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Chapter 1

Cancer can be understood as a group of diseases characterized by an impairment of cellular 
regulatory processes at the genomic, transcriptomic, and protein levels, which results in 
aberrant cell proliferative behavior1. Understanding such altered biological processes is 
essential to develop anti-cancer treatments to control and stop the disease. 

Essentially, each tumor is unique regarding its associated genomic aberrations and protein 
profiles. Nonetheless, tumors share characteristics and patterns, which, when linked to clinical 
outcomes, allow us to optimize treatments and understand treatment responses. This thesis 
aims to explore and identify novel shared patterns of urothelial cancer tumors collected from 
patient samples, link them to clinical outcomes (e.g., response to preoperative treatments), 
quantify shared changes in tumors by the effect of treatments, and find novel ways of 
modeling tumor characteristics, with the ultimate goal of expanding our current knowledge 
on urothelial cancer tumor biology that could serve to improve patient care.

1.1 UROTHELIAL CANCER AND THE CURRENT STATUS 
OF TREATMENT

Urothelial cancer (UC) is a disease characterized by cancer cells in the urinary tract. UC in 
the bladder is categorized as non-muscle-invasive urothelial cancer (NMIBC) when cancer 
cells are present at the inner layer of the bladder, as muscle-invasive bladder cancer (MIBC) 
once cancer cells invade the muscle layer of the bladder, and as metastatic UC (mUC) once 
the disease spreads to distant organs. For the scope of this thesis, the focus will be solely 
on non-metastatic disease, which will be referred to as UC for simplification purposes. 

1.1.1 Prognosis and risk factors
The prognosis of UC is generally poor, even when the disease has not yet spread to distant 
organs, with a 5-year overall survival (OS) of around ~70% for localized MIBC, but only 
~40% if cancer cells metastasized to the local lymph nodes2. The high recurrence rates 
observed in UC after standard-of-care treatments explain a great part of such poor survival 
rates. Together with the moderate decrease in mortality in UC patients over the past 10 
years attributed to the lack of approval of novel UC treatments2, there is an urgent need to 
improve the UC treatment landscape and to tailor treatments better to cure UC.

1.1.2 Hallmarks of muscle-invasive urothelial cancer
UC tumors are characterized by driver mutations altering the regulation of the cell cycle, 
chromatin, and kinase signaling pathways, as well as genomic instability resulting in a high 
mutational load3,4. Due to the disease heterogeneity at the molecular level, multiple expression 
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subtypes have been proposed to group tumors with shared expression profiles that associate 
with distinct genomic and clinical features5. 

1.1.3 Standard of care: radical cystectomy and neoadjuvant chemotherapy
The standard of care of UC is radical cystectomy (RC), a surgical procedure that removes the 
bladder and nearby lymph nodes. However, upon RC, a 5-year OS of 68% is usually achieved 
with variability depending on the baseline disease stage6, suggesting that the treatment is 
imperfect to control the disease. 

Before surgery, patients can be treated in a neoadjuvant setting. To date, neoadjuvant 
chemotherapy (NAC) is considered the standard-of-care7 for treating UC, mainly using 
cisplatin-based combination chemotherapy. Despite decreasing the tumor burden at 
the surgical timepoint, increasing the likelihood of disease control, and reducing the 
likelihood of micro-metastasis, the NAC combined with surgery provides only a moderate 
increase in the 5-year OS (5%-10%) relative to surgery alone8. Because grade 3 or higher 
chemotherapy-related toxicities are observed in 10% of patients9, at the cost of only a 
5-10% 5-year OS increase relative to surgery alone8, there is an urgent need to develop 
novel neoadjuvant treatment strategies for UC.

In the past two decades, the treatment landscape for non-metastatic UC has experienced 
no change since the approval of neoadjuvant chemotherapy. However, ongoing clinical trials 
involving immune checkpoint inhibitors (ICIs) hold promise as potential drug treatments, 
as they could potentially change the UC treatment landscape in the coming years10, holding 
promise to increase patient survival.

1.2 TUMOR IMMUNOLOGY AND IMMUNE 
CHECKPOINT INHIBITORS

1.2.1 Tumor microenvironment
Tumors reside in a region that is called the tumor microenvironment (TME). The TME 
comprises immune cells, normal epithelial cells, fibroblasts, the extracellular matrix, and 
blood vessels11. These surrounding cells allow for interactions that influence the tumor 
behavior; for example facilitating tumor growth, progression, and metastatic dissemination, 
and modulating (anti-)tumorigenic functions mediated by the immune system12.

Immune cells eliminate cancer through the cancer-immunity cycle13. Within this multi-step 
dynamic process, immune cells recognize cancer cells’ molecular fingerprints in the form 
of antigens. At the immune priming phase, tumor antigens are released in the TME upon 
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tumor cell apoptosis. Such antigens are captured and processed by antigen-presenting cells, 
e.g., dendritic cells (DCs), which then traffic to the lymph nodes. Antigen-presenting cells 
present tumor antigens to T-cells via the major histocompatibility complex (MHC), inducing 
T-cell activation and clonal expansion. This step initiates the effector phase, in which T-cells 
recognize specific cancer antigens through their T-cell receptor (TCR). Then, cytotoxic 
T-cells infiltrate the tumor and recognize antigens presented by cancer cells via the MHC, 
eliminating cancer cells. New tumor antigens are released upon this last step, marking a 
new immunity cycle initiation.

Impairment of the cancer immunity cycle facilitates tumor progression14.  Immune checkpoints 
are surface proteins expressed on cancer and immune cells that downregulate the immune 
system. An immune checkpoint expressed on cancer cells is the programmed death-ligand 
1 (PD-L1), which allows for an inhibition of the cancer-immunity cycle effector phase upon 
interaction with its receptor programmed cell death protein 1 (PD-1), expressed among 
others by T-cells (Figure 1). Another checkpoint is cytotoxic T-lymphocyte-associated 
protein 4 (CTLA-4), which downregulates the immune priming phase upon interaction with 
its ligands CD80 (B7-1) or CD86 (B7-2) mostly expressed on APCs (Figure 1A).
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Figure 1. A. Schematic representation of a T-cell expressing the immune checkpoint CTLA-4 interacting with 
a Dendritic cell expressing the immune checkpoint B7 (left, occurring at the tumor-draining lymph nodes) and a 
T-cell expressing the immune checkpoint PD-L1 interacting with a cancer cell expressing the immune checkpoint 
PD-1 (right, occurring at the tumor microenvironment). Both interactions downregulate anti-cancer T-cell killing.
B. Schematic representation of immune checkpoint inhibitors blocking the immune checkpoints CTLA-4, PD-L1, 
and PD-1.

1.2.2 Immune checkpoint inhibitors
Understanding regulatory cancer immune response mechanisms has been pivotal to 
developing novel anti-cancer therapeutic strategies in immunotherapies that modulate the 
immune system to promote anti-tumor T-cell activity.  Immune checkpoint inhibitors (ICIs) 
are a group of antibody-based immunotherapies that aim to overcome the inhibitory signals 
posed by immune checkpoints to enhance anti-tumor T-cell activity. Like chemotherapy 
regimens,  ICIs are a systemic therapy administered via intravenous injection.

In the last decade,  ICI treatments targeting various immune checkpoints have been approved 
to treat multiple cancer types in the metastatic setting15.  ICI treatments are currently being 
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investigated for suitability in the neoadjuvant (i.e., pre-operative) setting16,17. Some of the 
most widely used ICIs are monoclonal antibodies that block PD-1 (e.g., nivolumab), PD-L1 
(e.g., pembrolizumab), CTLA-4 (e.g., ipilimumab), or a combination of them (Figure 1B).  In 
UC treatment,  ICIs have been approved for the metastatic setting18. To date, ongoing clinical 
research is exploring the efficacy and toxicity of ICIs in the neoadjuvant setting with promising 
results thus far regarding the long-term low rates of recurrence19.

1.3 LEARNING FROM TUMOR MOLECULAR PROFILES

Within the context of UC, the primary sources of human tumor tissue material are from two 
surgical procedures: transurethral resection (TUR) and radical cystectomy (RC). Transurethral 
resection (TUR) is a semi-invasive procedure that allows sampling of a tumor primarily for 
diagnostic purposes, and yields sufficient tumor material for extensive profiling to determine 
associations with response to neoadjuvant treatments. Radical cystectomy (RC) material is 
typically used to investigate treatment dynamics and resistance mechanisms to neoadjuvant 
treatments20. Additionally, molecular profiling can be performed on samples from the primary 
tumor, locally metastasized lymph nodes, or at a systemic level through liquid biopsies 
obtained, for instance, from peripheral blood mononuclear cells (PBMCs)21. 

Interrogating the molecular characteristics of tumors is a powerful approach to enhance our 
understanding of tumor biology22. Together with the availability of human material before 
or on treatment, such data presents a unique opportunity to establish links between tumor 
characteristics and clinical outcomes, posing a valuable source of information to infer tumor 
and immunological characteristics. 

Sequencing-based technologies have revolutionized the possibilities of molecular tumor 
profiling in a cost-effective and time-efficient manner due to the rise of next-generation 
sequencing (NGS) technologies. NGS allows for the profiling of genomic alterations (DNA 
sequencing), expression of RNA (RNA sequencing) as well as other molecular profiles such 
as methylation patterns (ChIP sequencing23). 

Orthogonally, proteomics-based approaches allow the characterization of the tumor proteome 
and the TME24. For instance, multiplex immunofluorescence technologies simultaneously 
stain for multiple fluorescent antibodies on a single tissue slide25.  In contrast to standard 
stainings with a single antibody, multiplex immunofluorescence enables staining for multiple 
markers of cancer and immune cells and resolves the TME spatially. 
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In general, bulk profiling techniques profile the entire tumor sample in contrast to single-cell 
profiling which sequences individual cells. A relatively new dimension to tumor profiling 
is the spatial resolution, which allows for a characterization of the spatial features of 
tumors and their surrounding TME26. Lastly, the panel of genes or proteins being profiled 
(e.g., whole-genome, whole-exome, targeted panel) determines the breadth of molecular 
characteristics that can be profiled from a tumor. Altogether, the resolution chosen depends 
on the research question’s hypothesis and tissue and resource availability.

Signal processing steps are taken to obtain usable data amenable to hypothesis testing. Typically, 
DNA sequencing data requires the alignment of the DNA reads to a reference genome, 
calling variants (e.g., tumor mutations), and further filtering the data. These choices can 
impact, for instance, the list of mutations to be used in association studies. Similarly, for 
RNA sequencing data, an alignment, transcript quantification, and differential expression 
modeling framework must be carefully performed before downstream analysis. For multiplex 
immunofluorescence data, we first need to segment the signal on a per-cell basis, classify 
them (e.g., cancer cells, B-cells, T-cells), and segment the tissue (e.g., tumor vs. stroma). Finally, 
the data are usually summarized as normalized counts. Therefore, this implies that each 
data type must be accompanied by best practices established by the scientific community 
to ensure the validity of the measurements.

The rapid advancement and development of novel technologies to profile tumors implies that 
1) best practices to analyze the data are not harmonized within the scientific community, 2) 
there is a need to develop novel algorithms to quantify the data concisely and reliably, and 
3) benchmarking approaches are required to assess the validity of the analytical procedures. 
Once these challenges are overcome, novel opportunities arise to assess unexplored axes of 
tumor biology. For instance, the rapid development of technologies with a spatial resolution 
(e.g., spatial transcriptomics, spatial proteomics), accompanied by novel computational 
methodologies, provides valuable sources of information into tumor heterogeneity and 
spatial biology. Such information could be, for instance, used to discover novel biomarkers 
of response to anti-cancer treatments27–29.
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1.4 PREDICTIVE MARKERS OF RESPONSE TO 
NEOADJUVANT TREATMENTS IN UROTHELIAL 
CANCER 

Predictive biomarkers are molecular traits that quantify the likelihood of a tumor’s response 
to a particular treatment (Figure 2).  In the current era of precision medicine, research aims 
to identify novel molecular tumor traits that could serve as biomarkers. Such biomarkers 
pose opportunities to tailor the right treatment to the right tumor. Therefore, predictive 
biomarkers allow for overcoming the current heterogeneous response rates observed 
across multiple treatments, avoiding patient over- and under-treatment and preventing 
unnecessary toxicities30,31.

Figure 2. Schematic representation of a predictive biomarker: a molecular trait can be associated with a patient 
cohort's clinical outcome (e.g., response to treatment). Upon stratifying the patient cohort based on the presence 
or absence of a molecular alteration, the patients can be classified by having a higher or lower likelihood of 
responding to treatment. 

1.4.1 Biomarkers of response to neoadjuvant immune checkpoint inhibitors
ICIs for the treatment of UC in the neoadjuvant setting (i.e., before surgery) are thus far 
not approved for clinical usage, in contrast to the metastatic setting in which several ICIs 
are approved for usage15,32. 
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With more cancer types treated by ICI, we can now pool data from many studies to learn 
more about the mechanisms of response shared between the various types. Associations with 
treatment response have been measured based on a discovery-based or knowledge-based 
approach to the components of tumor-immune interactions. For instance, the cancer 
immunogram33,34 serves as a fundamental framework to understand the baseline characteristics 
a tumor must satisfy to respond to ICIs. However, despite more data being available for 
research, the behavior of biomarkers and candidate associations of response still needs to 
be more heterogeneous between clinical trials. Existing ICI response biomarkers, based 
on pre-therapy molecular profiles, have displayed a varying performance in large validation 
cohorts (n>1000 patients), particularly in a pan-cancer setting35,36 but also between UC trials37. 
Such variability can be attributed to heterogeneity between tumors and ICI treatment courses 
(e.g., monotherapy vs. combination therapy, or different immune checkpoints being targeted). 

European drug agencies have restricted the treatment of adjuvant UC with nivolumab to 
patients having high expression of PD-L1 on their tumor cells38. Several other response 
biomarkers for ICIs have been proposed, such as the tumor mutational burden (TMB) across 
multiple cancer types39. A high mutational profile increases the foreignness of a tumor, 
increasing the chances of being recognized by the immune system as foreign40.  Moreover, 
molecular expression profiles indicative of pre-existing CD8+ T-cell immunity have been 
linked to an increased sensitivity of tumors to T-cell effectors40. Different gene expression 
signatures related to CD8+ T-cell effectiveness, such as a general immune profile score (e.g., 
the tumor inflammation score signature) and interferon-gamma signaling41 have shown 
associations with response to ICIs.  Moreover, an impairment of the antigen presentation 
machinery has been linked to non-response42. On the other hand, expression profiles of a 
suppressive TME indicative of inhibitory tumor metabolism, such as TGF-beta signaling, have 
been linked to non-response to ICIs across multiple cancer types43,44. Lastly, the abundance 
and configuration of immune cells within the TME have also been proposed as candidate 
biomarkers, such as infiltration of CD8+ T-cells, the configuration of immune phenotypes, and 
the presence of tertiary lymphoid structures (TLS)45.  It is expected that a new avenue of 
molecular data paired with clinical data will be valuable to further develop robust candidate 
biomarkers for response to ICIs in UC. 

1.4.2 Biomarkers of response to neoadjuvant chemotherapy
Although chemotherapy-based treatments have been approved to treat UC tumors for 
over 20 years46, to date, there is not a single biomarker with a sufficiently high odds ratio 
to have clinical utility8. 

Several candidate biomarkers predict NAC response8,46. Among them, clinical response 
associated with mutations in the transcription-coupled nucleotide excision repair ERCC247,48, 
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receptor tyrosine kinase ERBB249, DNA repair genes (ATM/RB1/FANCC, ERCC2, BRCA1, 
ERCC1)50,51, tumor suppressor TP5352, and fibroblast growth receptor FGFR353.  In addition 
to genomic biomarkers, transcriptomic biomarkers have also been proposed as candidate 
response biomarkers to NAC, including aberrant expression profiles of p5354, distinct 
molecular subtypes55, and expression of DNA excision repair ERCC156, which all have been 
linked to an increased sensitivity to NAC. Altered methylation profiles have also been 
correlated with response to NAC, including the cell-free methylation profile at baseline 
and after one cycle of NAC57.

Besides uni-modal biomarker strategies, multi-modal approaches that integrate multiple 
molecular data types have also been proposed to comprehensively understand tumors58, such 
as a combination of high immune cell infiltration, high PD-1 protein expression, aberrations 
in chromosomal alterations, indels, BRCA2 mutations and a non-basal/squamous subtype, 
which altogether are linked to an increased response to NAC. 

Biomarkers are too often cohort-specific and fail to generalize, limiting their usage as response 
biomarkers and clinical utility8,46. Validation approaches in larger cohorts are still needed to 
generate more evidence to further develop response biomarkers of NAC. 

1.5 CONTRIBUTION AND THESIS OBJECTIVE

A deeper molecular understanding of UC tumors, their associated TME, and their systemic 
components is essential to understanding the response and resistance mechanisms to 
treatments, providing a knowledge foundation to develop novel biomarkers for patient 
stratification in the precision medicine era, and serving as a basis to develop novel anti-cancer 
treatments.

This thesis aims to characterize the TME immune landscape of UC tumors, understand the 
response to neoadjuvant treatments in UC, and quantify neoadjuvant treatment dynamics 
upon ICIs. To do so, the contributions of each chapter (Figure 3) are as follows: 

	● Chapter 2 assesses the validity of several proposed baseline genomic biomarkers to 
neoadjuvant cisplatin-based chemotherapy (NAC) in a large independent cohort. 

	● In Chapter 3, we first dissect the TME immune landscape of untreated UC tumors 
to understand the baseline immunological characteristics of UC tumors, quantify the 
immunological components and heterogeneity of tertiary lymphoid structures, and 
assess the differences between untreated and ICI-treated UC tumors to quantify 
treatment-associated effects, which altogether provide a basis to understand response 
and resistance to ICIs and to develop novel biomarkers and treatment schedules.
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	● In Chapter 4, we first show that a neoadjuvant combination of immune checkpoint 
inhibitors (ICIs) involving PD-1 and CTLA-4 blockade (ipilimumab + nivolumab) is feasible 
in a phase-I trial of high-grade UC tumors, explore biomarkers of response to ICIs, and 
quantify treatment dynamics components that impair response to ICIs.

	● Lastly, in Chapter 5, we propose a novel framework to quantify spatial relationships 
within the TME and propose novel biomarkers of response to combination ICIs in UC, 
which are also validated in head and neck cancer tumors. 

Altogether, our results provide a comprehensive foundation to deepen our knowledge of 
UC tumor biology and tumor immunology, which serve as a base to further understand 
the response to neoadjuvant treatments such as ICIs and chemotherapy and develop novel 
biomarkers of response.
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Figure 3. Graphical abstract of the content of the thesis. Each box represents a chapter. Each line denotes a 
treatment line for a patient cohort. Arrows indicate when the tumor material was collected (e.g., pre-treatment 
with transurethral resection, post-treatment with radical cystectomy). Coloring indicates the type of neoadjuvant 
treatment, and below is indicated the molecular and clinical data types collected in each chapter. 
Abbreviations: ICIs: immune checkpoint inhibitors
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ABSTRACT
Abstract

Cisplatin-based neoadjuvant chemotherapy (NAC) followed by radical cystectomy is 
recommended for patients with muscle-invasive bladder cancer (MIBC). Somatic deleterious 
mutations in ERCC2, gain-of-function mutations in ERBB2, and alterations in ATM, RB1, 
and FANCC have been shown to correlate with pathological response to NAC in MIBC. 

The objective of this study was to validate these genomic biomarkers in pre-treatment 
transurethral resection (TUR) material from an independent retrospective cohort of 165 
MIBC patients who had subsequently undergone NAC and radical surgery. Patients with 
ypT0/Tis/Ta/T1N0 disease after surgery were defined as responders.

Somatic deleterious mutations in ERCC2 were found in 9/68 (13%) evaluable responders 
and in 2/95 (2%) evaluable non-responders (p=0.009, FDR=0.03). No correlation was 
observed between response and alterations in ERBB2 or in ATM, RB1 or FANCC alone or 
in combination.  In an exploratory analysis, no additional genomic alterations discriminated 
between responders and non-responders to NAC. No further associations were identified 
between the aforementioned biomarkers and complete pathological complete response 
(ypT0N0) after surgery.

In conclusion, we observed a positive association between deleterious mutations in ERCC2 
and pathological response to NAC, but not overall survival or recurrence-free survival. 
Other previously reported genomic biomarkers were not validated. 

Patient Summary	  
It is currently unknown which patients will respond to chemotherapy before definitive 
surgery for bladder cancer. Previous studies described several gene mutations in bladder 
cancer that correlated with chemotherapy response. This study confirmed that patients 
with bladder cancer with a mutation in the ERCC2 gene often respond to chemotherapy. 
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2.1 MAIN

Neoadjuvant cisplatin-based chemotherapy (NAC) followed by radical cystectomy is 
recommended for patients with muscle-invasive bladder cancer (MIBC)1. Pathological response 
after treatment with NAC is strongly associated with recurrence-free survival (RFS) and 
overall survival (OS)2. Currently, clinicians are unable to identify which patients will benefit 
from NAC. Genomic biomarkers have been described to correlate with response to NAC, 
including somatic deleterious mutations in ERCC2, gain-of-function mutations in ERBB2, 
and alterations in ATM, RB1 and FANCC3-7. However, none of these biomarkers have been 
validated in larger independent cohorts and are consequently not used in clinical practice1, 8. 

Here, we set out to to validate these genomic biomarkers in an independent multicenter 
retrospective cohort. Pre-treatment tissue derived from five centers was sequenced at 
the Netherlands Cancer Institute (NKI cohort, n=117) or Vancouver Prostate Centre 
(Vancouver cohort, n=48, Supplementary Figure 1). All patients were diagnosed with 
MIBC (cT2-4aN0M0 and/or cT1-4aN1-3M0) by transurethral resection (TUR) and were 
treated with at least two cycles of cisplatin-based NAC, followed by radical cystectomy. The 
primary endpoint of this study was pathological response, defined as ypT0/Tis/Ta/T1N0 
after surgery2, 9. Seventy of 165 patients (42%) were categorized as responders. Pathological 
complete response after surgery, defined as ypT0N0, was used as a secondary endpoint 
which was observed in 51 of 165 patients (31%).

Baseline age, gender, chemotherapy regimen, and number of cycles of chemotherapy 
did not differ between response groups, however cT-stage at baseline was higher in the 
non-responders (Table 1). Furthermore, baseline cT-stage and chemotherapy regimen differed 
between cohorts (Supplementary Table 1). Tumor DNA extracted from TUR samples 
obtained prior to NAC was sequenced using a targeted capture-based panel for the NKI 
cohort and whole exome sequencing for the Vancouver cohort. Somatic variants in ERCC2, 
ERBB2,  ATM, RB1 and FANCC were inferred from population databases (Supplementary 
Methods).  Mutations were predicted to be functional (deleterious or gain-of-function) using 
the annotation databases OncoKB, ClinVar, SIFT, FATHMM, and PolyPhen-2 (Supplementary 
Methods). A high concordance between the observed and the TCGA mutation rates was 
observed (Supplementary Table 2).
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After filtering, deleterious mutations in ERCC2 were found in nine of 68 (13%) evaluable 
responders and in two of 95 (2%) evaluable non-responders (p=0.009, Figure 1A). We found 
relevant gain-of-function mutations in ERBB2 in nine of 69 (13%) evaluable responders and five of 
95 (5%) evaluable non-responders (p=0.09, Figure 1A). Twenty-seven of 70 (39%) responders 
had ≥1 alteration in ATM, RB1 or FANCC compared to 25 of 95 (26%) non-responders (p=0.13, 
Figure 1A). Nine of eleven patients (82%) with a deleterious mutation in ERCC2 had a 
pathological response after treatment with NAC, as opposed to 62 of 154 patients (40%) 
without any relevant mutations in ERCC2 (Supplementary Table 3). After correction 
for multiple hypothesis testing (three hypotheses), mutations in ERCC2 were significantly 
enriched in responders (FDR=0.03, Figure 1B). The association remained when adjusted 
for cT-stage in a multivariable logistic regression model (pERCC2=0.008, pcT2=pcT3=pcT4>0.9), or 
when patients that received less than 3 cycles of NAC were excluded (Supplementary 
Figure 2). Baseline clinical difference between ERCC2 mutated and wild-type patients were 
not identified (Supplementary Table 3). 
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In contrast, alterations in ERCC2, ERBB2, or in any one of ATM, RB1 or FANCC did not associate 
with a pathological complete response (ypT0N0) after correcting for multiple hypothesis 
testing (FDRERCC2=0.09, FDRERBB2=0.07, FDRATM/RB1/FANNC=0.07, Supplementary Figure 3)

The median duration of follow-up for patients using reverse censoring was 7.2 years. The 
5-year OS rates for patients with and without mutations in ERCC2 were 75% (95% confidence 
interval (CI): 50%-100%) and 52% (95% CI: 45%-62%), respectively (p=0.2, Figure 1C). The 
5-year RFS rates were 65% (95% CI: 39%-100%) and 49% (95% CI: 42%-59%), respectively 
(p=0.2, Figure 1D). Thus, while the Kaplan Meier curves appear to separate according to 
ERCC2 mutation status, we could not demonstrate a statistical difference for either OS or 
RFS, possibly due to the low frequency of ERCC2 mutations. 

Following earlier analyses by Plimack and colleagues6, we assessed copy number alterations 
(CNA) for ATM, RB1, and FANCC by shallow whole genome sequencing for patients from 
the NKI cohort (n=117, Supplementary Methods). CNA on the Vancouver cohort 
could not be confidently assessed due to a lack of germline data. We found seven CNA in 
ATM, RB1 and/or FANCC in all evaluable patients.  Together with the previously described 
mutations, 22 of 53 (42%) responders had ≥1 alteration in ATM, RB1 or FANCC versus 20 
of 64 (31%) non-responders (p=0.052, Supplementary Figure 4).

In a further exploratory analysis, mutations frequently occurring in MIBC were assessed for 
their correlation with response to NAC (Supplementary Figure 5). This analysis included 
FGFR3, which was previously associated with negative outcome after chemotherapy 
(Supplementary Figure 6)10. No association with response was identified after correction 
for multiple hypothesis testing (Supplementary Figure 5). 

There are several limitations to this study. The genomic data were derived using different 
sequencing technologies at different centers, leading to potential biases in the mutation 
frequency. Furthermore, we lacked germline data and somatic variants were filtered with 
the help of population databases to remove benign germline variants. As germline DNA 
is often unavailable, this approach is common practice and was also used in the original 
studies of ERBB2 and ATM/RB1/FANCC4, 6.  Multiple definitions of response have been used 
in previous studies, thus introducing heterogeneity between studies. Complete pathological 
response (ypT0N0) and pathological downstaging (ypT0/Tis/Ta/T1N0) are commonly used. 
Long-term clinical outcome is favorable in both groups, although patients with ypT0/TisN0 
may have a modest survival benefit over patients with ypT0/Tis/Ta/T1N02, 9. 

In summary, we attempted to validate mutations in ERCC2, ERBB2,  ATM, RB1 and FANCC 
as predictive markers of pathological response in a cohort of 165 patients treated with 
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NAC. We confirmed a positive association of deleterious mutations in ERCC2 with 
pathological response (ypT0/Tis/Ta/T1N0), but not with complete response (ypT0N0), OS 
or RFS. Prospective evaluation of ERCC2 mutations as a biomarker for response to NAC is 
needed to confirm our results. 

Funding	  
This project was funded by NWO.

2.2 METHODS

2.2.1 Study population / Treatment
The full cohort consisted of 165 prospectively collected samples from five different 
centers. All patients had muscle-invasive bladder cancer (MIBC, cT2-4aN0M0 and/or 
cT1-4aN1-3M0) diagnosed by transurethral resection (TUR) and treated with at least two 
cycles of neoadjuvant chemotherapy (NAC) followed by radical cystectomy. NAC consisted 
of either cisplatin + gemcitabine (cis/gem), methotrexate + vinblastine + doxorubicin + 
cisplatin (MVAC) or cisplatin + methotrexate + vinblastine (CMV).

Patient cohorts were named after the center in which the sequencing was performed. The 
NKI cohort (n=117) included retrospectively collected MIBC samples from three centers: 
Amsterdam (The Netherlands), Rotterdam (The Netherlands), and Barcelona (Spain) and the 
Vancouver cohort (n=48) included MIBC samples from two institutions: Bern (Switzerland) 
and Seattle (Washington, USA) were compiled (Supplementary Figure 1, Table 1). 

2.2.2 Targeted DNA sequencing (NKI cohort)
Formalin-fixed paraffin-embedded (FFPE) tumor blocks from TUR material were collected 
from the different hospitals and centrally reviewed by an experienced pathologist. Tumor 
area was marked for every tumor block and DNA was collected from subsequent FFPE 
slides (10 μm). Nanodrop 2000 (Thermofisher) was used to quantify the total amount 
of DNA, and Qubit® dsDNA HS Assay Kit (Invitrogen, cat no Q32851) was used to 
quantify the amount of double stranded DNA. Covaris shearing was used to fragment a 
maximum of 2000 ng of double stranded genomic DNA to get fragment sizes of 200-300bp. 
2X Agencourt AMPure XP PCR Purification beads were used to purify samples following the 
manufacturer’s instructions (Beckman Coulter, cat no A63881). The sheared DNA samples 
were qualified and quantified using a BioAnalyzer system (DNA7500 assay kit, Agilent 
Technologies cat no. 5067- 1506). Library preparation for Illumina sequencing was done 
using the KAPA HTP Prep Kit (KAPA Biosystems, KK8234) with an input of maximum 1 
μg sheared DNA. Four PCR cycles were done during library amplification to obtain sufficient 
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yield for the exome capture. Libraries were cleaned up using 1X AMPure XP beads. The 
DNA libraries were analyzed on a Bioanalyzer system using the DNA7500 chips to determine 
the concentration. With 150 ng of each indexed sample three pools of eight samples were 
prepared, and 2 µl of IDT TS-mix universal blockers (IDT, Cat: 1075475) and 5 µl Human 
Cot-1 DNA (Invitrogen, Ref: 15279-011) was added to the pools. Then, a concentrator was 
used to dry the pool, and to rehydrate 8.5 µl of hybridization buffer, 3.4 µl Hybridization 
component A (SeqCap Hybridization and wash kit, Roche, Ref: 05634253001) and 1.1 µl 
nuclease-free water was added. The pool underwent incubation at RT for 10 minutes, and 
at 96 degrees Celsius for 10 minutes. The samples were hybridized with 4 µl of the custom 
44 gene bladder cancer panel (which included muscle-invasive bladder cancer driver genes, 
clinically relevant genes, and frequently mutated genes) at 65°C for 24 hours.  IDT protocol 
(Rapid protocol for DNA probe Hybridization and Target Capture using an Illumina TruSeq or 
Ion Torrent Library) was followed to capture and wash the pool, and amplified using 10 PCR 
cycles. The amplified pool was purified using AMPure® XP beads (Beckman Coulter). The 
purified pools were quantified on the Agilent Bioanalyzer 7500 system and one sequence 
pool was made by equimolar pooling. The sequence pool was diluted to a final concentration 
of 10 nM and subjected to sequencing on an Illlumina Nextseq 550 machine with a MID 150 
cycle kit for a paired end 75bp run, following manufacturer’s instructions. 

Sequencing reads were aligned against the Human Reference Genome Ghr38 using 
Burrows-Wheeler aligner v0.7.17-r1188. Duplicated reads were marked and removed 
using MarkDuplicates v4.1.1.0, and base quality score recalibration was done using GATK 
ApplyBQSR v4.1.1.0.  Indel realignment was not performed as per current GATK best 
practices (June 2021) it is not recommended when performing variant calling with Mutect2.

2.2.3 Exome DNA sequencing (Vancouver cohort)
To extract DNA from FFPE tumor samples, two FFPE cores per case were used to prepare 
hematoxylin and eosin-stained slides and a certified pathologist reviewed them for tumor 
content.  Macro-dissection on tumor regions was done to enrich for tumor content. For 
paraffin removal, tissue re-hydration, tissue digestion and DNA extraction a M220 instrument 
(Covaris) and a truXTRAC FFPE DNA microTUBE Kit (Covaris) was used, and to quantify 
DNA the Qubit 2.0 fluorometer (Life Technologies) was used. The DNA quality was assessed 
by a multiplex-PCR assay (van Beers E.H. et al, British Journal of Cancer (2006) 94, 333-337), 
with usable DNA in samples with >400-bp PCR products. 

To sequence the samples, 150-200 bp fragments were generated by fragmenting 1 μg of 
genomic DNA by hydrodynamic shearing (Covaris E210). DNA fragments were ligated to 
Illumina barcoded adapters after end repair, cleaned up. PCR amplification was used to enrich 
for adapter ligated fragments, and controlled for quality (Qubit and agarose gel). The library 
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was enriched by liquid phase hybridization using Agilent SureSelect XT Human All Exon v6 
(Agilent Technologies; 60M bp target size) following manufacturer’s recommendations, and 
amplified by PCR using indexing primers. Captured libraries were cleaned and controlled for 
quality (Qubit and agarose gel). To cluster the index-coded samples and the PE100 libraries 
sequencing a HiSeq4000 system (Illumina) was used. 

Sequencing reads were aligned against the Human Reference Genome Ghr38 using 
Burrows-Wheeler aligner v0.7.17-r1188. Duplicated reads were marked and removed 
using MarkDuplicates v2.23.8, and base quality score recalibration was done using GATK 
ApplyBQSR v4.1.1.0.

2.2.4 Variant calling and inference of somatic and functional variants
GATK Mutect2 (v4.1.9.0) was used to call single-nucleotide variants (SNVs) and short 
insertions and deletions (indels) on tumor samples using the ‘Tumor-only’ mode. Variants 
were further filtered using GATK FilterMutectCalls (v4.1.9.0), and variants with an allele 
frequency below 5% or an alternate number or reads below 3 were filtered out.

Because the sequencing depth between samples and genes was variable, we annotated 
regions with a low sequencing coverage. First, we computed the sequencing depth using 
Samtools (v1.9) and estimated the average coverage per-gene. For each sample, we annotated 
each gene from the oncoplots (i.e. Figure 1A) as ‘Not available’ when the average number 
of gene sequencing coverage was <20 reads. As an exception to this rule, when a relevant 
(non-germline and pathogenic) variant and with at least 3 alternate reads was detected for a 
low coverage gene, the variant was subjected to downstream analysis and the ‘Not available’ 
annotation was removed. 

For downstream analysis, samples showing low coverage (average <20 reads) in >40% of 
the studied genes were filtered out, which affected 4 patients from the NKI cohort, and 2 
patients from the Vancouver cohort. Variants were processed in R 3.6.0 using the packages 
VariantAnnotation v1.24.5, ComplexHeatmap v1.17.1, tidyverse 1.2.1, and ggpubr 0.2.1.

To filter out germline variants, only variants annotated as COMMON != 1, CAF 
<0.05, TOPMED <0.05, GNOMAD dbNSFP_gnomAD_exomes_NFE_AF <0.05. and 
dbNSFP_gnomAD_exomes_AF <0.05 were retrieved. To further filter out potential germline 
variants, we retrieved the germline DNA sequencing data collected from NABUCCO cohort 
1, and identified the germline variants FOXQ1 T60P, KMT2D T4629P (mutated in >70% of 
the patients), which were filtered out from our list.
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To retrieve functional variants, we filtered out variants annotated as introns, non-coding, 
synonymous, downstream gene variant, 3’ UTR variant, 5’ UTR variant, t’ UTR premature 
start codon gain, sequence feature. Then, we only retrieved variants being annotated with 
at least one of the following annotations: Pathogenic or Likely Pathogenic on CLNSIG, High 
Impact, Deleterious on SIFT or FATHMM, Damaging or Probably Damaging on HVAR, or as 
Oncogenic or Likely Oncogenic on OncoKB. For ERBB2, only variants annotated as Gain 
of Function by OncoKB were retrieved and reported in the manuscript. 

2.2.5 Shallow whole-genome DNA sequencing for Copy number (NKI cohort)
For shallow genome sequencing, the protocol up to PCR amplification was analogous to 
the one indicated in ‘DNA sequencing’. The uniquely indexed samples were mixed together 
by equimolar pooling. Different pools of samples were prepared, consisting of 5 batches 
of 12 (1 pool, 1 lane), and one batch of 34 samples (1 pool, run over 3 lanes). The pools 
were analyzed on the Agilent Technologies 2100 Bioanalyzer. The Pools were diluted to 
10 nM, and measured on the qPCR. Then the pool was sequenced on an Illlumina HiSeq2500 
machine, where each pool was in one lane of a single-end 65 base pairs (bp) run, following 
the manufacturer’s instructions. 

The low coverage whole genome samples were aligned to GRCh38.78 using the 
Burrows-Wheeler Aligner mem algorithm (bwa version 0.7.17). For every sample, and on 
segments of 20 kilobases (kb) on the genome, the mapping quality read counts were rated 
and tiled for 65 base pairs against a similar mapping of all known sequences for genome 
version GRCh38.78. A non-linear loess fit of mappabilities over 0.8 on autosomes was used 
to correct per 20kb for local GC effects. Then a scaling to the slope of a linear fit of the 
reference mappabilities after GC correction was done on the reference values. where the 
intercept was forced at the origin. We filtered out the ratios of corrected sample counts 
and the reference values left out bins with a mappability below 0.2 or overlapped with 
ENCODE blacklisted regions (ENCODE Project Consortium, Nature, 2012). The pipeline 
used in the count and log2ratio corrections is available at https://github.com/NKI-GCF/
SeqCNV. For male patients, the log2 ratio was increased by one in genes from Chromosome 
X. Copy number ratios (CNR) at a gene level (CNR-gene) were estimated using a weighted 
average copy number ratio per gene. We defined deletions as log2(CNR-gene) <−0.7, and 
amplifications as log2(CNR-gene) >1.

