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Abstract

This research consists of two applications of image processing, namely, image compression and image de-
noising. Image compression aims to reduce the size of an image without losing too many features. This is
often used to store a large number of images such as fingerprints. Denoising is a technique for removing
noise from an image while preserving as many of the edges and other detailed features as possible.

This research studies the use of different discrete wavelets and the Dual Tree Complex Wavelets in the
image compression and denoising process. The wavelet transform decomposes the original image into ap-
proximation and detail coefficients, where the approximation coefficients are calculated by averaging and
the detail coefficients by taking differences. The wavelet transform is also invertible so that the image can be
reconstructed again using the approximation and detail coefficients.

The compression and denoising method consists of three steps: decomposition, thresholding and recon-
struction. The difference between compression and denoising lies in the threshold part. For image compres-
sion, a percentage of the detail coefficient is chosen as the threshold. The wavelets db6, sym5, coif3, bior4.4
and rbio1.5 are chosen to compress the images. The images are tested with compression rates ranging from
5:1 to 43:1. Based on the Structural Similarity Index Measurement (SSIM), the bior4.4 wavelet performs best.
For denoising, the threshold is optimised to obtain a denoised image. The discrete wavelets used are db4,
coif3, bior2.8. Of these, the bior2.8 wavelet performs the best on images used in this research. Therefore,
the bior2.8 wavelet is compared with the Dual Tree Complex Wavelet (DTCW). Based on the Peak Signal-to-
Noise-Ratio (PSNR), the denoised image using the DTCW performs better than the bior2.8 wavelet.

Overal, wavelets are a powerful tool in image processing. The different wavelets each have their own
characteristics. The choice of the optimal wavelet depends on the application and cannot be generalised.

Layman abstract
There are many applications of image processing, ranging from detecting cancer to face recognition. One
of them is called image compression. Image compression is used to reduce the size of an image. This is for
example used when a picture is send over a digital platform, such as Whatsapp or Facebook. It can also be
used to store large data, for example, fingerprints. Another application is image denoising. Image denoising
is a technique of removing noise from an image. For example, if you take a photo with your older mobile
phone, the photo is often a bit noisy. This research explores the potential of wavelet in image compression
and denoising. In the case of image denoising, the image is deconstructed using the wavelet, which allows to
separate the details of the image from the rest or noise. In the case of image compression, wavelet transfor-
mations are applied to the image to decrease the total memory required to store the image, by deconstructing
the image using the wavelet. This research report concludes that the application of wavelets in the field of
image processing yields a satisfactory result.
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1
Introduction

Digital images are an integral part of today’s world. These images can be medical or scientific images ob-
tained through ultrasound, X-rays or gamma rays, but most images are obtained through a digital camera, for
example from a mobile phone.

Cameras work with light reflection. Light consists of photons, or in other words particles that move at the
speed of light. Light is needed to take a picture of an object. Photons bounce off the object to the camera’s
light-sensitive sensor. Photons are not moving in a fixed pattern, so if we take two pictures with the same
device of the same object, the number of photons captured could still be different. Since one photon’s arrival
is independent of the other photons, the number of collected photons in a specific interval of time is Poisson
distributed. When we define this random variable as Xi , with i = 1, . . . , N as the number of the drawing, the
sample mean X̄ of all drawings Xi , . . . , Xn follows a Gaussian distribution under the Law of Large Numbers.

The noise associated with the arrivals of photons is called the Poisson noise. This type of noise always
exists whenever you are capturing light. In the dark parts of the image, fewer photons are hitting the sensor
and therefore the noise is more visible.

Moreover, all those images have to be stored or processed. Every day, billions of photos are taken and sent
to each other. Sending and storing these photos costs memory. The better the quality, the more memory is
required. The Federal Bureau of Investigation has about 200 million fingerprints in storage [4]. Storing them
in the same quality as your photos on your mobile phone costs about 2000 terabytes of memory; in other
words, it takes much more memory than a conventional computer could store by itself. So there must be a
way to store images more efficiently. This is called image compression. Compression can be distinguished
into lossless compression and lossy compression. If an image is compressed lossless, the original image can
be recovered exactly from the compressed image. Since the human eye can only perceive about 32 shades of
grey [5], lossless compression is not always necessary. A good method for lossy compression is the discrete
wavelet transform. Both image compression and denoising are part of image processing.

The concept of transformations is not new. In 1822, Joseph Fourier claimed that functions could be ex-
pressed into sines and cosines. The Discrete Fourier Transforms were used for many applications ranging
from image pattern recognition to image processing. However, the Fourier Transformation has some dis-
advantages. The main disadvantage is that it only has frequency resolutions and no time resolutions. For
signals, it means we know what happens to the signal but not when it happens. For images, it means that the
global frequency can be determined, but not the local changes.

In 1909, Alfred Haar proposed the Haar wavelet transform. The Haar transform is the simplest form of Dis-
crete Wavelet Transform (DWT) and intends to preserve the features of the original image while reducing the
size of the image significantly. In the meantime, the field of (discrete) wavelet transform has expanded rapidly,
and multiple different wavelet families have been introduced by different researchers, such as Daubechies,
Symlet, Coiflet, Biorthogonal, Reverse Biorthogonal, and the Dual Tree Complex Wavelets. These wavelet
families will be evaluated in this research report.

The structure of this research report will be as follows. First, the image representation in mathematics is
discussed. This mathematical image representation is then transformed using Discrete Wavelet Transform.
The process of DWT will be elaborated in detail, which will include signal decomposition, reconstruction, and
processing. This elaboration is followed by the description of the different wavelet families evaluated in this
research report. Then, an enhancement of the DWT is discussed, namely the Dual Tree Complex Wavelets.
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2 1. Introduction

Subsequently, the methods used in this research report are discussed. First, the thresholding methods
applied to the wavelets are discussed, which is followed up by the image processing applications. These
applications consist of image compression and denoising, which will be individually elaborated upon.

Afterwards, the results of this research are discussed, which will be followed up with the conclusion of this
research report.



2
Wavelet Transform

Wavelet transform is the technique of applying different wavelets to transform the data. In this research, the
data consists of image data, and the goal of the transformation is to compress the image for saving memory
and remove noise from the image. In particular, the Discrete Wavelet Transform and Dual Tree Complex
Wavelet Transform are evaluated in the aforementioned image processing techniques. This chapter will take
a closer look at the differences between the wavelets. The methodology is divided into three parts. The first
part introduces how an image can be represented in mathematics, which is followed up with the description
of the Discrete Wavelet Transform and the Dual Tree Complex Wavelet Transform.

2.1. Images
Images come in all shapes and sizes. The images used in this article are 512x512 pixel images, retrieved from
MATLAB. These images are all in black and white with a greyscale of 255.

2.2. Representing an image in mathematics
The first step is to understand how images are represented in mathematics. An 8-bit image consist of squares
that are indexed by 255 grey levels. In figure 2.1, an image of a fingerprint is shown. In the zoomed in version,
the different squares can be seen. Every square denotes a pixel, which can be indicated by one of the 255 grey
levels, where zero denotes black and 255 denotes white. This means every square has a number. Let every
number be an element of a matrix, then the matrix can be used for the 2D wavelet transformation.

Figure 2.1: Fingerprint [4]

This process can also be carried out for images with colour. In this case, each pixel represents three num-
bers, namely the Red Green Blue (RGB) values, each ranging from 0 to 255. The transformation is then per-
formed for the Red, Green and Blue values. In this paper, however, only the 255 grey scales are taken into
account.

3



4 2. Wavelet Transform

2.3. Discrete Wavelet Transform (DWT)
Wavelets are oscillating functions which begins at zero, increases or decreases on an interval and then re-
turns zero again, in other words, the wavelets are compactly supported. The wavelet transformation turns a
function into a set of wavelets coefficients in order to represent information in a more useful way. Wavelets
can be adapted by moving the wave to the left or right, called translation, see Figure 2.2a and by changing the
amplitude, also called dilation, see Figure 2.2b.

(a) Wavelet can move to the left and right. (b) Wavelets with different amplitudes.

Figure 2.2: Different ways to manipulate wavelets [4].

In Figure 2.3 some examples are shown of wavelets with different dilation and translation functions.
There are multiple wavelet families, all with different dilationa and translation functions, for example, the
Daubechies, Symlet of Coiflet wavelets.

Figure 2.3: Different wavelets [4].

