indicator of the shifted
dyadic interval 1

3 + [0, 1) cannot be expressed as a finite linear combination of
standard dyadic intervals.

Thanks to Lemma 12.3.30, any bilinear form t : S(D)2 → Z may also be
regarded as a bilinear form t : S(Dω)2 → Z for every eventually zero ω.
Although the objects in fact coincide, it will be convenient to denote the latter
by tω. This is particularly relevant when considering the various auxiliary
objects derived from the bilinear form. In particular, extending the notation
from Proposition 12.3.18, we have

tω;α,γ
n (R) := t(hαR, h

γ

R+̇n
), R = Q+̇ω ∈ Dω

uω;i,α
n (R) :=

{
tω;1,α
n (R)∗ := t(h0

R+̇n
, hαR)∗, i = 1,

tω;2,α
n (R) := t(hαR, h

0
R+̇n

)∗, i = 2.

The advantage of considering several dyadic systems Dω is that this allows
us to dispense with some of the cubes within each Dω.

Definition 12.3.32. For a dyadic system D and k ∈ Z>2, a cube Q ∈ D is
called k-good (in D) if

dist(R, {R(k)) >
1

4
`(R(k)) = 2k−2`(R),

where R(k) is the kth dyadic ancestor of R in D .

Lemma 12.3.33. Consider a random choice of ω ∈ ({0, 1}d)Z>M with respect
to the uniform probability on this space. For every Q ∈ D with `(Q) > 2−M ,

(1) the random set Q+̇ω and the event {Q+̇ω is k-good in Dω} are indepen-
dent;

(2) P(Q+̇ω is k-good in Dω) = 2−d.

Proof. (1) follows by observing that Q+̇ω depends only on ωj with 2−M 6
2−j < `(Q), whereas {Q+̇ω is k-good in Dω} depends on the relative position
ofQ+̇ω with respect to cubes R+̇ω with `(R) = 2k`(Q), which in turn depends
on ωj with `(Q) 6 2−j < 2k`(Q).

(2): When all ωj with `(Q) 6 2−j < 2k`(Q) are independently chosen
from {0, 1}d, it is easy to see that the probability of {Q+̇ω is k-good in Dω}
is equal to the geometric probability (i.e., the relative volume) of the “good
region”

Rgood :=
{
s ∈ R : dist(s, {R) >

1

4
`(R)

}
=

1

2
R̄

of the Dω-ancestor R of Q, and this is simply

|Rgood|
|R|

=
| 12 R̄|
|R|

= 2−d.

�
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Definition 12.3.34. For θ ∈ {(α, γ), (i, α)}, and n ∈ Zd \ {0}, we define

tω;θ
n,good(R) := 1{R is k(n)-good in Dω}t

ω;θ
n (R),

k(n) := 2 + dlog2 |n|e.

We define Figiel’s operators T good
n,tω and U i,good

m,tω as in Definition 12.3.16, but

with tω;θ
n,good in place of the respective tθn

For n ∈ Zd \ {0}, we have k(n) > 2, and hence the notion of “k(n)-good” is
well-defined. For n = 0 we would formally get k(0) = −∞, and “−∞-good”
reduces to the triviality dist(R, {R) > 0; accordingly, for definiteness, we let

tω;θ
0,good(R) := tω;θ

0 (R).

Replacing all quantities in Definition 12.3.22 by their “good” restrictions, we
have a natural definition of the Figiel norms

‖tω;θ
good‖Figs(℘), θ ∈ {(α, γ), (i, α)},

‖tω;(i)
good‖Figs(℘), i = 1, 2, ‖tωgood‖Figs(℘).

As we are about to see, these good parts will suffice to control a bounded
extension of the form t, and this also allows us to obtain a better dependence
on the UMD constants. Here is the precise statement:

Theorem 12.3.35 (T (1) theorem for bilinear forms, random version).
Let p ∈ (1,∞) and 1 6 t 6 p 6 q 6∞, and consider the conditions:

(i) X and Y are UMD spaces,
(ii) X has cotype q and Y has type t, or one of them has both,

(iii) t : S(D)2 → L (X,Y ) is a bilinear form with

∑
α,γ∈{0,1}d\{0}

DRp(t
ω;α,γ
0 ) + min

i=1,2
‖tω;(0)‖Figσi (Rp) +

2∑
i=1

‖tω;(i)‖Figσi (Rp) 6 C,

uniformly in ω ∈ ({0, 1}d)Z0 , where σ1 = 1/t and σ2 = 1/q′.
(iv) the forms tω satisfy the adjacent weak boundedness property ‖tω‖awbp 6 C

uniformly in ω ∈ ({0, 1}d)Z0 ,

Under assumptions (i) through (iii), the following conditions are equivalent:

(1) t defines a bounded linear operator T ∈ L (Lp(Rd;X), Lp(Rd;Y ));
(2) t satisfies (iv) and the paraproducts Λtω are uniformly bounded.

Under these equivalent conditions, we have:
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(a) the norm estimate:

‖T‖L (Lp(Rd;X),Lp(Rd;Y ))

6 sup
ω
‖Λtω‖L (Lp(Rd;X),Lp(Rd;Y )) + βp,Xβp,Y

{
sup
ω

∑
α,γ

DRp(t
ω;α,γ
0 )

+ 12 · 2d sup
ω

(
min
i=1,2

ci‖tω;(0)
good‖Figσi (℘i) +

2∑
i=1

ci‖tω;(i)
good‖Figσi (℘i)

)}
,

where the suprema are over ω ∈ ({0, 1}d)Z0 , and

℘1 := R∗p′ , ℘2 := Rp, σ1 := 1/t, σ2 := 1/q′,

c1 := min
Z=X,Y

ct′,Z∗;p′ , c2 := min
Z=X,Y

cq,Z;p;
(12.51)

(b) the representation formula

〈Tf, g〉 = E
(
〈Htωf, g〉+ 〈Λtωf, g〉+ 2d

∑
n∈Zd
n 6=0

{
〈T good
n,tω f, g〉+

+ 〈f, U1,good
n,tω g〉+ 〈U2,good

n,tω f, g〉
})
,

(12.52)

with absolute convergence for all f ∈ S(D ;X) and g ∈ S(D ;Y ∗), where E
is the expectation over ω ∈ ({0, 1}d)Z6M , and M ∈ Z is any large enough
number such that f and g are constant on all Q ∈ DM .

Proof. We begin by observing that, according to Lemma 12.3.30, assumptions
(i) through (iii) of the present theorem imply assumption (i) through (iii) of
Theorem 12.3.26 uniformly for every ω ∈ ({0, 1}d)Z0 . Thus the qualitative
statement (1)⇔(2) is just an application of Theorem 12.3.26 to each Dω in
place of D , observing the uniformity just mentioned.

The more interesting part consist of the new quantitative conclusions that
we obtain for the implication (2)⇒(1). This requires revisiting some details
of the proof of Theorem 12.3.26.

Let f ∈ S(D ;X) and g ∈ S(D ;Y ∗), and let us specifically assume that
both f and g are constant on all Q ∈ DM for some (in general large) M ∈ Z.
We identify ({0, 1}d)Z6M with {ω = (ωj)j∈Z ∈ ({0, 1}d)Z : ωj = 0 for j > M}.

For each ω ∈ ({0, 1}d)Z6M , we have Dω
M = DM , and hence f and g have

the same piecewise constancy property with respect to these dyadic systems.
For each m 6M and ω ∈ ({0, 1}d)Z6M , we then write an analogue of (12.46),

t(f, g) = 〈Htωu
ω
m, g〉+ ltω (f, g) + E ω

m(f, g)+

+
∑
n∈Zd
n 6=0

{
〈Tn,tωuωm, g〉+ 〈f, U1

n,tωv
ω
m〉+ 〈U2

n,tωu
ω
m, g〉

}
, (12.53)
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where all symbols have the same meaning as in (12.46), but with Dω in place
of D . In particular,

uωm = (I − Eωm)f, vωm = (I − Eωm)g,

where Eωm = E( |Dω
m) satisfy ‖uωm‖p 6 2‖f‖p and ‖vωm‖p′ 6 2‖g‖p′ .

The first and third terms on the right of (12.53) are estimated as in the
proof Theorem 12.3.26. As in (12.47), we have

|E ω
m(f, g)| 6

(
cd,p

2∑
i=1

‖tω;(i)‖Fig0(∞) + 2d‖tω‖awbp
)
‖Eωmf‖p‖Eωmg‖p′ → 0

when m→ −∞; note that this convergence is bounded by (iii), (iv), and the
easy estimates ‖Eωmf‖p 6 ‖f‖p and ‖Eωmg‖p′ 6 ‖g‖p′ . Then, as in (12.48),
from Theorem 12.1.11 we get

|〈Htωu
ω
m, g〉| 6 βp,Xβp,Y

∑
α,γ

DRp(t
ω;α,γ
0 )‖uωm‖p‖g‖p′ .

The second term on the right of (12.53) is directly estimated by the uniform
boundedness of the paraproducts Λtω .

We then turn to the more interesting part on the second line of (12.53),
where we begin with some observations. Due to the presence of the truncation
parameter m, all dyadic operators in (12.53) involve cubes of side-length at
most 2−m. On the other hand, due to the constancy of f and g on Q ∈ DM =
Dω
M , their martingale differences are non-zero only on cubes of side-length

strictly larger than 2−M . Hence the right-hand side of (12.53) actually depends
on (ωj)m<j6M only, rather than the infinite sequence (ωj)j6M . Nevertheless,
it will be convenient to also refer to this latter sequence, as we are about to
see.

We compute the expectation of (12.53) with respect to the choice of ω ∈
({0, 1}d)Z6M . As we just observed, this is actually just an arithmetic average
over a finite set of 2d(M−m) elements, so no integrability or measurability
issues arise at this point.

We wish to manipulate this average a little. We note that each of the terms
on the second line of (12.53) take the generic form

∗∑
Q∈D

Φ(Q+̇ω),

where

Φ(R) ∈
{∑
α,γ

〈
t(hαR, h

γ

R+̇n
)〈f, hαR〉, 〈g, h

γ

R+̇n
〉
〉
,

∑
α

〈
t(hαR, h

0
R+̇n)〈f, hαR〉, 〈g, h0

R+̇n − h
0
R〉
〉
,
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γ

〈
t(h0

R+̇n, h
γ
R)〈f, h0

R+̇n − h
0
R〉, 〈g, h

γ
R〉
〉}
,

and the notation
∑∗

suppresses not only the size condition that 2−M <
`(Q) 6 2−m but also an implicit restriction to a fixed finite family of cubes of
each size, depending on the supports of f and g.

Inserting 1 = 2d · E(1{Q+̇ω is k-good}), it hence follows, using in particular
the independence property established in Lemma 12.3.33(1), that

E
∗∑

Q∈D

Φ(Q+̇ω) =

∗∑
Q∈D

2d · E(1{Q+̇ω is k-good})EΦ(Q+̇ω)

= 2d
∗∑

Q∈D

E
(
1{Q+̇ω is k-good}Φ(Q+̇ω)

)
= 2d · E

∗∑
Q∈D:

Q+̇ω is k-good

Φ(Q+̇ω).

Thus, at the cost of the factor 2d, we can reduce the summation to k-good
cubes only.

Taking the expectation of (12.53) and applying the above observation to
the terms on the second line, with k = k(n) as in Definition 12.3.34, we obtain

t(f, g) = E
(
〈Htωu

ω
m, g〉+ ltω (f, g) + E ω

m(f, g)+

+ 2d
∑
n∈Zd
n 6=0

{
〈T good
n,tω u

ω
m, g〉+ 〈f, U1,good

n,tω vωm〉+ 〈U2,good
n,tω uωm, g〉

})
, (12.54)

where the various “good” operators are defined in Definition 12.3.34.
When k = k(n) is as in Definition 12.3.34, and R = Q+̇ω is k-good, it

follows directly from Definition 12.3.32 that

dist(R, {R(k,ω)) > 2k−2`(R) > |n|`(R),

and hence R+̇n ⊆ R(k,ω). Thus the operators on the right of (12.54) are in the
scope of the sharper special cases of Figiel’s estimates, Corollary 12.1.27(2)
and Theorem 12.1.28(2).

An application of these estimates to (12.54), in the case of Uω,1n on the dual
side and otherwise directly as in Corollary 12.1.27(2) and Theorem 12.1.28(2),
gives

|〈f, U1,good
n,tω vωm〉| 6

∑
α

6βp,Xβp,Y c1(1 + k(n))σ1℘1(tω;1,α
n,good)‖f‖p‖vωm‖p′ ,

|〈U2,good
n,tω uωm, g〉| 6

∑
α

6βp,Xβp,Y c2(1 + k(n))σ2℘2(tω;2,α
n,good)‖uωm‖p‖g‖p′ ,
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|〈T good
n,tω u

ω
m, g〉| 6

∑
α,γ

3βp,Xβp,Y min
i=1,2

ci(1 + k(n))σi℘i(t
ω;α,γ
n,good)‖uωm‖p‖g‖p′ .

It follows from Definition 12.3.34 that

k(n) + 1 6 4 + log2 |n| 6 2(2 + log2 |n|),

and hence ∑
n∈Zd
n 6=0

∑
α

(1 + k(n))σi℘i(t
ω;i,α
n,good) 6 2‖tω;(i)

good‖Figσi (℘i),

∑
n∈Zd
n 6=0

∑
α,γ

(1 + k(n))σi℘i(t
ω;α,γ
n,good) 6 2‖tω;(0)

good‖Figσi (℘i).

We have thus estimated all terms on the right of (12.54). Let us further
recall that ‖uωm‖p 6 2‖f‖p and uωm → f in Lp(Rd;X) as m → −∞, with
similar results for vωm, g and p′ in place of uωm, f and p. We can thus pass to
the limit m→ −∞ in (12.54) and apply dominated convergence to deduce the
claimed representation formula (12.52). Applying the same estimates above
to (12.52) in place of (12.54), we deduce the claimed norm estimate (a). This
completes the proof of Theorem 12.3.35. �

12.4 The T (1) theorem for singular integrals

A natural question arising from the Theorems 12.3.26 and 12.3.35 above is
whether their assumptions are verified by some familiar operators. In partic-
ular, what is the relation of these conditions to the Calderón–Zygmund oper-
ators discussed in Chapter 11? We will address this question in the present
section. Recall from Definition 11.3.1 that

cK := sup{|s− t|d‖K(s, t)‖ : (s, t) ∈ Ṙ2d}.

Definition 12.4.1 (Weakly defined singular integral operator). Let Z
be a Banach space, and C be a collection of bounded Borel subsets of Rd. We
say that a bilinear form t : S(C )2 → Z is a weakly defined singular integral
with associated kernel K : Ṙ2d → Z, if cK <∞ and

t(1Q,1R) =

∫∫
R2d

K(s, t)1Q(t)1Q(s) ds dt (12.55)

whenever Q,R ∈ C are disjoint.

As usual, the main case of interest will be C = D .
The following lemma, which will also play a role later, shows that the

integral in (12.55) is well defined under the assumption that cK <∞: While
in (12.55) we do not require the cubes to have equal size, we can always
dominate the integral with such a case by passing to a dyadic ancestor of the
smaller cube, if necessary.
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Lemma 12.4.2. For disjoint cubes Q,R ⊆ Rd of equal size `(Q) = `(R), we
have ∫∫

Q×R

1

|s− t|d
ds dt 6 (1 +

dvd
2

)|Q| < 18 · |Q|,

where vd is the volume of the unit ball in Rd.

Proof. We first write∫∫
Q×R

1

|s− t|d
ds dt =

∫∫
Q×R

d

∫ ∞
|s−t|

r−d−1 dr ds dt

= d

∫ ∞
0

|{(s, t) ∈ Q×R : |s− t| < r}|r−d−1 dr.

Denoting by vd is the volume of the unit ball in Rd, we have

|{(s, t) ∈ Q×R : |s− t| < r}| =
∫
{s∈Q:dist(s,R)<r}

|{t ∈ R : |s− t| < r}| ds

6 |{s ∈ Q : dist(s,R) < r}|(vdr
d

2
∧ |R|) 6 (r ∧ `(Q))

|Q|
`(Q)

(
vdr

d

2
∧ |R|),

where we used the geometric observation that, for s ∈ Q ⊆ {R, at least half
of any ball of centre s lies in {R. Hence∫∫

Q×R

1

|s− t|d
ds dt 6 d

∫ `(Q)

0

r
|Q|
`(Q)

· vdr
d

2
· r−d−1 dr

+ d

∫ ∞
`(Q)

|Q| · |R|r−d−1 dr =
dvd
2
|Q|+ |R|,

where |R| = |Q|, since `(R) = `(Q).
Finally, dvd/2 = πd/2/Γ (d/2) =: f(d/2). From the functional equation

Γ (x + 1) = xΓ (x), we find that f(x + 1)/f(x) = π/x, so that max{f(n) :
n ∈ N} = f(4) and max{f(n + 1

2 ) : n ∈ N} = f(7/2). Computing these two
values, one checks that max{f(d/2) : d ∈ N} = f(7/2) = 8

15π
3 < 17. �

For weakly defined singular integrals, some properties imposed as assumptions
on general bilinear forms are automatically satisfied:

Lemma 12.4.3. Let Z be a Banach space and t : Ṙ2d → Z a weakly defined
singular integral operator with kernel K. Then t satisfies the adjacent weak
boundedness property if and only if it satisfies the weak boundedness property,
and moreover

‖t‖wbp 6 ‖t‖awbp 6 max{‖t‖wbp, 18 · cK}.
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Proof. The “only if” part is obvious. For “if”, it suffices to estimate t(1Q,1R)
for R = Q+̇n and n ∈ {−1, 0, 1}d \ {0}. Then Q ∩ R = ∅, so that we have
access to the kernel representation (12.55), and Lemma 12.4.2 provides us
with the bound

‖t(1Q,1R)‖ 6
∫∫

Q×R

cK
|s− t|d

ds dt 6 18 · |Q| · cK .

