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To my parents, Maria Teresa and Carles, for all the love and affection. And also, thank you
for making me understand science the way I do nowadays. To my sister Śılvia, exceptional
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Abstract

Micro-ramps are passive flow control devices used to delay flow separation. Their use is
widespread due to their reduced drag and structural robustness. We reproduce with Direct
Numerical Simulations (DNS) recent Particle Image Velocimetry (PIV) experiments of the
micro-ramp flow performed at TU Delft to study the wake of a micro-ramp immersed in a
laminar and incompressible boundary layer. The micro-ramp is a vortex generator which
induces a pair of streamwise counter-rotating vortices. The current literature identifies this
structure as the main flow feature contributing to the increase of the near-wall momentum.
The micro-ramp is also a surface roughness element which can trigger laminar-turbulent
transition. The action of the induced vortices introduces a strong detached shear layer into
the flow field, susceptible to Kelvin-Helmholtz (K-H) instability. We analyse the micro-
ramp flow dynamics and the transitional mechanisms which develop in the micro-ramp wake.
Furthermore, we intend to contribute to the discussion on the micro-ramp working principle,
which has been put into question by other authors. We show the importance of the transitional
perturbation development in the micro-ramp functionality.

Downstream-travelling streamwise vortices and transitional disturbances serve to the same
purpose of increasing the momentum close to the surface. To examine their relative contri-
bution in this regard, we numerically decompose the micro-ramp flow field into a laminar
steady state and a time-dependant perturbation field. To achieve that, we apply Selective
Frequency Damping (SFD), a numerical technique used to compute the steady solutions of
globally unstable dynamical systems. SFD is a popular method nowadays and the preferred
approach for aerospace applications. However, it has two case-dependant model parameters
which are key to the method’s effectivity and efficiency, and whose selection remains a chal-
lenge in the literature. Not every combination of the model parameters guarantees the success
of SFD, and even if so, the required computational time may be so large that the approach is
impractical. We provide the first rigorous analysis of the influence of these parameters to the
functionality of SFD, leading to simple expressions and procedures for choosing them opti-
mally. Furthermore, we prove that, under certain conditions, SFD is always able to stabilise
a globally unstable flow configuration.

MSc. Thesis Jordi Casacuberta Puig



x Abstract

Jordi Casacuberta Puig M.Sc. Thesis



Table of Contents

Acknowledgement v

Abstract ix

List of Figures xv

List of Tables xxi

Nomenclature xxiii

1 Introduction 1
1.1 Roughness-induced transition in boundary layer flows . . . . . . . . . . . . . . . 1

1.1.1 Relevance for aerospace applications . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Roughness-induced transition prediction . . . . . . . . . . . . . . . . . . 2

1.1.3 Roughness-induced transition mechanisms and stability analysis . . . . . 3

1.2 The micro-ramp vortex generator . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Unstable steady-state solutions to Navier-Stokes equations via Selective Frequency
Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Research questions and objectives . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Methodology 13

2.1 Formulation of problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Governing equations and state variables . . . . . . . . . . . . . . . . . . 13

2.1.2 Formal definition of relevant flow quantities . . . . . . . . . . . . . . . . 15

2.2 The SFD Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Original SFD formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Encapsulated formulation of SFD . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Parametrisation of the behaviour of SFD . . . . . . . . . . . . . . . . . . 17
2.3 Set-up of the cylinder DNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Set-up of the micro-ramp DNS . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Micro-ramp geometry and problem definition . . . . . . . . . . . . . . . 20

2.4.2 Grid topology and numerical set-up . . . . . . . . . . . . . . . . . . . . 22

2.5 Linear Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

MSc. Thesis Jordi Casacuberta Puig



xii Table of Contents

3 Steady-State Solutions to Navier-Stokes Equations via SFD 25

3.1 Analysis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Role of χ and ∆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Effective stabilisation of isolated unstable eigenmodes . . . . . . . . . . . 25

3.2.2 Stabilisation of systems with more than one unstable eigenmode . . . . . 29

3.2.3 Feasibility and required accuracy . . . . . . . . . . . . . . . . . . . . . . 32

3.3 The flow unleash technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 Application to the cylinder flow . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.1 The role of stable eigenmodes . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.2 Computation of optimal χ and ∆ . . . . . . . . . . . . . . . . . . . . . 37

4 The Micro-Ramp Working Principle 41

4.1 Analysis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Base flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Primary elements of the base flow topology . . . . . . . . . . . . . . . . 45

4.2.2 Flow around the micro-ramp . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.3 Streamwise-momentum-streak and shear fields . . . . . . . . . . . . . . . 53

4.2.4 Derivation and evaluation of a streamwise-momentum-streak transport
equation for incompressible steady flow fields . . . . . . . . . . . . . . . 56

4.3 Instantaneous flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.1 Small-amplitude-perturbation dynamics . . . . . . . . . . . . . . . . . . 64

4.3.2 Transitional flow dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.3 Quantification of perturbation growth . . . . . . . . . . . . . . . . . . . 77

4.4 Mean flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.1 Base flow vs mean flow topology . . . . . . . . . . . . . . . . . . . . . . 79

4.4.2 Derivation and evaluation of a streamwise-momentum-streak transport
equation for incompressible mean flow fields . . . . . . . . . . . . . . . . 84

5 Conclusions and Recommendations 89

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.1 SFD functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.2 Micro-ramp flow dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Recommendations and future work . . . . . . . . . . . . . . . . . . . . . . . . . 93

Bibliography 97

Jordi Casacuberta Puig M.Sc. Thesis



Table of Contents xiii

A Appendix 103

A.1 Selective Frequency Damping and Jacobian-free Newton-Krylov methods to sta-
bilise a Lorenz attractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.1.1 Jacobian-free Newton-Krylov (JFNK) methods . . . . . . . . . . . . . . 103

A.1.2 Coupled approach between SFD and JFNK . . . . . . . . . . . . . . . . 104

A.1.3 Application to the Lorenz attractor . . . . . . . . . . . . . . . . . . . . . 105

A.2 List of y-z planes of base flow variables in the near-ramp region . . . . . . . . . 108

A.3 List of y-z planes of base and mean flow variables . . . . . . . . . . . . . . . . . 111

A.4 Boundary layer shape factor in the base and mean flow fields . . . . . . . . . . . 124

A.5 Compressibility effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

MSc. Thesis Jordi Casacuberta Puig



xiv Table of Contents

Jordi Casacuberta Puig M.Sc. Thesis



List of Figures

1.1 (a) micro-ramp geometry with vortex model as proposed by Babinsky et al. (2009).
(b) illustration of the micro-ramp working principle according to Babinsky et al.
(2009). Dark areas indicate momentum excess and deficit; arrows schematise the
motion of the primary vortices; δ is the boundary layer height. . . . . . . . . . . 5

1.2 Streamwise vortices downstream the micro-ramp in the time-averaged configura-
tion detected by streamwise vorticity (Ye et al., 2016). . . . . . . . . . . . . . . 7

2.1 Eigenvalue spaces relevant in SFD: µ (empty circles), λ (red crosses), σ (green
squares), αex (purple circles) and αnum (blue diamonds). µj = 0.2 + 0.4i; −0.6 +

0.2i; 0.7 + 0.1i, σj = e−iµjτ , χ = 0.5, ∆ = 5 and τ = 2. . . . . . . . . . . . . . 19

2.2 Sketch of the micro-ramp flow problem containing the micro-ramp geometry, in-
let M = 0.2 laminar boundary layer profiles (computed at x/h = −45.44 and
plotted at z/h = 0 and z/h = ±15) and height of the undisturbed boundary
layer developing in streamwise direction for M = 0.2 (black) and M = 0.7 (red)
configurations. Ticks indicating the micro-ramp height at z = zun. Domain size
matches the computational box. . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Micro-ramp geometry with coordinates of the vertices and projected edges. (a)
lateral view and height of the undisturbed boundary layer for M = 0.2 (black) and
M = 0.7 (red) configurations, (b) back view, (c) top view. . . . . . . . . . . . . 21

2.4 Computational domain with the micro-ramp geometry, axis orientation, coordinates
of the external vertices, and grid blocks. Edge ticks with 10h spacing starting from
the origin. (a) lateral view, (b) top view, (c) front view. . . . . . . . . . . . . . 22

2.5 Grid refinement around the micro-ramp geometry. (a) lateral view, (b) back view,
(c) top view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 (a) χ and ∆, (b) solution branches in the λ space and (c) solution branches in the
∂λ/∂χ space. Start of the natural branches (green circles), start of the artificial
branches (blue diamonds), end points of all solutions (red squares), coordinates of
χ? and ∆? in (a) and λ? in (b) (empty circles). ∆µc = 3.83 (dash-dotted green),
4.33 (dotted blue), 4.83 (solid black), 5.33 (dashed red). Curve encompassing all
start and end points of the ∂λ1,2/∂χ branches in (c) (magenta). . . . . . . . . . 28

3.2 Stability curves in the µ space using (3.17). (a) µ eigenvalues mapped towards
neutral λ1 or λ2 with χ = χ?(µc) and ∆ = ∆?(µc). (b) regions encompassing
µaux for which χ = χ?(µaux) and ∆ = ∆?(µaux) will stabilise µc. µc

i/µ
c
r: 0.5

(dashed red); 0.75 (dash-dotted light green); 1 (solid black); 2 (dotted blue) and
4 (dashed-dotted dark green). µc (yellow circles). . . . . . . . . . . . . . . . . . 30

MSc. Thesis Jordi Casacuberta Puig



xvi List of Figures

3.3 Limiting curves defining the sets of µaux values stabilising µc or µk if χ = χ?(µaux)
and ∆ = ∆?(µaux) are chosen. µc = 1 + 1i (yellow circles, solid black), µk =
0.6 + 0.3i (a), µk = 0.4 + 0.3i (b) (red diamonds, dash-dotted red). . . . . . . . 31

3.4 (a) SFD residual εR = ||q − q̄||L2 (solid lines) using χ = 0.5 and ∆ = 3. Fits
to exponential parts (dashed lines). Unleash times (yellow squares) at εR = 10−3

(black), 10−4 (blue), 10−5 (green), 10−6 (red). Location of null curvature in the
linear range of the unleashed curves (red circles). (b) µ- (empty circles) and λ-
(crosses) eigenspectrum from stability analysis computed with εR = 10−6 base flow. 34

3.5 Dominant eigenmode (v′) when the base flow is unleashed, associated to µc. (a)
shows the xy-field, while (b) shows the profile along y = 0. Solid black lines: q− q̄
from DNS, dashed red lines and red symbols: real part of global eigenfunctions
from linear stability analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 (a) Least stable λi isocontours (solid lines) in the µ space with χ = χ?(µc) and
∆ = ∆?(µc) considering µc = 1 + 1i. Boundary for which max {λ1,i, λ2,i} ≶ µi
(dashed line). (b) Path of λ-solutions varying χ in the range [0, χopt] with ∆ =
∆opt (solid black arrows) and χ in the range [0, χ?] with ∆ = ∆? (dotted lines).
(c) Zoom. µ (empty circles), −i/∆opt (yellow diamond), −i/∆? (blue diamond),
λ for (χ,∆) = (χopt,∆opt) (red thick crosses), and λ for (χ,∆) = (χ?,∆?) (green
thin crosses). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7 Dominant eigenmode of the flow (u′) when applying SFD, associated to λs. (a)
shows the xy-field, while (b) shows the profile along y = 0. Solid black lines: q− q̄
from DNS, dashed green lines and green symbols: real part of global eigenfunctions
from linear stability analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.8 Comparison of the L2 norm of q − q̄ along ESFD simulations performed using
different SFD parameters. The values of χ and ∆ considered for each simulation
are: χopt = 0.2524 and ∆opt = 2.1173, optimal values computed by inferring µc

and µs through the application of the technique of flow unleash (solid black line
and yellow diamonds); χsp = 0.2608 and ∆sp = 2.1524, optimal values computed
with a previous knowledge of uncontrolled eigenspectrum (solid red line and red
pentagons); χ? = 0.4259 and ∆? = 3.3465 (solid magenta line and magenta
squares); χ = 0.4510 and ∆ = 3.1440, reported by Jordi et al. (2015) (solid blue
line and blue circles); χ = 1 and ∆ = 5 (solid green line and green triangles). All
values of χ and 1/∆ are given in units of u∞/D. . . . . . . . . . . . . . . . . . 38

4.1 Streamwise vorticity in the base flow. (a) top and (b) side views of iso-surfaces
of ωx,sh/u∞ = ±0.04, unperturbed boundary layer edge (solid green line). The
micro-ramp geometry is superimposed onto the iso-surfaces. (c) perspective of
translucent iso-surface and y-z planes at x/h = 10; 20; 30; 40; 50. . . . . . . . . 42

4.2 Wall shear in (a) the base and (b) the time-averaged flow fields. . . . . . . . . . 43

4.3 y-z planes of streamwise velocity with selected projected streamlines at (a) x/h =
3, (b) x/h = 10, (c) x/h = 30, (d) x/h = 60. . . . . . . . . . . . . . . . . . . 46

4.4 Wall-normal velocity. y-z planes at (a) x/h = 20, (c) 80, (b) perspective of y-z
planes at x/h = 20; 40; 60; 80; 100 with iso-contour of vs/u∞ = 0 (black line)
and iso-surfaces of vs/u∞ = 0.01 (red), −0.01 (blue). . . . . . . . . . . . . . . . 47

4.5 y-z planes of projected streamlines colour-coded by streamwise vorticity at (a)
x/h = 6, (b) 11, (c) 20, (d) 60. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Flow separation represented by us/u∞ = 0 isosurfaces, primary vortices detected
by Q-criterion (Qh/u∞ = 0.1), colour-coded by streamwise vorticity. Wall shear
at y/h = 0. (a) top view. (b) perspective. (c) side view. (d) inclined back view. 49