The mathematical representation of a wavelet is given by

ψa,b(t ) = 1p
a
ψ

(
t −b

a

)
, (2.1)

where a is the scale (dilation) parameter and b the location (translation) parameter. Let x(t ) be a signal, then
the wavelet coefficient is given by

Ta,b = 〈x,ψa,b〉 =
∫

x(t ) ·ψa,b(t )d t . (2.2)

2.3.1. Signal decomposition using the Haar wavelet
Signal decomposition can be carried out using two functions that generates a family of functions. The two
functions are the scaling function φ and the wavelet function ψ. The simplest form of the discrete wavelet
transform is called the Haar wavelet transform or the Daubechies 1 (db1) wavelet transform, which is intro-
duced in 1910 by the Hungarian mathematician Alfred Haar [7]. The Haar scaling function is defined by

ψ(x) =
{

1, 0 ≤ x < 1,

0, elsewhere
. (2.3)
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The Haar wavelet function is defined by

φ(x) =


1, 0 ≤ x < 1

2 ,

−1, 1
2 ≤ x < 1,

0, elsewhere

. (2.4)

The functions are shown in Figure 2.4.

(a) The scaling function. (b) The wavelet function.

Figure 2.4: The Haar functions.

Let S = [0, 0, 4, 2, 6, 4, 2, 0] be a signal, then the Haar wavelet transform decomposes this into two sub-
signal of half its length. One subsignal is obtained by taking the average of the pairs [0,0], [4,2], [6,4], [2,0],.
The other sub-signal is obtained by taking half the difference of the same pairs. The original signal and the
two sub-signals are shown in Figure 2.5.

Figure 2.5: Original signal and the two sub-signals.

Let f j+1 = (a j+1
1 , a j+1

2 , ..., a j+1
N ) denotes a signal with length N , where N is of the form 2m , where m is an

integer which denotes the maximum number of decomposition. The first step of the decomposition is to
split the input signal into two sub-signals. One signal contains the approximation coefficient, denoted by f j ,
which is calculated by averaging the elements of the vector in pairs, in other words, the average of the first
two elements, the third and fourth element and so on. In order to normalise the vector, the coefficient is
multiplied by the

p
2 j . The formula of the approximation coefficient a j

n is given by

a j
n =

√
2 j

a j+1
2n +a j+1

2n−1

2
, (2.5)

for n = 1...N /2.
The other sub-signal, denoted by v j , contains the detail coefficients, which are calculated by taking half of



6 2. Wavelet Transform

the difference between two elements and multiplying by
p

2
j
. The formula of the detail coefficient d j

n is given
by

d j
n =

√
2 j

a j+1
2n −a j+1

2n−1

2
, (2.6)

for n = 1...N /2.
The output of this transformation equals (a j

1 , ..., a j
N /2,d j

1 , ...,d j
N /2). This process can be repeated by decom-

posing the sub-signal f j = (a j
1 , ..., a j

N /2) until j = 1. In figure 2.6, the decomposition is repeated three times.
Since there is only one element left, this is the maximum number of times the signal can be decomposed. The
left node denotes the sub signal with the approximation coefficients and the right node denotes sub-signal
with the detail coefficients. After decompose the signal three times, the output equals (

p
2·2.25,

p
2·0.75,

p
22 ·

1.5,
p

22 ·−2,
p

23 ·0,
p

23 ·−1,
p

23 ·−1,
p

23 ·−1).

f = (0, 0, 4, 2, 6, 4, 2, 0)

p
23 (0, −1, −1, −1)

p
23 (0, 3, 5, 1)

p
22 (1.5, −2)

p
22 (1.5, 3)

p
2 ·0.75

p
2 ·2.25

Figure 2.6: Example Haar wavelet decomposition

The detail coefficients are shown in Figure 2.7 together with the level of decomposition. Note that the
constant

p
2 j , where j denotes the level of decomposition is left out.

Figure 2.7: The detail coefficients.

2.3.2. Signal reconstruction using Haar wavelet
Consider the output vector of Figure 2.6, (

p
2 ·2.25,

p
2 ·0.75,

p
22 ·1.5,

p
22 ·−2,

p
23 ·0,

p
23 ·−1,

p
23 ·−1,

p
23 ·

−1), where f1 = p
2 · 2.25, v1 = p

2 · 0.75, v2 =
p

22 · (1.5,−2) and v3 =
p

23 · (0,−1,−1,−1). This vector can be
reconstructed using equation 2.5 and 2.6. Rewrite equation 2.5 and 2.6 gives

2p
2 j ′+1

·a j ′
n = a j ′+1

2n +a j ′+1
2n−1,

2p
2 j ′+1

·d j ′
n = a j ′+1

2n −a j ′+1
2n−1,

 =⇒
a j ′+1

2n = 1p
2 j ′+1

· (a j ′
n +d j ′

n ),

a j ′+1
2n−1 = 1p

2 j ′+1
· (a j ′

n −d j ′
n ),

 .

The coefficients a j ′
2n and a j ′

2n−1 are determined recursively for j ′ = 2, ... unitl j ′ = j +1
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2.3.3. Signal Processing using Filter Banks

Generally, in signal and image processing, the decomposition and reconstruction can be expressed in terms
of filter banks. The DWT is computed using two filters, the lowpass and the highpass filter. The low-pass filter
averages the signal and the high-pass filter takes the differences between the elements of the signal. How
the approximation (lowpass) and detail (highpass) coefficients are calculated is dependent on the wavelet
chosen. Decomposing the signal into sub-signals is called downsampling. The downsampling process is
shown in Figure 2.8. A signal X [n] passes through two filter banks, the H0, which denotes the highpass filter
and, the G0, which denotes the lowpass filter. The output of the highpass filter is the vector with the detail
coefficients. The lowpass filter gives the apporximation coefficients, which can pass the filters again. The
filters used for downsampling are also called the analysis filters.

Figure 2.8: Mallat-tree decomposition.

The reconstruction process is basically the reverse process of decomposition. This process is called up-
sampling and the filters used for upsampling are called the synthesis filters. The diagram of upsampling is
shown in Figure 2.9.

Figure 2.9: Mallat-tree reconstruction.

2.3.4. Image decomposition using the Haar wavelet

The image decomposition (2D decomposition) is similar to the signal decomposition, where the difference is
that the input is a nxn matrix and both the rows and columns are decomposed. The low-pass filter averages
the image and the high-pass filter takes differences between two elements. To show how the decomposition
works, we take the zoomed-in 8x8 image in Figure 2.1 and follow the method in Figure 2.10. In the figure, H
denotes the high-frequency bands and L the low-frequency bands. The image is first decomposed row-wise,
so the lowpass filter denoted as L in the figure and the highpass filter denoted as H is applied to the rows.
After that, the image is decomposed column-wise. In short, LL means both the rows and columns are passed
through the lowpass filter, which means the average is taken for every row and every column. HL means
the differences is taken row-wise and then the average is taken column-wise. Then LH means the average is
taken row-wise and the differences is taken column-wise. Lastly, HH denotes the image where the differences
is taken for every row and column,.
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Figure 2.10: Decomposition of an image.

First, every row of the matrix is decomposed using the method described in the previous section. Let

A =



88 88 80 80 79 85 110 179
89 90 138 144 144 145 145 180
89 90 98 167 168 168 164 169

111 185 187 192 172 171 165 167
120 200 207 208 200 198 183 184
123 200 208 208 203 186 128 128
140 201 205 197 189 163 145 145
157 188 176 160 102 98 141 141


denote the 8x8 image, then the first row

r1 =
(
88 88 80 80 79 85 110 179

)
is decomposed as follows. The average and difference is calculated over the pairs [88,88], [80,80], [79,85], [110,179].
The average is calculated using equation 2.5 and the difference using equation 2.6, where f2n the second el-
ement of every pair, f2n−1 the first element and j equals 1, since we only decompose the matrix once. The
average of the 4 pairs replaces the first 4 entries of r1 and the difference of the 4 pairs replaces the last 4
elements of r1. The new row is denoted by

r1 ·h1 =
p

2 · (88 80 82 144.5 0 0 −3 −34.5
)

From this equation, we can deduce that the transformation matrix equals

h1 =
p

2 ·



1
2 0 0 0 1

2 0 0 0
1
2 0 0 0 − 1

2 0 0 0
0 1

2 0 0 0 1
2 0 0

0 1
2 0 0 0 − 1

2 0 0
0 0 1

2 0 0 0 1
2 0

0 0 1
2 0 0 0 − 1

2 0
0 0 0 1

2 0 0 0 1
2

0 0 0 1
2 0 0 0 − 1

2


The matrix h1 can be multiplied on the right side with the matrix A in order to decompose all rows. Therefore,
we have