�

Proposition 12.4.4. Let Z be a Banach space and t : Ṙ2d → Z a weakly
defined singular integral operator. If t is translation-invariant (in the sense of
Definition 12.3.9), then t(1, ·) = 0 = t(·,1).

Proof. By Proposition 12.3.10, it suffices to verify that t satisfies the decay
condition (12.35). Let Q ∈ D and m ∈ Zd \ {−1, 0, 1}d. Then, for s ∈ Q and
t ∈ Q+̇m, and denoting by zQ the centre of Q, we have

|s− t| > |s− t|∞ > |m`(Q)|∞ − |s− zQ|∞ − |t− (zQ +m`(Q))|∞

> |m|∞`(Q)− 1

2
`(Q)− 1

2
`(Q) >

1

2
|m|∞`(Q) >

|m|`(Q)

2
√
d

,

and hence

‖t(1Q,1Q+̇m)‖ 6
∫
Q

∫
Q+̇m

cK
|s− t|d

ds dt

6 |Q|2cK
( 2
√
d

|m|`(Q)

)d
= |Q|cK(2

√
d)d|m|−d.

This is one half of the decay condition (12.35). The estimate for t(1Q+̇m,1Q)
is entirely similar. �

Despite the simple observations above, in order to make serious conclusions
about weakly defined singular integrals, we will need the following elaboration
of the earlier Definition 11.3.1:

Definition 12.4.5 (℘–Calderón–Zygmund kernel). Let Z be a Banach
space, ℘ a good set-bound on Z, and K : Ṙ2d → Z. We define the quantities

cK(℘) := ℘({|s− t|dK(s, t) : s 6= t}),

and, for u ∈ [0, 1
2 ],

ω1
K(℘;u) := ℘

({
|s− t|d

(
K(s, t)−K(s′, t)

)
: |s− s′| 6 u|s− t|

}
), (12.56)

ω2
K(℘;u) := ℘

({
|s− t|d

(
K(s, t)−K(s, t′)

)
: |t− t′| 6 u|s− t|

}
). (12.57)
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Remark 12.4.6. (1) We recover Definition 11.3.1 by taking ℘(T ) = U (T ) :=
sup{‖T‖ : T ∈ T }. Our main interest now will be ℘ ∈ {Rp,R∗p′}.

(2) In analogy with Lemma 11.3.3, one can check that

ωiK(℘;
1

2
) 6 (1 + 2d)cK(℘).

(3) If K(s, t) = K(s− t) for some K : Rd \ {0} → Z, then

cK(℘) = ℘({|s|dK(s) : s 6= 0}) =: c̃K(℘),

and, for both i ∈ {1, 2},

ωiK(℘;u) = ℘
({
|s|d
(
K(s)− K(s′)

)
: |s− s′| 6 u|s|

}
) =: ω̃K(℘;u).

Such a K (or K) is referred to as a convolution kernel.

If t is a weakly defined singular integral with ℘–Calderón–Zygmund kernel K,
the conditions of Definition 12.4.5 only provide control away from the diagonal
s = t. To compensate for this, we also need the following assumption directly
on the bilinear form t:

Definition 12.4.7 (Weak DRp-boundedness property). Letting t :
S(D)2 → L (X,Y ) be a bilinear form, we define

‖t‖wbp(DRp) := DRp

({ t(1Q,1Q)

|Q|

}
Q∈D

)
Our goal in this section will be to use these assumptions to control the Haar
coefficients t(hαQ, h

γ
R), where R = Q + `(Q)n, in the way that was assumed

in the Theorems 12.3.26 and 12.3.35 on bilinear forms. Using the defining
condition (12.55) and bilinearity (noting that hαQ is a linear combination of
1Q′ for Q′ ∈ ch(Q), and likewise hγR), we have in particular that

t(hαQ, h
γ
R) =

∫∫
Q×R

K(s, t) ds dt, Q ∩R = ∅.

If K is a ℘-Calderón–Zygmund kernel, we can establish the following esti-
mates:

Lemma 12.4.8. Let Z be a Banach space and ℘ a good set-bound on Z. Let
t : S(D)2 → Z be a weakly defined singular integral with kernel K : Ṙ2d → Z.
Then for all α, γ ∈ {0, 1}d, we have, for all n ∈ Zd \ {0},

℘
{
t(hαQ, h

γ

Q+̇n
) : Q ∈ D

}
6 18 · 2d · cK(℘), (12.58)

and, for |n| > 3
2

√
d,
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℘
{
t(hαQ+̇n, h

γ
Q) : Q ∈ D

}
6 (

3

2
)d · |n|−d · ω1

K(℘;
3
4

√
d

|n|
) if γ 6= 0. (12.59)

℘
{
t(hαQ, h

γ

Q+̇n
) : Q ∈ D

}
6 (

3

2
)d · |n|−d · ω2

K(℘;
3
4

√
d

|n|
) if α 6= 0, (12.60)

Proof. Including momentarily also n = 0 for later use, we have the expansion

t(hαQ, h
γ

Q+̇n
) =

∑
R∈ch(Q)

S∈ch(Q+̇n)

t(1R,1S)〈hαQ〉R〈h
γ

Q+̇n
〉S

= δn,0
∑

R∈ch(Q)

t(1R,1R)〈hαQ〉R〈h
γ

Q+̇n
〉S

+
∑

R∈ch(Q)

S∈ch(Q+̇n)
R 6=S

t(1R,1S)〈hαQ〉R〈h
γ

Q+̇n
〉S =: IQ + IIQ.

(12.61)

(The summation condition R 6= S in IIQ is automatic for n 6= 0, but it makes
no harm to include it). Since∑

R∈ch(Q)

S∈ch(Q+̇n)

|R||〈hαQ〉R〈h
γ

Q+̇n
〉S | =

∑
R∈ch(Q)

S∈ch(Q+̇n)

|R| 1

|Q|
=

∑
S∈ch(Q+̇n)

1 = 2d,

we see that

IIQ ∈ 2d abs conv
({ t(1U ,1V )

|U |
: U, V ∈ D , U ∩ V = ∅, `(U) = `(V )

})
,

where

t(1U ,1V ) =

∫∫
U×V

K(s, t) ds dt =

∫∫
U×V

|s− t|dK(s, t)
ds dt

|s− t|d

∈ 18 · |U | · abs conv
({
|u− v|dK(u, v) : (u, v) ∈ Ṙ2d

})
,

by Proposition 1.2.12 and Lemma 12.4.2 in the last step. Combining the above
inclusions with the defining properties of good set-bounds (Definition 12.3.20),
we obtain

℘({IIQ : Q ∈ D}) 6 18 · 2d · cK(℘), (12.62)

which coincides with (12.58) when n 6= 0.
For large values of n, we want to obtain a decay, which is not present

in the uniform estimate just established. In this case we apply the kernel
representation combined with the vanishing mean of hαQ (when α 6= 0), to the
result that
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t(hαQ, h
γ

Q+̇n
) =

∫∫
K(s, t)hαQ(t)hγ

Q+̇n
(s) ds dt

=

∫∫
[K(s, t)−K(s, zQ)]hαQ(t)hγ

Q+̇n
(s) ds dt,

where zQ is the centre of Q. For t ∈ Q and s ∈ Q+̇n, we have |t − zQ| 6
1
2

√
d`(Q), whereas

|s− zQ| > |zQ+̇n − zQ| − |s− zQ+̇n| > (|n| − 1

2

√
d)`(Q),

and hence
|t− zQ|
|s− zQ|

6
1
2

√
d

|n| − 1
2

√
d
6

1

2
if |n| > 3

2

√
d.

In this case we have

t(hαQ, h
γ

Q+̇n
) ∈

∫∫
1

|s− zQ|d
|hαQ(t)hγ

Q+̇n
(s)| ds dt

× abs conv
({
|u− v|d[K(u, v)−K(u, v′)] : |v − v′| 6

1
2

√
d

|n| − 1
2

√
d
|u− v|

})
,

and hence, by estimate (12.56) of a Calderón–Zygmund kernel (Definition
12.4.5) and the defining properties of good set-bounds (Definition 12.3.20),
we arrive at

℘
({

t(hαQ, h
γ

Q+̇n
) : Q ∈ D

})
6

1

|Q|

∫∫
Q×(Q+̇n)

1

|s− zQ|d
ds dt× ω2

K

( 1
2

√
d

|n| − 1
2

√
d

)
6

1

(|n| − 1
2

√
d)d

ω2
K

( 1
2

√
d

|n| − 1
2

√
d

)
6 (

3

2
)d · |n|−dω2

K

( 3
4

√
d

|n|

)
when |n| > 3

2

√
d.

The estimate of t(hαQ, h
γ

Q+̇n
) with γ 6= 0 is entirely analogous to this, using

regularity in the other variable instead. �

Concerning the diagonal n = 0, which was excluded in Lemma 12.4.8, we have
the following estimate:

Lemma 12.4.9. Let X and Y be Banach spaces and p ∈ (1,∞). Let t : Ṙ2d →
L (X,Y ) be a weakly defined singular integral with the weak DRp-boundedness
property. Then

DRp({t(hαQ, h
γ
Q)}Q∈D) 6 ‖t‖wbp(DRp) + 18 · 2d · cK(℘), ℘ ∈ {Rp,R

∗
p′}.
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Proof. We use the expansion (12.61) with n = 0,

t(hαQ, h
γ
Q) = IQ + IIQ,

where we now need to consider also the term IQ. We estimate the expression
in the definition of DRp({IQ}Q∈D):∑

Q∈D

|Q||〈IQxQ, y∗Q〉| 6
∑
Q∈D

|Q|
∑

R∈ch(Q)

|〈t(1R,1R)xQ, y
∗
Q〉||〈hαQ〉R〈h

γ
Q〉R|

=
∑
Q∈D

∑
R∈ch(Q)

|〈t(1R,1R)xQ, y
∗
Q〉|

=
∑
R∈D

|〈t(1R,1R)xR(1) , y∗R(1)〉|

6 ‖t‖wbp(DRp)

∥∥∥ ∑
R∈D

εRxR(1)1R

∥∥∥
Lp(Ω×Rd;X)

×

×
∥∥∥ ∑
R∈D

εRy
∗
R(1)1R

∥∥∥
Lp′ (Ω×Rd;Y ∗)

.

Using the usual observation that, by Fubini’s theorem and the fact that only
one R ∈ D of each generation is “seen” at each fixed s ∈ Rd, we can replace
the random εR by εn(R) depending on the generation of R only, or further by
the equidistributed sequence of εn(R(1)), we have∥∥∥ ∑

R∈D

εRzR(1)1R

∥∥∥
Lp(Ω×Rd;Z)

=
∥∥∥ ∑
Q∈D

∑
R∈ch(Q)

εn(Q)zQ1R

∥∥∥
Lp(Ω×Rd;Z)

=
∥∥∥ ∑
Q∈D

εn(Q)zQ1Q

∥∥∥
Lp(Ω×Rd;Z)

=
∥∥∥ ∑
Q∈D

εQzQ1Q

∥∥∥
Lp(Ω×Rd;Z)

for both choices of zQ ∈ {xQ, y∗Q} and Z ∈ {X,Y }. Hence

DRp({IQ}Q∈D) 6 ‖t‖wbp(DRp),

and hence, by the obvious triangle inequality for DRp, and its domination by
either ℘ ∈ {Rp,R∗p′} according to Lemma 12.1.8, we have

DRp({t(hαQ, h
γ
Q)}Q∈D) 6 DRp({IQ}Q∈D) + DRp({IIQ}Q∈D)

6 ‖t‖wbp(DRp) + ℘({IIQ}Q∈D)

6 ‖t‖wbp(DRp) + 18 · cK(℘)

by (12.62) in the last step. �

We can now give estimates for the Figiel norms featuring in the T (1) theorems
for bilinear forms:
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Lemma 12.4.10. Let Z be a Banach space and ℘ a good set-bound on Z. Let
t : S(D)2 → Z be a weakly defined singular integral with kernel K : Ṙ2d → Z.
Then for all s ∈ [0, 1], we have the estimates

‖t(0)‖Figs(℘), ‖t(i)‖Figs(℘) 6 adcK(℘) + bd‖ωiK(℘)‖Dinis , i = 1, 2,

where ad, bd depend only on the dimension d, and

‖ω‖Dinis :=

∫ 1/2

0

ω(u)(log2

1

u
)s

du

u
. (12.63)

Remark 12.4.11. For u ∈ (0, 1
2 ), we have 1

u ∈ (2,∞), thus log2
1
u ∈ (1,∞).

Hence (log2
1
u )s and therefore ‖ω‖Dinis are increasing in s.

Proof of Lemma 12.4.10. From Definition 12.3.22 and Lemma 12.4.8, it fol-
lows that

‖t(0)‖Figs(℘) =
∑

α,γ∈{0,1}d\{0}

‖tαγ‖Figs(℘),

=
∑

α,γ∈{0,1}d\{0}

∑
n∈Zd
n 6=0

(2 + log2 |n|)s℘({t(hαQ, h
γ

Q+̇n
) : Q ∈ D})

6 (2d − 1)2
{ ∑
|n|<3

√
d

(2 + log2(3
√
d)) · 18 · 2d · cK(℘)+

+
∑

|n|>3
√
d

(2 + log2 |n|)s(
3

2
)d|n|−dωiK

(
℘;

3
4

√
d

|n|

)}
=: (2d − 1)2(I + IIi) 6 4d(I + IIi).

(12.64)

Since both α 6= 0 6= γ, one can apply either of the estimates (12.59) or (12.60)
of Lemma 12.4.8, and thus take either i ∈ {1, 2} above. Similarly,

‖t(2)‖Figs(℘) =
∑

α∈{0,1}d\{0}

‖t2,α‖Figs(℘),

=
∑

α∈{0,1}d\{0}

∑
n∈Zd
n 6=0

(2 + log2 |n|)s℘({t(hαQ, h0
Q+̇n) : Q ∈ D})

6 (2d − 1)(I + II2) 6 4d(I + II2),

(12.65)

where we only have access to estimate (12.60), but not (12.59), of Lemma
12.4.8, now that the second Haar function h0

Q+̇n
is non-cancellative. The very

last step in (12.65) is of course wasteful, but we make it in order to treat the
right-hand sides of both (12.64) and (12.65) at the same time.

Finally, in complete analogy with (12.65), we also have
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‖t(1)‖Figs(℘) =
∑

α∈{0,1}d\{0}

‖t1,α‖Figs(℘) 6 4d(I + II1), (12.66)

as we now have access to estimate (12.59), but not (12.60), of Lemma 12.4.8.
It is immediate that

4dI = ad · cK(℘), ad := 4d
∑

|n|<3
√
d

(2 + log2(3
√
d)) · 18 · 2d. (12.67)

For the other term, we partition the summation over dyadic annuli, in which
the summand is roughly a constant:

4dIIi 6 6d
∞∑
k=0

∑
3·2k
√
d6|n|

<3·2k+1
√
d

(2 + log2(3
√
d) + k)s(3 · 2k

√
d)−dωiK(℘; 2−k−2).

The unit-cubes Qn with centres n ∈ Zd are disjoint, and for |n| < 3 · 2k+1
√
d,

they are contained in B(0, (3 · 2k+1 + 1
2 )
√
d). Thus∑

|n|<3·2k+1
√
d

1 6 vd
(

(3 · 2k+1 +
1

2
)
√
d
)d
6 vd(6.5)d2kd

√
d
d
, (12.68)

where vd is the volume of the unit ball, and hence

4dIIi 6 6d
∞∑
k=0

vd(6.5)d2kd
√
d
d
(2 + log2(3

√
d) + k)s(3 · 2k

√
d)−dωiK(℘; 2−k−2)

6 (13)dvd(2 + log2(3
√
d))

∞∑
k=0

(1 + k)sωiK(℘; 2−k−2).

Since ωiK(℘;u) is non-decreasing, we can finally estimate

(1 + k)sωiK(℘; 2−k−2) 6
1

log 2

∫ 2−k−1

2−k−2

(log2

1

u
)s
ωiK(℘;u)

log 2

du

u
, k = 0, 1, . . . ,

and hence

4dIIi 6 bd‖ωiK(℘)‖Dinis , bd :=
(13)dvd(2 + log2(3

√
d))

log 2
.

With (12.64), (12.65), (12.66), and (12.67), this concludes the proof. (An
estimate similar to (12.68) could also be used to give a more explicit bound
for the constant ad in (12.67), if desired.) �

We have now everything prepared for proving the following:

Theorem 12.4.12 (T (1) theorem for operator-valued kernels). Let
p ∈ (1,∞) and 1 6 t 6 p 6 q 6∞, and suppose that:
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(i) X and Y are UMD spaces.
(ii) X has cotype q and Y has type t, or one of them has both.