2.2.6 TCGA cohort
Mutation data from Muscle-invasive bladder cancer patients from the TCGA cohort 
(n=412, Robertson, A. G., Kim, J., Al-Ahmadie, H., Bellmunt, J., Guo, G., Cherniack, A. D., 
…, Zwarthoff, E. C. (2017). Comprehensive Molecular Characterization of Muscle-Invasive 
Bladder Cancer. Cell, 171(3), 540-556.e25) was downloaded as provided on cBioportal on 
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8th April 2022.  Mutation data was aggregated by patient to compute mutation rates, and 
compared with mutation rates from our cohort by a two-sided Fisher’s exact test. 

2.2.7 Statistical analyses
Associations between genomic mutations and clinical response were tested using a two-sided 
Fisher’s exact test. We performed multiple hypothesis testing on our original set of 3 
hypotheses (ERCC2, ERBB2 and ATM, RB1 or FANCC) using the Benjamini-Hochberg method. A 
0.05 threshold for both the unadjusted p-values and the false discovery rates was used 
to define significance. Associations between baseline clinical characteristics and response 
(Table 1) were sought using a Fisher’s exact test for binary predictors, and a t-test for 
numerical predictors. Unless otherwise stated, all the statistical tests were two-sided. The 
statical analysis was performed using R 3.6.0.

Survival analysis with time to event was performed with a Kaplan-Meier analysis, and statistical 
significance was tested with a log-rank test. Time to event was computed as the temporal 
window between the day of cystectomy and either time to death (overall survival, OS) or 
time to recurrence (recurrence-free survival RFS). For median follow-up estimation, reverse 
censoring was implemented using the reverse Kaplan-Meier method by reversing the event 
(death) and censoring labels. For OS and RFS analysis, censoring was implemented for patients 
lost to follow-up. Hazard ratio testing with a Cox proportional hazards regression model was 
not performed, due to the proportional hazard assumption being violated for a Cox model of 
the 5-year OS association with ERCC2 mutations, in which a significant association between 
the Cox model residuals and time was identified (p=0.037). Analyses were performed using 
the R packages survival 2.44, prodlim version 2019.11.13, and survminer 0.4.6.
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2.3 SUPPLEMENTARY FIGURES

Targeted gene panel sequencing + 
shallow sequencing for copy number analysis

NKI, Amsterdam
cohort (n=68)

Clinic Barcelona 
cohort (n=17)

Erasmus MC, 
Rotterdam

cohort (n=32)

53 responders 64 non-responders

NKI cohort (n=117)

Whole exome sequencing

Vancouver cohort (n=48)

IInselspital, 
Universitätsspital Bern

cohort (n=37)

University of Wisconsin, 
Madison 

cohort (n=11)

17 responders 31 non-responders

Supplementary Figure 1. Overview of patient cohorts from 5 different centers. The patients from 
Amsterdam (The Netherlands), Rotterdam (The Netherlands) and Barcelona (Spain) (n=117) were sequenced by 
the NKI using targeted DNA sequencing and shallow whole genome sequencing. Whole-exome sequencing was 
performed in Vancouver on tumor material from Bern (Switzerland) and Seattle (Washington) (n=48).
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Supplementary Figure 2. Somatic mutations in the genes ERCC2, ERBB2,  ATM, RB1 and FANCC in 
patients with muscle-invasive bladder cancer treated with neoadjuvant chemotherapy with at least 
3 NAC cycles. Six patients that received 2 cycles of chemotherapy were excluded from the analysis.  A) Overview 
of relevant mutations for each individual patient. Left panel shows patients with pathological complete response 
(ypT0N0, light blue, n=50), and right panel shows patients with ypTis/Ta/T1N0 (yellow, n=18) and ≥ypT2N0 (orange, 
n=91). Percentages represent the number of patients per cohort with a relevant mutation relative to the total 
number of eligible patients for that specific gene for ypT0N0 (left) and >ypT0N0 (right) patients. Patients with an 
alteration in any one of ATM, RB1 or FANCC are indicated in the last row. B) Adjusted p-value versus odds ratio 
for ERCC2, ERBB2 and any one of ATM, RB1 or FANCC between response groups. P-values were calculated by a 
two-sided Fisher’s exact test, and adjusted for multiple hypothesis testing using the Benjamini-Hochberg procedure. 
NKI = patients from the NKI-cohort; Not available = gene-coverage below 20 reads.
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Supplementary Figure 3. Somatic mutations in the genes ERCC2, ERBB2,  ATM, RB1 and FANCC in 
patients with muscle-invasive bladder cancer treated with neoadjuvant chemotherapy related to 
complete pathological response. A) Overview of relevant mutations for each individual patient. Left panel 
shows patients with pathological complete response (ypT0N0, light blue, n=51), and right panel shows patients 
with ypTis/Ta/T1N0 (yellow, n=19) and ≥ypT2N0 (orange, n=95). Percentages represent the number of patients per 
cohort with a relevant mutation relative to the total number of eligible patients for that specific gene for ypT0N0 
(left) and >ypT0N0 (right) patients. Patients with an alteration in any one of ATM, RB1 or FANCC are indicated in 
the last row. B) Adjusted p-value versus odds ratio for ERCC2, ERBB2 and any one of ATM, RB1 or FANCC between 
response groups. P-values were calculated by a two-sided Fisher’s exact test, and adjusted for multiple hypothesis 
testing using the Benjamini-Hochberg procedure. NKI = patients from the NKI-cohort; Not available = gene-coverage 
below 20 reads.
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Supplementary Figure 4. Somatic mutations and copy number alterations in ERCC2, ERBB2,  ATM, RB1 
and FANCC in patients from the NKI cohort. Overview of relevant mutations and copy number alterations 
for all patients for whom mutation data and copy number alterations were available (NKI cohort, n=117). Left 
panel shows responders (ypT0/Tis/Ta/T1N0), and the right panel shows non-responders. Percentages represent the 
number of patients with a relevant alteration relative to the number of eligible patients for that specific gene for 
responders (left) and non-responder (right) patients. Patients with an alterations in any one of ATM, RB1 or FANCC 
are shown separately in the last row. NKI = patients from the NKI-cohort; Not available = gene-coverage below 20 reads.
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Supplementary Table 3. Baseline characteristics and response rates of 163 patients with muscle-invasive 
bladder cancer treated with neoadjuvant chemotherapy and radical cystectomy and comparison between ERCC2 
mutation status.

ERCC2mut ERCC2wt Significance
ERCC2mut vs  

ERCC2wt
a

Number of patients 11 152

Median age in years (IQR) 57.0 (53.2, 74.0) 69.0 (60.9, 75.0) 0.12

Male sex (% of pts) 8 (72%) 107 (70%) 1

cT-stage (% of pts) 0.7

   cT1 0 (0%) 1 (1%)

   cT2 2 (18%) 49 (32%)

   cT3 6 (55%) 67 (44%)

   cT4 3 (27%) 35 (23%)

cN-stage (% of pts) 0.4

   cN0 8 (73%) 84 (55%)

   cN+ 3 (27%) 68 (45%)

Chemotherapy regimen (% of pts) 0.8

   Cis/Gem 9 (82%) 112 (74%)

   MVAC 2 (18%) 38 (25%)

   CMV 0 (0%) 2 (1%)

Chemotherapy cycles received (% 
of pts)

0.5

   2 0 (0%) 6 (4%)

   3 4 (36%) 32 (21%)

   4 6 (54%) 104 (68%)

   >4 1 (9%) 10 (7%)

Pathological response (% of pts) 0.009

   ypT0N0 (complete response) 6 (54%) 43 (28%)

   ypTis/Ta/T1N0 3 (27%) 16 (11%)

   ≥ypT2N0 (non-response) 2 (18%) 93 (61%)

a Fisher’s exact test for binary predictors. t-test for numerical predictors. All the statistical tests were two-sided. 
No adjustments were made for multiple hypothesis testing. Significant associations are highlighted on bold.
Cis/Gem = cisplatin + gemcitabine; MVAC = methotrexate + vinblastine + docorubicin + cisplatin; CMV = cisplatin 
+ methotrexate + vinblastine; mut = mutant; wt = wild-type; IQR = Interquartile range; pts = patients.
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MANUSCRIPT CONTRIBUTION TO THE FIELD

Urothelial cancer (UC) is an aggressive disease that has a high chance of metastatic 
dissemination and death. Recent advances in immunotherapy, targeting inhibitory 
checkpoints, have changed the treatment paradigm in UC. Still, many patients do not 
respond to immunotherapy, and discriminative biomarkers for response are lacking. A 
detailed understanding of the UC immune landscape is needed to improve treatment.  In 
this study, we comprehensively characterize the UC immune landscape with and without 
immunotherapy pretreatment, using computational analysis of immune cell stainings. We 
explore the distribution of immune cells in the main tumor compartments and assess markers 
of T-cell activation or exhaustion.  Moreover, we provide an in-depth characterization of the 
Tertiary Lymphoid Structure (TLS) immune contexture to study associations with recurrence 
and immunotherapy response.  In addition, we propose a hypothesis on the existence of 
a TLS subgroup located in superficial bladder tissue that may be unrelated to anti-tumor 
immunity and could cloud the interpretation of tumor-associated TLS studies. This study 
could form the foundation for further research into the UC tumor-immune landscape and 
strategies to improve immunotherapy response.
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ABSTRACT 

Candidate immune biomarkers have been proposed for predicting response to immunotherapy 
in urothelial cancer (UC). Yet, these biomarkers are imperfect and lack predictive power. A 
comprehensive overview of the tumor immune contexture, including Tertiary Lymphoid 
Structures (TLS), is needed to better understand the immunotherapy response in UC. We 
analyzed tumor sections by quantitative multiplex immunofluorescence to characterize 
immune cell subsets in various tumor compartments in tumors without pretreatment and 
tumors exposed to preoperative anti-PD1/CTLA-4 checkpoint inhibitors (NABUCCO 
trial). Pronounced immune cell presence was found in UC invasive margins compared 
to tumor and stroma regions. CD8+PD1+ T-cells were present in UC, particularly 
following immunotherapy. The cellular composition of TLS was assessed by multiplex 
immunofluorescence (CD3, CD8, FoxP3, CD68, CD20, PanCK, DAPI) to explore specific 
TLS clusters based on varying immune subset densities. Using a k-means clustering algorithm, 
we found five distinct cellular composition clusters. Tumors unresponsive to anti-PD-1/
CTLA-4 immunotherapy showed enrichment of a FoxP3+ T-cell-low TLS cluster after 
treatment. Additionally, cluster 5 (macrophage low) TLS were significantly higher after 
pre-operative immunotherapy, compared to untreated tumors. We also compared the 
immune cell composition and maturation stages between superficial (submucosal) and deeper 
TLS, revealing that superficial TLS had more pronounced T-helper cells and enrichment of 
early TLS than TLS located in deeper tissue. Furthermore, superficial TLS displayed a lower 
fraction of secondary follicle like TLS than deeper TLS. Taken together, our results provide 
a detailed quantitative overview of the tumor immune landscape in UC, which can provide 
a basis for further studies.
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3.1 INTRODUCTION 

Muscle-invasive urothelial cancer (UC) is an aggressive disease with limited treatment options 
that originates in the bladder and parts of the urinary tract. Although UC can be cured 
by resection of the bladder (cystectomy), recurrence rates are high and 5-year survival is 
only 60-70% for pT2N0 tumors, and even worse for high-risk patients having pT3-4aN0 
(40-50%) or pTxN+ (10-35%) at cystectomy.  Immune checkpoint inhibitors (ICIs) have 
changed the treatment paradigm in metastatic urothelial cancer. Currently,  ICIs have been 
approved for the first-line and second-line treatment (1–5), and are being tested in the 
adjuvant and preoperative setting.  In the PURE-01 trial6 and ABACUS trial7, preoperative 
pembrolizumab (anti-PD-1) and atezolumab (anti-PD-L1) were clinically tested in patients 
diagnosed with cT2-4N0 UC, respectively. These trials revealed promising pathological 
complete response (pCR) rates upon treatment with neo-adjuvant pembrolizumab and 
atezolizumab. However, pCR to ICI monotherapy was primarily found in patients having less 
extensive disease (cT2N0), whereas patients with more extensive disease (cT3-4N0) or 
loco-regional lymph node involvement (T2-4N+) showed only limited pCR to anti-PD1 or 
anti-PD-L1. Recent clinical studies testing combination strategies targeting PD-1/PD-L1 plus 
CTLA-4 in the metastatic setting found higher response rates than in trials testing anti-PD1 
or anti-PD-L1 alone8,9.  In the NABUCCO trial10, preoperative ipilimumab plus nivolumab 
was tested in high-risk patients having locoregionally-advanced UC (cT3-4N0/cT2-4N1-3) 
without distant metastases. Histopathological examination showed that 58% of patients 
in NABUCCO had no remaining invasive disease (pT0 or CIS/pTa) after ipilimumab plus 
nivolumab10. A study testing preoperative tremelimumab plus durvalumab in cT2-4N0 UC 
observed a pCR in 37.5% (pT0 or CIS) of patients having surgery, whereas the pCR rate 
was 31.7% in all patients analyzed8.

Associations between ICI response and candidate biomarkers, such as PD-L1 
immunohistochemistry and tumor mutational burden (TMB), have been observed in metastatic 
UC. These biomarkers are currently imperfect and lack sufficient predictive power for 
clinical utility11,12.  In addition, comparison of biomarker findings across trials is complicated 
by variability in biomarker assays (i.e. PD-L1 assessment) and heterogeneity in tumor tissue 
used to assess biomarkers.  In the preoperative setting, the pCR rate to pembrolizumab in 
the PURE-01 study was high in TMB-high and PD-L1-high (PD-L1 >10%; tumor plus immune 
cells combined) tumors6, whereas no significant associations were found for TMB-high 
and PD-L1-high (PD-L1 >5% of immune cells) subgroups in anti-PD-L1 treated patients in 
ABACUS7. Both studies found that baseline pre-existing CD8+ T-cell immunity based on high 
CD8 presence and interferfon-γ signaling was associated with pCR to ICI monotherapy. 
Qualification of immune phenotypes by CD8 immunohistochemistry showed that “immune 
desert” tumors in ABACUS were unresponsive to ICI7.  In sharp contrast, the clinical response 
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to combination ICI in NABUCCO was independent of baseline CD8+ T-cell density by 
multiplex immunofluoresence and inflammatory signatures such as interferon-gamma, 
tumor inflammation and T-cell effector signatures10. Similarly, baseline pre-existing CD8+ 
T-cell immunity did not differ between responders and non-responders to neo-adjuvant 
tremelimumab plus durvalumab13, suggesting that the addition of anti-CTLA4 can induce 
responses in immunologically “cold” tumors. 

Tertiary lymphoid structures (TLS) are ectopic lymph node formations that share functional 
features such as antigen presentation and B-cell activation with secondary lymphoid 
organs. TLS emerge upon chronic inflammatory stimuli in non-lymphoid tissues and can 
also be found in the tumor micro-environment.  In an analysis of the presence of TLS, 
responders to tremelimumab plus durvalumab showed higher baseline TLS and B-cell 
abundance than non-pCR tumors.  Intriguingly, baseline TLS and B-cell abundance did not 
differ between responders and non-responders in NABUCCO. However, both studies found 
that responders to combination ICI showed a higher TLS abundance in post-treatment tissue 
than non-responders10,13. Thus, conflicting results on baseline candidate biomarkers for 
immunotherapy response were found between comparable studies. The complex interplay 
between immune cells in the UC tumor-immune microenvironment and TLS is still poorly 
understood, hampering the discovery and development of novel cancer immunotherapy as 
well as predictive biomarkers for immunotherapy response, underscoring the urgent need 
to better characterize the tumor immune landscape in UC. 

In this study, we employ quantitative multiplex immunofluorescence to assess the UC 
tumor-immune contexture in untreated and immunotherapy-treated tumors. We first provide 
a general overview of the UC tumor-immune microenvironment, followed by a more detailed 
assessment of the TLS immune composition in untreated and immunotherapy-treated tumors. 

3.2 RESULTS

3.2.1 Untreated urothelial cancer demonstrates heterogeneous immune cell 
infiltration
To examine the UC immune context, we analyzed immune cell infiltration by multiplex 
immunofluorescence (IF) on whole-slide cystectomy tissue sections from untreated 
(n=32,  Table 1) and ipilimumab (anti- CTLA-4) plus nivolumab (anti-PD1) treated 
(n=24,  Table 2) UC patient cohorts (Fig 1A).  In the current study, cystectomy specimens 
obtained from NABUCCO are analyzed, while we previously10 reported CD8+ and CD20+ 
immune cell presence in pretreatment biopsies. Additionally, we segmented tumor areas 
into various regions of interest. Our antibody panel allowed the quantitation of immune 
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cells actively involved in anti-tumor immunity and response, such as B-cells (CD20+), 
macrophages (CD68+) and distinct CD3+ T-cell populations. CD3+ T-cell populations were 
further specified by expression of CD8 or FoxP3, resulting in CD8 T-cells (CD3+CD8+), 
FoxP3 T-cells (CD3+FoxP3+) and CD4+ T-cells (CD3+CD8-FoxP3-), a non-CD8+/FoxP3+ T-cell 
population which is likely to involve primarily CD4 T-cells. CD3+FoxP3-CD8- was thus used 
as an approximation of CD4+ T-cells to make the manuscript easier to read. CD4 IF was not 
used in our multiplex panel given the expression of CD4 on other immune cells (including 
macrophages and dendritic cells) when using CD4 antibodies in our pilot studies.  Immune 
cells were separately quantified for tumor and stroma areas within the central tumor and 
square grids were computed for spatial sampling to assesses heterogeneity of immune 
subsets within tumors (Fig 1B, Supplementary Methods 1). We additionally quantified 
immune cell abundance in the tumor margin and TLS. The tumor margin was annotated 
from the outermost edge of the invasive tumor, with an extend of 250µm (Supplementary 
Methods 1). To promote readability, immune cell labels and not markers are reported 
throughout the results. 
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Table 1. Untreated cohort characteristics. 

Baseline characteristics Total (n=31)

Male sex, n (%) 24 (77%)

Median age – years [range] 64.79 [45.7, 78.7]

Pathological T stage, (%)

pT1-4/pTis/pTaN0M0 20 (65%)

pT3-4N1-2M0 11 (35%)

Histology, (%)

Urothelial Carcinoma 29 (94%)

Urothelial Carcinoma and Small cell carcinoma 1 (3%)

Urothelial Carcinoma and Squamous differentiation 1 (3%)

Adjuvant treatment, (%)

No adjuvant treatment 25 (81%)

Adjuvant chemotherapy 2   (6%)

Adjuvant radiotherapy 3   (10%)

Adjuvant chemotherapy and adjuvant radiotherapy 1   (3%)

Table 2.  Ipilimumab plus nivolumab treated cohort (NABUCCO Cohort 1) characteristics.

Study population characteristics Total (n=24)

Male sex, n (%) 18 (75%)

Median age – years [range] 65 50, 81

Baseline clinical T stage, (%)

cT3-4N0M0 14 (58%)

cT3-4N1 5   (21%)

cT2-3N2M0 5   (21%)

Post-treatment clinical stage, (%)

ypT0/pTa/pTisN0M0/Mx 14 (58%)

ypT2-3N0M0 2 (8.5%)

ypT0-4N1M0 6 (25%)

ypT3N2-3M0 2 (8.5%)

Immunotherapy cycles, (%)

2 6 (25%)

6 18 (75%)
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by CD8 T-cell ratio. E.  Immune subset densities per mm2 for tumor tissue regions in the untreated UC cohort 
(n=31). F.  Intratumoral, stroma and tumor margin immune subset densities per mm2 for the combined untreated 
UC cohort (n=31) between recurrence (n=19) and non-recurrence (n=12) groups. The boxplots from the panels 
display the median and 25th and 75th percentiles, and the whiskers expand from the hinge to the largest value not 
exceeding the hinge 1.5×Interquantile range. Unless otherwise stated, a two-sided Mann-Whitney test was used 
for the comparison between distributions. The p-value is presented in-between boxplots. No adjustments were 
implemented for multiple comparisons. 
Abbreviations: IF: Immuno-fluorescence, FFPE: Formalin-fixed paraffin-embedded tissue,  Ipi: Ipilimumab, Nivo: 
Nivolumab, TLS: Tertiary lymphoid structure.

We first examined immune cell infiltration by multiplex IF for tumor and stroma areas to 
provide a comprehensive overview of the UC immune contexture and assess intratumor 
heterogeneity. We observed that the median density of immune subsets varied greatly 
across the untreated tumor cohort, particularly for B-cells, FoxP3 T-cells and CD8 T-cells 
(Fig 1C). Variable intratumoral heterogeneity existed for specific immune cells upon a 
comparison of separate tiles in the computed square grid (Fig 1C). Next, we examined 
the relative abundance of T-cell subsets in the total T-cell population. We found that the 
fraction of CD4 T-cells was highly heterogeneous across tumors in the untreated cohort 
(Supplementary Figure 1A). Further explorative analysis revealed that tumors having 
a low CD8 T-cell ratio demonstrated a higher proportion of FoxP3 T-cells in tumor (Fig 
1D, Supplementary Figure 1B). We then compared the immune cell density between 
central tumor regions and the tumor margin. A significantly higher presence of immune 
cells was found in tumor margins when compared to the tumor region (p<0.02 Fig 1E).  In 
non-recurring tumors, the tumor margins displayed a significantly higher CD8 T-cell presence 
than in recurring tumors (p=0.0097, Fig 1F), while immune cell presence in tumor and 
stroma did not inform clinical outcome in untreated tumors.  In conclusion, the UC immune 
landscape is heterogeneous between tumors, and pronounced immune infiltration is found 
in the UC tumor margin7,14.

3.2.2 Urothelial cancer immune phenotypes show distinct patterns of 
cytotoxic T-cell exclusion in the stroma and tumor margin 
CD8 T-cell tumor infiltration patterns can be segregated into three immune phenotypes 
(“immune-inflamed”, “immune-excluded” and “immune-desert”) of pre-existing 
tumor-immunity15. Previous studies found that these distinct immune phenotypes harbor 
prognostic relevance16 and predictive value17,18 for an immunotherapy response, including 
in UC7,14. Currently, limited knowledge exists on the presence of distinct immune subsets 
beyond cytotoxic T-cells across CD8-based immune phenotypes in UC, while their presence 
may impact CD8 effector function and the extend of CD8 tumor-immunity. Using multiplex IF, 
immune phenotypes (Fig 2A) were classified based on CD8 T-cell density (Supplementary 
Methods 1.2) in the tumor and stroma compartment and the tumor margin in the 
untreated UC cohort. We first explored the distribution of tumor immune phenotypes 
in the untreated cohort and assessed possible correlations with prognosis for “inflamed”, 
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“excluded” and “desert” tumors separately.  In line with results in the ABACUS study7, 
“immune-inflamed” (42%) tumors were most abundant in our cohort, whereas 32% and 
26% of tumors exhibited the “excluded” and “desert” phenotype, respectively. The separate 
tumor immune phenotypes did not inform recurrence outcome in the untreated cohort 
(Fig 2B), although tumors qualified as “immune-desert” showed a high recurrence rate 
(87.5%, p=0.1). Next, we explored the immune composition in tumor subgroups qualified 
as “immune-inflamed”, “immune-excluded” and “immune-desert” based on CD8-based 
immune phenotypes.  Intratumoral immune cell densities were generally higher in “inflamed” 
tumors compared to “excluded” and “desert” tumors, as shown for the significantly higher 
macrophages compared to “desert” tumors (p=0.006. Fig 2C).  In the stoma compartment, 
immune cell densities were lowest in “desert” tumors, as shown for the significantly lower 
CD4 T-cells when compared to “excluded” (p=0.027) and “inflamed” tumors (p=0.013) (Fig 
2D).  Interestingly, FoxP3 T-cells were an exception, as these cells were similar across immune 
phenotypes in absolute density and higher as a percentage of total T-cells in “desert” tumors, 
compared to “inflamed” tumors (p=0.037, Supplemental Fig 2A).  Macrophage abundance 
in tumor margins of “inflamed” tumors was significantly higher than in “excluded” (p=0.049) 
and “desert” (p=0.005) tumors, (Fig 2E). 
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exact test was implemented on a 2x2 contingency table between recurrence and immune phenotype (i.e. Desert vs 
No Desert) for each phenotype. The p-value for each phenotype is indicated at the top of each bar. All statistical 
tests were two-sided. C-E. Comparison of immune subset densities per mm2 in central tumor parenchyma (C), 
central tumor stroma (D) and tumor margin (E) between inflamed (n=13), excluded (n=10) and desert (n=8) 
tumors by quantitative multiplex IF.
The boxplots from the panels display the median and 25th and 75th percentiles, and the whiskers expand from the 
hinge to the largest value not exceeding the hinge 1.5×Interquantile range. Unless otherwise stated, a two-sided 
Mann-Whitney test was used for the comparison between distributions. The p-value is presented in-between 
boxplots. No adjustments were implemented for multiple comparisons. 
Abbreviations: IF: immunofluorescence.

3.2.3 Markers of T-cell exhaustion in untreated and immunotherapy treated 
UC
Exhausted CD8 T-cells are characterized by impaired effector function and sustained expression 
of immune inhibitory checkpoints such as TIM3, LAG3 and PD119.  Immunotherapies targeting 
these checkpoints demonstrate promising therapeutic potential in several studies (20–26), 
presumably by reinvigorating exhausted T-cells. Given the implication of T-cell exhaustion as 
a target of immunotherapy, we employed immunohistochemistry in our untreated cohort 
to examine the expression of TIM3 and LAG3, as well as co-expression of CD8 and PD1.  In 
untreated tumors, we observed considerable TIM-3 expression (example image in Fig 3A) 
on tumor-infiltrating lymphocytes (15% median positivity, range 5%-30%, Supplementary 
Figure 3A) in most central tumors, as well as in lymph nodal T-cell zones in rare cases having 
perivesical lymph nodes adjacent to the central tumor (Supplementary Figure 3B).  In 
contrast to TIM-3, expression of LAG-3 was virtually non-existent in untreated tumors 
(Supplementary Figure 3C), as illustrated in Supplementary Figure 3D. Following 
CD8/PD1 co-staining, an algorithm was trained (Supplementary methods 1.3), based 
on a similar approach as in colorectal cancer20, to assess CD8+PD1+ T-cells in tumor and 
stroma. CD8+PD1+ T-cells were clearly present in untreated UC, as shown in Fig 3B. Upon 
quantitation, we found that CD8+PD1+ T-cell abundance in tumor and stroma did not inform 
recurrence (Fig 3C). We then examined CD8+PD1+ T-cells in NABUCCO tumors having 
complete response (CR, qualified as pCR or CIS/pTa) and non-CR following ipilimumab 
plus nivolumab. CD8+PD1+ T-cells were enriched irrespective of response compared to 
untreated cystectomies, whereas CD8+PD1+ T-cells were highest in tumors achieving CR 
to immunotherapy (Fig 3D). Altogether, TIM-3 was highly expressed on lymphocytes and 
abundant CD8+PD1+ T-cells were found in cystectomies, particularly following immunotherapy, 
in both responders and non-responders. 
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3.2.4 Urothelial cancer TLS display distinct cellular composition clusters and 
checkpoint inhibitor-induced changes
In many cancers, the immune landscape exhibits highly organized B-cell-rich clusters related 
to TLS formation. The presence of TLS has been associated with favorable clinical outcomes 
in untreated and treated malignancies (13,27–29), whereas other studies found no correlation 
or immunosuppressive TLS function (30–33). We hypothesized that heterogeneity in TLS 
immune composition might impact anti-tumor-immunity and patient outcome in the untreated 
and treated setting. We employed multiplex IF to assess the cellular composition of TLS 
and associations with clinical outcome in our untreated cohort. TLS were automatically 
annotated by a trained algorithm and manually revised when needed.  In total, 754 TLS 
aggregates were identified in untreated tumors mainly found around the muscularis propria 
regions, fatty tissue and fibroinflammatory regression beds (Fig 4A). TLS often co-localized 
with nerve bundles as confirmed on the corresponding H&E slide (Supplementary Figure 
4A). Following TLS assessment by multiplex IF, most untreated tumors showed notable TLS 
presence, but no differences in TLS abundance were observed between recurrence groups 
(Supplementary Figure 4B). Upon quantitative analysis, TLS revealed a heterogeneous 
cellular immune composition, accompanied by strong variations in TLS size between TLS 
in untreated tumors (Fig 4B). No differences were found for immune subset density in 
aggregated TLS between recurrence groups (Fig 4C). As limited knowledge exists on TLS 
immune architecture and how immune composition impacts the clinical outcome, we grouped 
TLS based on immune cell density and their relative abundance in untreated tumors using 
a k-means clustering algorithm. We identified five distinct TLS clusters in untreated tumors 
(Fig 4D), characterized by varying abundance of immune cells (Fig 4E), whereas TLS cluster 
presence was balanced between immune phenotype subgroups (Supplementary Figure 
4C). No differences were observed for TLS cluster abundance between outcome groups (Fig 
4F) in untreated UC. Next, the relative abundance of TLS clusters was compared between 
untreated tumors and anti-PD-1/CTLA-4 treated tumors to examine how immunotherapy 
impacts these TLS clusters.  In NABUCCO non-responders, cluster 1 (FoxP3 T-cell low) 
TLS were significantly enriched when compared to untreated tumors or NABUCCO 
responders (Fig 4G). Furthermore, cluster 5 (macrophage low) TLS were significantly higher 
in NABUCCO (non-CR or CR) tumors compared to untreated tumors (Fig 4G). These 
findings suggest that UC displays distinct TLS clusters that change in cellular composition 
upon immunotherapeutic treatment.
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Figure 4. Urothelial cancer displays distinct TLS clusters and differences in treatment effect on TLS 
composition between responders and non-responders. 
A. 1) Multiplex immunofluorescence example showing substantial peritumoral TLS formation. 2) Corresponding 
haematoxylin and eosin stain, showing TLS formation in muscle (red arrow), fatty tissue (blue arrow) and 
fibroinflammatory regression bed (yellow). 3). Close-up image of A2, showing TLS formation around muscle, fatty 
tissue and in regression bed. 4) Regression bed TLS and depositions of scar tissue in areas previously harboring 
muscle suggest that pre-existing invasive tumor has been cleared and replaced by scar tissue, suggesting pre-existing 
antitumor immunity. B. Heatmap showing the variability of immune cell density in untreated UC TLS. Each column 
represents an individual TLS (n=754) from n=32 patients. Z-score high expression levels (red) and low expression 
levels (blue) and varying TLS size (pink) are indicated for each TLS. C.  TLS immune subset densities per mm2, 
stratified by recurrence outcome groups (nRecurrence=19, nNo Recurrence=13). D. Clustering map upon computing a 
trained k-means model using 754 untreated TLS from 32 unique patients of the untreated cohort (Median 16.5 
TLS per patient,  Mean 24 TLS per patient,  Materials and Methods 3). Each TLS type is assigned a colour label 
and an interpretation. E.  Abundance of Immune subsets per mm2 for each TLS cluster. TLS clusters are depicted 
in distinct colours. (nCluster1=19, nCluster 2=165, nCluster 3=203, nCluster 4=341, nCluster 5=26) F. Comparisons of TLS relative 
area per cluster based on multiplex immunofluorescence between non-recurring tumors (n=13) and tumors having 
recurrence (n=19). G. Comparisons of post-treatment TLS cluster fractions between untreated tumors (n=32) 
and complete-responders (n=10) and non-responders (n=9) in NABUCCO. 
The boxplots from the panels display the median and 25th and 75th percentiles, and the whiskers expand from the 
hinge to the largest value not exceeding the hinge 1.5×Interquantile range. Unless otherwise stated, a two-sided 
Mann-Whitney test was used for the comparison between distributions. The p-value is presented in-between 
boxplots. No adjustments were implemented for multiple comparisons. 
Abbreviations: CR: complete response, non-CR: no complete response, TLS: Tertiary lymphoid structures.

3.2.5 Discrepant TLS patterns and variable expression of CD4 T-cells between 
superficial and deeper TLS in urothelial cancer 
Although pretreatment B-cell and TLS enrichment has been associated with favorable clinical 
outcomes and immunotherapy response, other studies reported no positive associations10,13, 
suggesting that B-cells and TLS can have opposite roles.  In NABUCCO, we previously found 
that immature TLS, B-cells, and genes associated with B-cell proliferation and plasma cells 
were enriched in pretreatment biopsies in non-CR tumors, compared to CR tumors10. 
Conversely, a study testing preoperative tremelimumab plus durvalumab in UC reported 
higher pretreatment TLS and B-cells in responders13. As other stimuli have been shown to 
induce TLS (31,34,35), we hypothesized that a subset of TLS may be unrelated to anti-tumor 
immunity, particularly in pretreatment tissue obtained by transurethral resection (TUR, 
debulking of a tumor from the luminal layer of the bladder). TUR biopsies primarily collect 
superficial tissue that is highly exposed to urinary toxins, microbial pathogens (especially in 
the presence of a bladder tumor) and inflammatory mediators (Supplementary Figure 
5A-B). These TLS could cloud the tumor-associated TLS analysis, particularly in superficial 
parts of the tumor. To examine this, we explored whether TLS composition in superficial 
regions differed from TLS in deeper tissue regions.  In line with quantitated results in our 
previous report10, a high TLS presence was observed in NABUCCO pretreatment TUR, 
especially in non-CR tumors, while TLS abundance was limited in their corresponding 
post-treatment tissues (Fig 5A). TLS abundance in pretreatment TUR was particularly high in 
the urothelial submucosa (Fig 5B). TLS present in the urothelial submucosa (Superficial TLS) 
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were characterized by pronounced CD4 T-cell presence, whereas deeper TLS showed only 
limited CD4 T-cell contribution to the immune cell composition (Fig 5B). The predominant 
abundance of superficial TLS was also found in a subset of post-treatment specimens from 
NABUCCO (Supplementary Figure 5C) and untreated tumors (Supplementary 
Figure 5D), further supporting the existence of a distinct TLS population in superficial tissue. 
Next, we stratified superficial and deep TLS in untreated UC to compare TLS composition 
and the relative abundance of TLS clusters.  In untreated tumors, superficial TLS showed a 
significantly higher CD4 T-cell presence (p=0.012, Fig 5C), which is in line with our visual 
observations. Next, we quantified TLS maturation stages for superficial and deep TLS using 
a 7-plex multiplex immunofluorescence panel on a separate, larger cohort (n=40, involving 
20 patients from the original untreated cohort, Supplementary Table 1). Upon assigning 
TLS maturation, we found that superficial TLS displayed a higher fraction of early TLS and 
lower germinal center positive TLS when compared to deeper TLS (p=0.001 and p=0.01, 
respectively Fig 5D). 
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Altogether, our findings suggest that superficial TLS may be compositionally different from 
deeper TLS. These observations could impact the approach to immune biomarkers in UC 
and provides the rationale to dissect TLS populations further and study their precise role 
in anti-tumor immunity in the UC tumor-immune microenvironment.

3.3 DISCUSSION

The introduction of ICI changed the treatment landscape of UC. Despite recent successes, 
a substantial proportion of patients do not respond to immunotherapy36,37. As the biology 
driving anti-tumor immunity is still poorly understood, the characterization of the tumor 
immune contexture is critical to broaden our understanding of the immune landscape to 
ultimately improve immunotherapeutic treatment of UC patients11.

The aim of our study was to characterize the immune landscape in tumor, stroma and 
TLS using computational analysis of multiplex IF. We started with a general overview of 
the UC immune landscape and observed substantial variation in immune subset presence 
across untreated tumors.  Immune cells were more abundantly present in the tumor margin, 
compared to tumor and stroma.  In previous UC immune biomarker studies, the tumor 
margin immune infiltrate was not specifically reported6 or incorporated into the immune 
phenotype classification system7,14.  In other cancer types such as colorectal cancer, breast 
cancer and melanoma, tumor margins have been extensively used for immune phenotype 
assessment38.  In UC, T-cell exclusion by TGF-beta signaling has been proposed as a mechanism 
of resistance by excluding T-cells, emphasizing the importance of incorporating the tumor 
margin compartment in biomarker assessment in UC. 

Tumor-specific T-cells can be re-activated through blocking immune inhibitory checkpoints 
(20–26). We observed high TIM-3 expression and abundant CD8+PD1+ T-cell presence in UC. 
CD8+PD1+ T-cells were enriched upon immunotherapy, and surprisingly, also in immunotherapy 
non-responders. These data suggest that, despite the immune system being able to mount an 
anti-cancer response upon checkpoint blockade, resistance mechanisms beyond the CTLA-4 
and PD-1 checkpoints may limit cytotoxic T-cell effector function and tumor elimination 
in these cases. A further dissection of the tumor-immune landscape in non-responders is 
crucial to identify the resistance mechanism limiting the efficacy of checkpoint blockade.

In this study, we found that UC exhibits distinct TLS clusters with varying cellular 
composition. We observed that upon CTLA-4/PD-1 blockade, the fraction of TLS clusters 
1 (FoxP3 T-cell low) was enriched in non-responding tumors when compared to untreated 
tumors and responding tumors. Tregs are generally believed to have immune-suppressive 
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functions, though limited data exist on the function of these cells within TLS.  In a lung cancer 
mouse model, Treg presence in TLS was associated with a suppressed T-cell function39. 
Studies in colorectal cancer40 and melanoma41 found no correlation between Treg presence 
in TLS and patient survival. A possible reason for the enrichment of Treg-low TLS may be 
a direct therapeutic effect of anti-CTLA4, depleting Tregs in TLS. Despite Treg depletion, 
these tumors did not respond, suggesting that other causes for resistance might be present 
in these tumors42,43. 

