
Method Popularity Distributions of Software Artefacts within Maven Central

Thijs Nulle
Supervisor: Mehdi Keshani

EEMCS, Delft University of Technology, The Netherlands
20-6-2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering



Abstract
Even though previous studies have studied soft-
ware artefacts on a package level, little research
has been done on a method level. In this work,
we perform a method-level analysis to determine
how popularity disperses among methods within
software libraries of Maven Central. We anal-
yse 384 software artefacts with three different
metrics: eigenvector centrality, degree central-
ity and dependent usage percentage. Using call-
graphs of the interactions of a software artefact
with its dependents, we can determine the rela-
tive popularity score of any method. We observe
that popularity is inverse logarithmically dis-
tributed among the most frequently used meth-
ods within a library. Furthermore, 80% of calls
to a library are to 26% of all methods, following
the Pareto Principle. Likewise, the number of
dependents per artefacts also follows a power-
law distribution. We also find that no signifi-
cant correlation exists between any of the anal-
ysed metrics, allowing opportunities for future
research to determine a more accurate popular-
ity metric. All of our results show that method
popularity is logarithmically distributed within
software artefacts of Maven Central.

1 Introduction
Software libraries provide endpoints for reusing functional-
ity within a software ecosystem. These endpoints are repre-
sented as APIs, Application Programming Interfaces, allow-
ing users to integrate external software into their application
effortlessly. The distribution of those library packages of-
ten occurs through a project management tool, e.g. a package
manager. The project management tool analysed in this paper
is Maven Central [1], an ecosystem designed for dependency
management and standardising the build process of Java ap-
plications.

Benelallam et al. [2] present the Maven Dependency
Graph, a dataset comprising 2.4M indexed artefacts of Maven
Central, allowing one to analyse processes, trends and depen-
dency relations within the ecosystem. Utilising the Maven
Dependency Graph, Soto-Valero et al. [3] analysed artefacts
based on their version usage, popularity and timeliness. Both
of these papers perform a similar study, but they analyse at a
package level, whereas we analyse at a method level.

In this paper, we pose the following research question:
How is popularity distributed among methods within a soft-
ware library? We present a procedure to determine how pop-
ularity disperses within a software artefact. By analysing how
software artefacts interact with any library, we can discern
what methods influence the ecosystem more than others.

For this study, we investigate the interactions between dif-
ferent software artefacts. To capture these interactions, we
use the Fasten framework [4]; it resolves dependents and de-
pendencies of any package allowing us to map dependency
relations. Using these dependency relations, we can generate

callgraphs to analyse; where a callgraph is a directed graph
where the nodes represent a method M , where each edge rep-
resents a method Mi invoking another method Mj [5].

Prior to callgraph generation, we have to select a subset
of artefacts that are representative of Maven Central. We
perform weighted random sampling where the weight is the
number of dependents an artefact has. We select 384 artefacts
to analyse, achieving a confidence level of 95% with a margin
of error of 5%.

Subsequently, we generate callgraphs of all interactions be-
tween any dependent and its dependencies; note that the arte-
fact we are analysing is part of the dependencies. We analyse
the callgraphs based on three metrics, explained briefly in the
following paragraph.

The metrics we consider are Eigenvector Centrality, De-
gree Centrality and Dependent Usage Percentage. Eigenvec-
tor centrality determines the importance of a node, consider-
ing both the number of connections and the quality of the con-
nection itself. Degree centrality is the number of edges, |E|,
connecting to any node. Finally, dependent usage percentage
is the percentage of dependents that call a given method M .

Our key findings, presented in Section 4, show that method
popularity follows a logarithmic distribution for the most
used methods. However, infrequently used methods do not
have enough data to determine a popularity score. Conse-
quently, no correlation exists between eigenvector centrality,
degree centrality and dependent usage percentage; a method
can have a high score in one metric and a low score in another.
Finally, we determined that method calls and the number of
dependents of any artefact follow the Pareto Principle, which
states that for many phenomena, 80% of the consequences are
caused by 20% of the causes [6]. On average 26% of all meth-
ods account for 80% of all method calls within any software
artefact.

This paper is structured as follows. In Section 2, we de-
fine a list of definitions, followed by a list of related works.
Section 3 contains information about the methodology to con-
ducting our research. It briefly states an overview of the ap-
proach, followed by an explanation of the research question.
Subsequently, we cover the data specification and methodol-
ogy. In Section 4, we show and explain the results. Finally,
we discuss our findings in Section 5.