Jordi Casacuberta Puig M.Sc. Thesis



List of Figures xvii

4.7 Flow separation represented by us/u∞ = 0 isosurfaces colour-coded by streamwise
vorticity similar to figure 4.6. Slice of shear at y/h = 0. Rake of streamlines
generated with seeds placed at (x, y, z)/h = (0.5, 0.3, [−0.05, 0.05]). (a) top
view. (b) perspective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.8 y-z planes of streamwise velocity at x/h = 0 and 4. Rake of stream-
lines generated with seeds placed at (1) (x, y, z)/h = (−3, [0.2, 0.6], 0), (2)
(−2.25, 0.45, [0.6, 1.1]), (3) (−2.25, 0.15, [0.6, 1.1]). Particles following the
streamlines in time (magenta spheres), initially located at the origin of the rakes
(magenta lines). (a) represents a time instant prior to (b). . . . . . . . . . . . . 51

4.9 Pressure difference around the micro-ramp. x-z planes at y/h = 0 and y-x planes
at (a) z/h = 0, (b) z/h = −1.2. Interface of mesh blocks (solid black lines). . . 52

4.10 Streamwise velocity streaks. y-z planes at (a) x/h = 20, (c) 80 with iso-contours
of ustr

s /u∞ = −0.2 (white line), 0.1 (black). (b) perspective of y-z planes at
x/h = 20; 40; 60; 80; 100 with iso-surfaces of −0.4 (black opaque); −0.3 (brown
moderately translucent); −0.2 (red highly translucent); 0.1 (yellow opaque). End-
ing positions of the iso-surfaces defined by ustr

s /u∞ = −0.4 and −0.3 at x/h = 36
(I) and 74 (II). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.11 y-z planes of streamwise velocity streaks with selected projected streamlines at (a)
x/h = 3, (b) 10, (c) 30, (d) 90. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.12 Shear. y-z planes at (a) x/h = 10, (c) 30 with iso-contours of ssh/u∞ attaining
1/2 and 2/3 of the peak value (red and black lines). (b) perspective of y-z planes
at x/h = 0; 10; 20; 30; 40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.13 Integral terms of (4.9) as function of the streamwise coordinate evaluated in (a)
ΩE, (b) ΩD: ρ(vun · ∇)ustr

s (solid black), −∂pstr
s /∂x (solid green), µ∇2ustr

s (solid
magenta), ∇ · (−ρusv

str
s ) (solid blue) split into the relative contribution of ∇ ·

(−ρuunv
str
s ) (dash-dotted blue) and ∇· (−ρustr

s v
str
s ) (dotted blue) as expressed in

(4.6), local sum of terms of (4.9) (dashed black). (c) AE
i (orange) and AD

i (red)
along x/h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.14 Integral terms of (4.9) as function of the streamwise coordinate evaluated in ΩE.
ρ(vun · ∇)ustr

s (solid black), −∂pstr
s /∂x (solid green), µ∇2ustr

s (solid magenta),
∇ · (−ρusv

str
s ) (solid blue), local sum of terms of (4.9) (dashed black). . . . . . 59

4.15 y-z planes of streak-shear-correlation with selected projected streamlines at (a)
x/h = 3, (b) x/h = 10, (c) x/h = 30, (d) x/h = 60. Iso-contours of ustr

s /u∞ =
−0.06 (red line), ustr

s /u∞ = 0.06 (yellow line). . . . . . . . . . . . . . . . . . . 61

4.16 Instantaneous streamwise velocity perturbations (u′). Isosurfaces of (u− ū)/u∞ =
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Chapter 1

Introduction

1.1 Roughness-induced transition in boundary layer flows

1.1.1 Relevance for aerospace applications

Osborne Reynolds published in 1883 his famous investigations on hydrodynamic stability.
He injected a thin stream of dye into a glass tube with water flow and observed the fluid
motion. In Reynolds’ words: “the internal motion of water assumes one or other of two
broadly distinguishable forms, either the elements of the fluid follow one another along lines
of motion which lead in the most direct manner to their destination, or they eddy about in
sinuous paths the most indirect possible”. Transition between these states, nowadays referred
to as laminar and turbulent respectively, was observed to occur at approximately the same
ratio of mean flow velocity times pipe diameter over kinematic viscosity. This combination of
quantities forms a non-dimensional parameter, the Reynolds number Re, which expresses the
ratio of inertia force over viscous force governing this process. As a historical note, Sir George
Stokes and Lord Rayleigh were the referees of Reynolds’ paper. The latter wrote: “this paper
records some well contrived experiments on a subject which has long needed investigation
[...]. I am of opinion that the results are important, and that the paper should be published”
(Zuck, 1971; Jackson and Launder, 2007).

In 1904 Ludwig Prandtl introduced the concept of boundary layer. When an object moves
relative to a fluid, there exists a flow region in which velocity changes from zero at the wall to
the free stream value away from it. This fluid layer, the boundary layer, can as well be laminar,
turbulent or of transitional nature, i.e., switching from one state to the other. In the aerospace
industry, controlling the state of the boundary layer is paramount for the aerodynamic design
of aerospace vehicles. Features such as air resistance, vehicle manoeuvrability or surface heat
transfer are strongly dependant on it (White, 2006). Nonetheless, the process through which
a laminar flow transitions to a chaotic turbulent state is still far from being fully understood.
The study of laminar-to-turbulent transition remains nowadays an active research topic within
the aerodynamics community (Pinna, 2012).

Transition is affected by many parameters, among which wall imperfections occupy a central
role and are the main focus of this work. Interest in the effect of roughness in the transition
process comes, first of all, from the necessity to understand the interaction between fluid flow
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and realistic surfaces (Ergin and White, 2006). Secondly, depending on the application, the
effect of turbulence may be desirable or not; roughness elements can be used to either accel-
erate or delay transition (Fransson et al., 2006; Loiseau et al., 2014). A turbulent boundary
layer contains more momentum close to the wall than a laminar one due to turbulent mixing.
This results in larger velocity gradients and shear stresses on the body surface; skin friction of
a turbulent boundary layer is roughly ten times larger than that of a laminar one (Fransson
et al., 2006). Therefore, turbulence in boundary layers developing over streamlined bodies,
whose dominant drag kind is skin-friction drag, is typically unwanted. On the other hand,
a turbulent boundary layer is better able to resist adverse pressure gradients and thus it is
less prone to separation. A reduction of the separated region results in less pressure drag,
the dominant drag kind in bluff bodies and airfoils at high angle of attack. Thus, tripping
the boundary layer, i.e., promoting early transition through the addition of tripping devices,
may be of benefit in geometries with high curvature (Elsinga and Westerweel, 2012).

Improving the efficiency and reducing the drag of aircrafts remains nowadays of major priority
due to environmental concerns involving noise contamination and air pollution (Jahanmiri,
2011). The goals of the European Statistical System (ESS) vision 2020 in aviation include a
50% reduction of perceived noise and 50% cut in fuel consumption. These goals appear almost
impossible to achieve with the existing technology. Drag reduction in aerospace vehicles would
also allow for larger flight ranges and higher vehicle speeds. According to Thibert et al. (1990)
and Malik et al. (2013), skin friction drag in subsonic transport aircraft represents about
50% of total drag. Washburn (2011) estimates that for a 7400 km transport aircraft of 325
passengers, a 10% reduction in skin friction drag would result in 9% fuel saving. To maintain
natural laminar flow over relevant aircraft parts and hence reduce skin-friction drag, shape
design and hybrid laminar flow control are presented as main approaches (Blockley et al.,
2016). An example of the latter is the usage of spanwise periodic discrete roughness elements
to delay transition to turbulence; the introduction of a spanwise modulation of the boundary
layer can act so as to stabilise Tollmien-Schlichting (TS) waves (Fransson et al., 2006). Despite
promising numerical work, delay of transition in real flight conditions under this technique
has not yet been possible (Blockley et al., 2016).

On the other hand, the aerodynamic performance of aircrafts operating at subsonic conditions
and low Reynolds numbers may worsen if laminar separation occurs. This can be in terms of
drag increase or maximum lift decrease. Structural damage, as a consequence of the instabil-
ity of the process, is of concern as well (Delnero et al., 2007; Popelka et al., 2010). Sailplanes,
Unmanned Aerial Vehicles (UAV), turbomachinery and wind turbines are examples of tech-
nology which may suffer from these unwanted effects. Promoting transition upstream the
point of laminar separation remains the most effective way to prevent its occurrence (Aholt
and Finaish, 2011). Surface roughness can be employed for this purpose (Lin, 2002).

1.1.2 Roughness-induced transition prediction

In this work, we deepen into the dynamics of boundary layer transition when it is promoted
by an isolated three-dimensional roughness element. Transition predictions for this class of
problems are traditionally based on correlations of the roughness Reynolds number, which is
defined as

Rehh =
uhh

ν∞
, (1.1)
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with h being the height of the roughness element and uh the streamwise velocity of the un-
perturbed boundary layer at this height (Tani, 1969; Sedney, 1973). For low Rehh, the flow
downstream the roughness element remains laminar. When the so-called critical Rehh is ex-
ceeded, the roughness element starts to affect transition. IncreasingRehh moves upstream the
transition location. At the so-called effective Rehh, transition occurs almost at the roughness
element and further increments of Rehh do not move the transition point (Schneider, 2008;
Redford et al., 2010). Both critical and effective Rehh depend on the roughness shape, distur-
bance environment and compressibility effects (Choudhari et al., 2009). Based on empirical
work, Klebanoff et al. (1955) observe critical Rehh to be contained in the range 600 to 900 for
roughness elements with unity aspect ratio. If different from one, von Doenhoff and Braslow
(1961) and Tani (1969) find the critical Rehh to correlate with the aspect ratio of the element
following a power law of exponent 2/5. Braslow and Horton (1958) throw the hypothesis that
correlations using Rehh only show good results for roughness elements well-contained within
the boundary layer.

At high Mach numbers, surface roughness of small height (as compared to the boundary layer
height) is not able to trigger transition; the Rehh criterion appears to be invalid. This is
assumed to be a consequence of the stabilising effect of compressibility (Braslow and Horton,
1958). For high-speed boundary layers, Redford et al. (2010) note the wall temperature and
the Mach number, M , to play, together with Rehh, a central role for transition prediction.
Bernardini et al. (2012) propose to condense all these effects into a modified version of the
roughness Reynolds number, Re?hh, which evaluates the wall viscosity instead of the free-
stream viscosity. From numerical experiments considering roughness elements with aspect
ratios below the unity and a broad range of Mach numbers, Re?hh = uhh/νw = 460 appears
to serve as threshold value segregating the occurrence or not of transition.

1.1.3 Roughness-induced transition mechanisms and stability analysis

Despite being widely used for engineering applications, the correlations mentioned above are
based on empirical work. There does not exist any global model describing the way a rough-
ness element causes transition (Schneider, 2008). Nonetheless, in the low-speed regime there
is generally consensus on the mechanisms underlying the transition process (Redford et al.,
2010). Isolated roughness distorts the organisation of the laminar boundary layer and creates
a wake dominated by streamwise vorticity (Landhal, 1980). Vortex filaments redistribute
momentum within the boundary layer and introduce positive and negative streaks, which
can be accompanied by an unstable detached shear layer. At this point it is important to
clarify what does unstable mean in the current context. This term is linked to the concept of
hydrodynamic stability, i.e., the response of fluid flow to small disturbances. The boundary
layer is said to be stable if it returns to its original state after disturbances act on it. On
the contrary, it is said to be unstable if the action of perturbations makes it evolve towards a
new state. In the latter case, disturbances penetrating into the boundary layer (for instance
sound waves) through receptivity mechanisms can get amplified and eventually lead to chaotic
behaviour and turbulence (Pinna, 2012). Understanding fluid flow instabilities, i.e., the state
when stability conditions are broken (Boiko et al., 2012), is hence of fundamental importance
for the study of laminar-turbulent transition.

Flow instabilities of small amplitude can be characterised through linear stability analysis
(Reed et al., 1996; Schmid and Henningson, 2001; Theofilis, 2003; Groot, 2013). Letting f
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be the non-linear Navier-Stokes operator applied to a state variables q vector, with adequate
boundary and initial conditions, the Navier-Stokes equations can be written as

q̇ = f(q), (1.2)

where the dot expresses time derivative. The steady state of (1.2) satisfies q̇s = f(qs) = 0.
The stability approach relies on decomposing the instantaneous flow field into the base flow
qs plus a time-dependent perturbation field q′ such that

q(x, t) = qs(x) + εAq
′(x, t), 0 < εA � 1, (1.3)

where x represents the spatial coordinates and t the time. Linear stability analysis assumes
perturbations to be infinitesimally small, i.e., to develop without distorting the base flow.
Under this conditions, an analytical solution of the perturbation field can be obtained via
linearisation of f(q) around qs, assuming the base flow to be known. The field q′ is then
obtained as a set of wave-like perturbations (eigenmodes) which develop independently. Each
eigenmode can either die out (said to be stable) or get amplified (said to be unstable) in
space and/or time. When disturbances acquire sufficiently large amplitudes, (1.3) is rendered
invalid, linear stability stability breaks down, eigenmodes can interact with each other, and
secondary instabilities may arise, ultimately triggering transition. Eigenmode growth is,
however, one of the main paths to transition. Other scenarios involve transient disturbance
growth or by-pass mechanisms (Reshotko, 2008). The boundary layer can be of unstable
nature regardless of the presence or not of surface roughness; unstable detached shear layers
may, however, introduce much stronger instabilities (Redford et al., 2010).