A ·h1 =
p

2 ·



1
88 80 82 289

2 0 0 −3 − 69
2

179
2 141 289

2
325

2 − 1
2 −3 − 1

2 − 35
2

179
2

265
2 168 333

2 − 1
2 − 69

2 0 − 5
2

148 379
2

343
2 166 −37 − 5

2
1
2 −1

160 415
2 199 367

2 −40 − 1
2 1 − 1

2
323

2 208 389
2 128 − 77

2 0 17
2 0

241
2 201 176 145 − 61

2 4 13 0
345

2 168 100 141 − 31
2 8 2 0


This matrix corresponds with the LH image of Figure 2.10. The second step is decompose the image column-
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wise. This can be done by multiplying A on the left by the transpose of h1, hT
1 . Hence,

hT
1 · A ·h1 = 2 ·



355
4

221
2

453
4

307
2 − 1

4 − 3
2 − 7

4 −26
475

4 161 679
4

665
4 − 75

4 − 37
2

1
4 − 7

4
643

4
831

4
787

4
623

4 − 157
4 − 1

4
19
4 − 1

4
343

2
369

2 138 143 −23 6 15
2 0

− 3
4 − 61

2 − 125
4 −9 1

4
3
2 − 5

4 − 17
2

− 117
4 − 57

2 − 7
4

1
4

73
4 −16 − 1

4 − 3
4

− 3
4 − 1

4
9
4

111
4 − 3

4 − 1
4 − 15

4 − 1
4

−1 33
2 38 2 − 15

2 −2 11
2 0


,

where blue corresponds to LL, green corresponds to HL, red corresponds to LH and orange corresponds to
HH, see Figure 2.10.

As mentioned before, zero denotes black and 255 denotes white. The larger the difference between two
pixels, the whiter the pixel after decomposition. If the difference is small, it appears darker after decompo-
sition. However, the matrix also contains negative values. Since the difference between black and white are
considered, we can take the absolute value. The difference between black and white, 255 minus 0 is similar
to the difference between white and black, 0-255. In Figure 2.11, it can be seen that the edges are white and
the remaining parts are black. In other words, the LL means that the average is taken for each row and each
column, so that the image is reduced by a factor of 2. The HL means that the average is taken for every row
and the difference for every column, so the horizontal features appear, see Figure 2.11. Conversely, for LH,
the average is taken vertically and the difference horizontally, so the vertical features are visible, see Figure
2.11. The HH means that the difference is taken for every row and every column.

Figure 2.11: Decomposition of an simple image.

An image can also be decomposed more than once, by applying the method to the low-pass component.
A N-level decomposition results in 3N+1 different frequency subbands, see Figure 2.12.

Figure 2.12: Decomposition of an image [6]

The same calculation can be performed on 512 x 512 images, but then the transformation matrix is also
512 x 512.
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The Haar functions are the simplest wavelet functions. However, as shown in Figure 2.4, the functions are
discontinuous. Therefore, the Haar wavelets are not good at approximating continuous signals. Using the
Haar wavelet transform for images can lead to blocking artifacts.

2.3.5. Daubechies Wavelets

The Daubechies wavelets were discovered by Ingrid Daubechies, in 1988 [2]. These wavelets are compactly
supported orthonormal wavelets. A function is compactly supported if it is zero outside a compact set. This
property ensures that wavelets are localized in time. The Haar wavelet, also called the db1 wavelet is the
only discontinuous wavelet of this family. The other Daubechies are compactly supported and continuous.
The Daubechies have two naming schemes, i.e. DN, where N denotes the filter length and dbA, where A is
the number of vanishing moments. The filter length equals two times the number of vanishing moments,
so the wavelet db2 and D4 are the same. A wavelet has N vanishing moments if and only if the scaling and
wavelet function can generate polynomials up to degree N-1. The higher the number of vanishing moments,
the more complex functions the wavelets can generate. In images, it means that, the higher the vanishing
moments, the more details can be extracted. In addition, the smoothness of the functions increases with the
vanishing moments. In terms of filter length, the larger the filter, the more pixels are taken into account. For
example, if the filter length equals 4, the average and difference is taken over 4 pixels, so in the end the image
is smoother than when using a filter with filter length equal to 2. Another advantage is that the window size
is overlapping, which means the result reflects all changes between the pixels [2]. However, sometimes the
Daubechies wavelets can cause problems at the border. Suppose the input signal has length 8, the filter length
is 4 and the overlap window is equal to 2. In this case, the sub-signal should consist of 4 elements, but with a
filter length of 4 and an overlapping window 2, it is not possible to get 4 elements. Therefore, either another
filter must be used at the borders, or the signal must be extended. By Strang [12], symmetric extension is
the best solution. There are two ways to extend the signal symmetrically. The signal can reflect about a line
through the endpoint or midway between the end point and the next point. The first type is shown on the left
and the other type is shown on the right, see Figure 2.13.

Figure 2.13: Two ways to extend the signal.

2.3.6. Other wavelets

For the Discrete wavelet transform, there are a few basis functions that can be used. Besides Daubechies, you
also have Symlet, Coiflet, which are based on the Daubechies. The Symlet wavelet are the Daubechies with
increased symmerty. The Coiflet wavelet is also derived from the Daubechies. The function is also symmet-
ric and it uses three overlapping windows, which led to even smoother functions. Beside these orthogonal
wavelets, there also exist non-orthogonal wavelets, the Biorthogonal and the Reverse Biorthogonal wavelet.
The effect of these wavelets on image compression and denoising will be tested in this research.

2.4. Dual Tree Complex Wavelet Transform

As the concept of the DWT has been introduced and elaborated upon, an expansion to this subject will be
introduced, namely the Dual Tree Complex Wavelet Transform (DTCWT). This technique adds additional
properties, such as being nearly shift-invariant and directionally selective in dimensions larger and equal
than two [11]. Instead of using one tree resulting from the deconstruction of the original signal, two times the
deconstruction is applied, resulting in a dual tree construction, as shown in Figure 2.14.
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Figure 2.14: Example of a DTCWT deconstruction.

The upper and lower DWT trees are designed in such a way that the upper and lower parts relate to the
real and respectively the imaginary parts of the complex wavelet. Note that the the filters itself are real. The
two real wavelet transformations uses two different filters. For the first stage, the nearly symmetric Farras
filters are used and for the remaining stages the Kingsbury Q-shift filters [11]. The algortihm on how these
filters are designed are explained in [10].





3
Image Compression

Image compression is a method to convert the image so that it consumes less space. Compression can be
distinguished into lossless compression and lossy compression. If an image is compressed lossless, the orig-
inal image can be recovered exactly from the compressed image. However, the compression rate is usually
higher and therefore it is less efficient. Since the human eye can only perceive about 32 shades of grey [5],
lossless compression is not necessary to maintain the quality of the image. Furthermore, since the wavelets
are turning many coefficients to zero with a minimal effect on the image, it is a good method for lossy com-
pression. For this reason, lossy compression is considered in this research. This chapter consists of three
sections. Section 3.1 describes the different threshold methods and section 3.2 gives a detailed description
of the compression method. The last section discusses the results of compressing an image using different
wavelets.

3.1. Threshold
There are two threshold methods, soft thresholding and hard thresholding, see Figure 3.1.

(a) Hard Thresholding. (b) Soft Thresholding.

Figure 3.1: Thresholding methods.

Hard thresholding is the process of setting the coefficients to zero if the coefficients are smaller than a
chosen number (threshold), see Equation 3.1.

TH (c) =
{

0 if |c| ≤λ

c if |c| >λ
, (3.1)

where λ is the threshold and c is the value of the wavelet coefficient.

13
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Soft thresholding is the extended version of hard thresholding. First, the coefficients smaller than the
threshold are set to zero. And the non-zero coefficients are moved towards zero by adding or subtracting λ,
see equation 3.2.

TS (c) =


0 if |c| ≤λ

c −λ if c >λ

c +λ if c <−λ
, (3.2)

where λ is the threshold and c is the value of the wavelet coefficient.
Soft thresholding produces smoother results compared to hard thresholding, but in hard thresholding,

the edges are better preserved, in other words, the edges remain sharper. The superiority of the thresholding
method depends on its application. For example, to process (either compress or denoise) Whatsapp images,
a smooth image is more desired, so soft thresholding works better. And to process fingerprint images, the
edges are the main features you do not want to lose, therefore hard thresholding is a better option.