Generally, TLS in the tumor-microenvironment are considered tumor-associated. Our 
findings suggest that superficial TLS may define a distinct TLS category in UC that may not 
be tumor-responsive. Superficial bladder tissue may exhibit immune features (e.g., TLS) 
unrelated to anti-tumor immunity, given the high exposure to urinary toxins or microbial 
pathogens, especially in the presence of a bladder tumor disrupting the mucosal barrier. We 
found that these superficial TLS had a higher density of CD4 T-cells. The proportion of 
secondary follicle-like TLS, which are required for the prognostic benefit of TLS in other 
cancer types44,45, was significantly lower in superficial TLS compared to deep TLS. Given the 
similar characteristics, we hypothesize that superficial TLS may be related to Hunner-type 
interstitial cystitis, an idiopathic inflammatory disease characterized by submucosal lymphocytic 
pan-cystitis, lymphoid aggregates (Hunner lesions) with varying maturation stages46 and 
expression of follicular T-helper cell markers47.  In addition, a recent study showed that 
Hunner-type interstitial cystitis was associated with enrichment of B-cell receptor signaling 
genes and B-cell clonal expansion48.  In line with these findings, we previously found that 
immature TLS, B-cells and genes associated with B-cell proliferation and plasma cells were 
enriched in baseline TUR tissue in non-CR tumors10. These discrepant findings in NABUCCO 
may be explained by the presence of tumor-unrelated TLS such as Hunner-type aggregates 
in the TUR samples. One can even speculate that high numbers of superficial TLS indicate 
prominent chronic inflammation with adverse effects on anti-tumor immunity, explaining 
the association with non-response. This hypothesis needs further testing.  In biomarker 
assessments, the presence of submucosal TLS may possibly enrich B-cell and TLS levels 
independent of anti-tumor immunity, particularly in TUR (which removes superficial layers) 
and smaller biopsies.  In non-UC patients, the prevalence of interstitial cystitis is 0.5% in 
the western world49. No data exists on interstitial cystitis in muscle-invasive bladder cancer, 
because of the prognostic impact of bladder cancer and overlapping locoregional symptoms.

The strengths of the current study are the comprehensive computational analysis and the 
automated nature of our assessments, enabling 1) in-depth analysis of the tumor bed, and 
2) systematic assessment of tertiary lymphoid structure’s immune architecture in untreated 
and ICI treated tumors. Combined, our study provides a unique overview of the UC immune 
landscape. Limitations include the limited sample size, which precluded robust assessment of 
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associations with outcome, and the number of immune markers profiled, which limited insight 
into the functional relevance of immune cells. Further limitations include the retrospective 
nature of our study and the risk of overinterpretation due to multiple testing. 

In conclusion, our study provides a comprehensive overview of the tumor immune landscape 
and architecture of TLS in UC. We established distinct TLS clusters based on their cellular 
compositions. Compared to untreated tumors, TLS clusters showed a distinct immune cell 
composition in anti-CTLA-4/PD-1 ICI treated tumors.  In addition, we identified a superficial 
TLS population, characterized by more pronounced CD4 T-cell expression than deeper 
TLS. The relevance of the superficial TLS population for antitumor immunity is currently 
unknown and warrants further investigation.

3.4 MATERIALS AND METHODS 

3.4.1 Study cohort characteristics
Tumors were obtained from untreated patients and a prospective clinical trial testing the 
efficacy of preoperative ipilimumab (anti-CTLA-4) plus nivolumab (anti-PD-1) (NABUCCO: 
NCT03387761).  In NABUCCO, a total of 24 patients with stage III resectable urothelial 
cancer (cT3-4aN0M0 and cT1-4aN1-3M0) were treated with preoperative ipilimumab 3 
mg/kg (day 1), ipilimumab 3 + nivolumab 1 mg/kg (day 22), and nivolumab 3 mg/kg (day 
43) followed by surgical resection.  In the untreated cohort (n=31), patients had upfront 
cystectomy without prior systemic therapy following diagnosis of muscle-invasive carcinoma in 
pretreatment transurethral resection (TUR) specimen. Cystectomy specimens were preferred 
over TUR, given that TUR specimens provide a limited overview of the overarching tumor 
contexture, as shown in Supplementary Figure 5. The NABUCCO trial was approved 
by the institutional review board of the Netherlands Cancer Institute and was executed 
in accordance with the protocol and Good Clinical Practice Guidelines defined by the 
International Conference on Harmonization and the principles of the Declaration of Helsinki. 
Use of the cohort of untreated cystectomies was approved by the NKI-AVL institutional 
research board, following national regulations. Archival FFPE tumor tissue cystectomy 
specimens were used for immunohistochemistry and multiplex immunofluorescent analysis. 
Non-recurring patients and patients having recurrence were compared for explorative 
biomarker analysis.  In NABUCCO, tumors with complete response (CR, defined as pCR, 
pTis or pTaN0) were compared to non-CR tumors for biomarker exploration. We included 
non-invasive disease in the CR definition, which is generally believed to be cured by surgery. 
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3.4.2 Multiplex immunofluorescence analysis and immunohistochemistry

Multiplex immunofluorescence of CD8/CD4 T-cells, B-cells,  Macrophages, and 
B-cells
Analysis of immune cell subsets was performed by multiplex Immunofluorescence (IF) 
technology using an automated multiplex staining on a Discovery Ultra Stainer. Prior to 
multiplex staining, 3µm slides were cut on DAKO Flex IHC slides. Slides were then dried 
overnight and stored in +4°C. Before a run was started tissue slides were baked for 30 
minutes at 70°C in an oven. Opan 7-color manual IHC kit (50 slides kit, Perkin Elmer, cat 
NEL81101KT) was used for staining. The protocol was initiated by heating the FFPE cuts 
for 28 minutes at 75°C, followed by dewaxing with Discovery Wash using the standard 
setting of 3 cycles of 8 minutes at 69°C. Cell Conditioning 1 (CC1, Ventana Medical Systems) 
was performed with Discovery CC1 buffer for 32 minutes at 95°C, after which Discovery 
Inhibitor was applied for 8 minutes to block endogenous peroxidase activity. Specific 
markers were detected consecutively on the same slide with the following antibodies, 
which included anti-CD3 (SP7, Cat RM-9107-S, ThermoScientific, 1/400 dilution 1 hour at 
RT), anti-CD8 (Clone C8/144B, Cat M7103, DAKO, 1/100 dilution 1 hour at RT), anti-CD68 
(Clone KP1,  M0814, Dako, 1/500 dilution, 1 hour at RT), anti-FoxP3 (clone 236A/47, Cat 
ab20034, Abcam, 1/50 dilution, 2 hours at RT), anti-CD20 (Clone L26, cat M0755, Dako, 
1/500 dilution, 1 hour at RT) anti-PanCK (Clone AE1AE3, Cat MS-343P, Thermo Scientific, 
1/100 dilution, 2 hours at RT). 

Each staining cycle consisted of four steps: Primary Antibody incubation, Opal polymer 
HRP Ms+Rb secondary antibody incubated for 32 minutes at RT, OPAL dye incubation 
(OPAL520, OPAL540, OPAL570, OPAL620, OPAL650, OPAL690, 1/50 or 1/75 dilution as 
appropriate for 32 minutes at RT) and an antibody denaturation step using CC2 buffer for 
20minutes at 95°C. Cycles were repeated for each new antibody to be stained. At the end 
of the protocol slides were incubated with DAPI (1/25 dilution in Reaction Buffer) for 12 
minutes. After the run was finished slides were washed with demi water and mounted with 
Fluoromount-G (SouthernBiotech, cat 0100-01) mounting medium. After staining, imaging 
of the slides was done using the Vectra 3.0 automated imaging system (PerkinElmer). First, 
whole slide scans were made at 10x magnification. After selection of the region of interest, 
multispectral images were taken at 20x magnification. Library slides were created by staining 
a representative sample with each of the specific dyes. Using the InForm software version 
2.4 and the library slides the multispectral images were unmixed into 8 channels: DAPI, 
OPAL520, OPAL540, OPAL570, OPAL620, OPAL650, OPAL690 and Auto Fluorescence 
and exported to a multilayered TIFF file. The multilayered TIFF’s were fused with HALO 
software (Indica Labs, v2.3). Analysis was done using HALO (Indica Labs, v2.3) image analysis. 
Pragmatic definitions and delineation of tumor regions in a spatial context are described 
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in Supplementary Methods 1.1. Tumor and stroma regions were classified by HALO 
automated tissue segmentation. Quantitative assessment of central tumors was assessed in 
31/32 patients, as one slide involved insufficient tumor material for appropriate assessment, 
but did involve notable TLS (Supplementary Methods 1.4). 

Multiplex immunofluorescence of Tertiary Lymphoid Structures maturation 
states
TLS maturation was analyzed in tissue sections by 7-plex multiplex IF as previously described 
(Silina et al. 2018, Springer Protocols)50. Briefly, tissue sections were deparaffinized, rehydrated 
and retrieved all in one step using the Trilogy buffer (CellMarque) for 10 min at 110 °C in 
a pressure cooker. The following antibodies and dilutions were used for a 7-plex IF; CD21 
(1:5000, clone 2G9 Leica), DC-LAMP (1:1000, clone 1010E1.01, Dendritics), CD23 (1:1000, 
clone SP3, Abcam), PNAd (1:5000, clone MECA-79, Biolegend), CD20 (1:5000, clone L26, 
Dako), CD3 (1:1000, clone SP7, ThermoScientific) and 200x magnified images were acquired 
by Vectra 3.0 multispectral microscope (PerkinElmer/Akoya). Area segregation was done by 
Inform tissue segmentation algorithm of the Inform software (Akoya). 

TLS maturation stages were defined by the presence or absence of CD21+ Follicular Dendritic 
cells (FDC) networks and CD23+ Germinal Center (GC) cells in dense CD20+ B-cell regions. 
Proportions of early TLS (no FDCs, no GC), primary follicle-like (PFL) TLS (has FDCs but no 
GC) and secondary follicle-like (SFL) TLS were determined as fractions out of all analyzed 
TLS for each patient. 

Staining of  TIM3, LAG3, and co-staining of CD8 and PD1
Stainings and co-stainings were performed by immunohistochemistry. Prior to the staining, 
3µm sections were cut and dried overnight and subsequently transferred to Ventana Discovery 
Ultra autostainer. Briefly, paraffin sections were cut at 3 µm, heated at 75°C for 28 minutes, 
and deparaffinized in the instrument with EZ prep solution (Ventana Medical Systems). 
Heat-induced antigen retrieval was carried out using Cell Conditioning 1 (CC1, Ventana 
Medical Systems) for 64 minutes at 95°C. For the detection of TIM3, the clone D5D5R 
(Cell Signaling) was used (1/200 dilution, 1 hour, 370°C), and for the detection of LAG3, the 
clone 11E3 (1/50 dilution, 1 hour at 370°C, AbCam). The bound antibodies were detected 
using either Anti-Rabbit HQ (Ventana Medical Systems), 12 minutes at 37°C (TIM-3) or 
anti-mouse HQ (Ventana Medical Systems) for 12 minutes at 37°C (LAG-3) followed by 
Anti-HQ HRP (Ventana Medical Systems) for 12 minutes at 37°C and ChromoMap DAB 
Detection (Ventana Medical Systems). Slides were counterstained with Hematoxylin and 
Bluing Reagent (Ventana Medical Systems). For untreated tumors, the percentage of TIM-3 
and LAG-3 expression on lymphocytes tumors was scored upon visual inspection of digital 
slides in Slidescore by a pathologist. 
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For the co-staining of PD-1 (yellow) and CD8 (purple), the protocol was adjusted. Detection 
of PD-1 was done using the antibody clone NAT105 (Ready-to-Use, 32 minutes at 37°C, 
Roche Diagnostics) in the first sequence. Visualization of the PD-1-bound antibody was done 
using anti-mouse NP (Ventana Medical Systems) for 12 minutes at 37°C, and subsequent 
anti-NP AP (Ventana Medical Systems) for 12 minutes at 37°C followed by the Discovery 
Yellow Detection Kit (Ventana Medical Systems).  In the double-stain second sequence, CD8 
was detected using the antibody clone C8/144B (Agilent, 1:200, 32 minutes at 37°C). CD8 
was detected using anti-mouse HQ (Ventana Medical Systems) for 12 minutes at 37°C and 
subsequent anti-HQ horseradish peroxidase (Ventana Medical Systems) for 12 minutes at 
37°C, followed by the Discovery Purple Detection Kit (Ventana Medical Systems). Slides 
were counterstained with Hematoxylin and Bluing Reagent (Ventana Medical Systems). All 
immunohistochemistry slides were uploaded to SlideScore for visual exploration. 

3.4.3 TLS clustering approach
We employed an unsupervised learning strategy to identify TLS clusters with distinct immune 
cell composition. A k-Means algorithm was trained with the cellular densities (cells / mm2) 
of B-cells, CD4 T-cells, CD8 T-cells, FoxP3 T-cells, and macrophages in TLS using input from 
all TLS identified in the untreated cohort (n=754, Fig 1A, Table 1). Cellular densities 
per TLS (with a pseudo-count of 0.01 cells / mm2 to account for null densities) were 
transformed to a logarithmic scale and scaled by the standard deviation after subtracting 
the mean. The k-means clustering algorithm was trained by testing 1 to 10 centroids with 
a maximum of 300 iterations. An optimal number of k=5 clusters was selected based on 
a reduction or decrease of the total within-cluster sum of squares observed from k=5 to 
k=6 (Supplementary Figure 6), by visual exploration of the separation on a tSNE plot 
(Fig 4D), and by taking into account that only 5 features (distinct immune cell densities) 
were used to train the k-means algorithm. 

To assign clusters to TLS identified in the treated NABUCCO cohort, cellular densities (with 
a pseudo-count of 0.01 cells / mm2 to account for null densities) were transformed to a 
logarithmic scale, followed by subtraction of means computed on the untreated, and scaling 
by the standard deviations computed on the untreated cohort. Then, we computed the 
distances between each TLS and each of the 5 centroids trained with the k-means clustering 
on the untreated cohort and predicted each TLS subtype by selecting the nearest centroid. 
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3.5 SUPPLEMENTARY METHODS

3.5.1 Image analysis of tumor and TLS regions upon multiplex 
immunofluorescence
Following multiplex immunofluorescent staining and VECTRA image acquisition (Akoya 
Biosciences, v3.0), image analysis was done in HALO (Indica Labs, v2.3). Using HALO, the 
tumor bulk was identified and the outermost edges were annotated manually. The tumor 
margin was defined as the region centered on the outermost border separating healthy 
tissue from malignant carcinoma.  In HALO, the tumor margin was automatically computed 
from the outermost tumor edge, extending 125µm inside and beyond, covering 250µm 
centered on the border.  Immune cell densities in tumor margins were assessed based on 
the tumor margin area, irrespective of tissue classifier. Based on observations, the tumor 
margin was arbitrarily selected to cover mostly immune cells just outside the tumor edge, 
without incorporating too much stroma that may dilute immune cell densities. The central 
tumor was defined as the area included within the outermost edges of tumor.  Immune cells 
were quantified in central tumors for tumor and stroma, classified by the HALO random 
forest algorithm. automated tissue segmentation. This classifier was employed to discriminate 
stroma from Pan-Cytokeratin positive tumor regions. Square grids were computed in central 
tumors for spatial sampling to assess heterogeneity of immune subsets.  In total, 30 square 
grid tiles were computed and normalized to fit the area within central tumor. Annotation 
of dense B-cell aggregates associated with tertiary lymphoid structures (TLS) formation was 
done manually, annotating the outer edge of dense B/T-cell presence that delineate TLS. For 
superficial TLS analysis, submucosal TLS were separated from TLS beyond the submucosa. The 
cellular density TLS immune subsets were analyzed based on the total number of cells in 
the total TLS area, by definition involving stroma. Tissue annotation and cell identification 
was performed together with a pathologist. 

3.5.2 Quantification of immune phenotypes
Immune phenotypes in our urothelial cancer cohorts were assessed based on multiplex 
immunofluorescence analysis, resulting in 1) Immune-excluded (≥5 times higher CD8 in 
CT-stroma or in tumor margin compared to CT-tumor), 2) immune-desert (Below median 
CD8 79 T-cells per mm2] in CT-tumor, not excluded), or 3) Immune-inflamed (Above median 
CD8 in CT-tumor, not excluded). The median cut-off for central tumor CD8 T-cells that 
separated inflamed from desert tumors was supported by visual inspection, as notable CD8 
infiltration was not found in tumors assigned as immune-desert. Tumor immune phenotype 
assignment was conducted by an experienced uro-pathologist.
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3.5.3 Analysis of CD8/P1 co-expression 
Using HALO AI v3.2, we assessed CD8/PD1 positivity to assess CD8+PD1+ T-cell density 
in untreated and immunotherapy treated tumors. We annotated the central tumor based 
on the outermost border separating healthy tissue from invading tumor, as described in 
supplementary methods 1.1. For tissue segmentation, we annotated “tissue” and “tumor nests” 
within tissue to separate tissue and tumor form background on whole-slide sections. These 
annotations were used as a learning dataset to train a neural-network (Mininet) that is 
fast to run to identify tumor and stroma within central tumors. The distinct tissue classes 
were visualized as mark-up annotations and evaluated by a pathologist to facilitate an active 
learning cycle to optimize annotation accuracy. These mark-up annotations were then 
used as input to train a deep neural network (DenseNet), allowing more robust classifiers 
at higher resolutions. Cellular phenotypes were classified and analyzed using the HALO 
multiplex algorithm (v3.0.3). Segmentation of immune cells was done based on input from 
cellular parameters, including nuclei size, optical density and cellular roundness. CD8 and PD1 
positivity in our cohorts was analyzed based on optimal marker color positivity thresholds 
established by a pathologist. The density of CD8+PD1+ T-cells was quantified in classified 
tissue regions separately.

3.5.4 Quantification of central tumor and TLS on the untreated cohort
The quantification of central tumor for one patient (ypT4N0) from the untreated cohort 
(Table 1, Fig 1A) was not carried out due to insufficient tumor abundance present in the 
tissue slide from the selected tissue block. Thus, central tumor quantifications were carried 
out on 31 patients from the untreated cohort (Table 1). Nevertheless, because notable TLS 
(n=22) could be quantified in the slide, TLS quantifications on TLS for the patient were 
included in the TLS analysis. Thus, TLS quantifications were carried out in 32 patients from 
the untreated cohort (Table 1). 
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Supplementary Figure 2. A. Ratio of T-cell subsets in the total T-cell population in central tumor tissue classes 
and the tumor margin per immune phenotype between inflamed (n=13), excluded (n=10) and desert (n=8) tumors 
by multiplex immunofluorescence
The boxplots from the panels display the median and 25th and 75th percentiles, and the whiskers expand from the 
hinge to the largest value not exceeding the hinge 1.5×Interquantile range. Unless otherwise stated, a two-sided 
Mann-Whitney test was used for the comparison between distributions. The p-value is presented in-between 
boxplots. No adjustments were implemented for multiple comparisons. 
Abbreviations: IF: immunofluorescence.
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Supplementary Figure 3. A. Distribution of TIM-3 positivity by staining on the Untreated UC cohort (Table 
1, n=29). Due to limited tissue size, assessment of TIM-3 on 3 tissue slides from the Untreated UC cohort was 
not carried out. B. Example of TIM-3 expression in a rare case displaying a perivesical lymph node (LN) in close 
proximity to the central tumor border. Prominent TIM-3 expression can be observed in the nodal T-cell zone, 
while tertiary lymphoid structures (TLS) marked by arrows show only limited expression. C. Distribution of 
LAG-3 positivity by staining on the Untreated UC cohort (Table 1, n=29). Due to limited tissue size, assessment 
of TIM-3 on 3 tissue slides from the Untreated UC cohort was not carried out. D. Example of LAG-3 expression 
in an untreated tumor. The arrow marks an isolated intratumoral LAG-3+ lymphocyte.  In untreated UC, LAG-3 
expression is virtually non-existent. 
The boxplots from the panels display the median and 25th and 75th percentiles, and the whiskers expand from 
the hinge to the largest value not exceeding the hinge 1.5×Interquantile range. 
Abbreviations: LN: lymph node, CT: Central tumor, TLS: tertiary lymphoid structures. 
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Supplementary Figure 4. A. Examples of tertiary lymphoid structures (TLS) co-localized with nerve bundles, 
as shown for TLS in muscularis propria regions1 and TLS in fatty tissue2. B. Distribution of TLS abundance per 
patient in the untreated cohort. Left: Distribution of number of TLS between recurring (n=19) and non recurring 
tumors (n=13). C. Distribution of TLS clusters among immune phenotypes (n inflamed=13, excluded=10, desert=8).
The boxplots from the panels display the median and 25th and 75th percentiles, and the whiskers expand from the 
hinge to the largest value not exceeding the hinge 1.5×Interquantile range. Unless otherwise stated, a two-sided 
Mann-Whitney test was used for the comparison between distributions. The p-value is presented in-between 
boxplots. No adjustments were implemented for multiple comparisons. 
Abbreviations: TLS: Tertiary lymphoid structures. 
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Supplementary Figure 5. A. Bladder tumor exposed to urine environment, particularly the superficial part that 
is resected through TUR B.  Illustration showing 1) the tumor unexposed to TUR biopsy or therapy. Upon TUR 
resection (scraping tumor tissue), the tumor part exposed to urine is resected. The remaining tissue3 does not involve 
superficial tissue, but deeper tissue regions involving tumor not chronically exposed to urine. C. Post-treatment 
example of TLS abundance in submucosal and deeper regions by multiplex immunofluorescence in a responding 
(left) and non-responding (right) tumor in NABUCCO. D. Examples displaying TLS abundance in submucosal and 
deeper regions and CD4 T-cells predominantly in superficial lymphoid aggregates in untreated cystectomies. The 
boxplots from the panels display the median and 25th and 75th percentiles, and the whiskers expand from the 
hinge to the largest value not exceeding the hinge 1.5×Interquantile range. Unless otherwise stated, a two-sided 
Mann-Whitney test was used for the comparison between distributions. The p-value is presented in-between 
boxplots. No adjustments were implemented for multiple comparisons. 
Abbreviations: TUR: Transurethral resection, TLS: Tertiary Lymphoid Structure
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Supplementary Figure 6. Selection of the optimal number of clusters for the TLS clustering approach (Materials 
and Methods). A k-means clustering algorithm was trained on the immune cell composition of B-cells, CD8 
T-cells, CD4 T-cells, FoxP3 T-cells, and Macrophages of 754 unique TLS from the Untreated cohort (Fig 1A). The 
k-means algorithm was trained by changing the number of clusters from k=1 to k=10 (x axis). For each model, the 
within-cluster sum of squares was computed (y axis). As observed in the plot, the within-cluster sum of squares 
decreases rapidly from k=1 to k=5. When k is increased to 6, the slope of within-cluster sum of squares decreases. 
For illustration purposes, the lines of the within-cluster sum of squared interpolated from k=4 to k=5, and from 
k=5 to k=6, are shown as grey lines.
Abbreviations: TLS: Tertiary Lymphoid Structure.
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3.7 SUPPLEMENTARY TABLES

Supplementary Table 1: Characteristics of an additional cohort of untreated tumors used for assessment of 
TLS maturation 

Baseline characteristics Total (n=40)

Male sex, n (%) 30 (75%)

Median age – years [range] 62.50 39-82

Pathological T stage, (%)

pT1-4N0M0 25 (63%)

pT2-4N1-2M0 15 (38%)

Histology

Urothelial Carcinoma (%) 40 (100%)

Adjuvant treatment

No adjuvant treatment 34 (85%)

Adjuvant chemotherapy 6 (15%)

Adjuvant treatment

No adjuvant treatment 31 (78%)

Adjuvant chemotherapy 5   (12%)

Adjuvant radiotherapy 3   (7%)

Adjuvant chemotherapy and radiotherapy (%) 1   (3%)
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ABSTRACT 
Abstract 

Preoperative immunotherapy with anti-PD1 plus anti-CTLA4 antibodies has shown remarkable 
pathological responses in melanoma1 and colorectal cancer2.  In NABUCCO (ClinicalTrials.
gov: NCT03387761), a single-arm feasibility trial, twenty-four stage III urothelial cancer 
patients received 2 doses of ipilimumab and 2 doses of nivolumab, followed by resection. The 
primary endpoint was feasibility to resect <12 weeks from treatment start. All patients 
were evaluable for the study endpoints and underwent resection; twenty-three (96%) 
within <12 weeks. Grade 3-4 immune-related adverse events occurred in 55% of patients; 
41% when excluding clinically insignificant laboratory abnormalities. 46% of patients had a 
pathological complete response (pCR), meeting the secondary efficacy endpoint. Fourteen 
patients (58%) had no remaining invasive disease (pCR or pTisN0/pTaN0).  In contrast to 
studies with anti-PD1/PD-L1 monotherapy, complete response to ipilimumab plus nivolumab 
was independent of baseline CD8+ presence or T-effector signatures.  Induction of TLS upon 
treatment was observed in responding patients. Our data indicate that combined CTLA-4 
plus PD-1 blockade may provide an effective preoperative treatment strategy in locoregionally 
advanced UC, irrespective of pre-existing CD8+ T-cell activity.
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4.1 MAIN

Recurrence rates after surgical resection of muscle-invasive urothelial cancer (UC) are high 
and many patients die of their disease3. Although neoadjuvant cisplatin-based chemotherapy 
shows impressive responses, including 22-40% pathological complete response (pCR)4, the 
absolute survival benefit is only 5% at 5 years5, accompanied by substantial toxicity. Given 
the high rate of distant recurrences after surgical resection of UC, there is a great need for 
more effective systemic treatment approaches. 

Immune checkpoint inhibitors have shown durable responses in the metastatic setting6-12. 
Response to checkpoint inhibitors appears higher when treating in first-line rather than 
second-line metastatic disease and when treating patients with only lymph node metastases13, 
providing the rationale for immunotherapeutic treatment in earlier disease settings. A study 
testing neo-adjuvant ipilimumab showed that this drug can safely be administered prior to 
cystectomy and does not preclude resection14,15. Recently, promising pCR rates were observed 
in trials testing preoperative anti-PD-1/PD-L1 in UC of the bladder16-18. However, complete 
responses were primarily observed in less advanced tumors and tumors with pre-existing 
CD8+ T-cell immunity16,18.  In the NABUCCO study, we investigated whether the addition 
of anti-CTLA-4 to PD-1 blockade is feasible as preoperative treatment in locoregionally 
advanced (stage III) UC. Furthermore, we studied whether this combination treatment 
could broaden efficacy to more advanced tumors and tumors with limited baseline CD8+ 
T-cell immunity. Given the recently published work correlating B-cells and tertiary lymphoid 
structures (TLS) to immunotherapy response19,20, we also assessed baseline B-cell presence 
and TLS dynamics.

In the NABUCCO study (Fig. 1a), 24 stage III UC patients were enrolled (Fig. 1b) between 
February 2018 and February 2019 and treated with ipilimumab 3mg/kg (day 1), ipilimumab 
3 mg/kg plus nivolumab 1 mg/kg (day 22) and nivolumab 3 mg/kg (day 43), followed by 
resection21 (See Supplementary Study protocol). The median postoperative follow-up 
was 8.3 months (IQR 4.7 – 13.1 months). Fourteen (58%) patients had node-negative 
disease at baseline (cT3-4aN0) and 10 (42%) patients had baseline lymph node metastases 
(cT2-4aN1-3). Patients were cisplatin-ineligible or refused cisplatin-based chemotherapy. All 
24 patients were evaluable for the primary endpoint, which was surgical resection within 
12 weeks after initiation of preoperative therapy. All patients had surgical resection, despite 
inclusion of patients with bulky/extensive disease. Twenty-three (96%; 95% CI: 79-100%) 
patients underwent resection <12 weeks, thus meeting the study’s primary endpoint. One 
patient had a delay of 4 weeks due to immune-related hemolysis. Grade 3-4 immune-related 
adverse events (irAEs) occurred in 55% of patients (Supplementary Table 1); 41% when 
excluding clinically insignificant laboratory abnormalities (mainly lipase elevation). Eighteen 
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(75%) patients received all 3 treatment cycles. Six (25%) patients had only 2 cycles due to 
irAEs. There was no treatment-related mortality.
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Figure 1. NABUCCO study design and baseline study population characteristics. 
A. NABUCCO study treatment and time points of radiological assessment and sample collection. B. Baseline 
characteristics of patients enrolled in the study. Abbreviations: TUR: transurethral resection,  MRI: magnetic Resonance 
Imaging, CT: computed tomography, TMB: tumor mutational burden, FFPE: Formalin-fixed paraffin-embedded 
tissue, LN: lymph node,  IF: immunofluorescence, WES: whole-exome sequencing, RNA: ribonucleic acid, DNA: 
deoxyribonucleic acid 

Following ipilimumab plus nivolumab, most resected primary tumors displayed extensive 
tumor regression at histopathological examination (Fig. 2a). Eleven (46%; 95% CI: 26–67%) 
patients had pCR (pT0N0), meeting the pre-specified secondary efficacy endpoint. Fourteen 
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(58%; 95% CI: 37–77%) patients had no residual invasive cancer (pCR or small CIS/pTa focus) 
after treatment. Two additional patients (8%) achieved a major pathological response (MPR), 
defined as <10% residual vital tumor and pN018, exhibiting extensive immune infiltration (Fig. 
2b). A 50% (95% CI: 29–71%) pCR rate was observed in patients without baseline lymph node 
metastases (cT3-4aN0), compared to 40% (95% CI: 12–73%) pCR in patients with clinically 
suspected node positive disease (cT2-4aN1-3).  Interestingly, four patients achieved pCR/
MPR in the primary tumor, while a resistant micrometastasis was observed in a concurrent 
lymph node. No specific genetic resistance mechanisms could be identified in discrepant 
mutations between the primary tumor and unresponsivene lymph nodes upon whole-exome 
sequencing (WES, see Extended Data Fig. 1). At the time of analysis, two patients (both 
non-pCR) had relapsed, one of these patients died of metastatic disease (Fig. 2c). 



106

Chapter 4

Figure 2. Pathological tumor regression and outcome to preoperative ipilimumab plus nivolumab. 
A. Percentage of pathological tumor regression per primary bladder tumor after preoperative ipilimumab+nivolumab, 
based on the percentage of residual viable tumor area, for the complete cohort. Baseline clinical and biomarker 
features are annotated for each patient in the top section.  Median mutational burden cut offs; below median 
(Low <9.6) vs above median (High ≥9.6) mutations per megabase.  Intratumoral median CD8 cell density assigned 
as below median (Low <145.6) vs above median (High ≥145.6) cells per mm2. Histopathological findings in the 
surgical resection specimen upon ipilimumab+nivolumab are listed in the lower panel B1-2. Pathological complete 
response (pCR) example, displaying large fields of necrosis surrounded by abundant CD8 T-cells and TLS in multiplex 
immunofluorescence images. B3-4.  Major pathological response (MPR, < 10% residual viable tumor), characterized 
by reactive changes and small remaining tumor nests with substantial immune cell infiltration after treatment. 
B5-6. Non-response, displaying intact tumor fields and immune infiltration at the tumor margin. C. Kaplan Meyer 
analysis of recurrence-free survival (RFS) and overall survival (OS). At a median postoperative follow-up of 8.3 
months, 2 (8%) patients have relapsed (both non-responders). One patient died 6 weeks after surgery due to 
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rapid progressive disease. Experiments and scorings related to the presented micrographs were conducted once.

We examined several published biomarkers for immunotherapy response in our cohort. For 
these biomarker analyses, we compared complete response (CR, defined as pCR or CIS/pTa) 
to non-CR. The CR rate in PD-L1 positive tumors (CPS>10) was 73% (95% CI: 45–92%), 
compared to 33% (95% CI: 7-70%) in PD-L1 negative tumors (p=0.15). Analysis of somatic 
mutations by WES (see Extended Data Fig. 2) of pretreatment tumor tissue and germline 
DNA showed a trend towards a higher tumor mutational burden (TMB) in tumors achieving 
CR to ipilimumab plus nivolumab compared to non-CR tumors (p=0.056, Fig. 3a). We 
also assessed mutations in a set of DNA damage response (DDR) genes22. Alterations 
in DDR genes were more frequently observed in responding tumors than in non-CR 
tumors (p=0.03, Fig. 3b). Recent data from studies in advanced and localized UC indicate 
that Transforming Growth Factor beta (TGF-β) signaling is associated with atezolizumab 
unresponsiveness18,23.  In line with these data, we found a TGF-β expression signature to be 
associated with non-response (Fig. 3c).  This result suggests that TGF-β mediated inhibition 
of the anti-cancer immune response cannot be overcome by the addition of anti-CTLA-4 
to PD-1 blockade.

Previous studies in UC found that response to preoperative anti-PD1/PD-L1 monotherapy 
is primarily observed in tumors exhibiting pre-existing CD8+ T-cell immunity16,18. This 
restriction could limit the general applicability of anti-PD1/PD-L1 monotherapy in the 
preoperative setting. We assessed whether the addition of anti-CTLA-4 enables response in 
tumors with limited pre-existing T-cell immunity in our cohort. Using quantitative multiplex 
immunofluorescence, we observed no correlation between baseline CD8+ T-cell density 
and response to ipilimumab plus nivolumab (Fig. 3d). The CR rate in both the lowest and 
highest CD8+ cell density quartile was 67%. We further explored the correlation between 
pre-existing immunity and response by transcriptome analysis of baseline tumor tissue. There 
was no difference between CR and non-CR tumors in baseline interferon gamma (IFN-γ), 
tumor inflammation (TIS) and CD8+ T-cell effector signatures (Fig. 3e). Thus, our data 
suggest that the addition of anti-CTLA-4 to PD-1 blockade can induce pathological complete 
response in tumors irrespective of baseline CD8+ T-cell immunity.
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Figure 3. Pathological complete response to ipilimumab plus nivolumab is independent of baseline 
CD8+ T-cells and inflammatory signatures. 
A.  Association between response groups and tumor mutational burden (TMB). TMB is measured as the number 
of somatic, non-synonymous and exonic mutations, based on whole-exome sequencing (WES). The panel shows 
the TMB distribution in CR (n=14) and non-CR (n=10) tumors. B.  Association between somatic alterations in 
DNA Damage Response and Repair (DDR) genes 17 and response (CR; n=14, non-CR; n=10). We excluded variants 
with a clinical significance labelled as Benign or Likely Benign (CLINVAR annotation), variants previously reported 
as population/germline SNPs (TOPMED and CAF annotations with alternate allele frequency >5%), and variants 
annotated as Tolerated with the SIFT predicted score. Patients were stratified by response (CR and non-CR) and 
DDR status (DDR altered and DDR non-altered) in a contingency table, and statistical significance was tested using a 
two-sided Fisher’s exact test. C. Comparison of average TGF-β induced genes 18 at baseline between CR (n=11) and 
non-CR (n=7) tumors. D. Baseline comparison of CD8 density per mm2 between CR (n=14) and non-CR (n=10) 
tumors. Baseline intratumoral CD8 density per mm2 was analyzed by quantitative multiplex immunofluorescence. 
E. Comparison of average gene expression for the Interferon gamma signature (IFN, Ayers et at. 2017), eight-gene 
cytotoxic T cell transcriptional signature (tGE8,  Mariathasan et al. 2018) and tumor inflammation (TIS, Damotte 
et al. 2019) signatures between CR (n=11) and non-CR (n=7) tumors. Boxplots in all panels represent the median 
and 25th and 75th percentiles. The whiskers expand from the hinge to largest value not exceeding 1.5× IQR from 
the hinge. Complete responders are marked in blue, while non-responders are displayed in orange. A two-sided 
t-test was used for comparisons of the gene expression features between CR and non-CR tumors, and a two 
sided Mann-Whitney test was used for comparison of the TMB between CR and non-CR tumors. The P-value 
is presented in-between boxplots. All statistical tests were two-sided. No adjustments were made for multiple 
comparisons. Abbreviations: CR: complete response, non-CR: non complete response, TMB: Tumor mutational 
burden, SNP: Single nucleotide polymorphism, CNA: Copy number aberration, DDR: DNA damage response and 
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repair, TGF-beta: Transforming growth factor beta,  IFN-gamma: Interferon Gamma, tGE8: eight-gene cytotoxic T 
cell transcriptional signature, TIS: tumor inflammation signature 

Baseline B-cell presence has been associated with immunotherapy response and prognosis 
in several malignancies20,24,25, although other studies suggest immune-suppressive capacities 
of the intratumoral B-cell compartment26,27. Upon exploratory analysis of differentially 
expressed genes, we found that upregulation of B-cell related genes at baseline correlated 
with non-response (Fig. 4a). Furthermore, these differentially expressed B-cell genes were 
found to positively correlate with CD20+ B-cell counts in multiplex immunofluorescent 
analysis (Fig. 4b).  In non-responding tumors, stromal B-cells were more abundant than 
in responding tumors (p=0.043, Fig. 4c), whereas the density of B-cells in the tumor 
compartment was numerically higher (p=0.07). The increased B-cell presence in non-CR 
tumors was observed irrespective of pre-existing CD8+ T-cell immunity (Extended Data 
Fig. 3). B-cells have been studied in conjunction with tertiary lymphoid structure (TLS) 
composition20. We used multiplex immunofluorescent staining and image analysis to visualize 
TLS composition and quantify TLS maturation stages (Fig. 4d,e). No correlation was 
observed between baseline TLS numbers and response (Fig. 4f), although immature TLS were 
higher in non-CR (Extended Data Fig. 3). On-treatment analysis revealed enrichment in 
TLS (p<0.001, Fig. 4g) in CR tumors. Enrichment was observed across all TLS maturation 
stages (Extended Data Fig. 4). Expression of TLS-related genes and a recently established 
signature19 related to B-cell/TLS presence in melanoma increased upon treatment (Extended 
Data Fig. 5), particularly in CR tumors. TLS development was dampened in patients having 
corticosteroids for immunotherapy toxicity management (p=0.014, Fig. 4h,i), as observed in 
lung cancer28. TLS were further characterized by presence of CD27+ B-cells (Extended Data 
Fig. 6), T follicular helper cells, BCL6+CD4- cells and expression of CXCL13 (Extended 
Data Fig. 7). We observed no increase of CD27+ B-cells and T follicular helper cells in 
TLS post-therapy. Early induction of these cells may have been missed due to the fact 
that samples were taken relatively late in the anti-cancer immunotherapy response, after 
tumor-clearance. To further study TLS dynamics, a bioinformatic algorithm was developed to 
annotate the TLS compartment in multiplex immunofluorescence data. Using this algorithm, 
we found that Tregs were reduced in TLS upon treatment with ipilimumab plus nivolumab 
(Extended Data Fig. 8). These exploratory findings suggest that presence of B-cells and 
TLS at baseline does not predict for ipilimumab plus nivolumab response in UC, though TLS 
induction is observed in responding patients.
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Figure 4. B-cell analysis and assessment of tertiary lymphoid structure dynamics upon preoperative 
ipilimumab plus nivolumab.
A. Hierarchical clustering of differentially expressed genes (FDR < 8%) at baseline between CR (blue; n=11) and 
non-CR (orange; n=7) tumors, showing up-regulation of B-cell-related genes in patients with non-CR. Gene expression 
levels are represented as counts per million (CPM), mean-centered and scaled (Z-scores). Higher expression levels 
(red) and lower expression levels (blue) are indicated per gene. For each gene, baseline differential expression between 
response groups was tested fitting a linear model to response using weighted least squares (limma R package). 
Contrasts that compared CR and non-CR tumor were fitted. For each gene the density-based False Discovery 
Rate (FDR) from the p-value distribution was computed to correct for multiple hypothesis testing. Only genes that 
scored an FDR < 8% are shown on the heatmap. B.  The differentially expressed B-cell associated genes (derived 
from A) correlate with tumor and stroma CD20+ immune cell counts per mm2 by multiplex immunofluorescence 
analysis. A two-sided Pearson’s moment correlation test was used to analyze this correlation in CR (n=11) and 
non-CR (n=7). Pearson coefficient and correlation p-value are shown in the plot. C Baseline CD20+ immune 
cell densities per mm2 in tumor and stroma by multiplex immunofluorescent analysis between CR (n=14) and 
non-CR (orange; n=10) tumors stratified by response categories for tumor and stroma. D.  Tissue segmentation 
(PerkinElmer) was used to segregate TLS areas. Early-TLS display dense B cell clusters without follicular dendritic 
cells (FDCs) or germinal centers (GC). Primary follicle-like TLS (PFL-TLS) harbor FDC networks while lacking 
GC. Secondary follicle-like TLS (SFL-TLS) exhibit active GC reaction. E. Example images of the TLS landscape in a 
CR vs non-CR tumor after therapy F.  TLS development was quantified as normalized TLS area (square microns 
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per tissue square centimeter). Pre-treatment and post-therapy samples were compared between CR (n=14) and 
non-CR (n=10). G.  Immunotherapy-induced changes in normalized TLS area were assessed as fold change (post/
pre) and compared between the CR (blue: n=14) and non-CR (orange: n=10) tumors. H. Normalized TLS area 
in post-therapy samples. between patients that received steroids (>20mg a day prior to surgery: n=9) and no 
steroids (n=15). A comparison was made using a two-sided Mann Whitney test.  I.  Immunotherapy-induced fold 
change in normalized TLS area were assesses as fold change (post/pre) in patients that received steroids (>20mg 
a day prior to surgery: n=9) and no steroids (n=15). Boxplots in all panels represent the median and 25th and 
75th percentiles. The whiskers expand from the hinge to largest value not exceeding 1.5× IQR from the hinge. 
Complete responders are marked in blue, while non-responders are displayed in orange. All comparisons, except 
for the ones shown in panels A and B, were made using a two-sided Mann Whitney test. The P-value is presented 
in-between boxplots. All statistical tests were two-sided. No adjustments were made for multiple comparisons, 
except for the ones shown in panel A. Experiments and scorings related to the presented micrographs in D and 
E were conducted once. Abbreviations: CR: complete response, non-CR: non complete response, FDR: False 
discovery rate, TLS: Tertiary lymphoid structure.