We analyse 384 software artefacts of Maven Central to de-
termine a popularity score for several metrics; eigenvector
centrality, degree centrality and dependent usage percentage.
We establish an approach to determine a popularity ranking
for any software artefact. Our main contributions are as fol-
lows:

• comprehensive analysis of method popularity within
Maven Central

• dataset of 384 analysed artefacts, including callgraphs
and popularity values

• tools for generating and analysing callgraphs

2 Background
In the following section, we first explain the definitions used
in this paper, followed by a brief overview of the related
works preceding this paper.

1



2.1 Definition of Terms
Maven Central1 is an automated build tool used mainly for
Java projects. One can specify dependencies on other soft-
ware artefacts within a pom.xml file.

In this paper, we consider an artefact to be a software arte-
fact with a unique groupId, artifactId and version in the
following format: groupId:artifactId:version.

A dependency another software artefact our current project
needs to compile, build, test or run.

A dependent is the contrary of a dependency; for any given
artefact AA if they specify another artefact AB in their list of
dependencies, AA is a dependent of AB .

Dependency resolution is resolving what dependencies a
package needs to compile, build, test or run; specified in the
pom.xml file. For more accurate dependency resolution, one
recursively needs to get the dependencies of all dependencies.

Dependent resolution is resolving what other packages de-
pend on your package; one needs to perform dependency res-
olution for all packages. Using this information, one can cre-
ate a so-called dependency graph and determine, using the
in-degree of a node, which packages are dependent on your
package.

A callgraph is a directed graph where the nodes represent
a method M , where each edge represents a method Mi invok-
ing another method Mj [5].

Fasten is an intelligent software package management sys-
tem. Using Fasten, one can resolve dependencies and depen-
dents for a software package [4]. Using this information, Fas-
ten can generate callgraphs of the interactions between these
software packages, allowing one to analyse the interdepen-
dence relations.

2.2 Related Works
In the following section, we review the existing studies in the
literature. Firstly, we cover two papers that present datasets
to analyse Maven Central, the Maven Dependency Dataset
(MDD) and the Maven Dependency Graph (MDG). Subse-
quently, we look at a paper that uses the MDG to analyse soft-
ware diversity within Maven Central. And finally, we cover
an article which investigates a seeming paradox for API us-
age.

Raemaekers et al. [7] present the Maven Dependency
Dataset, which contains metrics, changes and dependencies
of various JAR files. The results are on the level of individual
methods, classes and packages of multiple library versions.
The dataset includes several centrality measures, for instance
page rank and betweenness, and rudimentary usage frequen-
cies on a method level.

Benelallam et al. [2] present the Maven Dependency
Graph, containing metrics, changes and dependencies of a
large number of JAR files within Maven Central; it consists of
2.4M indexed artefacts and 9M dependency relations. Their
second contribution is providing procedures to query infor-
mation from this dataset, such as artefact retrieval in time
or per version range. With these two contributions, one can
answer high-level research questions about artefact releases,
evolution and usage trends over time.

1For more information, see maven.apache.org

Using the Maven Dependency Graph, Zerouali et al. [8]
performed an empirical study on the emergence of software
diversity within Maven Central. They extended the dataset to
include dependency relationships at the library level to allow
for a more in-depth analysis. They measure activity, popu-
larity and timeliness between different artefact versions of a
subset of the Maven Dependency Graph. Their contributions
include a quantitive analysis of popularity between different
library versions.

Harrand et al. [9] investigate a seeming paradox between
Hyrum’s law and the observation that most client dependen-
cies focus on a small part of APIs. Hyrum’s law states that
given enough users, one will depend on any observable be-
haviour of your system [10]. These seemingly contradictory
statements balance each other; a small part of the exposed
API is most used, even though some libraries depend on the
most uncommon behaviours.

Considering the MDD and the MDG, we concluded they
either performed no or a rudimentary method level analysis
regarding popularity, leaving an opportunity for researching
the given topic. As Benelallam et al. [2] studied popularity
between different versions of an artefact, it allows for extend-
ing this research at a method level. Finally, Harrand et al. [9]
states in their study that most usages come from a small num-
ber of methods, compared to most methods having infrequent
use. All previous statements confirm an opportunity for in-
depth research regarding method popularity within software
artefacts.

