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Introduction

Object detectors are tasked with identifying and localizing objects in digital images or video. Object
detection is crucial for various applications, from autonomous driving to surveillance systems. Modern
object detectors are based on models that learn from data. In this process, the model makes predictions
and many mistakes, but the model is corrected with data where the answer is known. When the model is
sufficiently trained, it can be used to make predictions on new images for which the output is unknown.

Predictions made on unknown data are expected to perform similarly to the performance on known
training data when this data is comparable. Changing the background makes the unknown data less
similar to the training data. It is easy to see how an object detector can make a mistake and classify
an airplane as a boat when the airplane has landed on the water, and the object detector is trained on
airplanes in the sky and ships in the water. However, if the object detector is trained on data where
objects and backgrounds do not correlate, one would expect the object detector to focus more on the
object than the background and be more resilient to changing this background. In this thesis, we look
at the sensitivity of object detectors to background changes in a setting without correlations between
backgrounds and objects.

The work in Chapter 2 uses carefully controlled synthetic data to show that object detectors are vulnera-
ble to background changes in the uncorrelated setting. Furthermore, it demonstrated that the sensitivity
to changing the background depends on the number of unique backgrounds during training, and train-
ing on more backgrounds resolves the vulnerability. The research in this chapter is presented in the
form of a scientific article and was written for experts in the field of computer vision. Chapter 3 explains
relevant technical concepts to make the full report understandable for a non-expert audience. In this
chapter, the reader is given some understanding and insight into the workings of a simple model in
machine learning. Then, concepts and challenges that also apply to larger models are introduced. The
chapter describes what convolutional neural nets are and how these are used in an object detector.
Finally, the reader is given some understanding of the object detector used in the scientific article.
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On the Sensitivity of Object Detectors to Background
Changes

Marijn de Schipper

Abstract

Object detectors have come a long way and are
used for various applications. In pictures and
videos, an object detector must deal with the
background. In some settings, this background
is indicative of the object; in others, it’s not
and can even be disruptive. For models trained
on data containing correlations between objects
and backgrounds (background bias), it makes
sense that changing the background can disrupt
learned correlations. This paper is interested
in how sensitive object detectors are to back-
ground changes, specifically when the training
data does not contain correlations between ob-
jects and backgrounds. Models were trained on
carefully controlled synthetic data, so only the
backgrounds differed and correlations could be
controlled. The results show that models per-
form better when tested with seen backgrounds
than unseen backgrounds. This performance
difference diminishes when the model is trained
on more unique backgrounds.

1 Introduction

Object detection is the task of predicting the
location and class of certain objects (such as
cars, traffic lights, or pedestrians) in a picture
or video. Object detectors are used in many
applications, such as self-driving vehicles, traf-
fic monitoring, or factory automation. In these
applications, the objects will appear in front
of a background. The background of an image
or video can negatively influence deep-learning
models. For example, in figure 1, an insect was
misclassified as an instrument because the in-
sect appeared in front of a black background

Original

instrument

insect

Figure 1: Example of an insect being misclas-
sified when the background is replaced with a
uniform black background so only the object
(foreground) is accessible. (source Xiao et al.

[1])

[1]. Since the model was trained on data where
pictures of instruments often have only the in-
strument on top of a black background, and
insects often were photographed in nature, it
is easy to see how the background affected this
prediction. Another example shows this prob-
lem for video. In action recognition, a video
of a man singing in a baseball stadium might
be misclassified as playing baseball [2]. Wang
et al. [3] fittingly called this background cheat-
ing. This perfectly describes that the model
has not actually learned the action but just
the associated background. In these examples,
the models have learned correlations between
objects and backgrounds (background biases)
during training. When a learned bias is vio-
lated, the model can make mistakes (e.g., an
insect classified as an instrument). In a set-
ting where the training data does not contain
these biases, changing the background should
not be a problem because there is no such bias
to violate. However, Chandran [4] has demon-
strated that a video object detector can over-
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Figure 2: An illustration of some instances of the synthetic dataset. Each row shows an instance

where the first column states which background is used.