We found that ipilimumab plus nivolumab is feasible and highly active as preoperative 
treatment in UC.  Moreover, high pCR rates were observed in patients with locoregionally 
advanced disease. Previous studies testing preoperative anti-PD1/PD-L1 monotherapy in UC 
were mainly conducted in patients with less advanced tumors (cT2-3N0), showing encouraging 
pCR rates. Substantially lower pCR rates were observed with anti-PD-L1 in patients with 
more advanced disease18. Our results are in line with findings in locoregionally advanced 
melanoma, where the addition of anti-CTLA-4 to anti-PD-1 monotherapy before surgery 
broadened response and resulted in superior efficacy and outcome1,29. Furthermore, we found 
that response to preoperative ipilimumab plus nivolumab was independent of baseline CD8+ 
T-cell presence and inflammatory signatures. This observation contrasts with findings from 
trials using anti-PD1/PD-L1 monotherapy, where pCR was primarily observed in tumors 
exhibiting pre-existing CD8+ T-cell immunity16,18. A limitation of our study is the small sample 
size, which was powered to show feasibility of preoperative ipilimumab plus nivolumab and 
to determine an efficacy signal that would justify further clinical studies. Additionally, the 
treatment schedule can be further refined to find the optimal balance between toxicity 
and efficacy.

In conclusion, combined CTLA-4 plus PD-1 blockade may provide an effective preoperative 
treatment strategy in locoregionally advanced UC, regardless of pre-existing CD8+ T-cell 
activity at baseline. The therapeutic efficacy in this cohort, with poor prognosis and high 
unmet clinical need, warrants further development through randomized trials. 

4.2 METHODS

4.2.1 Study design and population
NABUCCO (ClinicalTrials.gov: NCT03387761) is an investigator-initiated, prospective, 
single-arm trial testing the feasibility of attenuated preoperative ipilimumab 3 mg/kg (day 
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1), ipilimumab 3 + nivolumab 1 mg/kg (day 22), and nivolumab 3 mg/kg (day 43) followed 
by cystectomy or nephro/urethrectomy with appropriate lymph node dissection21 (see 
Supplementary Study protocol). A total of 24 patients with stage III resectable urothelial 
cancer (cT3-4aN0M0 and cT1-4aN1-3M0) according to AJCC guidelines were enrolled at 
the Netherlands Cancer Institute. Patients were ≥18 years old, cisplatin-ineligible or refused 
cisplatin-based chemotherapy, were anti-CTLA-4/PD-1/PD-L1 naïve, WHO performance 
score 0-1, and had diagnostic TUR blocks available. Key exclusion criteria were documented 
severe autoimmune disease, chronic infectious disease and use of systemic immunosuppressive 
medications. All patients provided written informed consent. Surgery was scheduled in weeks 
9-11 from the first drug infusion. Baseline staging was based on diagnostic pathology and 
thorax/abdomen/pelvis computed-tomography (CT). CT-based response assessment occurred 
in week 8-10. Additional baseline and on-treatment MRI assessment was optional. Non-related 
and immune-related adverse events (irAEs) were graded and reported throughout the 
study.  In case of serious irAEs after the second treatment cycle, the remaining dose of 
nivolumab was not administered to not interfere with the timing of surgery. The sponsor 
of the trial was the Netherlands Cancer Institute. Bristol-Myers Squibb provided the study 
drugs and funding for the trial. The trial protocol was designed and written by the authors 
(NvD, CUB, BvR and MSvdH) and is part of the Dutch uro-oncology study group (DUOS). A 
data safety monitoring board (DSMB) was established, consisting of Prof. T. Powles (medical 
oncologist, Barts Cancer Centre) and dr. J. Boormans (urologist, Erasmus Medical Centre). This 
study was approved by the institutional review board of the Netherlands Cancer Institute and 
was executed in accordance with the protocol and Good Clinical Practice Guidelines defined 
by the International Conference on Harmonization and the principles of the Declaration of 
Helsinki. After meeting the pre-specified primary and secondary endpoint in the current 
analysis (n=24), the study was expanded with new dose-exploratory cohorts (IRB approved 
September 2019).

4.2.2 Study endpoints and statistics 
The primary endpoint of this trial was feasibility, testing whether preoperative ipilimumab 
and nivolumab is feasible within 12 weeks from first infusion and does not delay surgical 
resection, as this is an endpoint that is clinically meaningful for this population. We set the 
desired resection rate by 12 weeks at 90% of patients. The lower statistical boundary for 
futility was set at 60%. For 24 patients and one-sided alpha=0.025, the power of rejecting 60% 
resection rate, under the alternative of 90%, is 91%. Treatment efficacy (pCR) was selected 
as a secondary endpoint, and defined by the percentage of pathological complete response 
(complete absence of neoplastic cells, pT0N0) at surgical resection. For the efficacy endpoint 
we considered the disease burden of this cohort, which is higher than a typical neoadjuvant 
cohort, and cisplatin-ineligibility/refusal. We determined that a 40% pCR rate would be 
desirable, while 14% or lower would not warrant further investigation of treatment. Under 
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those assumptions, 24 evaluable patients provide 90% power to detect treatment efficacy with 
the one-sided alpha of 0.05. At least 7 responders are required. Histopathological assessment 
was performed on the resected primary tumor and LN specimens, and pathological staging 
was done according to international standards and protocols.  In addition, percentage of 
residual vital tumor tissue was analyzed and calculated. Other secondary endpoints included 
translational endpoints and safety and are extensively described in the study protocol (see 
Study protocol in Supplementary information). Unless specified otherwise, Wilcoxon 
signed ranked test was used for pairwise comparisons. R 3.4.4 was used for statistical analysis, 
together with the packages tidyverse 1.2.1, ggpubr 0.2.1.

4.2.3 PD-L1 assessment, multiplex immunofluorescence analyses and 
immunohistochemistry
Baseline PD-L1 immunohistochemistry was performed on FFPE sections by a PD-L1 IHC 
22C3 1/40 dilution pharmDx qualitative immunohistochemical assay on a DAKO autostainer 
48 system at Tergooi hospital laboratory. After staining, PD-L1 and Hematoxylin & Eosin slides 
were uploaded to SlideScore (www.slidescore.com) for manual scoring. An experienced 
uro-pathologist determined the combined positive score (CPS), PD-L1 positivity was qualified 
as CPS > 1016. Analysis of tumor immune cell infiltrates (anti-CD3 (1/400 dilution Clone 
P7, ThermoScientific), anti-CD8 (1/100 dilution Clone C8/144B, DAKO), anti-CD68 (1/500 
dilution Clone KP1, Dako), anti-FoxP3 (1/50 dilution Clone 236A/47, Abcam), anti-CD20 
(1/500 dilution Clone L26, Dako), anti-PanCK (1/100 dilution Clone AE1AE3, Thrermo 
Scientific) was performed by multiplex Immunofluorescence (mIF) technology on a ventana 
Discovery Ultra automated stainer using Perkin Elmer opal 7-color dyes,.  In short, 3 μm 
FFPE sections were cut and heated at 75 °C for 28 minutes and subsequently deparaffinized 
in EZ prep solution, Ventana Medical Systems. Using Cell Conditioning 1 (CC1, Ventana 
Medical Systems), Heat-induced antigen retrieval was conducted at 95 °C for 32 min. Further 
analysis was done by VECTRA image acquisition (Akoya Biosciences, v3.0) and HALO 
(Indica Labs, v2.3) image analysis. Tumor and stroma regions were classified by HALO 
automated tissue segmentation. TLS composition was analyzed in tissue sections by 7-plex 
multiplex immunofluorescence28 using the following antibodies and dilutions; CD21 (1:5000 
2G9 Leica), DC-LAMP (1:1000 1010E1.01 Dendritics), CD23 (1:1000 SP3 Abcam), PNAd 
(1:5000 MECA-79 Biolegend), CD20 (1:5000 L26 Dako), CD3 (1:1000 SP7 ThermoScientific) 
and multispectral microscopy. Area segregation was done by Inform tissue segmentation 
algorithm. Additional information on antibodies used is provided in the Nature Research 
Reporting Summary. 

For immunohistochemistry (including co-stainings), slides were cut at 3µm and dried 
overnight. Slides were transferred to the Ventana Discovery Ultra autostainer. Slides were 
then deparaffinised within the instrument and antigen retrieval was carried out at 95°C 
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for 64 minutes. For the double-staining of CD20 (yellow) followed by CD27 (purple), the 
CD20 was detected in the first sequence using clone L26 (1:800, 32 min at 37 °C, Agilent). 
CD20-bound antibody was visualized using Ready-to-Use anti-mouse NP (Ventana Medical 
systems) for 12 min at 37 °C followed by anti-NP AP (Ventana Medical systems) for 12 min 
at 37 °C, followed by the Discovery Yellow Detection Kit (Ventana Medical Systems).  In the 
second sequence of the double-staining procedure, CD27 was detected using clone EPR8569 
(Abcam, 1:3000 dilution, 32 min at 37 °C). CD27 was visualized using Ready-to-Use anti-mouse 
HQ (Ventana Medical systems) for 12 min at 37 °C followed by anti-HQ horseradish 
peroxidase (Ventana Medical systems) for 12 min at 37 °C, followed by the Discovery Purple 
Detection Kit (Ventana Medical Systems). Slides were counterstained with Hematoxylin and 
Bluing Reagent (Ventana Medical Systems). For the double-staining of CD4 (yellow) followed 
by Ready-to-Use BCL6 (purple), the CD4 was detected in the first sequence using clone 
SP35 (1:25, 32 min at 37 °C, Cell Marque). CD4-bound antibody was visualized using the 
Roche Diagnostics Ready-to-Use anti-mouse NP (Ventana Medical systems) for 12 min at 
37 °C followed by anti-NP AP (Ventana Medical systems) for 12 min at 37 °C, followed by 
the Discovery Yellow Detection Kit (Ventana Medical Systems).  In the second sequence of 
the double-staining procedure, BCL6 was detected using clone GI191E/A8 (Ready-to-use, 
Ventana Medical Systems, 32 min at 37 °C). BCL6 was visualized using the Roche Diagnostics 
Ready-to-Use anti-mouse HQ (Ventana Medical systems) for 12 min at 37 °C followed by 
the Roche Diagnostics Ready-to-Use anti-HQ horseradish peroxidase (Ventana Medical 
systems) for 12 min at 37 °C, followed by the Discovery Purple Detection Kit (Ventana 
Medical Systems). Slides were counterstained with Hematoxylin and Bluing Reagent (Ventana 
Medical Systems). CXCL13 was stained using the polyclonal goat R&D Systems antibody 
Clone AF801, in a 1:400 dilution. CXCL13 bound antibody was visualized using the Roche 
Diagnostics Ready-to-Use OmniMap anti-Goat HRP (Ventana Medical Systems) for 12 minutes 
at 37°C, followed by the Chromomap DAB detection kit. Slides were counterstained with 
Hematoxylin and Bluing Reagent (Ventana Medical Systems). All IHC slides were uploaded 
to SlideScore for manual scoring. Additional information on antibodies used is provided in 
the Nature Research Reporting Summary. 

For biomarker analysis, tumors with complete response (CR, defined as pCR, pTis or pTaN0) 
were compared to non-CR tumors. We included non-invasive disease in the CR definition, 
as this is generally believed to be cured by surgery30. Figure panel colors are optimized for 
colorblind readers.

4.2.4 DNA sequencing
DNA and RNA were isolated in parallel from baseline and on treatment FFPE tumor material 
using the Qiagen AllPrep FFPE DNA/RNA isolation kit. Germline DNA was extracted from 
peripheral blood mononuclear cells using the QIAsymphony DSP DNA midi kit. Tumor 
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depositions in the lymph nodes were isolated by using laser microdissection. DNA sequencing 
was carried out following the Human IDT Exome Target Enrichment Protocol. Covaris 
shearing was used to fragment the DNA to 200-300 base pairs. KAPA HTP DNA Library 
Kit was used for library preparation.  IDT Human Exome capture V1.0 was used for exome 
enrichment. Libraries were sequenced with 100 base pairs paired-end reads using the 
Hiseq 2500 (Illumina) with a high output mode PE 100. Burrows-Wheeler aligner 37 was 
used to align the raw reads to the human reference genome GRCh38. Duplicated reads 
were marked using MarkDuplicates (http://broadinstitute.github.io/picard), and lastly GATK 
BaseRecalibrator was used to recalibrate the quality scores. Somatic single-nucleotide 
variants (SNVs), short insertions and deletions (indels) were called for tumor samples 
matched with germline samples using Strelka 2.9.231. Only variants with a high reliability 
score (HighEVS) and allele frequency > 5% were maintained, and annotated using SnpEff 
v4.3t (build 2017-11-24 10:18). Tumor mutational burden (TMB) was assessed as the number 
of somatic variants annotated as non-synonymous, non-intronic or non-intergenic. For 
biomarker discovery, we retrieved variants classified as indels, missense, frameshift, stop 
codon gain or loss, splice acceptors or donor, transcription ablation, exon loss, and structural 
interaction variant. Copy number calling was done using CNVkit v0.9.632 and copy number 
ratios were estimated against a pooled normal reference. Gene copy number ratios (cnr) 
were calculated with a weighted average copy number ratio per gene. Deep deletions were 
defined as log2(cnr) < -0.7, shallow deletions as -0.7≤log2(cnr)<-0.5 and Amplifications as 
log2(cnr)>1. All genomic data was analyzed using the R packages VariantAnnotation v1.24.5 
and ComplexHeatmap v1.17.1. For associations between somatic alterations in DNA Damage 
Response and Repair (DDR) genes22and response, we excluded variants with a clinical 
significance labelled as Benign or Likely Benign, variants previously reported as population/
germline SNPs (TOPMED and CAF annotations with alternate allele frequency >5%), and 
variants annotated as Tolerated with the SIFT predicted score. We explored alterations in 
DNA mismatch repair machinery (MLH1,  MSH2,  MSH6, PMS1, PMS2), nucleotide excision 
repair (ERCC2, ERCC3, ERCC4, ERCC5), homologous recombination (BRCA1,  MRE11A, NBN, 
RAD50, RAD51, RAD51B, RAD51D, RAD52, RAD54L), Fanconi anemia (BRCA2, BRIP, FANCA, 
FANCC, PALB2, RAD51C, BLM), checkpoint (ATM,  ATR, CHEK1, CHEK2,  MDC1) and others 
(POLE,  MUTYH, PARP1, RECQL4). LN and primary tumors with discrepant response were 
sequenced using 3 different pools to reach >150x exomic coverage. Somatic SNVs and short 
indels for each tumor – germline and LN - germline sample pairs were called using Strelka. 
For each patient, we retrieved all variants that scored at least in one of the tumor or lymph 
nodes variant calling a high reliability score (HighEVS), recomputed the allele frequencies 
from the bam files, and filtered by allele frequency > 5%.



116

Chapter 4

4.2.5 RNA sequencing
The TruSeq Stranded mRNA Sample Prep Kit from Illumina was used to generate 
strand-specific libraries according to the manufacturer’s instructions. Twelve cycles of 
PCR were done to amplify the 3’ end-adenylated and adapter-ligated RNA. Quality and 
quantity of the total RNA from FFPR was assessed by the 2100 Bioanalyzer using a 7500 
Nano chip (Agilent, Santa Clara, CA). The percentage of RNA fragments > 200nt fragment 
distribution values (DV200) were determined using the region analysis method according to 
the manufacturer's instructions manual (Illumina, technical-note-470-2014-001). The libraries 
were subsequently diluted and pooled equimolar in a multiplex sequencing pool. Storage was 
done at -20 degrees Celsius. The pooled libraries were enriched for target regions using the 
probe Coding Exome Oligos set (CEX, 45MB) according to the manufacturer instruction 
(Illumina, #1000000039582v01). Briefly, cDNA libraries and magnetic bead bound capture 
probes were combined followed by hybridization using a denaturation step of 95°C for 10 
minutes and an incubation step from 94°C to 58 °C having a ramp of 18 cycles with 1 minute 
incubation and 2°C per cycle. The enriched fraction was subjected to two stringency washes, 
an elution step and a second round of enrichment followed by a cleanup using AMPure XP 
beads (Beckman, A63881) and PCR amplification of 10 cycles. The target enriched pools 
were analyzed on a 2100 Bioanalyzer using a 7500 chip (Agilent, Santa Clara, CA), diluted and 
subsequently pooled equimolar into a multi-plex sequencing pool. A HiSeq 2500 System was 
used to sequence libraries with 65 base pair single-end reads in Illumina high output mode 
using V4 chemistry (Illumina Inc., San Diego). HISAT2 aligner was used to align the raw reads 
to the human reference genome GRCh38 and to quantify gene expression using default 
parameters. For quality control, samples with a low cDNA yield, low sequencing coverage 
(reads < 9000000) and fraction of aligned reads to human reference genome < 85% were 
filtered out (6 baseline samples). Genes with low gene expression variability (null counts in 
>80% of the samples and/or read counts mean < 1) were filtered out. EdgeR v3.20.933 was 
used to calculate the normalization factors In order to account for variable library sizes. 
Only genes with maximum counts per million (CPM) > 1, and with a CPM >1 in at least 
3 samples, were considered for biomarker analysis (~7000 genes). Differential expression 
(DE) was tested using limma v3.34.934. First, we used the voom function to account for 
different weights from the mean-variance relationships. Then, we built linear models to test 
DE between different baseline/on-treatment response groups. We corrected for multiple 
hypothesis testing by modelling the density-based False Discovery Rate (FDR) from the p-value 
distribution using fdrtool35. Genes that scored an FDR < 8% were considered as significant. 

4.2.6 Bioinformatic algorithm to detect TLS in Multiplex immunofluorescence
Tertiary lymphoid structure (TLS) clusters in multiplex immunofluorescence (CD3, CD8, 
FoxP3, CD20, CD68) data were detected by using DBSCAN v1.1-4. The cell phenotypes 
CD20+, CD3+CD8-FoxP3- and CD3+FoxP3+CD8- were used to identify putative TLS 
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clusters in stromal regions. These same three phenotypes were quantified residing either 
inside TLS detected regions or in stromal/tumoral regions.  Mann-Whitney U tests were 
used to test for difference in TLS composition between pre/post treatment samples of 
phenotypes frequencies CD20+, CD3+CD8-FoxP3- and CD3+CD8-FoxP3+. The difference 
in TLS T-reg(CD3+CD8-FoxP3+)/Naïve T-cell (CD3+CD8-FoxP3-) ratio was explored with a 
Mann-Whitney U-test between pre/post samples of CR and Non-CR. The CD3+CD8-FoxP3- 
and CD20 location ratios (in TLS/in tumor+stroma) was tested for difference in ratio between 
pre/post samples in CR and NCR with a Mann-Whitney U test.

4.3 EXTENDED DATA

Extended Data Fig. 1 Assessment of response discrepancies between the responding primary bladder 
tumor and unresponsive local lymph node micrometastases upon ipilimumab plus nivolumab.
a1-2.  Imaging shows a cT4aN1 bladder tumor (enlarged lymph node not shown). Pathological assessment 
revealed a complete response in the bladder, as shown by multiplex immunofluorescent analysis (a-3) and a 
non-responding lymph node micrometastasis, annotated by a red arrow (a-4). Experiments and scorings related to 
the presented micrographs were conducted once. b, Whole-exome sequencing was employed to assess whether 
lymph node micrometastases are genetically distinct from the primary tumor and could explain unresponsiveness 
(n=2 patients). The figure shows overlap between somatic variants identified in the baseline tumor (purple) and 
the post-treatment lymph node metastasis (green). c, Genomic alterations in genes related to interferon gamma 
signaling, JAK/STAT signaling or antigen presentation machinery for baseline tumor samples (purple, n=2) and 
matching lymph nodes metastases (green, n=2). Sample labels and genetic alteration type are displayed in figure 
legends. No specific genetic cause for resistance could be identified in the discrepant mutations.
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Extended Data Fig. 2 Analysis of baseline genomic alterations by whole-exome sequencing.
Whole-exome sequencing of pretreatment tumor tissue and germline DNA was employed to identify somatic 
mutations in baseline tumors (n=24). An oncoprint figure of genetic alterations in significantly mutated bladder cancer 
genes (by TCGA, Robertson et al, Cell 2018) is shown. Alterations are clustered by response categories, including 
14 CR and 10 non-CR tumors. Sample labels and genetic alteration type are displayed in the figure. Abbreviations: 
CR: complete response, non-CR: non complete response, CNA: copy number alterations.
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Extended Data Fig. 3 Assessment of interdependence between baseline B cell presence and CD8 
T cell infiltration.
a, Average expression of B-cell-related differentially expressed genes at baseline stratified by intratumoral and 
stromal CD8+ higher and lower than median groups on multiplex immunofluorescence (mIF). Gene expression 
levels are represented as transcripts per million (TPM), mean-centered and scaled (Z-scores). b,  Intratumoral 
CD8 density per mm2 by multiplex immunofluorescence, stratified by stromal CD20 higher and lower than 
median groups on multiplex immunofluorescence (mIF). c, Average expression of B-cell-associated genes at 
baseline stratified by average TGE8 signature groups (higher or lower than median) showing similar expression 
of B-cell-related genes in the TGE8 signature groups. Gene expression levels are represented as transcripts per 
million (TPM), mean-centered and scaled (Z-scores). A Wilcoxon signed tank test was used for all comparisons. The 
P-value is presented in-between boxplots. All statistical tests were two-sided. Analyses include CR (blue; n=11) 
and non-CR (orange; n=7) tumors. All boxplots display the median and 25th and 75th percentiles. The whiskers 
expand from the hinge to largest value not exceeding 1.5× IQR from the hinge. No adjustments were made for 
multiple comparisons. Abbreviations: CR: complete response, non-CR: non complete response.
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Extended Data Fig. 4 Dynamics of tertiary lymphoid structure spectrum upon immunotherapy for 
response and steroid groups.
Upon multiplex immunofluorescent staining and segregation of tertiary lymphoid structure (TLS) areas, a, Early-TLS, 
b, Primary follicle-like TLS and c, Secondary follicle-like TLS were quantified as normalized TLS area (square 
microns per tissue square centimeter). For each TLS maturation stage, four different analysis were performed; 1) 
Comparison of normalized TLS areas in baseline and post-therapy samples between response groups by Mann 
Whitney test, 2) Normalized TLS area assessed as fold change (post/pre) upon treatment between response groups, 
3) Normalized TLS area comparison in post-therapy samples between patients receiving steroids and no steroids, 
4) Normalized TLS area assessed as fold change (post/pre) upon treatment in patients that received steroids and 
no steroids. Unless otherwise noted, all boxplots display the median and 25th and 75th percentiles. The whiskers 
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expand from the hinge to largest value not exceeding 1.5× IQR from the hinge. A Mann Whitney test was used for 
comparisons between response and steroid groups. The P-value is presented in-between boxplots. All statistical 
tests were two-sided. Analyses have 14 CR and 10 non-CR, or 9 steroids (>20mg a day prior to surgery) and 15 
no steroid patients. No adjustments were made for multiple comparisons. Abbreviations: TLS: tertiary lymphoid 
structures, CR: complete response, non-CR: no complete response.

Extended Data Fig. 5 Exploratory assessment of TLS markers and a TLS signature upon 
immunotherapy for response groups.
a, Average gene expression for TLS-related genes (CCL19, CCL21, CXCL13, CCR7, SELL, LAMP3, CXCR4, 
CD86, BCL6), as published by Cabrita et al. 19. Pre- and post-treatment samples were compared for CR (n=11 
pre-treatment, n=8 post-treatment) and non-CR (n=7 pre-treatment, n=10 post-treatment) tumors using a two-sided 
t-test. Baseline expression was not significantly different between CR and non-CR (p=0.28). b,  TLS gene signature 
(Cabrita et al., Nature 2020) derived from genes specifically upregulated in CD8+CD20+ metastasized melanoma 
tumors (CD79B, CD1D, SKAP1, CETP, EIF1AY, RBP5, PTGDS). LAT and CCR6 genes were lowly expressed and 
thus removed from the analysis. Gene signatures were compared between baseline and post- treatment samples 
for CR and non-CR tumors. Baseline expression was not significantly different between CR and non-CR (p=0.05). 
Boxplots in all panels represent the median and 25th and 75th percentiles. The whiskers expand from the hinge to 
largest value not exceeding 1.5× IQR from the hinge. CR samples are marked in blue, while non-CR samples are 
displayed in orange. A t-test test was used for comparisons between CR and non-CR. The p-value is presented 
in-between boxplots. All statistical tests were two-sided. All analyses involved 11 CR and 7 non-CR tumors in 
pre-treatment samples, and 10 CR and 8 non-CR tumors in post-treatment samples. Abbreviations: TLS: tertiary 
lymphoid structures, CR: complete response, Non-CR: non complete response.
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Extended Data Fig. 6 Assessment of CD27+ B-cells in TLS upon immunotherapy for response groups.
a, Example images of CD20 (yellow) and CD27 (purple) IHC co-staining, revealing CD27+ B-cells (CD20+CD27+) 
in red, as indicated by the black arrow. Experiments and scorings related to the presented micrographs were 
conducted once. b/c. Baseline and post-treatment comparison of the mean percentage of CD20+CD27+ cells in 
germinal center (GC) negative (b) and GC+ (c) TLS per patient between CR (n=9 GC- pre-treatment, n=6 GC+ 
pre-treatment, n=11 GC- post-treatment, n=8 GC+ post-treatment) and non-CR (n=6 GC- pre-treatment, n=3 
GC+ pre-treatment, n=8 GC- post-treatment, n=5 GC+ post-treatment) tumors. The percentage CD20+CD27+ 
cells in the CD20+ population in TLS was estimated by a pathologist (L.S.). Boxplots represent the median and 
25th and 75th percentiles. The whiskers expand from the hinge to largest value not exceeding 1.5× IQR from the 
hinge. Complete responders are marked in blue, while non-responders are displayed in orange. A Wilcoxon signed 
tank test was used to compare the percentage of CD20+CD27+ between CR and non-CR tumors. The P-value 
is presented in-between boxplots. All statistical tests were two-sided. No adjustments were made for multiple 
comparisons. Abbreviations: CR: complete response, NR: no response, GC: germinal center.
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Extended Data Fig. 7 Assessment of CD4+ T-cells and CD4+BCL6+ follicular T helper cells in tumor 
and TLS regions upon immunotherapy.
a, Example images of CD4 (yellow) and BCL6 (purple) IHC co-stainings, showing CD4+BCL6+ follicular T helper 
cells pre- and post-treatment, characterized by a purple nucleus and deep orange cytoplasmatic staining. b,  Mean 
absolute CD4+BCL6+ cell counts in co-stains for mature and immature TLS and CD4−BCL6+ cell counts for 
mature TLS only; for CR tumors (n=7 GC- pre-treatment, n=5 GC+ pre-treatment, n=10 GC- post-treatment, 
n=8 GC+ post-treatment) and non-CR tumors (n=4 GC- pre-treatment, n=3 GC+ pre-treatment, n=8 GC- 
post-treatment, n=5 GC+ post-treatment). Co-stainings were assessed and scored (number of cells per TLS) 
by a pathologist. c, Representative example images of CXCL13 (brown) in TLS for CR and non-CR tumors 
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by immunohistochemistry in pre- and post-treatment specimens. CXCL13 positivity is clearly present in TLS, 
emphasizing that TLS are characterized by CXCL13 expression. No post-treatment differences were observed 
between response groups (Quantified data not shown). Unless otherwise noted, all boxplots display the median and 
25th and 75th percentiles. The whiskers expand from the hinge to largest value not exceeding 1.5× IQR from the 
hinge. Complete responders are marked in blue, while non-responders are displayed in orange. A Wilcoxon signed 
tank test was used to compare the CD4+BCL6+ counts between CR and non-CR tumors. The P-value is presented 
in-between boxplots. All statistical tests were two-sided. No adjustments were made for multiple comparisons. 
Experiments and scorings related to the presented micrographs in A and C were conducted once. Abbreviations: 
CR: complete response, non-CR: non complete response, GC: germinal center.

Extended Data Fig. 8 Exploratory assessment of cellular distribution within TLS regions using a 
bioinformatic algorithm to analyse multiplex immunofluorescence slides.
a, Data map displaying immune cell subsets by digital multiplex immunofluorescent analysis in baseline tissue in a 
spatial context. A bioinformatic algorithm (methods) was developed to identify and segment TLS-like structures, as 
annotated in red in the example map. Tumor is depicted in gray (panCK) b, Distribution of CD3+CD8− and CD20+ 
cells over the analysed area, between algorithm assigned tumor bed (orange) and TLS (grey) pre- and post-therapy, 
in CR (n=7 pre, n=5 post) and non-CR (n=7 pre, n=4 post) patients. c, The ratio of FOXP3+/FOXP3- cells was 
calculated within the TLS CD3+CD8- compartment upon algorithmic TLS segmentation and quantitation of immune 
cell subsets in multiplex immunofluorescence images (Methods). Pre-treatment and post-therapy samples were 
compared in the complete cohort (C; n=14 pre, 9 post) p=0.0086) or between CR (n=7 pre, 5 post; p=0.073) 
and non-CR (n=7 pre, 4 post; p=0.11) d, by Mann Whitney test. Unless otherwise noted, all boxplots display the 
median and 25th and 75th percentiles. The whiskers expand from the hinge to largest value not exceeding 1.5× 
IQR from the hinge. Complete responders are marked in blue, while non-responders are displayed in orange. A 
Wilcoxon signed tank test was used to compare the CD4+BCL6+ counts between CR and non-CR tumors. The 
P-value is presented in-between boxplots. All statistical tests were two-sided. No adjustments were made for 
multiple comparisons. Abbreviations: CR: complete response, non-CR: non complete response, GC: germinal center.
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4.4 SUPPLEMENTARY TABLES 

Supplementary Table 1.  Immune-related adverse events registered up to data cut-off

-Immune-related adverse events  All grade, N (%) Grade 3/4, N (%)

Any IRAE 24 (100%) 13 (55%)

Lipase increased 8 (33%) 6 (25%)

Fatigue 6 (25%) 1 (4%)

Alanine aminotransferase increased 5 (21%) 3 (12%)

Diarrhea 5 (21%) 3 (12%)

Aspartate aminotransferase increased 4 (17%) 1 (4%)

Skin rash 5 (21%) 0  (0%)

Alkaline phosphatase increased 3 (12%) 1 (4%)

Colitis 3 (12%) 2 (8%)

Gamma-glutamyltransferase increased 3 (12%) 2 (8%)

Headache 3 (12%) 0  (0%)

Hyperthyreoidism 3 (12%) 0  (0%)

Serum amylase increased 3 (12%) 0  (0%)

Adrenal insufficiency 2 (8%) 0  (0%)

Hypothyreoidism 2 (8%) 0  (0%)

Toxicoderma, DRESS syndrome 1 (4%) 1 (4%)

Blood bilirubin increased 1 (4%) 1 (4%)

Peripheral motor neuropathy 1 (4%) 1 (4%)

Hemolysis 1 (4%) 1 (4%)

Hyperglycemia 1 (4%) 1 (4%)

4.5 SUPPLEMENTARY INFORMATION

Because of printing limitations, the NABUCCO study protocol is only available online: https://
www.nature.com/articles/s41591-020-1085-z#Sec12 

DATA AVAILABILITY STATEMENT

DNA and RNA sequencing data has been deposited in the European Genome-phenome 
Archive under the accession code EGAS00001004521 and will be made available on reasonable 
request for academic use and within the limitations of the provided informed consent by the 
corresponding author upon acceptance. Every request will be reviewed by the institutional 
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review board of the NKI; the researcher will need to sign a data access agreement with 
the NKI after approval. Sequencing data corresponds with Figure 3 and Figure 4.  Multiplex 
immunofluorecence raw quantification data corresponding to Figure 3d and 4 can be made 
available on reasonable academic request within the limitations of informed consent by the 
corresponding author upon acceptance.
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ABSTRACT

Immune checkpoint inhibitors (ICI) can achieve remarkable responses in urothelial cancer 
(UC), which may depend on tumor microenvironment (TME) characteristics. However, the 
relationship between the TME, usually characterized by immune cell density, and response 
to ICI is unclear.

Here, we quantify the TME immune cell densities and spatial relationships (SRs) of 24 baseline 
UC samples, obtained before pre-operative combination ICI treatment, using multiplex 
immunofluorescence. We describe SRs by approximating the first nearest-neighbor distance 
distribution with a Weibull distribution and evaluate the association between TME metrics 
and ipilimumab+nivolumab response. 

Immune cell density does not discriminate between response groups. However, the Weibull 
SR metrics of CD8+ T cells or macrophages to their closest cancer cell positively associate 
with response. CD8+ T cells close to B cells are characteristic of non-response. We validate 
our SR response associations in a combination ICI cohort of head and neck tumors. 

Our data confirm that SRs, in contrast to density metrics, are strong biomarkers of response 
to pre-operative combination ICIs.
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5.1 INTRODUCTION

Immune checkpoint inhibitors (ICI) block inhibitory signals between immune and neoplastic 
cells that can result in cancer cell killing1.  Inhibitors targeting PD-1 and PD-L1 have shown 
durable responses in a subset of urothelial cancer (UC) patients2,3. Still, most tumors do not 
respond to treatment1,4, and ICI causes grade≥3 immune-related adverse events in 10% of UC 
patients5. Therefore, it is crucial to identify biomarkers that aid the stratification of responding 
patients so that alternative lines of treatment can be considered for non-responding patients 
and prevent unnecessary toxicities. 

The surrounding of a tumor, known as the tumor microenvironment (TME), contains immune 
cells, normal epithelial cells, and fibroblasts that continuously interact6. Components of the 
TME indicative of pre-existing immunity have shown associations with response to ICI, such 
as CD8+ T cell infiltration and transcription factors related to T cell activity7–11. However, 
biomarkers do not behave consistently in UC trials. For instance, the baseline presence of 
CD8+ T cells correlates with ICI monotherapy response in the pre-operative (anti-PD-L1)7 
or metastatic setting12. Still, in pre-operative ICI combination therapy (anti-PD(L)-1 + 
anti-CTLA-4), the response is independent of CD8+ T cell density9,10. The lack of robust 
response biomarkers highlights the need to dissect tumor-immune interactions in more 
detail13.

A technology enabling a TME characterization at single-cell resolution is multiplex 
immunofluorescence (mIF), which spatially profiles a tissue slide using multiple antibodies 
simultaneously14,15.  MIF-derived metrics were found to predict anti-PD-1 and anti-PD-L1 
response across different tumor types16, highlighting its ability to quantify crucial immune 
components that determine ICI response. Typically, mIF data are summarized as immune 
cell densities, informing about immune cell counts, and typically topologically assessed in 
different compartments, i.e., tumor and stroma17.