3 Approach
This section starts with an overview of the approach to ensure
the subsections are comprehensible in the given order. Subse-
quently, we will elaborate on the research question, describe
the data selection process and explain our methodology.

3.1 Overview of Approach
Figure 1 illustrates an overview of the approach outlined in
this section. The first step in the approach is selecting a subset
of artefacts to analyse within Maven Central. Subsequently,
we resolve a list of dependents for all artefacts. For the de-
pendents of any artefacts, we resolve their dependencies, con-
taining the original artefact.

Afterwards, we generate a callgraph of all interactions be-
tween any dependent and its dependencies. We aggregate
these generated callgraphs into one combined callgraph. Fi-
nally, we analyse this combined callgraph based on degree
centrality, eigenvector centrality and dependent usage.

RQ. How is popularity distributed among methods within
a software library? We aim to propose a procedure for
determining how popularity disperses among software
methods. We analyse several software packages’ depen-
dents and investigate what methods they use and how
consequential those methods are within the given soft-
ware package.

3.2 Data Specification
To analyse a large dataset like the Maven Central repository,
one needs to select a representative subset. Taherdoost [11]

2



Figure 1: Application Flow of the Approach

proposes a list of stages for a sampling process, including
several sampling techniques with their advantages and disad-
vantages. For a concise overview of the sampling process, see
the end of this subsection.

Sampling Techniques Before we can sample any data, we
need to determine which sampling technique to use. We
considered weighted random sampling and stratified random
sampling. Stratified random sampling is where before the
sampling process, we split the dataset into subgroups and
samples are selected from those. Ultimately, we opt for the
weighted random sampling technique as no metric exists to
divide the dataset fairly.

Sampling Frame To select a sampling frame, we need to
define a target population, which in our case is the Maven
Central repository, consisting of approximately 9M indexed
artefacts. Fasten contains the most recently added artefacts,
and thus we opt for all artefacts added between the 1st of Oc-
tober 2021 and the 31st of March 2022 as our sampling frame.
The final sampling frame contains approximately 400K arte-
facts. See Figure 2 for the number of artefacts loaded in Fas-
ten within the sampling frame.

Figure 2: Artefacts added per month within the sampling
frame

Pre-processing Artefacts Before we sample our dataset,
we apply two filters to the sampling frame; which allows us
to create a more representative dataset.

The first filter we apply is to remove testing-related2 arte-
facts from the dataset. As all artefacts uploaded to Maven
Central only contain source code, there is no feasible way to
analyse any testing-related artefacts. After applying the filter,
approximately 380K artefacts remain.

Subsequently, we filter multiple versions of any artefact.
Since different versions of the same artefact likely will see
the same usage pattern, it is more relevant to analyse different
artefacts compared to different versions. After applying the
filter, approximately 10K artefacts remain.

Data Selection After filtering the sample frame, we con-
sider the steps of sampling the dataset. As artefacts with
more dependent relations influence the ecosystem more, we
perform weighted random sampling based on the number of
dependents of any artefact, see Table 1 for a distribution of
the dependents count.

Num Dependents Num Artefacts
0 7533
1 2091
2-9 844
10-24 88
25-49 33
50+ 27

Table 1: Distribution of number of dependents per artefact

Within a list of dependents of an artefact, one might find
several dependents with the same groupId as the artefact
itself; more elaborate artefacts subdivide into more concise
artefacts with mutual dependencies. We opt to keep only one
dependent per unique groupId, ensuring the data selection
process does not get skewed by these dependence relations.

After resolving dependents for all pre-processed artefacts,
roughly 7500 artefacts do not have any dependents, which us-
ing weighted random sampling cannot be selected. Based on
a maximum margin of error and a confidence level, Taher-
doost [12] proposes a method to determine the sample size.
Based on the tables presented in the paper, we choose a sam-
ple size of n = 384, achieving a confidence level of 95%
and a maximum margin of error of 5%. For the 10 selected
artefacts with the most dependents, see Table 2.

Overview of Sampling Process
1. Select all Maven artefacts between October 1st 2021,

and March 31st 2022

2. Filter all testing-related artefacts

3. Filter artefacts based on a unique version

4. Calculate the number of dependents for every artefact

5. Perform weighted random sampling with the weight be-
ing the number of dependents

2We filter all the artefacts that contain the following words:
assertj, junit, mock and test.