(iii) t : S(D)2 → Z := L (X,Y ) is a weakly defined singular integral and the
kernel K : Ṙ2d → Z of t satisfies the Calderón–Zygmund estimates

cK(Rp) + ‖ω1
K(Rp)‖Dini1/t + ‖ω2

K(Rp)‖Dini1/q
′ <∞. (12.69)

Then the following conditions are equivalent:

(1) t defines a bounded operator T ∈ L (Lp(Rd;X), Lp(Rd;Y ));
(2) t satisfies the weak DRp-boundedness property ‖t‖wbp(DRp) <∞, and the

associated bi-paraproduct Λt is bounded in L (Lp(Rd;X), Lp(Rd;Y ));
(3) each tω satisfies the weak DRp-boundedness property ‖tω‖wbp(DRp) 6

C, and the associated bi-paraproduct Λtω defines a bounded operator in
L (Lp(Rd;X), Lp(Rd;Y )), uniformly in ω ∈ ({0, 1}d)Z0 .

Under these equivalent conditions, we have

(a) the first norm estimate:

‖T − Λt‖L (Lp(Rd;X),Lp(Rd;Y ))

6 βp,Xβp,Y
{

4d‖t‖wbp(DRp) + cd

(
C1cK(R∗p′) + C2cK(Rp)

)
+

+ c′d

(
C1‖ω1

K(R∗p′)‖Dini1/t + C2‖ω2
K(Rp)‖Dini1/q

′

)}
,

where cd, c
′
d are constants that depend only on d, and

C1 := C(12.15)(Y
∗, X∗, p′, t′, 1), C2 := C(12.15)(X,Y, p, q, 1);

(b) the second norm estimate:

‖T‖L (Lp(Rd;X),Lp(Rd;Y )) − sup
ω
‖Λtω‖L (Lp(Rd;X),Lp(Rd;Y ))

6 βp,Xβp,Y
{

4d sup
ω
‖tω‖wbp(DRp) + c0d

(
c1cK(R∗p′) + c2cK(Rp)

)
+

+ c1d

(
c1‖ω1

K(R∗p′)‖Dini1/t + c2‖ω2
K(Rp)‖Dini1/q

′

)}
,

where the suprema are over ω ∈ ({0, 1}d)Z0 , the constants cd, c
′
d depend

only on d, and

c1 := min
Z=X,Y

ct′,Z∗;p′ , c2 := min
Z=X,Y

cq,Z;p; (12.70)

(c) the representation formulas (12.45) and (12.52).

Proof. The plan of the proof is to reduce the theorem at hand to Theorems
12.3.26 and 12.3.35 on abstract bilinear forms.

(1)⇔(2): This will be an application of Theorem 12.3.26 (and Remark
12.3.27). Assumption (i) is identical in both theorems. Next, as explained in
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Remark 12.3.27, under the (co)type assumption (ii) of Theorem 12.4.12, the
assumption (ii) of Theorem 12.3.26 are satisfied with

(t1, q1) := (t,∞), (t2, q2) := (1, q),

and both choices of (t0, q0) ∈ {(ti, qi)}2i=1. Let σ1 := 1/t and σ2 := 1/q′.
Concerning assumption (iii) on the bilinear form t, we need to check that

the kernel assumptions (12.69) of the present theorem imply the assumptions
on the Haar coefficients t(hαQ, h

γ
R) and the related Figiel norms of the bilinear

form t. With the choices of (ti, qi) as just explained, and recalling that the
set-bounds ℘1 := R∗p′ and ℘2 := Rp are equivalent in the spaces that we are
considering, the assumption (12.69) can be equivalently written as

cK(℘i) + ‖ωiK(℘i)‖Diniσi <∞, i ∈ {1, 2}. (12.71)

By Example 12.1.10, we know that

‖t‖wbp(DRp) 6 ‖T‖L (Lp(Rd;X),Lp(Rd;Y )), (12.72)

so in particular the weak DRp-boundedness property is either assumed, or
implied by the assumptions, in each case of Theorem 12.4.12.

From Lemma 12.4.9, we then have

DRp({t(hαQ, h
γ
Q)}Q∈D) 6 ‖t‖wbp(DRp),

whereas Lemma 12.4.10 guarantees, for both i ∈ {1, 2}, that

‖t(0)‖Figσi (℘i) 6 adcK(℘i) + bd‖ωiK(℘i)‖Diniσi ,

‖t(i)‖Figσi (℘i) 6 adcK(℘i) + bd‖ωiK(℘i)‖Diniσi ,
(12.73)

where both right-hand sides of are finite by (12.71). With either choice of
(t0, q0) ∈ {(ti, qi)}2i=1, the resulting finiteness of the left-hand sides coincides
with the assumption on these quantities in (iii) of Theorem 12.3.26.

Summarising, assumptions (i) through (iii) of Theorem 12.4.12, together
with the weak DRp-boundedness property of t, which is either assumed or
implied by the assumptions of each case of Theorem 12.4.12, imply the corre-
sponding assumptions (i) through (iii) of Theorem 12.3.26. Moreover, the con-
dition of adjacent weak boundedness property appearing in Theorem 12.3.26
also follows from these assumptions by Lemma 12.4.3 and the domination of
uniform bounds by either DRp-bounds or ℘i-bounds:

‖t‖awbp 6 max{‖t‖wbp, 18 · cK} 6 max{‖t‖wbp(DRp), 18 · cK(℘i)}.

Hence all assumptions, and thus all conclusions of Theorem 12.3.26 are valid
under the assumptions of Theorem 12.4.12. This proves in particular the qual-
itative equivalence (1)⇔(2).
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(a): For this quantitative estimate, we apply Remark 12.3.27, followed by
(12.72) and (12.73), to get

‖T − Λt‖L (Lp(Rd;X),Lp(Rd;Y ))

6 βp,Xβp,Y
{∑
α,γ

DRp(t
α,γ
0 ) +

2∑
i=1

Ci

(
Ad‖t(0)‖Figσi (℘i) +Bd‖t(i)‖Figσi (℘i)

)}

6 βp,Xβp,Y
{

4d‖t‖wbp(DRp) +
2∑
i=1

Ci

(
cdcK(℘i) + c′d‖ωiK(℘i)‖Diniσi

)}
,

where cd := (Ad +Bd)ad and c′d := (Ad +Bd)bd. This is readily recognised to
coincide with the bound asserted in (a) of the theorem.

(1)⇔(3): This will be an application of Theorem 12.3.35. Assumptions (i)
and (ii) are identical in both theorems.

Concerning assumption (iii), we need to check that the kernel assumptions
(12.69) of the present theorem imply the estimates on Figiel norms of each
bilinear form tω, uniformly in ω ∈ ({0, 1}d)Z0 . We already did this for t = t0

above. However, all the lemmas of this section are stated for an arbitrary
dyadic system D , so we may in particular use them with any Dω in place of
D . Moreover, the constants in these estimates are explicit, and clearly inde-
pendent of the particular ω. This proves the qualitative equivalence (1)⇔(3).

(b): For this quantitative estimate, we apply Theorem 12.3.35(a), followed
by (12.72) and (12.73) with tω and Dω in place of t and D , to get(

‖T‖L (Lp(Rd;X),Lp(Rd;Y )) − sup
ω
‖Λtω‖L (Lp(Rd;X),Lp(Rd;Y ))

) 1

βp,Xβp,Y

6 sup
ω

∑
α,γ

DRp(t
ω;α,γ
0 ) + 12 · 2d sup

ω

2∑
i=1

ci
∑

j∈{0,i}

‖tω;(j)
good‖Figσi (℘i)

6 4d sup
ω
‖tω‖wbp(DRp) + sup

ω

2∑
i=1

ci

(
c0dcK(℘i) + c1d‖ωiK(℘i)‖Diniσi

)
,

where c0d = 24 ·2d ·ad and c1d = 24 ·2d ·bd. This is readily recognised to coincide
with the bound asserted in (a) of the theorem.

(c): The representation formulas are immediate from Theorems 12.3.26 and
12.3.35, since we already verified that the assumptions of the said theorems
are valid in the present setting. �

12.4.a Consequences of the T (1) theorem

We will now explore various consequences of Theorem 12.4.12 to more par-
ticular classes of operators. While Theorem 12.4.12 gives a complete charac-
terisation of the boundedness of an operator T , a drawback is the fact that
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this characterisation involves the boundedness of another operator Λt that is
not necessarily easy to check, as we found in Section 12.2. Thus, the follow-
ing special case, in which these paraproducts are completely avoided, will be
useful:

Corollary 12.4.13 (T (1) theorem for convolution kernels). Let p ∈
(1,∞) and 1 6 t 6 p 6 q 6∞, and suppose that:

(i) X and Y are UMD spaces;
(ii) X has cotype q and Y has type t, or one of them has both;

(iii) t : S(D)2 → Z := L (X,Y ) is a weakly defined singular integral and the
kernel K : Ṙ2d → Z of t has the convolution form K(s, t) = K(s− t) and
satisfies the Calderón–Zygmund estimates

c̃K(Rp) + ‖ω̃K(Rp)‖Diniσ <∞, σ := max(
1

t
,

1

q′
), (12.74)

where c̃K and ω̃K are as in Remark 12.4.6(3);
(iv) t(1Q,1Q) = (1Q+̇m,1Q+̇m) for all Q ∈ D and m ∈ Zd.

Then the following conditions are equivalent:

(1) t defines a bounded operator T ∈ L (Lp(Rd;X), Lp(Rd;Y ));
(2) t satisfies the weak DRp-boundedness property ‖t‖wbp(DRp) <∞;
(3) each tω satisfies the weak DRp-boundedness property ‖tω‖wbp(DRp) 6 C,

uniformly in ω ∈ ({0, 1}d)Z0 .

Under these equivalent conditions, we have

(a) the norm estimate

‖T‖L (Lp(Rd;X),Lp(Rd;Y ))

6 βp,Xβp,Y
{

4d sup
ω
‖tω‖wbp(DRp) + c0d

(
c1c̃K(R∗p′) + c2c̃K(Rp)

)
+

+ c1d

(
c1‖ω̃K(R∗p′)‖Dini1/t + c2‖ω̃K(Rp)‖Dini1/q

′

)}
,

where the supremum is over ω ∈ ({0, 1}d)Z0 , the constants cd, c
′
d depend

only on d, and c1, c2 are as in (12.70);
(b) the representation formulas (12.45) and (12.52) with Λt = Λtω = 0.

Proof. We will check that t is translation-invariant in the sense of Defini-
tion 12.3.9, i.e., that it satisfies the condition of Lemma 12.3.8(1). The very
assumption (iv) of the corollary already takes care of the case Q = R.
On the other hand, if Q 6= R are dyadic cubes of the same size, then
Q ∩ R = ∅ = (Q+̇m) ∩ (R+̇m), and hence we have access to the kernel
representation
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t(1Q,1R) =

∫
R

∫
Q

K(s, t) ds dt =

∫
R

∫
Q

K(s− t) ds dt

=

∫
R

∫
Q

K((s+m)− (t+m)) ds dt

=

∫
R+̇m

∫
Q+̇m

K(s− t) ds dt = t(1Q+̇m,1R+̇m),

which proves the condition of Lemma 12.3.8(1) for arbitrary Q,R ∈ D of
equal size. Thus indeed t is translation-invariant.

Next, we wish to have the same property for tω, for every ω ∈ ({0, 1}d)Z0 ,
and requires verifying the identity t(1Q′ ,1R′) = t(1Q′+̇m,1R′+̇m) for each
Q′, R′ ∈ Dω of equal size. By Lemma 12.3.30, we have S(Dω) = S(D) when-
ever ω ∈ ({0, 1}d)Z0 . If Q′ ∈ Dω, then clearly f = 1Q′ ∈ S(Dω) = S(D), and
similarly with g = 1R′ where R′ ∈ Dω has the same size. Thus Lemma 12.3.8
guarantees that

t(1Q′+̇m,1R′+̇m) = t(τm`(Q′)f, τm`(Q′)g) = t(f, g) = t(1Q′ ,1R′)

for all Q′, R′ ∈ Dω of the same size, and hence also tω is translation-invariant.
By Proposition 12.4.4, it then follows that tω(1, ·) = 0 = tω(·,1), for every

ω ∈ ({0, 1}d)Z0 . Thus the conclusions of the corollary are immediate from
Theorem 12.4.12 by setting all Λt and Λtω to be zero. �

Lemma 12.4.14. Let Z = L (X,Y ) and Φ ∈ Cb([0,∞);Z) ∩ C1((0,∞);Z),
and suppose that

(i) K(u) := 1(0,∞)(u)Φ′(u) satisfies the Calderón–Zygmund estimate (12.74);
(ii) the range of Φ is R-bounded, Rp(Φ) := Rp({Φ(u) : u ∈ [0,∞)}) <∞;

(iii) a bilinear form t : S(D)2 → Z is defined, for all f, g ∈ S(D), by

t(f, g) := lim
ε→0

∫∫
|u−v|>ε

K(u− v)f(v)g(u) dv du.

Then

(1) t is well-defined as a weakly defined singular integral with convolution ker-
nel K(u, v) = K(u− v);

(2) tω satisfies the weak DRp-boundedness property

‖tω‖wbp(DRp) 6 ‖Φ(0)‖ + min
{
Rp(Φ),R∗p′(Φ)};

(3) t(1I ,1I) = (1I+̇m,1I+̇m) for all I ∈ D and m ∈ Z.

Proof. (1): Clearly the integral inside the limit is well-defined, since we are
cutting away the singularity. To show the existence of the limit, let first f = 1I
and g = 1J for some intervals I = [aI , bI) and J = [aJ , bJ). Then
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|u−v|>ε

K(u− v)f(v) dv =

∫ bI

aI

1(ε,∞)(u− v)Φ′(u− v) dv

= 1(aI+ε,∞)(u)

∫ bI∧(u−ε)

aI

Φ′(u− v) dv

= 1(aI+ε,∞)(u)[Φ((u− bI) ∨ ε)− Φ(u− aI)].

Since Φ is continuous on [0,∞), we have

lim
ε→0

∫
|u−v|>ε

K(u− v)f(v) dv = 1(aI ,∞)(u)[Φ((u− bI)+)− Φ(u− aI)],

= Φ((u− bI)+)− Φ((u− aI)+).

Since Φ is bounded on [0,∞), we can apply dominated convergence to obtain

lim
ε→0

∫∫
|u−v|>ε

K(u− v)1I(v)1J(u) dv du

=

∫
J

[Φ((u− bI)+)− Φ((u− aI)+)] du.

(12.75)

In particular, the limit defining t(f, g) exists for all f, g of the form f = 1I
and g = 1J . By (bi)linearity, it exists for all f, g ∈ S(D).

If f, g ∈ S(D) are disjointly supported, then K(u−v)f(v)g(u) is integrable.
Hence

t(f, g) =

∫∫
K(u− v)f(v)g(u) dv du

by dominated convergence, and thus t is a weakly defined singular integral
with kernel K(u, v) = K(u− v).

(2): With J = I ∈ Dω, noting that aI 6 u < bI for all u ∈ I, the identity
(12.75) shows that

t(1I ,1I)

|I|
= −
∫
I

(
Φ(0)− Φ(u− aI)

)
du

= −
∫ `(I)

0

(
Φ(0)− Φ(u)

)
du ∈ Φ(0) + abco(Φ).

(12.76)

Thus, by Lemma 12.1.8, we find that

‖tω‖wbp(DRp) := DRp

({ t(1I ,1I)
|I|

}
I∈Dω

)
6 min
i=0,1

℘i

({ t(1I ,1I)
|I|

}
I∈Dω

)
, ℘0 := Rp, ℘1 := R∗p′ ,

6 ‖Φ(0)‖ + min
i=0,1

℘i(Φ).

(3): From (12.76) it is evident that t(1I ,1I) depends only on `(I); since
`(I) = `(I+̇m), it follows that t(1I ,1I) = t(1I+̇m,1I+̇m), as claimed. �
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It often happens that kernels that we encounter satisfy standard Calderón–
Zygmund estimates with the best possible Lipschitz modulus of continuity
ω(u) = O(u) as u→ 0, but the implies constant in this estimate can be very
large. At the same time, we also have a trivial bound ω(u) = O(1), where
the implied constant may be much smaller. The following lemma provides a
useful estimate of the Dini norms of ω in such cases, showing that the larger
constant enters the estimates only via its logarithm:

Lemma 12.4.15. Let 0 < A 6 B <∞ and σ ∈ [0, 1]. If ω(u) 6 min(A,Bu),
then

‖ω‖Diniσ 6 3A
(

1 + logσ+1 B

A

)
.

Proof.

(log 2)σ‖ω‖Diniσ 6
∫ A/B

0

B
(

log
1

u

)σ
du+

∫ 1

A/B

A
(

log
1

u

)σ du

u
=: I + II,

where

I 6 −B
∫ A/B

0

log u du = −B(u log u− u)
∣∣∣A/B
0

= A(log
B

A
+ 1)

and

II = A

∫ 1

A/B

(− log u)σ
du

u
= −A (− log u)σ+1

σ + 1

∣∣∣1
A/B

=
A

σ + 1

(
log

B

A

)σ+1

.

Let G := log(B/A). Since

G = (Gσ+1)1/(σ+1) · 1σ/(σ+1) 6
1

σ + 1
Gσ+1 +

σ

σ + 1
,

we obtain

I + II 6
2A

σ + 1
Gσ+1 +A

(
1 +

σ

σ + 1

)
6 2A(Gσ+1 + 1).

Since (log 2)−σ 6 (log 2)−1 < 3/2, the claim follows. �

Example 12.4.16. Let ω ∈ [0, π/2], σ ∈ [0, 1], and suppose that

Φ ∈ C([0,∞), Z) ∩H∞(Σω;Z)

has an R-bounded range. Then Φ|[0,∞) and K(u) = 1(0,∞)(u)Φ′(u) satisfy the
assumptions of Lemma 12.4.14 with

c̃K(℘) 6
℘(Φ)

sinω
, ‖ω̃K(℘)‖Diniσ 6

3℘(Φ)

sinω

(
1 + log1+σ 4

sinω

)
, ℘ ∈ {Rp,R

∗
p′}.