By definition, immune cell density and abundance metrics ignore the immune interactions 
relevant to an anti-tumor response18.  Ignoring these interactions is suboptimal, as many 
immune interactions require proximity. For instance, a T cell receptor and antigen interaction 
require physical binding, which requires the cells involved to be in close proximity to each 
other.  In contrast, an immunosuppressive TME will have few immune cells close to cancer 
cells due to their inability to infiltrate a tumor19. Such distance or adjacency patterns between 
cells at the TME can be measured through their spatial relationship (SR), allowing for a 
mathematical description amenable to downstream analysis20. Notably, associations between 
SRs at the TME and prognosis18,21,22 and response to monotherapy ICIs have been reported 
across different cancer types23,24,25. The SRs allow for quantitative exploration of the TME, 
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providing a basis for improving our understanding of tumor immunology and scrutinizing 
new associations with ICI response. SRs in the UC’s TME are poorly understood and, to 
our knowledge, largely unexplored in pre-operative combination ICI treatments, and this 
study aims to address that.

Several analytical frameworks aim to measure the SRs of the TME, such as cell-cell interactions 
and tissue modules, using spatially-resolved protein-derived data across multiple data 
types19.  Methodologies are predominantly topologically based (graph-, networks-, and 
cell-counting-based methods) or distance-based20. Distance-based methods, such as the 
first-nearest-neighbor (1-NN) distribution, allow modeling proximity patterns within the TME 
using spatially-resolved data in a simple yet informative manner. Because distances following a 
1-NN distribution are asymmetrical, approaches that estimate the 1-NN distribution mean25 
provide inadequate data summaries. A common approach to model 1-NN distributions is 
through the cumulative distribution function (CDF), known as the G-function. Nevertheless, 
the downstream analyses require an additional summary by estimating the area under the 
curve (AUC) at a predefined threshold26,27. Currently, there is a lack of spatial methodologies 
that describe the distance distribution without using a threshold and that model variation 
between individuals.

In this study, we spatially profile cancer cells, T cells, macrophages, and B cells using mIF 
and present a methodology to quantify the TME SRs using 24 pre-operative baseline tumor 
resection UC samples from the NABUCCO trial10.  In NABUCCO, pre-operative combination 
ICI with ipilimumab and nivolumab is administered in UC. We fit a Weibull distribution to the 
1-NN distance distribution between pairwise cell relationships to extract a two-parameter 
describing the distribution. These spatial descriptions outperform immune cell densities 
when quantifying the differences in immune cell SRs between response groups to ICI. To 
demonstrate generalizability of our findings, we confirm the baseline associations between SRs 
and response in an independent cohort of 25 mostly HPV-negative head and neck squamous 
carcinoma (HNSCC) patients receiving pre-operative ipilimumab and nivolumab treatment28.
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5.2 RESULTS
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Figure 1. Profiling of immune cell density and spatial relationships of the urothelial cancer tumor 
micro-environment by multiplex immunofluorescence.
(A) Biopsy samples from 24 patients from the NABUCCO trial were profiled using mIF. 
(B) Cell type classification by comparing antibody marker positivity. 
(C) Tissue segmentation into tumor and stroma regions by comparing the local densities of cancer cell marker 
positive and negative cells. 
(D) Immune cell density in the tumor and stroma compartments was calculated in each tissue compartment 
(tumor and stroma). 
(E) SRs were summarized using the 1-NN statistic studied from a reference cell type to a target cell type. The 
resulting 1-NN distances vector was studied using 2 approaches: modeling a Weibull distribution to the Probabilistic 
Density Function (PDF) (top), and using the cumulative distribution function (CDF) using the G-function
(F) Association of SR parameters with ICI response and comparison of the discriminative power between SR and 
density TME parameters. 
(G) Validation of associations between SR parameters and response identified in UC in an independent cohort 
of HNSCC tumors. 
Icons from panel A, B, F and G were adapted from bioIcons (cancerous-cell-1, lymphocytes-4, macrophage, 
t-lymphocyte, b-lymphocyte, fibroblast-1 licensed under CC-BY 3.0 Unported by Servier), flaticon.com (bladder 
icon, https://www.flaticon.com/free-icon/bladder_1453578; head neck icon, https://www.flaticon.com/free-icon/
injection_4418017). 
Abbreviations: TME: tumor micro-environment; SR: spatial relationship; mIF: multiplex immunofluorescence; ICI: 
immune checkpoint inhibitors; 1-NN: first nearest neighbor; PDF: probabilistic density function; CDF: cumulative 
density function; G-AUC-T: G-function evaluated at a threshold T; T: threshold; UC: urothelial cancer; HNSCC: head 
and neck squamous cell carcinoma.

5.2.1 Multiplex immunofluorescence and modeling of immune cell densities 
and spatial relationships of urothelial and head and neck cancer samples
We collected multiplex immunofluorescence (mIF) data from baseline formalin-fixed, 
paraffin-embedded (FFPE) stage-III urothelial cancer (UC) samples (n=24), of patients 
recruited in the NABUCCO trial (Figure 1A, Table 1). Patients received pre-operative 
combination ICI, consisting of two or three cycles of ipilimumab (anti-CTLA-4) and nivolumab 
(anti-PD-1)10. We determined the position and identity of cells using mIF and identified 
B cells, T cells (CD8+ T cells, FoxP3+ T cells, and T-helper cells), macrophages, and cancer 
cells (Figure 1B). Negative cells scored negative for all the antibodies (CD8-, CD3-, FoxP3-, 
CD20-, CD68-, PanCK-); this group contains all stromal cells and immune cells not covered 
by our antibody panel. Next, by comparing the local density of cancer and negative cells, 
we virtually segmented the tissue into the tumor and stroma compartments (Figure 1C, 
Supplementary Figure 1) and quantified immune cell density in both compartments (Figure 
1D, Supplementary Data Table 1). 
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Table 1. Clinical trial, treatment and sample characteristics for the cohorts used in this study.

NABUCCO 
NCT03387761

IMCISION
NCT03003637

Sample size 24 25*

Cancer type Urothelial cancer Head and neck cancer

Tissue source Bladder, n=24 (100%) Oral cavity,   n=24 (96%)
Oropharynx, n=1 (4%)

Tissue sampling Transurethral resection (primary tumor, FFPE) Primary tumor biopsy  (FFPE)

Treatment type Pre-operative (neoadjuvant) Pre-operative (neoadjuvant)

Treatment dosage 
per cycle

1: ipilimumab
2: ipilimumab + nivolumab
3: nivolumab

1: ipilimumab + nivolumab
2: nivolumab

Tumor type Primary, n=24 (100%) Primary, n=20 (80%)
Recurrence, n=5 (20%)

HPV-positivity (%) n/a 23 (92%)

Response definition Pathological response assessment (complete 
pathological response or residual disease)

Pathological response assessment 
combined with comparison 
of tumor cells decrease from 
baseline vs. on-treatment sample

Response (%) 14 (58%) 9 (36%)

Clinical Stage cT3-4aN0M0   n=14 (58%)
cT2-4aN1-3M0 n=10 (42%)

cT2N0             n=5 (20%)
cT3-4aN0M0   n=10 (40%)
cT2-4aN1-3M0 n=10 (40%)

Sex (%) Male n=18 (75%) Male n=20 (80%)

*only samples from IMCISION Arm B (combination ICIs) have been used in this manuscript

We quantified the pairwise SRs between all cell types in the TME using the first nearest-neighbor 
(1-NN) distance statistic (Supplementary Data Table 2).  In brief, the statistic is measured 
between a reference cell type (cell from) and a target cell type (cell to). The distances 
between each reference cell type and their closest target cell type yielded a 1-NN distance 
vector (Figure 1E). Then, we fitted a Weibull distribution function using a non-linear mixed 
effect model to summarize the 1-NN distance distribution. The model has two parameters: 
shape and scale, which uniquely describe the properties of the 1-NN distance distribution 
(Figure 1E, top) in a threshold-independent manner. We estimated the Weibull parameters 
(scale and shape) for all 49 pairwise relationships between cell types for all samples using 
the data from the whole tissue slide. Additionally, we evaluated the threshold-dependent 
G-function derived from the cumulative distribution function (CDF) of the 1-NN distance 
distribution and broadly documented in the spatial statistics literature29. The G-functions 
were summarized by computing the area under the curve (AUC) at different thresholds T, 
which we refer to as G-AUC-T (which included T = 25 [Figure 1E, bottom], T = 50- and T 
= 100-micron) across all pairwise cell type SRs and samples.
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Figure 2. Exploration of pairwise cell type SRs in the TME using the 1-NN distance statistic. 
(A) Scale vs shape SR parameters fitted on the 1-NN distribution for the 24 samples and the 7x7 cell type 
combinations. Representative examples are highlighted in green, orange, purple and cyan, with their associated 
1-NN distance distributions (B), point patterns (C) and G-functions (D). 
(E) Scatter plot of the scale-shape parameter space by target cell type (cell type to in the SR). For instance, the first 
facet represents SRs studied from any reference cell type to cancer cells. There, the coloring denotes the reference 
cell type (cell type from); i.e. the orange dots represent spatial relations studied from B cells to cancer cells. Cohort 
averages for their associated SR parameters are highlighted as big dots for each cell type-cell type combination. 
Abbreviations: SR: spatial relationship; TME: Tumor microenvironment; 1-NN: First nearest neighbor.

We then compared the spatial (Figure 1E) and density (Figure 1D) parameters with response 
to ICIs and compared their predictive power (Figure 1F). Lastly, we validated the associations 
between TME parameters and response in an independent cohort of mostly HPV-negative 
head and neck squamous cell carcinoma (HNSCC, n=25) using baseline primary tumor 
samples of patients recruited in the IMCISION trial that received pre-operative ipilimumab 
and nivolumab combination treatment (Figure 1G).

5.2.2 Exploration of spatial relationships across the urothelial cancer tumor 
micro-environment 
We quantified the SRs for all pairwise relationships of immune, cancer, and negative cells by 
estimating the Weibull parameters (shape, scale) characterizing the 1-NN distance distributions 
(Figure 1E). Next, we explored the shape-scale parameter space across patients (Figure 2A). 
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To illustrate what the Weibull parameters (shape, scale) represent, we use four combinations 
of the SR metrics that characterize distinct instances of cellular spatial distributions (Figure 2A, 
colored dots). For the green dot in Figure 2A, we observe that the 1-NN distance distribution 
is characterized by relatively low distances (Figure 2B, green curve), which originate from the 
black cells being close to a pink cell (Figure 2C, “Low scale, High shape”). The low scale/high 
shape value signals densely packed pink cells, meaning there is always a pink cell close to a 
black cell. Another type of SR characterized by relatively short 1-NN distances but with a 
higher variance in 1-NN distances, is illustrated in Figures 2A-B (orange dot and curve).  It 
represents an SR where one or both cell types are arranged in overlapping, densely packed 
clusters, such as the pink and black cells in Figure 2C (“Low scale, Low shape”). Cases with 
an even larger spread in distances (Figures 2A-B, purple dot and curve) from the black to 
the nearest pink cells, are described by high scale and low shape parameter values (Figure 
2C, “High scale, Low shape”). Lastly, the cyan dot (Figure 2A) represents a 1-NN distribution 
shifted towards higher 1-NN distances (Figure 2B, cyan curve), characteristic of a repulsion 
pattern, i.e., where both cell types are clustered in relatively large clusters (Figure 2C, “High 
scale, High shape”). Therefore, increasing the scale parameter results in an increase of the 
distance distribution spread (i.e., the distribution width, Supplementary Figure 2A-B), while the 
shape parameter is related to the distinct forms of the distribution behavior (Supplementary 
Figure 2C-F, Supplementary Figure 3).

Furthermore, the associated threshold-dependent G-function results showed corresponding 
differences between the four scenarios, which is expected, as the G-function is the cumulative 
distribution of the 1-NN distances (Figure 2D, equation 4). However, in contrast to the Weibull 
approach, a threshold value (T) is required to generate the summary metric G-AUC-T. 

We then dissected the SRs by reference and target cell type to explore patterns of SRs 
across the TME (Figure 2E). First, we investigated self-self relationships, which are relationships 
between cells of the same type. The self-self relationship for tumor cells falls in the “Low 
scale, High shape” scenario, with shorter distances between cells as tumor cells are typically 
densely packed in the tumor regions (Figure 2E-1, blue dots and arrow). Similar behavior was 
observed for negative cells, indicating a tight packing of negative cells (Figure 2E-2, red dots 
and arrow). Then, we explored the self-self relationships of immune cells. We observed B 
cells clustering for all patients (Figure 2E-3, orange dots and arrow). We did not observe 
the same clustering behavior for self-self SRs of other immune cell types (e.g., green dots 
in Figure 2E-6, which shows a behavior more akin to the “Low scale, Low shape” scenario). 
Subsequently, we assessed the SRs between different cell types. We observed a high variation 
in the Weibull parameters across samples and pairwise cell type combinations (Figure 2E) and 
a dependence on the SR perspective, i.e., whether a given cell type is the cell type from or 
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the cell type to, which can be attributed to the asymmetric property of the 1-NN statistic, 
as illustrated in Supplementary Figure 4.

In short, we created a framework to quantify, interpret, and study SRs in the TME using 
the Weibull parameters extracted from the 1-NN distance distributions. The framework 
allows exploring distinct cellular organization patterns and quantifying specific SRs (e.g., T 
cell to B cell vs. B cell to T cell) amenable for downstream analyses aimed at furthering our 
understanding of the TME and its relationship to response to ICIs. 

5.2.3 Comparison between spatial relationship metrics derived from the first 
nearest neighbor distance statistic
A common approach to extracting parameters from the 1-NN distance distribution statistic 
is through the G-function, which represents the cumulative density function (CDF) of the 
1-NN distribution and requires a particular threshold to summarize the data for downstream 
analyses. We compared our Weibull parameters with the G-function summary. We evaluated 
the G-function using its area under the curve (AUC) up to a 25-micron distance, which we 
defined as the “G-AUC-25”. We chose this threshold after inspecting the distance region 
in which the G-function showed the highest variability. Because we observed variability in 
G-functions across pairwise cell-type relationships, other thresholds were evaluated and 
denoted as “G-AUC-T”, in which T denotes the threshold in microns. We observed a 
non-linear relationship between the shape, scale and the G-AUC-25 (Figure 3A), G-AUC-12 
and G-AUC-50 (Supplementary Figures 5A-B).

Upon summarizing the G-function, and for a given SR’s G-AUC-25 value, we observed that 
the associated shape and scale parameters can show substantial variation (Figure 3A; e.g., dots 
coloured in red mapping to a wide range of shape parameter values). Figure 3A highlights 
a pair of SRs with large differences between their shape or scale parameters, which can 
be visually confirmed by their 1-NN curves (Figures 3B, D, F).  In contrast to the Weibull 
parameters, the corresponding G-AUC-25 values do not differ substantially between the pair 
members (Figures 3C, 3E, and 3G, showing the G-function curves corresponding to the pairs 
in Figures 3B, 3D, and 3F, respectively), which can hinder interpretations on the associated 
SR. Specifically, comparing Figures 3B and 3C, we observe that while the Weibull parameters 
are quite different (scale=14 and shape=6.4 for B-light, scale=14 and shape=3.0 for B-dark) 
the G-AUC-T values are quite similar (G-AUC-25=11.5 for B-light and G-AUC-25=11.8 for 
B-dark). While in the other examples the differences in the G-AUC-25 values were small, 
we found that higher values of the summary threshold could better capture the difference 
between the SR pairs in Figure 3E (Weibull density in 3D) and Figure 3G (Weibull density 
in 3F).
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Figure 3. Comparison of spatial relationship parameters derived from the 1-NN distance statistic. 
(A) Scale/shape parameter space associated with the G-AUC-25 (coloring, G-function AUC evaluated at 25 microns).
(B, D, F) 1-NN PDF distance distribution of pairs of examples with a substantial difference in the shape parameters. The 
plot reports each curve's shape, scale, and SR. Each SR is annotated in panel (A).
(C, E, G) Associated G-functions (CDF) of the examples shown in panel A of pairs of examples without a substantial 
difference in G-AUC-25. G-AUCs evaluated at different thresholds T are reported in the figure.
Abbreviations: AUC: Area under the curve; G-AUC-T: G-function AUC evaluated at a threshold T; T: threshold; 1-NN: 
first nearest neighbor; SR: spatial relationship.

To further illustrate differences between SRs captured by the shape or scale parameters but 
not by the G-AUC-25 parameter, we compared G-AUC-Ts for different pairwise cell-cell 
relationships (Supplementary Figure 5C). Here, for different samples but the same SRs 
(e.g.,  Macrophages to B cell), the magnitude of the increase in the G-AUC-T value when 
altering the evaluation threshold T, depending on the studied pairwise cell-cell relationship, the 
G-function’s shape (rapidly or slowly reaching the maximum value), and the sample.  In some 
SRs, the G-AUC’s increase was linear (e.g., Cancer cell to cancer cell) because the G-function 
saturated at low thresholds (Supplementary Figure 5D). Still, in others (e.g.,  Macrophages 
to B cell), the increase was not always linear because the G-function reaches saturation at 
higher thresholds (Supplementary Figure 5D). Therefore, when using a G-function statistic, 
such as the G-AUC-T, the SR quantification critically depends on the threshold used.

In short, our data shows that the G-function threshold introduces variance in the downstream 
metric G-AUC-T. Furthermore, optimizing the threshold to maximize the effect size of 
SR-biomarkers for treatment response creates a risk of overfitting. Therefore, different 
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results using the same SR data can be obtained when varying the threshold, which can 
hinder downstream interpretation.

5.2.4 Spatial relationships associated with immune checkpoint blockade 
response
Multiplex immunofluorescence data are usually summarized as cell type fractions or immune 
cell density. We quantified the density of T cells, B cells, and macrophages in both the 
tumor and stromal compartments. However, we found no significant differences between 
response groups (Figure 4A), indicating no differences between response groups in immune 
cell abundances in either the tumor and stromal compartments.  In addition, immune cells 
spatially distribute following configurations of immune phenotypes30, being Excluded (high 
immune cell abundance in the stroma),  Inflamed (high immune cell abundance in the tumor), 
and Desert (low immune cell abundance in the tumor and stroma). We quantified exclusion 
ratios (ratio between stromal and intratumoral immune cell density) and used them as a 
proxy of immune phenotypes for each immune cell. However, again we found no significant 
associations with treatment response (Figure 4B), suggesting similar immune cell configurations 
in the response groups. 

Motivated by the invariance between immune cell abundances and density ratios in the TME 
between response groups, we investigated whether spatial relationships derived from the TME 
were predictive of response to ICI combination treatment. We first investigated whether 
the SRs of all pairwise cell types, characterized by the Weibull parameters (shape and scale), 
were associated with clinical response (Figure 1F). After correction for multiple hypothesis 
testing, we identified nine SRs that were associated with clinical response (FDR<0.10) for the 
Weibull parameters shape and scale (Figures 4C, D). The association between G-AUC-T and 
response using a rank-based statistic strongly depended on the selected value of the threshold, 
with the fold change decreasing with increasing values of the threshold (T) (Supplementary 
Figure 6). When selecting a low threshold value (T = 25 microns), we found no significant 
associations between SRs quantified by G-AUC-25 and response (Supplementary Figure 6A). 
Upon increasing the threshold value (T = 50 microns), we found three associations between 
SRs quantified by G-AUC-50 and response (Supplementary Figure 6B), of which two were 
also identified using the Weibull parameters and one SR (FoxP3+ T cell to negative cell) was 
trending but not significant (FDRscale=0.21, FDRshape=0.11) using the Weibull parameters 
(Supplementary Figures 6, 7).
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Figure 4. Association of spatial relationships with response to pre-operative ipilimumab+nivolumab 
in urothelial cancer. 
(A) Volcano plot showing the fold change on the intratumoral and stromal immune cell densities between response 
groups (x-axis) and statistical significance by t-test adjusted by multiple hypothesis testing (y-axis). 
(B) Volcano plot showing the fold change on the exclusion ratio (ratio between stromal and intratumoral immune 
cell density) between response groups (x-axis) and statistical significance by t-test adjusted by multiple hypothesis 
testing (y-axis). 
(C) Volcano plot showing the fold change on the shape parameter between response groups (x-axis) and statistical 
significance by t-test adjusted by multiple hypothesis testing (y-axis). 
(D) Volcano plot showing the fold change on the scale parameter between response groups (x-axis) and statistical 
significance by t-test adjusted by multiple hypothesis testing (y-axis). 
(E) Median first nearest-neighbor distance distribution per response group as calculated by the associated shape 
and scale for the SRs that are significantly associated with response to ICI treatment (n=14 independent responders 
and n=10 independent non-responders) and statistical significance by a Mann-Whitney test. No adjustments were 
made for multiple comparisons.
(F) ROC curve AUCs of the discriminative power of distinct TME parameters when predicting ICI response on n=14 
independent responders and n=10 independent non-responders: all spatial parameters (green), all spatial parameters, 
density and exclusion ratio metrics (gold), all density metrics (pink), and exclusion ratio between stroma and tumor 
density (blue). Confidence intervals (error bar of each barplot) denote the 95% confidence interval as estimated by 
bootstrapping the 24 samples 500 times as implemented in pROC. The lines denote whether a statistical significance 
on the associated AUC was achieved. Significance symbols above bar plots denote whether the AUC is significantly 
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different from AUC=0.5 as assessed by a two-sided Mann-Whitney test. Significance symbols between bar plots 
denote whether the ROC-AUC-spatial (green) is significantly greater than the ROC-AUC-spatial-density-exclusion 
(gold) or ROC-AUC-density (pink) or ROC-AUC-exclusion (blue). Statistical significance between ROC curves 
was assessed by re-calculating AUCs by bootstrapping each ROC plot 500 times, and significance was assessed by 
a one-sided t-test as implemented in pROC. Exact p-values are reported in the Source Data file. No adjustments 
were made to correct for multiple comparisons.
(G) Logistic regression deviance of a univariate logistic regression model predicting ICI response (n=14 independent 
responders and n=10 independent non-responders) using as a predictor the shape, the scale, or the G-function 
evaluated at different thresholds (G-AUC-T). Variability on the AIC was evaluated by leave-one-out cross-validation on 
the 24 samples and significance was tested by a student’s t-test. No adjustments were made for multiple comparisons.
The box plots in each panel show the middle 50% of the data, with the box itself representing the median and 
the interquartile range (IQR) between the 25th and 75th percentiles. The whiskers extend from the box to the 
furthest data points within 1.5 times the IQR from the median. Unless otherwise stated, all statistical tests were 
two-sided. Significance symbols: *: p<0.05, **: p<0.01, ***: p<0.001.
Abbreviations: ICI: Immune checkpoint inhibitor; 1-NN: first nearest neighbor; ROC: Receiver operating characteristic; 
AUC: area under the curve; TME: tumor microenvironment; G-AUC-T: G-function evaluated at a threshold T; T: 
threshold; logit: logistic regression; LOO: leave-one-out cross validation.

To guide interpretation, we computed, for each SR significantly associated with clinical response 
to combination immunotherapy and each patient, the median 1-NN distances (Figure 4E) and 
compared them using a rank-based statistic.  Median distances exhibit a non-linear relationship 
with the shape and scale parameters (as indicated in equation 6) but provide enhanced clarity 
in the interpretation of our findings.  In responding tumors, the distances from either CD8+ T 
cells or macrophages to the closest cancer cells were smaller than in non-responders (median 
1-NN distance CD8+ T cell to cancer cell, responders=4±3μm, non-responders=18±15μm; 
Macrophage to cancer cell, responders=4±2μm, non-responders=10.2±7μm). Conversely, 
responding tumors had the largest 1-NN distances for the SR from CD8+ T cells or 
macrophages to the closest negative cell (median 1-NN distance CD8+ T cell to negative 
cell, responders=9±8μm, non-responders=3±1μm; Macrophage to negative cell, median 1-NN 
distance responders=12±10μm, non-responders=4±1μm). Despite the clear differences in the 
associated median 1-NN distances, the G-function approach did not identify the associations 
of the SRs with response at a low threshold (T = 25 microns, Supplementary Figure 3A) nor 
the associations of the SRs involving CD8+ T cells and response at a higher threshold (T = 
50 microns, Supplementary Figure 3B, FDR=0.14 and FDR=0.20 for CD8+ T cell to cancer 
cell and CD8+ T cell to negative cell, respectively). Furthermore, non-responding tumors 
were characterized by small distances from CD8+ T cells to B cells (median 1-NN distance 
CD8+ T cell to B cell, responders=66±27μm, non-responders=36±27μm) when compared 
to responding tumors. We identified an association between the SR from cancer cells to 
CD8+ T cells and response with a small fold change for the shape parameter (|FCshape|=0.11, 
FDRshape=0.09), pointing to a difference in distribution that was not detected in terms of 
median 1-NN distances (Supplementary Figures 7A-E, p=0.98), suggesting that this may well 
be a false positive. Lastly, the single SR biomarker identified by the G-function approach at a 
50 microns but not at a 25 microns threshold (FoxP3 T cell to negative cell, FDRG-AUC-25=0.12, 
FDRG-AUC-50=0.04, Supplementary Figure 6 and Supplementary Figure 7J) that was not identified 
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by the Weibull approach was trending (Supplementary Figure 7I, FDRshape=0.11) and showed 
relative differences in the associated median 1-NN distances (Supplementary Figure 7F). 

In contrast to the SRs, the immune cell density and exclusion ratios were not associated 
with response. We confirmed, using simulated data, that density affects SRs between rare 
(e.g., immune to immune cells) but not between abundant and rare cell types (e.g., cancer to 
immune cells) (Supplementary Note 1). To further confirm independence between density 
and SR metrics in the predictive setting, we compared the predictive power for clinical 
response of the SR Weibull parameters (shape and scale) and their associated relevant 
density and exclusion metrics. The comparisons were made for each SR that was significantly 
associated with treatment response. For example, the SR from CD8+ T cells to cancer cells 
was associated with response (FDRshape= 0.01, FDRscale=0.09). We compared its predictive 
power with the CD8+ T cell density (intratumoral and stromal) and exclusion ratio of CD8+ 
T cells. For this comparison, we employed a logistic regression model and the resulting area 
under the ROC curve (AUROC). The AUROCs for the five SR associations (depicted in 
Figure 4E) and the associated density and exclusion metrics are shown in Figure 4F. No density 
or exclusion metric reached significance as all 95% CI of the associated AUROCs included 
AUROC=0.5.  In contrast, all the SR Weibull parameters reached significance with AUROC 
values around 0.8 and 95% CI that do not include AUROC=0.5 (Table 2, Supplementary 
Figure 8), highlighting the superior predictive power of the SR metrics. Lastly, we tested 
whether adding density and exclusion ratio as covariates to the SR-based model improved 
the performance, but this was not the case (Figure 4F, Table 2).
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Next, we compared different SR metrics derived from the 1-NN distance distribution 
(shape, scale, G-AUC-T at different T) for their ability to describe clinical response. To do 
so, we compared the Weibull parameters to the G-AUC-T metrics in the predictive setting. 
Specifically, we compared the logistic regression deviance, in which lower values indicate 
better model fits. We did so for the six SRs that were found to be significantly associated 
with response. The SR from CD8+ T cells to cancer cells model showed that the shape or 
the scale parameters scored significantly better than the G-AUC-T trained models for T 
= 25, 50, and 100 (Figure 4G). For the remaining SRs significantly associated with clinical 
response (Figures 4C-D), we observed that the models trained using Weibull parameters 
(shape and scale) outperformed the models trained using G-function parameters, except for 
the SR from macrophages to negative cells and from CD8 T cells to B cells where G-AUC-25 
performed similarly as in the Weibull approach (Supplementary Figure 9). 

In summary, we observed that mIF-derived spatial relationships in the TME hold superior 
predictive power for clinical response compared to immune cell density or immune 
phenotypes. Our results convincingly demonstrate that the Weibull parameters (shape and 
scale) are superior to the G-function metrics (G-AUC-T) in predicting clinical response to 
combination checkpoint therapy.

5.2.5 Validation of spatial relationships biomarkers of ICI response in a cohort 
of head and neck cancer
We tested whether our spatial biomarkers also predicted response in other cancer types. We 
used a cohort of head and neck squamous cell carcinoma (HNSCC) patients from the 
IMCISION trial28​ to validate our findings. A subset of 25 IMCISION patients was treated with 
pre-operative ipilimumab+nivolumab (similar to NABUCCO), and successfully provided tumor 
sample profiling with the same mIF antibody panel as the UC cohort (Figure 1G, Table 1).

We first compared the SR parameter space in HNSCC (Supplementary Data Table 3) 
with that of the UC cohort. We observe the same C-shape distribution in the shape-scale 
space as we observed in UC (Figure 5A). Second, we found a high concordance between 
NABUCCO and IMCISION for the shape and scale population averages across pairwise SRs 
between all cell types (Figure 5B, Supplementary Figures 10A-D). These results suggest that 
the distance between cell types follows a characteristic pattern preserved across these two 
cancer types. For instance, similar behavior of B cell to B cell 1-NN distances compatible 
with the “Low scale, High shape” behavior was observed in HNSCC. 

Next, we evaluated whether the SR biomarkers of ICI response identified in UC were also 
predictive of reaching a major pathological response upon combination ICI in the HNSCC 
cohort. The validation was assessed for the strongest biomarkers (FDR<0.04) to maximize 
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the likelihood of validation, which involved the SRs CD8+ T cells to cancer cells and Macrophages 
to cancer cells from Figures 4C-D. Both SRs showed the same direction of association with 
response in HNSCC (Figure 5B) and, importantly, showed a statistically significant association 
with response after multiple testing correction: CD8+ T cells to cancer cells (FDRshape=0.045) 
and macrophages to cancer cells (FDRshape=0.0076, FDRscale=0.00094) (Supplementary Figures 
11A-B), which matches with the spatial proximity behavior (lower 1-NN distances) identified 
in the responding UC tumors (Figure 4E). We confirmed the earlier established superiority 
of the SR metrics over density metrics by showing that, in the HNSCC cohort, immune cell 
density was not associated with response (Supplementary Figure 11C), except for stromal 
macrophage and CD8+ T cell densities.

In conclusion, the TME spatial biomarkers for pathological response to ICI combination 
treatment in UC validated in an HNSCC cohort, suggesting that the SRs between CD8+ T 
cells and macrophages to cancer cells could be an important context-independent biomarker 
for clinical response to ipilimumab+nivolumab.
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Figure 5. Validation of spatial relationship biomarkers of ICI response in an independent cohort of 
pre-operative ipilimumab+nivolumab in head and neck cancer.
(A) Scale vs. shape SR parameters fitted on the 1-NN distribution for the 25 samples and the 7x7 cell type 
combinations obtained in the head and neck cancer data (right,  IMCISION) and UC data (left, NABUCCO). 
(B) Scatter plot of the scale-shape parameter space by neighbor cell type (cell to) obtained in the IMCISION trial 
data. Cohort averages for their associated spatial parameters are highlighted as big dots for each cell type-cell 
type combination. 
(C) Median first nearest-neighbor distance distribution in head and neck cancer samples per response group (n=9 
independent responders and n=16 independent non-responders) as calculated by the associated shape and scale for 
the SRs that significantly (FDR<0.04) associated with response in UC and statistical significance by a Mann-Whitney 
test. No adjustments were made for multiple comparisons (adjustments for multiple hypothesis testing were done 
on the shape and scale parameters space in Supplementary Figure 11). 
The box plots in each panel show the middle 50% of the data, with the box itself representing the median and the 
interquartile range (IQR) between the 25th and 75th percentiles. The whiskers extend from the box to the furthest 
data points within 1.5 times the IQR from the median. Unless otherwise stated, all statistical tests were two-sided.
Icons from panel A, B, F and G were adapted from bioIcons (cancerous-cell-1, lymphocytes-4, macrophage, 
t-lymphocyte, b-lymphocyte, fibroblast-1 licensed under CC-BY 3.0 Unported by Servier), flaticon.com (bladder 
icon, https://www.flaticon.com/free-icon/bladder_1453578; head neck icon, https://www.flaticon.com/free-icon/
injection_4418017). 
Abbreviations: SR: spatial relationship; ICI: immune checkpoint inhibitors; 1-NN: first nearest neighbor; UC: urothelial 
cancer.

5.3 DISCUSSION

Advances in ICI have resulted in pembrolizumab (anti-PD1) becoming the second-line 
standard of care for advanced UC3, and avelumab (anti-PD-L1) as the standard of care for 
maintenance after chemotherapy treatment31. Results from pre-operative clinical trials show 
that patients can have a pathological complete response to only two or three cycles of 
immunotherapeutic treatment9,10,32,33. These promising clinical results need biomarkers that 
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stratify individual patients and improve our understanding of the immunological background 
of (non-)response.  In this study, we provided a comprehensive quantitative exploration of 
the, thus far, poorly characterized SRs in the UC TME. We show the potential for clinical 
utility in predicting the response to pre-operative combination ICIs and provide a quantitative 
basis for follow-up research.

We found an association between the proximity of the SR from CD8+ T cells to cancer cells 
and response in UC and confirmed that this association also holds in HNSCC.  In contrast, 
no differences between response groups in CD8+ T cell density were found, revealing that 
abundance alone is likely insufficient to explain treatment response. Tumors with an immune 
excluded phenotype exhibit an enrichment of CD8+ T cells at the stroma due to mechanisms 
preventing T cells from reaching the tumor. Quantifying immune phenotypes is not trivial 
as distinct patterns of exclusion and topography exist17,34.  In our study, we used exclusion 
ratios and densities as a proxy to estimate immune phenotypes, but we found no difference 
between response groups.  In contrast, our SR parameters served as a distance metric that 
objectively quantifies proximity differences between CD8+ T cells and cancer cells between 
response groups. Therefore, while abundances or ratios between abundances of CD8+ T cells 
was insufficient to explain response to combination ICIs, a more complex quantification of 
their relative spatial distribution in relation to cancer cells was a more informative way to 
describe their behavior within a tumor. Our observations suggest that therapeutic strategies 
that enhance CD8+ T cell migration closer to cancer cells may overcome resistance to 
ICI. These results align with the observation that immunosuppressive mechanisms, such as 
TGF-beta signaling, are associated in UC10,12 with a CD8+ T cell excluded phenotype and 
resistance to ICI35. Similar results have been reported in the ICI context for melanoma, in 
which responding tumors to different ICI treatments were characterized using a 1-NN statistic 
by proximity between proliferating antigen-experienced CD8+ T cells (CD45RO+Ki67+) and 
their closest cancer cell23.  Moreover, in gynecological and non-small cell lung cancer, the SR 
between tumor-infiltrating lymphocytes (TIL) and non-TILs (e.g., cancer cells) demonstrated 
its utility for clinical outcome prediction in an ICI cohort24, which is compatible with our 
observations in UC and HNSCC.

We found that the proximity of macrophages to cancer cells was positively associated 
with response in the UC and HNSCC cohorts.  Interpretation of this candidate biomarker 
warrants further investigation due to the plasticity and potential pro- or anti-tumorigenic 
behavior of macrophages36, which results in macrophage subtype heterogeneity not covered 
by our mIF antibody panel. Literature in the ICI context suggests that macrophages can 
express PD-L1 and PD-137 but can also prevent T cells from reaching cancer cells38. Data 
from pancreatic cancer suggest that anti-tumorigenic macrophages (M1-macrophages) 
are closer to cancer cells than pro-tumorigenic macrophages (M2 macrophages)39, which 
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indicates that our proximity signal between macrophages and cancer cells in responding 
tumors may originate from an M1-type macrophage lineage.  In locally advanced esophageal 
squamous cell carcinoma treated with chemoradiotherapy and SHR-1210 (anti-PD-1 ICI), 
a prognostic signal using the 1-NN statistic median reported PD-L1+ tumor cells closer to 
PD-L1- macrophages associated with a better OS after treatment25. Lastly, non-responding 
tumors were associated with close proximity between B cells surrounding CD8+ T cells, 
which is in line with the high baseline expression of genes involved in B cell signaling we 
found in non-responding UC tumors in NABUCCO10. 

We compared the spatial and density metrics' predictive power to corroborate the SR metrics' 
importance. Our results show a superior predictive power for SR metrics and enhance the 
limited view that count-derived data, such as density or exclusion ratios, provide of the 
TME. Furthermore, we compared the SR quantifications on our Weibull parameters with the 
conventional G-function. While both are based on the 1-NN distance statistic, we showed 
that the G-function dependence on a distance threshold (T) reduced its utility for group 
comparisons because the associated G-function’s range of values, variance, and predictive 
power was threshold dependent. Besides, due to the heterogeneity in the G-function 
evaluations across cell-cell pairwise relationships, there is no unique optimal threshold that 
maximizes differences between clinical groups of interest for all SRs. Therefore, optimization 
methodologies for the threshold of choice depend on the SR and cohort, potentially leading 
to under- or over-fitting and generalization issues. Earlier work on the G-function metric 
usage for pancreatic cancer grade prediction reported that a single threshold evaluation 
cannot model all the inherent signals from the data26. A higher predictive power could only be 
achieved by discretizing the G-function at multiple thresholds, which limits its interpretability 
and utility because of an increased number of summary parameters26. On the other hand, our 
Weibull parameters (shape and scale) allowed for an invariant summary of the SRs without 
any threshold, which was achieved by, instead of having an empirical summary or discretizing 
it, modeling all its inherent structure using a curve-fitting approach. Furthermore, the mixed 
model methodology allowed us to smooth the data and model the parameter variance at 
a cohort level, making it more suitable for group comparisons when correlating them with 
clinical phenotypes of interest because of the reduced leverage of outlier samples40.