3



Artefact Name Number of Dependents
com.google.code.gson:gson:2.8.9 539
ch.qos.logback:logback-core:1.2.7 328
org.projectlombok:lombok:1.18.22 244
com.fasterxml.jackson.core:jackson-annotations:2.12.6 228
org.bouncycastle:bcprov-jdk15on:1.70 228
org.yaml:snakeyaml:1.30 174
joda-time:joda-time:2.10.13 133
com.squareup.okhttp3:okhttp:4.9.2 117
com.fasterxml.woodstox:woodstox-core:6.2.7 110
com.github.ben-manes.caffeine:caffeine:2.9.3 104

Table 2: Top 10 Analysed Artefacts with the most Depen-
dents

6. Sample 384 artefacts to achieve a confidence level of
95% and a margin of error of 5%

3.3 Methodology
Our goal is to determine a popularity distribution of a method
within a software package of Maven Central. In the following
section, we propose the steps needed to accomplish this goal.
Generating Callgraphs To analyse a software artefact, one
needs to generate a callgraph containing all the interactions
of the given artefact and its dependents. The algorithm to
generate such a callgraph is given in Algorithm 1.

Algorithm 1 Callgraph Generation Algorithm
1: function GENERATEJOINEDCALLGRAPH(P )
2: DepP ← resolveDependents(P )
3: for all di ∈ DepP do
4: Dpydi

← resolveDependencies(di)
5: CGi ← generateCallgraph(Dpydi

)
6: end for
7: CGP ← joinCallgraphs(CG)
8: end function

Using the list of artefacts as inputs, we generate a callgraph
for every artefact and its dependents. As the first step of the
algorithm, we resolve the list of dependents for all artefacts;
we determine which specific versions of any artefact declare
a dependency on the target artefact.

Using this list of dependents, we need to determine how
every dependent interacts with our artefact. To determine all
method calls from a dependent to a dependency, one needs to
generate a callgraph that includes them and their dependen-
cies. Note that the dependencies of a dependent contain the
artefact we are analysing.

Because of inheritance in object-oriented programming,
one needs to perform a so-called class hierarchy analysis
to ensure all possible method calls are contained within the
callgraph. A class hierarchy analysis determines a program’s
class inheritance graph and the set of methods defined on each
class [13]. Using these two pieces of information, we can add
all possible invocations of any method to the callgraph.

As the final step of creating a callgraph of a software arte-
fact, we need to join all the partial callgraphs. Because all
methods within Fasten have unique identifiers, we can com-
bine all edges of the callgraphs using Equation 1. See Figure
3 for a visual representation of joining callgraphs.

Figure 3: Example of callgraph joining

G1 ∪G2 = (V1 ∪V2, E1 ∪E2 ∪{(a, b) :∈ V1, b ∈ V2}) (1)

where:

Gx = Graph x
Vx = Vertices of graph x
Ex = Edges of graph x

After executing this algorithm, we have the most accu-
rate representation of the interactions between an artefact and
its dependents, all in a single callgraph. By analysing the
callgraph of an artefact, we can determine popularity scores
based on all interactions with that artefact.
Metrics The first step of the analysis is to devise a list of
metrics we use to analyse the data. As the data consists of
directed graphs, we consider several proposed metrics within
graph theory. In the following paragraphs, we cover Eigen-
vector Centrality, Degree Centrality. Finally, we also cover
a simple metric comparing the percentage of dependents that
call a given method.

The first metric we use is Eigenvector Centrality, which
is a measure that takes into consideration both the number
and the quality of the connections between nodes [14]. See
Equation 2 for the mathematical formula. Since we want to
determine the popularity of a given method Mi, it is important
to consider the relative importance of a method Mj that calls
the method.

xv =
1

λ

∑
t∈M(v)

xt (2)

where:

xv = relative centrality score of v
λ = constant, eigenvalue in the vector notation Ax = λx
M(v) = set of neighbours of v

The second metric we use is Degree Centrality, defined as
the number of edges, |E|, that connect to a given vertex V
within a graph G := (V,E). See Equation 3 for the mathe-
matical formula. As we use degree centrality for a directed
graph, we need to differentiate between indegree and outde-
gree. We use indegree since we care about methods to our
artefact, represented as an edge from a method Mi to another
method Mj .

