

Delft University of Technology

Learning Multimodal Transition Dynamics for Model-Based Reinforcement Learning

Moerland, Thomas M.; Broekens, Joost; Jonker, Catholijn M.

Publication date
2017
Document Version
Final published version
Published in
SURL 2017: 1st Scaling-Up Reinforcement Learning (SURL) Workshop

Citation (APA)
Moerland, T. M., Broekens, J., & Jonker, C. M. (2017). Learning Multimodal Transition Dynamics for Model-
Based Reinforcement Learning. In SURL 2017: 1st Scaling-Up Reinforcement Learning (SURL) Workshop
(pp. 1-18) http://'Learning Multimodal Transition Dynamics for Model-Based Reinforcement Learning

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

http://'Learning Multimodal Transition Dynamics for Model-Based Reinforcement Learning

Learning Multimodal Transition Dynamics for
Model-Based Reinforcement Learning

Thomas M. Moerland, Joost Broekens, and Catholijn M. Jonker

Department of Computer Science
Delft University of Technology, The Netherlands

{T.M.Moerland,D.J.Broekens,C.M.Jonker}@tudelft.nl

Abstract. In this paper we study how to learn stochastic, multimodal
transition dynamics in reinforcement learning (RL) tasks. We focus on
evaluating transition function estimation, while we defer planning over
this model to future work. Stochasticity is a fundamental property of
many task environments. However, discriminative function approxima-
tors have difficulty estimating multimodal stochasticity. In contrast, deep
generative models do capture complex high-dimensional outcome distri-
butions. First we discuss why, amongst such models, conditional varia-
tional inference (VI) is theoretically most appealing for model-based RL.
Subsequently, we compare different VI models on their ability to learn
complex stochasticity on simulated functions, as well as on a typical
RL gridworld with multimodal dynamics. Results show VI successfully
predicts multimodal outcomes, but also robustly ignores these for deter-
ministic parts of the transition dynamics. In summary, we show a robust
method to learn multimodal transitions using function approximation,
which is a key preliminary for model-based RL in stochastic domains.

1 Introduction

Reinforcement learning (RL) is a succesful learning paradigm for sequential de-
cision making from data in agents and robots. A long standing debate in RL
research has been whether to learn ‘model-free’ or ‘model-based’ (Figure 1) [29].
Model-based RL has shown some important benefits, most noteworthy increased
data efficiency [6], the potential for targeted exploration [28], and natural transfer
between tasks when only the reward function changes. Model-based RL consists
of two steps: 1) transition function estimation through supervised learning, and
2) (sample-based) planning over the learned model (Figure 1, green arrows).
Each step has a particular challenging aspect. For this work we focus on a key
challenge of the first step, stochasticity in the transition dynamics, while we de-
fer the second step, planning (under uncertainty), to future work (see Sec. 6 as
well).

Stochasticity is an inherent property of many environments, and increases
in real-world settings due to sensor noise. Transition dynamics usually combine
both deterministic aspects (such as the falling trajectory of an object due to
gravity) and stochastic elements (such as the behaviour of another car on the

Fig. 1. Two types of reinforcement learning. Model-free RL (blue) directly learns a
behavioural policy, while model-based RL (green) also attempts to learn the environ-
ment’s transition dynamics. Learning this transition model allows the agent to predict
future states and thereby allows the agent to plan.

road). Our goal is to learn to jointly predict these. Note that stochasticity has
many forms, both homoscedastic versus heteroscedastic, and unimodal versus
multimodal. In this work we specifically focus on multimodal stochasticity, as
this should theoretically pose the largest challenge.

To learn such transition models, we require high-capacity function approxi-
mators that can predict next-state distributions of complex shape. This problem
is not yet accurately solved by currently used methods in model-based RL, like
tabular learning [2] (which does not scale to high-dimensions), linear function
approximation [1] with Gaussian noise [18], random forests [12], or deep feed-
forward networks trained on mean-squared error (MSE) [23] (See also Sec. 2).

A potential solution to this problem are Deep Generative Models (DGM) [11],
as they are non-linear function approximators that can learn complex outcome
distributions and scale to high-dimensions. In Section 2 we compare different
DGM’s on their theoretic appeal for stochastic model learning in the RL set-
ting, and identify conditional Variational Inference (VI) as the most promising
solution.

The remainder of the paper then continues as follows. In Section 3, we for-
mally describe conditional variational inference with different types of discrete
and continuous latent variables. In Section 4 we empirically compare the differ-
ent approaches on a simulated function and on a typical RL tasks. Our results
show that VI is accurately able to discriminate deterministic from stochastic
aspects of the transition dynamics. We also show how the RL agent manages to
learn an accurate transition model while solving a task. Finally, Sections 5 and
6 connect our work to related literature and identify opportunities for future
work, respectively.

All code to reproduce the results in this paper is publicly available at www.

github.com/tmoer/multimodal_varinf.

www.github.com/tmoer/multimodal_varinf
www.github.com/tmoer/multimodal_varinf

Fig. 2. Multimodal outcome distribution p(y|x) (blue line) for a simple 1D observation
space. Training on a mean-squared error will deterministically predict the conditional
mean (dashed line), which implicitly assumes a uni-modal Gaussian outcome (green
line).