The validation of our TME candidate biomarkers for pre-operative combination ICIs response 
identified in UC indicates biologically relevant SR differences consistent across cancer 
types. Crucially, despite HNSCC being a different organ and morphologically distinct tumor 
type, showing variability within their biopsy locations (oral cavity, oropharynx), using our 
proposed spatial approach, we observed similar average SR distances in both tumor types. A 
combination of pathological complete response and near-complete response defined response 
for exploratory analyses in IMCISION (HNSCC). However, in NABUCCO (UC), treatment 
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response was defined as a pathological complete downstaging at the time of surgery. The 
response rate in IMCISION was lower than in NABUCCO (36% vs. 58%, p=0.04), thus 
decreasing the statistical power to quantify differences between response groups. Despite 
these differences and the relatively small sample sizes (24 and 25 for NABUCCO and 
IMCISION, respectively), the translatability of our findings on the associations between the 
SR parameters identified in our UC cohort and treatment response in the HNSCC cohort 
is promising.

Limitations of our study include the number of antibody markers profiled in mIF data, which 
restricted the types of cells we could detect. Transurethral resections provide a superficial 
spatial sampling of the whole TME architecture, therefore allowing for a limited profiling of 
the tumor margin, which is known to contain a higher abundance of immune cells in UC34 
compared to intratumoral tissue. Nevertheless, the literature suggests that transurethral 
resection (TUR) material in UC is representative of the whole UC tumor spatial heterogeneity 
in ~58-73% of cases at an immune cell density level41, but their associated SRs remain yet 
unexplored. Limitations to our methodological framework include quantifying SRs by studying 
only the first nearest neighbor and not beyond. While considering higher-order neighbors 
could facilitate exploring more distant spatial patterns, the trade-off involves a compromise 
in the interpretability of the data. Network or graph-based approaches would allow for a 
broader spatial representation of the TME. However, these topology-based methods usually 
ignore distances and require more complex SR representations. Furthermore, combinations of 
samples and pairwise cell type SRs involving noisy distance distributions, such as SRs derived 
from lowly-populated cells (e.g., FoxP3+ T cells in a subset of UC samples), are excluded 
from the analysis only when convergence is not reached in the mixed model fitting. However, 
only 2% of our SRs (24 out of 1176 SRs) were rejected for this reason. While this might 
have consequences in associations with clinical outcomes of interest (e.g., clinical response), 
such rare cell types SRs lack robustness. Lastly, our sample sizes are relatively small, and our 
results warrant further validation in independent and larger cohorts. 

In short, our study provides a systematic framework to quantify SRs.  It demonstrates that 
SRs provide a complementary summary of the TME outperforming count-derived metrics, 
such as density, for identifying biomarkers with a clinical utility. Our results reveal proximity 
between CD8+ T cells to cancer cells and macrophages to cancer cells as candidate biomarkers 
for response to pre-operative combination ICIs, which have been thus far unexplored and 
provide a complementary view of the TME that warrants further investigation.
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5.4 METHODS

5.4.1 Study oversight
The studies from this manuscript received approval from the institutional review board of the 
Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital. The execution of these 
studies strictly adhered to the protocols and Good Clinical Practice Guidelines outlined by the 
International Conference on Harmonization, along with the principles established in the 1964 
Declaration of Helsinki. Approval for the trial protocols and any subsequent amendments 
was obtained from the Medical Research Ethics Committee of the Netherlands Cancer 
Institute—Antoni van Leeuwenhoek Hospital (MREC AVL, https://english.ccmo.nl/mrecs/
accredited-mrecs/mrec-netherlands-cancer-institute-the-antoni-van-leeuwenhoek-hospital). 
Before enrolling in the clinical trials, all participating patients provided written informed 
consent to partake in the studies.

5.4.2 Urothelial cancer study population and treatment (NABUCCO trial)
Twenty-four pre-treatment Urothelial Cancer (UC) samples from the NABUCCO trial 
(NCT03387761, Cohort 1) were used for analyses.  In the trial patients underwent a 
combination treatment (2 or 3 cycles) of ipilimumab (anti-CTLA-4) and nivolumab (anti-PD-1) 
prior to surgical resection. The trial cohort consisted of high-grade stage III muscle-invasive 
urothelial cancer (cT3-4aN0M0 or cT1-4aN1-3M0). Details of the trial are reported10.

Response to treatment was evaluated by pathological response assessment on radical 
surgery. Tumors with a complete pathological response (ypT0N0) or residual disease 
(<=ypT1N0) were classified as responders (n=14), and tumors with a >=ypT2N0 were 
classified as non-responders (n=10).

5.4.3 Head and Neck squamous cell carcinoma population and treatment 
(IMCISION trial)
Thirty-one head and neck squamous cell carcinoma (HNSCC) tumor samples of multiple 
subsites (oral cavity n=27, oropharynx, n=4) were obtained from the IMCISION trial 
(NCT03003637). Patients underwent either two cycles of nivolumab (Arm A, n=6) or a 
combination treatment of 2 cycles of ipilimumab (anti-CTLA-4) and nivolumab (anti-PD-1) 
(Arm B, n=25) prior to surgical resection. The trial cohort consisted of HNSCC tumors 
with a histological grade T2‒T4N0‒N3b and metastatic grade M0 primary or recurrent of 
mostly HPV-negative head and neck squamous cell carcinoma (HPV negative, n=23; HPV 
positive, n=2). Details of the trial can be found elsewhere28. Only samples from Arm B (n=25) 
were analyzed in this manuscript.
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Response to treatment was evaluated by pathological response assessment on surgery and 
by comparison of tumor cells decrease from baseline to on-treatment samples28. Tumors 
with <=10% tumor cell percentage (TCP) at surgery and a decrease of 90-100% in tumor 
cells from baseline to on-treatment were classified as major pathological responders (MPR, 
n=9); tumors with <=50% TCP at surgery and a decrease of 50-89% in tumor cells from 
baseline to on-treatment were classified as partial pathological responders (PPR, n=1); else 
tumors were classified as no pathological responders (NPR, n=15). Patients with an MPR were 
classified as Responders, and patients with a PPR or NPR were classified as Non-Responders.

5.4.4 Multiplex Immunofluorescence
Multiplex immunofluorescence (mIF) was performed on pre-operative baseline formalin-fixed 
paraffin-embedded (FFPE) tumor resections and assessed on an immune panel (DAPI, 
PanCK, CD8, CD3, FoxP3, CD20, CD68) as previously described for UC10 (NABUCCO) 
and HNSCC28 (IMCISION). The experimental protocol and data processing is reported 
elsewhere10,28. 

Antibodies used for the NABUCCO trial dataset were CD3 (1/400 dilution, Clone P7, Cat 
RM-9107-S, ThermoScientific), CD8 (1/100 dilution, Clone C8/144B, Cat M7103, DAKO), 
CD68 (1/500 dilution, Clone KP1,  M0814, Dako), FoxP3 (1/50 dilution, Clone 236A/47, Cat 
ab20034, Abcam), CD20 (1/500 dilution, Clone L26, cat M0755, Dako), PanCK (1/100 dilution, 
Clone AE1AE3, Cat MS-343P, Thermo Scientific). Antibodies used for the IMCISION trial 
dataset were CD3 (clone SP7, ThermoScientific, CatalogNo: RM-9107-S, LotNo: 9107S1805A), 
CD8 (clone C8/144B, DAKO / Agilent, CatalogNo: M7103, LotNo: 20048132), CD68 (clone 
KP1, DAKO / Agilent, CatalogNo: M0814, LotNo: 20040389), FoxP3 (clone 236A/47, DAKO 
/ Agilent, CatalogNo: ab20034, LotNo: GR3220121-1), CD20 (clone L26, DAKO / Agilent, 
CatalogNo: M0755, LotNo: 20038880), PanCK (clone AE1AE3, Thermoscientific, CatalogNo: 
MS-343P, LotNo: 343P1205H).

Upon mIF profiling, cells were segmented by marker positivity, and classified as Cancer 
cells (PanCK+), CD8 T cells (CD3+CD8+), FoxP3 T cells (CD3+FoxP3+), CD4 T cells 
(CD3+CD8-FoxP3-),  Macrophages (CD68+) and B cells (CD20+). 

Multiplex immunofluorescence in IMCISION was assessed as in NABUCCO and the 
experimental protocol is published in the original manuscript28. To ensure consistency in 
the mIF spatial data between the HNSCC and UC cohorts, including similar tumor purity, 
for each sample from IMCISION we aligned analysis methods by discarding stromal tissue 
residing beyond 150 microns distance from the tumor tissue by filtering out all cells classified 
as belonging to the ‘Stroma compartment’ (by segmentation) if their closest cancer cell lay 
beyond 150 microns by using the nncross method from spatstat.
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The data subjected to downstream analysis represented the position of each cell in the 
tissue (x- and y-coordinates of the nuclei) and its corresponding cell type. 

5.4.5 Segmentation of tumor and stroma compartments
To segment the tumor and stroma regions from each tissue, we first split each individual 
tissue island from each sample biopsy using dbscan v1.1-6 (density-based spatial clustering 
of applications with noise) by setting the size of the epsilon neighborhood to 300 and the 
minimum number of points in the epsilon neighborhood to 50 (Supplementary Figure 1A). 
Each tissue island was named foci. 

To segment the tumor and stroma compartments for each focus, we first computed the 
kernel density estimation (KDE) of the point pattern defined by cancer cells (KDEtumor), 
and by negative cells (KDEnegative). The KDE was estimated as implemented by density in the 
stats v3.6.3 package. The smoothing bandwidth for the KDE was optimized using likelihood 
cross-validation as implemented in bw.ppl in spatstat v1.64-1. Then, the KDEs were normalized 
to their maximum value (KDEtumor = KDEtumor / max(KDEtumor)) to allow comparison between 
the KDE of the tumor and negative cells. To segment the tissue, for each position populated 
by a cell, we compared both KDEs, and classified them as “Tumor” when KDEtumor > KDEnegative 

and as “Stroma” otherwise (Supplementary Figure 1B-C). 

5.4.6 Calculation of tumor and stroma compartment areas
To compute the covered area by each segmented tissue compartment (“tumor” or “stroma”), 
we first computed the kernel density estimation (KDE) of the point pattern defined by 
the cancer cells (KDEtumor) and normalized by maximum KDE intensity. Then, to compute 
the area of the tumor compartment, we filtered out all the KDE pixels with a normalized 
intensity < 0.1. We selected this threshold based on visual exploration for all cells. We then 
estimated the tumor compartment area as the aggregated area of all non-filtered pixels 
from KDEtumor (thus with intensity >= 0.1).

To compute the total tissue area, we also computed the KDEnegative and normalized it by the 
maximum value. We then summed the KDEtumor and KDEnegative, and filtered out pixels with 
a normalized intensity < 0.1. We then estimated the Total tissue area as the aggregated area 
of non-filtered pixels from (KDEtumor + KDEnegative ) (intensity >= 0.1). 

To estimate the area of the “stroma” compartment, we subtracted the “tumor area” from 
the “total tissue” area (Supplementary Figure 1D). This process was performed for each foci. 
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5.4.7 Spatial analysis: quantification of the first nearest neighbor (1-NN) 
distance distribution
The spatial relationships between all cells within the tumor microenvironment were studied 
using the first-nearest neighbor (1-NN) statistic as implemented in spatstats.  In brief, the 
approach is studied from a reference cell type to a neighbor cell type. For each reference 
cell type (“cell type from”), the distance to the closest neighbor cell type (“cell type to”) 
was measured using nndist (Figure 1E).  Then, we constructed a histogram from the vector 
of 1-NN distances. We smoothed the distribution by sliding a 5-micron window across 
the 1-NN histogram and iteratively counting the frequency of the 1-NN distances for each 
micron. We normalized the distribution to achieve a unit area under the curve (AUC) by 
dividing for the numerical AUC. SRs were quantified using the data from the whole tissue 
slide (i.e., not making a distinction beween tumor and stroma compartments).

5.4.8 Spatial analysis: fitting of Weibull distribution to the 1-NN distances 
vector
To summarize the 1-NN distance distribution, we fitted a Weibull distribution to the empirical 
probability density function (PDF), which is a 2-parameter distribution based on (the positive 
parameters) shape and scale, defined as:

(1) ( ) ( )f x b a e, , = a
b

x
b

a x b−1 −( / )a

 
Here, b denotes the scale, and a denotes the shape.

We implemented a methodology based on a functional data analysis approach to fit the 
Weibull distribution. First, to have an initial estimate of the distribution parameters for each 
patient (n=24) and cell type-cell type combination (n=49), we employed maximum likelihood 
estimation (MLE) using fitdist as implemented on fitdistrplus v1.1.3 package to have an initial 
estimate of the scale and shape parameters. Then, for each pairwise cell type relationship 
(cell type from vs. cell to), we implemented a non-linear mixed effect model (nlme v3.1-144) 
to fit a Weibull distribution on all patient samples, having the shape / scale intercept as fixed 
effects (fixed = a+b~1) and allowing a random effect for the scale/shape on each sample 
(random = list{sample=pdDiag(a+b~1)}) by modeling the correlation structure of the 
random effects a with diagonal positive-definite matrix. The nlme model was implemented 
by maximizing the restricted log-likelihood (method='REML'), with the parameters set to 
their default values and the control values set as:

	● 1000 maximum iterations for the optimization algorithm (maxIter = 1000).
	● 200 maximum iterations for the optimization step which is inside the nlme optimization 

process (msMaxIter=200).
	● 1e-1 tolerance for the PNLS step convergence criterion (pnlsTol=1e-1).
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	● 1e-6 tolerance for the convergence criterion in nlme algorithm (tolerance=1e-6).
	● Nonlinear minimization optimizer (opt="nlm").

To filter out low-quality distributions that lead to non-convergence of the models, we 
sequentially filtered out samples based on the number of cells (n) from the reference cell 
type (nFROM) or neighbor cell type (nTO). First, we fitted a model with the data for the 24 
samples.  If convergence was not achieved, we filtered out all samples with fewer than 20 
cells (nFROM < 20 or nTO < 20).  If the model still did not converge, we repeated filtering 
samples with fewer than 50, 70, or 100 cells. The approach allowed us to model as much 
data as possible unless the goodness of fit was compromised. For 24 spatial relationships 
for which a data fit could not be carried out (2% of the total combinations of data points 
from 24 samples and 7x7 cell type pairwise relationships) in our cohort.

Because the positivity constraint for the Weibull distribution parameters (b>0, a>0) could 
not be optimally implemented using a constrained non-linear mixed effect model, we 
re-parameterized the shape and scale parameters to force the values to be positive.  In 
brief, we re-parameterized the scale and shape employing new parameters A and B, which 
were unconstrained:

(2) a =
e

10
1 + A− , with A: unconstrained and aϵ(0, 10)

(3) b =
e

500
1 + B−

, with B: unconstrained and b ϵ0,500 
 
Here, a is the shape and b is the scale. 

Unless otherwise stated, the SR parameters reported in the manuscript correspond to the 
ones calculated on the first-nearest neighbor distributions using the spatial distribution of 
the whole tissue slide (thus, not using data stratified by tumor or stroma).

Sources of the variability of the SR parameters were also quantified, as reported in Extended 
Methods.

5.4.9 Spatial analysis: Computation of the G-function
Alternatively to fitting a distribution to the 1-NN distance distribution, we computed the 
G-function, which is defined as the cumulative distribution function (CDF) of the first-nearest 
neighbor distance distribution:

(4) G function r probability NN distance r− ( ) = (1 − ≤ )
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The G-function was computed as implemented by gest in the spatstat package. Because 
our SRs were studied between different cell types, we used the multitype nearest-neighbor 
function Gij(r) as implemented in Gcross, which was calculated from the first nearest 
neighbor distances from a cell of type i to the nearest point of type j. Then, to summarize 
the G-function, we computed the Area Under the Curve (AUC) of the G-function, named 
G-AUC-T, at different thresholds T’s, which included 25, 50, and 100 microns (i.e., G-AUC-25, 
G-AUC-50, and G-AUC-100, respectively).

5.4.10 Spatial analysis: Weibull-derived G-function
Using the properties of the Weibull distribution, we analytically constructed the Cumulative 
Distribution Function (CDF) using the shape and the scale parameters: 

(5) ( ) ( )Analytical CDF r exp r b= 1 − −( / )a

Here, b and a denote the scale and shape, respectively, and r denotes the first nearest neighbor distance. 

The Analytical CDF is analogous to the Analytical G-function. The AUC of the Analytical 
CDF at was evaluated at different distance thresholds T’s, and referred to in the manuscript 
as Weibull-G-AUC-T. 

5.4.11 Comparison of discriminative power between spatial and 
density-related parameters
We compared the predictive power between ICI response groups of the spatial-related 
parameters (shape, scale), density-based parameters (intratumoral and stromal immune cell 
density) and exclusion-based parameters (ratio between stromal and intratumoral immune 
cell densities). First, for each set of parameters (e.g., spatial-related parameters), we trained 
a logistic regression model using glm to predict response. Then, a ROC curve was built 
using the logistic regression's fitted values (probabilities) using pROC v1.17.0.1. For each 
ROC-AUC, we tested whether the AUC was significantly different from AUC=0.5 using a 
two-sided Wilcoxon signed-rank test between cases and controls. We used a bootstrapped 
approach (n=500) to estimate the confidence intervals of the ROC-AUCs and to test whether 
the ROC-AUCs from the spatial parameters were significantly greater than the ROC-AUCs 
from either the density or the exclusion ratio parameters. 

5.4.12 Comparison of discriminative power between Weibull-derived or 
G-function-derived parameters
Logistic regression deviance of Weibull parameters (shape, scale) and G-function parameters 
(G-AUC-T evaluated at different Ts) was evaluated by training univariate logistic regression 
(LR) models using data from each feature as a predictor, and clinical response labels as the 
dependent variable. Logistic regression deviance (logit deviance) was assessed, in which lower 



5

161

Spatial relationships predict response to combination immune checkpoint inhibitors 

values denote better model fits. The uncertainty of the AIC was estimated by performing a 
leave-one-out (LOO) variant of the analysis. A two-sided student’s t-test tested statistical 
significance. 

5.4.13 Spatial biomarker validation in HNSCC
We validated our top SR biomarkers associated with clinical response in our UC cohort 
(NABUCCO). First, we selected the top two biomarkers identified using our pipeline in 
UC (FDR < 0.04 in either the shape or scale parameter, which yielded the SRs CD8+ T cells 
to cancer cells and Macrophages to cancer cells). Second, we evaluated the shape and scale 
parameters for the biomarkers mentioned above between clinical response groups in the 
external HNSCC (IMCISION) cohort using a two-sided t-test and adjusted for multiple 
hypothesis testing using the Benjamini-Hochberg method. Then, we evaluated the median 
1-NN distances using the analytical derivation from the shape and scale parameters:

(6) ( )Median NN distance shape scale scale ln1 − , = * ( 2) shape1/

5.4.14 Statistical analysis 
Unless otherwise stated, a two-sided student’s t-test was used for group comparisons. We 
modeled density and count data in a logarithmic space. For spatial data, the shape of the 
Weibull parameters (a) was modeled on a non-logarithmic scale, and the scale (b) was 
studied on a logarithmic scale.  Multiple hypothesis testing corrections were done using the 
Benjamini-Hochberg method. Unless otherwise noted, statistical significance was defined 
as p<0.05 and False Discovery Rate (FDR) < 0.10 (10%), and all statistical tests were 
two-sided. All statistical analyses were performed in R 3.6.3. The following packages were 
used in this study: 

	● Spatstat 1.64 29

	● Dplyr 1.0.4
	● Fitdistrplus 1.1.3
	● Patchwork 1.1.1
	● Survival 1.3.24
	● ComplexHeatmap 2.2
	● Circlize 0.4.12
	● Glmnet 4.1.1
	● RColorBrewer 1.1.2
	● Nlme 3.1.144
	● Spastat 1.7.0
	● Ggpubr 0.4.0
	● Ggrepel 0.9.1
	● Plyr 1.8.6
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	● Tidyverse 1.3.0
	● Ggplot 2.3.3.3
	● Tibble 3.0.6
	● ggrastr version 1.0.1
	● pROC 1.17.0.1

5.5 SUPPLEMENTARY METHODS

5.5.1 Spatial analysis: a simulation study to quantify spatial relationship 
parameters sources of variation
Using the segmentation between the tumor and stroma compartments and the tissue 
architecture, we simulated different states of immune cell infiltration or cell location to 
quantify sources of variation in the spatial patterns. We used our original samples’ point 
patterns and the delineated tumor and stroma compartments in all the simulations. We 
altered the abundance and location of three cell types: immune, cancer, and stroma. 

First, we simulated immune cell density at different values. Here, all the cells belonging to 
the tumor compartment were labeled as cancer cells, and the cells belonging to the stroma 
compartment were labeled as stroma cells. Then, we randomly re-labeled cells a fraction of 
cancer cells (at a 1%, 2%, 5%, 7%, and 10% fraction) as immune cells, in which the SR of the 
immune cells resembled a homogeneous spatial distribution. Analogously, the same simulation 
study was carried out by randomly re-labeling stroma cells or altogether re-labeling cancer 
and stroma cells. These perturbations led to three different simulation studies (immune cells 
only in tumor, only in stroma, or in tumor and stroma), in which the SR parameters from/
to cancer, immune and stromal cells (3x3=9 SRs) were estimated. For each simulation, the 
immune cell density (either intratumoral or stromal) was associated with the distinct SR 
Weibull parameters (shape and scale) obtained for the 9 SRs being studied. 

In a second simulation study, we compared the SR parameters between the previous three 
different simulations that matched distinct immune phenotypes, being Inflamed (simulated 
immune cells in Tumor), Excluded (simulated immune cells in Stroma), and Mixed (simulated 
immune cells altogether in Tumor and Stroma). This study aggregated and compared 
simulations between groups, e.g.,  Inflamed vs Excluded (i.e.,  Inflamed combines simulations 
with an inflamed phenotype at multiple densities), as we aimed to quantify the global effect 
of the perturbation. 

Lastly, we simulated differences in the local immune cell arrangement by perturbing the 
clustering of immune cells.  In Clustered simulations, we allocated the immune cells next 
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to each other by setting an anchor point in which immune cells were present at different 
abundances (1%, 2%, 5%, and 10% fraction of cells being immune cells). Using this simulation 
(Clustered), we compared the SR parameters with the previous simulation, in which immune 
cells were placed along the tissue following a Homogeneous spatial distribution.

5.6 SUPPLEMENTARY NOTES

5.6.1 Supplementary Note 1: Quantifying sources of variation of the spatial 
relationship parameters
To investigate whether SR metrics are susceptible to changes in immune cell density, 
we performed a simulation study based on the real patient mIF data (Supplementary 
Methods, Spatial analysis: a simulation study to quantify spatial relationship parameters sources 
of variation). We preserved the spatial positions of cells (but not their identity) and the 
tumor and stroma delineation. We then placed immune cells at an increasing density at the 
preserved cell positions for the cohort. Supplementary Figure 12A shows a representative 
sample where the immune cells are only placed in the cancer compartment, i.e., replacing 
a cancer cell with an immune cell. We varied the percentage of immune cells in the tumor 
compartment from 1 to 10%, where the percentage is a fraction of the total number of cells 
on a slide. This range is representative of the variation in immune cell fraction we observed 
in our cohort (2-1583 immune cells/micron2).

We started by simulating multiple intratumoral immune cell densities, which included Low 
(1% of immune cells),  Medium (4% of immune cells), or High (7% of immune cells) densities 
(Supplementary Figure 12A). We then estimated all the pairwise SR parameters between 
cancer, immune and negative cells. As expected, an increase in immune cell density decreased 
the 1-NN distances between immune cells (Supplementary Figure 12B, and Supplementary 
Figure 13A, right panel). The associated medians for each 1-NN spatial distribution shown in 
Supplementary Figure 12B confirmed these findings (Supplementary Figure 13A).  In contrast, 
changes in immune cell density did not affect the 1-NN curves nor the metrics quantifying 
the SR from immune to cancer cells (Supplementary Figure 13A). Our findings showed 
little variation between the different patient samples (Supplementary Figures 14A-B).  In 
summary, we found that density can affect the SR metrics, but that is highly dependent on 
the cell types involved and the directionality of the relationship.

We can conceive the following immune cells spatially distributions giving rise to the following 
configurations of immune phenotypes30. First, being Excluded (higher immune cell abundance 
in the stroma),  Inflamed (high immune cell abundance in the tumor), and Desert (low 
immune cell abundance in the tumor and stroma).  In order to quantify the effect of immune 
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phenotypes on the SR metrics, we simulated the associated extreme scenarios of the immune 
phenotypes, and named them as Excluded (immune cells only in the stroma and not in the 
tumor),  Mixed (immune cells both in the stroma and tumor), and Inflamed (immune cells 
only in the tumor), all at distinct immune cell densities (Supplementary Figure 12C). As 
expected, the different immune phenotypes have a distinct effect on the SR of immune to 
cancer cells.  In contrast, the SR immune to immune cells remains unaffected, similar to 
the observation when the immune cell density was varied (Supplementary Figures 12D, 
13B). Notably, these effects were remarkably stable across the complete cohort (small 
variance in Supplementary Figure 14A-B), indicating that the specific positions of cells and 
the arrangement of tumor and stroma in a particular tumor do not have a strong effect 
on the simulated SRs. Cases from a particular configuration (e.g.,  Inflamed) consisted of 
aggregated simulations of distinct immune cell densities compatible with such configuration 
to assess the true effect between immune phenotypes in our comparisons (e.g.,  Inflamed 
vs. Excluded). Again, little sample variability within the whole cohort was observed between 
the associations of immune phenotype perturbation and SR parameters (Supplementary 
Figure 14C-D).

Next, we compared the SR metrics for homogeneously and heterogeneously distributed 
immune cells. Examples of such instances include T-cells homogeneously infiltrating a tumor or 
B-cells forming immune cell clusters resulting in non-homogeneous distributions of B-cells. We 
simulated these two scenarios (Supplementary Figure 12E) and compared the associated 
SR metrics. We found that immune cell clustering can affect the SR metrics from immune 
to immune cells and from immune to cancer cells (Supplementary Figures 12F, 13C, 14E-F).

To summarize our findings, we aggregated simulations for all the cell type pairwise 
relationships and samples (Supplementary Figure 14G). Changes in the SR parameters upon 
the posed perturbations highly depend on which reference and target cell types were studied 
(Supplementary Figure 15). The SRs between abundant cell types (i.e., cancer and negative 
cells) were not altered upon such perturbations.  In contrast, the SRs between rare cell 
types (i.e., immune cells) were affected by the density or local clustering perturbations and 
SRs from abundant to immune cells were affected by the density perturbations.  Moreover, 
immune phenotypes and clustering perturbations affected SRs from immune to cancer cells.  In 
conclusion, we identified multiple factors that affect the magnitude of SR parameters, which 
depending on the cell type context being studied, need to be considered in downstream 
analysis. 
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5.7 SUPPLEMENTARY FIGURES

 

Supplementary Figure 1. Segmentation of tumor and stroma compartments and tissue area 
assessment.
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(A) Visual representation of a biopsy tissue slide (left) that contains multiple tissue islands. Each tissue island was 
identified using the dbscan algorithm and named foci (right).
(B) Tumor and stroma regions segmentation by comparison of the Kernel density estimation (KDE) computed using 
only cancer cells (left) or stroma cells (right). Prior to segmentation, KDEs were normalized by the maximum value.
(C) Example of tumor and stroma classifications. Cells in the top and bottom panels are classified as being in the 
stroma or the tumor compartment, respectively. Coloring denotes the cell type classification by HALO.
(D) Visual representation of the area calculation of the tumor region. First, a KDE using tumor cells was computed 
and normalized by the maximum value. Then, all the pixels with a KDE below 0.1 were filtered out (drawn as gray 
in the middle panel). Lastly, all the remaining pixels were counted, and used for the area estimation.
Abbreviations: KDE: kernel density estimation.Supplementary Figure 2 

 
Supplementary Figure 2. Effect of the modeled shape and scale parameters on the Weibull distribution.  
A-B) Differences at the Weibull distribution when increasing the scale parameter at a fixed shape.  
C-D) Differences at the Weibull distribution when increasing the shape parameter at a fixed scale (high scale). 
E-F) Differences at the Weibull distribution when increasing the shape parameter at a fixed scale (low scale). 

Supplementary Figure 2. Effect of the modeled shape and scale parameters on the Weibull distribution. 
A-B) Differences at the Weibull distribution when increasing the scale parameter at a fixed shape. 
C-D) Differences at the Weibull distribution when increasing the shape parameter at a fixed scale (high scale).
E-F) Differences at the Weibull distribution when increasing the shape parameter at a fixed scale (low scale). 

Supplementary Figure 3 

 
Supplementary Figure 3. Representation of a Weibull distribution when altering the shape parameter at a fixed 
scale. Each facet groups Weibull distributions grouped by a similar behavior: (A) Represents Weibull distributions 
resembling a semi-exponential distribution, (B) represents Weibull distributions resembling a right-skewed 
distribution, (C) represents Weibull distribution resembling a semi-normal distribution and (D) represents Weibull 
distributions resembling a left-skewed distribution.   

Supplementary Figure 3. Representation of a Weibull distribution when altering the shape parameter at a fixed 
scale. Each facet groups Weibull distributions grouped by a similar behavior: (A) Represents Weibull distributions 
resembling a semi-exponential distribution, (B) represents Weibull distributions resembling a right-skewed distribution, 
(C) represents Weibull distribution resembling a semi-normal distribution and (D) represents Weibull distributions 
resembling a left-skewed distribution. 
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Supplementary Figure 4 

 
Supplementary Figure 4. SRs were summarized using the 1-NN statistic studied from a reference cell type to a 
target cell type. The 1-NN statistic is not symmetrical; panels A and B illustrate the statistic when T-cells (left panel) 
or cancer cells (right panel) are selected as a reference cell type, respectively. Only the 1-NN distances are drawn in 
each panel. Distances in red indicate the median 1-NN distance for that particular SR. 
Icons from panel were adapted from bioIcons (cancerous-cell-1, lymphocytes-4, t-lymphocyte  licensed under CC-
BY 3.0 Unported by Servier).  
Abbreviations: SR: spatial relationship; 1-NN: first nearest-neihbor. 

Supplementary Figure 4. SRs were summarized using the 1-NN statistic studied from a reference cell type to 
a target cell type. The 1-NN statistic is not symmetrical; panels A and B illustrate the statistic when T-cells (left 
panel) or cancer cells (right panel) are selected as a reference cell type, respectively. Only the 1-NN distances are 
drawn in each panel. Distances in red indicate the median 1-NN distance for that particular SR.
Icons from panel were adapted from bioIcons (cancerous-cell-1, lymphocytes-4, t-lymphocyte licensed under 
CC-BY 3.0 Unported by Servier). 
Abbreviations: SR: spatial relationship; 1-NN: first nearest-neihbor.
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Supplementary Figure 5 
 

 
Supplementary Figure 5. Comparison of spatial parameters derived from the 1-NN distance statistic. (A) Scale 
vs. shape parameter space associated with the G-function evaluated at 12.5 microns (coloring, G-AUC-12). 
(B) Scale vs. shape parameter space associated with the G-function evaluated at 50 microns (coloring, G-AUC-50). 
(C) G-functions for the B-cell to B-cell, CD8+ T-cell to Cancer cell, and Macrophages to B-cell SRs. Lines join 
samples. Vertical lines denote the thresholds 25, 50 and 100 microns. 
(D) G-AUC-T evaluated at 25, 50 and 100 micron threshold for the examples shown in panel (C). Lines join SRs from 
the same samples.  
Abbreviations: G-AUC-T: G-function evaluated at a threshold T; T: threshold; AUC: Area under the curve, 1-NN: first 
nearest-neighbor. 

  

Supplementary Figure 5. Comparison of spatial parameters derived from the 1-NN distance statistic. 
(A) Scale vs. shape parameter space associated with the G-function evaluated at 12.5 microns (coloring, G-AUC-12).
(B) Scale vs. shape parameter space associated with the G-function evaluated at 50 microns (coloring, G-AUC-50).
(C) G-functions for the B-cell to B-cell, CD8+ T-cell to Cancer cell, and Macrophages to B-cell SRs. Lines join 
samples. Vertical lines denote the thresholds 25, 50 and 100 microns.
(D) G-AUC-T evaluated at 25, 50 and 100 micron threshold for the examples shown in panel (C). Lines join SRs 
from the same samples. 
Abbreviations: G-AUC-T: G-function evaluated at a threshold T; T: threshold; AUC: Area under the curve, 1-NN: first 
nearest-neighbor.
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Supplementary Figure 6 

 
Supplementary Figure 6. Association of spatial relationships derived from the G-function with response to 
pre-operative ipilimumab+nivolumab in urothelial cancer.  
(A) Volcano plot showing the fold change on the G-function parameter evaluated at 25 microns (G-AUC-25) between 
response groups (x-axis, log2 fold change, n=14 independent responders and n=10 independent non-responders) 
and statistical significance by Wilcoxon test adjusted by multiple hypothesis testing (y-axis).  
(B) Volcano plot showing the fold change on the G-function parameter evaluated at 50 microns (G-AUC-50) between 
response groups (x-axis, log2 fold change, n=14 independent responders and n=10 independent non-responders) 
and statistical significance by Wilcoxon test adjusted by multiple hypothesis testing (y-axis).  
(C) Fold change (y-axis, log2 scale) on the G-function parameter evaluated at different thresholds T (x-axis) between 
response groups. Fold changes that are significantly associated with response as evaluated with a Wilcoxon test 
adjusted by multiple hypothesis testing are depicted in color. Non-significant fold changes are depicted in grey.  
Unless otherwise stated, all statistical tests were two-sided. 
Abbreviations: G-AUC-T: G-function evaluated at a threshold T; T: threshold; AUC: Area under the curve; p-val: p-
value; SR: spatial relationship. 
  

Supplementary Figure 6. Association of spatial relationships derived from the G-function with 
response to pre-operative ipilimumab+nivolumab in urothelial cancer. 
(A) Volcano plot showing the fold change on the G-function parameter evaluated at 25 microns (G-AUC-25) between 
response groups (x-axis, log2 fold change, n=14 independent responders and n=10 independent non-responders) 
and statistical significance by Wilcoxon test adjusted by multiple hypothesis testing (y-axis). 
(B) Volcano plot showing the fold change on the G-function parameter evaluated at 50 microns (G-AUC-50) between 
response groups (x-axis, log2 fold change, n=14 independent responders and n=10 independent non-responders) 
and statistical significance by Wilcoxon test adjusted by multiple hypothesis testing (y-axis). 
(C) Fold change (y-axis, log2 scale) on the G-function parameter evaluated at different thresholds T (x-axis) between 
response groups. Fold changes that are significantly associated with response as evaluated with a Wilcoxon test 
adjusted by multiple hypothesis testing are depicted in color. Non-significant fold changes are depicted in grey. 
Unless otherwise stated, all statistical tests were two-sided.
Abbreviations: G-AUC-T: G-function evaluated at a threshold T; T: threshold; AUC: Area under the curve; p-val: p-value; 
SR: spatial relationship.
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Supplementary Figure 10 

 
Supplementary Figure 10. Comparison of spatial relationship parameters derived from pre-operative 
urothelial cancer (NABUCCO) and head and neck cancer (IMCISION) samples. 
(A, B) Cohort averages for each SR’s cell type pairwise relationships shape and scale parameters in UC (top, 
NABUCCO, A) and HNSCC (bottom, IMCISION, B). Each facet represents SRs to a specific target cell type. For 
instance, the first facet represents SRs studied from any reference cell type to cancer cells, and the color indicates 
the cell type from which the SR was studied (reference cell type). 
(C) Correlation between shape parameters quantified in NABUCCO (x-axis) and IMCISION (y-axis). Pearson’s 
coefficient and correlation p-value are shown in the plot. 
(D) Correlation between scale parameters quantified in NABUCCO (x-axis) and IMCISION (y-axis). Pearson’s 
coefficient and correlation p-value are shown in the plot. 
All statistical tests were two-sided. No adjustments were made to correct for multiple comparisons. 
Abbreviations: SR: spatial relationship; UC: urothelial cancer; HNSCC: head and neck squamous cell carcinoma. 
 