When analysing the wake of an array of cylindrical roughness elements, Ergin and White
(2006) report the location of largest velocity fluctuations to be at the points of inflection of
the velocity profile in wall-normal and spanwise directions. Accordingly, Kelvin-Helmholtz
(K-H) is hypothesised to be the dominant instability kind. Ergin and White (2006) note the
growth rate of perturbations to increase with the roughness height. At supercritical Rehh,
transition is attributed to the fact that disturbances grow at a rate larger than that at which
the base flow relaxes and tends to stabilise them. Growth of unstable eigenmodes sustained by
the shear layer surrounding the element’s wake is a common observation among many authors
despite considering different roughness shapes and flow regimes. This is for instance the case
of Choudhari et al. (2009) when analysing a micro-ramp array, Choudhari et al. (2010) for a
diamond-shaped element, De Tullio et al. (2013) in the case of a rectangular prism or Loiseau
et al. (2014) for a cylindrical element. In particular, these authors identify by means of linear
stability analysis two unstable eigenmodes, the so-called sinuous and varicose instabilities.
Kegerise et al. (2012) and De Tullio et al. (2013) observe the varicose one to be the dominant
kind, i.e., to grow faster. According to Loiseau et al. (2014), however, it depends on the
aspect ratio of the roughness element which one plays the central role.

Rizzeta and Visbal (2007) reproduce numerically the experiments of Ergin and White (2006).
A train of hairpin vortices (Acarlar and Smith, 1986) is observed to originate due to an
instability of the spanwise shear layer. These grow rapidly and lead to chaotic behaviour and
breakdown of the unstable shear layer. Loiseau et al. (2014) identify hairpin vortex shedding
close to the roughness element originated due to the varicose instability and to cause rapid
transition. Ye et al. (2016), however, report that hairpin vortices incepted close to a micro-
ramp roughness element lift up and do not play a role in the ultimate transition mechanisms.
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(a) (b)

Figure 1.1: (a) micro-ramp geometry with vortex model as proposed by Babinsky et al. (2009).
(b) illustration of the micro-ramp working principle according to Babinsky et al. (2009). Dark
areas indicate momentum excess and deficit; arrows schematise the motion of the primary vortices;
δ is the boundary layer height.

Instead, breakdown to turbulence is attributed to a second generation of hairpin vortices
induced much downstream and near the wall.

Two different approaches are considered in this work to resolve flow physics, namely Linear
Stability Theory (LST) and Direct Numerical Simulations (DNS). The first has already been
introduced and aims to reveal the nature of flow instabilities developing close to the rough-
ness element. When disturbances acquire sufficiently large amplitude, linear stability analysis
loses its validity. Non-linear eigenmode evolution is then resolved via DNS. DNS computes
the instantaneous flow field by numerically solving the Navier-Stokes equations without tur-
bulence modelling. Since the computational grid has then to be fine enough to resolve all
relevant flow structures, this method is computationally very expensive and is generally only
used for simple geometries as for instance a single, isolated surface roughness element.

The main case analysed in this work considers a roughness element mounted on a flat plate
and immersed in a nearly-incompressible boundary layer at Mach number M = 0.2. We have
found little literature on roughness-induced transition in compressible boundary layers. This
motivated the extension of the main analysis to a M = 0.7 boundary layer case (keeping fixed
the roughness geometry and Re?hh) to additionally investigate the effects of compressibility.

1.2 The micro-ramp vortex generator

The roughness element used in this work is a micro-ramp vortex generator. The micro-ramp
is a passive flow control device with potential for various aerodynamics applications (Lin,
2002). It is essentially a forward wedge; see figure 1.1(a). Fluid lifted at its leading edge
falls from the slant edges and induces a pair of counter-rotating vortices, the primary vortex
pair. This flow structure enhances the transport of momentum within the boundary layer.
The term “micro” refers to the fact that, as opposed to conventional vortex generators, its
height is lower than that of the undisturbed boundary layer. This results in less drag. Micro-
ramps have furthermore gained interest due to their structural robustness. The choice of
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this particular roughness shape for our analysis is motivated by the fact that bluff-fronted
elements such as cylinders or hemispheres are standard geometries extensively investigated in
the literature. A micro-ramp is wedge-shaped, for which less information is available.

An example of application of micro-ramp boundary layer trip is NASA’s hypersonic vehicle
X-43 (Hyper-X). An array of micro-ramps was proposed as tripping device in a M = 7 flight
test. Turbulent engine inflow was desired due to better performance and robustness with
respect to unstart of the propulsion system. Furthermore, transition to turbulence showed to
reduce laminar separation at the compression ramps in the vehicle’s forebody, which could
have led to a reduction of mass captured by the engine (Berry and Auslender, 2001).

Anderson et al. (2006) report the wake of the micro-ramp to be dominated by counter-rotating
vortices that alter the properties of the boundary layer and, in particular, reduce its shape
factor. The boundary layer becomes better able to resist adverse pressure gradients. Babinsky
et al. (2009) claim that the primary vortex pair produces an entrainment of high-momentum
fluid towards the wall aside the centre plane, as schematised in figure 1.1(b). The boundary
layer is made fuller and wall shear increases. This is the established consensus regarding
the micro-ramp working principle. Babinsky et al. (2009) capture as well secondary vortices
originated at the micro-ramp —see figure 1.1(a)— and strong momentum deficit at the centre
plane. The latter, together with the primary vortex pair, are observed to gradually lift up
due to vortex-induced upwash. Numerical experiments from Ghosh et al. (2010) and Lee
et al. (2010) show agreement with flow topology presented by Babinsky et al. (2009). The
primary vortex pair is confirmed responsible for producing momentum excess near the wall,
and to persist far downstream (Ghosh et al., 2010). Li and Liu (2011) point out the central
low-momentum dip to be generated by the action of primary vortices. Li and Liu (2010)
discover a new structure in the micro-ramp wake: a train of arch-shaped vortices induced at
the shear layer wrapping the central momentum deficit. Vortex shedding is attributed to K-H
instability since the velocity profile has an inflection point.

Recent research efforts have focused on micro-ramps operating at turbulent and supersonic
conditions due to the capability of the device in controlling shock-wave-boundary-layer in-
teraction (Anderson et al., 2006; Babinsky et al., 2009; Blinde et al., 2009; Sun et al., 2012;
Giepman et al., 2014). Tirtey et al. (2011), on a different scope, characterise the micro-ramp
wake when it is immersed in a hypersonic and laminar boundary layer. Similar to previous
references, a pair of counter-rotating vortices induced at the micro-ramp is identified as the
main flow feature. They also detect secondary vortical structures aside the primary vortices,
which rotate in an opposite sense. The overall wake shows to expand in spanwise direction.
The occurrence of transition is attributed to the fact that the primary vortices amplify part
of the disturbance field. Ye et al. (2016) and Ye (2017) recently assessed, for the first time,
the transitional wake of a micro-ramp immersed in a laminar and incompressible boundary
layer. One of the aims of this work is to numerically reproduce experimental results from Ye
(2017) considering Rehh = 460. The time-averaged flow organisations presented by Ye et al.
(2016) and Ye (2017) depict the primary vortex pair, as well as further pairs of secondary and
tertiary vortices developing aside; see figure 1.2. Widely reported and common to all flow
regimes is the fact that the primary vortices are observed to persist until far downstream, to
induce central upwash and lateral downwash, and to gradually lift off from the surface. In
the instantaneous flow field, Ye (2017) detects a train of vortices similar to that reported by
Li and Liu (2010); secondary vortical structures growing in between are as well identified.
The spanwise expansion of wake contamination is attributed to the latter. This is in line with
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1.2 The micro-ramp vortex generator 7

Figure 1.2: Streamwise vortices downstream the micro-ramp in the time-averaged configuration
detected by streamwise vorticity (Ye et al., 2016).

observations from Tirtey et al. (2011).

The micro-ramp has been object of study for many researchers. There is generally consen-
sus regarding the micro-ramp flow topology and on the fact that this device is capable of
re-energising the lower part of the boundary layer and make it better able to resist adverse
pressure gradients. Nonetheless, some authors have recently questioned the micro-ramp work-
ing principle. This is for instance the case of Wang et al. (2013), who claim that the primary
vortices are not capable of entraining high-momentum fluid from the free-stream near the
wall while developing downstream the micro-ramp. Instead, the mechanism which makes the
boundary layer fuller relies on the exchange of fluid between low and mid portions of the
boundary layer along the micro-ramp chord. Li and Liu (2011) assess the performance of the
micro-ramp for shock-induced separation control. A reduction of the separation bubble is not
attributed to increased wall shear due to primary vortex motion, but to the fact that arch-
shaped vortices induced at the shear layer destroy the shock. Accordingly, Li and Liu (2011)
suggest the micro-ramp to work differently from traditional vortex generators. Blinde et al.
(2009) find no evidence of the primary vortices in the instantaneous flow field sufficiently far
from the micro-ramp. Bo et al. (2012) point in a similar direction and hypothesise that the
basic flow pattern is first consequence of the motion of the primary vortices and thereafter
maintained by hairpin vortex dynamics.

Based on the above survey, the micro-ramp appears to play a double role with regard to
boundary-layer-momentum enhancement. On the one hand, it generates a counter-rotating
vortex pair which induces strong upwash and downwash. At the same time, however, this
introduces a strong instability into the flow field which can lead to generation of large-scale
hairpin vortices. In this work, we therefore put an extra focus on the role played by the
primary vortices on the one hand and the transitional perturbation structures on the other
hand in the transport of momentum near the wall. To segregate mechanisms, we decompose
the flow field as q = qs + q′, i.e., the steady laminar base flow and the time-dependant per-
turbation field following the LST approach. First, we compute DNS of the micro-ramp base
flow, qs, at supercritical Rehh. This allows for isolation of flow structures intrinsically con-
tained in the system’s steady state and a better understanding of their momentum-transport
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capabilities. The particular interest of this decomposition for the current case is the fact
that the primary vortex pair is an element of the base flow. Thereafter, we compute DNS of
q = qs + q′. Upon comparison between qs and time-averaged q, differences can be attributed
to the effect of perturbation development.

All in all, we aim to better understand relevant flow structures and transitional mechanisms
present in the micro-ramp wake, as well as to shed light on the aforementioned controversy
regarding the micro-ramp working principle. To our knowledge, this is the first attempt
to perform DNS of the micro-ramp flow. This work may serve for future studies in which
micro-ramps would be used for laminar flow control applications. Furthermore, the fact
that we consider laminar and incompressible flow conditions may help to better characterise
mechanisms which could be partially masked in more complex flow environments.

1.3 Unstable steady-state solutions to Navier-Stokes equa-
tions via Selective Frequency Damping

Previously, we have pointed out the interest in obtaining an accurate representation of the
micro-ramp base flow. Steady-state solutions of the Navier-Stokes equations are also of in-
terest in other flow applications. In Computational Fluid Dynamics (CFD), accurate base
flow solutions may also serve as initial conditions, reducing the computational cost, and/or
as boundary conditions, for absorbing layers or sponge zones (Teixeira and Alves, 2017).
On a different scope, turbulent flows approached with the Reynolds-Averaged Navier-Stokes
(RANS) equations may not accurately predict a flow phenomenon if time-independent solu-
tions cannot be determined; an example for RANS of leading-edge stall is presented by Richez
et al. (2016).

The difficulty in computing time-independent Navier-Stokes solutions arises for globally un-
stable flow fields, inasmuch as the instantaneous flow naturally diverges from the steady state
(Åkervik et al., 2006). To overcome this obstacle, mainly two numerical methods are em-
ployed in the literature: Newton iteration methods (Knoll and Keyes, 2004) are the classical
approach; however, these methods may have severe practical limitations due to the sensitivity
to the initial guess and the required computational cost for large and strongly nonlinear sys-
tems (Cunha et al., 2015; Teixeira and Alves, 2017). In the past years, the Selective Frequency
Damping (SFD) method developed by Åkervik et al. (2006) has arisen as a solid alternative.
Its robustness and ease of implementation into existing time-stepping methods have made it
increasingly popular to the point that it is generally the preferred method for aeronautical
applications (Richez et al., 2016).

Based on control theory, SFD adds a linear forcing term to (1.2), which drives the flow field
q towards qs (Åkervik et al., 2006). As this target solution is not known beforehand, qs is
substituted by a low-pass filtered version of q, denoted by q̄. The evolution equation for q is
then rewritten as

q̇ = f(q)− χ(q − q̄), χ ∈ R+. (1.4)

The forcing is a linear reaction term proportional to the high-frequency content of the flow.
Its effectiveness in quenching unstable frequencies and hence suppressing the associated in-
stabilities depends on the feedback control coefficient χ. Åkervik et al. (2006) suggest an
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exponential kernel filter to compute q̄. Since the implementation of the integral formulation
of the filter would generally imply infeasible memory requirements in practice, its differential
formulation is considered instead:

˙̄q =
q − q̄

∆
, ∆ ∈ R+. (1.5)

The time constant ∆ is related to the cut-off frequency (ωc) of the low-pass filter through
∆ = 1/ωc. The performance of SFD depends on the two aforementioned parameters of the
model, χ and ∆, which must be chosen as inputs of the simulation. Appropriate values
depend on the flow problem and hence their selection is key to the method’s effectiveness and
efficiency as they determine the stability and convergence rate (Åkervik et al., 2006; Jordi
et al., 2014, 2015; Cunha et al., 2015). Not every combination of χ and ∆ guarantees that
the flow field is driven towards the steady state, and even if so, the required computational
time may be so large that the approach is impractical. Hence, how to select adequate χ and
∆ is a common predicament in the literature.