In the case of "A” and ”B”, this

means that backgrounds are sampled from specific subsets from the BG-20K dataset, where in
”Black” all backgrounds are full black. Train, Validation, and Test show some examples from
the corresponding set. The foreground consists of a static white trapezoid and a digit sampled
from MNIST placed uniformly random within the white shape. In contrast to a rectangle, the
chosen shape makes cropping a less simple solution. Note that all the foregrounds are the same
in the train, validation, and test sets; only the backgrounds differ.

fit on background regardless. This paper aims
to research how sensitive object detectors are
to uncorrelated background changes, meaning
that the background does not contain correla-
tions to the object during training and, there-
fore, should be without background bias. We
made the following contributions:

e We implement a way to generate care-
fully controlled synthetic data that can be
used to test the sensitivity to background
changes.

e We show that object detectors can be
vulnerable to uncorrelated background
changes.

e We show that with enough unique back-
grounds during training, object detectors
overcome the vulnerability to uncorrelated
background changes.

The synthetic data can be downloaded
from: https://drive.google.com/file/
d/1fay4FdUbq4sW3H16m13e4TmmhrTORI9co/
view7usp=sharing

2 Related work

2.1 Background and other deep
learning tasks

Generally, in public datasets, correlations occur
between the annotation and (context from) the
background. CNNs trained for various tasks
can learn to use these correlations. In a deep
metric learning task, where the task is to re-
trieve images of objects similar to a query im-
age of an object, the object’s background is
usually not interesting and should not matter.
However, Kobs and Hotho [5] refutes this ex-
pectation. When querying a sportive-looking
bike in front of a white background, they re-
ceived other sportive bikes in front of white
backgrounds. But when they queried the same
bike in front of a brick wall, they retrieved im-
ages with (parts of) bikes in front of brick walls.
This is undesirable because the retrieval sys-
tem should only consider the object, not the
background. The authors tackled this problem
with data augmentation by replacing the back-



ground at training time.

For classifying objects, it is shown that
when the foreground is partly covered, the
background can still provide information and
thereby perform significantly better than ran-
domly guessing the class [1]. Furthermore,
when the foreground is visible but the back-
ground is swapped for a background from an-
other class, the accuracy decreases significantly.
When evaluating model robustness to adver-
sarially chosen backgrounds, for 87.5% of fore-
grounds, a background could be chosen such
that the new image was misclassified as the
background class.

Aniraj et al. [6] also showed reduced per-
formance when testing classification models
in a setting with Out-of-Distribution back-
grounds. This decreased performance was es-
pecially harmful in fine-grained classification
tasks, such as identifying bird species, be-
cause bird species are often closely related to
their habitat. This paper applied two masking
strategies to improve the Out-of-Distribution
results: early masking and late masking. With
early masking, the background is masked be-
fore the feature maps are generated and used
by the classifier. With late masking, the same
segmentation is resized and used to mask the
feature maps which are then used by the clas-
sifier.

These papers show the (negative) impact
that background can have in various deep learn-
ing tasks. They further come up with different
strategies to make their models more robust to
background changes. The papers above pro-
vided research insight into the influence of the
background when there is a correlation between
the background and the object. However, in
this paper the effect of changing the back-
ground when the background and foreground
are not correlated is specifically researched.

2.2 Image object detectors

Object detectors predict the identity and loca-
tion of an unknown amount of objects based on
a picture or video. Object detectors often use
a Convolutional Neural Network (CNN). CNNs
typically have a fixed output size (for example,

a classifier would have one output neuron per
class) which can be a problem when you want
to predict an unknown amount of objects in
an image. A common approach for a detec-
tor is to propose regions of interest and clas-
sify those regions (two-stage). R-CNN [7] used
selective search [8] to extract around 2000 re-
gions which were then classified and the box
prediction refined. Fast-R-CNN [9] improves
the speed of training and testing but still uses
selective search which bottlenecks the speed. In
Faster-R-CNN [10] the selective search is re-
placed by a region proposal network increasing
both the speed and accuracy even further.

Another approach is to predict the boxes
with classification in one step (one-stage). For
example, YOLO [11] generates feature maps
from the image and splits these features in a
S x S grid. Each cell in this grid corresponds to
part of the image and a fixed number of predic-
tions (both for box and classification) is made
per cell. Therefore, it is hard to detect a lot
of small objects (especially when they are close
together). On the other hand, this approach
is generally even faster than two-stage models
and therefore more interesting for real-time ap-
plications.

Both approaches have plenty of successors,
including models specialized for video object
detection. In this paper, we will use an ob-
ject detector based on YOLO because of its ac-
cess to the full background. Since it is shown
that CNNs can learn and exploit absolute spa-
tial location [12], full access to the background
could be exploited by an object detector to
learn where objects can appear. Furthermore,
the fact that there was a code base available
that could easily train on custom datasets was
another practical reason.