Supplementary Figure 10. Comparison of spatial relationship parameters derived from pre-operative 
urothelial cancer (NABUCCO) and head and neck cancer (IMCISION) samples.
(A, B) Cohort averages for each SR’s cell type pairwise relationships shape and scale parameters in UC (top, 
NABUCCO, A) and HNSCC (bottom,  IMCISION, B). Each facet represents SRs to a specific target cell type. For 
instance, the first facet represents SRs studied from any reference cell type to cancer cells, and the color indicates 
the cell type from which the SR was studied (reference cell type).
(C) Correlation between shape parameters quantified in NABUCCO (x-axis) and IMCISION (y-axis). Pearson’s 
coefficient and correlation p-value are shown in the plot.
(D) Correlation between scale parameters quantified in NABUCCO (x-axis) and IMCISION (y-axis). Pearson’s 
coefficient and correlation p-value are shown in the plot.
All statistical tests were two-sided. No adjustments were made to correct for multiple comparisons.
Abbreviations: SR: spatial relationship; UC: urothelial cancer; HNSCC: head and neck squamous cell carcinoma.
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Supplementary Figure 11 

 
Supplementary Figure 11. Validation of SR biomarkers of ICI response in head and neck cancer cohort 
(IMCISION trial). 
(A) Shape parameters for the SRs from CD8+ T-cells to Cancer cells (left) and from Macrophages to cancer cells 
(right) between ICI response groups. Adjusted p-values: FDRCD8 T-cell to Cancer cell=0.045, FDRMacrophages to Cancer cell=0.0076. 
(B) Scale parameters for the SRs from CD8+ T-cells to Cancer cells (left) and from Macrophages to cancer cells 
(right) between ICI response groups. A two-sided t-test was used for comparisons between response groups. 
Adjusted p-values: FDRCD8 T -cell to Cancer cell=0.064, FDRMacrophages to Cancer cell=0.00094. 
(C) Immune cell densities between response groups in IMCISION.  
The box plots in each panel show the middle 50% of the data, with the box itself representing the median and the 
interquartile range (IQR) between the 25th and 75th percentiles. The whiskers extend from the box to the furthest 
data points within 1.5 times the IQR from the median. Unless otherwise stated, all statistical tests were two-sided. A 
two-sided t-test was used for comparisons between response groups.  
Abbreviations: SR: spatial relationship; ICI: immune checkpoint inhibitors.  
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cohort (IMCISION trial).
(A) Shape parameters for the SRs from CD8+ T-cells to Cancer cells (left) and from Macrophages to cancer cells 
(right) between ICI response groups. Adjusted p-values: FDRCD8 T-cell to Cancer cell=0.045, FDRMacrophages to Cancer cell=0.0076.
(B) Scale parameters for the SRs from CD8+ T-cells to Cancer cells (left) and from Macrophages to cancer cells (right) 
between ICI response groups. A two-sided t-test was used for comparisons between response groups. Adjusted 
p-values: FDRCD8 T -cell to Cancer cell=0.064, FDRMacrophages to Cancer cell=0.00094.
(C) Immune cell densities between response groups in IMCISION. 
The box plots in each panel show the middle 50% of the data, with the box itself representing the median and 
the interquartile range (IQR) between the 25th and 75th percentiles. The whiskers extend from the box to the 
furthest data points within 1.5 times the IQR from the median. Unless otherwise stated, all statistical tests were 
two-sided. A two-sided t-test was used for comparisons between response groups. 
Abbreviations: SR: spatial relationship; ICI: immune checkpoint inhibitors. 
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Supplementary Figure 12. Simulation study to quantify sources of variation of the spatial relationship 
parameters. 
Representative data for a sample: (A) Immune cell density was simulated at different values. 
(B) 1-NN curves vs immune cell density for three representative SR parameters. 
(C) Immune cells were simulated to be present only in the stroma region (Excluded, left), both at the stroma and 
the tumor region (Mixed, middle), and only in the tumor region (Inflamed, right). 
(D) 1-NN curves vs immune cell phenotypes for three representative SR parameters. 
(E) Immune cell clustering was simulated with values Clustered (left) and Homogeneous (right) spatial pattern. 
(F) First-nearest neighbor distance curves for the clustered and homogeneous examples from panel C for the SRs 
studied from Immune to cancer cells and from Immune to immune cells.
Abbreviations: SR: spatial relationship; ICI: immune checkpoint inhibitors; 1-NN: first nearest-neighbor.
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Supplementary Figure 13. Associations between simulation study perturbations and spatial 
relationship parameters for a representative sample.
(A) Median 1-NN distances vs. simulated intratumoral immune cell density for the SRs from Immune to Cancer 
cells and from Immune to Immune cell. Two-sided Pearson’s moment correlation test was used to test for the 
association. The Pearson’s coefficient and correlation p-value are represented in the plot. 1, 2, and 3 annotations 
match with Low,  Medium and High densities from Supplementary Figure 9A. 
(B) Median 1-NN distances vs simulated immune phenotypes for the SRs from Immune to Cancer cells and from 
Immune to Immune cell. Differences between groups were tested by a Kruskan-Wallis test. 
(C) Median 1-NN distances vs simulated immune cell clustering for the SRs from Immune to Cancer cells and 
from Immune to Immune cell. A two-sided t-test tested differences between groups. 
The box plots in each panel show the middle 50% of the data, with the box itself representing the median and the 
interquartile range (IQR) between the 25th and 75th percentiles. The whiskers extend from the box to the furthest 
data points within 1.5 times the IQR from the median. All statistical tests were two-sided. Unless otherwise stated, 
no adjustments for multiple hypothesis testing were made. 
Abbreviations: 1-NN: first-nearest neighbor; SR: spatial relationship.



5

177

Spatial relationships predict response to combination immune checkpoint inhibitors 

Supplementary Figure 14 

 
 
Supplementary Figure 14. Associations between simulation study perturbations and spatial relationship 
parameters for the whole simulated cohort. 
(A) Scatter plot of the scale parameter for two representative SRs for simulations of immune cell at different density 
values (x-axis) and at distinct tissue compartments, including in the Tumor (Inflamed, orange), Stroma (Excluded, 
green) and in the Tumor and Stroma (Mixed, purple). A linear model was fitted using the data simulated at each 
tissue compartment (e.g. Inflamed), and the slope of the fit and significance is highlighted in the figure. Dots 
represent all simulations' average scale parameters at a discretized density.  
(B) Scatter plot of the shape parameter for two representatives SRs for simulations of immune cell at different 
density values (x-axis) and at distinct tissue compartments, including in the Tumor (Inflamed, orange), Stroma 
(Excluded, green) and in the Tumor and Stroma (Mixed, purple). A linear model was fitted using the data simulated 
at each tissue compartment (e.g. Inflamed), and the slope of the fit and significance is highlighted in the figure. Dots 
represent all simulations' average shape parameters at a discretized density. 
(C) Scale parameter distribution for simulations of immune cells present at different tissue compartments (Inflamed: 
in Tumor; Excluded: in Stroma; Mixed: in Tumor and Stroma). Each boxplot (e.g. Tumor) contains data for different 
samples and simulations at distinct densities. Statistical association was assessed by an ANOVA test. 
(D) Shape parameter distribution for simulations of immune cells present at different tissue compartments (Inflamed: 
in Tumor; Excluded: in Stroma; Mixed: in Tumor and Stroma). Each boxplot (e.g. Tumor) contains data for different 
samples and simulations at distinct densities. An ANOVA test assessed statistical association. 

Supplementary Figure 14. Associations between simulation study perturbations and spatial 
relationship parameters for the whole simulated cohort.
(A) Scatter plot of the scale parameter for two representative SRs for simulations of immune cell at different 
density values (x-axis) and at distinct tissue compartments, including in the Tumor (Inflamed, orange), Stroma 
(Excluded, green) and in the Tumor and Stroma (Mixed, purple). A linear model was fitted using the data simulated 
at each tissue compartment (e.g.  Inflamed), and the slope of the fit and significance is highlighted in the figure. 
Dots represent all simulations' average scale parameters at a discretized density. 
(B) Scatter plot of the shape parameter for two representatives SRs for simulations of immune cell at different 
density values (x-axis) and at distinct tissue compartments, including in the Tumor (Inflamed, orange), Stroma 
(Excluded, green) and in the Tumor and Stroma (Mixed, purple). A linear model was fitted using the data simulated 
at each tissue compartment (e.g.  Inflamed), and the slope of the fit and significance is highlighted in the figure. 
Dots represent all simulations' average shape parameters at a discretized density.
(C) Scale parameter distribution for simulations of immune cells present at different tissue compartments (Inflamed: 
in Tumor; Excluded: in Stroma; Mixed: in Tumor and Stroma). Each boxplot (e.g. Tumor) contains data for different 
samples and simulations at distinct densities. Statistical association was assessed by an ANOVA test.
(D) Shape parameter distribution for simulations of immune cells present at different tissue compartments (Inflamed: 
in Tumor; Excluded: in Stroma; Mixed: in Tumor and Stroma). Each boxplot (e.g. Tumor) contains data for different 
samples and simulations at distinct densities. An ANOVA test assessed statistical association.
(E) Scale parameter distribution for simulations of immune cells following a homogeneous spatial distribution, or 
a clustered spatial distribution. Each boxplot (e.g. clustered) contains data for different samples and simulations at 
distinct densities. A t-test assessed statistical association.
(F) Shape parameter distribution for simulations of immune cells following a homogeneous spatial distribution, or 
a clustered spatial distribution. A t-test assessed statistical association.
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(G) First 4 columns: Spearman correlation between the spatial parameters (shape or scale) and intratumoral (green 
columns) or stromal immune cell density (yellow) for each SR. Fifth and sixth columns: fold change on differences 
on the shape or the scale parameters between Inflamed and Excluded simulations (non-significant fold changes 
are coloured in white). Statistical significance was assessed by a t-test. Seventh and eighth columns: fold change on 
differences on the shape and scale parameters between immune cell clustered or homogeneous simulations by a 
t-test. Non-significant correlations or associations are labeled in gray and white. 
The box plots in each panel show the middle 50% of the data, with the box itself representing the median and the 
interquartile range (IQR) between the 25th and 75th percentiles. The whiskers extend from the box to the furthest 
data points within 1.5 times the IQR from the median. All statistical tests were two-sided. Unless otherwise stated, 
no adjustments for multiple hypothesis testing were made. 
Abbreviations: UC: urothelial cancer; SR: Spatial relationship.

Supplementary Figure 15  
 
 
 

 
Supplementary Figure 4. Interpretations on the associations between simulation study perturbations and 
spatial relationship parameters for the whole simulated cohort. 
Summary of associations between simulated perturbations and effect on SR parameters by reference and target cell 
type by aggregating data for the whole cohort (Supplementary Figure 21H). Here, the interpretation of when Cancer 
cells are replaced by Negative cells are analogous (abundant cell types). Immune cells are referenced in text text as 
rare cell types. 
Icons from panel adapted from bioIcons (cancerous-cell-1, lymphocytes-4, t-lymphocyte licensed under CC-BY 3.0 
Unported by Servier). 
Abbreviations: SR: spatial relationship. 

  

Supplementary Figure 15.  Interpretations on the associations between simulation study perturbations 
and spatial relationship parameters for the whole simulated cohort.
Summary of associations between simulated perturbations and effect on SR parameters by reference and target 
cell type by aggregating data for the whole cohort (Supplementary Figure 21H). Here, the interpretation of when 
Cancer cells are replaced by Negative cells are analogous (abundant cell types).  Immune cells are referenced in text 
text as rare cell types.  Icons from panel adapted from bioIcons (cancerous-cell-1, lymphocytes-4, t-lymphocyte 
licensed under CC-BY 3.0 Unported by Servier).
Abbreviations: SR: spatial relationship.

5.8 SUPPLEMENTARY TABLES AND SUPPLEMENTARY 
DATA

Due to printing limitations the Supplementary Tables, Supplementary Data and Source Data 
files are provided online: https://www.nature.com/articles/s41467-024-46450-1 

DATA AVAILABILITY

The multiplex immunofluorescence data consisting on the spatial coordinates and immune 
cell types linked with the clinical data used for this manuscript are available under restricted 
access for data privacy regulations governing clinical and molecular data collected from human 
samples and will be made available upon reasonable academic and scientifically request and 
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within the limitations of the provided informed consent by the corresponding author upon 
reasonable request. The institutional review board of the Netherlands Cancer Institute 
will review every request. After approval, the researcher will need to sign the Netherlands 
Cancer Institute data access agreement. 

Multiplex immunofluorescence derived data (spatial parameters and densities) is made 
available as Supplementary Data 1 and Source data files to reproduce the findings from the 
manuscript.

CODE AVAILABILITY

Code to reproduce the main findings will be made available in a Github repository (https://
github.com/tropicalberto/nabucco_spatial_manuscript).
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Chapter 6

For decades, urothelial cancer (UC) of the bladder has been treated with either surgery 
(radical cystectomy; RC) with or without neoadjuvant chemotherapy (NAC) prior to the 
procedure1. However, the advent of clinical trial data involving the usage of immune checkpoint 
inhibitors (ICIs) in the preoperative setting and the long-term low progression rates observed 
hold promise to change UC's current standard of care treatment landscape. 

It is essential to understand UC tumors, their surrounding tumor microenvironment (TME), 
and their interplay with clinical response to standard and novel treatments to have a real 
chance of refining precision medicine strategies in the clinical management of UC and 
develop novel treatment strategies that overcome the current resistance mechanisms to 
anti-cancer drugs. 

The work presented in this thesis advanced our understanding of UC, its surrounding TME 
before or upon treatment, and the associated clinical responses to neoadjuvant treatments 
involving either NAC or ICIs. To do so, the contributions to this thesis are as follows: 

	● In Chapter 2, we assessed several genomic biomarkers of response to NAC and validated 
them in a large independent cohort;

	● In Chapter 3, we characterized the UC TME in untreated surgical specimens and treated 
(post-treatment samples) surgical specimens upon neoadjuvant ICIs;

	● In Chapter 4, we explored current and novel biomarkers of response to neoadjuvant 
ICIs in UC tumors as well as treatment dynamics induced by ICIs at the UC TME;

	● In Chapter 5, we proposed a novel framework to model spatial relationships (SRs) at the 
TME using multiplex immunofluorescence data of pre-treated tumors. We explored the 
SRs in the context of response to neoadjuvant ICIs to identify novel biomarkers of ICIs.

In this discussion, the general findings from this thesis will be synthesized and linked to the 
current knowledge in the scientific literature. Furthermore, the strengths and limitations 
of this research will be highlighted, the potential implications of the results for the clinical 
management of UC tumors will be discussed, and the potential future research efforts to 
improve how we understand and treat UC tumors will be emphasized.

6.1 GENOMIC BIOMARKERS OF NEOADJUVANT 
CHEMOTHERAPY 

Genomic alterations can modulate sensitivity to anti-cancer treatments. Precision medicine 
has benefitted from this characteristic of tumors, in which molecular targeted therapies target 
tumor-specific druggable alterations2 and have significantly improved cancer care in the past 
decade.  In locally advanced and metastatic UC, tumors with somatic mutations in the FGFR2/3 
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gene can be treated with an FGFR inhibitor3, resulting in an objective anti-tumor response 
in approximately 40% of pre-treated patients. However, in the context of non-metastatic 
UC, no targeted treatments are clinically approved3.

Association studies showed that genomic alterations can sensitize tumors to non-targeted 
therapies, such as chemotherapy.  In this case, the molecular alteration (e.g., a somatic 
mutation) enhances treatment response and can, therefore, be considered as a response 
biomarker.  In Chapter 2, we set out to validate previously proposed genomic biomarkers 
of response to neoadjuvant chemotherapy (NAC) in a large independent cohort of 165 
pre-treatment samples from tumors acquired prior to cisplatin-based NAC. We first set 
out to validate published associations between NAC response and somatic mutations 4–7 
and also searched for novel biomarkers of NAC response based on sequencing data derived 
from 44 bladder cancer-related genes.

Among all the tested hypotheses, we could only confirm a positive association between 
ERCC2 mutations and pathological downstaging to NAC. Although mutations in ERCC2 
conferred a prolonged 5-year overall survival (OS) and progression-free survival (PFS), 
the association was not statistically significant. Our results align with previous publications 
showing associations between ERCC2 mutations and response and overall survival to NAC 
in different independent cohorts8–10.

Enhancing our understanding of the mechanism of action of cisplatin-based chemotherapies 
will help generate more appropriate hypotheses and, therefore, refine biomarkers of 
response. Although we understand how cisplatin-based chemotherapies interfere with 
the damaged DNA leading to cancer cell death, there are still unknowns regarding the 
associated mechanisms, such as cisplatin uptake from the general circulation into tumor cells11. 
Nevertheless, a mechanism of action has been proposed for cisplatin-based chemotherapies in 
tumors with alterations in ERCC2 to explain the enhanced drug sensitivity.  More specifically, 
Li et al. functionally assessed ERCC2 mutations in UC cell lines. They demonstrated that most 
ERCC2 mutations in the helicase domain turn off nucleotide excision repair activity and fail 
to rescue genomic instability and UV sensitivity, which enhances treatment sensitivity8. These 
results support our conclusion that alterations in ERCC2 make tumors more sensitive to 
cisplatin chemotherapies.

The wealth of data involving associations between ERCC2 mutations and response to NAC 
leads to a natural question: are we ready to implement this finding in clinical practice? First, 
the mutation rate of ERCC2 in UC tumors is generally low, ranging from 9-16%12, depending 
on the patient population and database. Second, the expected response rate for the general 
UC patient population upon NAC is 40%13. Therefore, its utility as a response biomarker 
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may only be relevant to a small (5%-10%) subset of patients, and alternative mechanisms 
of response to NAC exist, underscoring the necessity for additional biomarkers to benefit 
the broader UC patient population comprehensively. Our results from Chapter 2 align 
with such estimations, in which somatic ERCC2 mutations conferred a low sensitivity (11%) 
but a high specificity (97%) for response prediction. Therefore, the biomarker effectively 
identifies a subset of responding patients but must be coupled with orthogonal biomarkers 
for effective patient stratification.

6.2 BIOMARKERS OF NEOADJUVANT IMMUNE 
CHECKPOINT INHIBITORS

The wealth of clinical trial data involving ICIs in the UC neoadjuvant setting has shown 
that the treatment is effective and leads to prolonged responses14. Still, the majority of 
patients do not respond to ICIs. Tumors with certain types of molecular characteristics, 
such as intratumoral CD8+ T-cell infiltration, can be more likely to respond to ICIs15–17.  It 
is, therefore, essential to identify the shared characteristics of responding tumors to ICIs 
to develop novel response biomarkers that could aid patient stratification. However,  ICIs 
biomarkers exhibit varied behavior between cohorts17, and there are still unknowns regarding 
the associated resistance mechanisms18. For instance, recently, it was discovered that the 
efficacy of anti-CTLA4 ICIs requires T-regulatory cell depletion19. This has led to a lack of 
consensus regarding biomarkers of response to neoadjuvant ICIs in UC for blockade of 
PD-1, PD-L1, and CTLA-4, or a combination of them across and within cancer types. 

To further map the landscape of response biomarkers and treatment dynamics of ICIs in 
UC, in Chapter 3, we assessed the effect in the UC TME induced by combination ICIs, 
and in Chapters 4 and 5, we evaluated the behavior of known and novel biomarkers of 
response to ICIs using samples from the NABUCCO cohort, which tested a combination 
treatment of anti-PD1 plus anti-CTLA4. 

6.2.1 Genomic biomarkers
The tumor mutational burden (TMB) has been proposed to be a surrogate for tumor 
immunogenicity and foreignness20–22.  In Chapter 4, we showed that tumors responding 
to ICIs have a numerically higher TMB but not a significant difference when compared to 
non-responders. Recent literature has shown that the TMB fails to predict response to ICIs 
across all cancers. However, it does correlate with response in tumors where neoantigen 
load positively correlates with immune cell infiltration, such as in UC21,22. However such 
associations were derived for monotherapy ICIs (for anti-PD-L1 or anti-PD-1) in the context 
of metastatic UC, thus deviating from our non-metastatic cohort described in Chapters 
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3-5 that received combination therapy. Effective immune responses also require multiple 
antigen-presentation machinery and T-cell recognition mechanisms even when a tumor 
has a mutation. The TMB metric often ignores such mechanisms23.  Instead, more reliable 
estimates of the tumor immunogenicity are obtained by estimating the neoantigen load and 
their clonality, performing a neo-epitope analysis, HLA typing, and T-cell receptor sequencing17. 
Combining such metrics allows us to estimate whether an antigen can be presented by 
tumor cells and recognized by T-cells24–26.

Other genomic biomarkers for ICIs response exist17,27, such as microsatellite instability (MSI)28, 
which induces more neoantigens. However, this rarely occurs in UC tumors29 and was not 
present in any tumors from the NABUCCO cohort. Cancer immune evasion via a genomic 
impairment of the antigen presentation machinery30 (e.g., deleterious point mutations, loss 
of heterozygosity, loss of beta2-microglobulin) and loss of function at the JAK/STAT pathway 
can also explain non-responsiveness to ICIs31. Such alterations are rare in UC tumors and 
the diversity of the HLA locus is large32. Due to the small cohorts from this thesis, we could 
not study this. Recently, it was discovered that loss of the Y chromosome, which commonly 
occurs in bladder cancer, can enhance sensitivity to anti-PD1 ICI33. Whether other genomic 
biomarkers for ICIs exist is an ongoing research focus17, and novel insights are anticipated soon.

6.2.2 Modulators of the immune response: expression of immune checkpoints 
PD-L1 expression in tumors associated with response to ICIs34. However, in Chapter 4, we 
showed that PD-L1 scoring was not significantly associated with response to combination 
ICIs. Other clinical trials in metastatic UC have shown that PD-L1 positivity is associated 
with response to anti-PD-L135 and anti-PD-136. However, comparative trials failed to show 
that PD-L1 positivity confers a prolonged overall survival in anti-PD-(L)1 treatment when 
compared to chemotherapy37–39.  Moreover, in the neoadjuvant setting, anti-PD-L1 treatment 
in UC has shown no significant association with PD-L1 scoring40. Still, a recent randomized 
phase 3 trial of adjuvant anti-PD-1 vs placebo did show a clinical benefit for ICI treatment 
in the PD-L1 high population41. These contradictory findings suggest that despite PD-L1 
scoring being the only EMA-approved biomarker to treat UC with anti-PD-1 (adjuvant 
nivolumab; pembrolizumab or atezolizumab in cisplatin-ineligible first-line metastatic UC)42, it 
is unclear whether the PD-L1 expression biomarker could be translated to stratify patients 
in the neoadjuvant setting.

The role of other factors related to immune regulation and exhaustion in ICI response are 
also being investigated. Pre-clinical data derived from human samples have suggested that 
double-positive T-cells expressing CD8 and PD-1 (CD8+PD-1+) enhance ICI response in 
non-small cell lung cancer43,44.  In Chapter 3, we characterized the abundance of CD8+PD-1+ 
cells upon ICIs and in untreated UC tumors to investigate their presence and dynamic 
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behavior upon neoadjuvant ICIs. Our findings suggest that CD8+PD-1+ cell presence does 
not improve prognosis in untreated tumors but that neoadjuvant ICIs induce CD8+PD-1+ cell 
expansion, with responding tumors having higher levels of CD8+PD-1+ cells after treatment.  In 
Chapter 3, we also assessed the presence of other immune exhaustion checkpoints in the 
untreated UC TME and found that TIM-3, but not LAG-3, is highly expressed. These results 
warrant further investigation and a combined analysis of the exhaustion profile of the UC 
TME (involving PD-L1, PD-1, and TIM-3) could generate new hypotheses regarding response 
and mechanisms of action to ICIs.

6.2.3 T-cell immunity
In Chapter 4, we showed that, in contrast to UC clinical trials with neoadjuvant monotherapy 
ICIs, response to combination ICIs is independent of pre-existing CD8+ T-cell immunity 
at the proteomic (e.g., intratumoral CD8+ T-cell density) and transcriptomic (e.g., CD8+ 
T-cell effector signature and interferon-gamma signatures) levels. Our data is in line with 
a neoadjuvant combination ICI trial in UC (NCT0281242045) that also showed a lack of 
association between response and baseline CD8+ T-cell immunity, which suggests that other 
mechanisms of action beyond CD8 T-cell immunity exist for combination ICIs such as PD-1 
plus CTLA-4 blockade. 

T-cells exhibit diverse spatial distributions across the TME stromal and intratumoral 
compartments, presenting distinct immune phenotypes with prognostic and predictive 
value in response to ICIs46. Our data from Chapter 3 suggested that untreated tumors 
with a desert phenotype are more prone to recurrence. However, in Chapters 4 and 5, 
we showed that response to ICIs was not associated with immune phenotypes. This is in 
contrast to what has been observed for monotherapy ICIs, in which response is associated 
with inflamed tumors40. Our data suggest that adding CTLA-4 to the anti-PD-1 ICI regimen, 
results in a more effective immune response in cold tumors. 

Recent literature suggested that many tumor-infiltrating T-cells are bystanders, i.e., unrelated 
to anti-cancer immunity47. The bystander component is typically ignored in T-cell assessments 
within the TME and such T-cells are all assumed to be tumor-reactive. Furthermore, there 
is no standardized method to distinguish bystander from tumor-reactive T-cells in bulk 
measurements. Therefore, performing a thorough examination of tumor-reactive T-cell 
immunity is crucial. This differentiation will be beneficial when considered for the study of 
ICI biomarkers and therapy resistance. 

6.2.4 Presence of immunosuppressive cytokines
Immune resistance mechanisms can impair response to ICIs. For instance, TGF-beta 
signaling represses the antitumor functions of immune cells at the TME and is associated 
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with non-response to ICIs in metastatic UC27,35,48.  In Chapter 4, we corroborated that 
TGF-beta signaling negatively correlated with ICI response. Such negative correlation can 
be explained by a candidate mechanism that induces CD8 T-cell and natural killer (NK) cell 
exclusion49. This data emphasizes the importance of studying the TME stroma in the immune 
response context, focusing on cancer-associated fibroblasts (CAFs), which play an essential 
role due to their interactions with cancer and immune cells50.

6.2.5 Tertiary lymphoid structures and B-cell immunity
Tertiary lymphoid structures (TLS) are ectopic lymphoid structures appearing at sites of 
chronic inflammation, such as tumors51. Recent data demonstrated that TLS presence confers 
anti-tumor activity and is beneficial for a response to ICIs52–54. Upon this discovery, a wealth 
of data associating the presence, abundance, and molecular architecture of TLS has been 
investigated in the context of ICIs.

There is no standard approach to assess TLS in tumor tissue to date.  In Chapter 4, we 
assessed TLS using a customized multiplex immunofluorescence panel that allowed for TLS 
abundance and maturation state quantification. Alternatively, in Chapter 3, we assessed 
TLS by an immune cell multiplex panel not explicitly designed to profile TLS. However, that 
allowed quantification of TLS abundance but not the associated maturation states. Such an 
approach showed that TLS immune cell abundance is heterogeneous showing differences 
between TLSs from untreated vs ICI-treated tumors. Our data suggest that ICIs modulate 
TLS characteristics with a different magnitude between response groups, which could aid 
in understanding ICI resistance mechanisms.

Moreover, in Chapter 3 we showed that TLS maturation states vary depending on their 
proximity to the central tumor. Earlier maturation states and differential immune cell 
abundance were found in TLSs close to the central tumor area compared to those close 
to the deeper/mucosal part of a tumor. Such an observation suggests an impact on TLS 
assessment as a candidate biomarker. While pre-treatment clinical trials are mostly based on 
TURs (lowly enriched in TLSs close to the central tumor), the nature of the tissue obtained 
from TURs does not allow for deeper tissue layer profiling as the surgical procedure is 
based on the scraping of the superficial layer of a tumor at the bladder lining. The superficial 
layer of a bladder tumor can be exposed to the presence of infections, urinary toxins, and 
inflammatory mediators, which can induce immune responses and the presence of bystander 
TLSs that can be detected in collected tumor tissue55,56. Nevertheless, because the unique 
characteristics of anti-tumor TLSs are yet unknown, current TLS assessment methodologies 
do not allow distinguish them from bystander TLSs.
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B-cells are heterogeneous immune cells regarding their functional programs in the TME. They 
have both anti-tumorigenic and pro-tumorigenic roles57 and are highly abundant within 
TLSs.  In a whole-transcriptome unbiased differential expression from Chapter 4, we found 
that B-cell signaling negatively correlated with response. Our results contradict the findings 
from a comparable trial of combination ICIs, in which a positive correlation between B-cell 
signaling and response to ICIs was found45.  Moreover, B-cell presence has been associated 
with both good and poor prognosis in UC58,59. Altogether, the role of B-cells in the context 
of ICIs is still in its infancy and understudied in the context of ICIs. The contradictory 
findings from the literature and our research warrant further research to decipher their 
interplay with ICIs60.

6.2.6 Spatial relationships at the tumor microenvironment
One of the thesis objectives was to identify novel biomarkers of clinical response of 
neoadjuvant ICIs in UC beyond the currently existing biomarkers.  Motivated by the lack 
of association between response and immune cell infiltration both at the transcriptomic level 
(e.g., inflammation or T-cell effector gene signatures) and the immune cell level (e.g., CD8+ 
T-cell density) identified in Chapter 4, we aimed to explore novel ways to profile the TME 
and thereby gain biological insights. To do so, we explored spatial relationships (SRs) in the 
TME, which have already been proposed as a possible avenue to uncover novel biological 
insights into immune cell behavior61–63.  Moreover, it also allowed us to further explore our 
preliminary conclusion that response to neoadjuvant ipilimumab and nivolumab combination 
is independent of CD8+ T-cell immunity.

In Chapter 5, we proposed a statistical framework to quantify spatial relationships (SRs) in the 
TME. We re-assessed the pre-treatment multiplex immunofluorescence data from Chapter 
4 to determine alternative factors that determine response to ICIs. Our antibody panel 
allowed us to derive SRs between T-cell populations (CD8+ T-cells, FoxP3+ T-cells, T-helpers), 
B-cells, macrophages, cancer cells, and other cells not covered by the panel (negative cells). 
Our findings indicate that SRs hold a higher predictive power when compared to the standard 
way of analyzing multiplex immunofluorescence data using immune cell density.  Moreover, 
response to ICIs is more likely upon proximity 1) from CD8+ T-cells to cancer cells, and 2) 
from macrophages to cancer cells. 

Our findings underscore the importance of quantifying SRs within the TME, potentially 
yielding novel biomarkers of response to ICIs with clinical utility. However, due to the spatial 
profiling technologies' novelty, there is no consensus regarding SR quantification within the 
TME61. Diverse methodologies exist to quantify SRs (e.g., distance-based, network-based) 
and statistically model the data (e.g., median derivation, probabilistic distribution fitting). To 
illustrate this point, in Chapter 5, we evaluated the importance of the modeling approach 
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for SR quantification. We showed that our proposed statistical approach was superior to 
using existing metrics (e.g., G-functions) when assessing a predictive signal. We concluded 
that the modeling approach is important and that guidelines and best practices still need to 
be established within the community to assess robust biomarkers61. 

Importantly, we confirmed the robustness of our SR biomarkers from Chapter 5 by 
validating them in an independent cohort of head and neck cancer tumors, suggesting that 
our candidate biomarkers may be a context-independent feature determining response 
to combination ICIs.  Integrating our existing spatial data and orthogonal data modalities 
will be required to understand further the mechanistic programs activated upon proximity 
between CD8+ T-cells and cancer cells and between macrophages and cancer cells. The lack 
of availability of single-cell and spatial RNA sequencing or spatial proteomics (e.g., cyTOF) 
in our cohorts did not allow us to make these connections. Other data types that allow for 
the profiling of interacting cells, such as PICseq, or cell-cell communication profiles derived 
from single-cell RNA sequencing, pose an important base from which to further navigate 
the interactions activated by spatial proximity biomarkers that determine response to ICIs. 
Lastly, additional and larger datasets involving multiplex immunofluorescence in UC before 
neoadjuvant ICI - which do not exist - are still needed to validate our findings and refine 
our modeling strategy. 

6.3 TOWARDS A ROBUST BIOMARKER

In the domain of predictive biomarkers for treatment response, the conventional approach 
involves correlating the molecular and clinical data from prospective or retrospective cohorts. 
Our approaches from Chapters 2-5 have evaluated the current and novel biomarkers of 
response to neoadjuvant treatments in UC. Our results suggest that, to date, complexity 
exists in the UC response biomarker domain due to the heterogeneity that we observed 
between clinical trials or retrospective cohorts in terms of biomarkers for response. Here, 
we will discuss the potential limitations of our approaches, all in the context of what is 
required to develop a robust biomarker: 

	● Assessment in large cohorts: biomarker associations must be (re-)assessed in large 
cohorts.  In UC, biomarkers of response to neoadjuvant ICIs are typically identified 
in early-phase clinical trials, implying that the cohort sizes are relatively small (~10-50 
patients). Larger cohorts (>>100 samples) are still required to assess whether biomarker 
associations are robust.

	● Validation in biomarker-guided randomized clinical trials: biomarker 
associations must be validated in randomized, prospective clinical trials, ideally following 
a biomarker-based approach. This approach is usually expensive and only carried out 
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for robust biomarkers. For instance, a clinical trial involving ICIs in melanoma stratified 
patients based on a baseline signature of interferon-gamma signaling64,65, allowing them to 
prospectively stratify patients to monotherapy or combination therapy ICIs and confirm 
the predictive power of the signature. 

	● Robustness, reproducibility, and independence: biomarkers must be robust, 
reproducible, and observer-independent. Some molecular traits are derived from 
techniques prone to batch effects and sampling bias, affecting the heterogeneity of the 
signal. For instance, technical variation in RNA-sequencing data induces large batch 
effects66, posing a challenge when models are evaluated in external cohorts. An alignment 
of technical pipelines, a consensus of best practices, and an improvement of batch effect 
correction algorithms are necessary.

	● Statistical rigor for evaluation of the predictive power: a robust statistical approach 
should be followed when evaluating the predictive power of biomarkers and underscore 
its potential cohort biases. Double loop, nested cross-validation is usually required to 
avoid overfitting and to obtain an unbiased performance estimate67.

	● Validation in external cohorts: biomarker associations must be validated in external 
cohorts (test sets) to prevent overfitting and assess their generalizability to a broader 
patient population.

	● Cost-effectiveness and feasibility: Biomarkers must be cost-effective and easy 
to measure68. For instance, some novel biomarkers are derived from single-cell 
experiments. The associated time and costs make it impractical to be implemented on 
a large scale - at least, in the current stage.  In that case, an alternative approach should 
be derived from the primary biomarker discovery.

Following these statements/requirements, we will navigate the limitations of our cohorts 
assessed in our chapters.

6.3.1 Limitations from Chapter 2
In Chapter 2, we validated biomarkers in a large UC retrospective cohort. Despite the 
relatively large cohort size (n=165), the low frequency of events (only 12 [7%] ERCC2 
mutations observed in the cohort) did not allow a cross-validation approach. However, 
given that we used our cohort as a validation cohort independent from the current data 
published in the literature, our association suggests robustness.

Further efforts to validate the ERCC2 mutation biomarker (ideally prospectively) to confirm 
its predictive power, are required. To our knowledge, only one prospective clinical trial has 
assessed the association between response and distinct genomic biomarkers (involving 
somatic mutations in ERCC2, FANCC, RB1, and ATM) as a secondary endpoint69–71. Although 
the data suggested ERCC2 mutations were more predominant in responding tumors, the 
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association was not significant. Nevertheless, the trial design involved a combination of NAC 
with ICIs (nivolumab) and excluded patients with baseline nodal disease (N+), differing from 
the treatment course from Chapter 2 and the nodal disease rate, which accounted for 44% 
of patients, making such results not directly comparable with our findings. Other prospective 
trials have assessed alternative biomarkers and responses to chemotherapy. For instance, a 
trial assessed the predictive power of a gene expression signature (COXEN) and response 
to NAC, but it could only confirm the prognostic power of the signature72. Preliminary 
secondary use of the data reported a positive association between NAC response and a 
mutation in any of ATM, RB1, FANCC, or ERCC2, but the translational results have not yet 
been published73. Further prospective trials will be required to assess the true predictive 
power of ERCC2 mutations or alternative molecular traits as candidate biomarkers.

Our approach to distinguish driver from passenger mutations and somatic mutations from 
germline variants in the cohort employed a customized bioinformatic pipeline, combining 
previous knowledge on germline variants reported on population databases and functional 
annotations from experimentally validated clinical databases and bioinformatic predictions 
on variant pathogenicity. An alignment of such approaches between research centers, which 
is currently lacking, will be beneficial to guarantee the reproducibility of the biomarker and 
its robustness. 

Lastly, and as discussed in the discussion section from Chapter 2, to date, there is 
heterogeneity in response assessment upon neoadjuvant chemotherapy in UC, which hinders 
the interpretations when comparing results from different studies.

6.3.2 Limitations from Chapters 3-5
In Chapters 4 and 5, we used a modestly sized (n=24) prospective cohort to evaluate 
associations between molecular tumor traits and response to neoadjuvant ICIs. Data integration 
from external cohorts or additional patients from the trial is still needed to investigate our 
preliminary observations further and achieve more statistical power.  Moreover, the small 
cohort size limited the possibility of employing a cross-validation approach. Therefore, our 
results must be validated in independent cohorts.

Our results from Chapter 4 suggest a divergence of response biomarkers to ICIs when 
compared to similar cohorts. A possible explanation for such differences is that while our 
neoadjuvant cohort from Chapters 3-5 consists of a combination treatment of ICIs in UC 
(PD-1 plus CTLA-4 blockade), most of the published clinical trials involve either neoadjuvant 
monotherapy ICI (e.g., only PD-1 blockade) or were performed in the metastatic UC 
setting.  Moreover, the population characteristics from clinical trials differed, which could 
induce differences between trials. While our cohorts from Chapters 3-5 consisted of stage 
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III UC patients, other clinical trials, such as ABACUS40 and PURE-0174, recruited patients with 
a lower tumor stage. Another potential explanation for such differences is the small cohort 
size from the current studies. Data from larger, later-phase clinical trials (e.g., phase II and 
beyond) will be beneficial to assess the robustness of the current candidate biomarkers.

Our data also suggested that tumor tissue sampling poses a limitation for biomarker 
assessment in the context of response prediction.  In Chapter 3, we used surgical radical 
cystectomy (RC) material to quantify the UC TME. Typically, biopsy/transurethral resection 
(TUR) material is used to estimate biomarkers of response to neoadjuvant treatments 
(e.g., neoadjuvant ICIs), in which we assume that biopsy material is representative of the 
whole tumor. Our data from Chapter 3 suggested that although biopsy material can be 
representative of surgical material in most cases, there is a high intratumoral immune cell 
heterogeneity in the TME.  Moreover, we showed that tumor margins, in comparison with 
the tumor or stromal compartment, generally contain a higher immune cell density. TUR 
material gives an incomplete picture of the tumor bed and the surrounding TME and therefore 
does not allow for extensive tumor margin profiling. These results warrant caution when 
interpreting response biomarkers in the UC neoadjuvant setting. The literature suggests that 
TUR material provides a representative sample of RC material with a 60%-70% likelihood75, 
which aligns with our interpretations. However, this study did not compare TLS assessment 
within the UC TME. This, coupled with our observation that differences in maturation states 
between superficial and deep TLSs exist, warrants further investigation.

Chapters 3 and 4 assessed the TME dynamics upon treatment with neoadjuvant ICIs by 
comparing pre- vs post-treatment samples. This comparison posed a limitation in responding 
tumors, which, upon a good response to ICIs, did not allow the collection of post-treatment 
tumor tissue and impeded assessing such associations. However, quantifying post-treatment 
stromal tissue still allowed us to uncover novel insights regarding response to ICIs, such as 
responding tumors having a high abundance of CD8+PD1+ T-cells.