SFD has nonetheless been very successfully applied to two- and three-dimensional flow con-
figurations: Åkervik et al. (2006) first apply the method for stabilising a separation bubble
with success and the steady solution of a confined separated flow is obtained by Åkervik
et al. (2007). Pier (2008) compute the base flow around a sphere to analyse local and global
instabilities developing in the wake. Schmid (2008) analyse the stability of the flow in a
square cavity by using a reference solution computed with SFD. Bagheri et al. (2009) suc-
cessfully apply SFD to stabilise a jet in crossflow and Fani et al. (2014) find the base flow
for a three-dimensional T-mixer. Loiseau et al. (2014) study roughness-induced transition by
performing stability analyses using base-flow solutions computed with SFD. More recently,
Richez et al. (2016) apply SFD to stabilise RANS simulations of the turbulent separated flow
around an airfoil at stall and Kurz and Kloker (2016) computed with SFD the steady state
of a three-dimensional boundary layer over a swept wing with roughness elements. Signifi-
cant contributions to the advancement of the methodology where published by Jordi et al.
(2014), who develop an alternative SFD formulation, and Cunha et al. (2015), who develop an
optimisation method for SFD simulations based on Dynamic Mode Decomposition (DMD).

The model parameters χ and ∆ are commonly based on rough estimations introduced by
Åkervik et al. (2006) or on parametric studies of simplified models. Jordi et al. (2014, 2015)
used a scalar model problem to infer the behaviour of SFD when applied to a real flow problem.
By using this model, Jordi et al. (2014) generate stability curves identifying the influence
of χ and ∆ and indicate that SFD is incapable of stabilising steady unstable eigenmodes,
corroborating the results of Vyazmina (2010). It is observed that increasing χ may not always
guarantee convergence, contrary to the consensus introduced by Åkervik et al. (2006). Jordi
et al. (2015) hypothesise that the parameter values that optimise the scalar model problem
also optimise the full flow problem and developed a coupled approach, which combines the
computation of partially converged flow fields, stability analyses and parameter optimisation
for the model problem. Cunha et al. (2015) use DMD of the controlled flow field to determine
parameters that minimise the growth rate of the least stable DMD mode.

There are cases in which SFD reportedly failed (Vyazmina, 2010; Jones and Sandberg, 2011).
It is claimed that cases in which the flow field presents steady unstable eigenmodes, SFD
is unable to drive the simulation towards the steady state. Several authors indicate that
too large χ yield infeasible simulation times (Cunha et al., 2015; Jones and Sandberg, 2011;

MSc. Thesis Jordi Casacuberta Puig



10 Introduction

Åkervik et al., 2006). Massa (2014) and Teixeira and Alves (2017) report that stabilising a
flow field that is unstable to more than one eigenmode can be a challenging task. In particular,
Massa (2014) claim that SFD fails to converge towards the base flow if unstable eigenvalues
with high amplification rates and low-frequency weakly unstable eigenvalues are both present
in the flow field. In conclusion, a better understanding of χ and ∆ is required to establish
the feasibility of the method in the first place. In this work, we provide the first rigorous
analysis of the effectivity and efficiency of SFD, leading to simple expressions and procedures
for finding optimal χ and ∆ values.

1.4 Research questions and objectives

Based on this literature review, we identify four relevant research questions, each of which is
broken down into further sub-questions. First, in §3 we analyse the dynamics of SFD systems
and scrutinise the role played by the SFD model parameters. We aim to answer the following
questions:

Which values of χ and ∆ are effective and most efficient to compute with SFD
the steady state of a globally unstable flow field?

1. Does SFD fail to stabilise systems with unstable steady eigenmodes?

2. Does the feasibility of the method depend on specific eigenvalue properties?

3. Given an adequate ∆, does increasing χ always yield a stabilised system?

4. How can multiple discrete unsteady eigenmodes be accounted for?

In §4, we analyse the micro-ramp flow dynamics. First, in §4.2 we examine the base flow
topology and try to provide answers to the following questions:

How is the base flow organisation of a micro-ramp immersed in a laminar and
incompressible boundary layer at low supercritical Rehh conditions?

1. Which are the main flow features?

2. Can the laminar primary vortex pair keep a sustained entrainment of high-momentum
fluid towards the wall?

3. Do secondary vortical structures arise?

4. What is the origin of the regions of momentum excess and momentum deficit (measured
with respect to the unperturbed boundary layer)?

Finally, in §4.3 and in §4.4 we analyse the topology of the instantaneous and mean flow fields
and intend to answer the following questions:

What are the stability characteristics of the micro-ramp wake?

1. What flow regions are susceptible to instability growth?
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2. Can stability analysis accurately represent the dynamics of small-amplitude perturba-
tions and match results from DNS in the linear perturbation regime?

How are the instantaneous and mean flow organisations downstream of a micro-
ramp immersed in a laminar and incompressible boundary layer at low supercrit-
ical Rehh conditions?

1. Which are the main instantaneous flow structures?

2. How is the organisation of the base flow altered by the presence of transitional pertur-
bations? Are there major differences between base and mean flow fields?

3. Is the primary vortex pair sustained in the instantaneous flow field?

4. Which flow features contribute most significantly to the enhancement of momentum
transport and, in particular, to the transport of high-momentum fluid near the wall?

5. What is the main working principle of the micro-ramp?

Accordingly, the main goals of the present work are to:

• Implement Selective Frequency Damping (SFD) into TU Delft’s in-house code INCA.

• Investigate how the SFD input parameters χ and ∆ ought to be chosen to effectively
and efficiently stabilise globally unstable flow configurations.

• Test the SFD implementation by computing the steady state of a two-dimensional in-
compressible cylinder flow at Re = 100.

• Compute using Direct Numerical Simulations (DNS) and analyse the base flow of a
micro-ramp immersed in a laminar M = 0.2 boundary layer at low supercritical Rehh
conditions.

• Compute using Direct Numerical Simulations (DNS) and analyse the instantaneous
transitional M = 0.2 micro-ramp flow at low supercritical Rehh conditions. Identify
differences with base flow results.

• Compare the results of micro-ramp DNS with tomographic PIV experiments carried
out for the same set-up and with results from linear stability analysis applied to the
SFD-computed base flow.

• Extend the analysis to a micro-ramp flow problem considering a laminar M = 0.7
boundary layer.
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Chapter 2

Methodology

2.1 Formulation of problems

2.1.1 Governing equations and state variables

The non-linear equations ruling the dynamics of a fluid system are of the form q̇ = f(q)
(1.2). For an incompressible two-dimensional flow field, the case of the cylinder flow problem
analysed in this work, the vector of state variables q reads

q(x, y, t) = [u(x, y, t) v(x, y, t)]T. (2.1)

For a compressible three-dimensional flow field, the case of our micro-ramp flow problem, the
vector of state variables is then of the form

q(x, y, z, t) = [ρ(x, y, z, t) ρu(x, y, z, t) ρv(x, y, z, t) ρw(x, y, z, t) ρet(x, y, z, t)]
T. (2.2)

For the cylinder case, u represents the streamwise velocity component and v the velocity
component perpendicular to it. For the micro-ramp case, u is kept as streamwise velocity,
v is taken as wall-normal velocity and w represents the spanwise velocity. These variables
together form the velocity vector field, denoted by v. The density field is denoted by ρ and
et represents total energy. Concerning the coordinate system, x is defined as streamwise
direction, y is the direction orthogonal to it in the cylinder case and the wall-normal direction
in the micro-ramp case, z is the span-wise direction; see figures 2.2 and 2.4.

In the incompressible regime, the motion of a Newtonian fluid flow with viscosity µ is described
by a system of non-linear partial differential equations which impose conservation of mass and
momentum. This system reads

∇ · v = 0, (2.3)

ρ
∂v

∂t
+ ρ (v · ∇)v = −∇p+ µ∇2v. (2.4)
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After taking the divergence of (2.4) and combining it with divergence-free condition (2.3),
one obtains a coupling between pressure, p, and velocity:

∇2p = −∇ · (v · ∇v) . (2.5)

In incompressible fluid systems, f(q) = − (v · ∇)v − (1/ρ)∇p+ ν∇2v, ν = µ/ρ.

In the compressible regime, the system of partial differential equations which describes the
motion of a Newtonian fluid flow adds an extra equation, the energy conservation equation,
and reads

∂ρ

∂t
+∇ · (ρv) = 0, (2.6)

∂ (ρv)

∂t
+∇ · (ρvv) = −∇p+∇ · (τv) , (2.7)

∂ (ρet)

∂t
+∇ · (ρetv) = −∇ · (pv)−∇ · qh +∇ · (vτv) , (2.8)

with the stress tensor, τv, and heat flux, qh, computed as

τv = µ

(
∇v + (∇v)T − 2

3
∇ · vI

)
, (2.9)

qh = −κ∇T, (2.10)

considering Stokes’ hypothesis and Fourier’s law. T is temperature, κ denotes thermal con-
ductivity, I is the identity matrix. In compressible fluid systems, f(q) is then taken as the
RHS of (2.6), (2.7), (2.8) when operators of the form ∂/∂t are isolated on the LHS.

For compressible flows, an extra equation is required to close the system, the equation of
state. Assuming a calorically perfect gas,

p = (γ − 1)

(
ρet −

1

2
ρ||v||2

)
, (2.11)

with γ being the ratio of specific heats. Finally, viscosity is related to the temperature
following a power law,

µ = µ∞

(
T

T∞

)0.75

. (2.12)

Thermal conductivity is related to the Prandtl number,

κ =
cpµ

Pr
, cp =

γR

γ − 1
. (2.13)

Assuming the fluid to be air, Pr = 0.72, R = 287 m2/(s2K), γ = 1.4.
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2.1.2 Formal definition of relevant flow quantities

We next define relevant flow variables used in the analysis of results presented in this work,
and which have not been introduced previously. Vorticity, ω(x, y, z, t), and shear, s(x, y, z, t),
are computed by numerically differentiating the velocity field using finite differences. Vorticity
is obtained as the curl of the velocity field,

ω = ∇× v. (2.14)

Shear is a scalar field defined as the Frobenius norm of the strain-rate tensor, i.e.,

s = ||1
2

(
∇v + (∇v)T

)
||F. (2.15)

In the micro-ramp case, for large |z/h| (h represents the micro-ramp height) denoted by
zun/h, the velocity field behaves as a two-dimensional boundary layer without flow distortions
introduced by the micro-ramp. The state variables vector in this so-called unperturbed region
is denoted by

qun(x, y) = q(x, y, zun). (2.16)

Let the streaks field, qstr(x, y, z, t), then be defined as

qstr = q − qun. (2.17)

Instantaneous state variables are obtained as the instantaneous solution of f(q). Steady-state
solutions computed via SFD are taken as the instantaneous converged q̄. Time-averaged state
variables, 〈q〉, are computed as follows:

〈q〉 =
1

t1 − t0

∫ t1

t0

q dt, (2.18)

with t0 and t1 being the initial and final time instants over which a variable is time-averaged.
By subtracting the base flow to the mean flow we obtain the so-called mean-flow distortion:

〈q〉d = 〈q〉 − qs. (2.19)

In the present work, we differentiate between the instantaneous perturbation field measured
with respect to the base flow (1.3) or with respect to the mean flow. The latter, denoted by
q′′, is obtained as

q′′ = q − 〈q〉 . (2.20)

The shape factor of the boundary layer, in its incompressible form, is defined as

H =
δ?

θ
, (2.21)

with

δ? =

∫ ∞
0

(
1− u

u∞

)
dy (2.22)

and

θ =

∫ ∞
0

u

u∞

(
1− u

u∞

)
dy. (2.23)
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2.2 The SFD Framework

2.2.1 Original SFD formulation

We now introduce the theoretical background of SFD dynamics. The mathematical and
numerical tools described next will be used to model, predict and optimise the behaviour of
SFD simulations. SFD equations (1.4) and (1.5) can be discretised using any time-marching
scheme. In case of convergence, q and q̄ have the same steady state, q̇s = ˙̄qs = 0 and qs = q̄s.
We therefore can use the difference between them as convergence criterion εR = ||q − q̄||L2 ,
with εR representing the so-called SFD residual of the simulation. As time progresses and
εR → 0, the linear forcing term in (1.4) approaches zero and the steady solution of (1.4)
becomes identical to that of (1.2). This guarantees that no artificial base flow solutions are
created in spite of the fact that the system is changed. The (linear) dynamics of the modified
system can be addressed through the linearisation of (1.4) and (1.5) yielding:

[
q̇′

˙̄q′

]
=

 J − χI χI

I
∆

− I
∆


︸ ︷︷ ︸

G

[
q′

q̄′

]
, (2.24)

where q̄′ indicates the perturbation of the q̄ field, J denotes the Jacobian of f(q) around
qs. The relation between the eigenvalues µ = µr + iµi of the original system, −iJ, with the
eigenvalues λ = λr + iλi of the modified system, −iG, was derived by Åkervik et al. (2006)
and is here rewritten as

λ1,2 =
1

2

(
µ− iχ− i

∆
± i

∆

√
(1−∆[iµ+ χ])2 + 4χ∆

)
, µ, λ ∈ C. (2.25)

The subindices of λ1,2 express that every original eigenvalue µ is mapped onto two λ eigen-
values. This is a consequence of doubling the dimension of the system by introducing q̄.
Garnaud et al. (2012) derived an expression for the inverse mapping, which maps the λ’s
back onto the µ’s:

µ = λ+ iχ

(
1− 1

1− iλ∆

)
. (2.26)

The time independence of the linearised system permits prescribing the following ansatz for
the perturbation field

q′(x, t) =
∞∑

j=−∞
Aj q̃j(x)e−iµjt︸ ︷︷ ︸

p′
j(x,t)

, Aj ∈ C, (2.27)

where Aj is the amplitude coefficient, and q̃j(x) is the complex valued shape function cor-
responding to the jth eigenvalue µj (Schmid and Henningson, 2001; Theofilis, 2003) and
µ−j = −µj . Accordingly, an eigenmode with associated eigenvalue µ is stable if µi < 0,
neutral if µi = 0, and unstable if µi > 0. The variable p′j = q̃j(x)e−iµjt is introduced to
include the temporal behaviour of the eigenmode.
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The same exponential dichotomy applies to λ when considering the controlled SFD eigen-
spectrum. In that case q̃ represents the shape function corresponding to the eigenvalue λ.
Åkervik et al. (2006) observe that the controlled eigenvalues λ1,2 have associated eigenvectors
q̃1,2 which are a phase-shifted version of q̃. In fact q̃1,2 = β1,2q̃, where

β1,2 = 1 +
λ1,2 − µ

iχ
. (2.28)

This illustrates that the SFD eigenvalue problem does not introduce new eigenfunction shapes.
The exponential temporal behaviour associated to q̃j will be expressed as p̄′j .