3.1.1. Threshold
The threshold is crucial in the compression and denoising process. If the threshold is too small, the image is
not optimally compressed. If the threshold is too large, the compressed image may contain blocking artefacts
and some details will be lost. For image denoising, a small threshold may result in less noise being removed.
A threshold that is too large may result in more noise being removed, but also in some details being lost.

The wavelet decomposition of an image divides the image into four parts as shown in Figure 2.11. One
part contains the approximation coefficients and the remaining three parts the detail coefficients. First, con-
sider the detail coefficients. The detail coefficients are calculated by taking the differences between the adja-
cent elements of the matrix. When the difference between two adjacent elements is large, it could imply that
it is a pixel of an object’s edge in the picture. An example is given in Figure 2.11, where the horizontal, vertical,
and diagonal detail coefficients are shown. On the locations of the borders of the elements, white lines or
lines close to white are shown. The differences between the borders of the square and the white background
result in a white line. The border of the grey circle and triangle with the white background results close to
white lines.

The choice of the threshold coefficient determines the degree of filtering of those differences. The higher
the threshold, the higher the difference has to be such that it stays in the figure. An example is given in Figure
3.2b and Figure 3.2c, where the triangle is not shown anymore in the decomposition because the difference
between the coefficients denoting the edge of the triangle and the background is smaller than the threshold
coefficient. In Figure 3.2c, the threshold coefficient is even larger. Therefore, the line denoting the edge of the
circle also disappeared.

The image used as an example only contains black, white and two grey shades. In images such as the
peppers image shown in Figure 3.3a, there are more grey shades and more objects. A small threshold coeffi-
cient will remove small details in the image, in other words, it will remove the parts where the difference in
the wavelet coefficients is small. The larger the threshold coefficient, the more features are removed.

(a) Detail coefficients with λ= 0. (b) Detail coefficients with λ= 40. (c) Detail coefficients with λ= 200.

Figure 3.2: Horizontal detail coefficients thresholded by different threshold coefficients.

3.2. Method
Compression involves four steps:

• Decomposition: Choose a wavelet and decompose it to level N , where N = 1..5.
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• Choose the percentage of detail coefficients to threshold, for example 90% and apply soft or hard
thresholding.

• Reconstruction: Use the approximation and thresholded detail coefficients to reconstruct the image.

The reduction of the size of an image is dependent on the way of coding. Long strings of zeros can be
encoded very efficiently using standard entropy coding techniques such as Huffman coding [9]. As shown in
Figure 3.2a, the biggest part of the image is black, which means most of the detail coefficients are zero. The
length of a string consisting of only zero coefficients cannot be determined. Consequently, the reduction of
the image in size can not be found. Therefore, we assume that saving a nonzero coefficient equals 1 unit of
memory and saving a zero coefficient costs 0 unit of memory. With this assumption, the Compression Rate
can be defined by

C R = Nonzer o coe f f i ci ent s Or i g i nal Imag e

Nonzer o coe f f i ci ent s Compr essed Imag e
. (3.3)

The image will be decomposed to different levels using the previously mentioned wavelets. The difference
between the compressed images is sometimes not visible to the human eye. Therefore, we need to choose a
quality measurement method. In this study, the Peak Signal-to-Noise Ratio (PSNR) and the Structure Simi-
larity Index Method (SSIM) are taken into account. According to Wang et al. [14], PSNR is good for capturing
noise, changes in brightness, contrast and saturation, but it does not work well for capturing different types of
distortion and blur. Compared to the PSNR, the Structure Similarity Index Method (SSIM) is good at capturing
blur, different types of distortion and noise. However, it is not good at capturing changes in brightness, con-
trast and saturation. The purpose of image compression is to reduce the size of an image. Distortions such
as blocking artefacts are often the result of compression. Because of the visibility of structural distortions, it
is better to use SSIM [13].

3.3. Results
In this section, the pepper image shown in Figure 3.3a will be compressed using the hard thresholding method.
First, multiple different wavelets are evaluated in the field of image compression. The evaluation of the com-
pression on this figure is done in terms of the wavelet choice, threshold, and level of decomposition, which
will be elaborated upon below.

3.3.1. Comparing different discrete wavelets
First, the Daubechies, Symlet, Coiflet, Biorthogonal and Reverse Biorthogonal wavelets are tested. Table 3.1
contains the SSIM values for different compression rates. A CR of 5:1 means that we keep 20% of the nonzero
coefficients and set 80% equal to 0. A CR of 9:1, 15:1, 36:1, 43:1 corresponds respectively to removing 89%,
93.3%, 97.3% and 97.7% of the coefficients. The more the image is compressed the lower the SSIM value. The
highest SSIM is obtained by using the bior4.4 wavelet.

CR db6 sym5 coif3 bior4.4 rbio1.5
5:1 0.9947 0.9954 0.9950 0.9954 0.9953
9:1 0.9865 0.9875 0.9871 0.9883 0.9874

15:1 0.9734 0.9749 0.9750 0.9771 0.9751
36:1 0.9255 0.9320 0.9319 0.9377 0.9332
43:1 0.9057 0.9118 0.9126 0.9190 0.9136

Table 3.1: SSIM values after compression

Figure 3.3 shows the original image and the compressed image with different CR using the bior4.4 wavelet.
Compression using the discrete wavelet transform works satisfactorily. Removing 93.3% of the coefficients
still gives a sharp image, see Figure 3.3d. Removing even more coefficients gives slightly worse images. As
stated before, the CR does not tell how much the image is reduced in size. How much the image is reduced in
size depends on the way of coding. The run-length encoding could be an efficient way to use in combination
with the wavelet transformation. A reason for this is, that if the same value appears in many consecutive
elements, it is stored as a single value and a count. Therefore, storing a matrix with many zero elements
could be more efficient.
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(a) Original image (b) CR = 5:1 (c) CR = 9:1

(d) CR = 15:1 (e) CR = 36:1 (f) CR = 43:1

Figure 3.3: Compression with different CR using bior4.4.

3.4. Conclusion
The DWT is a useful method to compress images. Turning the small detail coefficients into zero affects the
image minimally. Which wavelet and thresholding should be used depends on the application. The soft
thresholding method produces smoother images and the hard thresholding method produces more blocking
artefacts, but sharper edges. In the case of storing fingerprints, the edges are more important and therefore
compression using hard thresholding works better. On the other hand, in the case of storing vacation photos,
you probably want smoother images, therefore soft thresholding is a better method. Furthermore, the dif-
ferent wavelets have their advantages and disadvantages. For example, the Haar wavelet is "square" shaped,
compressing images using this wavelet causes blocking artefacts. However, the computation speed is higher
compared to other wavelets. Thus, it could be used for compressing large data. The Daubechies and Symlet
have an overlapping window size of 2 and the Coiflet wavelet even more. Because of this property, using these
wavelets gives smoother images. The characteristics of Biorthogonal and Reverse Biorthogonal wavelets can
be varied by changing the various properties of the wavelet such as orthogonality and symmetry [8]. These
wavelets are more flexible and therefore suitable for image compression. In conclusion, based on the SSIM
values, the bior4.4 wavelet yields the best performance in compressing the peppers image.



4
Image Denoising

Denoising is the process of removing the noise of an image. A more detailed explanation of noise and its
origins may be found in Chapter 1. To compare the denoising techniques, the original and noisy images are
required. For this reason, noise is added to an image instead of using an already noisy image. This chapter
consists of three sections. The first section explains what noise in an image mathematically implies, and
section 4.2 describes the denoising method and the influence of the threshold and level of decomposition.
The last section shows some results of different denoising techniques.

4.1. Noisy images
The fact that an image can be represented as a matrix is already known. Denote the original 512x512 image
by a matrix A, then the 512x512 matrix of the noisy image B given by

B = A+ϵ ·σ, (4.1)

where ϵ ∼ N (0, 1) denotes the 512x512 noise matrix and σ the standard deviation of the noise. The normal
distribution function is given by

φ(x) = 1

σ
p

2π
·e−

1
2 ( x−µ

σ )2
, (4.2)

where µ is the mean and σ the standard deviation. Note that the variance is σ2. The larger the variance, the
higher the probability of adding a large noise term. The effect of different values of σ is shown in Figure 4.3.

(a) Image with µ= 0 and σ= 10. (b) Image with µ= 0 and σ= 25. (c) Image with µ= 0 and σ= 50.

Figure 4.1: Effect of different values of σ.