2 Challenge of Multimodal Transitions

We will write x ∈ X for the current state and action, and y ∈ Y for the next
state we want to predict. We are interested in models that can approximate
distributions p(y|x) with multiple local maxima (‘modes’). A cardinal example
of such a distribution is shown in Figure 2 (blue line).

Discriminative function approximators, for example trained at mean-squared
error (MSE) loss, fail at this task. The point prediction of the function approx-
imator will be the conditional expectation of the outcome distribution (Fig. 2,
dashed line). Obviously, point estimate predictions will never be a good method
to approximate a distribution, but they have actually been frequently applied
in model-based RL work [23].1 Clearly, a unimodal outcome distribution will
neither solve the multimodality problem (Fig. 2).

A mixture of Gaussians per outcome dimension would neither solve the prob-
lem. Full covariance matrix Gaussians clearly do not scale to high-dimensional
domains (such as [22]), while diagonal Gaussians would loose all covariance struc-
ture in the predictions. Moreover, mixture models are tedious to train. What we
require are models that 1) flexibly approximate joint distributions of complex
(multimodal) shape and 2) scale to high-dimensions.

We hypothesize the group of deep generative models (DGN) [11] are a promis-
ing candidate, as they fulfill both requirements. For model-based RL, where we
will use the models to sample (a lot of) traces, we additionally require that the
model is 1) easy to sample from, and 2) ideally allows for planning at an ab-
stract level. Following the DGN taxonomy by Goodfellow [11] (Figure 3), we

1 For example, Oh et al. [23] shows MSE training does work well in high-dimensional,
deterministic domains. However, for example inspecting their Ms. Pacman (a
stochastic game) predictions at https://youtu.be/cy96rtUdBuE, we see that the
predictions for the stochastic elements (ghosts) fail. The ghosts disappear when
they reach a corridor junction, where they stochastically choose in which direction
to continue. The feed-forward network predicts the conditional mean of these choices,
which completely blurs the ghosts in a few frames.

https://youtu.be/cy96rtUdBuE

Fig. 3. Deep generative model taxonomy following [11].

now compare DGN models on their theoretical appeal for transition function
estimation.

Implicit density models, like Generative Adverserial Networks (GAN) lack a
clear probabilistic objective function, which was the focus of this work. Among
the explicit density models, there are two categories. Change of variable formula
models, like Real NVP [8], have the drawback that the latent space dimension
must equal the observation space. Fully visible belief nets like pixelCNN [24],
which factorize the likelihood in an auto-regressive fashion, hold state-of-the-art
likelihood results. However, they have the drawback that sampling is a sequential
operation (e.g. pixel-by-pixel, which is computationally expensive), and they do
not allow for latent level planning either. Therefore, most suitable for model-
based RL seem approximate density models, most noteworthy the variational
auto-encoder (VAE) [17] framework. These models can estimate stochasticity at
a latent level, allow for latent planning [31], are easy to sample from, and have a
clear probabilistic interpretation. In the next section, we will formally introduce
this methodology in the conditional setting, where the generative process of y is
conditioned on other variables x.

3 Conditional Variational Inference

We will first introduce the conditional variational auto-encoder (CVAE) [26]. Our
goal is to learn a generative model of a (possibly multimodal) distribution p(y|x).
We assume the generative process is actually conditioned on latent variables z:

p(y|x) =

∫
p(y|z, x)p(z|x)dz (1)

Here p(z|x) is the prior and p(y|z, x) is the generative model or ‘decoder’.
The stochastic latent variables z provide the flexibility to predict more complex
outcome distributions y. The posterior over z, p(z|y, x) is intractable in most
models of interest, for example deep non-linear neural networks. However, the
parameters of this distribution can be efficiently approximated with Stochastic
Gradient Variation Bayes (SGVB) [17], which uses a parametric recognition
or inference model q(z|y, x) to approximate the true posterior p(z|y, x). The
inference model learns a mapping from observations to latent space, providing
generalization and thereby amortizing the cost of inference (compared to Markov
chain Monte Carlo (MCMC) inference methods that needed computationally
expensive iterative procedures to estimate the latent variables per datapoint).

Fig. 4. Conditional Variational Auto-Encoder as a computational process. Squares are
deterministic, circles are probabilistic nodes. Left: Training procedure. During training,
we sample z according to q(·|x, y), where q is parametrized by φq. The training loss
consists of two terms (indicated by the red dotted boxes): 1) the reconstruction loss
p(y|z, x), and 2) the KL-divergence between q(z|x, y) and p(z|x). The latter ensures
that the posterior q puts probability mass at the same points as the prior p, effectively
acting as a regularizer in latent space. We compute z with the reparametrization trick,
where e can be any appropriate noise distribution. Right: Test procedure. At test
time, we cut away the inference network q, and instead sample z according to the prior
p(z|x). This allows us to make stochastic predictions for y.

We can derive a variational lower bound L(y|x) on our data likelihood p(y|x):

log p(y|x) ≥ Ez∼q(z|x,y)
[

log
p(y, z|x)

q(z|y, x)

]
= Ez∼q(z|x,y)[log p(y|z, x)]−DKL[q(z|x, y)‖p(z|x)] = L(y|x; θ, φ) (2)

where θ denotes the parameters in the generative network, φ denotes the
parameters in the inference network and prior, and DKL denotes the Kullback-
Leibler (KL) divergence. We can interpret the left-hand term of the last equation
(log p(y|z, x)) as the negative reconstruction error, which measures how well we
reconstruct y after sampling z. The right-hand term (KL divergence) ensures
q does not diverge too much from the prior p. This acts as a regularizer, and
ensures that we can at test time (when we do not observe y) sample from p(z|x)
instead of q(z|x, y).