2.2.2 Encapsulated formulation of SFD

The encapsulated formulation of SFD (hereafter referred to as ESFD) described by Jordi
et al. (2014) allows the application of SFD without modifying the core of CFD solvers. ESFD
separates the linear and non-linear parts of (1.4) and (1.5):

[
q̇

˙̄q

]
=

[
f(q)

0

]
+

 −χI χI

I
∆

− I
∆

[ q
q̄

]
=

[
f(q)

0

]
+ TDT−1

[
q

q̄

]
(2.29)

with

D =

 0 0

0 −
(
χ+

1

∆

)
I

 and T =

[
I −χ∆I

I I

]
. (2.30)

The non-linear subsystem contains the Navier-Stokes operator f , whose implementation in
a CFD solver is represented by the functional Φ, that maps the discrete solution from a
temporal state tn to tn+1 = tn + τ . The linear subsystem is integrated analytically over the
time step τ :[

(q?)n+1

(q̄?)n+1

]
=

[
Φ(qn)

q̄n

]
;

[
qn+1

q̄n+1

]
= T eDτT−1︸ ︷︷ ︸

H

[
(q?)n+1

(q̄?)n+1

]
, (2.31)

where q? and q̄? represent intermediate solutions of (1.4) and (1.5) when applying the splitting
method and

H =
1

1 + χ∆

 I + χ∆Ie−(χ+ 1
∆)τ χ∆I

(
1− e−(χ+ 1

∆)τ
)

I − Ie−(χ+ 1
∆)τ χ∆I + Ie−(χ+ 1

∆)τ

 =

 h11I h21I

h12I h22I

 . (2.32)

2.2.3 Parametrisation of the behaviour of SFD

Equation (2.25) links the linearised dynamics of the original system and that of the con-
trolled system. For a complete characterisation of the functionality of SFD, it is necessary
to establish another link between the exact linearised system dynamics and the discrete nu-
merical solutions. First and foremost, a main objective is to find χ and ∆ that stabilise the
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numerically represented system. However, the inverse approach is also of interest. When a
simulation performed using SFD does not converge towards the base flow, it may be because
the flow’s inherent unsteady nature is not completely quenched (physical instability), due to
the numerical methods used to integrate the controlled system (numerical instability), or a
combination of both.

Cunha et al. (2015) state that, under certain conditions, the spectral properties of (2.24)
can be represented as superposition of mono-modal problems, for which (2.24) is assumed
equivalent to[

ṗ′j
˙̄p′j

]
=

 (−iµj − χ)I χI

I
∆

− I
∆


︸ ︷︷ ︸

Gj

[
p′j

p̄′j

]
, j = 1, 2, . . . ,∞. (2.33)

Two main approaches are presented next to characterise the eigenvalues α associated to an
SFD simulation. By integrating (2.33) between two temporal states tn and tn+1, one obtains[

(p′j)
n+1

(p̄′j)
n+1

]
= eGjτ

[
(p′j)

n

(p̄′j)
n

]
= Bj

[
(p′j)

n

(p̄′j)
n

]
, j = 1, 2, . . . ,m. (2.34)

The exact eigenvalues of Bj = eGjτ are

αjex1,2
= e−iλj1,2τ . (2.35)

We see that only pairs of χ and ∆ values which locate all λ1,2 in the lower half-plane lead to
convergence.

The ESFD formulation applied to (2.33) can be written as[
(p′j)

n+1

(p̄′j)
n+1

]
=

 h11I h21I

h12I h22I

 σj I 0

0 I


︸ ︷︷ ︸

Cj

[
(p′j)

n

(p̄′j)
n

]
j = 1, 2, . . . ,m. (2.36)

Accordingly, σj ∈ C takes the role of Φ and represents the operator that numerically integrates
the subsystem defined by ṗ′j = −iµjp′j , such that (p′?j )n+1 = σj(p′j)

n in the intermediate step

of ESFD. Examples of possible expressions for σj are:

σj = e−iµjτ (exact solver),

σj = 1− iµjτ (explicit Euler),

σj = 1− iµjτ − 1
2(µjτ)2 + 1

6 i(µjτ)3 (3rd-order explicit Runge-Kutta).

The coefficients h11, h12, h21 and h22 are linked to the action of the filter and the proportional
controller in (1.4) and (1.5) and σj condenses the information of the numerical time marching
scheme. Therefore, the combined physical and numerical stability is characterised through
the eigenvalues of Cj , which read

αjnum1,2
=

1

2

(
h11σ

j + h22 ±
√

(h11σj − h22)2 + 4h12h21σj
)
. (2.37)
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Figure 2.1: Eigenvalue spaces relevant in SFD: µ (empty circles), λ (red crosses), σ (green
squares), αex (purple circles) and αnum (blue diamonds). µj = 0.2 + 0.4i; −0.6 + 0.2i; 0.7 + 0.1i,

σj = e−iµ
jτ , χ = 0.5, ∆ = 5 and τ = 2.

The numerical solution of (1.4) and (1.5) can only converge towards the steady state if all
αjnum1,2 satisfy |αjnum1,2 | < 1.

The different eigenvalue spaces are summarised in figure 2.1. The original formulation of
SFD, in which the coupled problem is solved without discretisation and splitting error, is
represented by a µ 7→ λ 7→ αex mapping. ESFD corresponds to a µ 7→ σ 7→ αnum mapping.
Even with an exact time marching method, σj = e−iµjτ , αnum 6= αex due to the fact that[

−iµj 0
0 0

]
and

[
−χ χ
1/∆ −1/∆

]
do not commute and thus Bj 6= Cj ; see (Jordi, 2015). However, αnum → αex as τ → 0 and
accordingly αex is considered representative for αnum if conditionally stable time marching
methods are used.

The characterisation of the eigenvalues α and the structure of the discretised system presented
above allows to parametrise the evolution of the residual of an SFD simulation. After an initial
transient, εR(t) follows an exponential trend proportional to the growth rate of the least stable
eigenvalue of the controlled eigenspectrum, which we denote by λs.

2.3 Set-up of the cylinder DNS

The DNS of the cylinder flow presented in this work have been performed using the Finite-
Volume (FV) Immersed Boundary Method (IBM) (Meyer et al., 2010) TU Delft in-house
code INCA (Hickel et al., 2014). A diameter-based Reynolds number Re = u∞D/ν∞ = 100
is considered. The cylinder has unit diameter, D = 1. The two-dimensional fluid domain
extent is −16D ≤ x ≤ 25D in the streamwise direction and −22D ≤ y ≤ 22D in the
transverse direction, which matches the domain used by Barkley (2006); the centre of the
cylinder is located at (0, 0). The structured mesh contains 5.1 × 105 hexahedral cells, with
smooth hyperbolic refinement towards the cylinder in x and y directions. A uniform inflow of
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u∞

δun(−1.25)

uh = u(−1.25, h, zun)

Figure 2.2: Sketch of the micro-ramp flow problem containing the micro-ramp geometry, inlet
M = 0.2 laminar boundary layer profiles (computed at x/h = −45.44 and plotted at z/h = 0
and z/h = ±15) and height of the undisturbed boundary layer developing in streamwise direction
for M = 0.2 (black) and M = 0.7 (red) configurations. Ticks indicating the micro-ramp height
at z = zun. Domain size matches the computational box.

u∞ = 1 is imposed at the inlet, the total pressure is fixed at the outlet, no-slip conditions are
applied at the surface of the cylinder, and symmetry conditions are imposed at the transverse
boundaries. The Navier-Stokes equations are discretised in time using an explicit third-order
Runge-Kutta (RK) method (Gottlieb et al., 2001) with CFL = 1; the flow field is initialised at
a uniform streamwise velocity. A global time-stepping approach is used, since we are interested
in studying the global properties of the flow field in time. ESFD is used to compute the base
solution.

2.4 Set-up of the micro-ramp DNS

2.4.1 Micro-ramp geometry and problem definition

Figure 2.2 schematises the micro-ramp flow problem simulated in this work. The three-
dimensional fluid domain extent is −45h ≤ x ≤ 114h in streamwise direction, 0h ≤ y ≤ 23h
in wall-normal direction, and −23h ≤ z ≤ 23h in spanwise direction. The micro-ramp tip is
located at (0, 0, 0). The domain size is chosen such that boundaries are sufficiently far from
the micro-ramp and we are conservative enough to capture all relevant physical phenomena.

Case Reh Rehh Re?hh h/δun uh/u∞

Incompressible (Ye, 2017) 700 468 468 0.44 0.67
M = 0.2 DNS 700 463 461 0.44 0.67
M = 0.7 DNS 700 506 469 0.54 0.77

Table 2.1: Comparison of boundary layer parameters between Ye (2017) and the current work.
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Figure 2.3: Micro-ramp geometry with coordinates of the vertices and projected edges. (a)
lateral view and height of the undisturbed boundary layer for M = 0.2 (black) and M = 0.7 (red)
configurations, (b) back view, (c) top view.

Based on the literature survey, especial concerns are the upward shift of the micro-ramp wake
and the fact that Ye (2017) reports first inception of turbulent spots at x/h ≈ 70.

The micro-ramp is mounted on a flat plate. A laminar compressible two-dimensional bound-
ary layer develops along the surface. It is obtained as solution of the self-similar compressible
Blasius boundary layer (White, 2006) and imposed as initial condition in SFD simulations.
Unsteady micro-ramp simulations running without SFD use the converged steady-state solu-
tion q̄ as initial condition. We highlight the fact that even though we consider the physics of
the M = 0.2 case to be of quasi-incompressible nature, all micro-ramp simulations presented
in this work are solved using the compressible Navier-Stokes equations.

We impose the boundary layer height at the inlet to be such that we match values of Rehh
reported by Ye (2017); that is δ = 1.92h and δ = 1.57h at x/h = −45 forM = 0.2 andM = 0.7
cases respectively. Boundary layer parameters extracted from current DNS are summarised
in table 2.1 and compared with those reported by Ye (2017). It ought to be emphasised that
Ye (2017) computes the roughness Reynolds number based on flow properties evaluated at
x/h = −1.25, y/h = 1, thus slightly upstream the micro-ramp tip. For the sake of consistency
we follow this convention. The micro-ramp height is denoted by h, δun is the boundary layer
height at z = zun and uh = u(−1.25h, h, zun). The parameter Reh follows a more conventional
definition of the Reynolds number and reads Reh = u∞h/ν∞. There is 1% difference between
Rehh reported by Ye (2017) and Rehh considered in this work. There is 1.7% difference in
Re?hh between current M = 0.2 and M = 0.7 configurations. The micro-ramp is, for all cases,
well-immersed within the boundary layer. We note the boundary layer in the M = 0.2 case
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Figure 2.4: Computational domain with the micro-ramp geometry, axis orientation, coordinates
of the external vertices, and grid blocks. Edge ticks with 10h spacing starting from the origin.
(a) lateral view, (b) top view, (c) front view.

to be thicker than that of the M = 0.7 case at the micro-ramp tip for a fixed Re?hh; see figure
2.3(a). This is supposedly consequence of the stabilising effect of compressibility.

Figure 2.3 shows the micro-ramp geometry. It has the same dimensions as that used by Ye
(2017), which is one of the most reported in the literature (Anderson et al., 2006; Giepman
et al., 2014). The micro-ramp span and chord are 2h and 2.25h respectively. The aspect ratio
of the element is then 0.5. Following empirical correlations of Klebanoff et al. (1955) and von
Doenhoff and Braslow (1961), the approximate lower and upper limits of critical Rehh are
455 and 682 respectively. This implies that our analysis considers a supercritical Reynolds
roughness number, just above the critical value. Therefore we expect transition to occur.

2.4.2 Grid topology and numerical set-up

Figure 2.4 illustrates the computational domain. It is divided in 430 blocks defined via
Adaptative Mesh Refinement (AMR) and contains 5.66×106 hexahedral cells. The structured
grid is highly refined around the micro-ramp and near the wall, as detailed in figure 2.5.
We obtain y+ < 1 in these regions. Besides in the near-wall and near-ramp regions, it is
important to include a sufficiently large number of grid points in flow regions featuring large
shear. A poor resolution of shear layers may lead to underestimation of their strength and thus
inaccurate computation of instability growth. We find, a posteriori, a too steep grid coarsening
in spanwise direction at x/h = 4.25. Based on post-processing results, this is observed to yield
inaccuracies in the computed flow variables around this streamwise coordinate. It remains
unclear whether this has a significant impact on the resolved instabilities.

Alike the cylinder case, DNS of the micro-ramp flow have been performed using the Finite-
Volume approach and the Immersed Boundary Method to model the blockage of the micro-

Jordi Casacuberta Puig M.Sc. Thesis



2.4 Set-up of the micro-ramp DNS 23

(a)

(b) (c)

Figure 2.5: Grid refinement around the micro-ramp geometry. (a) lateral view, (b) back view,
(c) top view.

ramp. Regarding the boundary conditions, we specify a Riemann inflow condition with a
Blasius boundary layer for target at the inlet. A Riemann inflow condition is imposed at
the top boundary as well, targeted to u∞ = 1. We prescribe outflow at the outlet, i.e.,
∂2v/∂x2 = 0 and ∂p/∂x = 0, while symmetric conditions are applied at the transverse
boundaries. We impose non-slip conditions at the wall and at the micro-ramp surface. The
flat plate is set to be adiabatic. As a consequence, we expect different wall temperatures in the
M = 0.2 and M = 0.7 configurations. According to Redford et al. (2010), wall temperature
plays an important role in the transition process. This effect aims to be condensed by fixing
Re?hh, as proposed by Bernardini et al. (2012). We use a 5th-order Weighted Essentially
Non-Oscillatory (WENO) (Liu et al., 1994) with an HLLC flux function (Toro et al., 1994).
The aforementioned is summarised in table 2.2. The compressible Navier-Stokes equations
are marched in time using a third order explicit RK method with CFL = 1. We use a global
time-stepping approach for the same reason as for the cylinder case and ESFD to compute
the micro-ramp base flow. We choose the SFD residual to serve as stopping criterion for
steady-state simulations.