CD(v) = deg(v) (3)
where:

CD(v) = degree centrality of v
deg(v) = outgoing edges of v

4



The final metric is the percentage of dependents that call a
given method M . See Equation 4 for the mathematical for-
mula. As this metric cannot be influenced by multiple method
calls from the same dependent, it might give different insights
into method popularity.

Dep%(m) =
1

n

∑
d∈Depm

{
1 ∃{d,m} ∈ CGP

0 otherwise
(4)

where:

Dep%(m) = percentage of dependents that call a method m
Depm = dependents set of a method m
{d,m} = edge between a dependent d and a method m
CGP = callgraph of a package P

4 Results
In the following section, we will show the results of the ap-
proach described in Section 3. Firstly, we will briefly go over
the research question and the metrics. Subsequently, we will
show and explain the figures for the popularity distributions.

In this paper, we aimed to answer the following re-
search question; How is popularity distributed among meth-
ods within a software library?. To answer this question, we
proposed the following metrics; eigenvector centrality (see
Equation 2), degree centrality (see Equation 3) and dependent
usage percentage (see Equation 4).

4.1 Metrics
In this section, we cover the three metrics proposed in Section
3.3. We explain the popularity distribution of the given met-
ric, including discrepancies, if applicable. Firstly, we cover
eigenvector centrality, followed by degree centrality and de-
pendent usage percentage.

Eigenvector Centrality As seen in Figure 4, the data fol-
lows a logarithmic distribution within the first four quintiles;
a small number of methods are of great significance compared
to their peers. In the last quintile, the distribution contains a
drop-off because we aim to determine a popularity value for
infrequently called methods, resulting in high variance.

Degree Centrality As seen in Figure 5, degree centrality
follows a logarithmic distribution with more emphasis on
the popular methods. With eigenvector centrality, all given
method calls are aggregated into a single value, whereas all
individual method calls contribute to degree centrality, ampli-
fying the differences in the distributions.

Dependent Usage Percentage As seen in Figure 6, depen-
dent usage percentage follows a stronger logarithmic distribu-
tion compared to degree centrality. Because dependent usage
percentage limits the number of calls from a dependent to a
method to one and the values between artefacts are not nor-
malised, the distribution is more steep than the degree cen-
trality distribution; most methods are invoked in a small per-
centage of dependents.

Figure 4: Popularity Distribution for Eigenvector Centrality

Figure 5: Popularity Distribution for Degree Centrality

Influence of Internal Usage A possibility we considered
was the influence of non-unique groupId dependents on the
results; larger artefacts are subdivided into smaller artefacts
with the same groupId and mutual dependencies. To en-
sure this did not influence the results, we ran the experiments
while filtering all dependents with the same groupId.

Finally, the results did not change significantly; it still
follows the same distribution. See Figure 7 for the popu-
larity distribution of eigenvector centrality with the unique
groupId filter; the distributions for the other metrics are
omitted.

4.2 Metric Correlations
As all distributions follow a logarithmic distribution, it is no
surprise that one can use any of the proposed metrics to cal-
culate method popularity within software artefacts. The sim-
ilarity between the distributions may be that all three met-
rics consider the same kind of connections. In the following

5



Figure 6: Popularity Distribution for Dependent Usage Per-
centage

Figure 7: Popularity Distribution for Eigenvector Centrality
with Unique groupId Dependents

paragraphs, we will elaborate on the correlations between the
metrics utilising 2-dimensional plots, with both axes being a
metric.

Firstly, we cover a possible correlation between eigenvec-
tor centrality and degree centrality, as shown in Figure 8.
It seems no correlation exists between eigenvector centrality
and degree centrality within method usage. As highlighted
by the distinct vertical line at x = 100, one can see that
there are methods within software artefacts that are impor-
tant when considering eigenvector centrality, but their usage
is infrequent.

Subsequently, there exists a correlation between degree
centrality and dependent usage percentage. As seen in Fig-
ure 9, a subtle trend exists from low values to high values for
both metrics. There are several horizontal lines due to the
limit of the number of dependents, as explained in the pre-

Figure 8: 2-Dimensional Popularity Distribution of Eigenvec-
tor Centrality and Degree Centrality

vious section. One can explain the correlation between the
two metrics because dependent usage percentage is a more
specific version of degree centrality, limiting the maximum
number of calls to a method per artefact to one.