In Figure 4.2, the horizontal detail coefficients are plotted. The image is decomposed to level 2 using the
db4 wavelet. In Figure 4.2a, noise with σ= 25 is added, the triangle, circle and square are still visible. Adding
more noise, the triangle (which can be seen as a small detail) is lost, see Figure 4.2c. Thus we can conclude:
that the more noise, the more small details are lost.

17
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(a) σ= 25 (b) σ= 50 (c) σ= 100

Figure 4.2: The horizontal detail coefficients of several standard deviation.

4.2. Denoising method
After the noisy image is generated, the denoising process can start. The denoising process consists of three
steps:

• Decomposition: Choose a wavelet and decompose it to level N, where N = 1...5.

• Thresholding: Select a threshold method

• Reconstruction: Use the approximation and thresholded detail coefficients to reconstruct the image.

The Daubechies, Symlet, Coiflet, Biorthogonal and Dual-Tree Complex wavelets are considered to decom-
pose and reconstruct images. As stated before, both threshold methods perform adequately, which threshold
method works better depends on what you want to achieve. For denoising, the soft threshold method is used.

4.2.1. Level of decomposition
The different levels of decomposition split the image into layers with different levels of detail. The db4 wavelet
is used to decompose the image shown in Figure 2.11. Figure 4.3 shows the horizontal detail coefficients on
several levels of decomposition. In Figure 4.3a, the noise can be clearly seen. This level contains all the fine
details of the image. The higher the level of decomposition, the more noise is averaged out. In Figure 4.3c,
most of the noise is averaged out, but some details are also gone. so only the main features are visible.

(a) Decomposition of level 1 (b) Decomposition of level 2 (c) Decomposition of level 3

Figure 4.3: The horizontal detail coeficients of a noisy image decomposed using the db4 wavelet.

4.2.2. Threshold
The optimal threshold is dependent on the noise’s variance. As explained above, the noise is added to the
original image and the higher the noise variance, the higher the probability of adding a large noise term to
the image. Therefore, the larger the noise variance, the larger the threshold coefficient has to be in order to
remove the noise. However, if the threshold value is too large, the small details are also removed. In other
words, in wavelet transformation, a small difference between the adjacent coefficients could mean it is noise,
but it could also be a small detail of the image. In Figure 4.2b, a noisy image with σ= 25 is shown. The image
is decomposed to level 2 and the soft thresholding method is applied using different thresholds, shown in
Figure 4.4. Thus, the higher the threshold, the more noise is removed, but also the more details are lost.
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(a) λ= 25 (b) λ= 50 (c) λ= 150

Figure 4.4: The horizontal detail coeficients of a noisy image decomposed using the db4 wavelet.

When using the Dual Tree Complex Wavelet, it is more effective to threshold the magnitude than the
real and imaginary parts separately. Thresholding the magnitude results in a nearly shift-invariant denoising
process [11].

The threshold methods are discussed in section 3.1. The two different threshold methods are hard and
soft thresholding. As mentioned before, hard thresholding is better in preserving edges, but performs less
well in denoising, and soft thresholding is better at denoising but often smooths out the edges, such that the
resulting edges are less sharp.

Figure 4.5 shows the denoised image using hard and soft thresholding with the same wavelet, db4 and
an optimised threshold. The threshold is optimised by minimizing the SSIM value. The optimal threshold
for Figure 4.5a is 91 and the optimal threshold Figure 4.5b is 71. Indeed, the image denoised using the hard
thresholding method contains more noise, but the edges are sharper and the image denoised using the soft
thresholding method is less noisy but some edges are less sharp.

(a) Hard Thresholding (b) Soft Thresholding

Figure 4.5: Denoised image using the db4 wavelet.

4.2.3. Quality Measurement method
Consequently, an optimal threshold coefficient must be found. Since the PSNR and SSIM are both good for
capturing noise, the threshold coefficient will be optimized by minimizing the PSNR and the SSIM. The Peak
Signal to Noise Ratio (PSNR) is the ratio between the maximum possible pixel value and the MSE. The higher
the PSNR, the better the quality of an image. The formula is given by

PSN R = 10 · log10

(
M AX 2

I

MSE

)
, (4.3)
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where M AX I is the maximum possible pixel value. The MSE measures the average squared error between the
denoised image and the original image. The formula is given by

MSE = 1

m ·n

m−1∑
i=1

n−1∑
j=1

[O(i , j )−D(i , j )]2, (4.4)

where m and n denotes the dimension of the image, O(i , j ) denotes the pixels of the original image, D(i , j )
denotes pixels of the denoised or compressed image. A small error implies that the difference between the
denoised image and the original image is smaller.

4.3. Results

In order to find a suitable wavelet for denoising, several tests need to be performed. The wavelets we consider
are the Daubechies, Symlet, Coiflet, Biorthogonal and the Dual Tree Complex wavelets. All these wavelets
could be used in combination with different filter lengths. Other things we should consider: How many times
do we decompose the wavelet? And which threshold method do we use? The more changing variables, the
more tests need to be performed and the more difficult it is to see the changing effect.

First, the pepper image with Gaussian noise, where the mean equals 0 and the noise standard deviation
equals 25, is considered. The Daubechies, Symlet, Coiflet, Biorthogonal and Reverse Biorthogonal wavelets
are tested using the built-in MATLAB function wdenoise2(). Both the soft and hard threshold methods are
tested. In this function, the threshold is calculated using the formula introduced by Donoho and Johnstone
[3]. The formula of the threshold λ is given by

λ=σ∗
√

2∗ l og (T ), (4.5)

where T is the number of pixels and σ is the standard deviation of the noise. The noise standard deviation is
estimated by the robust median estimator [1]. The formula can only be used for Gaussian white noise and is
given by

σ̂= Medi an(|yi , j |)
0.6745

, (4.6)

where yi , j are the coefficients of the first level subband HH, see Figure 2.10. However, the threshold coef-
ficient calculated using this formula is not optimal. The PSNR and SSIM values of the original image and
the denoised image are shown in appendix A. The best results are given by using the db4, coif3 and bior2.8
wavelets. Therefore, the db4, coif3 and bior 2.8 will be evaluated.

4.3.1. Threshold

The influence of the threshold coefficient is shown in Figure 4.6. The db4 wavelet is used and the level three
detail coefficients are thresholded by different values. The higher the threshold coefficient, the more detail
coefficients are thresholded, and the more noise is removed. Consequently, the higher the threshold coeffi-
cient, the fewer edges are preserved. Calculating the threshold using equation 4.5 gives λ= 84.6. Increasing
the threshold initially results in significant changes in the denoised image. However, this only holds for an ap-
proximate threshold of up to 60, after which increasing the threshold does not result in a significant different
output figure.
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(a) Threshold = 20 (b) Threshold = 40 (c) Threshold = 60

(d) Threshold = 80 (e) Threshold = 100 (f) Threshold = 200

Figure 4.6: Denoising using db4 wavelet and hard thresholding.

The threshold is plotted against the PSNR in Figure 4.7. This gives the same result as above. Initially, the
higher the threshold, the higher the PSNR, which means that the denoised image is better. At a threshold
higher than 60, the function does not increase significantly anymore. This threshold will be used. The thresh-
old used hereafter will be determined in the same way. For the different wavelets, this point, where the PSNR
does not increase significantly, differs.

Figure 4.7: The PSNR plotted against the threshold.

4.3.2. Comparing db4, coif3, bior2.8
First, the hard thresholding method is considered. The db4, coif3 and bior2.8 are decomposed to several
levels. For each level, the threshold is determined using the method of section 4.3.1. The results are shown
in Table B.1 in Appendix B. For all three wavelets, the highest PSNR value is obtained by thresholding the
level 3 detail coefficients. For all levels, the bior2.8 wavelet gives the highest PSNR value, followed by the
coif3 wavelet. The lowest PSNR values are obtained by using the db4 wavelet. Overall, the highest value is
obtained using the bior2.8 wavelet together with the soft thresholding method. The corresponding PSNR
value is 30.4074 dB.
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4.3.3. Images with different noise variance
This section discusses the influence of the noise standard deviation on the PSNR, SSIM and threshold. The
coif3 wavelet is used to denoise the pepper image with σ= 10, 25, 50, 100, 200 and the level 4 coefficients are
thresholded. The results are shown in table 4.1. It can be concluded from this table that the higher the noise
variance, the lower the PSNR and SSIM values, which makes sense. The more noise, the harder it is to denoise
the image.