Case Inlet Top Outlet Wall Spatial discretisation

M = 0.2 Blasius (δ = 1.92h) u∞ = 1 outflow adiabatic non-slip 5th-order WENO HLLC
M = 0.7 Blasius (δ = 1.57h) u∞ = 1 outflow adiabatic non-slip 5th-order WENO HLLC

Table 2.2: Boundary conditions and spatial discretisation schemes.
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2.5 Linear Stability Analysis

For validation purposes, the system’s transient behaviour and stability obtained from the
DNS is compared with the results from linear stability analyses (Schmid and Henningson,
2001; Theofilis, 2011; Groot, 2013) for both the the cylinder and the micro-ramp cases. The
author wants to especially thank Henry J. Tol and Koen J. Groot for providing the results of
the linear stability analyses presented in this work.

In the cylinder case, we apply global stability analysis assuming the perturbation field to
behave as specified in (2.27). The stability analysis is performed for the base flow obtained
from the instantaneous converged solution of the ESFD simulation. A Galerkin projection
of the linearised incompressible Navier-Stokes equations is performed to obtain an explicit
discrete expression for the Jacobian J and to form the eigenvalue problem. The global
eigenspectrum for the uncontrolled and controlled flow is respectively obtained as the eigen-
values of the matrices −iJ and −iG. The stability analysis is performed on the domain
−5D ≤ x ≤ 20D, −12.5D ≤ y ≤ 12.5D. An unperturbed flow is assumed at both the
cylinder, the inflow boundary and the transverse boundaries. A stress-free condition is pre-
scribed at the outflow boundary. For the spatial discretisation, third-order C0 multivariate
spline elements (de Boor, 1987; Lai and Schumaker, 2007) are used to represent the velocity
field. The pressure is eliminated from the equations by using a space of velocity fields that
are divergence free and a suitable choice of the variational formulation. Details regarding the
numerical method are provided in Tol et al. (2016).

In the micro-ramp case, we apply spanwise BiGlobal stability analysis (Groot, 2013). In spite
of the rather simple formulation of the three-dimensional perturbation problem (2.27), the
numerical resolution of the associated large matrix system for the three-dimensional micro-
ramp case is very expensive. Assumptions can be introduced to alleviate its computational
cost. In spanwise BiGlobal stability analysis, the base flow is assumed to be homogeneous in
streamwise direction, i.e., ∂qs/∂x = 0, and the stability problem is solved in a fluid plane.
Under this hypothesis (which is questionable close to the micro-ramp), eigenmode amplitude
in this direction is treated as a modal wave. The perturbation ansatz then reads

q′(x, t) =
∞∑

j=−∞
Aj q̃j(y, z)e

i(ξjx−µjt), Aj ∈ C, ξj ∈ C, µj ∈ C, (2.38)

with ξj being the streamwise wavenumber and µj the eigenvalues of the Jacobian matrix
linearised around a spanwise fluid plane. Introducing ansatz (2.38) into the linearised form of
f(q), with adequate boundary conditions, leads to an eigenvalue problem. The Arnoldi algo-
rithm is then used to compute the 100 most unstable eigenmodes. Incompressible BiGlobal
stability analysis is applied to full y-z planes of the instantaneous ESFD converged M = 0.2
micro-ramp solution. The stability problem is discretised using a Chebyshev spectral collo-
cation method. Further details regarding the current numerical set-up can be found in Groot
(2013) and Groot et al. (2016).
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Chapter 3

Steady-State Solutions to Navier-Stokes
Equations via SFD

3.1 Analysis overview

In this chapter, we aim to answer the following question: how should the input parameters χ
and ∆ be chosen to effectively and efficiently stabilise an unstable flow problem with SFD?
This is addressed by analysing the influence of χ and ∆ to the functionality of SFD. First, in
§3.2 we mathematically describe the behaviour of SFD systems, derive useful properties, and
present analytical expressions of χ and ∆ which virtually always stabilise a flow problem ruled
by one unstable eigenmode. This analysis is extended to flow systems supporting multiple
unstable eigenmodes. In §3.3 we introduce a new technique, named as flow unleash, which
serves to characterise the properties of the unstable eingenmode of the flow. In §3.4 we
present a parameter optimisation method. We derive analytical expressions for χ and ∆
which minimise the spectral radius of an SFD simulation under certain conditions. This is
tested by stabilising the wake of the Re = 100 cylinder flow problem described in §2.3.

3.2 Role of χ and ∆

3.2.1 Effective stabilisation of isolated unstable eigenmodes

We analyse the role played by χ and ∆ in the performance of SFD by studying the µ 7→ λ
mapping (2.25). It relates the eigenvalues of an uncontrolled system f(q), with the eigenvalues
of its controlled SFD version. In §2.2 we have shown that SFD convergence can only be
achieved if χ and ∆ yield λ with λi < 0 for all µ. For the sake of simplicity, we first
assume that only one instability mode is present in the flow field. The stabilisation of flow
configurations with more than one unstable eigenmode is tackled in §3.2.2.

The eigenvalues of the controlled system, λ1,2, are the solutions of the quadratic equation

λ2 +

(
i

(
χ+

1

∆

)
− µ

)
λ− 1

∆
iµ = 0, (3.1)
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from which the two useful expressions

λ1 + λ2 = µ− i

(
χ+

1

∆

)
and λ1λ2 = − 1

∆
iµ (3.2)

can be immediately derived by using Vieta’s formulas.

Åkervik et al. (2006) indicate that χ should be larger than the growth rate of the unstable
modes present in the flow field and that 1/∆ ought to be smaller than the frequency of these
modes. Following ansatz (2.27), modal growth rate and frequency are respectively identified
with the imaginary and the real part of the system’s eigenvalues. We denote with µc the
most unstable eigenvalue associated to a flow configuration. As µc

i > 0, the parameters are
expected to scale with µc, in such a way that χ ∼ µc

i and 1/∆ ∼ µc
r. Accordingly, 3.2 can be

rewritten in non-dimensional form considering the following change of variables:

χ̂ =
χ

µc
i

, ∆̂ = ∆µc
r, λ̂r =

λr
µc
r

, λ̂i =
λi
µc
i

, (3.3)

such that

λ̂1,r + λ̂2,r = 1, λ̂1,rλ̂2,r −
(
µc
i

µc
r

)2

λ̂1,iλ̂2,i =
µc
i

µc
r

1

∆̂
, (3.4)

λ̂1,i + λ̂2,i = 1− χ̂−
(
µc
i

µc
r

)−1 1

∆̂
, λ̂1,iλ̂2,r + λ̂1,rλ̂2,i = −

(
µc
i

µc
r

)−1 1

∆̂
. (3.5)

It becomes obvious that the non-dimensional expressions that define the µ 7→ λ mapping
depend only on the single non-dimensional parameter (µc

i/µ
c
r); the equations are self-similar

when µc
i/µ

c
r is kept constant.

By operating on (2.25) and (3.2), the following asymptotic behaviour can be derived:

lim
χ→0

λn = µ

lim
χ→0

λa = − i

∆


lim
χ→∞

λ1 = 0

lim
χ→∞

λ2 = µr − i∞

 (3.6)

which reveal the structure of the two λ branches resulting from the complex square root in
(2.25). In the limit when χ→ 0 (linear forcing vanishes), one class of λ solutions corresponds
to each of the natural µ eigenvalues, hence denoted by λn. The complementary λa eigenvalues
are artificial solutions associated to the filter and degenerate to a point located at −i/∆ if
χ → 0. When χ → ∞, one set of λ solutions tends to minus infinity in their imaginary part
and µr in their real part, while there is another group that moves towards the origin. The
notation λ1 and λ2 in (3.6) shall indicate that it is generally not possible to continuously track
the natural branch (i.e., the one associated to µ when χ → 0) or the artificial branch (i.e.,
the one associated to −i/∆ when χ→ 0) when χ→∞. This is illustrated in figure 3.1(b). A
major part of the analysis presented in this section relies on this asymptotic behaviour. The
complementary limiting behaviour in terms of ∆ is

lim
∆→∞

λ1 = 0

lim
∆→∞

λ2 = µ− iχ


lim
∆→0

λn = µ

lim
∆→0

λa = 0− i∞

 (3.7)
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The present approach is limited to flow fields ruled by instabilities with µr 6= 0, which is
conform with the low-pass filter nature of the stabilisation term. Many authors conclude
that SFD is unable to stabilise steady eigenmodes (Vyazmina, 2010; Jordi et al., 2014; Cunha
et al., 2015). This is confirmed by analysing the µ 7→ λ mapping, when imposing µ = iµi.
For this particular case, the λ1,2 solutions are always purely imaginary and never intersect
with each other. Recalling (3.2), λ1,iλ2,i = −µi/∆ and if µi > 0, regardless of χ and ∆, it is
impossible to place both λ1,2 solutions within the stable region.

Another fundamental property of SFD is that a stable µ will never be mapped towards the
upper semi-plane. By manipulating the expression of the inverse mapping, (2.26), a criterion
can be derived relating the real parts of µ and the associated λ1,2 solutions:

µr
λr

= 1 +
χ∆

(1 + λi∆)2 + (λr∆)2 ≥ 1, (3.8)

which proves that µr, λ1,r and λ2,r share signs and that |λr| ≤ |µr|. By using this result
and imposing µi < 0, the real part of (3.2) requires that λ1,iλ2,i > 0. The imaginary part
of (3.2) conclusively requires λ1,i < 0 and λ2,i < 0, proving the statement of Åkervik et al.
(2006), that stable µ eigenvalues cannot yield unstable λ1,2 solutions. Based on the problem
symmetry illustrated by (3.8), we generalise the analyses considering µc with µc

r > 0 and
hence µc

i/µ
c
r > 0. However, all results are equally valid if µc

r < 0.

Next, it is analysed how each λ1,2 solution evolves by fixing ∆ at different discrete positive
values, taking χ as a real continuous variable with χ ∈ [0,∞) and assuming µc

r 6= 0; see figure
3.1(a). Figure 3.1(b) contains four pairs of branches representative of the whole λ solution
space. Figure 3.1(c) complements the results with the gradients with respect to χ of the λ1,2

solution branches, i.e.,

∂λ1,2

∂χ
=

1

2
i

−1± ∆(iµ+ χ) + 1√
(1−∆[iµ+ χ])2 + 4χ∆

 . (3.9)

For every µ with µr 6= 0, there exists a unique pair of real and positive χ and ∆ values for
which λ1 = λ2 = λ?. These special SFD parameters are hereafter denoted by χ? and ∆?.
The case ∆ = ∆?, represented by the solid black line in figure 3.1, establishes a threshold
separating two main trends of the solution branches. Considering ∆ < ∆?, the natural
branch approaches the origin as χ grows, whereas the artificial branch tends to −i∞. The
dash-dotted line and the dotted line in figure 3.1 correspond to subcritical cases following
the aforementioned trend. The dash-dotted natural branch never crosses the real axis; the
associated eigenvalues never become stable. On the other hand, there is a specific χ-range
for which the dotted branch of natural λ solutions are located within the stable region.
For sufficiently large χ values, the dotted natural branch solution crosses the real axis a
second time. The real axis is not crossed for larger χ, so increasing the control coefficient
further will be counterproductive. For ∆ > ∆?, the overall trend is inverse; the artificial
branch approaches 0 from the upper semi-plane when χ → ∞, whereas the natural branch
tends to −i∞. The dashed line in figure 3.1 is representative of this supercritical behaviour.
Besides the structure of the branches, another relevant difference exists between subcritical
and supercritical cases. For ∆ < ∆? the dominant eigenvalue is always associated with the
natural branch, thus changing continuously with χ. Contrarily, for ∆ > ∆? this role switches
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Figure 3.1: (a) χ and ∆, (b) solution branches in the λ space and (c) solution branches in the
∂λ/∂χ space. Start of the natural branches (green circles), start of the artificial branches (blue
diamonds), end points of all solutions (red squares), coordinates of χ? and ∆? in (a) and λ?

in (b) (empty circles). ∆µc = 3.83 (dash-dotted green), 4.33 (dotted blue), 4.83 (solid black),
5.33 (dashed red). Curve encompassing all start and end points of the ∂λ1,2/∂χ branches in (c)
(magenta).

from one branch to the other; as χ is increased, the artificial branch claims dominance over
the natural branch as the imaginary parts of the eigenvalues intersect.

Åkervik et al. (2006) claim that very large χ will always drive the system towards the base
solution, but possibly at a low convergence rate. The present results prove that this is not
the case. Regardless of whether the case is subcritical or supercritical, there is always a
branch that for large χ approaches the origin from above, yielding unstable eigenvalues. In
figure 3.1(c), the branches of the gradient field approaching 0 for growing χ cross the real
axis close to the origin, and thereafter always yield ∂λi/∂χ < 0. This may, at a first glance,
seem surprising as we just proved that no stable µ can be mapped onto the unstable region;
however, a λ solution associated to an unstable µ eigenvalue may switch from one region to
another depending on the selected values of χ and ∆.