Figure 9: 2-Dimensional Popularity Distribution of Degree
Centrality and Dependent Usage Percentage

5 Discussion
In this section, we firstly elaborate on the results of Section
4. Subsequently, we cover the implications of the results, fol-
lowed by their uncertainties. We will cover some ideas for fu-
ture research and possible integrations of our approach within
software tooling. We also cover the threats to the validity of
the study. Finally, we discuss the reproducibility and the eth-
ical implications of our research in Section 5.1.
Interpretations The results indicate that there does exist
a trend between different artefacts related to method popu-

6



larity; they all follow a logarithmic distribution. The dis-
tributions also follow the Pareto principle, which states that
roughly 80% of consequences come from 20% of the causes
[6]. If we were to relate this to all callgraphs we generated,
we established that approximately 80% of method calls are to
26% of the total methods. Subsequently, the number of de-
pendents per artefact also follows a power law distribution, as
shown in Figure 10.

Figure 10: Distribution of Number of Dependents for all
Artefacts

The statement regarding the Pareto Principle relates to the
conclusions made by Harrand et al. [9], which state that most
clients depend on a small fraction of an API and that, given
enough users, people depend on all functionalities of an API.
From our research, one can come to the same conclusion;
popularity skews towards the most frequently used methods,
but comparatively, more methods exist with low popularity
values.

As all three proposed metrics only consider the method
calls from a dependent to an artefact, albeit in different forms,
they likely follow similar distributions as a consequence. If
one looks at the intricate interactions between software arte-
facts, it might not give the complete picture to look at these
metrics; we cannot ensure these are enough to determine an
accurate popularity ranking.

When considering the boxenplots of the popularity distri-
butions in Figure 11, one can see that the density of all metrics
disperses differently among all analysed metrics. The middle
quartile of eigenvector centrality resides among the higher
values of the distribution, where with degree centrality and
dependent usage percentage the middle quartile resides in the
lower range of values. Even though the centre quartile shifts
position between different metrics, for all metrics, only a sev-
eral very popular methods exist.

Implications With an established popularity ranking,
maintainers and users of a library can improve their work-
flow. Utilising such a popularity ranking, one could prioritise
a list of issues to work on based on their importance within
the ecosystem; a change to a popular method will have more

Figure 11: Boxenplot of the Popularity Distributions

impact compared to a lesser one. Likewise, an indecisive user
could determine what method to use based on the popularity
score of methods with similar functionalities.

Limitations A possible limitation with a popularity distri-
bution among methods is the lack of data points with rarely
used methods. In graph-based analysis, the more nodes and
edges exist within a graph, the better the approximation be-
comes of the actual popularity value of a method. In essence,
for rarely used methods, we are establishing a popularity
score based on connections it does not have, which might
skew the outcome incorrectly.

Future Research As the topic of method popularity within
software ecosystems is unexplored, there are several oppor-
tunities for further research. We will cover three possible op-
portunities for future research in the following section.

The first research opportunity is regarding the metrics we
used to determine the popularity of any method. As we
analysed callgraphs, we opted for using graph-based metrics,
whereas a more appropriate metric can be proposed to more
accurately estimate popularity.

Consequently, one can use our findings and combine them
with any other software metric to create a ranking of method
importance within a software ecosystem. Using Fasten, one
can analyse code based on quality and vulnerabilities, which
both combined can reach more meaningful conclusions.

Finally, as we analysed the popularity distribution among
methods, the next step is to determine why a method is pop-
ular. The most rudimentary approach is analysing if there
exists any correlation between a method declaration and its
popularity. Besides this, one could analyse if a correlation
exists with a method’s length or its cyclomatic complexity.

Future Work There are several applications where a popu-
larity distribution can improve or add something to the work-
flow of a user or developer. We will cover one application for
library developers and two for library users.

Firstly, developers can use a popularity ranking to make
their workflow more efficient and streamlined. As any soft-
ware project is an iterative process, there are always parts of
a codebase that need improvement. A popularity distribution
can give insight on how to prioritise work based on how much
influence a method has on the users.

Secondly, whenever a user decides which library they will
use for their project, they might compare the general popu-

7



larity of the complete library. If a popularity overview was
available for libraries with similar purposes, users could de-
cide which library to use based on the method’s popularity
instead of the library’s popularity. Also, a user could choose
which method to utilise if there exist methods with similar
functionality within one software artefact.