A particular instance of such a Φ is (the negation of) an R-bounded holomor-
phic semigroup Φ(z) = −e−zA, in which case K(u) = Ae−uA is the kernel of
the so-called maximal regularity operator.
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Remark 12.4.17. The role of the parameter σ ∈ [0, 1] in Example 12.4.16 is
relatively insignificant and only recorded for curiosity. First, it only affects the
power of the logarithm. Second, for applying Lemma 12.4.14, it is necessary
to take σ > max(1/t, 1/q′) > 1

2 , and it is always sufficient to take σ = 1, so
that the power of the logarithm will always be in the range [ 3

2 , 2].

Proof of Example 12.4.16. Let ℘ ∈ {Rp,R∗p}. It is evident that

℘({Φ(u) : u ∈ [0,∞)}) = ℘({Φ(u) : u ∈ (0,∞)}) 6 ℘({Φ(z) : z ∈ Σω}).

By Cauchy’s formula, we have

Φ(j)(u) =
j!

2πi

∮
|z−u|=u sinω

f(z)

(u− z)j+1
|dz|, u > 0.

Denoting ℘(Φ) := ℘(Φ(z) : z ∈ Σω), we hence have

℘(tjΦ(j)(t) : t > 0) 6
j!

2π
℘(Φ) sup

t>0

∮
|z−t|=t sinω

tj |dz|
(t sinω)j+1

=
j!℘(Φ)

(sinω)j
.

With K(u) = 1(0,∞)(u)Φ′(u), it follows that

c̃K(℘) = ℘(|u|K(u) : u 6= 0) = ℘(uΦ′(u) : u > 0) 6
℘(Φ)

sinω
.

Moreover,

ω̃K(℘; s) = ℘(|u|[K(u)− K(u′)] : |u− u′| 6 s|u|)

= ℘
(
u

∫ u

u′
Φ′′(v) dv : |u− u′| 6 su

)
6

2℘(Φ)

(sinω)2
sup

|u−u′|6su

∣∣∣ ∫ u

u′

u

v2
dv
∣∣∣,

where ∣∣∣ ∫ u

u′

u

v2
dv
∣∣∣ = u

∣∣∣ 1
u
− 1

u′

∣∣∣ =
|u− u′|
u′

6
su

(1− w)u
=

s

1− s
6 2s

for |u− u′| 6 wu and s ∈ [0, 1
2 ]. Thus ω̃K(℘; s) 6 4℘(Φ)(sinω)−2s.

By Remark 12.4.6(2), we also have ω̃K(℘; s) 6 c̃K(℘) 6 ℘(Φ)(sinω)−1.
Thus, an application of Lemma 12.4.15 with 0 < A = ℘(Φ)(sinω)−1 <
4℘(Φ)(sinω)−2 = B <∞, we deduce that

‖ω̃K‖Diniσ 6
3℘(Φ)

sinω

(
1 + log1+σ 4

sinω

)
.

This completes the proof. �
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We proceed to further corollaries of Theorem 12.4.12.

Corollary 12.4.18 (T (1) theorem for antisymmetric kernels). Let p ∈
(1,∞) and 1 6 t 6 p 6 q 6∞, and suppose that:

(i) X and Y are UMD spaces.
(ii) X has cotype q and Y has type t, or one of them has both.

(iii) K : Ṙ2d → Z := L (X,Y ) is an antisymmetric kernel, i.e.,

K(s, t) = −K(t, s) for all (s, t) ∈ Ṙ2d,

which satisfies the Calderón–Zygmund estimates

cK(Rp) + ‖ω1
K(Rp)‖Dinimax(1/t,1/q′) <∞. (12.77)

(iv) A bilinear form t : S(D)2 → Z is defined for all f, g ∈ S(D) by

t(f, g) :=
1

2

∫∫
K(s, t)

(
f(t)g(s)− f(s)g(t)

)
dt ds. (12.78)

Then t is well-defined as a weakly defined singular integral with kernel K, and
the following conditions are equivalent:

(1) t defines a bounded operator T ∈ L (Lp(Rd;X), Lp(Rd;Y ));
(2) Λt defines a bounded operator in L (Lp(Rd;X), Lp(Rd;Y ));
(3) each Λtω defines a bounded operator in L (Lp(Rd;X), Lp(Rd;Y )), uni-

formly in ω ∈ ({0, 1}d)Z0 .

Under these equivalent conditions, we have

(a) the norm estimates as in parts (a) and (b) of Theorem 12.4.12, with
‖t‖wbp(DRp) = ‖tω‖wbp(DRp) = 0;

(b) the representation formulas (12.45) and (12.52).

Proof. To check that t is well-defined, we need to verify that the integrals
in (12.78) make sense. By linearity, it is enough to consider f = 1Q and
g = 1R for some Q,R ∈ D . If Q ∩ R = ∅, then each of the two terms under
the integral is separately integrable by Lemma 12.4.2, and hence so is their
difference. Otherwise, we may assume by the nestedness of dyadic cubes and
symmetry that, e.g., Q ⊆ R. We can then split

f(t)g(s)− f(s)g(t) = 1Q(t)1R(s)− 1Q(s)1R(t)

= 1Q(t)
(
1Q(s) + 1R\Q(s)

)
− 1Q(s)

(
1Q(t) + 1R\Q(t)

)
= 1Q(t)1R\Q(s)− 1Q(s)1R\Q(t),

observing the cancellation of the two equal terms 1Q(s)1Q(t). We can divide
R \ Q into finitely many cubes P ∈ D of the same size as Q, and then
the integrability of each of the terms on the left against K(s, t) follows from
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Lemma 12.4.2. Thus the formula defining t as a bilinear form t : S(D)2 → Z
is meaningful.

To show that t has associated kernel K, let f, g ∈ S(D) be disjointly
supported. As we already observed, in this case both terms under the integral
are separately integrable, and we can write

t(f, g) =
1

2

∫∫
K(s, t)

(
f(t)g(s)− f(s)g(t)

)
dt ds

=
1

2

∫∫
K(s, t)f(t)g(s) dt ds− 1

2

∫∫
K(s, t)f(s)g(t) dt ds =:

I − II
2

.

Using the antisymmetry of K and interchanging the names of the variables,
and applying Fubini’s theorem, we find that

−II =

∫∫
K(t, s)f(s)g(t) dt ds =

∫∫
K(s, ty)f(t)g(s) ds dt = I.

Hence

t(f, g) =
I − II

2
= I =

∫∫
K(s, t)f(t)g(s) dt ds,

as required for t to be a weakly defined singular integral with kernel K.
From the defining formula (12.78) it is immediate that t(1Q,1Q) = 0, and

hence the quantities featuring in the weak boundedness property of t vanish.
With Q ∈ Dω (which still satisfies 1Q ∈ S(D) for ω ∈ ({0, 1}d)Z0 , by Lemma
12.3.30, the same conclusion extends to tω for all ω ∈ ({0, 1}d)Z0 . The rest of
the corollary is then a direct consequence of Theorem 12.4.12, simply setting
‖t‖wbp(DRp) = ‖tω‖wbp(DRp) = 0. We only need to note that ω1

K(℘) = ω2
K(℘)

whenK is antisymmetric, which is why a seemingly weaker assumption suffices
in (12.77). �

Corollary 12.4.19 (T (1) theorem for antisymmetric convolutions).
Let p ∈ (1,∞) and 1 6 t 6 p 6 q 6∞, and suppose that:

(i) X and Y are UMD spaces.
(ii) X has cotype q and Y has type t, or one of them has both.

(iii) K : Ṙ2d → Z := L (X,Y ) is an antisymmetric convolution kernel, i.e.,

K(s, t) = K(s− t) = −K(t− s) for all (s, t) ∈ Ṙ2d,

which satisfies the Calderón–Zygmund estimates (12.74).
(iv) A bilinear form t : S(D)2 → Z is defined for all f, g ∈ S(D) by

t(f, g) :=
1

2

∫∫
K(s− t)

(
f(t)g(s)− f(s)g(t)

)
dt ds.

Then t is well-defined as a weakly defined singular integral with kernel K,
which defines a bounded operator T ∈ L (Lp(Rd;X), Lp(Rd;Y )) and satisfies
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(a) the norm estimate

‖T‖L (Lp(Rd;X),Lp(Rd;Y ))

6 βp,Xβp,Y
{
c0d

(
c1c̃K(R∗p′) + c2c̃K(Rp)

)
+

+ c1d

(
c1‖ω̃K(R∗p′)‖Dini1/t + c2‖ω̃K(Rp)‖Dini1/q

′

)}
,

where the supremum is over ω ∈ ({0, 1}d)Z0 , the constants cd, c
′
d depend

only on d, and c1, c2 are as in (12.70).
(b) the representation formulas (12.45) and (12.52) with Λt = Λtω = 0.

Proof. This is straightforward by combining (the proofs of) Corollaries 12.4.13
and 12.4.18. In particular, in the proof of Corollary 12.4.18 we observed
that any bilinear form defined as in (iv) of the present corollary will satisfy
t(1Q,1Q) = 0 for all Q ∈ D , and hence also t(1Q+̇m,1Q+̇m) = 0 = t(1Q,1Q)

for all m ∈ Zd. This is condition (iv) of Corollary 12.4.13 that was not explic-
itly assumed in the corollary that we are proving. �

Remark 12.4.20. As an immediate consequence of Corollary 12.4.13, we obtain
another proof of the essence of Theorem 5.1.13 on the boundedness of the
Hilbert transform H on Lp(R;X) whenever p ∈ (1,∞) and X is a UMD
space. Indeed, take X = Y , t = 1, and q =∞, so that the constants in (12.70)
are simply c1 = c2 = 1. Clearly the kernel K(u, v) = π−1(u − v)−1 of the
Hilbert transform is an antisymmetric convolution kernel, and it is easy to
check the Calderón–Zygmund estimates (12.74) with Dini1 norms. Thus we
obtain the estimate

‖H‖L (Lp(Rd;X)) 6 c · β2
p,X ,

with the same quantitative form as (5.24), aside from the unspecified numer-
ical factor above, in contrast to the explicit constant 2 in (5.24). This is quite
natural, considering that (5.24) was obtained by an argument tailored for the
very Hilbert transform, whereas the argument that we just sketched was a
specialisation of a much more general argument to the particular case of H.

The following corollary provides a solution to the Lp extension problem from
Section 2.1 for the important class of Calderón–Zygmund operators:

Theorem 12.4.21 (T (1) theorem for scalar-valued kernels). Let p, s ∈
(1,∞) and 1 6 t 6 p 6 q 6∞, and suppose that:

(i) X is a UMD space with cotype q and type t,
(ii) t : S(D)2 → K is a weakly defined singular integral, whose kernel K :

Ṙ2d → K satisfies the Calderón–Zygmund estimates

cK +
2∑
i=1

‖ωiK‖Diniσi <∞, (12.79)

where σ1 = 1/t and σ2 = 1/q′.
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Then the following conditions are equivalent:

(1) t defines a bounded operator T ∈ L (Lp(Rd;X));
(2) t defines a bounded operator T ∈ L (Ls(Rd));
(3) ‖tω‖wbp 6 C uniformly in ω ∈ ({0, 1}d)Z0 , and for some bi ∈ BMO(Rd),

t(1, g) = 〈b1, g〉, t(f,1) = 〈f, b2〉 (12.80)

for all f, g ∈ S00(Dω) and ω ∈ ({0, 1}d)Z0 ;
(4) ‖t‖wbp <∞, and (12.80) for some bi ∈ BMOD(Rd) and all f, g ∈ S00(D).

Under these equivalent conditions, we have

‖T‖L (Lp(Rd;X)) 6 c̃dβ
2
p,X(c1 + c2)cK+

+ c̃d

(
β2
p,X + pp′β2

s,Xβs,K

)(
‖T‖L (Ls(Rd)) +

2∑
i=1

ci‖ωiK‖Diniσi

)
,

(12.81)

with a dimensional constant c̃d and cotype constants

c1 = ct′,X∗;p′ , c2 = cq,X;p.

In particular, every Lp(Rd)-bounded Calderón–Zygmund operator having ker-
nel bounds (12.80) with σ1 = σ2 = 1, extends boundedly to Lp(Rd;X) for
every UMD space X, and one can take c1 = c2 = 1 in the estimate (12.81).

Proof. (1) ⇒ (2): For s = p, this is evident by restricting the action of the
operator to a one-dimensional subspace of X. The case of general s ∈ (1,∞)
follows from the Calderón–Zygmund Theorem 11.2.5 (or even just its classical
scalar-valued version).

(2)⇒ (3): The weak boundedness property follows from Example 12.1.10:

‖tω‖wbp 6 ‖T‖L (Ls(Rd)), (12.82)

and we turn to the construction of the functions bi.
The operator T ∈ L (Ls(Rd)) is a Calderón–Zygmund operator with

kernel K that satisfies in particular the Dini conditions in both variables,
and hence both direct and dual (operator-)Hörmander conditions by Lemma
11.3.4. (The qualifier “operator” is redundant for scalar-valued kernels.) By

(just the scalar-valued version of) Theorem 11.2.9, T has an extension T̃ ∈
L (L∞(Rd),BMO(Rd)/K). By Theorem 11.2.9(b), for functions 1 ∈ L∞(Rd)
and g ∈ S00(Dω) ⊆ L∞c,0(Rd), we have

〈T̃ (1), g〉 = lim
M→∞

〈T (1(1+2M)Q), g〉

= lim
M→∞

∑
m∈Zd
|m|∞6M

t(1Q+̇m, g) = t(1, g).
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This is one of the claimed identities with b1 := T̃ (1) ∈ BMO(Rd;Y ), and
Theorem 11.2.9, followed by Lemma 11.3.4, provide us with the estimates

‖b1‖BMOs(Rd;Y ) = ‖T̃ (1)‖BMOs(Rd)

6 (cd‖T‖L (Ls(Rd) + ‖K‖Hör∗)‖1‖L∞(Rd)

6 (cd‖T‖L (Ls(Rd) + σd−1‖ω1
K‖Dini).

(12.83)

The identity involving b2 := T̃ ∗(1), and the estimate

‖b2‖BMOs
′
(Rd) = ‖T̃ ∗(1)‖BMOs

′
(Rd)

6
(
cd‖T ∗‖L (Ls′ (Rd))+

+ ‖(u, v) 7→ K(u, v)∗‖Hör∗
)
‖1‖L∞(Rd)

6 (cd‖T‖L (Ls(Rd)) + σd−1‖ω2
K‖Dini)

(12.84)

are entirely analogous on the dual side.

(3) ⇒ (4): This is obvious by restricting to ω = 0 and noting that
BMO(Rd) ⊆ BMOD(Rd).

(4) ⇒ (1): Under assumption (4), we see that the paraproducts related to
t are in fact Πi

t = Πbi , where bi ∈ BMOD(Rd) by assumption. Thus Corollary
12.2.19 guarantees that

‖Λt‖L (Lp(Rd;X)) = ‖Πb1 +Π∗b2‖L (Lp(Rd;X))

6 64 · 8d · pp′β2
s,Xβs,K(‖b1‖BMOsD(Rd) + ‖b2‖BMOs

′
D (Rd)).

(12.85)

Our assumption (4) also involves ‖t‖wbp <∞, and Corollary 12.1.9 guarantees
that this coincides with the finiteness of ‖t‖wbp(DRp) = ‖t‖wbp, when t is scalar-
valued. Thus both assumptions ‖t‖wbp(DRp) < ∞ and ‖Λt‖L (Lp(Rd;X)) < ∞
of Theorem 12.4.12(2) are satisfied, hence also the equivalent condition of
Theorem 12.4.12(1), and this coincides with condition (1) of the corollary
that we are proving.

The quantitative estimates: While we have already closed the chain of impli-
cations (1)⇒ (2)⇒ (3)⇒ (4)⇒ (1), the claimed quantitative bounds require
a direct analysis of the implication (3) ⇒ (1), which relates to the implication
(3) ⇒ (1) of Theorem 12.4.12.

As in the proof of “(4) ⇒ (1)”, under assumption (3), we see that
the paraproducts related to tω are in fact Πi

tω = Πω
bi

; while the function

bi ∈ BMO(Rd) ⊆ BMODω (Rd) is independent of ω, the superscript of the
paraproduct signifies the fact that the defining series involves Haar functions
and averages related to Q ∈ Dω. Thus, imitating (12.85) and substituting the
bounds (12.83) and (12.84), we obtain, with s1 := s and s2 := s′,
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‖Λtω‖L (Lp(Rd;X)) = ‖Πω
b1 + (Πω

b2)∗‖L (Lp(Rd;X))

6 64 · 8d · pp′β2
s,Xβs,K

2∑
i=1

‖bi‖BMOsi (Rd)

6 64 · 8d · pp′β2
s,Xβs,K

2∑
i=1

(
cd‖T‖L (Ls(Rd)) + σd−1‖ωiK‖Dini

)
.