2.3 Background and object detec-
tion

Kayhan and van Gemert [13] showed that ob-
ject detectors with the means to take the back-
ground into account can and will use the back-
ground. These object detectors either use the
whole image or crop the feature map and there-
fore have access to all or part of the information



in the background. In a setting where the ob-
ject correlates to the background, these object
detectors exploit the background to gain better
performance than object detectors that are un-
able to use the background. Exploitation of the
background could be an advantage for a higher
score on a benchmark dataset if the objects in
the dataset (partially) correlate to (things in)
the background. Object detectors that do not
access the background are less vulnerable when
the correlation with the background changes.

Chandran [4] showed that a video object de-
tector, SELSA [14], is vulnerable to background
changes, even if trained on a synthetic dataset
(SB-MNIST) containing no correlation between
object and background. In a video from a
stationary camera, the background where a
moving object has no chance of appearing is
called the static background. Changing this
static background at runtime should not in-
terfere with object detection, however, this pa-
per showed reduced performance when chang-
ing the static background at test time. This is
interesting because the background where mov-
ing objects can appear remains unchanged.

The papers discussed show that object de-
tectors can both benefit from and be disadvan-
taged by the background. In this paper, we will
further look at the impact of uncorrelated back-
grounds on object detection. We will do this for
images, and not in video, to find out when the
problem occurs and do this using synthetic data
based on SB-MNIST.

3 Methodology

3.1 Why synthetic data?

Object detection datasets, such as MS COCO
[15] and Pascal VOC [16], often contain images
where the background can provide useful infor-
mation about the object’s location or class. For
instance, images with a lot of water in the back-
ground are more likely to contain boats than
airplanes. To test the impact of the background
on object detection, we constructed synthetic
datasets to control these class-background de-
pendencies.

3.2 Construction of synthetic

datasets

For each experiment, we constructed specific
datasets for the different requirements, how-
ever, the core parts of all these datasets are
the same. See figure 2 for a concept visual-
ization. Each dataset has a total of 1500 im-
ages where 500 are used for training, 500 for
validation, and the remaining 500 for testing.
Each image is 64 by 64 pixels and made up
of a foreground and a background. The fore-
ground consists of a digit image sampled from
MNIST [17]. The image is scaled down to 10
by 10 pixels and placed in a static white area.
The static white area always has the shape of
the same trapezoid at the same location. A
trapezoid was used instead of a square to en-
sure that simply cropping is not a solution. The
digits’ location is uniformly distributed within
the trapezoid such that a square around the
digit does not intersect with the border of the
trapezoid. The background is sampled from a
set of background images and scaled down to
64 by 64 pixels. When constructing different
instances of the same dataset, the same ran-
dom seed is used for this process but differ-
ent sets of backgrounds. This way, the multi-
ple datasets have exactly the same foregrounds
(meaning the same digits sampled in the same
locations) for their train, validation, and test
sets but different backgrounds.

3.3 Model
tails

implementation de-

For the experiments, we trained YOLOV5.
Specifically, the YOLOv5 without pre-trained
weights version from the repository managed
by Ultralytics [18]. Training with pre-trained
weights gave worse results on the synthetic
dataset. Each model was trained with early
stopping [19] for a maximum of 2000 epochs.
Training was stopped early when there was no
improvement for 100 epochs. For evaluation,
we use mean Average Precision [20, 21] at an
Intersection of Union (IoU) of 0.5 (mAP@50).



4 Experiments

4.1 (When) does an uncorrelated

background affect object de-
tection?

In object detection, background bias can be
useful. For example, if the object you want
to identify is only partially visible or blurred.
Therefore, it is logical that these biases are
learned by object detectors; then, in a setting
that does not conform to these biases, the ob-
ject detector is vulnerable to making mistakes.
Now, in a setting with no such biases to be
learned, is an object detector still vulnerable
to changing the background at test time? If so,
when is this the case?