These results, which are graphically observed in figure 3.1, can also be proven by considering
the complex argument of λ1λ2 = − 1

∆ iµ (3.2),

ϕ1 + ϕ2 = arg

(
− 1

∆
iµ

)
= −arctan

(
µr
µi

)
= arctan

(
µi
µr

)
− π

2
= ϕµ −

π

2
(3.10)

with ϕ1 and ϕ2 denoting the arguments of λ1 and λ2 respectively; ϕµ represents the argument
associated to the eigenvalue µ. Equation (3.10) shows that for a given µ, the sum of the
arguments of the λ1,2 solutions is constant and independent of χ and ∆. In particular, (3.10)
implies that the constant value must correspond to ϕ1+ϕ2, and can be conveniently evaluated
for χ→ 0, where the angle associated to the natural solution is ϕµ and the angle associated
to the artificial solution is arg (−i/∆) = −π/2. Evaluating the λ1,2 solutions for χ → ∞,
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(3.10) becomes

lim
χ→∞

ϕ1 + lim
χ→∞

ϕ2 = lim
χ→∞

ϕ1 + lim
λ2,i→−∞

(
arctan

(
λ2,i

µr

))
︸ ︷︷ ︸

−π/2

= ϕµ −
π

2
, (3.11)

assuming, without loss of generality, that µc
r > 0. This conclusively implies:

lim
χ→∞

ϕ1 = ϕµ = arctan

(
µi
µr

)
. (3.12)

That is, the solution branch that approaches the origin follows an asymptote having the same
argument as µ. If µi > 0, ϕµ > 0 and the least stable branch always approaches 0 from the
upper semi-plane. Thus, choosing large χ yields unstable behaviour of the system.

With all, the key ingredient to find adequate SFD parameters is that the critical point

λ? =
1

2
µc
r −

i

∆?
(3.13)

is always located within the stable region, regardless of µc. When applying

χ? =
|µc|+ µc

i

2
, (3.14)

∆? =
2

|µc| − µc
i

(3.15)

as parameters of the model, the associated λ1,2 solutions are both mapped towards λ? and
hence they are always located in the real direction at half of the real part of µc and at an
imaginary coordinate coinciding with the origin of the artificial branch; see figure 3.1(b). Due
to the fact that λ? is located in the lower half-plane for any unstable µc, the parameter choice
χ = χ? and ∆ = ∆? will always stabilise the linear flow problem in an exponential sense,
asymptotically in time.

3.2.2 Stabilisation of systems with more than one unstable eigenmode

The parameters χ? and ∆? always stabilise a flow field ruled by one unstable eigenvalue
µc, under the condition µc

r 6= 0. The present section extends the analysis to cases ruled by
more than one unstable eigenmode. It is initially assumed that N unstable µ eigenvalues
associated to the uncontrolled system are located in the upper half-plane. The most unstable
eigenvalue, i.e., the one with the highest growth rate µi, is denoted by µc, while the other
unstable eigenvalues are denoted by µk, k ∈ {1, 2, . . . ,N− 1}, and satisfy µc

i ≥ µk
i > 0. The

proposed methodology relies on applying χ? and ∆? as parameters of the model using µc

in (3.14) and (3.15), due to the fact that µc is by definition the most critical eigenvalue to
be stabilised. Thereafter, the part of the µ space that is mapped into the stable region is
analytically determined.

For that purpose, (3.2) is used in combination with two restrictive conditions: the model
parameters are determined as χ = χ?(µc) and ∆ = ∆?(µc) and the bounding curve of the
stability domain (loci of neutral stability) is determined by imposing that either λ1,i = 0 or
λ2,i = 0. The results are independent of the latter choice due to the symmetry of the problem.
Two intermediate results can be immediately derived:

MSc. Thesis Jordi Casacuberta Puig



30 Steady-State Solutions to Navier-Stokes Equations via SFD

−2 0 2
0

0.5

1

1.5

µr/µ
c
r

µ
i
/
µ

c i

(a)

−2 −1 0 1 2
0

1

2

3

4

5

µaux
r /µc

r

µ
a
u
x

i
/
µ

c i

(b)

Figure 3.2: Stability curves in the µ space using (3.17). (a) µ eigenvalues mapped towards
neutral λ1 or λ2 with χ = χ?(µc) and ∆ = ∆?(µc). (b) regions encompassing µaux for which
χ = χ?(µaux) and ∆ = ∆?(µaux) will stabilise µc. µc

i/µ
c
r: 0.5 (dashed red); 0.75 (dash-dotted

light green); 1 (solid black); 2 (dotted blue) and 4 (dashed-dotted dark green). µc (yellow circles).

1. For a generic unstable µ, when one of its associated λ solutions lies on the real axis, the
complementary λ solution is stable. This validates the usage of the condition λ1,i = 0
or λ2,i = 0 to define stability regions in the µ space.

2. The complementary λ solution satisfies

λrµr = −λiµi, (3.16)

meaning that the lines connecting the origin of the complex plane with a generic unstable
µ and its associated stable λ are orthogonal.

The geometrical curve encompassing the µ eigenvalues for which one λ solution is neutral
satisfies(

µi
µr

)3

− 2

(
µi
µr

)2 |µc|
µr

+

(
µi
µr

)(
1 +
|µc|2

µ2
r

)
− 1

2µr
(|µc|+ µc

i ) = 0. (3.17)

Figure 3.2(a) shows four examples of curves plotted following (3.17). As stated earlier, the
SFD mapping is self-similar with respect to the parameter µc

i/µ
c
r. Thus the curves maintain

their shape for constant µc
i/µ

c
r. All µk below the curves will be stabilised, while those located

above will remain unstable in the λ space.

The cases in which one or more µk have large µk
i /µ

k
r (relative to µc

i/µ
c
r), are potential can-

didates to remain unstable, as can be inferred from figure 3.2(a). A possible solution to this
is to define an auxiliary value, µaux ∈ C, which may not correspond to any physical eigen-
mode of the flow, but χ?(µaux) and ∆?(µaux) could lead to a global stabilisation. For that
purpose, equation (3.17) can be used inversely. Another approach is to determine the values
µaux = µaux

r + iµaux
i for which the corresponding χ? and ∆? imply neutral λ1,i(µ

c) or λ2,i(µ
c).

Figure 3.2(b) plots limiting curves computed following this second approach.

When aiming to stabilise µc and all µk, the intersection of all regions encompassed by the
µaux boundaries has to be found, if it is not empty. Figure 3.3(b) shows that the parameter
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Figure 3.3: Limiting curves defining the sets of µaux values stabilising µc or µk if χ = χ?(µaux)
and ∆ = ∆?(µaux) are chosen. µc = 1 + 1i (yellow circles, solid black), µk = 0.6 + 0.3i (a),
µk = 0.4 + 0.3i (b) (red diamonds, dash-dotted red).

choice χ = χ?(µc) and ∆ = ∆?(µc) or χ = χ?(µk) and ∆ = ∆?(µk) cannot lead to a global
stabilisation of the system. However, for the case in figure 3.3(a) there exists a complementary
finite range of χ and ∆ for which SFD stabilises the system.

Particularly relevant are the µaux when curves of figure 3.2(b) cross the imaginary axis.
Denoting lu and ll as the upper and lower limits respectively, and operating on (3.17) using
the second approach described above, it is possible to show that

lu(µc) =
|µc|2

µc
i

, ll(µ
c) = µc

i , (3.18)

such that the non-dimensional distance between lu and ll is:

lu(µc)− ll(µc)

µc
i

=

(
µc
i

µc
r

)−2

. (3.19)

This result highlights the relevance of the non-dimensional parameter µc
i/µ

c
r once again. As

shown in figure 3.2(b), the length defined by lu(µc) − ll(µc) can be considered indicative of
the broadness of the range of χ and ∆ values that drive the system towards the base flow. If
µc is unknown initially and χ and ∆ ought to be tested by trial-and-error, the stabilisation of
flow fields ruled by a µc with a large complex argument will be difficult. Furthermore, from
the topology of the limiting curves in figure 3.2(b), it follows that SFD will only stabilise a
flow field ruled by more than one unstable eigenmode if

ll(µ
c) ≤ lu(µk), (3.20)

which implies

µc
i ≤
|µk|2

µk
i

=
|µk|

sinϕk
= |µk|

√
1 +

(
µk
i

µk
r

)−2

, (3.21)

with ϕk being the argument of a given µk. This result confirms the trend observed in figure
3.2(a). For SFD to be able to drive the system towards the base flow when several unstable
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eigenvalues are present, all µk are required to have a small µk
i /µ

k
r ratio and a large modulus

relative to µc
i . Equation (3.21) indicates under which conditions the statement given by Massa

(2014), claiming that SFD fails to stabilise flow fields ruled by large growth rates and low-
frequency low-energy eigenmodes, holds. We see that the difficulty does not strictly come
from a growth rate difference, but from the presence of µk with large µk

i /µ
k
r value located

close to the origin.

3.2.3 Feasibility and required accuracy

Refocussing the attention on flow problems ruled by one unstable µc with µc
r 6= 0, the parame-

ters χ? and ∆? always effectively stabilise the problem. In practice, however, the effectiveness
depends on the accuracy of the available estimate for µc. Accordingly, the sensitivity of χ?

and ∆? with respect to the input parameter µc for a flow problem unstable to a single discrete
eigenmode is of high relevance.

We consider the perturbed eigenvalue:

µε = µ(1 + ε) = µr(1 + ε) + iµi(1 + ε), |ε| � 1. (3.22)

Evaluating χ?ε = χ?(µε) and ∆?
ε = ∆?(µε) for different values of the error parameter ε, the

regions of the µ eigenspectrum having one of their associated λ solutions on the real axis
(neutral stability) are determined. This approach resembles that presented in §3.2.2; the
condition λ1,i = 0 or λ2,i = 0 to generate stability curves is also valid under the present
analysis, since (3.16) applies here as well. By operating on (3.2), applying χ = χ?ε and
∆ = ∆?

ε and setting λ1,i = 0 or λ2,i = 0, the following condition is derived:

(1 + εmax)2 −

µi
µr

+

(
1 + 4

(
µi
µr

)2
)√

1 +
(
µi
µr

)2

2 µiµr

(
1 + 4

(
µi
µr

)2
) (1 + εmax) + 1 = 0. (3.23)

The solutions of the quadratic equation (3.23) indicate the maximum allowed relative error
εmax for a given eigenvalue µ that is aimed to be stabilised. Fundamental for the present analy-
sis is the fact that (3.23) only depends on the non-dimensional parameter µi/µr. Accordingly,
all µ eigenvalues with an equal argument have a common tolerance and, as a consequence,
share the same difficulty to be stabilised when using SFD. The higher µi/µr, the smaller
εmax and the higher the required relative digital precision of µc, χ? and 1/∆?. Small relative
perturbations around the required true values of χ? and ∆? may lead to ineffectiveness for
cases ruled by an instability with a large µc

i/µ
c
r. These results are linked to the behaviour of

Eigenvalue argument Affordable error Stabilisation difficulty

µc
i/µ

c
r < 1.12 εmax > 10% easy

2.82 > µc
i/µ

c
r > 1.12 10% > εmax > 1%

µc
i/µ

c
r > 2.82 εmax < 1% hard

Table 3.1: Classification of flow instabilities based on the required accuracy in the computation
of χ? and ∆? to guarantee convergence towards the steady state.
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the limiting curves shown in figure 3.2(b); the higher µc
i/µ

c
r, the closer the curves to µc. A

classification of instabilities based on the feasibility of SFD is presented in table 3.1.

3.3 The flow unleash technique

3.3.1 Methodology

Accurately determining the parameter µc requires a stability analysis, in turn requiring the
base flow. We present a new technique, here referred to as flow unleash, through which we
can accurately estimate µc with only one SFD or ESFD simulation. The unleash technique
relies on driving the controlled simulation to a low enough residual level εR = ||q − q̄||L2 at
time t = tu. Then we continue the simulation for t ≥ tu with χ = 0 and maintain q̄ constant
and equal to the last converged value, i.e., q̄(x, t) = q̄(x, tu) for t ≥ tu. By setting the control
coefficient to χ = 0, residual disturbances can grow and the unstable system will depart from
the converged base state. To that end, the computed base flow is perturbed at t = tu by
adding random white noise with amplitude εR to the solution. When the small perturbation
dynamics is dominated by the most unstable eigenmode of the flow, the residual curve εR(t)
is linear and corresponds to the exponential growth rate µc

i and ln (εR) should therefore show
a linear trend whose slope matches µc

i until non-linear saturation sets in.

3.3.2 Application to the cylinder flow

The results of applying the flow unleash technique to a Re = 100 cylinder flow problem
are shown in figure 3.4(a). Four unleash cases are represented, using εR(tu) = 10−3, 10−4,
10−5, and 10−6. The first main observation is that the expected linear growing trend of the
residual curves starts developing after a significant number of time steps from the unleash.
There is an initial transient after which the global mode develops. The exponential growth
can be observed after all stable modes have died out. Regarding the range over which ln (εR)
grows linearly, two noteworthy considerations must be done. First of all, the point at which
the linear growth starts developing depends on the amplitude of the noise imposed at t =
tu. However, the slope of the residual curves is independent of the initial disturbances,
as expected. Secondly, the residual curves’ slopes for the cylinder flow case are observed
to increase asymptotically as εR decreases. From a physical point of view, throughout the
controlled SFD simulation, the stabilised shear field must develop in time. Thus, for the
present simulations, initialised with a uniform flow field, the growth rate of the associated
K-H instability changes as the wake approaches the steady state. At a low enough residual
level, the shear field can be assumed to be fully developed and µc approaches a limiting value.
Following the same physical interpretation, the growth rate of the least stable eigenvalue of
the controlled eigenspectrum, λs

i , changes throughout the controlled simulation. This may
explain the slight bending of the residual curve of the SFD-stabilised simulation with respect
to the expected linear behaviour for large εR, see figure 3.4(a).