Finally, a popularity ranking could be integrated within
an autocomplete engine. Whenever a user declares a depen-
dency on a library, it might be hard to determine what they are
trying to achieve with the library. However, using a popularity
distribution, an autocomplete engine could suggest methods
more accurately.

Threats to Validity As we performed many steps in this
research, there are several threats to the validity of the results.
In the following paragraphs, we will highlight and elaborate
on them.

Firstly, Maven Central does not only contain Java arte-
facts; it also contains Scala and Kotlin artefacts. In some
cases of these languages no callgraphs are associated with
the artefacts, and thus the artefact itself is actually not anal-
ysed. While checking the data, we found that no more than
1% of analysed artefacts were Scala or Kotlin packages, but
this could have more influence when reproducing the results.

Subsequently, there exists a significant difference in the
number of methods between artefacts. Some artefacts have
severals thousands of methods, whereas smaller libraries have
as little as 10 methods. For the artefacts with a lower number
of methods it might be possible that one cannot adequately
determine a popularity distribution.

As the target population of our research contains 9M in-
dexed artefacts, the sampling process may include mistakes
in ensuring representativeness. Several possible issues may
be; performing weighted random sampling where the weight
is the number of dependents, filtering testing-related arte-
facts using keywords only and choosing a broader or narrower
sampling frame.

We only consider invoked methods during callgraph gen-
eration; unutilised methods are not part of the generated call-
graphs. As we determine a popularity score based on method
calls, we cannot establish it for such methods. Thus, we can-
not completely ensure the representativeness of the popularity
distributions compared to the actual distributions.

During this study, we developed several programs which
all possibly contain implementation errors. We can never en-
sure all implementations are bug-free, but performing rudi-
mentary tests showed correct results for the selected samples.

5.1 Responsible Research
Responsible research and application of science and tech-
nology is supposed to foster dialogue in a global context
and research on ethics of science and technology [15]. In
the following section, we describe the reproducibility of our
research, followed by what ethical implications our results
might have.

Reproducible Package To ensure one can reproduce the
results from our research, we present a reproducible package.
Stodden et al. [16] states that having access to the compu-
tational steps of processing the data and generating findings

is as important as access to the data themselves. The repro-
ducible package is hosted on Docker Hub3 and the source
code is available on GitHub4.

To reproduce the results, we provided two docker images to
perform the callgraph generation and run the analysis scripts.
As Fasten is still in development and no public API is avail-
able, we included the callgraph data and popularity values in
the reproducible package. For more information about the re-
producible package, including instructions on how to run the
programs, see the README.md included in the reproducible
package.

Ethical Implications When discovering possible ethical
implications, the first place to look is at the possible usages of
the research. The first usage is that developers could priori-
tise their workflow based on the popularity metrics of certain
methods. The ethical issue associated with this is that, if hy-
pothetically developers would adopt our popularity ranking,
it might be biased to certain callgraph layouts or certain arte-
facts have more influence on the popularity value of a method.
Both outcomes would change a developer’s workflow such
that they would not prefer.

Secondly, if a method popularity ranking would advise un-
knowing users on what methods to use, it might significantly
influence the popularity of diminutive and or unpopular arte-
facts. It could slow the progress of an artefact’s growth or not
even let it become popular entirely.

6 Conclusion
While several research papers cover establishing a software
library’s popularity, we propose a method of determining a
popularity distribution among methods within a software li-
brary. For a representative dataset of Maven Central, we gen-
erated callgraphs to analyse the interactions with these soft-
ware artefacts. Using eigenvector centrality, degree centrality
and dependent usage percentage we aimed to give meaning to
these interactions in the form of a popularity score for each
metric.

These findings show that the popularity distribution is log-
arithmic for all metricsKewar. The scores from all metrics
follow a similar distribution, indicating that all metrics ex-
ploit some similar property of the methods. With this, one
can determine what method of any software library is more
popular than another, a rudimentary metric to determine im-
portance within an artefact.

By analysing all interactions between software artefacts,
we found that, on average, 26% of all methods account for
80% of all method calls within a software artefact. Subse-
quently, the number of dependents per artefact also follow a
power law distribution.