Soft Thresholding (Coif3)

σ = 10
34.750
0.917

σ = 25
29.681
0.856

σ = 50
26.751
0.818

σ = 100
23.066
0.783

σ = 200
18.792
0.746

Table 4.1: PSNR and SSIM values with optimised threshold.

Furthermore, the noise variance is correlated with the optimal threshold in the following way: the more
noise, the higher the optimal threshold. The optimised threshold coefficient for the noisy image with σ= 200
equals 211. The noisy and denoised image is shown in Figure 4.8. The noise added is normally distributed
with a mean of 0 and a standard deviation of 200. The noise coefficient is sometimes even larger than the orig-
inal image coefficients. For this reason, not only the noise is thresholded, but also some important features
of the original image.

(a) Noisy image with noise standard deviation equals 200 (b) Denoised image

Figure 4.8: Denoising an image with a lot of noise.

4.3.4. DWT vs DTCWT
In section 4.3.2, the db4, coif3 and bior2.8 are compared. The bior2.8 wavelet outperforms the other two,
therefore, the bior2.8 wavelet will be compared to the Dual-Tree Complex Wavelet (DTCW). The noisy image
withσ= 25 and the pepper image denoised using bior2.8 is shown in Figure 4.9a and 4.9, respectively. For the
DWT, soft thresholding does not preserve edges that well. Using the DTCWT together with soft thresholding,
the edges are preserved and there is no noise anymore. However, there are still some small features removed
in the background.
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(a) Noisy image (b) Denoised using bior2.8 (c) Denoised using DTCWT

Figure 4.9: Comparing the noisy image with the denoised image using bior2.8 and DTCWT.

4.4. Conclusion
In this chapter, the performance of the DWT and the DTCWT in image denoising is evaluated. The effect of
more noise in an image is shown, as well as the effect of the noise in high-frequency sub-bands. The denoising
method consists of three steps: decomposition, thresholding and reconstruction. The influence of the choice
of the wavelet has already been discussed in section 3.4. The smoother the wavelet and the more overlapping
windows, the less blocking artefacts. The db4, coif3 and bior2.8 are the discrete wavelets used to denoise the
pepper image. Furthermore, the threshold and level of decomposition are crucial in the denoising process.
The wavelet decomposition splits the details into several layers. The higher the level of decomposition, the
more noise is averaged out, but also the more details are lost. The optimal level of decomposition is often
between levels 3 and 5. The optimal threshold depends on the variance of the noise. The higher the noise
variance, the higher the probability of adding large noise terms. Therefore, a larger threshold is needed to re-
move the noise. However, the larger the noise terms, the more details are lost. Therefore, if the noise variance
is too large, it is almost impossible to denoise. To denoise the noisy pepper image with σ= 25, the threshold
is around 60. Taking the threshold and the level of decomposition into account, the bior2.8 wavelet performs
the best. Comparing the bior2.8 wavelet with the DTCW, the DTCW outperforms the discrete wavelets. The
image denoised using the DTCW is smoother than the one denoised using the bior2.8 wavelet. Due to the
near shift-invariance and the directionally selective property, the DTCW is better at edge detection, which led
to sharp edges and a smoother image.





5
Conclusion

This research report has laid its emphasis on exploring the potential of wavelets in the field of image process-
ing. In particular, image denoising and compression techniques are chosen as image processing techniques
evaluated in this research report. This exploration has been conducted by applying the Discrete Wavelet
Transform (DWT) technique and its extensions, such as Dual Tree Complex Wavelet Transform (DTCWT),
with the usage of a broad variety of wavelets.

The images used in this research for wavelet transform are retrieved from MATLAB with a size of 512x512
pixels. In contrast to using the general RGB values of the images, this research has limited to using the 256
grey scales of them.

Consequently, these images are used as the basis to apply the image processing techniques on. The orig-
inal image is deconstructed using DWT or DTCWT, which constructs approximation and detail coefficients.
The detail coefficients are determined by taking the differences, and the approximation coefficients are deter-
mined by averaging the coefficients. Afterwards, the image can be reconstructed again using the same DWT
or DTCWT.

In this report, wavelets are used to compress and denoise images. The compression and denoising meth-
ods are similar. These methods consists of three steps, decomposition, thresholding and reconstruction. The
difference is in the thresholding step. In image compression, we choose a percentage of the detail coefficient
to apply thresholding on. In image denoising, we try to find an optimal threshold in order to remove noise.

The ability to turn the small wavelet coefficients to zero with a minimal effect on the image is very useful
in image compression. Compared to db6, sym5, coif3 and rbio1.5, the bior4.4 wavelet performed best. This
is true for all compression rates tested. Setting 95% of the detail coefficients to zero still yields sharp images
without blocking artefacts. However, how much the image is reduced in size or how much space is saved by
saving the compressed image instead of the original image can not be determined. This depends on the way
of coding, which has not been investigated in this research.

Furthermore, for image denoising, the db4, coif3, bior2.8 and the Dual Tree Complex Wavelets are com-
pared. Besides the choice of wavelet, the threshold method is also important. Hard thresholding is better for
preserving edges but worse for denoising, and soft threshing is better for denoising but worse for edge preser-
vation. Compared to the discrete wavelets, the Dual Tree Complex wavelets are much better at denoising and
preserving edges.

Finally, a conclusion can be provided to answer the key question of this research report of exploring the
potential of wavelets in the field of image processing. Wavelet transformation is a powerful tool in terms of
image processing. The choice of the optimal wavelet can not be generalised for all scenarios, it depends on
the application of the image. For example, in the application of image denoising for photos, the usage of soft
thresholding and smoother wavelets, such as the discrete wavelet coif3 or the Dual Tree Complex wavelet
seems like a better choice. However, in the application of compressing or denoising fingerprint images, hard
thresholding could be a better choice, since the method is better for preserving edges. As mentioned in Chap-
ter 1, storing fingerprints costs a lot of memory, which forms a reason to apply compression. Consequently,
the more complex the method, the longer it takes before the image has been compressed and stored. This
could be a reason to choose a simpler wavelet, for example, the db2 wavelet.
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A
Comparing different Threshold Methods

for Denoising Gaussian Noise

PSNR values

db1 db2 db3 db4 db5 db6 db7 db8 db9 db10
lv1 22.825 22.9028 22.8343 22.8746 23.0224 23.1739 23.1452 23.0117 22.9489 22.9398
lv2 23.6417 23.9383 23.8455 23.9516 24.1694 24.267 24.2923 24.1818 24.0853 24.0442
lv3 23.5855 23.9566 23.9076 23.9571 24.2166 24.2709 24.2612 24.159 24.1126 24.0742
lv4 23.5013 23.8723 23.8126 23.8813 24.1128 24.1492 24.1377 24.0543 23.996 23.9515
lv5 23.4814 23.8571 23.8054 23.856 24.0819 24.115 24.1045 24.0258 23.9556 23.9101

Table A.1: Daubechies, Hard Thresholding, Universal Threshold

db1 db2 db3 db4 db5 db6 db7 db8 db9 db10
lv1 23.0956 23.0047 22.8433 22.9529 23.1367 23.2514 23.2572 23.1713 23.0576 22.981
lv2 23.9961 24.3036 23.8484 24.2476 24.3595 24.2348 24.4147 24.498 24.437 24.3461
lv3 23.7431 24.0921 23.9873 24.1264 24.2864 24.2181 24.2617 24.3411 24.3648 24.2496
lv4 23.3408 23.7127 23.5978 23.8045 23.8611 23.8148 23.8445 23.9412 23.9667 23.8468
lv5 23.1439 23.5026 23.3432 23.5593 23.6505 23.5604 23.6287 23.6846 23.6726 23.5657

Table A.2: Daubechies, Soft Thresholding, Universal Threshold

sym2 sym3 sym4 sym5 sym6 sym7 sym8
lv1 22.9028 22.8343 22.9501 22.9431 22.9546 22.7599 22.966
lv2 23.9383 23.8455 23.9953 24.0066 24.0161 23.7988 24.0537
lv3 23.9566 23.9076 24.0509 24.0671 24.0677 23.8614 24.1218
lv4 23.8723 23.8126 23.9705 23.9696 23.9758 23.7948 24.0236
lv5 23.8571 23.8054 23.9625 23.9338 23.9543 23.7657 23.9972