(12.86)

where we implicitly dominated ‖bi‖BMO
si
Dω (Rd) 6 ‖bi‖BMOsi (Rd) in the first es-

timate. We now substitute (12.86) and (12.82) into the second norm estimate
in Theorem 12.4.12(b), noting that all R-bounds and DRp-bounds may be
omitted, since they simply reduce to uniform bounds for scalar-valued func-
tions:

‖T‖L (Lp(Rd;X)) 6 sup
ω
‖Λtω‖L (Lp(Rd;X))+

+ β2
p,X

{
4d sup

ω
‖tω‖wbp + c0d(c1 + c2)cK+

+ c1d

(
c1‖ω1

K‖Dini1/t + c2‖ω2
K‖Dini1/q

′

)}
.

This gives the bound asserted in the corollary. �

Remark 12.4.22. If b1 = b2, the term pp′β2
s,Xβs,K can be omitted in (12.81).

This applies in particular if T is translation-invariant.

Proof. By inspection of the proof of Theorem 12.4.21, the said term only arises
in the estimate of Λtω in (12.86). Under the assumption that b1 = b2, we have
Λtω = Λωb1 , and we may replace (12.86) by an application of Theorem 12.2.25:

‖Λtω‖L (Lp(Rd;X)) = ‖Λωb1‖L (Lp(Rd;X)) 6 30 · 2d · β2
p,X‖b1‖BMO(Rd),

where

‖b1‖BMO(Rd) 6 ‖b1‖BMOs(Rd) 6 cd‖T‖L (Ls(Rd)) + σd−1‖ω1
K‖Dini.

Substituting this alternative estimate into the proof of Theorem 12.4.21, we
obtain the claimed modification of (12.81).

If T is translation-invariant, the paraproduct terms vanish, and hence we
can take b1 = b2 = 0, which is indeed a special case of b1 = b2. Of course, in
this case, we do not even need to use Theorem 12.2.25. �

12.4.b The dyadic representation theorem

The randomised dyadic representation (12.52) underlying the proof of T (1)
Theorem 12.3.26 can be further reorganised into a form that has proven to be
useful for various extensions. Recalling Definition 12.3.34 of the good parts
of Figiel’s operators, and in particular the quantity k(n) := 2 + dlog2 |n|e, we
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regroup the sum over n ∈ Zd \ {0} in (12.52) according to a constant value of
k(n) as ∑

n∈Zd\{0}

=
∞∑
k=2

∑
n∈Zd

2k−3<|n|62k−2

.

We denote by ch(k)(P ) the collection of dyadic descendants of P of generation
k, and define the operators

D(k)
P :=

∑
Q∈ch(k)(P )

DQ, E(k)
P :=

∑
Q∈ch(k)(P )

EQ,

D[0,k)
P := E(k)

P − E
(0)
P =

k−1∑
j=0

D(j)
P .

Lemma 12.4.23. If t : S(D)2 → L (X,Y ) =: Z is a weakly defined singular
integral with kernel K : Ṙ2d → Z, then

Tk :=
∑
n∈Zd

2k−3<|n|62k−2

〈T good
n,tω f, g〉 = 〈S(0,k)f, g〉,

U 1
k :=

∑
n∈Zd

2k−3<|n|62k−2

〈f, U1,good
n,tω g〉 = 〈S(1,k)f, g〉,

U 2
k :=

∑
n∈Zd

2k−3<|n|62k−2

〈U2,good
n,tω f, g〉 = 〈S(2,k)f, g〉,

where

S(i,k)f =
∑
P∈D

A
(i,k)
P f, A

(i,k)
P f(s) = −

∫
P

a
(i,k)
P (s, t)f(t) dt,

and these satisfy the identities

A
(0,k)
P = D(k)

P A
(0,k)
P D(k)

P ,

A
(1,k)
P = D(k)

P A
(0,k)
P D[0,k)

P ,

A
(2,k)
P = D[0,k)

P A
(0,k)
P D(k)

P .

(12.87)

For i = 1, 2, we have the further splitting

A
(i,k)
P f = A

(i,k)
P ;P f −

∑
R∈ch(k)

A
(i,k)
P ;R f
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where

A
(i,k)
P ;R f(s) = −

∫
R

a
(i,k)
P ;R (s, u)f(u) du, R ∈ {P} ∪ ch(k)(P ),

and these kernels have the bounds

℘({a(0,k)
P (s, u), a

(i,k)
P,R (s, u) : s, u ∈R ∈ {P} ∪ ch(k)(P ), P ∈ D})

6 cd

{
cK(℘), if 2k 6 12

√
d,

ωiK(℘; 6
√
d

2k
), if 2k > 12

√
d,

Proof. By definition, the left-hand side of the claim is equal to

Tk =
∑
n∈Zd

2k−3<|n|62k−2

∑
Q∈Dk-good

α,γ∈{0,1}d\{0}

〈
t(hαQ, h

γ

Q+̇n
)〈f, hαQ〉, 〈g, h

γ

Q+̇n
〉
〉
,

where the k-goodness of Q guarantees that R := Q+̇n, for |n| 6 2k−2, shares
with Q the same kth dyadic ancestor R(k) = Q(k) =: P ∈ D . Thus we can
regroup this series under the ancestors P to get

Tk =
∑
P∈D

∑
(Q,R)∈Ck(P )

α,γ∈{0,1}d\{0}

〈
tgood(hαQ, h

γ
R)〈f, hαQ〉, 〈g, h

γ
R〉
〉
,

where

Ck(P ) :=
{

(Q,R) : Q,R ∈ ch(k)(P ),
1

8
`(P ) < |zQ − zR| 6

1

4
`(P )

}
.

The subseries under each P ∈ D takes the asserted form 〈A(k)
P f, g〉 if we define

a
(0,k)
P (s, u) := |P |

∑
(Q,R)∈Ck(P )

α,γ∈{0,1}d\{0}

tgood(hαQ, h
γ
R)hαQ(u)hγR(s).

The cases of U i
k are analogous, and lead to representations of the same

form with

a
(1,k)
P (s, u) := |P |

∑
(Q,R)∈Ck(P )

γ∈{0,1}d\{0}

tgood(h0
Q, h

γ
R)[h0

Q(u)− h0
R(u)]hγR(s),

and

a
(2,k)
P (s, u) := |P |

∑
(Q,R)∈Ck(P )

α∈{0,1}d\{0}

tgood(hαQ, h
0
R)hαQ(u)[h0

R(s)− h0
Q(s)],
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The further splitting is then naturally defined with

a
(1,k)
P ;P (s, u) := |P |

∑
(Q,R)∈Ck(P )

γ∈{0,1}d\{0}

tgood(h0
Q, h

γ
R)h0

Q(u)hγR(s),

a
(1,k)
P ;R (s, u) := |R|

∑
Q:(Q,R)∈Ck(P )

γ∈{0,1}d\{0}

tgood(h0
Q, h

γ
R)h0

R(u)hγR(s), R ∈ chk(P ),

where the last summation runs over all relevant Q ∈ chk(P ), for fixed R.

Observe that a
(1,k)
P ;R has the factor |R| in front, instead of |P |, due to our

definition of A
(1,k)
P ;R f(s) as the average integral −

∫
R
a

(1,k)
P ;R (s, u)f(u) du.

The splitting of a
(2,k)
P is entirely analogous; in particular,

a
(2,k)
P ;Q (s, u) := |Q|

∑
R:(Q,R)∈Ck(P )

α∈{0,1}d\{0}

tgood(hαQ, h
0
R)hαQ(u)h0

Q(s), Q ∈ chk(P ).

It remains to verify that these operators and their kernels satisfy the as-

serted properties. The identity A
(0,k)
P = D(k)

P A
(0,k)
P D(k)

P is immediate from the

orthogonality of the Haar functions, and the invariance of A
(i,k)
P under com-

position by D(k)
P on the side, where the cancellative Haar function appear

in a
(i,k)
P is justified similarly. Concerning the factors D[0,k)

P , we note that the
are orthogonal projections onto functions supported on P , constant on each
Q ∈ ch(k)(Q), and integrating to zero. Noting the functions h0

Q − h0
R belong

to this class then justifies the remaining parts of the claimed identities.
Concerning the claimed bounds, we note that any given (s, u) ∈ P × P is

contained in exactly one Q×R with Q,R ∈ ch(k)(P ), and moreover,

|hαQ ⊗ h
γ
R| =

1Q×R
|Q|1/2|R|1/2

=
2kd

|P |
1Q×R.

The claimed ℘-bounds for a
(0,k)
P (s, u), as well as for a

(i,k)
P ;P (s, u), then follow

from Lemma 12.4.8, noting that the factor |P | in the definition of these kernels
cancels with the 1

|P | above.

For a
(1,k)
P ;R with R ∈ ch(k)(P ), all terms in the defining sum are supported

on the same 1R×R, and each individual summand can be estimates by Lemma
12.4.8. We now have the smaller factor |R| in front, but at the same time there
are up to 2kd terms in the sum, all of which accumulate on the same support
now. Since 2kd|R| = |P |, we get the same final bound as before. The case of

a
(1,k)
P ;Q with Q ∈ ch(k)(P ) in entirely analogous, and completes the proof. �

Definition 12.4.24. An operator S : S00(D ;X) → S00(D ;Y ) is called a
dyadic shift of type (i, k), where i ∈ {0, 1, 2} and k ∈ {2, 3, . . .}, if
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S =
∑
P∈D

AP , AP f(s) = AP ;P f(s)−
∑

Q∈ch(k)(P )

AP ;Qf(s),

where

AP ;Rf(s) = −
∫
R

aP ;R(s, u)f(u) du, R ∈ {P} ∪ ch(k)(P ),

supp aP ;R ⊆ R×R,

‖S‖Shift(℘) := ℘
({
aP ;R(s, u) : s, u ∈ R ∈ {P} ∪ ch(k)(P ), P ∈ D

})
<∞

for ℘ = R2, and moreover, for every P ∈ D ,

(0) if i = 0, then AP = D(k)
K APD(k)

K , and AP ;Q = 0 for all Q ∈ ch(k)(P );

(1) if i = 1, then AP = D(k)
K APD[0,k)

K ;

(2) if i = 2, then AP = D[0,k)
K APD(k)

K .

We say that a shift has type i ∈ {0, 1, 2}, if it has type (i, k) with some k.

Remark 12.4.25. In the language of Definition 12.4.24, the operators S(i,k) of
Lemma 12.4.23 are dyadic shifts of type (i, k), and we may further write

‖S(i,k)‖Shift(℘) 6 cd

{
cK(℘), if 2k 6 12

√
d,

ωiK(℘; 6
√
d

2k
), if 2k > 12

√
d.

The key boundedness properties of these dyadic shifts are contained in the
following:

Theorem 12.4.26. Let X and Y be UMD spaces, and p ∈ (1,∞). Suppose
that X has cotype q and Y has type t for some 1 6 t 6 p 6 q 6∞.

Then for all i ∈ {0, 1, 2} and k ∈ {2, 3, . . .}, all dyadic shifts S of type
(i, k) extends to a bounded operator from Lp(Rd;X) to Lp(Rd;Y ). Moreover,
they satisfy the norm estimates

‖S‖L (Lp(Rd;X),Lp(Rd;Y )) 6 4 · βp,Xβp,Y ×

{
‖S‖Shift(Rp)ct′,Y ∗;p′ · k1/t, i = 1,

‖S‖Shift(R∗
p′ )
cq,X;p · k1/q′ , i = 2;

and the norm of a shift of type (0, k) is bounded by the minimum of these two
bounds, but with 6 in place of 4.

Proof. We divide the proof into case according to the type of the shift under
consideration.
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Shifts of type 1

Let us start with the case i = 1. For f ∈ S00(Rd;X) ⊆ Lp(Rd;X) and
g ∈ S00(Rd;Y ) ⊆ Lp

′
(Rd;Y ∗), we expand the pairing 〈Sf, g〉 by separating

the scales according to log2 `(P ) mod k:

|〈Sf, g〉| =
∣∣∣ k−1∑
j=0

∑
P∈D

log2 `(P )≡j
mod k

〈
D(k)
P AP f,D(k)

P g
〉∣∣∣

6
k−1∑
j=0

∥∥∥ ∑
P∈D

log2 `(P )≡j
mod k

εPD(k)
P AP f

∥∥∥
Lp(Ω×Rd;Y )

×
∥∥∥ ∑

P∈D
log2 `(P )≡j

mod k

εPD(k)
P g

∥∥∥
Lp′ (Ω×Rd;Y ∗)

=:

k−1∑
j=0

Ij × IIj .

In Ij , we write out D(k)
P =

∑
Q∈ch(k)(P ) DQ and note that, in a randomised

sum like here, we are free to replace εQ by εP , since the difference is invisible
to the Lp(Ω;Y ) at a fixed s ∈ Rd. This gives

Ij =
∥∥∥ ∑

P∈D
log2 `(P )≡j

mod k

∑
Q∈ch(k)(P )

εQDQAP f
∥∥∥
Lp(R;Y )

.

Using the splitting of AP , it then follows that

Ij 6
∥∥∥ ∑

P∈D
log2 `(P )≡j

mod k

∑
Q∈ch(k)(P )

εQDQAP ;P f
∥∥∥
Lp(Ω×R;Y )

+
∥∥∥ ∑

P∈D
log2 `(P )≡j

mod k

∑
Q∈ch(k)(P )

εQDQAP ;Qf
∥∥∥
Lp(Ω×R;Y )

=: IIIj + IVj .

We first consider IVj . Denoting by Qs the unique dyadic child of Q that
contains a given s ∈ Q, and with the understanding that DQ acts in the s
variable, we have

DQAP ;Qf(s) = −
∫
Q

DQaP ;Q(s, u)D[0,k)
P f(u) du

= 1Q(s)−
∫
Q

(
〈aP ;Q(·, u)〉Qs − 〈aP ;Q(·, u)〉Q

)
(〈f〉Q − 〈f〉P ) du
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=: αP ;Q(s)1Q(s)(〈f〉Q − 〈f〉P ) = αP ;Q(s)1Q(s)D[0,k)
P (s),

where

αP ;Q(s) := −
∫
Q

(
〈aP ;Q(·, u)〉Qs − 〈aP ;Q(·, u)〉Q

)
du

belongs to the two-fold multiple of the absolute convex hull of the set appear-
ing in the definition of ‖S‖Shift(℘). Thus

IVj =
∥∥∥ ∑

P∈D
log2 `(P )≡j

mod k

∑
Q∈ch(k)(P )

εQαP ;Q1QD[0,k)
P f

∥∥∥
Lp(Ω×R;Y )

6 2‖S‖Shift(Rp)

∥∥∥ ∑
P∈D

log2 `(P )≡j
mod k

∑
Q∈ch(k)(P )

εQ1QD[0,k)
P f

∥∥∥
Lp(Ω×R;X)

6 2‖S‖Shift(Rp)

∥∥∥ ∑
P∈D

log2 `(P )≡j
mod k

εPD[0,k)
P f

∥∥∥
Lp(Ω×R;X)

,

using the identity
∑
Q∈ch(k)(P ) 1Q = 1P and the interchangeability of εP and

εQ in the random sum in the last step.

Observing that (D[0,k)
P f)log2 `(P )≡j mod k is a martingale difference decom-

position of f for each j ∈ {0, . . . , k− 1} to deduce directly from the definition
of the UMD constants that

IVj 6 2‖S‖Shift(Rp)β
+
p,X‖f‖Lp(Rd;X).

We then turn to term IIIj . By the exchangeability of εP and εQ again,
this can be written as

IIIj =
∥∥∥ ∑

P∈D
log2 `(P )≡j

mod k

εPD(k)
P AP ;P f

∥∥∥
Lp(Ω×R;Y )

,

where

D(k)
P AP ;P f(s) = −

∫
P

D(k)
P aP ;P (s, u)D[0,k)

P f(u) du,

and it is understood that D(k)
P acts with respect to the s variable.

We will now make use of the tangent martingale construction as in Corol-
lary 4.4.15 and explained just before the statement of the said result: For
every P ∈ D , let TP be a copy of P equipped with the normalised measure
νP := |P |−1m|P , where m is the Lebesgue measure, and consider the prod-
uct space T :=

∏
P∈D TP with probability measure ν := ⊗P∈DνP . Writing a

typical element of T as t = (tP )P∈D , we then have
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D(k)
P AP ;P f(s) =

∫
T

D(k)
P aP ;P (s, tP )D[0,k)

P f(tP ) dν(t).

Hence (suppressing, as usual, the dependence of random functions on ω ∈ Ω),

IIIj =
∥∥∥s 7→ ∫

T

∑
P∈D

log2 `(P )≡j
mod k

εPD(k)
P aP ;P (s, tP )D[0,k)

P f(tP ) dν(t)
∥∥∥
Lp(Ω×Rd;Y )

6
∥∥∥(s, t) 7→

∑
P∈D

log2 `(P )≡j
mod k

εP1P (s)D(k)
P aP ;P (s, tP )D[0,k)

P f(tP )
∥∥∥
Lp(Ω×Rd×T ;Y )

.

Here, D(k)
P aP ;P (s, tP ) is the difference of two averages 〈aP ;P (·, tP )〉Q, and

hence in twice the absolute convex hull of the set in the definition of ‖S‖Shift(℘).
Thus, the definition of R-boundedness implies that

IIIj 6 2‖S‖Shift(Rp)

∥∥∥(s, t) 7→
∑
P∈D

log2 `(P )≡j
mod k

εP1P (s)D[0,k)
P f(tP )

∥∥∥
Lp(Ω×Rd×T ;X)

.