In practice, we slightly modify the objective in Eq. 2, where we use impor-
tance sampling [3] to obtain a tighter bound, and minimize a different distance
function instead of the KL-divergence (namely α-divergence with α=0.5 [7]).
Details are provided in Appendix A.

3.1 Reparametrization

For this work we focus on variational methods that reparametrize the distribution
of qφ(z|y, x) to allow gradient-based training on a single computational graph.
The trick works when we can write z as a function z = fφ(ε, y, x), with fφ(·)

a deterministic, differentiable function, and ε ∼ p(ε) a noise distribution with
independent marginal.

For a continuous variable z, the cardinal example is a location-scale transfor-
mation of a standard Gaussian distribution. If qφ(z|y, x) = N (z|µφ(y, x), Σφ(y, x)),
then we can write

z = fφ(ε, y, x) = µφ(y, x) +Σφ(y, x) · ε, with ε ∼ N (0, 1) (3)

The gain is that we can now backpropagate through expectations of the
random variable z [17]:

∇φEz∼qφ(z|x,y)[ξ(z)] = Eε∼N (0,1)

[
∇φξ(fφ(ε, y, x))

]
(4)

for some function ξ(·) of z. The right-hand term can then be approximated
with a Monte-Carlo estimate. This allows us to backpropagate through z (see
Fig. 4, left), giving the vanilla conditional variational auto-encoder (CVAE) with
Gaussian latent variables. The overall train and test procedure is summarized in
Figure 4. We now consider two methods to improve the capacity of the latent z
distribution, that both could improve learning multimodal outcomes.

3.2 Discrete Latent Variables

As we want to model multimodal outcomes, it seems natural to consider dis-
crete latent variables. However, for the reparametrization trick to be applicable
we require the function fφ(·) to be differentiable, which is not possible for a
discrete variable. It turns out we can get good estimates by making a smooth
approximation to the discrete loss [15,20].

Let ωi be an ordered set of class probabilities of a discrete variable zi
2 with ni

categories. We can draw samples from this distribution through the Gumbel-Max
trick:

zi = one-hot

(
arg max
j∈[1..ni]

[gj + logωi,j]

)
(5)

with gj i.i.d. draws from a Gumbel(0, 1) distribution3. Since arg max is not
differentiable, we can make a softmax approximation to the above equation:

zi,j =
exp((logωi,j + gj)/τ)∑ni
o=1 exp((logωi,o + go)/τ)

for j = 1, .., ni (6)

which is known as the Gumbell-Softmax [15] or Concrete [20] distribution.
The softmax temperature τ ∈ (0,∞) regulates the discreteness of the approx-
imation: for τ → 0, the samples effectively become one-hot, while for τ → ∞,

2 We use subscripts zi to index the elements of the vector random variable z, and
double subscripts zi,j to index the categories within one discrete random variable.

3 We can sample from a Gumbel(0,1) distribution by sampling u ∼ Uniform(0, 1) and
computing g = − log(− log(u)).

the samples become uniform over the class categories. The above specification
allows us to use the reparametrization trick for discrete latent variables, as the
noise distribution g is now decoupled from the gradient path δz

δω . Note that Eq.
6 is a type of reparametrization fφ(·) (as introduced in Sec. 3.1, with g the noise
distribution and ωφ(x, y) the distribution parameters. In practice, we anneal τ
from > 1 to 0 over the course of training.

3.3 Transformations of Continuous Variables (Flow)

We already specified the reparametrization trick for spherical Gaussian latent
variables (Eq. 3). As spherical Gaussians may be too restricting for multimodal-
ity, we can increase the capacity of the latent layer by using transformations of
distributions for which we can track the density.

To obtain more expressive distributions for a continuous random variable z ∈
RD with known density q(z), we consider bijective smooth mappings h : RD →
RD with inverse h−1. We are interested in the distribution of the transformed
variable z′ = h(z). As long as we are able to invert h, we can easily compute the
density of the transformed variable z′:

q(z′) = q(z)

∣∣∣∣det(
δh−1(z′)

δz′
)

∣∣∣∣ = q(z)

∣∣∣∣det(
δh(z)

δz
)

∣∣∣∣−1 (7)

which is known as the change-of-variable formula. If we can specify our neural
network to learn transformations which are easily invertible, we can construct
more complicated distributions by repeatedly applying the above transformation
(while being able to track the density). If we repeatedly apply a sequence of
transformations zL = hL ◦ ... ◦ h1(z0) for some random variable z0 ∼ q0(·), then
the density of the last variable zL can be computed as:

log qL(zL) = log q0(z0)−
L∑
l=1

log

∣∣∣∣det
δzl

δzl−1

∣∣∣∣ (8)