Table A.3: Symlet, Hard Thresholding, Universal Threshold

sym2 sym3 sym4 sym5 sym6 sym7 sym8
lv1 23.0047 22.8433 23.2581 23.1257 23.2522 22.8978 23.2487
lv2 24.3036 23.8484 24.3811 24.3391 24.4626 24.2314 24.4598
lv3 24.0921 23.9873 24.4082 24.3704 24.4516 24.2687 24.4408
lv4 23.7127 23.5978 24.0915 23.987 24.1302 23.9415 24.1153
lv5 23.5026 23.3432 23.8314 23.7292 23.8733 23.7187 23.873

Table A.4: Symlet, Soft Thresholding, Universal Threshold
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coif1 coif2 coif3 coif4 coif5
lv1 22.9532 22.9628 22.9781 22.9957 23.0212
lv2 23.9539 24.0333 24.0824 24.1094 24.1519
lv3 23.9429 24.1088 24.1512 24.1619 24.2151
lv4 23.8743 24.0267 24.0612 24.0824 24.116
lv5 23.8738 23.993 24.0323 24.0584 24.0837

Table A.5: Coiflet, Hard Thresholding, Universal Threshold

coif1 coif2 coif3 coif4 coif5
lv1 23.2802 23.2647 23.2531 23.2445 23.2373
lv2 24.3888 24.4559 24.4864 24.4853 24.4944
lv3 24.1658 24.4566 24.5196 24.4395 24.5154
lv4 23.844 24.1374 24.1276 24.1232 24.187
lv5 23.6047 23.8636 23.8845 23.8882 23.918

Table A.6: Coiflet, Soft Thresholding, Universal Threshold

bior1.1 bior1.3 bior1.5 bior2.2 bior2.4 bior2.6 bior2.8 bior3.1 bior3.3 bior3.5 bior3.7 bior3.9 bior4.4 bior5.5 bior6.8
lv1 22.825 22.727 22.632 22.9431 22.9644 22.9491 22.9265 22.1086 22.6874 22.8046 22.8453 22.8633 22.9554 22.8243 23.0119
lv2 23.6417 23.5312 23.4674 23.7892 23.8369 23.8736 23.814 21.2018 22.4031 22.7026 22.7813 22.8614 24.0333 23.9476 24.0823
lv3 23.5855 23.5222 23.5221 23.8364 23.9181 23.958 23.8954 21.0206 22.2554 22.6052 22.696 22.7747 24.0829 23.8499 24.1588
lv4 23.5013 23.4361 23.4309 23.8249 23.9096 23.9544 23.8778 20.994 22.2209 22.5744 22.6667 22.7582 24.0062 23.5446 24.0934
lv5 23.4814 23.4217 23.408 23.8166 23.9059 23.951 23.8798 20.993 22.2193 22.5715 22.664 22.748 23.9651 23.4104 24.0784

Table A.7: Biorthogonal, Hard Thresholding, Universal Threshold

bior1.1 bior1.3 bior1.5 bior2.2 bior2.4 bior2.6 bior2.8 bior3.1 bior3.3 bior3.5 bior3.7 bior3.9 bior4.4 bior5.5 bior6.8
lv1 23.0956 22.9615 22.8496 23.2744 23.2834 23.2555 23.2267 22.1788 22.7896 22.924 22.97 22.9884 23.2486 22.8529 23.2447
lv2 23.9961 23.796 23.7987 24.4741 24.4556 24.4904 24.4087 22.7769 23.8686 24.0217 24.0733 24.1287 24.4254 24.2673 24.4141
lv3 23.7431 23.7033 23.7468 24.4343 24.5715 24.6113 24.5483 22.7356 23.9582 24.2034 24.2453 24.2838 24.4072 24.0974 24.4243
lv4 23.3408 23.4461 23.503 24.3109 24.44 24.5246 24.4377 22.6389 23.9 24.148 24.1612 24.2643 24.0449 23.4986 24.1323
lv5 23.1439 23.3636 23.4164 24.1765 24.2845 24.3931 24.3506 22.5896 23.8727 24.1136 24.1025 24.206 23.7246 22.9472 23.9301

Table A.8: Biorthogonal, Soft Thresholding, Universal Threshold

rbio1.1 rbio1.3 rbio1.5 rbio2.2 rbio2.4 rbio2.6 rbio2.8 rbio3.1 rbio3.3 rbio3.5 rbio3.7 rbio3.9 rbio4.4 rbio5.5 rbio6.8
lv1 22.825 22.8854 22.8068 22.8606 22.9507 22.949 22.9359 21.2853 22.7242 22.8724 22.8955 22.8878 22.9274 22.8091 22.9718
lv2 23.6417 23.9776 23.9339 23.5768 23.9374 23.9809 23.9862 18.4054 23.0514 23.5791 23.8264 23.788 23.9456 23.8337 24.0203
lv3 23.5855 24.0104 23.9766 23.0961 23.7304 23.8221 23.8151 14.459 21.1814 22.6442 23.0608 23.1631 23.9781 23.9451 24.0504
lv4 23.5013 23.8963 23.8557 22.6876 23.3706 23.455 23.4789 12.2193 19.2208 21.4786 22.0194 22.2546 23.8728 23.9397 23.9394
lv5 23.4814 23.8579 23.8078 22.5663 23.2411 23.3278 23.3717 11.2726 18.684 21.0475 21.6071 21.9345 23.8523 23.9399 23.9198

Table A.9: Reverse Biorthogonal, Hard Thresholding, Universal Threshold

rbio1.1 rbio1.3 rbio1.5 rbio2.2 rbio2.4 rbio2.6 rbio2.8 rbio3.1 rbio3.3 rbio3.5 rbio3.7 rbio3.9 rbio4.4 rbio5.5 rbio6.8
lv1 23.0956 23.1506 23.0688 23.1796 23.2589 23.2493 23.2294 21.3238 22.7688 22.9349 22.9779 22.9888 23.2258 22.8298 23.2393
lv2 23.9961 24.3288 24.377 24.0207 24.3834 24.4572 24.4136 18.3928 23.5639 24.0616 24.3098 24.2682 24.3949 24.2262 24.4256
lv3 23.7431 24.2489 24.2867 23.4202 24.1849 24.2716 24.2449 14.5881 22.3373 23.7233 24.0475 24.0757 24.4001 24.3577 24.3924
lv4 23.3408 23.7918 23.8158 22.7843 23.6029 23.7047 23.6737 12.3219 20.4142 22.7431 23.1923 23.3473 24.1037 24.2864 24.0395
lv5 23.1439 23.5322 23.5398 22.3735 23.1245 23.2169 23.2298 11.0491 19.2712 22.0817 22.5439 22.6972 23.8702 24.1846 23.8001

Table A.10: Reverse Biorthogonal, Soft Thresholding, Universal Threshold

SSIM

db1 db2 db3 db4 db5 db6 db7 db8 db9 db10
lv1 0.49454 0.50205 0.50088 0.49931 0.49976 0.50197 0.50332 0.50272 0.50179 0.50054
lv2 0.72528 0.76093 0.7713 0.77104 0.76965 0.77422 0.77416 0.76911 0.76986 0.77196
lv3 0.76487 0.81711 0.8226 0.82377 0.82113 0.82288 0.81983 0.8178 0.81351 0.81556
lv4 0.76355 0.81425 0.81818 0.81994 0.81677 0.81672 0.81316 0.81107 0.80581 0.80603
lv5 0.76328 0.81348 0.81718 0.81858 0.81537 0.81557 0.81193 0.80954 0.80431 0.80455

Table A.11: Daubechies, Hard Thresholding, Universal Threshold
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db1 db2 db3 db4 db5 db6 db7 db8 db9 db10
lv1 0.49532 0.50246 0.50106 0.49971 0.50037 0.50263 0.50393 0.5033 0.50196 0.50051
lv2 0.72328 0.76176 0.77104 0.77464 0.77245 0.77381 0.77597 0.7748 0.77566 0.77691
lv3 0.74941 0.80644 0.81872 0.8211 0.82366 0.82396 0.8214 0.82422 0.82269 0.82172
lv4 0.7419 0.79751 0.81036 0.81169 0.81469 0.81153 0.81218 0.81269 0.81131 0.80857
lv5 0.74432 0.79619 0.80697 0.80839 0.81137 0.80792 0.80887 0.80808 0.80695 0.80429

Table A.12: Daubechies, Soft Thresholding, Universal Threshold

sym2 sym3 sym4 sym5 sym6 sym7 sym8
lv1 0.50205 0.50088 0.5032 0.50325 0.50297 0.50045 0.50265
lv2 0.76093 0.7713 0.77388 0.77277 0.77371 0.77283 0.77537
lv3 0.81711 0.8226 0.82962 0.82879 0.82861 0.82746 0.82952
lv4 0.81425 0.81818 0.82541 0.82315 0.82244 0.82263 0.82313
lv5 0.81348 0.81718 0.82445 0.82186 0.82134 0.82117 0.82206