We are now in a position to apply Corollary 4.4.15. Indeed, the functions

D[0,k)
P f are “atoms” in the sense defined before that corollary: D[0,k)

P f is sup-

ported on P , of average 0, and constant on all P ′ ∈ ch(k)(P ), which are the
next smaller cubes in the scales-separated dyadic system {P ∈ D : log2 `(P ) ≡
j mod k}. Thus, a direct application of Corollary 4.4.15 to

f =
∑
P∈D

log2 `(P )≡j
mod k

D[0,k)
P f

shows that∥∥∥(s, t) 7→
∑
P∈D

log2 `(P )≡j
mod k

εP1P (s)D[0,k)
P f(tP )

∥∥∥
Lp(Ω×Rd×T ;X)

6 βp,X‖f‖Lp(Rd;X),

and hence
IIIj 6 2‖S‖Shift(Rp)βp,X‖f‖Lp(Rd;X).

Combining this with the estimate for term IVj (and estimating the one-sided
UMD constant by the basic UMD constant), we deduce that

Ij 6 IIIj + IVj 6 4‖S‖Shift(Rp)βp,X‖f‖Lp(Rd;X).

Hence
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|〈Sf, g〉| 6
k−1∑
j=0

Ij × IIj 6 4‖S‖Shift(Rp)βp,X‖f‖Lp(Rd;X)

k−1∑
j=0

IIj ,

where

k−1∑
j=0

IIj 6 k
1/t
( k−1∑
j=0

IIt
′

j

) 1
t′

= k1/t
( k−1∑
j=0

∥∥∥ ∑
P∈D

log2 `(P )≡j
mod k

εPD(k)
P g

∥∥∥t′
Lp′ (Ω×Rd;Y ∗)

) 1
t′

6 k1/t · ct′,Y ∗;p′
∥∥∥ ∑
P∈D

εPD(k)
P g

∥∥∥
Lp′ (Ω×Rd;Y ∗)

6 k1/t · ct′,Y ∗;p′ · β+
p′,Y ∗‖g‖Lp′ (Rd;Y ∗).

Here β+
p′,Y ∗ 6 βp′,Y ∗ = βp,Y by Proposition 4.2.17(2), and ct′,Y ∗;p′ 6 τt,Y ;p by

Proposition 7.1.13 (or its easy extension to deal with the third index in these
constants). This completes the proof for shift of type (1, k).

Shifts of type 2

For a shift of type (2, k), we note that its adjoint S∗ is a shift of type (1, k),
and hence

‖S‖L (Lp(Rd;X),Lp(Rd;Y )) = ‖S∗‖L (Lp′ (Rd;Y ∗),Lp′ (Rd;X∗))

6 4‖S∗‖Shift(Rp′ )
βp′,Y ∗βp′,X∗∗cq,X;pk

1/q′

= 4‖S‖Shift(R∗
p′ )
βp,Y βp,Xcq,X;pk

1/q′ ,

which is the asserted bound in this case.

Shifts of type 0

Let finally S be a shift of type (0, k). We can then proceed as in the case of
type (1, k) with slight modifications: In view of the eventual application of
the tangent martingale estimate of Corollary 4.4.15, we now separate scales

by k + 1 levels instead of k, since D(k)
P f is only guaranteed to be constant

on Q ∈ ch(k+1)(P ). On the other hand, we now have IVj = 0, and hence
Ij = IIIj .

Following the argument in the case of type (1, k) leads to

IIIj 6 2‖S‖Shift(Rp)

∥∥∥(s, t) 7→
∑
P∈D

log2 `(P )≡j
mod k+1

εP1P (s)D(k)
P f(tP )

∥∥∥
Lp(Ω×Rd×T ;X)

.
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To complete the estimate, we will need a little additional trick compared to
the previous cases. First, we observe that

D(k)
P = (I − E(k)

P )D[0,k+1)
P .

Second, we have

E(k)
P f(tP ) = E(f |σ(ch(k+1)(P )))(tP )

= E
(
t 7→ f(tP )

∣∣∣ ⊗
Q∈D

σ(ch(k+1)(Q))
)

=: E
(
t 7→ f(tP )

∣∣∣Gk+1

)
,

where on the right-hand side we take a conditional expectation with respect
to a product σ-algebra on the product probability space T , of a function that
only depends on the “coordinate” tP of t ∈ T . The importance of this last
formula comes from the fact that only the function inside the conditional
expectation, but not the conditional expectation operator itself, depends on
the dyadic cube P . Using the previous two formulas, it follows that∥∥∥ ∑

P∈D
log2 `(P )≡j

mod k+1

εP1P (s)D(k)
P f(tP )

∥∥∥
Lp(Ω×Rd×T ;X)

6
∥∥∥ ∑

P∈D
log2 `(P )≡j

mod k+1

εP1P (s)D[0,k+1)
P f(tP )

∥∥∥
Lp(Ω×Rd×T ;X)

+
∥∥∥E( ∑

P∈D
log2 `(P )≡j

mod k+1

εP1P (s)D[0,k+1)
P f(tP )

∣∣∣Gk+1

)∥∥∥
Lp(Ω×Rd×T ;X)

6 2
∥∥∥ ∑

P∈D
log2 `(P )≡j

mod k+1

εP1P (s)D[0,k+1)
P f(tP )

∥∥∥
Lp(Ω×Rd×T ;X)

by the contractivity of the conditional expectation in the last step. This last
expression has the same form as what we encountered with shifts of type
(1, k), only with k + 1 in place of k. Thus, by an application of the tangent
martingale inequality of Corollary 4.4.15, we have∥∥∥ ∑

P∈D
log2 `(P )≡j

mod k+1

εP1P (s)D[0,k+1)
P f(tP )

∥∥∥
Lp(Ω×Rd×T ;X)

6 βp,X‖f‖Lp(Rd;X).

Thus,
Ij = IIIj 6 4‖S‖Shift(Rp)βp,X‖f‖Lp(Rd;X),

which is the same bound as for the corresponding terms in the estimate of
shifts of type (1, k). The rest of the argument is exactly the same, only with
k + 1 in place of k, and leads to the conclusion that
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‖S‖L (Lp(Rd;X),Lp(Rd;Y )) 6 4‖S‖Shift(Rp)βp,Xβp,Y ct′,Y ∗;p′(k + 1)1/t.

Since the adjoint of a shift of type (0, k) is another shift of the same type, we
also obtain

‖S‖L (Lp(Rd;X),Lp(Rd;Y )) 6 4‖S‖Shift(R∗
p′ )
βp,Xβp,Y cq,X;p(k + 1)1/q′ ,

and we can take the minimum of the two bounds. Since k > 2, we can also
make the trivial estimates k+ 1 6 3

2k and 4 · ( 3
2 )1/v 6 6 for v ∈ {t, q′} so that

in case v > 1. �

With the help of the shifts, we can represent any weakly defined singular
integral with appropriate kernel bounds as follows:

Theorem 12.4.27 (Dyadic Representation Theorem). Let p ∈ (1,∞)
and 1 6 t 6 p 6 q 6∞, and suppose that:

(i) X and Y are UMD spaces,
(ii) X has cotype q and Y has type t,

(iii) t : S(D)2 → Z := L (X,Y ) is a weakly defined singular integral and the
kernel K : Ṙ2d → Z of t satisfies the Calderón–Zygmund estimates

cK(Rp) + ‖ω1
K(Rp)‖Dini1/t + ‖ω2

K(Rp)‖Dini1/q
′ <∞.

Then the following conditions are equivalent:

(1) t defines a bounded operator T ∈ L (Lp(Rd;X), Lp(Rd;Y ));
(2) each tω satisfies the weak DRp-boundedness property ‖tω‖wbp(DRp) 6

C, and the associated bi-paraproduct Λtω defines a bounded operator in
L (Lp(Rd;X), Lp(Rd;Y )), uniformly in ω ∈ ({0, 1}d)Z0 .

Under these equivalent conditions, we have

(a) the dyadic representation formula

〈Tf, g〉 = E
(
〈Htωf, g〉+ 〈Λtωf, g〉+

∞∑
k=2

i∈{0,1,2}

〈S(i,k)
ω f, g〉

)

with absolute convergence for all f ∈ S(D ;X) and g ∈ S(D ;Y ∗), where E
is the expectation over ω ∈ ({0, 1}d)Z6M , and M ∈ Z is any large enough
number such that f and g are constant on all Q ∈ DM ; the operators Htω

and Λtω are a Haar multiplier and a paraproduct as in (12.52), and each

S
(i,k)
ω is a dyadic shift of type (i, k) (Definition 12.4.24) with respect to the

dyadic system Dω and with shift norms estimated by

‖S(i,k)
ω ‖Shift(℘) 6 cd

{
cK(℘), if 2k 6 12

√
d,

ωiK(℘; 6
√
d

2k
), if 2k > 12

√
d;
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(b) the resulting norm estimate:

‖T‖L (Lp(Rd;X),Lp(Rd;Y )) − sup
ω
‖Λtω‖L (Lp(Rd;X),Lp(Rd;Y ))

6 βp,Xβp,Y
{

4d sup
ω
‖tω‖wbp(DRp) + c0d

(
cK(Rp) + cK(R∗p′)

)
+

+ c1d

(
ct′,Y ∗;p′‖ω1

K(Rp)‖Dini1/t + cq,X;p‖ω2
K(R∗p′)‖Dini1/q

′

)}
,

where the suprema are over ω ∈ ({0, 1}d)Z0 , and the constants c0d, c
1
d depend

only on d

Proof. We note that the present assumptions coincide with those of Theorem
12.4.12, except that (ii) of the present theorem is slightly stronger than (ii) of
Theorem 12.4.12. Thus the equivalence of (1) and (2) is just repetition from
Theorem 12.4.12.

The first new claim is the dyadic representation formula (a). To see this,
recall that Theorem 12.4.12 gave the representation formula (12.52), repeated
for convenience as

〈Tf, g〉 = E
(
〈Htωf, g〉+ 〈Λtωf, g〉+ 2d

∑
n∈Zd
n 6=0

{
〈T good
n,tω f, g〉+

+ 〈f, U1,good
n,tω g〉+ 〈U2,good

n,tω f, g〉
})
,

where f, g, and E have the same meaning as in the claimed formula (a). On the
other hand, Lemma 12.4.23 and Remark 12.4.25 inform us that the summation
of the three types of terms over n ∈ Zd \ {0} can be rearranged into a sum
over k > 2 and i ∈ {0, 1, 2} exactly as in the assertion.

From the representation (a), we can then estimate

‖T‖L (Lp(Rd;X),Lp(Rd;Y )) − sup
ω
‖Λtω‖L (Lp(Rd;X),Lp(Rd;Y ))

6 sup
ω

(
‖Htω‖L (Lp(Rd;X),Lp(Rd;Y ))

+
∞∑
k=2

i∈{0,1,2}

‖S(i,k)
ω ‖L (Lp(Rd;X),Lp(Rd;Y ))

)
.

The first term here is estimated as in the proof of Theorem 12.4.12 by
4d‖t‖wbp(DRp). For the remaining sum over shifts, we obtain from Theorem
12.4.26 (using this theorem with trivial type t = 1 for small k, and as stated
for large k) that

∞∑
k=2

‖S(1,k)
ω ‖L (Lp(Rd;X),Lp(Rd;Y ))
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6 4 · βp,Xβp,Y
( ∑
k:162k612

√
d

‖S(1,k)
ω ‖Shift(Rp) · k

+
∑

k:2k>12
√
d

‖S(1,k)
ω ‖Shift(Rp)ct′,Y ∗;p′ · k1/t

)
6 cdβp,Xβp,Y

( ∑
k:162k612

√
d

cK(Rp)k

+ ct′,Y ∗;p′
∑

k:2k>12
√
d

ω1
K(Rp;

6
√
d

2k
)k1/t

)
6 c′dβp,Xβp,Y

(
cK(Rp) + ct′,Y ∗;p′‖ω1

K(Rp)‖Dini1/t

)
Similarly,

∞∑
k=2

‖S(2,k)
ω ‖L (Lp(Rd;X),Lp(Rd;Y ))

6 c′dβp,Xβp,Y
(
cK(R∗p′) + cq,X;p‖ω2

K(R∗p′)‖Dini1/q
′

)
.

Finally, The sum over shifts of type (0, k) may be estimated by either of the
two bounds above (the different numerical constant in Theorem 12.4.26 is in
any case absorbed into the unspecified dimensional constant). �

Remark 12.4.28. The norm estimate obtained in Theorem 12.4.27 via the rep-
resentation in terms of dyadic shifts is essentially the same as that in Theo-
rem 12.4.12 obtained via Figiel’s representation. While the proof of Theorem
12.4.27 partially relied on the proof of Theorem 12.4.12 to avoid repetition, a
larger part of the machinery behind the proof of Theorem 12.4.12, relying in
particular on Figiel’s Theorems 12.1.25 and 12.1.28 concerning his elementary
operators, was replaced in the proof of Theorem 12.4.27 by Theorem 12.4.26 on
the dyadic shifts, which in turn was based on the tangent martingale bounds
of Corollary 4.4.15.

12.5 Notes

Section 12.1

The Haar multipliers Hλ = Hααλ are special cases of martingale transforms dis-
cussed extensively in Volume I; see in particular Sections 3.5 and 4.2.e. In this
framework, the predictable sequences multiplying the martingale differences

Dαkf :=
∑
Q∈Dk

〈f, hαQ〉hαQ, D−αk f :=
∑
Q∈Dk

D−αQ f
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are then

vαk =
∑
Q∈Dk

λk1Qk ∈ L∞(σ(Dk); L (X,Y )), v−αk ≡ 0.

On the other hand, the Haar multipliers Hαγλ with α 6= γ already take a
departure from the general theory, and this is even more so with the general
operators of Figiel.

(Note that the conventional indices of dyadic analysis and martingale the-
ory are off by one from each other. In martingale theory, it is customary to
emphasise measurability, and hence the indices of martingale differences agree
with those of the σ-algebra that makes them measurable, while predictable
multipliers are measurable with respect to the “previous” σ-algebra with in-
dex k−1. In dyadic analysis, the emphasis is on the supporting dyadic cubes,
and hence the “kth” martingale difference Dkf is the sum of the local mar-
tingale differences DQ supported, and averaging to zero, on the dyadic cubes
Q ∈ Dk, but then they are actually measurable only with respect to the “next”
σ(Dk+1); at the same time, the “predictable” multipliers are then measurable
with respect to the σ-algebra indicated by their index.)

The relaxed R-boundedness notion DRp of Definition 12.1.6 seems to
be new, but the slightly stronger E Rp appears implicitly in Di Plinio, Li,
Martikainen, and Vuorinen [2020b, Remark 6.29], where it is shown that
the family |Q|−1〈T1Q,1Q〉 of Example 12.1.10 has this property when T ∈
L (Lp(Rd;X), Lp(Rd;Y )) and X and Y are UMD spaces; this also follows by
combining our Example 12.1.10 (on the DRp property of this family) and
Corollary 12.1.17 (the equivalence of DRp and E Rp for UMD spaces). An
advantage of the new DRp is that it allows Example 12.1.10 without any
assumptions on the Banach spaces.

The exact characterisation of the boundedness of the Haar multipliers
Hλ in Theorem 12.1.11 is new; by Lemma 12.1.8 and Propositions 12.1.13
and 12.1.14, the characterising condition is strictly more general than the R-
boundedness condition ‖x 7→ R({λQ : x ∈ Q ∈ D})‖∞ < ∞. This seems
at first to contradict Girardi and Weis [2005], where the necessity of uniform
pointwise R-boundedness for operator-valued martingale transforms is estab-
lished. This apparent contradiction is resolved by observing that, in order
to obtain this necessity of R-boundedness, Girardi and Weis [2005] actually
assume that their transforming sequence (vk)k>1 is allowed to multiply any
subsequence (dfnk)k>1 of the martingale difference sequence (dfk)∞k=1, i.e.,
they assume the boundedness of the family of operators f 7→

∑
k>1 vkdfnk

instead of just f 7→
∑
k>1 vkdfk. In the case of Haar multipliers, this would

mean that, for a given sequence λ = (λQ)Q∈D we would consider a family of
operators including in particular all

f 7→
∑
Q∈D

λQ(k)〈f, hαQ〉hαQ,
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where k ∈ N and Q(k) is the k generations larger dyadic ancestor of Q. How-
ever, in particular situations like that of Propositions 12.1.13, each coefficient
λQ is naturally associated to a unique cube Q only.

The underlying ideas of Section 12.1.b come from Figiel [1988], and they
have been developed further by Hytönen [2006], but substantial details of
the present treatment are new. Figiel [1988] also introduced the elementary
operators T and U and proved the first versions of Theorems 12.1.25 and
12.1.28. A novelty of the present treatment, also reflected in the auxiliary
considerations in Section 12.1.b, is to set up the argument in such a way
as to obtain a reasonably efficient dependence of the estimates on the UMD
constants, although we make no claims concerning sharpness. A technical
point was to use the decomposition of Lemma 12.1.22 in such a way that the
parts of the decomposition contribute additively, rather than multiplicatively,
to the operator norms in Theorems 12.1.25 and 12.1.28; while this seems
only natural in retrospect, it was not the case with earlier treatments of the
analogous bounds by Figiel [1988] and Hytönen [2006]. This proof detail only
affects the constants in the final estimates, which was not a concern in these
earlier works.

Besides the “dyadic singular integrals” studied in this section, there are re-
lated classes of operators that might be regarded as “dyadic pseudo-differential
operators”, in that their symbol depends on both the spatial variable s ∈ Rd
and the “dyadic frequency variable” I ∈ D . These are the generalised Haar
multipliers

Hλ(s)f(s) =
∑
I∈D

λI(s)〈f, hI〉hI(s),

where each coefficient λI(·) is a function. A primary example considered by
Katz and Pereyra [1999] consists of

λI(s) = wtI(s) :=
(w(s)

〈w〉I

)t
,

where t ∈ R and w is in a (dyadic) Ap or (dyadic) reverse Hölder class.
Given the close relation of their techniques to those of the present section,
it seems likely that some of the results concerning the operators Hλ(·) could
be generalised to functions taking values in a UMD space, but this line of
research seems not to have been pursued so far.