The problem with the above transformation is that, especially for high-
dimensional domains, computing the determinant is computationally very ex-
pensive. An elegant solution appears from the observation that the determinant
of a triangular matrix is simply the product of its diagonal terms [8] [16]. There-
fore, given a random variable z of length D, we can specify the transformation
z′ = h(z) as:

z′1:d = z1:d

z′d+1:D = t(z1:d) + z′d+1:D � exp(s(z1:d)) (9)

The Jacobian of the this transformation is:

δz′

δz
=

[
Id 0

δz′d+1:D

δz1:d
diag(exp(s(z1:d)))

]
(10)

The determinant of this matrix is easily computed as exp
[∑

i s(z1:d)i)
]
. Note

that the t(·) (translation) and s(·) (scale) function can be arbitrarily complex
functions, for example deep, non-linear neural networks. In these transforma-
tions, we do not need to compute the determinant of s(·) or t(·) to track the
density of the random variable z′. Moreover, it is trivial to invert the above
transformation:

z1:d = z′1:d

zd+1:D = (zd+1:D − t(z′1:d))� exp(−s(z′1:d)) (11)

This allows us to use the change-of-variable formula of the previous section.
We effectively perform an auto-regressive transformation on the z variables. In
practice, we repeatedly modify the order of the z variables to have a different part
of z transformed in each layer. In Fig. 4, we would apply these transformations
to a sample from q(z|x, y) before calculating the KL-divergence with p(z|x).

3.4 Enforcing Latent Variable Use

One of the challenges of training latent variable models is their tendency to
overfit the prior early in training. Initially, the likelihood term p(y|z, x) is rela-
tively weak. Therefore, the learning signal is dominated by the KL-divergence,
and stochastic optimization gets stuck in the undesirable equilibrium q(z|y, x) ≈
p(z|x).

To give a simple illustration, imagine y is strictly bimodal given a fixed x,
taking value y1 or y2 with p(y1|x) = 0.3 and p(y2|x) = 0.7. We fit a latent model
with a single binary variable z taking values z1 or z2. Clearly, we want our prior
p(z|x) to learn the distribution {p(z1|x) = 0.3, p(z2|x) = 0.7} (assuming z1 maps
to y1 and z2 to y2, which can of course be interchanged). However, the inference
network q(z|x, y) has access to additional information, as it knows which y we
need to reconstruct. Therefore, if we present a datapair (x, y1), then we want
our latent distribution more like {q(z1|x, y1) = 0.999, q(z2|x, y1) = 0.001}, as
this ensures we make a good draw and good reconstruction. However, for this
datapoint this would incur a KL-penalty DKL(q(z|x, y1)‖p(z|x)) ≈ 1.20. This
illustrates how a good fitting VI model will necessarily incur some KL-cost.

A solution is to enforce each (set of) latent variables to encode a minimum
amount of information [16], i.e. force q(z|y, x) to at least have a KL-divergence
of λ from the prior p(z|x). The modified objective becomes:

L̃(y|x) = E(x,y)∼M

[
Ez∼q(z|y,x)

[
logP (y|z, x)

]]
−

Dz∑
j=1

max

(
λ,E(x,y)∼M

[
DKL[q(zj |x, y)‖p(zj |x)]

])
(12)

where Dz is the dimensionality of the latent space z, andM denotes a mini-
batch. Different solutions have been proposed, like KL annealing [27], but we
empirically found them to be less effective.

4 Results

We now test the different types of conditional variational inference, introduced
in the previous section, on two tasks. Evaluating generative model performance
is not straightforward, as standard metrics like mean-squared error (MSE) are
non-valid for multimodal outcome distributions. In this work, we evaluate i) the
log likelihood of a test set under the learned generative model (see Appendix
B), and (if possible) ii) we draw new data from the learned model and compute
KL divergences or Hellinger distances with respect to the true data generating
distribution. Training details and hyperparameters are described in Appendix
C.

4.1 Toy Problem

We generate a one-dimensional multimodal transition function by sampling x ∼
Uniform(−1, 1) and sampling y from a conditional Gaussian distributionN (·|µ =
f(x), σ = 0.1) according to:

p(y|x) =

N (2.5), if x < −0.3

ρ1N (4x) + ρ2N (−4x), if − 0.3 ≤ x < 0.3

ρ3N (5 + log(x+ 1)) + ρ4N (−x+ 0.2) + ρ5N (5x2), if x ≥ 0.3

where ρ1 = 0.2, ρ2 = 0.8, ρ3 = 0.3, ρ4 = 0.5 and ρ5 = 0.2. This generates the
multimodal function shown in Figure 5a. We study this toy problem to visualize
how different architectures will fit this simple data structure with conditional
unimodal (left), bimodal (middle) and trimodal (right) structure (see Figure 5a
left, middle and right parts). Figure 5b-f show the samples generated by different
models after training on 30,000 mini-batch steps (See Appendix C for details).
Table 1 displays the variational lower bound (VLB) and negative log-likelihood
(NLL) on a test set.

A feed-forward network trained on mean squared error deterministically pre-
dicts the conditional expectation (Figure 5b). For fair comparison, we also train
a feed-forward network that does receive noise variables ε as input but with-
out an inference network (Figure 5c). Theoretically this network could learn the
same decoder distribution, but without the inference network the model does
not converge.