Using the approach described in this paper, one could com-
bine the findings with any other metrics to compare software
artefacts. These combined metrics can contribute to more
meaningful conclusions regarding popularity and approxi-
mate general importance within a software artefact. Subse-

3https://hub.docker.com/repository/docker/tnulle/maven-api-
study

4https://github.com/thijsnulle/maven-api-study

8



quently, one could propose a metric tailored more towards
method popularity compared with the graph-based metrics.

References
[1] Apache Software Foundation. Apache Maven. Ver-

sion 3.8.5. URL: https://maven.apache.org/
(cit. on p. 1).

[2] Amine Benelallam, Nicolas Harrand, César Soto-
Valero, Benoit Baudry, and Olivier Barais. “The
maven dependency graph: a temporal graph-based rep-
resentation of maven central”. In: 2019 IEEE/ACM
16th International Conference on Mining Software
Repositories (MSR). IEEE. 2019, pp. 344–348 (cit. on
pp. 1, 2).

[3] César Soto-Valero, Amine Benelallam, Nicolas Har-
rand, Olivier Barais, and Benoit Baudry. “The emer-
gence of software diversity in maven central”. In: 2019
IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). IEEE. 2019, pp. 333–
343 (cit. on p. 1).

[4] Fasten Project. Fasten. https://github.com/
fasten-project/fasten. 2022 (cit. on pp. 1,
2).

[5] Barbara G Ryder. “Constructing the call graph of a
program”. In: IEEE Transactions on Software Engi-
neering 3 (1979), pp. 216–226 (cit. on pp. 1, 2).

[6] Rosie Dunford, Quanrong Su, and Ekraj Tamang. “The
pareto principle”. In: (2014) (cit. on pp. 1, 7).

[7] Steven Raemaekers, Arie van Deursen, and Joost
Visser. “The Maven repository dataset of metrics,
changes, and dependencies”. In: 2013 10th Working
Conference on Mining Software Repositories (MSR).
2013, pp. 221–224. DOI: 10.1109/MSR.2013.
6624031 (cit. on p. 2).

[8] Ahmed Zerouali, Tom Mens, Gregorio Robles, and Je-
sus M. Gonzalez-Barahona. “On the Diversity of Soft-
ware Package Popularity Metrics: An Empirical Study
of npm”. In: 2019 IEEE 26th International Confer-
ence on Software Analysis, Evolution and Reengineer-
ing (SANER). 2019, pp. 589–593. DOI: 10.1109/
SANER.2019.8667997 (cit. on p. 2).

[9] Nicolas Harrand, Amine Benelallam, César Soto-
Valero, François Bettega, Olivier Barais, and Benoit
Baudry. “API beauty is in the eye of the clients: 2.2
million Maven dependencies reveal the spectrum of
client–API usages”. In: Journal of Systems and Soft-
ware 184 (2022), p. 111134 (cit. on pp. 2, 7).

[10] Hyrum. Hyrum’s law. URL: https : / / www .
hyrumslaw.com/ (cit. on p. 2).

[11] Hamed Taherdoost. “Sampling methods in research
methodology; how to choose a sampling technique for
research”. In: How to Choose a Sampling Technique
for Research (April 10, 2016) (2016) (cit. on p. 2).

[12] Hamed Taherdoost. “Determining sample size; how to
calculate survey sample size”. In: International Jour-
nal of Economics and Management Systems 2 (2017)
(cit. on p. 3).

[13] Jeffrey Dean, David Grove, and Craig Chambers. “Op-
timization of object-oriented programs using static
class hierarchy analysis”. In: European Conference
on Object-Oriented Programming. Springer. 1995,
pp. 77–101 (cit. on p. 4).

[14] Mark EJ Newman. “The mathematics of networks”. In:
The new palgrave encyclopedia of economics 2.2008
(2008), pp. 1–12 (cit. on p. 4).

[15] Mirjam Burget, Emanuele Bardone, and Margus
Pedaste. “Definitions and conceptual dimensions of
responsible research and innovation: A literature re-
view”. In: Science and engineering ethics 23.1 (2017),
pp. 1–19 (cit. on p. 8).

[16] Victoria Stodden, Marcia McNutt, David H Bailey,
Ewa Deelman, Yolanda Gil, Brooks Hanson, Michael
A Heroux, John PA Ioannidis, and Michela Taufer.
“Enhancing reproducibility for computational meth-
ods”. In: Science 354.6317 (2016), pp. 1240–1241 (cit.
on p. 8).

9