Section 12.2

In analogy with the quote of Stein [1982] on square functions at the beginning
of Chapter 9, also the concept of paraproduct is “not an idea in its pure form,
but rather takes various shapes depending on the uses it is put to”. A friendly
overview to this variety of “shapes and uses” of paraproducts can be found
in Bényi, Maldonado, and Naibo [2010]. Paraproducts were systematically in-
troduced by Bony [1981], but Bényi et al. [2010] convincingly argue that their
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first version is already implicit in the treatment of commutators of singular
integrals by Calderón [1965].

Our treatment concentrates on dyadic paraproducts. We are uncertain
about the earliest appearance of this notion in the literature but it was
certainly known to Figiel [1990]; according to this paper, the Lp(Rd;X)-
boundedness of the dyadic paraproduct with a scalar-valued b ∈ BMOD(Rd)
“relies on an estimate due to Jean Bourgain (October 1987, unpublished)”.
This argument was only presented in print much later by Figiel and Woj-
taszczyk [2001]. In particular, Corollary 12.2.19 goes back to these works. The
first results on the boundedness of operator-valued paraproducts on UMD
spaces were obtained by Hytönen and Weis [2006b] for a Fourier-analytic
cousin of the dyadic paraproduct that we have treated. A sufficient condition
similar to Proposition 12.2.16, in terms of a version of the Carleson norm,
was identified there under the name of “Littlewood–Paley–BMO” norm. The
condition of Theorem 12.2.18, in terms of BMO(Rd;Z) with values in a UMD
subspace Z ↪→ L (X,Y ), is also implicit in Hytönen and Weis [2006b], and
explicitly formulated by Hytönen [2006]. However, both Hytönen and Weis
[2006b] and Hytönen [2006] also required an additional R-boundedness con-
dition, most easily formulated by the requirement that the unit ball B̄Z of
Z should be an R-bounded subset of L (X,Y ). This condition was found to
be superfluous by Hytönen [2014] when revising the argument for an exten-
sion to non-doubling measures, a generality that we have not considered here.
The details of the present approach are largely borrowed from Hänninen and
Hytönen [2016], where several simplifications were found when specialising the
considerations back to the case of the Lebesgue measure. A particular novelty
of Hänninen and Hytönen [2016], which we have followed, was to estimate
the vector-valued paraproduct directly in Lp(Rd;Y ), in contrast to earlier ar-
guments that achieved the Lp bounds only via interpolation from auxiliary
end-point estimates between the Hardy space H1(Rd;X) and L1(Rd;Y ) on
the one hand, and between L∞(Rd;X) and BMO(Rd;Y ) on the other hand.

Theorem 12.2.25 on the boundedness of the symmetric paraproduct Λb is
from Hytönen [2021]. The case when p = 2 and X = Y is a Hilbert space was
obtained earlier by Blasco and Pott [2008], and extended to any p ∈ (1,∞) and
any non-commutative Lp(M) space (with the same p) by Mei [2010]. (Recall
that Lp(M) is a UMD space for p ∈ (1,∞)—the case of Schatten classes, due
to Bourgain [1986], is treated in Proposition 5.4.2, while the general case can
be found in Berkson et al. [1986b]—so the mentioned result of Mei [2010] is
indeed a special case of Theorem 12.2.25.) The auxiliary material on projective
tensor products is classical; much more on this topic can be found in Ryan
[2002].

Theorem 12.2.26 on the dimensional growth of the norms of operator-
valued paraproducts is from Mei [2006]. The optimal dimensional dependence
in the estimate

‖Πb‖L (L2(R;`2N )) 6 ψ(N)‖b‖BMOso
D (R;L (`2N )) := ψ(N) sup

u∈B̄
`2
N

‖b(·)u‖BMOD(R;`2N ).
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had been settled some years earlier: Independently, Katz [1997] and Nazarov,
Treil, and Volberg [1997b] proved that ψ(N) . 1 + logN , and the latter
authors also obtained the preliminary lower bound ψ(N) & (1 + logN)1/2.
This was improved to ψ(N) & 1+logN by Nazarov, Pisier, Treil, and Volberg
[2002a]. For a while, there were hopes in the air of obtaining a dimension-free
estimate with BMOD(R; L (`2N )) in place of BMOso

D (R; L (`2N )) on the right.
Some indications that made this plausible are discussed in the introduction
of Mei [2006] who, however, destroyed such hopes were by the main result of
that paper, reproduced as Theorem 12.2.26. In combination with the upper
bound by Katz [1997] and Nazarov et al. [1997b] just mentioned, it shows that
1 + logN is the optimal upper bound for ‖Πb‖L (L2(R;`2N ))/‖b‖F (R;L (`2N )) for

any of the choices F ∈ {BMOso
D ,BMOD , L

∞}.
Further relations between various BMO-type quantities and the norms

of related transformations in infinite-dimensional Hilbert spaces have been
studied by Blasco and Pott [2008, 2010]. Analogous results in the context
of the operator-valued BMOA space of analytic functions are due to Rydhe
[2017].

Section 12.3

We refer the reader to the Notes of the following section for an account of
the T (1) theorem in its more traditional meaning as a boundedness criterion
for Calderón–Zygmund operators (as in the title of David and Journé [1984]).
The section under discussion presents a rather non-canonical approach to this
theory, introduced and described by Figiel [1990] as follows:

Our approach is indirect in the following sense. Rather than trying
to prove that some “classical” operators are bounded, we start from
considering certain rather new operators, which in our opinion have
a basic nature. (All the “singularities” which can occur in our con-
text are neatly packaged inside the basic operators.) Having estab-
lished precise estimates for the norms of those basic operators, we can
take up the “general case”. We just look at the class of those oper-
ators which can be realised as the sum of an absolutely convergent
(in the operator norm) operator series whose summands are simple
compositions of our basic operators. Then it turns out that the choice
was sufficiently efficient for that class to contain so-called generalised
Calderón–Zygmund operators and much more.

A large part of this section, up to and including T (1) Theorem 12.3.26, is an
updated review of Figiel [1990], incorporating a few elaborations:

• the trade-off between the type and cotype properties of the underlying
spaces and the minimal rate of convergence of the coefficients of the bilinear
form, as in Theorem 12.3.26(ii) (which is implicit in the combination of
Figiel [1988, 1990]);
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• conditions involving R-boundedness to deal with operator-valued versions
(first introduced into the context of T (1) theorems at large by Hytönen
and Weis [2006b] and into Figiel’s approach by Hytönen [2006]);

• keeping track of, and optimising the argument for, the quantitative de-
pendence on parameters like the UMD constants (which seems new for
this “non-random” version of the T (1) theorem, involving—in contrast to
Theorem 12.3.35—one dyadic system D only).

The decomposition (12.36) of t(f, g) into three one-parameter series, in
contrast to the perhaps more obvious two-parameter decomposition

t(f, g) =
∑
i,j

t(Dif,Djg),

was already used by Figiel [1990], but it is frequently referred to as the “BCR
algorithm” after Beylkin, Coifman, and Rokhlin [1991]. They explored its ad-
vantages for the numerical evaluation of singular integrals, also making a con-
nection with the T (1) theorem but apparently independently of Figiel [1990].
A decade later in 2002, when two of the present authors started to investigate
a Banach space valued T (1) theorem (eventually published in Hytönen and
Weis [2006b]), they were also initially unaware of the work of Figiel [1990],
which was first brought to their attention by Hans-Olav Tylli. Ever since, the
approach of Figiel [1990] has been highly influential for the development of
the theory of Banach space valued singular integrals.

The second T (1) Theorem 12.3.35, which makes use of a random choice of
the dyadic system Dω, has a history of its own. This method, referred to by
its inventors as “pulling ourselves by hair”, was introduced by Nazarov, Treil,
and Volberg [1997a] to tackle the difficulties in estimating singular integrals
with respect to a non-doubling measure µ, thus going beyond the established
theory in spaces of homogeneous type due to Coifman and Weiss [1971]. Their
original idea consisted of splitting a function into its “good” and “bad” parts,
according to the “good” and “bad” cubes supporting the martingale differ-
ences DQf :

fωgood :=
∑

Q∈Dω
good

DQf, fωbad :=
∑

Q∈Dω
bad

DQf,

and showing that the latter is small, “on average”, with respect to a random
choice of ω:

E‖fωbad‖L2(µ) 6 ε‖f‖L2(µ).

As a result, it is enough to estimate (an a priori bounded) operator T of
“good” functions only. Namely, if

|〈Tfωgood, g
ω
good〉| 6 C‖fωgood‖2‖gωgood‖2 6 C‖f‖2‖g‖2,

then
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|〈Tf, g〉| 6 |〈Tfωgood, g
ω
good〉|+ |〈Tfωgood, g

ω
bad〉|+ |〈Tfωbad, g〉|

6 C‖f‖2‖g‖2 + ‖T‖‖f‖2‖gωbad‖2 + ‖T‖‖fωbad‖2‖g‖2.

Taking the expectations of both sides, it follows that

|〈Tf, g〉| 6 C‖f‖2‖g‖2 + 2ε‖T‖‖f‖2‖g‖2,

hence

‖T‖ 6 C + 2ε‖T‖, ‖T‖ 6 C

1− 2ε
.

This method was successfully applied and further developed by Nazarov, Treil,
and Volberg [2002b, 2003]. The latter work was extended to Banach space
valued singular integrals with respect to non-doubling measures by Hytönen
[2014]. The first arXiv version of this paper was posted already in 2008, and
hence it was available to provide the backbone for the proof of the A2 theorem
in Hytönen [2012] (arXiv 2010); see the Notes of Chapter 11 for more on the
latter. It was for the purposes of the A2 theorem that a technical elaboration of
the averaging method of Nazarov, Treil, and Volberg [1997a, 2002b, 2003] had
to be invented: “on average”, the bad part is not only small but completely
absent. This allows the replacement of the estimates above by identities of the
type

〈Tf, g〉 = E〈Tωgoodf, g〉.

The observation that one can combine this averaging method with Figiel’s de-
composition of singular integrals in order to simplify the latter, and thereby
obtain sharper quantitative conclusions (notably, a quadratic dependence on
the UMD constant), was then made in Hytönen [2012] (arXiv 2011), where
a version of Theorem 12.3.35 (for scalar kernels and under vanishing para-
product conditions) was first established. The question of obtaining a linear
dependence on the UMD constant is an outstanding open problem already
in the special case of the Hilbert transform (see Problem O.6); but of course
a possible counterexample could be more feasible within the larger class of
operators covered by Theorem 12.3.35. A positive answer has been obtained
for sufficiently smooth even singular integrals on Lp(R;X) by Pott and Sto-
ica [2014]; their result depends on the same averaging trick and the resulting
dyadic representation theorem, but then applies different techniques to com-
plete the estimate.

While our approach to the “random” T (1) Theorem 12.3.35 took a detour
via the “non-random” T (1) Theorem 12.3.26, we should emphasise that this is
by no means necessary; rather, in many recent extensions of the T (1) theorem,
one starts with the randomised set-up from the beginning, and it is often not
even clear whether this could be avoided. We will say more about some of
these extensions later in these Notes. The reasons that we have chosen to
present also the non-random T (1) Theorem 12.3.26 are (at least) two-fold:
On the one hand, we feel that there is some historical documentary value
in providing (probably) the first detailed exposition of the original Banach
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space valued T (1) theorem of Figiel [1990], considering also the number of
other results in the literature relying on this in their proofs (although, in
many cases, one could alternatively apply one or several of the more recent
variants). On the other hand, the non-random T (1) Theorem 12.3.26 is not in
all respects subsumed by the random T (1) Theorem 12.3.35, which makes the
first one applicable in some situations where the latter one is not, and it might
hence be useful for the reader to keep the original T (1) Theorem 12.3.26 in
their toolbox.

While we are not aware of many such applications, here is at least one:
Pseudo-localisation of singular integrals refers to estimates of the form

‖1{Σf,sTf‖Lp(Rd;X) 6 φ(s)‖f‖Lp(Rd;X), s ∈ N,

where

Σf,s :=
⋃
{9Q : Q ∈ D ,D(s)

Q f 6≡ 0}, D(s)
Q f :=

∑
R∈chsQ

DRf,

and the point is obtaining a quantitative decay φ(s) → 0 as s → ∞. Case
p = 2 was considered by Parcet [2009] for X = K and by Mei and Parcet
[2009] for a Hilbert space X, with applications to non-commutative Calderón–
Zygmund and Littlewood–Paley theory, respectively. An extension to p ∈
(1,∞) and a UMD space X was obtained by Hytönen [2011] using a version
of the T (1) Theorem 12.3.26. This leads to studying a bilinear form whose
Haar coefficients satisfy a non-standard estimate of the form

|t(hαQ, h
γ

Q+̇m
)| . |m|−(d+ε)1(2·2s,∞)(|m|) + |m|−d1(4·2s−2,4·2s+2)(|m|).

The first term on the right with decay d + ε is typical, but the second one,
without any ε, is not. However, this term is only supported in a relatively
narrow region of values of the parameter m ∈ Zd, which still allows one to
make favourable estimates of the Figiel norms of t.

A notable aspect of this application is that the construction of the set
Σf,s refers to a fixed dyadic system D , which calls for a Haar expansion of
the operator in terms of this same D , as in the non-random T (1) Theorem
12.3.26, and seems to prevent any effective application of the random systems
Dω, as in the random T (1) Theorem 12.3.35. This suggests that, even after the
successful recent (and very likely future) development of T (1) theorems and
other results based on random dyadic systems, the non-random T (1) Theorem
12.3.26 might not become completely obsolete.

Section 12.4

The classical theory of Calderón and Zygmund [1952] had its focus on con-
volution operators. Their L2(Rd) boundedness is amenable to methods of
Fourier analysis, which then serves as a starting point for extrapolation to
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other Lp(Rd) and different function spaces, as discussed at length in Chap-
ter 11. It was observed quite early, notably by Coifman and Weiss [1971],
that these extrapolation aspects of the theory could be extended to much
greater generality, certainly including non-convolution operators on Rd and
much more. On the other hand, the boundedness of some prominent non-
convolution operators was obtained by different methods over the years, in-
cluding the commutators of Calderón [1965, 1977], and the Cauchy integral
on a Lipschitz graph, which we give in the parametrised form

CAf(s) := p.v.

∫ ∞
−∞

f(t) dt

s− t+ i(A(s)−A(t))
.

The boundedness of CA was first established, in the case of a small Lips-
chitz constant ‖A‖Lip, by Calderón [1977], and eventually in full generality by
Coifman, McIntosh, and Meyer [1982]. However, a general criterion for verify-
ing the L2(Rd) boundedness of any given Calderón–Zygmund operators was
missing.

The first such general criterion was provided by the “T (1) theorem” of
David and Journé [1984]. In its original formulation, this theorem stated that
an operator T : S (Rd) → S ′(Rd), with a Calderón–Zygmund standard ker-
nel, extends to a bounded operator on L2(Rd), if and only if it satisfies the
following three conditions, from which the name of the theorem (also intro-
duced by David and Journé [1984] in the title of the first section of their
paper) is derived:

(i) T (1) ∈ BMO(Rd),
(ii) T ∗(1) ∈ BMO(Rd),

(iii) T has the weak boundedness property.

Despite being a complete and elegant characterisation, giving, e.g., the results
of Calderón [1977] as a quick corollary, it turned out that it is not always fea-
sible to use this theorem for some operators. As a prime example, the theorem
of Coifman, McIntosh, and Meyer [1982] could not be directly recovered by
David and Journé [1984], since CA(1) does not admit an expression whose
BMO norm could be easily estimated.

This shortcoming was fixed by the more general “T (b) theorem” of David,
Journé, and Semmes [1985], which replaced (i) and (ii) by the more flexible
conditions

(i’) T (b1) ∈ BMO(Rd),
(ii’) T ∗(b2) ∈ BMO(Rd),

where one is free to choose the pair of functions bi ∈ L∞(Rd) subject only
to the restriction that they be accretive (meaning <bi > δ > 0 almost every-
where) or just para-accretive (a technical generalisation, for which we refer the
interested reader to the original paper). In particular, one can take bi = 1+iA′

for which the computation of (any finite truncations of) CA(1 + iA′) is easy.
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While also this T (b) theorem has been extended to UMD spaces by
Hytönen [2006], the need for this is perhaps not as great as in the scalar-
valued case, at least as far as the extension of the boundedness of scalar-
valued Calderón–Zygmund operators to Lp(Rd;X) is concerned. The reason
for this is that, while it might be difficult to check the T (1) conditions (i) and
(ii) directly, they can nevertheless be verified by the converse direction of the
T (1) theorem, provided that the L2(Rd) boundedness of T is already known
by some other method (such as the T (b) theorem). This is, in essence, the
point of the scalar-kernel T (1) Theorem 12.4.21.

Corollary 12.5.1. Let X be a UMD space, p ∈ (1,∞), and A : R → R be a
Lipschitz function. Then the Cauchy integral on a Lipschitz graph CA extends
to a bounded operator on L2(R;X) and

‖CA‖L (Lp(R;X)) 6 cApp
′ · β2

2,X ,

where cA is a constant that depends on A only.