Figure 5d-f show the samples generated by different variational methods
(spherical Gaussian Sec. 3.1), Gaussian with flow (Sec. 3.3), and discrete latent
variables (Sec. 3.2), respectively. We see how these models are much better at fit-
ting the true data distribution. Importantly, notice that the variational approach
consistently predicts the deterministic part correctly (left part of the function).
This is important, as the network is able to ignore the input noise when needed.
Table 1 indicates the discrete latent variable model fits this problem best.

4.2 Stochastic Gridworld

We now study a typical RL gridworld task with multimodal stochastic dynamics.
The world is a 7x7 grid (see Figure 6) with some walls. The agent (green) starts in

Fig. 5. Comparison of samples from the models produced by multi-layer perceptron
(MLP) and variational inference (VI) networks after training for 30,000 mini-batches.
a) Ground truth data. b) MLP (deterministic predictions). c) MLP with stochastic
inputs. d) VI with spherical Gaussian. e) VI with spherical Gaussian and 5 layers of
flow. f) VI with discrete latent variables. Numerical results are reported in Table 1.

Table 1. Performance on toy domain. All results are averaged over 10 runs. VLB =
Variational Lower Bound, NLL = Negative Log Likelihood on test dataset, MLP =
Multi-Layer Perceptron, VAE = Variational Auto-Encoder.

Method VLB NLL

MLP (deterministic) NA NA
MLP (with stochastic input) NA 4.49
VAE continuous (n=3, no flow) 0.33 -0.29
VAE continuous (n=3, nflow=5) 0.32 -0.33
VAE discrete (n=3, k=3) 0.47 -0.48

the bottom-left, can deterministically move in each cardinal direction, and needs
to reach the top-right (r = +10). There are two ghosts, starting in locations as
shown in Fig. 7, top-left. Ghost 1 (red) uniformly chooses one of the available
directions. Ghost 2 (blue) has a bias to move to the left or right (40% each),
and moves vertically with small probability (10%). Our interest here is to learn
to predict this stochasticity from observed data. As state-space we use a vector
of length 6 containing the 2D coordinates for the agent and both ghosts. Each
element in the vector is treated as a categorical variable with 7 classes (for the
7x7 grid).4

Uncorrelated Data. On of the core challenges of RL is the exploration prob-
lem, which can make the data we observe strongly correlated. For example, if

4 Note that, although this is a discrete MDP, it is not a trivial task to model multi-
modality here. Indeed, the outcome distribution per state dimension is categorical,
but the joint distribution (generally) does not factorize over the dimensions. There-
fore, we would already need a categorical with 76 = 117649 outcome categories to
learn this problem without conditional variational inference, and this would expo-
nentially aggravate in larger state-spaces (e.g. images).

Fig. 6. Visual predictions on gridworld. Each sub-picture shows the agent (green),
ghost 1 (red) and ghost 2 (blue) with current location as a circle, and predicted next
location as a shaded box (color intensity corresponds to predicted probability). Black
locations are walls, the text above each subplot indicates the action chosen by the agent.
Left: Continuous latent variables (n=8, no flow), Middle: continuous latent variable
(n=8, nflow =6), Right: discrete latent variables (n=8,k=4). We observe stochastic
predictions for the ghosts and deterministic predictions for the agent. Numerical com-
parison is provided in Table 2.

Table 2. Performance on gridworld predictions for different types of variational infer-
ence. For this table, p̂ denotes the predicted distributions by the VAE model, while p
denotes the ground truth (which is known for this scenario). VLB = Variational Lower
Bound, NLL = Negative Log Likelihood.

Method VLB NLL DKL(p‖p̂) DHel(p‖p̂) DKL(p̂‖p)

VAE Continuous (n=8, no flow) -2.53 2.52 0.91 0.48 3.12
VAE Continuous (n=8, nflow=6) -2.66 2.70 2.74 0.60 4.29
VAE Discrete (n=8, k=4) -2.17 2.20 1.26 0.61 4.75

the agent never explores the top-left region of the domain, we can not expect it
to learn an accurate model there. To overcome this problem, we first study an
idealized setting in which our dataset consists of the transitions of state-action
combinations randomly sampled across state-space.

On-policy Agent. The results on this task are shown in Table 2. Compared to
Table 1 we do not show MLP results anymore for this task. We see the discrete
latent variables again perform best on negative log-likelihood (NLL) evaluation.
However, when we compare the learned distribution to the true distribution
(which is available for this problem), we see the continuous latent variables
without flow actually perform best. We see a conflict between both performance
measures (the NLL indicates the discrete model performs best, while the dis-
tances with the true distribution point at the continuous latent model). In this
case, visual comparison (Figure 6) does not show important differences across
methods. We therefore conclude that the differences between methods are small

Fig. 7. On-policy predictions for RL agent (see Fig. 6 for color explanation). The sub-
plots progress row-wise along a roll-out in the learned transition model. Note that this
is a true 12-step roll-out, i.e. each next plot is based on sampling a single prediction
from the model (we do not observe any true next state along the way).

for this problem, while the best performance measures for generative models
remains an open questions in general (see [11]).

As a next step, we investigate to what extend an RL agent is capable of
learning an accurate transition model on-policy, i.e. while observing correlated
data. Note that the agent is still learning its policy in a model-free sense here (as
a deep Q-network [22]), and we simply investigate to what extend the learned
transition model is accurate after observing correlated data. Therefore, we eval-
uate the learned transition model while the agent is executing the policy.