For this experiment, we created multiple in-
stances of the synthetic dataset. For the back-
grounds, we used the BG-20K [22] dataset,
which contains high-resolution backgrounds
without salient objects. From this dataset, 5
subsets (A, B, C, D and E) were sampled with-
out intersections. These subsets are then used
to sample the backgrounds for the instances.
The foreground and background were sampled
in such a way that each background was used
an equal amount of times for each class. Fur-
thermore, all classes were perfectly balanced.
Then, for each instance, a model is trained and
tested on its own test set (seen) and the test sets
of the other instances (unseen). This was done
for different amounts of distinct backgrounds
sampled (N).

In figure 3, we see that with only a few
distinct backgrounds seen at training time,
changing to unseen backgrounds significantly
decreases performance. Also, note that in-
creasing the number of backgrounds solves
this decrease quickly, since with 10 different
backgrounds the difference is already minimal.
Note that with fewer unique backgrounds, the
standard deviation is high. In table 1, we see
this is due to the wildly varying performance
on unseen backgrounds. With increasing num-
bers of unique backgrounds, the performance
range on unseen backgrounds narrows; thus,
the standard deviation decreases.

N seen B unseen

1.0

0.8 4

o
o
s

avg MAP@50
o

=

L

0.2 1

0.0 -

Figure 3: Seen backgrounds vs un-
seen backgrounds Average performance
(mAP@50) of YOLOv5 when tested with back-
grounds encountered during training (seen) as
well as tested with backgrounds not encoun-
tered during training (unseen), for different
numbers of backgrounds (N). Testing on differ-
ent backgrounds results in a significant perfor-
mance gap compared to testing on backgrounds
seen at training time for models trained on only
a few different backgrounds. With fewer unique
backgrounds, the performance on unseen back-
grounds can vary wildly and thus have a high
standard deviation.

Although only the background may differ,
one could argue that the test set should be iden-
tical to compare fairly. Therefore, the models
were also tested on three additional test sets.
Firstly, ”black” is a test set where the back-
ground is masked black, see figure 2. Secondly,
"stratified” is a test set where the background
consists of 50 different backgrounds sampled
from a different distribution than the back-
grounds from the train sets. For this, the
stratified category of the DTD dataset [23]
was used. Lastly, "rest” is a test set where
the backgrounds consist of 50 different back-
grounds sampled from the same distribution as
the backgrounds from the train sets. For this,
50 different backgrounds were sampled from the
BG-20K dataset such that the sampled back-
grounds did not occur in the A, B, C, D and E
subsets from which the train set backgrounds
were sampled.
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Table 1: Extensive results

These tables show the performance (mAP@50, scaled from 0 to 100) of YOLOvV5 trained on

different instances (A, B, C, D and E) of the same data and tested on the test sets of these
instances and three fixed test sets, for different numbers of unique backgrounds (V). For each
model, the best performance is shown in bold. The performance on seen backgrounds (A on A,

B on B, etc.) is consistently among the highest for each model. Performance on unseen
backgrounds (A on B, A on C, etc) is sometimes similar to the performance on seen

backgrounds, but other times decreases slightly or even dramatically. This explains the high

standard deviation in figures 4 and 3. Note that the model trained on instance C with N =1
performs especially badly when tested on unseen backgrounds.
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Figure 4: Testing on unseen backgrounds
but fixed N Average performance (mAP@50)
of YOLOV5 tested on 3 test sets without back-
ground encountered during training. These test
sets have a fixed number of backgrounds. The
”black” test set always has a black background.
The "rest” test set has 50 distinct backgrounds
all sampled from BG-20K in such a way that
there is no intersection with the backgrounds
selected for the training sets. The ”stratified”
test set also has 50 distinct backgrounds but
is sampled from the stratified category of the
DTD dataset. The performance tested with
backgrounds during training (seen) is also in-
cluded as a baseline. The test sets used for the
baseline have the same number of backgrounds
as the train set each model was trained on.
Testing on different backgrounds results in a
significant performance gap compared to test-
ing on backgrounds seen at training time for
models trained on only a few different back-
grounds. With fewer unique backgrounds, the
performance on unseen backgrounds can vary
wildly and thus have a high standard deviation.

The results are shown in figure 4, where for
comparison the performance of "seen” is also
included. Note that models trained on a few
different backgrounds also perform worse on the
additional datasets with unseen backgrounds.
Furthermore, from 10 different backgrounds on-
ward, the performance gap disappears. Lastly,
the performance gap on black decreases faster
than rest and stratified. The standard devi-
ation follows the same trend as the previous

experiment. The initial performance gap and
the diminishing of this gap over the number
of training backgrounds are also similar to the
results from the previous experiment. There-
fore, we can conclude that for a small num-
ber of backgrounds used in training, uncorre-
lated background changes significantly decrease
performance. The problem is resolved when
enough different backgrounds are used during
training.