Sketch of proof. By the theorem of Coifman, McIntosh, and Meyer [1982], the
operator CA is bounded on L2(R). It is straightforward to verify that the kernel
of CA is a standard kernel, and hence verifies the assumptions of Theorem
12.4.21 with Dini1 conditions (and associated constants depending only on A),
in which case only trivial type and cotype is needed. Thus Theorem 12.4.21,
with s = p = 2, proves the corollary for p = 2. While we could apply Theorem
12.4.21 with s = 2 and any p ∈ (1,∞), a better quantitative conclusion for
p 6= 2 is obtained by using case p0 = 2 as input to the Calderón–Zygmund
theorem 11.2.5, which then yields the asserted bound for all p ∈ (1,∞). �

Corollary 12.5.1 seems to have been first stated in Hytönen [2006]; however,
given that it is essentially a concatenation of its scalar case due to Coifman,
McIntosh, and Meyer [1982], and the T (1) theorem of Figiel [1990], it was
probably “known to experts” much earlier. The case when X is a UMD lattice
was established by a different method already by Rubio de Francia [1986].

In a similar way, the extension of the non-homogeneous T (1) theorem of
Nazarov, Treil, and Volberg [2003] to UMD spaces has the following conse-
quence:

Theorem 12.5.2. Let µ be a positive non-atomic Radon measure on C. Then
the following conditions are equivalent

(1) There is a constant c <∞ such that, for every disk D = D(z, r) ⊆ C, the
measure µ satisfies
(a) the linear growth condition µ(D(z, r)) 6 cr, and
(b) the local curvature condition∫∫∫

D×D×D

dµ(u) dµ(v) dµ(z)

R(u, v, z)
6 cµ(D),
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where R(u, v, z) is the radius of the circle through u, v, z (understood
as ∞, if the points are collinear).

(2) The Cauchy integral

Cµf(u) :=

∫
C

f(v) dµ(v)

u− v

defines a bounded operator on L2(µ).
(3) For every UMD space X and every p ∈ (1,∞), the Cauchy integral Cµ

defines a bounded operator on Lp(µ;X).

Note that CA is (equivalent to) the special case, where µ is the arc-length
measure on the graph {(t, A(t)) : t ∈ R}.

Sketch of proof. The implication (2)⇒(1a) is due to David [1991] and (2)⇒(1b)
due to Melnikov and Verdera [1995] and Mattila, Melnikov, and Verdera
[1996]. The sufficiency of these geometric conditions, (1)⇒(2), was proved
by Tolsa [1999].

The implication ((1a) and (2))⇒(3) follows from an analogue of Theorem
12.4.21 for measures on Rd with the power growth bound µ(B(s, r)) 6 crn

(0 < n 6 d), which is one of the main results of Hytönen [2014]. The implica-
tion (3)⇒(2) is trivial. �

This proof sketch highlights the role of T (1) theorems as a device for extending
deep results about the boundedness of specific operators from scalar-valued to
vector-valued spaces, without the need to revisit the details of the original ar-
guments. Indeed, by using the scalar-valued result (2) as an intermediate step,
the equivalence of (1) and (3) is obtained without ever having to deal with
the local curvature condition (1b) in the context of vector-valued functions!

Our operator-kernel T (1) Theorem 12.4.12 is the outcome of a line of
evolution starting with the first such results obtained by Hytönen and Weis
[2006b] and Hytönen [2006], and continued with several variants and exten-
sions addressing

• non-homogeneous measures (Hytönen [2014] (arXiv 2008), Martikainen
[2012a] (arXiv 2010), Hytönen and Vähäkangas [2015]);

• simplifications of the underlying decomposition of the operator (Hytönen
[2012], Hänninen and Hytönen [2016]);

• sharper conclusions under additional symmetry assumptions (Pott and
Stoica [2014], Hytönen [2021]);

• product-space/multiparameter singularities (Di Plinio and Ou [2018], Hytönen,
Martikainen, and Vuorinen [2019a]);

• multilinear operators (Di Plinio, Li, Martikainen, and Vuorinen [2020b],
Airta, Martikainen, and Vuorinen [2022]).
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While these papers extend the theory into several directions that we have not
considered here, many of them also provide valuable pieces of insight into the
basic case of linear Calderón–Zygmund operators on Rd with the Lebesgue
measure, which we have tried to incorporate into the present treatment. De-
spite this extensive background material, some aspects of our present T (1)
Theorem 12.4.12 appear to be new:

(1) For the first time, we are able to state an operator-valued T (1) theorem
that gives a characterisation (as in the scalar-valued T (1) theorem of
David and Journé [1984]), and not just a sufficient condition (as in all
operator-valued papers cited above), for the boundedness of a Calderón–
Zygmund operator with an operator-valued kernel. This depends on two
recent ideas, the combination of which appears here for the first time:
(a) Replacing the (sufficient but not necessary) weak R-boundedness

property of most of the previous contributions by the correct weak
DRp-boundedness property. As discussed in the Notes of Section 12.1,
this idea is from Di Plinio, Li, Martikainen, and Vuorinen [2020b].

(b) Treating the bi-paraproduct Λ = ΠT (1) + Π∗T∗(1) as a single object,
and making its boundedness into a condition in its own right, rather
than trying (in vain) to force it into a form involving some operator-
valued BMO space. This is implicit in Hytönen [2021].

(2) Recording the quantitative dependence of the estimate in terms of both
the UMD and the (co)type constants, and optimising the argument for
what seems to be the best possible bound currently available. This was
available in important special cases (notably in Hytönen [2012]), and ar-
guably implicit in some other works, but seems to be original as an explicit
statement in the present generality.

Consequences of the T (1) theorem

The “T (1) theorem for convolution kernels”, Corollary 12.4.13, is a somewhat
untypical statement, in that convolution kernels have been usually treated by
more traditional Fourier-analytic methods, rather than the T (1) technology.
As such, this very formulation seems to be new. However, essentially the same
class of operators was considered with Fourier methods by Hytönen and Weis
[2007]. (Despite the publication year, this paper was actually the first joint
project of its authors, which they completed and submitted in 8/2002, be-
fore starting their follow-up work on the T (1) theorem, Hytönen and Weis
[2006b], later in the same year.) In place of the combinatorial estimates for
Figiel’s operators from Sections 12.1.b and 12.1.c, this proof employed analo-
gous Fourier-analytic estimates due to Bourgain [1986]. Just like the combi-
natorial details of the T (1) theorem can be simplified with the random dyadic
systems, the proof of the key lemma of Bourgain [1986] was later simplified
in Hytönen [2012] by the same technology.

While the direct comparison of Corollary 12.4.13 with the results of
Hytönen and Weis [2007] is complicated by the presence in Corollary 12.4.13 of
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the (untypical in the classical theory) weak boundedness property, Corollary
12.4.19 on antisymmetric kernels comes rather close to some results of Hytönen
and Weis [2007]. Indeed, in this special situation, one can completely avoid
both paraproducts and the weak boundedness property, obtaining a bound-
edness criterion in terms of the Calderón–Zygmund kernel bounds alone.

Corollary 12.4.18 on antisymmetric but non-convolution kernels (where
the weak boundedness is automatic but a paraproduct is present) is probably
new in the operator-valued setting, but a rather straightforward adaptation
of similar statements that are well known in the scalar-valued theory.

On minimal smoothness conditions

As one can see from T (1) Theorem 12.4.12 and its corollaries, the minimal
smoothness of the kernel involves a modulus of continuity ‖ω‖Diniσ , where
σ = max(1/t, 1/q′) if X has cotype q and Y has type t, or one of them has
both. In the scalar-valued (or more generally Hilbert space) case, this reduces
to σ = 1

2 . Incidentally, this appears to be the minimal condition required to
run any known proof of the T (1) theorem, even in the scalar case. As Figiel
[1990] puts it,

it was a nice surprise that such austere methods could in fact lead to
some results which were not less general than their counterparts estab-
lished earlier with no restrictions on the range of admissible methods.

While the original T (1) theorem of David and Journé [1984] and most of its
successors are formulated for Calderón–Zygmund standard kernels, an exten-
sion to Dini-type conditions was obtained shortly after by Yabuta [1985], who

proved the theorem under the condition that ‖ω 1
3 ‖Dini <∞. It is not obvious

at first sight how this compared to Figiel’s condition ‖ω‖
Dini

1
2
<∞. However,

we may observe that any non-decreasing ω on [0, 1] satisfies∫ 1
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(
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t

)α dt

t
=

∫ 1

0

ω(t)
1

1+αω(t)
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t
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∫ 1

0

ω(t)
1

1+α
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t

(∫ 1

0

ω(s)
1

1+α
ds

s

)α
=
(∫ 1

0

ω(s)
1

1+α
ds

s

)1+α

.

With 1
1+α = 1

3 , we see that Yabuta’s ‖ω 1
3 ‖Dini dominates ‖ω‖Diniα with α = 2.

(While the Dinis norms were previously defined with log2 in place of log,
and integrating over [0, 1

2 ] instead of [0, 1], the reader may easily verify that,
extending ω from [0, 1

2 ] to [0, 1] by ω(t) := ω(min(t, 1
2 )), these details affect at

most the constants in the final conclusions.)
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Subsequently, Meyer [1986] (according to Han and Hofmann [1993], but we
have not been able to verify the original reference) relaxed the assumption to
α = 1 (plus a further weakening of the pointwise bounds to integral conditions
rather closer to the Figiel conditions for bilinear forms as in our abstract
T (1) Theorems 12.3.26 and 12.3.35). Han and Hofmann [1993] obtained a
further slight relaxation of the conditions of Meyer [1986], and Yang, Yan, and
Deng [1997] proved the T (1) theorem with assumptions essentially matching
the special case α = 1

2 of the conditions of Figiel [1990] in the scalar-case.
Later attempts to relax this condition were made by Grau de la Herrán and
Hytönen [2018], who found that the same regularity is sufficient also for the
non-homogeneous T (1) theorem, but did not succeed in relaxing it even in the
standard case. Thus, various different proof strategies all seem to meet this
same threshold.

At the same time, it seems to remain unknown whether even the much
weaker Hörmander conditions of Definition 11.2.1 could in principle be enough
for a T (1) theorem. A positive result in this direction seems out of reach with
the presently available methods, but there does not seem to be any definitive
counterexample to rule out this possibility. As very partial evidence for a
counterexample, Yang, Yan, and Deng [1997] show that the T (1) conditions
for a Hörmander kernel are insufficient to guarantee the boundedness in some
end-point spaces.

The dyadic representation theorem

A dyadic representation formula resembling Theorem 12.4.27 was first ob-
tained by Hytönen [2012] as a key component of the original proof of the A2

Theorem 11.3.26 for all standard Calderón–Zygmund operators in the scalar-
valued case. Subsequent refinements and simplifications of the original rep-
resentation were obtained by Hytönen, Pérez, Treil, and Volberg [2014], and
Hytönen [2017]. The first version of both Theorems 12.4.26 and 12.4.27 for
dyadic shifts and singular integrals on Lp(Rd;X) with operator-valued kernels
were obtained by Hänninen and Hytönen [2016], by essentially the same tech-
niques (notably, the tangent martingale estimates of Corollary 4.4.15) that
we have followed. In all these contributions, like several other contemporary
ones, the notion of dyadic shift was essentially that of Hytönen [2012], which
is somewhat different from the present Definition 12.4.24. In the shifts of
Hytönen [2012], the components AK take the form

AP f =
∑

Q∈ch(i)(P )

R∈ch(j)(P )

αPQ,R〈f, hαQ〉h
γ
R,

with two independent complexity parameters (i, j) ∈ N2 in place of the single
k > 2 in Theorem 12.4.27. The “new shifts” of Definition 12.4.24 were first
introduced by Grau de la Herrán and Hytönen [2018]. Their Banach space
valued theory, including Theorems 12.4.26 and 12.4.27 in essentially their
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present form, as well as multilinear extensions, has been developed by Airta,
Martikainen, and Vuorinen [2022].

As far as proving the T (1) theorem for Calderón–Zygmund operators on
Lp(Rd;X) is concerned, the advantages of the Dyadic Representation Theo-
rem 12.4.27 over (the randomised version of) Figiel’s representation may be
considered a question of mathematical taste (depending, among other things,
on one’s preference for the tangent martingales methods of Section 4.4 over
the dyadic singular integrals of Section 12.1 or vice versa). However, these
advantages become prominent in extensions of the T (1) theory to other situ-
ations that we have not treated here. Roughly speaking, the decomposition of
Figiel is essentially based on multi-scale versions of translations—reasonably
well-behaved objects as far as translation-invariant spaces like Lp(Rd;X) are
concerned, but somewhat unstable in more general situations. In contrast, the
basic building block AK of the dyadic shifts are essentially averages, which
are much more stable operations. In particular, the averages f 7→ 1Q〈f〉Q
over arbitrary cubes Q ⊆ Rd are uniformly bounded on Lp(w) if and only if
w ∈ Ap, which partially explains the usefulness of such objects in the origi-
nal context of proving the A2 theorem. Averages are somewhat well-behaved
even when taken with respect to non-doubling measures, which is the con-
text in which a certain precursor of the dyadic representation of Hytönen
[2012] (arXiv 2010) was established by Hytönen [2014] (arXiv 2008) in order
to extend the non-homogeneous T (1) theorem of Nazarov, Treil, and Volberg
[2003] to the Banach space valued setting. Conversely, after the discovery of
the Dyadic Representation Theorem, it was used by Volberg [2015] to give a
new proof of the non-homogeneous T (1) theorem.

An adaptation of the Dyadic Representation Theorem 12.4.27, by Hytönen,
Li, H., and Vuorinen [2022], was instrumental in extending the T (1) the-
ory to singular integral operators adapted to so-called Zygmund dilations
(x1, x2, x3) 7→ (sx1, tx2, stx3), where s, t > 0 are two independent parame-
ters. Variants of the Dyadic Representation Theorem 12.4.27, with the Haar
functions replaced by smoother wavelets, have been explored by Hytönen and
Lappas [2022], Di Plinio, Wick, and Williams [2023c], and Di Plinio, Green,
and Wick [2023b,a].

T (1) theorems on other function spaces

The original T (1) theorem of David and Journé [1984] was a characterisation
of boundedness on L2(Rd), while we have dealt with extensions of such re-
sults to Lp(Rd;X). However, the boundedness of a given (singular integral)
operator is basic question arising in several other function spaces as well, and
the T (1) theorem has served as a model for similar results in other spaces.
(See Chapter 14 for information about the functions spaces appearing in this
discussion.) Extensions of the T (1) theorems to Besov spaces Ḃsp,q were ob-

tained by Lemarié [1985] and to Triebel–Lizorkin spaces Ḃsp,q and Ḟ sp,q by
Frazier, Han, Jawerth, and Weiss [1989]. In these results, p, q ∈ [1,∞], and
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the smoothness parameter s was restricted by the Hölder exponent of the
standard kernel of T . In order to cover a broader range of Besov and Triebel–
Lizorkin spaces, where the smoothness index can take any value s ∈ R, it is
necessary to consider higher order Calderón–Zygmund estimates such as

|∂αK(s, t)| 6 C|s− t|−d−|α|.

With appropriate assumptions of this type in place, Frazier, Torres, and
Weiss [1988] and Torres [1991] obtained T (1) criteria for the boundedness
of Calderón–Zygmund operators on any Triebel–Lizorkin space Ḟ sp,q, where
s ∈ R and p, q ∈ (0,∞]. The precise assumptions are necessarily somewhat
technical, and the result splits into three cases, where s < 0; or s > 0 and
p, q ∈ [1,∞], or s > 0 and min(p, q) ∈ (0, 1).

In a limited range of s again, T (1) theorems on (scalar-)weighted Triebel–
Lizorkin spaces Ḟ sp,q(w) were obtained by Han and Hofmann [1993], and on

matrix-weighted Besov spaces Ḃsp,q(W ) by Roudenko [2003]. The full scale

of both matrix-weighted Besov and Triebel–Lizorkin spaces Ḃsp,q(W ) and

Ḟ sp,q(W ) (as well as further generalisations with a fourth index) was covered
by Bu, Hytönen, Yang, and Yuan [2023]. When restricted to the unweighted
case, this last work even slightly simplifies the assumptions of Frazier, Torres,
and Weiss [1988] and Torres [1991].

In all these mentioned works on T (1) theorems beyond Lp spaces, the
focus has been on special T (1) theorems providing sufficient conditions for
boundedness under vanishing paraproduct assumptions. General T (1) the-
orems, providing a characterisation of boundedness on a given space, were
obtained on Besov spaces Ḃsp,q of positive smoothness s > 0 by Youssfi [1989],
in terms of the weak boundedness property and the boundedness of higher
order paraproducts. A far-reaching extension to Triebel–Lizorkin and other
function spaces, including versions on quite general domains O ⊆ Rd, is due
to Di Plinio, Green, and Wick [2023a].

For Banach space valued functions, special T (1) theorems (i.e., with van-
ishing paraproduct assumptions) on Riesz potential spaces Ḣs,p(Rd;X) and
Besov spaces Ḃsp,q(Rd;X) were proved by Kaiser [2007, 2009], respectively. The

results in Ḣs,p(Rd;X) need the UMD property of X, but those in Ḃsp,q(Rd;X)
do not. While we are not going to discuss these specific results in any further
detail, the reader can witness a similar dichotomy—that the UMD property is
needed to obtain results in certain function spaces, but not for analogous re-
sults in certain others—in our discussion of the theory of Banach space valued
function spaces in Chapter 14.
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