Figure 7 shows the results of a roll-out in the learned model under a model-
free policy. We see the agent first walking along the bottom corridor, and then
moving up in the vertical corridor. Note that the agent consistently predicts its
next state deterministically and correctly. In frame 6 it makes a wrong action
decision, probably because we execute the behavioural policy with small ε-greedy
noise. The ghosts have multimodal, stochastic behaviour. The first ghost (red)
moves uniformly in one of the available directions, which is captured by the
red shades around the current ghost location. Note that the model consistently
predicts the ghost to move at each step. The second ghost (blue) has a bias to
primarily step to the left or right. We also note the difference in the predicted
next state between red and blue ghost, matching their true dynamics. Altogether,
the agent has learned to predict both the deterministic effects of its own actions
as well as its stochastic environment, from on-policy, correlated data.

5 Related Work

Variational inference in the conditional setting was previously studied by Sohn
et al. [26] and Walker et al. [30]. Compared to our work, these papers only
use spherical Gaussian priors, and do not focus on reinforcement learning tasks.
Our work focussed on VI with reparametrization gradients. There is a second
line of research on latent variable models that uses score function gradients

[21], which are also known as REINFORCE in the RL context. A benefit of
reparametrization gradients is that they don’t suffer from the high variance
usually encountered with score function gradients (a problem also known in
RL).

The idea to apply flow to the latent layer originates from Rezende and Mo-
hamed [25]. The transformation in Eq. 9 are related to the affine coupling layers
of Dinh et al. [8], but then applied to the latent layer of a CVAE, while Dnih
et al. [8] use them directly from observation level without variational inference.
Applying flow transformations at latent VI level was introduced by Kingma et
al. [16], where the authors used fully autoregressive transformations (which are
harder to implement compared to our transformations, but potentially have more
representational capacity).

To increase the expressivity of the latent approximation, we focussed on
different types of latent variables, as well as (normalizing) flow. A third way to
increase latent capacity is to factorize the distribution into several layers [27].
However, activating deeper stochastic layers is not straightforward [27], requiring
either batch normalization or weight normalization [16]. We defer factorized
inference networks to future work, especially in higher-dimensional tasks.

The different deep generative models discussed in Section 3 are not mu-
tually exclusive. For example, the variational lossy auto-encoder (LVAE) [4]
combines variational inference with PixelCNN-based decoders [24]. Such archi-
tectures force high-level conceptual information into the latent level, while the
decoder should capture fine-grained details. This could be beneficial to sparsify
the latent layer and as such benefit RL planning as well.

There is relatively little work on Bayesian Neural Networks for RL. Closest to
ours is the work by Depeweg et al. [7], who study VI to estimate both transition
function stochasticity (as studied in this work) combined with uncertainty (due
to limited data). Compared to their work, we use a parametric inference network
which allows us to generalize in the inference part, while they perform VI per
individual datapoint. Second, they only considered Gaussian latent variables,
while we investigate discrete latent variables and normalizing flow as well. The
results of Depeweg et al. [7] also show the ability to learn multimodal stochas-
ticity, and additionally show the benefit of planning over the model. Watter et
al. [31] also used variational auto-encoders in a control task, but only as a reg-
ularizer for learning representations, not to make stochastic predictions. Gal et
al. [9] uses Bayesian neural networks, in the form of Bayesian dropout, to track
uncertainty (due to limited data) in transition dynamics estimation.

Finally, there is also a line of RL research that uses the transition function
target to speed-up model-free RL. This idea has been identified as RL with
‘auxiliary tasks’ [14]. The gradients of the transition function predictions are
denser compared to the sparse RL training signal, and used to speed-up training
of deeper network layers shared between policy and transition network. However,
this approach does not learn stochastic transitions (but could benefit from it, as
it improves the learning signal), nor is it used for sample-based planning as in
model-based RL.

6 Future Work

One clear line of future work is to use these transition models to improve agent
performance, by planning over the model with either a given or learned reward
function. Depeweg et al. [7] already provided a study in this direction. Compared
to their work, it would especially be interesting to apply more adaptive roll-outs
in the model, like Monte Carlo Tree Search (MCTS). Moreover, it would be
important to evaluate these methods in high-dimensional RL tasks, e.g. with
convolutional neural networks on raw pixel data [23]. Another extension is to
use these models to improve exploration in stochastic domains (e.g. [23,13]).

An important second challenge, briefly mentioned in the Introduction and
Section 4.2, is planning under uncertainty. RL initially provides correlated data
from a limited part of state-space. When planning over this model, we should not
extrapolate too much, nor trust our model too early with limited data. Planning
under uncertainty was for example studied by Gal et al. [9] and Houthooft et
al. [13]. Note that ‘uncertainty’ (due to limited data) is fundamentally different
from the ‘stochasticity’ (true probabilistic nature of the domain) discussed in
this paper.

A third challenge for transition dynamics estimation is memory (partial ob-
servability), when the current state does not provide all available information to
make an prediction. Proposed solutions are recurrent neural networks (RNN) or
Neural Turing Machines (NTM), which have both been studied in the variational
inference context (in [5] and [10], respectively).

Combining stochasticity, uncertainty and memory in one function approxi-
mator would be an important integrating step in model-based RL.