5 Limitations and Conclu-
sion

In this paper, we investigated the influence
of changing uncorrelated backgrounds in ob-
ject detection. We used the YOLOv5 model
and demonstrated that the model is vulnera-
ble to uncorrelated background changes when
trained on a small number of unique back-
grounds. While we understand that testing on
only YOLOv5 makes it harder to translate our
findings to other object detectors, many object
detectors use a CNN as a backbone and have
access to backgrounds comparable to YOLOvV5.
Therefore, we can speculate that our results
would generalize to other object detection mod-
els. For the experiments, we created synthetic
data to ensure that there were only changes
in the background and there were no correla-
tions between objects and backgrounds. This
has the drawback that it is harder to relate
to real data. In real data, backgrounds gen-
erally have some correlations with the objects.
Furthermore, we observed that the problem is
resolved when the model is trained on enough
unique backgrounds.

To conclude, we showed that object detectors
can be sensitive to background changes, even
when the background is uncorrelated. We did
this by carefully generating synthetic data for
our experiments. Lastly, we showed that the
problem is resolved with enough unique back-
grounds.
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Supplementary materials

This chapter aims to provide the reader with a basic understanding of the technical concepts used in
the scientific article (Chapter 2). The article assumes the reader is knowledgeable about training a

neural network, deep learning, and the basics of object detection. In the following sections, the basic
ideas about these topics are explained.
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3.1. Neural networks

Perceptron
Lo
Y
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Inputs Weights Weighted sum Activiation Function (Step) Qutput

Figure 3.1: Simplified illustration of a perceptron with 2 inputs and 2 corresponding weights, which are used in the body of the
perceptron for the weighted sum. There, a step function is applied as the activation function to determine the final output of the
perception, 0 if the sum S is negative otherwise the output is 1. (Made with draw.io)

In machine learning, a neural network is a model inspired by how actual neurons function in a brain.
To understand a neural network, we first look at a perceptron, which represents a single neuron. In
biology, a neuron is a cell that receives and transmits signals. A neuron has dendrites that pick up
signals. When the combined signals are strong enough, the neuron transmits a signal through its axon
terminals. Note that each input signal is not necessarily treated equally, meaning some inputs are
weighted heavier than others. This concept is the basis for a perceptron. In a perceptron, each input
has its own weight, so the neuron can be more or less sensitive to some input signal. In figure 3.1, a
simplified perceptron is illustrated, which could be used for linear binary classification. For example, we
want to classify an animal as either a cat or a dog based on some score for size and domestication. In
this example, the inputs (z( and z;) represent some features of the animal we want to classify, such as
size and domestication. For each input (z;), there is a weight (w;); the input and corresponding weights
are multiplied and then summed, and a threshold (¢) is added. An activation function is applied to the
resulting sum (), determining if the neuron should fire. In the figure, a step function is used where if
the total input is equal to or above 0, the perceptron’s output () is 1. Then, the animal is interpreted
as a cat. If the weighted sum (.5) is below 0, the output of the activation function is 0, and the animal
is interpreted as a dog. The threshold (¢) can be a negative number and determines how high the line
representing the class boundary is drawn; see figure 3.2. The weights determine the angles of this line.
Weights can also be negative, and then the corresponding input has an inhibitory effect.

The trick is finding good values for the weights and threshold. When these are initiated randomly, these
can result in mistakes. In supervised machine learning, data for which the output is known (labelled
data) is used to update the weights and threshold. This iterative process is shown in figure 3.2. To
update the weights, the predicted output is compared to the known label (y). The weights are updated
with the following formula:

w; =w; +ax(y—7)xx;