Table A.13: Symlet, Hard Thresholding, Universal Threshold

sym2 sym3 sym4 sym5 sym6 sym7 sym8
lv1 0.50246 0.50106 0.50411 0.50377 0.50388 0.5009 0.50354
lv2 0.76176 0.77104 0.7749 0.77425 0.77589 0.77536 0.77656
lv3 0.80644 0.81872 0.82621 0.82609 0.82874 0.82746 0.82882
lv4 0.79751 0.81036 0.81698 0.81542 0.8183 0.81862 0.81857
lv5 0.79619 0.80697 0.81303 0.81102 0.81397 0.81415 0.81454

Table A.14: Symlet, Soft Thresholding, Universal Threshold

coif1 coif2 coif3 coif4 coif5
lv1 0.50186 0.50251 0.50231 0.50194 0.5017
lv2 0.76378 0.774 0.77547 0.77547 0.77521
lv3 0.8183 0.83147 0.83094 0.82933 0.82794
lv4 0.81516 0.82587 0.82579 0.82371 0.82241
lv5 0.81413 0.82456 0.82448 0.82231 0.82102

Table A.15: Coiflet, Hard Thresholding, Universal Threshold

coif1 coif2 coif3 coif4 coif5
lv1 0.50273 0.50338 0.5031 0.50273 0.50242
lv2 0.76452 0.77535 0.77676 0.77667 0.77653
lv3 0.80681 0.82828 0.82962 0.82836 0.82889
lv4 0.79897 0.81916 0.81969 0.81864 0.81918
lv5 0.79656 0.81517 0.81523 0.81421 0.81449

Table A.16: Coiflet, Soft Thresholding, Universal Threshold

bior1.1 bior1.3 bior1.5 bior2.2 bior2.4 bior2.6 bior2.8 bior3.1 bior3.3 bior3.5 bior3.7 bior3.9 bior4.4 bior5.5 bior6.8
lv1 0.49454 0.48105 0.46926 0.49664 0.50135 0.4993 0.4963 0.40908 0.4717 0.48598 0.4905 0.49221 0.4989 0.49209 0.50147
lv2 0.72528 0.71154 0.69783 0.71689 0.72966 0.7358 0.72748 0.34905 0.46139 0.50145 0.50959 0.52099 0.77131 0.76904 0.77359
lv3 0.76487 0.75944 0.75227 0.75879 0.773 0.78059 0.76989 0.34045 0.44998 0.49288 0.50212 0.51417 0.83226 0.81708 0.832
lv4 0.76355 0.75714 0.7495 0.7592 0.77392 0.78128 0.7699 0.33985 0.44879 0.49172 0.50128 0.51352 0.82934 0.79657 0.82988
lv5 0.76328 0.75594 0.74792 0.75894 0.7737 0.78119 0.76979 0.33986 0.44881 0.49184 0.50128 0.5133 0.82788 0.79149 0.82883

Table A.17: Biorthogonal, Hard Thresholding, Universal Threshold
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bior1.1 bior1.3 bior1.5 bior2.2 bior2.4 bior2.6 bior2.8 bior3.1 bior3.3 bior3.5 bior3.7 bior3.9 bior4.4 bior5.5 bior6.8
lv1 0.49532 0.48172 0.46988 0.49805 0.50288 0.50079 0.49776 0.41641 0.47957 0.49399 0.49821 0.49937 0.49979 0.49242 0.50222
lv2 0.72328 0.71034 0.69516 0.76402 0.77355 0.77552 0.77129 0.53322 0.68962 0.72819 0.73427 0.74291 0.77402 0.77059 0.77669
lv3 0.74941 0.74723 0.74271 0.83532 0.84022 0.84302 0.84046 0.56089 0.73437 0.77488 0.78451 0.79123 0.83021 0.81774 0.83186
lv4 0.7419 0.74484 0.74214 0.83733 0.84073 0.84385 0.84132 0.56139 0.734 0.77449 0.78383 0.79082 0.81949 0.79397 0.82454
lv5 0.74432 0.7475 0.74489 0.83544 0.83879 0.84245 0.83993 0.56101 0.73313 0.77315 0.78228 0.78929 0.81455 0.78339 0.82091

Table A.18: Biorthogonal, Soft Thresholding, Universal Threshold

rbio1.1 rbio1.3 rbio1.5 rbio2.2 rbio2.4 rbio2.6 rbio2.8 rbio3.1 rbio3.3 rbio3.5 rbio3.7 rbio3.9 rbio4.4 rbio5.5 rbio6.8
lv1 0.49454 0.49338 0.48189 0.49132 0.50191 0.50053 0.49755 0.34496 0.47193 0.49068 0.49524 0.49595 0.49801 0.49188 0.50141
lv2 0.72528 0.76077 0.75361 0.7125 0.76312 0.76905 0.77169 0.26678 0.653 0.73164 0.75143 0.75883 0.76242 0.74859 0.77315
lv3 0.76487 0.82338 0.82226 0.71526 0.79129 0.80349 0.80491 0.17643 0.58793 0.71504 0.74944 0.76083 0.815 0.8046 0.8223
lv4 0.76355 0.81992 0.81798 0.68219 0.76156 0.77247 0.77549 0.13145 0.46118 0.62182 0.66889 0.68456 0.80906 0.80526 0.81426
lv5 0.76328 0.81817 0.81612 0.67149 0.754 0.76714 0.77022 0.075345 0.40467 0.59305 0.64797 0.66857 0.8077 0.80531 0.8128

Table A.19: Reverse Biorthogonal, Hard Thresholding, Universal Threshold

rbio1.1 rbio1.3 rbio1.5 rbio2.2 rbio2.4 rbio2.6 rbio2.8 rbio3.1 rbio3.3 rbio3.5 rbio3.7 rbio3.9 rbio4.4 rbio5.5 rbio6.8
lv1 0.49532 0.49414 0.48264 0.49232 0.5029 0.5015 0.49853 0.34733 0.47515 0.49397 0.49866 0.49949 0.4988 0.49228 0.50219
lv2 0.72328 0.76162 0.7554 0.71447 0.76535 0.77241 0.77372 0.26455 0.66242 0.74214 0.76166 0.76898 0.76411 0.7637 0.775
lv3 0.74941 0.81914 0.82027 0.7125 0.80115 0.81406 0.81668 0.16692 0.62076 0.75671 0.79166 0.80132 0.81778 0.83426 0.82521
lv4 0.7419 0.80658 0.80814 0.68072 0.77921 0.79197 0.79466 0.12333 0.5265 0.70914 0.75575 0.76449 0.81117 0.8365 0.81453
lv5 0.74432 0.80204 0.803 0.66884 0.76781 0.78149 0.78461 0.075161 0.45441 0.68316 0.73418 0.74487 0.80758 0.83493 0.81

Table A.20: Reverse Biorthogonal, Soft Thresholding, Universal Threshold



B
Comparing db4, coif3, bior2.8 for denoising

Wavelet level Opt. value PSNR
db4 1 62.4 23.3802
db4 2 97.4 29.8997
db4 3 97.9 30.4615
db4 4 92.9 30.0587
db4 5 92.7 29.9404

coif3 1 63.7 23.5916
coif3 2 97.6 30.0209
coif3 3 97.9 30.6297
coif3 4 93.5 30.2255
coif3 5 92.3 30.1043

bior2.8 1 62.9 23.4974
bior2.8 2 106.5 29.2962
bior2.8 3 119.7 30.6696
bior2.8 4 116.1 30.3861
bior2.8 5 112.8 30.3033

Table B.1: Optimal threshold values for hard thresholding
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Wavelet level Opt. value PSNR
db4 1 20.4 22.2678
db4 2 34.2 25.8234
db4 3 44.0 28.5424
db4 4 48.3 29.4881
db4 5 49.0 29.585

coif3 1 20.5 22.2999
coif3 2 34 25.8715
coif3 3 44.4 28.6553
coif3 4 48.6 29.6816
coif3 5 49.4 29.7854

bior2.8 1 20.2 22.4274
bior2.8 2 34.3 25.6637
bior2.8 3 46.8 28.5088
bior2.8 4 54.7 29.9907
bior2.8 5 57.5 30.4074

Table B.2: Optimal threshold values for soft thresholding
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