Furthermore, because the TMB is a continuous metric, currently, there is no consensus on 
the ideal cutoff for patient stratification. Clinical trial data usually stratifies the cohort by 
median TMB, which makes the data between clinical trials not directly comparable.  Moreover, 
different filtering methodologies can be applied to account for the non-synonymous mutations 
for TMB quantification, affecting the metric value. Calibration is required between assays and 
bioinformatic pipelines76. To date, there is no consensus, which contributes to the candidate 
biomarker's complexity77.

Digital pathology allows for the quantification of tumor slide stainings and has reproducibly 
revolutionized tumor material profiling78. However, some algorithms still require refinement 
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to be reproducible for translational medicine. For instance, in Chapter 3, we assessed CD8 
and PD-1 double-positive cells by integrating two independent stainings using an artificial 
intelligence algorithm. Our algorithm required human refinement since the employed AI 
approach is still in its infancy and was hence prone to errors, which limits the reproducibility 
and robustness of the assessments if the data is used in the future for biomarker discovery. 
However, to date, there is no alternative strategy to quantify double-positive cells due to 
the lack of suitable antibodies for CD8 and PD-1 that could allow for simultaneous staining 
of a slide in a multiplexed fashion.

On the other hand, PD-L1 expression shows a dynamic behavior across tumors, as PD-L1 
is expressed both on neoplastic and tumor-infiltrating immune cells34, and its expression 
profile shows spatial heterogeneity79 and can change over time80.  Moreover, multiple 
immunohistochemical assays exist to assess PD-L1 expression. Consequently, further 
standardization for PD-L1 expression assessment across research centers is required to 
enhance its utility as a candidate biomarker of ICI response18,34. To date, it is still being 
determined what the most suitable scoring approach is to assess PD-L1.

This thesis has not covered other data modalities that allow further profiling of tumors, the 
surrounding TME, and the systemic effects of ICIs. These methods include T-cell receptor 
and B-cell receptor sequencing81, single-cell sequencing data, microbiome profiling, metabolic 
profiling, and techniques for quantifying tumor heterogeneity such as spatial proteomics 
or transcriptomics82. These orthogonal data modalities are expected to improve our 
understanding of ICI response and benefit the discovery of biomarkers.

6.4 FUTURE DIRECTIONS IN IMMUNO-ONCOLOGY 
FOR UROTHELIAL CANCER

Approximately half of muscle-invasive UC patients are not eligible for standard-of-care cisplatin 
regimens due to age and comorbidities83. The advancements in immuno-oncological treatments 
are promising because high response rates across cohorts are observed.  Moreover,  ICIs 
offer alternative treatment options for UC patients who are not eligible for standard-of-care 
chemotherapy treatments, and the associated treatment-related toxicity profiles, accounting 
for 6%-41% of the patients, are deemed acceptable83.

The NABUCCO trial described in Chapters 4 and 5 has been expanded with 30 additional 
patients to confirm treatment efficacy and optimize treatment dosage84.  Importantly, it will 
allow us to validate our spatial predictors of response from Chapter 5 as well as molecular 
associations of response from Chapter 4.
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The associations identified in this thesis, in combination with existing literature, have allowed 
for the generation of novel hypotheses to improve treatments. One finding, the negative 
correlation between ICI response and TGF-beta signaling, has initiated research into combining 
ICIs with TGF-beta blockade, hypothesizing a synergistic effect in anti-cancer treatment85. 
However, clinical data for such combination treatment is currently lacking, and early-phase 
clinical trials involving UC are still in the recruiting phase49. Our thesis revealed an important 
correlation between the response to ICI treatment and the proximity of CD8+ T-cells to 
cancer cells. This suggests that optimizing ICI treatments could be achieved by inducing 
proximity between these cells through therapeutic interventions. One potential approach 
could be to use bispecific antibodies that target cancer cells expressing immune checkpoints 
like PD-L1 and CD8+ T-cell markers (such as CD8). Although bispecific antibodies have 
effectively targeted both TGF-beta and PD-L186 in the ICI context, combining drug regimens 
or increasing the number of targets can increase toxicity. Therefore, further (pre-)clinical 
data collection is necessary to optimize such treatments.

Lastly, while this thesis explored the molecular characteristics of tumors undergoing 
neoadjuvant chemotherapy or ICIs, it is worth noting that chemotherapy regimens, such as 
cisplatin, can modulate the TME87. For instance, chemotherapy can trigger antigen release, 
enhance immunogenicity, and promote T-cell infiltration88. Consequently, the combination 
of chemotherapy and ICI regimens is being investigated in clinical trials. While clinical data 
for such combination treatments in UC, especially in the neoadjuvant setting, remains 
either unavailable or incomplete3, clinical trials of chemotherapy plus immunotherapy in the 
metastatic UC setting have reported inconclusive results regarding their synergistic effects89–93. 

In addition to the inconclusive clinical trial data, the research effort devoted to exploring 
biomarkers for response and resistance to treatments combining ICIs and chemotherapy 
regimens has been limited. Therefore, collecting additional data, and combining it with 
existing response biomarker data from a combination of chemotherapy and ICI regimens, 
could improve future disease management and patient stratification. 

6.5 GENERAL CONCLUSIONS AND FUTURE 
PERSPECTIVES 

In this thesis we have used genomic, transcriptomic, and proteomic profiling of UC tumors in 
the untreated and pre-operative settings collected patients. We explored the cancer-intrinsic 
factors to predict and understand better the surrounding TME.
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Our study revealed that certain data types contain valuable information amenable to alternative 
modeling approaches. For instance, we explored spatial modeling on spatially-resolved 
proteomic data beyond the standard modeling strategies to gain insight into the complexity 
and heterogeneity of human cancer datasets. Such an approach allowed us to propose novel 
candidate biomarkers of response to pre-operative combination ICIs, underscoring the need 
to explore existing datasets beyond standard analytical methodologies.

The work to fully comprehend the mechanisms underlying neoadjuvant combination ICIs in UC 
remains ongoing. Despite the significant progress in improving our understanding of response 
to combination ICIs, the differences observed between our findings and those reported in 
the literature indicate that our understanding of treatment response and mechanism is yet 
limited. Larger cohorts will be necessary to quantify more robust associations, validate the 
current preliminary findings, and better understand patient heterogeneity regarding response 
and resistance to treatment.  Incorporation of additional data types that profile the TME, 
especially with a single-cell and a spatial resolution, will be required to model further the 
differences observed between patient populations and ideally to exploit such heterogeneity 
for biomarker purposes.  Moreover, the study of the interaction between cancer, adaptive 
immunity, and response to immune checkpoint inhibition must be done beyond T-cell-related 
immunity, as other immune system components can play a role in determining ICI treatment 
response, such as shown in this thesis with macrophages. Lastly, future studies integrating 
the current knowledge on response to standard-of-care treatments such as neoadjuvant 
chemotherapy with the novel knowledge on response to ICIs still need to be met to propose 
novel ways of patient stratification. Ultimately, these insights will contribute to the refinement 
and optimization of the treatment management of UC tumors.

Four key areas for exciting new developments in the near future are identified based on the 
work presented in this thesis: 1) clinical trials further exploring the efficacy of neoadjuvant 
(monotherapy or combination) ICIs in UC, 2) experimental and computational approaches 
to derive biomarkers of response, 3) a better understanding of treatment dynamics to aid 
overcoming treatment resistance in standard-of-care treatments and ICIs and 4) a change 
in the neoadjuvant treatment landscape of UC by the incorporation of ICIs.
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SUMMARY

Urothelial cancer (UC) is a malignancy originating in the bladder with a challenging prognosis, 
even in its early disease stages. Currently, the standard of care to cure the disease involves 
surgical removal of the tumor through radical cystectomy (RC), which is often complemented 
by pre-operative chemotherapy (NAC, neoadjuvant chemotherapy).  In the past two decades, 
the disease treatment landscape has remained unchanged. 

Immune checkpoint inhibitors (ICIs) are a novel treatment type that blocks specific proteins, 
known as immune checkpoints, that downregulate an immune response. Upon immune 
checkpoint blockade, immune cells can effectively recognize cancer cells and induce an immune 
response against cancer cells.  In the UC context, early-phase clinical trials have demonstrated 
both the feasibility and efficacy of pre-operative ICIs and have shown long-lasting clinical 
responses. Therefore,  ICIs hold promise for changing UC clinical management in the future. 
However, not all patients respond to ICIs, and substantial rates of treatment-related toxicities 
are observed, highlighting the need for identifying biomarkers that can aid patient stratification.  

The studies presented in this thesis focus on elucidating the role of the UC tumor 
microenvironment (TME) in determining responses to pre-operative treatments, such as 
chemotherapy and ICIs. Through a comprehensive multi-omics approach, we quantified 
intrinsic and extrinsic characteristics of UC tumors collected from human samples. We 
associated them with clinical outcomes such as treatment response and treatment dynamics.

In Chapter 1, we introduce the current status of the treatment of UC and the immune 
system's role in cancer. We then highlight the (limited) current knowledge landscape of 
molecular biomarkers of response to pre-operative treatments in UC, such as NAC and 
ICIs. Lastly, we highlight the contribution and objective of this thesis.

In Chapter 2, we performed targeted DNA sequencing to validate candidate biomarkers of 
response to pre-operative chemotherapy in a large multi-center retrospective cohort of 165 
patients. Among the three hypotheses tested, we could only confirm a positive association 
between pathological response and deleterious alterations in ERCC2. While this correlation 
held for progression-free survival, it did not translate to overall survival, underscoring the 
necessity for further evaluation in prospective studies.

In Chapter 3, we employed multiplex immunofluorescence and protein stainings on UC 
RC specimens from untreated (n=31) and tumors treated with pre-operative combination 
ICIs (n=24) to characterize the UC TME. Our multiplexed immune panel enabled us to 
characterize diverse immune cell populations (e.g., T-cells, B-cells, macrophages) and tertiary 
lymphoid structures (TLS), the role of which in cancer is still being elucidated. We observed 
that upon ICIs the invasive margin of tumors showed a higher abundance of CD8+PD1+ 
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T-cells.  Moreover, the immune cell proportions within TLSs differed between treatment-naive 
and ICI-treated tumors, and their maturation states varied depending on their proximity to 
the tumor bed, which suggests that not all TLSs present in tumor tissue may be directly related 
to anti-tumor activity. Our data provided a foundation for further research in biomarker 
discovery within the context of pre-operative ICI treatments for UC.

In Chapter 4, we first presented the clinical data from NABUCCO, a phase-I clinical trial 
testing in 24 patients the feasibility of resecting a tumor upon a combination of pre-operative 
combination ICIs blocking the immune checkpoints CTLA-4 and PD-1 (ipilimumab and 
nivolumab, respectively). The trial achieved the primary endpoint, and durable responses 
were observed in more than fifty percent of patients. We then conducted a translational 
analysis to quantify tumor baseline response characteristics to pre-operative combination 
ICIs and treatment-associated dynamics.  Making use of pre- and post-treatment samples, 
we profiled whole-exome DNA sequencing, bulk RNA sequencing, and protein abundance 
(multiplex immunofluorescence and stainings), allowing us to conclude that response was 
independent of CD8+ T-cell related immunity and that in responding patients, the treatment 
induced TLS.

In Chapter 5, we quantified spatial relationships (SRs) in the TME of UC tumors and 
associated them with response to combination ICIs. First, we proposed a methodology to 
quantify SRs based on a curve fitting to the first nearest-neighbor spatial statistic. Such an 
approach allowed us to model spatially-resolved data, such as multiplex immunofluorescence 
quantitatively. We found that SRs are significantly associated with response to pre-operative 
combination ICIs and that SRs outperform immune cell abundance metrics - the standard 
way of quantifying multiplex immunofluorescence data - when predicting treatment response. 
Responding tumors were characterized by the proximity of CD8+ T-cells to cancer cells and 
macrophages to cancer cells.  Importantly, we validated our main findings in an independent 
cohort of head and neck cancer tumors (n=25) with a comparable combination ICI treatment, 
suggesting that our candidate biomarkers could be a context-independent feature determining 
response to combination ICI treatment. 

The work from this thesis contributed to validate genomic biomarkers of response to 
pre-operative chemotherapy in UC, suggesting combination CTLA-4 plus PD-1 blockade as an 
effective treatment to cure UC, to advance our understanding of response to ICIs in UC, and 
to propose a novel way to characterize the TME employing spatial relationships. Altogether 
our findings expanded our current knowledge of UC tumor biology that could serve to 
improve patient care in the future.
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Urotheelcelcarcinoom (UC) is een maligniteit die ontstaat in de blaas met een slechte 
prognose, zelfs in de vroege stadia van de ziekte. De standaardbehandeling is een chirurgische 
verwijdering van de tumor door middel van een operatie bekend als radicale cystectomie (RC), 
vaak gevolgd door pre-operatieve chemotherapie (NAC, neoadjuvante chemotherapie).  In de 
afgelopen twee decennia is het behandelingslandschap van de ziekte onveranderd gebleven.

Checkpointremmers zijn een vorm van immuuntherapie die specifieke eiwitten, bekend 
als immuuncheckpoints, die een immuunrespons downreguleren. Het blokkeren van deze 
checkpoints haalt de rem op de immuunresponse tegen kanker cellen weg.  In de context 
van UC hebben vroege klinische trials zowel de haalbaarheid als de werkzaamheid van 
pre-operatieve checkpointremmers aangetoond. Daarbij werden er bij patiënten langdurige 
responsen op behandeling gezien. Om die redenen zijn checkpointremmers een veelbelovende 
behandelmethode die de behandeling van UC in de toekomst kan veranderen. Niettemin 
reageren niet alle patiënten op deze therapie en worden aanzienlijke percentages therapie 
gerelateerde toxiciteit waargenomen. Dit benadrukt dat er behoefte is aan het identificeren 
van biomarkers die kunnen helpen bij de stratificatie van patiënten die baat hebben bij 
therapie met checkpointinhibitors.

Het onderzoek dat in dit proefschrift wordt gepresenteerd, richt zich op het verduidelijken 
van de rol van de tumor micro-omgeving (TMO) van UC bij het bepalen van reacties 
op pre-operatieve behandelingen, zoals chemotherapie en checkpointremmers. Via een 
uitgebreide multi-omics-benadering hebben we intrinsieke en extrinsieke biomarkers 
verzameld uit UC humane weefsel en deze gekwantificeerd. We hebben deze gekoppeld 
aan klinische uitkomsten zoals behandelingsrespons en behandeling dynamiek.

In Hoofdstuk 1 introduceren we zowel de huidige status van de behandeling van UC als 
de rol van het immuunsysteem bij kanker. We belichten vervolgens de (beperkte) huidige 
wetenschappelijke literatuur van moleculaire biomarkers voor respons op pre-operatieve 
behandelingen bij UC, zoals NAC en ICIs. Tot slot benadrukken we de bijdrage en het doel 
van dit proefschrift.

In Hoofdstuk 2 hebben we targeted DNA-sequencing uitgevoerd om biomarkers voor 
respons op pre-operatieve chemotherapie te valideren in een grote retrospectieve 
multicentercohort van 165 patiënten. Van de drie geteste hypothesen konden we alleen 
een positieve associatie bevestigen tussen pathologische respons en ERCC2 mutaties. Hoewel 
deze correlatie gold voor progressievrije overleving, vertaalde deze zich niet naar algehele 
overleving. Daarvoor is verdere evaluatie in prospectieve studies noodzakelijk.
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In Hoofdstuk 3 hebben we multiplex immunofluorescentie en eiwitkleuring toegepast op 
UC-blaasweefsel van onbehandelde tumoren (n=31) en tumoren behandeld met pre-operatieve 
combinatie checkpoint inhibitors (n=24) om de UC TMO te karakteriseren. Ons gemultiplexte 
antilichaampanel stelde ons in staat diverse immuuncelpopulaties (bijv., T-cellen, B-cellen, 
macrofagen, etc.) en tertiaire lymfoïde structuren (TLS) - waarvan de rol in kanker nog steeds 
wordt opgehelderd - te karakteriseren. We hebben waargenomen dat checkpointinhibitors 
de invasieve marge van tumoren een hogere hoeveelheid aan CD8+PD1+ T-cellen vertoonden. 
Bovendien verschilden de proporties immuuncellen binnen TLS's tussen tumoren die waren 
behandeld met of zonder checkpointinhibitors, en hun rijpingsfasen varieerden afhankelijk 
van hun nabijheid tot het tumorgebied. Dit suggereert dat niet alle TLS's in tumorweefsel 
direct gerelateerd kunnen zijn aan antitumoractiviteit. Onze resultaten legden de basis voor 
verder onderzoek naar biomarkers binnen de context van pre-operatieve ICI-behandelingen 
voor UC.

In Hoofdstuk 4 hebben we eerst de klinische gegevens gepresenteerd van NABUCCO. 
NABUCCO is een fase-I klinische trial die de haalbaarheid testte van het verwijderen 
van een tumor na een combinatie van pre-operatieve checkpointremmers ipilimumab en 
nivolumab bij 24 patiënten. De primaire uitkomstmaat - de haalbaarheid van de behandeling 
- van de studie werd behaald en duurzame respons op behandeling bij meer dan vijftig 
procent van de patiënten werd waargenomen. Vervolgens voerden we een analyse uit om 
tumorkarakteristieken van respons op pre-operatieve combinatie checkpointinhibitors 
en behandelingsgerelateerde dynamiek te kwantificeren.  In tumorweefsel vooraf en 
achteraf aan behandeling, hebben we hele exoom DNA-sequencing, ‘bulk’ RNA-sequencing 
en eiwitexpressiepatronen geprofileerd. Hierdoor konden we concluderen dat respons 
onafhankelijk was van CD8+ T-cel-gerelateerde immuniteit en dat bij patiënten met respons 
op therapie, de behandeling vorming van TLS induceerde.

In Hoofdstuk 5 hebben we spatial relaties (SRs) gekwantificeerd in de TMO van UC-tumoren 
en deze geassocieerd met respons op een combinatie van checkpointremmers. Eerst hebben 
we een methode opgesteld om SR's te kwantificeren op basis van een ‘curve fitting’ op de 
‘first-nearest neighbor’ statistiek. Deze benadering stelde ons in staat om ruimtelijke gegevens 
kwantitatief te modelleren, zoals multiplex immunofluorescentie data. We ontdekten dat 
SR's significant geassocieerd zijn met de respons op pre-operatieve combinatie ICIs en 
dat SR's beter presteren dan kwantitatieve gegevens van immuuncellen. Dit laatste is de 
standaard manier om gegevens over multiplex immunofluorescentie te kwantificeren - bij 
het voorspellen van de behandelingsrespons. Tumoren die respons op therapie vertoonden, 
werden gekenmerkt door de nabijheid van CD8+ T-cellen tot kankercellen en macrofagen 
tot kankercellen. Onze belangrijkste bevindingen hebben we bevestigd in een onafhankelijke 
cohort van tumoren van hoofd- en halskanker (n=25) met een vergelijkbare behandeling met 
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een checkpointinhibitorcombinatie. Dit suggereert dat de biomarkers die we hadden gevonden, 
tumoronafhankelijk zijn en respons op combinatiebehandeling met checkpointinhibitors 
voorspellen.

Het werk in dit proefschrift heeft bijgedragen aan het valideren van genomische biomarkers 
voor de respons op pre-operatieve chemotherapie bij UC. Daarnaast heeft dit proefschrift 
bijgedragen aan het voorstellen van een combinatie van pre-operatieve CTLA-4 en PD-1 
blokkade als een effectieve behandeling tegen UC, om ons begrip van de respons op 
checkpointinhibitors als therapeutische optie bij UC te verbeteren en een nieuwe manier 
voor te stellen om de TMO te karakteriseren door gebruik te maken van SRs. Samenvattend 
hebben onze bevindingen onze huidige kennis van de biologie van UC-tumoren uitgebreid, 
wat kan bijdragen aan een verbeterde patiëntenzorg in de toekomst.
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El carcinoma urotelial (CU) es una malignidad que se origina por la presencia de células 
cancerosas en la vejiga que causan un pronóstico desfavorable, incluso en las primeras etapas 
de la enfermedad. Actualmente, el tratamiento más común para curar la enfermedad consiste 
en la extirpación quirúrgica del tumor mediante cistectomía radical (CR), que a menudo se 
complementa con quimioterapia preoperatoria (NAC, quimioterapia neoadyuvante). En las 
últimas dos décadas, el tratamiento del CU ha permanecido sin cambios.

La terapia con inhibidores de puntos de control inmunitario, también conocida como terapia 
de immune checkpoint inhibitors (ICIs), es un novedoso tratamiento que bloquea proteínas 
específicas, conocidas como puntos de control inmunológico o checkpoints immunológicos, 
los cuáles regulan desfavorablemente la respuesta inmune. Tras el bloqueo de los checkpoint 
immunológicos mediante ICIs, las células inmunitarias pueden reconocer más eficazmente 
las células cancerosas e inducir una respuesta inmunitaria contra las células cancerosas. En 
el contexto del CU, los ensayos clínicos de fase temprana han demostrado tanto la viabilidad 
como la eficacia de los ICIs en fase preoperatoria, y, además, han demostrado respuestas 
clínicas duraderas. Por lo tanto, los ICIs son una terapia prometedora con posibilidades 
de ser incorporados en el manejo clínico del CU en el futuro. Sin embargo, no todos los 
pacientes responden a los ICIs y además los ICIs causan unas proporciones sustanciales de 
toxicidades. Por lo tanto, existe una necesidad de identificar biomarcadores (biomarkers) que 
ayuden a identificar qué paciente tiene más probabilidad de responder satisfactoriamente 
al tratamiento.

Los estudios presentados en esta tesis doctoral se centran en dilucidar el rol del microambiente 
tumoral (TME, tumor microenvironment) del CU en la inducción de respuestas clínicas a 
tratamientos preoperatorios, como la quimioterapia y los ICIs. A través de un enfoque 
multiómico, en esta tesis hemos cuantificado las características intrínsecas y extrínsecas de 
los tumores de CU recolectados de muestras humanas. Estas características tumorales han 
sido asociadas con variables clínicas como las respuestas clínicas y las dinámicas (cambios) 
asociadas a tratamientos preoperatorios.

En el Capítulo 1, presentamos el panorama actual del tratamiento del CU y el rol del 
sistema inmunológico en el cáncer. Además, destacamos el cuadro general del (limitado) 
conocimiento actual de los biomarcadores moleculares asociados con respuestas clínicas 
a tratamientos preoperatorios en el CU, como la quimioterapia y los ICIs. Por último, 
destacamos la contribución y objetivo de esta tesis.

En el Capítulo 2, realizamos una secuenciación dirigida (targeted) de ADN para validar 
biomarcadores asociados con respuestas clínicas a la quimioterapia preoperatoria en una 
cohorte retrospectiva multicéntrica de 165 pacientes. Entre las tres hipótesis testeadas, 
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solo pudimos confirmar una asociación positiva entre la respuesta patológica y mutaciones 
en ERCC2. Aunque esta correlación fue también significante con la supervivencia libre de 
progresión (la probabilidad temporal de que un tumor progrese), no hubo correlación entre 
las mutaciones en ERCC2 y la supervivencia general (la probabilidad temporal de que un 
paciente sobreviva), lo que subraya la necesidad de realizar futuras evaluaciones en estudios 
prospectivos.

En el Capítulo 3, empleamos inmunofluorescencia múltiple (multiplex immunofluorescence) 
y tinciones de proteínas en muestras quirúrgicas mediante RC de tumores de CU no tratados 
(n = 31) y tratados con ICIs preoperatorios (n = 24) para caracterizar el TME del CU. Nuestro 
panel inmunológico multiplexado nos permitió caracterizar diversas células inmunes (por 
ejemplo, células-T, células-B, macrófagos,…) y estructuras linfoides terciarias (TLS), cuyo 
papel en el cáncer aún se está dilucidando. Las muestras tratadas con ICIs se caracterizaron 
por una una mayor abundancia de células-T CD8+PD1+. Además, las proporciones de células 
inmunitarias dentro de las estructuras TLS difirieron entre los tumores sin tratamiento previo 
y los tratados con ICI, y los estados de maduración de las TLS variaron dependiendo de su 
proximidad al margen tumoral. Estos resultados sugieren que no todos las estructuras TLS 
presentes en el tejido tumoral están directamente relacionadas con actividad anti-tumoral. 
Nuestros datos proporcionan una base para futuras investigaciones relacionadas con el 
descubrimiento de biomarcadores en el contexto de los tratamientos preoperatorios con 
ICIs para el CU.

En el Capítulo 4, presentamos los datos clínicos de NABUCCO. NABUCCO es un ensayo 
clínico de fase temprana que investiga en 24 pacientes la viabilidad de resectar tumores de CU 
después de un tratamiento con una combinación de ICIs en fase preoperatoria que bloquean 
los checkpoints immunológicos CTLA-4 y PD-1 (con los fármacos ipilimumab y nivolumab, 
respectivamente). El criterio de endpoint primario del ensayo clínico fue alcanzado, y se 
observaron respuestas clínicas duraderas en más de la mitad de los pacientes. Posteriormente, 
realizamos un análisis para investigar qué características tumorales determinan una respuesta 
favorable al tratamiento con ICIs y qué características son alteradas por efecto del tratamiento. 
Usando muestras tumorales recolectadas previa y posteriormente al tratamiento con 
ICIs, los tumores fueron cuantificados mediante secuenciación del exoma completo del 
ADN (whole-exome DNA sequencing), mediante secuenciación del ARN y mediante 
tinciones y inmunofluorescencia múltiple (multiplex immunofluorescence) para cuantificar 
proteínas. Nuestros resultados nos permitieron concluir que la respuesta clínica a los ICIs 
es independiente de la inmunidad relacionada con las células-T CD8+ y que el tratamiento 
con ICIs induce una mayor presencia de estructuras TLSs en pacientes que respondieron 
al tratamiento.
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En el Capítulo 5, cuantificamos las relaciones espaciales (spatial relationships, SR) en el TME 
de los tumores de CU y asociamos las SRs con la respuesta clínica a la combinación de ICIs en 
fase pre-operativa. Primero, proponemos una metodología para cuantificar las SR basada en 
un ajuste de curvas a la estadística espacial del vecino más próximo (first nearest-neighbor). 
Este método nos permitió modelar cuantitativamente datos resueltos espacialmente, como 
por ejemplo la inmunofluorescencia múltiplex.  Mediante la cuantificación de SRs observamos 
que las SRs se asocian significativamente con la respuesta clínica a la combinación de ICIs, 
y que las SRs tienen un poder predictivo superior comparado a las métricas de abundancia 
de células inmunitarias (densidad celular; la manera estándar de cuantificar los datos de 
inmunofluorescencia múltiple) en modelos de predicción de la respuesta clínica al tratamiento 
con ICIs. Los tumores que respondieron a ICIs se caracterizaron por la proximidad de las 
células-T CD8+ a las células cancerosas y de los macrófagos a las células cancerosas. Nuestros 
hallazgos fueron validados en una cohorte independiente de tumores cancerosos de cabeza 
y cuello (n = 25) con un tratamiento con ICIs comparable al del cohorte de CU, lo que 
sugiere que los biomarcadores propuestos en este capítulo pueden ser una característica 
independiente del contexto tumoral que determina una respuesta favorable al tratamiento 
con ICIs.

El trabajo de esta tesis ha contribuído a validar biomarcadores genómicos de respuesta a 
la quimioterapia preoperatoria en la CU, a sugerir la combinación de bloqueo de CTLA-4 
más PD-1 como un tratamiento eficaz para curar el CU, a avanzar nuestra comprensión 
de la respuestas clínicias a los ICIs en el CU, y a proponer una metodología novedosa para 
caracterizar el TME empleando relaciones espaciales. En conjunto, nuestros hallazgos han 
ampliado el conocimiento actual sobre la biología tumoral del CU que podría ser empleado 
para mejorar la atención al paciente en el futuro.
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El càncer urotelial (CU) és una malignitat originada per la presència de cèl·lules canceroses 
a la bufeta que causen un pronòstic desfavorable, fins i tot en les primeres fases de la 
malaltia. Actualment, la forma estàndard per curar la malaltia implica l'extirpació quirúrgica 
del tumor mitjançant cistectomia radical (RC), que sovint es complementa amb quimioteràpia 
preoperatòria (NAC, quimioteràpia neoadjuvant). En les últimes dues dècades, el panorama 
del tractament de la malaltia s'ha mantingut inalterat.

Els inhibidors del punt de control immunitari (també coneguts com immune checkpoint 
inhibitors, o ICIs) són un nou tipus de tractament que bloqueja proteïnes específiques, 
conegudes com a punts de control immunitari, que regulen la resposta immune.  Mitjançant 
el bloqueig dels punt de control immunitari amb ICIs, les cèl·lules immunitàries poden 
reconèixer més eficaçment les cèl·lules canceroses i induir una resposta immune contra les 
cèl·lules canceroses. En el context del CU, els assaigs clínics de fase inicial han demostrat tant 
la viabilitat com l'eficàcia dels ICI en fase preoperatòria, i també han demostrat respostes 
clíniques de llarga durada. Per tant, els ICI prometen canviar la gestió clínica del CU en un 
futur. Tanmateix, no tots els pacients mostren una resposta clínica a els ICI, i a més una 
quantitat substancial de pacients mostra toxicitats relacionades amb el tractament, cosa que 
posa de manifest la necessitat d'identificar biomarcadors que puguin ajudar a la identificació 
del pacients que tenen més probabilitat de respondre al tractament.

Els estudis presentats en aquesta tesi se centren en dilucidar el rol del microambient 
tumoral del CU (tumor microenvironment, TME) en la inducció de respostes clíniques als 
tractaments preoperatoris, tals com la quimioteràpia i els ICIs.  Mitjançant un enfocament 
multiòmic, hem quantificat les característiques intrínseques i extrínseques dels tumors de 
CU recollits de mostres humanes. Les característiques tumorals han estat associades amb 
variables clíniques, tals i com la resposta clínica al tractament i la dinàmica associada amb 
el tractament.

Al capítol 1, presentem tant l'estat actual del tractament del CU com el paper del sistema 
immunitari en el càncer. A més, destaquem el panorama (limitat) actual del coneixement 
de biomarcadors moleculars de resposta clínica a tractaments preoperatoris pel CU com 
la quimioteràpia i els ICIs. Finalment, destaquem la contribució i l'objectiu d'aquesta tesi.

Al capítol 2, realitzem una seqüenciació dirigida d'ADN (targeted sequencing) amb l’objectiu 
de validar biomarcadors de resposta clínica a la quimioteràpia preoperatòria en un cohort 
retrospectiu multicèntric de 165 pacients. Entre les tres hipòtesis testejades, només vam 
poder confirmar una associació positiva entre la resposta patològica al tractament i les 
mutacions al gen ERCC2. Tot i que aquesta correlació es va mantenir significant amb la 
supervivència sense progressió (progression-free survival), la correlació no es va mantenir 
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significant amb la supervivència global (overall survival), cosa que subratlla la necessitat d'una 
futura avaluació addicional en estudis prospectius.

Al capítol 3, vam utilitzar immunofluorescència múltiple i tincions de proteïnes en mostres 
de RC de tumors de CU no tractats (n = 31) i de tumors de CU tractats amb una combinació 
d’ICIs preoperatoris (n = 24) per caracteritzar el TME del CU. El nostre panell immunitari 
multiplexat ens va permetre caracteritzar diverses poblacions de cèl·lules immunitàries 
(per exemple, cèl·lules-T, cèl·lules-B, macròfags, ...) i estructures limfoides terciàries (TLS), 
el paper de les quals en el càncer encara s'està dilucidant. El marge invasiu dels tumors 
tractacts amb ICIs van mostrar una major abundància de cèl·lules-T CD8+PD1+. A més, 
les proporcions de cèl·lules immunitàries dins de les TLS van diferir entre els tumors no 
tractacts i els tumors tractats amb ICIs, i els estats de maduració de les TLS van variar en 
funció de la seva proximitat al llit tumoral, cosa que suggereix que no totes les TLS presents 
al teixit tumoral estan directament relacionades amb activitat anti-tumoral. Les nostres dades 
proporcionen una base per a futures investigacions sobre el descobriment de biomarcadors 
en el context dels tractaments preoperatoris amb ICIs pel CU.

Al capítol 4, primer presentem les dades clíniques de NABUCCO, un assaig clínic de 
fase I que testejava la viabilitat d’extirpar un tumor posteriorment al tractament amb una 
combinació d'ICIs preoperatoris que bloquegen els punts de control immunitari CTLA-4 i 
PD-1 (ipilimumab i nivolumab, respectivament) en 24 pacients. El criteri d’endpoint primari 
de l’assaig clínic va ser assolit, i es van observar respostes clíniques duradores en més de 
la meitat dels pacients. A continuació, vam realitzar una anàlisi translacional per quantificar 
les característiques del tumors que determinen resposta clínica al tractament amb ICIs i 
que son alterats pels efectes dinàmics associats al tractament. Fent ús de mostres prèvies i 
posteriors al tractament, vam quantificar els tumors amb seqüenciació de l’exoma sencer 
de l'ADN de l'exoma sencer (whole-exome DNA sequencing), amb seqüenciació de l'ARN, 
i amb immunofluorescència múltiple i tincions per perfilar l’abundància de proteïnes. Els 
nostres resultats ens van permetre concloure que la resposta clínica al tractament amb ICIs 
és independent de la immunitat relacionada amb les cèl·lules-T CD8+, i que en pacients que 
responen al tractament amb ICIs el tractament indueix la presència de TLS.

Al capítol 5, vam quantificar les relacions espacials (spatial relationships, SRs) al TME dels 
tumors de CU i vam associar les SRs amb la resposta clínica al tractament pre-operatori 
amb combinació d’ICIs. En primer lloc, vam proposar una metodologia per quantificar els 
SR basats en un ajust de corbes a l’estadística espacial del veí més proper (first-nearest 
neighbor). Aquest enfocament ens va permetre modelar quantitativament dades resoltes 
espacialment, com ara la immunofluorescència múltiple. Els SR s'associen significativament 
amb la resposta clínica a les combinacions d’ICI preoperatòries, i els SR van superar les 
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mètriques d'abundància de cèl·lules immunitàries (la forma estàndard de quantificar les dades 
d'immunofluorescència múltiple), quan es prediuen la resposta clínica al tractament amb ICIs. 
Els tumors que responen a ICIs es van caracteritzar per la proximitat de les cèl·lules-T CD8+ 
a les cèl·lules canceroses i els macròfags a les cèl·lules canceroses. És important destacar les 
nostres principals troballes es van validar en una cohort independent de tumors de càncer de 
cap i coll (n = 25) amb un tractament similar de combinació d'ICIs, cosa que suggereix que 
els nostres biomarcadors podrien ser una característica independent del context tumoral 
que determina la resposta al tractament amb combinació d'ICIs.

El treball d'aquesta tesi ha contribuīt a validar biomarcadors genòmics de resposta a la 
quimioteràpia preoperatòria al CU, ha suggerit la combinació de bloqueig de CTLA-4 més 
PD-1 com a tractament eficaç per curar el CU, ha avançat la nostra comprensió de la resposta 
clínica als tractaments pre-operatius amb ICIs al CU, i ha proposat una nova manera de 
caracteritzar el TME emprant relacions espacials (SRs). En conjunt, les nostres dades han 
ampliat el nostre coneixement actual de la biologia del tumor del CU que podria servir per 
millorar l'atenció al pacient en un futur.
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personalidad tan única, una energía tan vibrante, casi inagotable :p gracias por aguantar 
tantos años juntos. Omar, han sido muchos momentos, muchas salidas juntos, gracias por 
mantener siempre el equilibrio entre lo calmado y lo loco. Cristian, siempre tan presente 
en el barrio, muchas gracias por todo el tiempo compartido y me alegro mucho tu proyecto 
con Aida, os deseo lo mejor. Silvia, ya no estamos ninguno de los dos en Barcelona y cada 
vez es más difícil vernos por la distancia, pero me alegra que aún así mantengamos la amistad 
durante los años. Gracias por traer siempre tantos momentos de alegría junto a Irene :).

També a les meves amigues que em van acollir al BBK, les de “maldita ****** la nuestra”, 
que tot i que sen’s fa tan difícil veurens des de que vaig marxar, guardo un molt bon record 
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de tot el que hem vivit junts.  Moltes gràcies Elena, per tots els dies (i bueno, millor dit, 
nits) junts, per tants concerts passat junts, per tantes xerrades i rises.  I a la Laura, sempre 
amb tanta energía, amb tanta passió, tan única, la que encara m’intriga com s’ho fa per fer 
tantes coses ahora 

I al millor grup de l’ICFO,  Mariona,  Maria Bea, Luís, Ximo, per tot els moments de 
diversió que hem passat.

Ahora toca agradecer el apoyo de mi familia durante todos estos años. En especial, me gustaría 
agradecer a mi Mama y mi Papa por todo el apoyo incondicional y amor durante estos 
años, me siento privilegiado por toda la ayuda que me habéis dado especialmente durante 
mi mudanza tan lejos de casa, gracias por confiar en mis decisiones.  Me gustaría agradecer 
también a toda mi familia por ser quienes son, por estar siempre ahí para los buenos y malos 
momentos, por tal mezcla de personalidades, y por todas las historias y momentos vividos, 
gracias a mi querido Abuelo que siempre seré su cazurrete, a mis tías Merche, Esther, Ana, 
Ángeles que siempre me han dado tantos consejos, a mi tío Chal que siempre ha sido tan 
inspirador, a mis primos César, Adrià, y Pau, al Kiko, a mis queridas Yaya y Tieta que 
siempre han estado ahí para todo, a la Mireia, Nuri, Juan, a los que por desgracia ya no 
están con nosotros,  Abuela,  Yayo, y a toda la familia extendida, que son muchísimos. Por 
último me gustaría agradecer a la “familia postiza”, los que siempre han estado durante los 
años, gracias Susana por estar ahí desde que era un niño, Gely,  Miguel,  Ana,  Albert, 
Judith, Edu,  Andrea,  Aida.

Trying to remember every person that has made a significant contribution to my growth is 
challenging.  I apologize in advance if someone is missing.

 