The predicted output () is compared to known label (y). If these are equal (y — § = 0), the weight (w;)
remains unchanged. Otherwise, this error determines the direction in which the weights are moved.
The input (z;) and the learning rate (a) determine the amount the weights are moved. The learning
rate is a positive number, generally less than one. When the learning rate is exactly one, that would
be the same as not having a learning rate, which is not required for perceptron. The learning rate
controls the pace of the update process. Perceptrons are proven to converge when the data is linearly
separable [4], meaning it is possible to draw a straight line to separate both classes. If the classes
overlap (inseparable), a perceptron cannot solve the problem perfectly. Figure 3.3 visually shows this.
When the problem is not linearly separable, sometimes an imperfect line can still be drawn, and most
points can be classified. However, the perceptron can have problems converging, such as thrashing
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Figure 3.2: lllustration of how the boundary line in a perceptron updates after training on some data points. In these figures an
animal is classified based on its size and domestication. For example, when an animal is large and scores somewhere in the
middle on domestication, it will be classified as a dog. (Source Wikipedia [2])
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Figure 3.3: Visualisation of linear separability. Above, a clear boundary line can be drawn to separate the data points by class.
Below, two examples are shown where this separation is not possible with a straight line. (Made with draw.io)
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Figure 3.4: A schematic diagram of a multilayer perceptron (MLP) is shown. The MLP consists of multiple neurons (circles)
that have weights for each incoming arrow, but these weights are not explicitly shown. (Made with draw.io)

between boundary positions. A lower learning rate can reduce this thrashing. This is not a perfect
solution and shows a limitation of a perceptron.

The multilayer perceptron (MLP) improves on the perceptron since it can deal with not linearly separable
data. In figure 3.4, an MLP is shown. This model consists of multiple neurons whose outputs are the
inputs for the next layer. The setup of each neuron is similar to how the perceptron functions, where
each neuron takes the weighted sum of its inputs and applies an activation function. The outputs of the
neurons in one layer are passed to the neurons in the next layer as inputs. An MLP has at least one
hidden layer but can have more. The last layer is the output layer. The amount of output neurons for
classification is typically the same as the number of classes. Then, each output neuron corresponds
with a class. For example, in figure 3.4, the two output neurons could correspond with the classes
cat and dog. Then, the MLP predicts a cat if the corresponding neuron outputs the highest value.
Otherwise, it predicts a dog.

L 3
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v
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Figure 3.5: Visualisation showing underfitting, goodfitting and overfitting. With a good fit, the model can accurately make
predictions for new data, in other words, it can generalize well. A new data point (shown with *?”), will be classified as the class
in red. With underfitting, the model is too simple to capture the complexity of the data. With overfitting, the model fits the data
too tightly and therefore is less able to generalize. In both these cases, the new data point will be classified as the class in blue.
(Made with draw.io)
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3.1.1. Training

Updating weights with data is called training. Training data (input data with expected output) is used to
update the weights. The weights are updated differently in an MLP than in a perceptron because the
output of the neurons in any layer depends on the neurons in the previous layers. Instead of a single
formula, backpropagation is used. In backpropagation, the gradient of a loss function with respect to
each weight is calculated. This is done one layer at a time, starting from the output layer and moving
backwards. Then, these gradients are used to update the weights in a process called gradient descent.
This uses a learning rate to limit how fast the weights are updated to converge to a minimum.

3.1.2. Overfitting

Overfitting in machine learning means the model cannot generalize and fits the training data too closely.
This can occur when a model is trained too long on the training data. To prevent this, the training data is
often split into a train set and a validation set. The train set is strictly used to train on and the validation
set is used to calculate the loss in each training iteration. During training, both the loss on the train set
and the validation set will go down, but the validation error will rise when overfitting occurs.

3.1.3. Bias

When the training data contains biases, machine learning models can learn these biases. This can
cause problems for the use cases of the models. For example, a model trained on historical data about
salaries can learn that women earn less than men, which can be unwanted because you probably want
the model to be based on other factors such as education, experience, and skills.
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3.2. Deep Learning

Deep learning is a subset of machine learning. An MLP can be considered a deep neural network if it
has three or more layers. Adding more layers to a neural network increases its complexity and, there-
fore, increases its potential to learn more complex patterns (also increases its potential for overfitting).
More layers also increase the computational cost. The way weights are updated for an MLP with only
one hidden layer or many layers is the same, therefore the size of the network can be easily changed.