7 Conclusion

This paper studied multimodal transition function estimation for RL agents,
with a focus on variational inference with different types of latent variables.
Our experiments show variational inference is a robust method to discriminate
deterministic and stochastic elements of the transition function using function
approximation, clearly improving over discriminative training. We verified results
on a typical RL domain where tabular learning would be infeasible, showing the
ability of these models to learn the multimodal transition dynamics online. We
did not observe important distinction in performance between the different types
of latent variables studied. Therefore, for the domain size studied in this work, it
seems safe to use the standard spherical Gaussian conditional VAE. Our results
are generally applicable in RL, and help solve a fundamental problem of many
domains: the complex stochastic behaviour of its transition dynamics. Code to
reproduce the results in this paper is publicly available at www.github.com/

tmoer/multimodal_varinf.

References

1. Atkeson, C.G., Moore, A.W., Schaal, S.: Locally weighted learning for control. In:
Lazy learning, pp. 75–113. Springer (1997)

www.github.com/tmoer/multimodal_varinf
www.github.com/tmoer/multimodal_varinf

2. Brafman, R.I., Tennenholtz, M.: R-max-a general polynomial time algorithm
for near-optimal reinforcement learning. Journal of Machine Learning Research
3(Oct), 213–231 (2002)

3. Burda, Y., Grosse, R., Salakhutdinov, R.: Importance weighted autoencoders.
arXiv preprint arXiv:1509.00519 (2015)

4. Chen, X., Kingma, D.P., Salimans, T., Duan, Y., Dhariwal, P., Schulman,
J., Sutskever, I., Abbeel, P.: Variational Lossy Autoencoder. arXiv preprint
arXiv:1611.02731 (2016)

5. Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A.C., Bengio, Y.: A recur-
rent latent variable model for sequential data. In: Advances in neural information
processing systems. pp. 2980–2988 (2015)

6. Deisenroth, M., Rasmussen, C.E.: PILCO: A model-based and data-efficient ap-
proach to policy search. In: Proceedings of the 28th International Conference on
machine learning (ICML-11). pp. 465–472 (2011)

7. Depeweg, S., Hernández-Lobato, J.M., Doshi-Velez, F., Udluft, S.: Learning and
policy search in stochastic dynamical systems with bayesian neural networks. arXiv
preprint arXiv:1605.07127 (2016)

8. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using Real NVP. arXiv
preprint arXiv:1605.08803 (2016)

9. Gal, Y., McAllister, R.T., Rasmussen, C.E.: Improving PILCO with Bayesian Neu-
ral Network Dynamics Models. In: Data-Efficient Machine Learning workshop. vol.
951, p. 2016 (2016)

10. Gemici, M., Hung, C.C., Santoro, A., Wayne, G., Mohamed, S., Rezende, D.J.,
Amos, D., Lillicrap, T.: Generative Temporal Models with Memory. arXiv preprint
arXiv:1702.04649 (2017)

11. Goodfellow, I.: NIPS 2016 Tutorial: Generative Adversarial Networks. arXiv
preprint arXiv:1701.00160 (2016)

12. Hester, T., Stone, P.: Learning and using models. In: Reinforcement Learning, pp.
111–141. Springer (2012)

13. Houthooft, R., Chen, X., Duan, Y., Schulman, J., De Turck, F., Abbeel, P.: VIME:
Variational information maximizing exploration. In: Advances in Neural Informa-
tion Processing Systems. pp. 1109–1117 (2016)

14. Jaderberg, M., Mnih, V., Czarnecki, W.M., Schaul, T., Leibo, J.Z., Silver, D.,
Kavukcuoglu, K.: Reinforcement learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397 (2016)

15. Jang, E., Gu, S., Poole, B.: Categorical Reparameterization with Gumbel-Softmax.
arXiv preprint arXiv:1611.01144 (2016)

16. Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.:
Improved Variational Inference with Inverse Autoregressive Flow. In: Advances in
Neural Information Processing Systems. pp. 4743–4751 (2016)

17. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

18. Li, L., Littman, M.L., Walsh, T.J., Strehl, A.L.: Knows what it knows: a framework
for self-aware learning. Machine learning 82(3), 399–443 (2011)

19. Li, Y., Turner, R.E.: Rényi divergence variational inference. In: Advances in Neural
Information Processing Systems. pp. 1073–1081 (2016)

20. Maddison, C.J., Mnih, A., Teh, Y.W.: The Concrete Distribution: A Continuous
Relaxation of Discrete Random Variables. arXiv preprint arXiv:1611.00712 (2016)

21. Mnih, A., Gregor, K.: Neural variational inference and learning in belief networks.
arXiv preprint arXiv:1402.0030 (2014)

22. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

23. Oh, J., Guo, X., Lee, H., Lewis, R.L., Singh, S.: Action-conditional video prediction
using deep networks in atari games. In: Advances in Neural Information Processing
Systems. pp. 2863–2871 (2015)

24. Oord, A.v.d., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A.,
Kavukcuoglu, K.: Conditional image generation with PixelCNN decoders. arXiv
preprint arXiv:1606.05328 (2016)

25. Rezende, D.J., Mohamed, S.: Variational inference with normalizing flows. arXiv
preprint arXiv:1505.05770 (2015)

26. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep
conditional generative models. In: Advances in Neural Information Processing Sys-
tems. pp. 3483–3491 (2015)