3.2.1. Convolutional Neural Networks

Convolutional neural networks (CNN) are a specific kind of neural network often used to extract features
from images and thus used as a backbone in various deep learning tasks. Say you want to make a
classifier to classify black-and-white pictures of animals as either cats or dogs. Then for each pixel, you
have a number representing how bright that pixel is. An MLP can be constructed with an input for each
pixel. This will result in an MLP with many neurons and thus parameters, increasing the computational
cost. Instead of learning weights of neurons directly connected to the input, a CNN learns convolutional
kernels. These kernels are matrices of values that slide across the input. For each position of the kernel
on the input, the kernel is elementwise multiplied with the corresponding input, and summed. Just like
in a neuron, an activation function is applied to suppress irrelevant data. A convolutional layer can have
and apply multiple kernels. The amount of kernels determines the depth of the output. Without padding,
the width and height of the output will shrink, but by adding zeros around the input (zero padding) the
width and height of the output remain the same as the input. Reducing the output size can be beneficial
for aggregating information for feature extraction and it reduces computational cost. The output size
can also be reduced by skipping a few pixels when sliding the kernel over the input (stride) or by adding
max pooling layers. Max pooling layers slide a window over its input, and then for each input within the
window, the maximum is taken as the result. A typical max pooling layer would have a window size of
2 and a stride of 2, therefore the height and width of the output is half of the inputs.

In a CNN, convolutional layers are often alternated with max pooling layers. In the previous example,
we want to make a classifier for images of cats and dogs. For this, we need to extract features from the
input images. By alternating some convolutional layers and max pooling layers, we can extract these

¥ - —>
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Figure 3.6: lllustration of a classifier using a CNN. On the left, an image is shown as input, followed by a visualisation of the
output of a convolutional layer and that of a max pooling layer. The output is then flattened, so it can be used as input for an
MLP. (Made with draw.io)
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features shrinking the output in the width and height dimensions. These layers form the backbone of
the classifier. The part that will make the final prediction is called the head. When the output size is
small enough, the output is flattened to a single vector. Then the head consists of an MLP which takes
the flattened output of the backbone as input to make its predictions. Figure 3.6 shows an illustration
of this example.

CNNs work particularly well for grid-like data such as images because they exploit the prior knowledge
that information from images is often translation invariant. The kernel values are learned similarly to
the weights of neurons in an MLP.
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3.3. Object Detection

The task of object detection is different from that of classification. Object detection is partly a classifying
task but is also a regression task. Regression is the task of predicting a continuous variable, in the
case of object detection, this means predicting values for the position and shape of an object. Deep
learning is generally well-suited for regression tasks, and modern object detectors incorporate CNNs.
The difficulty lies in making an efficient model that can predict an unknown amount of objects since
CNNs and MLPs have a fixed output size.

3.3.1. YOLO

In the scientific article, we used YOLOV5 [3]. This model is based on the model named You Only Look
Once (YOLO) [5]. In YOLO, the image is processed in a S x S grid, see figure 3.7. The input passes
through several convolutional layers and max pooling layers, after which a fully connected network
makes the final prediction. This output is reshaped into the S x S grid. Then, the output contains a
vector of length B x5 4 C for each cell, where C values are interpreted as the class probabilities. B is
the amount of bounding boxes predicted per cell, and for each bounding box, 5 values are interpreted
as the z, y, width, height, and confidence. This architecture is visualized in figure 3.8. When the box
predictions overlap, the Intersection over Union (loU) is calculated, and if this is above a threshold,
the box predictions presumably point to the same object. Only the box prediction with the highest
confidence is kept.

Class probability map

Figure 3.7: lllustration of how YOLO divides the input into a grid. For each cell in the grid, both bounding boxed, confidence
scores, and class probabilities are predicted. Together, they are used to create the final predictions. (Source Redmon et al.[5])
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Figure 3.8: lllustration of the architecture of YOLO. It shows all layers and the sizes of the data in each stage. The first block
represents the input image of 448 by 488 pixels in 3 channels (RGB). (Source Redmon et al.[5])

3.3.2. mean Average Precision

Different metrics can be used to evaluate the performance of object detection models. One such metric
is mean Average Precision (mAP) [6, 1]. To understand this measure, we first need to understand
precision and recall. Precision is the ratio of correctly predicted objects (true positives) and all predicted
objects (true positives + false positives).

TP

Precision = —————
rectsion TP n P

Recall is the ratio of correctly predicted objects (true positives) and the ground truth objects (true posi-
tives + false negatives).

TP
TP+ FN

A threshold for the loU between the prediction and ground truth determines if the prediction is correct.
The precision and recall are used to create a precision-recall curve, which shows the tradeoff between
the two for different thresholds. The Average Precision (AP) for a class is the same as the Area under
the Curve of a precision-recall curve. The mAP is the mean of the AP for all classes.

Recall =
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