27. Sønderby, C.K., Raiko, T., Maaløe, L., Sønderby, S.K., Winther, O.: Ladder varia-
tional autoencoders. In: Advances in Neural Information Processing Systems. pp.
3738–3746 (2016)

28. Stadie, B.C., Levine, S., Abbeel, P.: Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv preprint arXiv:1507.00814 (2015)

29. Sutton, R.S.: Dyna, an integrated architecture for learning, planning, and reacting.
ACM SIGART Bulletin 2(4), 160–163 (1991)

30. Walker, J., Doersch, C., Gupta, A., Hebert, M.: An Uncertain Future: Forecasting
from Static Images Using Variational Autoencoders. In: European Conference on
Computer Vision. pp. 835–851. Springer (2016)

31. Watter, M., Springenberg, J., Boedecker, J., Riedmiller, M.: Embed to control: A
locally linear latent dynamics model for control from raw images. In: Advances in
Neural Information Processing Systems. pp. 2746–2754 (2015)

A Variational Auto-Encoder (VAE) Training Objective

We can obtain a tighter bound on Equation 2 by using importance sampling
[3]. We sample M values of z per datapoint, and average over them inside the
log. Otherwise, the model strongly penalizes for single samples that explain the
objective poorly. Second, instead of the KL divergence we optimize Renyi α-
divergences [19]). We use α=0.5 according to the results by Depeweg et al. [7],
which makes the divergence term become a function of the Hellinger distance
[19]. The combined objective, known as the variational Renyi (VR) bound [19]
is:

LV R(y|x) =
1

1− α
log

1

M

M∑
m=1

[(
p(y, zm|x)

q(zm|y, x)

)1−α]
(13)

with zm ∼ q(·|x, y).

B Test Set Negative Log-likelihood (NLL) for VAE

We are interested in the likelihood p(y|x) of a set of test data {xi, yi}Ni=1. We
therefore need to marginalize over z:

p(y|x) = Ez∼p(·|x)
[
p(y|z, x)

]
(14)

One problem with this estimator is that we may need many empirical samples
from z to get an accurate estimate. As an alternative, we estimate the quantity
through importance sampling, by sampling from q(·|xi, yi) instead of p(·|xi):

p(y|x) = Ez∼q(·|x,y)
[
p(y|z, x)

p(z|x)

q(z|x, y)

]
(15)

The empirical estimate of the negative log likelihood (NLL), as reported in
the results section, then becomes

− log p(y|x) = − 1

N

N∑
i=1

log
[1

M

M∑
m=1

p(yi|zmi , xi)
p(zmi |xi)
q(zmi |xi, yi)

]
(16)

with zmi ∼ q(·|xi, yi).

C Training Details

For all experiments we follow standard train, validation and test set set-up. For
all domains, we train the VAE target on k = 3 importance samples with Renyi-
α divergence for α = 0.5 (see appendix A). This gave us slightly better results
compared to the ‘default’ settings of k = 1 and α = 1.0. All models are trained
in Tensorflow using Adam optimizer.

Toy Domain: We draw a training set of size 2000, and independent valida-
tion and test sets of size 500 and 2000, respectively. The decoder distribution is

Gaussian, where we also learn its standard deviation. We train for 30000 batches
with batch size 64, with a learning rate linearly annealed from 0.005 to 0.0005
over 90% of training steps. The minimal KL penalty per dimension λ (Eq. 12)
is fixed at 0.07.

The generative network has three layers with 50 units per layer and Relu
non-linearities. The inference network has two layers with 30 units per layer and
Relu non-linearities. For the discrete latent variables, we anneal the temperature
from 2.0 to 0.001 over 70% of training steps.

Gridworld: For the first task, we repeatedly draw training data by sampling
a new state-action combination uniformly across state-space, and sampling a sin-
gle transition. Optimal model performance is based on a VAE performance on a
validation and test set of size 750 and 1500 respectively. The decoder distribu-
tion is discrete taking values in 7 categories. We train on mini-batches of size 32
for 75000 iterations, with a learning rate linearly annealed from 0.0005 to 0.0001
over 70% of training steps. The generative network has three layers with 250
units per layer and Relu non-linearities. The inference network has two layers
with 100 units per layer and Relu non-linearities. The minimal KL penalty per
dimension λ (Eq. 12) is fixed at 0.07.

For the on-policy evaluation, the RL policy is trained as a deep Q-network [22]
with target network and no experience replay. The state-action value network
has three layers of 50 units and Relu activations. Given a mini-batchM of roll-
out data under the current policy, the network is trained on the 1 step Q-learning
objective:

LRL(η) = E(s,a,r,s′)∼M

[(
r + γmax

a′
Q(s′, a′; η−)−Q(s, a; η)

)2]
(17)

where s, a, r denote state, action and reward, Q(s, a) is the expected dis-
counted return (discount parameter γ = 0.99) from state s and action a under
the current policy, η are the parameters in the value function network, and η−

the parameters in the target network (which are fixed in the above loss, and only
updated every 500 steps). During learning, we follow an ε-greedy policy with ε
linearly decayed from 1.0 to 0.10 over 60% of training steps.

	Learning Multimodal Transition Dynamics for Model-Based Reinforcement Learning