The characterisation of µc requires to estimate the real part of µc. For that purpose, we
suggest to compute the frequency from the time-signal measured with strategically placed
probes. The probes are placed in areas where the eigenmode develops. This eigenmode
associated to µc is represented in figure 3.5(b,d). The total measurement time is restricted to
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Figure 3.4: (a) SFD residual εR = ||q − q̄||L2
(solid lines) using χ = 0.5 and ∆ = 3. Fits to

exponential parts (dashed lines). Unleash times (yellow squares) at εR = 10−3 (black), 10−4

(blue), 10−5 (green), 10−6 (red). Location of null curvature in the linear range of the unleashed
curves (red circles). (b) µ- (empty circles) and λ- (crosses) eigenspectrum from stability analysis
computed with εR = 10−6 base flow.

the linear growth phase. As pointed out by Barkley (2006), the frequency of the eigenmode
and the nonlinear limit cycle defer for non-critical Reynolds numbers. Therefore, the approach
adopted by some authors, as for instance Richez et al. (2016), to select ∆ based on the
frequencies captured in the fully developed non-linear flow is generally inadequate. When
applying the flow unleash technique, the dominant frequency measured in the linear flow
regime matches with the natural frequency of the unstable eigenmode developing in the flow,
as shown in table 3.2.

To illustrate the accuracy of the flow unleash technique, table 3.2 compares µc obtained with
this method, from stability analysis (using the q and q̄ fields as base flows) and with the value
reported by Barkley (2006). One of the main advantages of the flow unleash technique is that
the perturbation characterisation is carried out using the same numerical set-up as the flow
simulation. Thus, the captured modal behaviour does correspond to the true perturbation
dynamics in the simulation. On the other hand, when applying the flow unleash technique,
the accuracy of the user-inferred eigenmode stability properties is subject to measurement
errors. To minimise ambiguity, we propose to compute the value of µc

i = ∂ ln (εR) /∂t from the
residual curves at the point of null curvature. The uncertainty of these measurements of µc

i

for the present cylinder simulations is approximately ±0.002U∞/D. Here µc
r is determined as

the average of the dominant frequency computed at probes placed at (2,−1); (2, 1); (6,−1);

εR Flow unleash Stability analysis (q) Stability analysis (q̄)

10−3 − ±0.7826 + 0.1426i ±0.7873 + 0.1431i
10−4 0.7240 + 0.1164i ±0.7181 + 0.1287i ±0.7183 + 0.1287i
10−5 0.7139 + 0.1257i ±0.7145 + 0.1278i ±0.7145 + 0.1278i
10−6 0.7135 + 0.1271i ±0.7142 + 0.1277i ±0.7142 + 0.1277i

Table 3.2: µcD/u∞ inferred using the flow unleash technique, global stability analysis using q
or q̄ as the base flow at εR. Barkley (2006) presents the value ±0.7395 + 0.1298i.
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Figure 3.5: Dominant eigenmode (v′) when the base flow is unleashed, associated to µc. (a)
shows the xy-field, while (b) shows the profile along y = 0. Solid black lines: q − q̄ from DNS,
dashed red lines and red symbols: real part of global eigenfunctions from linear stability analysis.

(6, 1). Table 3.2 also shows the convergence of µc with respect to εR when performing both
stability analyses and DNS simulations, both methods match up to the measurement precision
at εR = 10−6.

By keeping q̄ constant after the flow is unleashed, the field q− q̄ becomes representative of the
perturbation, q′, developing in the unleashed flow field. This is valid under the assumption
that q̄(x, tu) sufficiently approximates qs(x), which sets a requirement in the convergence
level. Hence, the variable q − q̄ can be compared to the eigenfunction of the unstable eigen-
mode developing in the unleashed flow field. Figure 3.5 shows that the mode ruling the flow
unleash DNS matches the eigenmode of the stability analysis.

3.4 Optimisation

3.4.1 The role of stable eigenmodes

Jordi et al. (2015) claim that the pair of χ and ∆ that optimises the scalar problem (2.33)
for µc also optimises the full flow problem. One result of §3.2.1 was that χ? and ∆? minimise
the spectral radius of the scalar problem, since λ? represents the configuration for which
max {λi(µc)} is located at the furthest possible distance from the real axis. Therefore, the
application of the optimisation routine presented by Jordi et al. (2015) and the expressions
for χ? and ∆? are expected to yield the same convergence rate. To optimise the SFD set-up,
however, the role played by the stable eigenvalues has to be considered as well, because the
ultimate convergence rate of an SFD simulation is determined by the least stable eigenvalue
λs, which does not necessarily correspond to λc

1,2 = λ1,2(µc). This philosophy also underlies
the recently proposed Newton-Krylov method by Citro et al. (2017), taking advantage of
accounting for the slower decaying modes. The location of the least stable eigenvalue λs

of the controlled eigenspectrum depends on the associated µs eigenvalue and the choice of
parameters of the model χ and ∆.

When the stable eigenvalues are considered in the optimisation process, the choice χ? and ∆?

leads to a suboptimal convergence rate, shown as follows. By combining the real part of the
first expression with the imaginary part of second expression in 3.2, we obtain

λ2,r

(
λ1,i +

1

∆

)
+ λ1,r

(
λ2,i +

1

∆

)
= 0. (3.24)
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Figure 3.6: (a) Least stable λi isocontours (solid lines) in the µ space with χ = χ?(µc) and
∆ = ∆?(µc) considering µc = 1 + 1i. Boundary for which max {λ1,i, λ2,i} ≶ µi (dashed line).
(b) Path of λ-solutions varying χ in the range [0, χopt] with ∆ = ∆opt (solid black arrows) and χ
in the range [0, χ?] with ∆ = ∆? (dotted lines). (c) Zoom. µ (empty circles), −i/∆opt (yellow
diamond), −i/∆? (blue diamond), λ for (χ,∆) = (χopt,∆opt) (red thick crosses), and λ for
(χ,∆) = (χ?,∆?) (green thin crosses).

Hence, for a fixed µ and variable χ and ∆, either one λ solution is located above −i/∆ and
the complementary solution is located below −i/∆, or both solutions cross in imaginary part
at λ1,i = λ2,i = −1/∆. The latter can only occur if (Åkervik et al., 2006)

µi − χ+
1

∆
= 0. (3.25)

For a general eigenspectrum with many µ 6= µc, (3.24) implies that the choice χ = χ?(µc) and
∆ = ∆?(µc) places the solutions of each pair λ1,2 6= λc

1,2 above and below λ?(µc) respectively.
For this particular parameter choice, (3.25) yields µc

i − χ?(µc) + 1/∆?(µc) = 0; thus all
eigenvalues with µi 6= µc

i have λ1,2 located above and below λi = −1/∆. The implication
for the optimisation of the SFD set-up is that the choice χ? and ∆? entails the existence
of λ solutions with λi > λ?i . The optimisation of the scalar problem thus generally implies
suboptimal convergence of the full flow problem, since its application does not guarantee the
minimisation of λs

i > λ?i .

Next, a new hypothetical optimal configuration is proposed. To illustrate the role of χ and
∆ in the µ 7→ λ mapping, Åkervik et al. (2006, figure 2) consider µ on the horizontal straight
line, i.e., µ = µr + bi, b ∈ R. Here, the analysis is restricted to b < 0, characterising stable
eigenvalues. All µ are mapped onto two solution branches, one of them giving the least stable
λ eigenvalue depending on the relation between b, χ and ∆. The µ’s located close to the
imaginary axis will be shifted upwards the most, the maximum being attained at µr = 0. For
a given full µ spectrum, the least stable λs may be associated to either the steady eigenvalue
with the largest growth rate or less stable unsteady eigenvalues depending on their relative
location on the complex plane and the parameters χ and ∆. Figure 3.6(a) is representative
of this, illustrating that the largest λi correspond to µ located close to the imaginary axis.
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Figure 3.7: Dominant eigenmode of the flow (u′) when applying SFD, associated to λs. (a)
shows the xy-field, while (b) shows the profile along y = 0. Solid black lines: q − q̄ from DNS,
dashed green lines and green symbols: real part of global eigenfunctions from linear stability
analysis.

When the previous analysis is extended to a general flow problem with discrete µ, the can-
didates to take the role of λs are stable, steady (or low-frequency) eigenmodes.It is unlikely
for µc to take the role of λs, because the steady and low-frequency stable eigenvalues will be
shifted upwards, while µc shifts downwards. The spectral radius is hypothetically minimised

when the least stable λ solutions intersect max
{
λc

1,i, λ
c
2,i

}
in the imaginary coordinate at the

furthest possible downwards distance from λi = 0. The µ value corresponding to λs is denoted
by µs and can be characterised by measuring the slope of the controlled SFD residual curve.
This slope is proportional to λs

i and the frequency of the dominant wave-like perturbations
in the controlled flow field corresponds to λs

r. Using the inverse mapping 2.26, the value of
µs can be determined.

For the cylinder flow case, the least stable µ that rules effective SFD simulations corresponds
to a steady mode. That is, in the range of χ and ∆ values that stabilises µc. For this reason,
we assume µs to be purely imaginary in the analysis in the following section. By evaluating
the slope of the SFD residual curve at εR = 10−6, it is obtained that µsD/u∞ = −0.0423i.
The optimal configuration of the λ eigenvalues is illustrated in figures 3.6(b) and (c). The
arrows indicate the path followed by the selected µ when χ is increased from 0 at a fixed ∆.
The final χ and ∆ (χopt,∆opt), have been computed by using the method that we describe
in §3.4.2. The artificial λ solutions emanating from the point located at −i/∆opt are far
from becoming the least stable eigenvalues of the controlled eigenspectrum in this case. The
natural λ solutions corresponding to µc and µs define the minimal spectral radius and cross in
their imaginary part when χ = χopt and ∆ = ∆opt. Note that the crossing in the imaginary
part can take place for different combinations of χ and ∆. Within this set, χopt and ∆opt

correspond to the absolute minimum spectral radius. In the linear controlled perturbation
regime, the field q − q̄ closely resembles the eigenfunction associated to λs obtained through
an independent stability analysis, see figure 3.7, which yields µsD/u∞ = −0.0529i. Although
the eigenvalue deviates from the growth measured from the slope of the SFD residual curve,
the shape of the fields yield a convincing match. The main difference is observed close to the
outflow boundary, and steady modes are indeed sensitively affected by boundary conditions.

3.4.2 Computation of optimal χ and ∆

The optimisation method presented next relies on running a controlled SFD or ESFD sim-
ulation and unleashing the flow afterwards. From the residual curves of the unleashed and
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Figure 3.8: Comparison of the L2 norm of q−q̄ along ESFD simulations performed using different
SFD parameters. The values of χ and ∆ considered for each simulation are: χopt = 0.2524 and
∆opt = 2.1173, optimal values computed by inferring µc and µs through the application of the
technique of flow unleash (solid black line and yellow diamonds); χsp = 0.2608 and ∆sp = 2.1524,
optimal values computed with a previous knowledge of uncontrolled eigenspectrum (solid red line
and red pentagons); χ? = 0.4259 and ∆? = 3.3465 (solid magenta line and magenta squares);
χ = 0.4510 and ∆ = 3.1440, reported by Jordi et al. (2015) (solid blue line and blue circles);
χ = 1 and ∆ = 5 (solid green line and green triangles). All values of χ and 1/∆ are given in
units of u∞/D.

controlled flow simulations, µc and µs can be inferred following the approaches described in
§3.3.1 and §3.4.1, respectively. We define ψ ∈ R as the imaginary coordinate at which the
vertical crossing of the λ’s corresponding to µc and µs occurs. By operating on (3.2), the
minimal ψ,

ψopt =
µs
i

2− (µc
r)

2

2µs
i(µs

i−µc
i)

(
µc
i

µs
i

− (µc
r)

2

2µs
i (µs

i − µc
i )

+
|µc|
|µs|

)
, (3.26)

is obtained for

∆opt =
µs
i

ψopt

(
(µc
r)

2

2(µs
i−µc

i)

(
ψopt

µs
i
− 1
)
− ψopt − µs

i + µc
i

) , (3.27)

χopt = − 1

∆opt
− ψopt + µs

i

(
1 +

1

ψopt∆opt

)
. (3.28)

In deriving these formulas, it is assumed that µs = iµs
i , i.e., the controlled simulation is ruled

by the critical steady eigenmode.

The residual curves corresponding to different model parameters are compared in figure 3.8.
The spectral radius obtained with χopt and ∆opt is 0.9734. This value closely resembles
the optimal one of 0.979 reported by Cunha et al. (2015), obtained through DMD. Following
(2.35), the optimal spectral radius presented in this article corresponds to λs

iD/u∞ = −0.0270;
the spectral radius obtained by Cunha et al. (2015) is given by λs

iD/u∞ = −0.021. A
similar convergence rate is obtained using the analytical expressions with µc and µs either
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inferred from the controlled and unleashed residual curves or those obtained with the stability
analysis. The first case appears to yield a slightly lower computational time, which means
that the eigenvalues inferred through the application of the flow unleash technique are more
representative for the dynamics in the simulation than the stability analysis. This may be
related to the sensitivity of the stable steady mode to the outflow boundary conditions, as
mentioned before. The stability analysis provides the full spectrum. We can thus verify
that the found control parameters yield the optimal spectral radius accounting for the full
eigenspectrum. No other eigenmode becomes dominant in this particular case. The usage of
χ?(µc) and ∆?(µc), which is suboptimal, yields the same performance as the parameters used
by Jordi et al. (2015), a result which is in agreement with the analysis exposed in §3.4.1. The
optimised configuration reduces the computational time by 35%. A much larger reduction
by 75% is observed when comparing χopt and ∆opt and general SFD parameters, χ = 1 and
∆ = 5. At t ≈ 400u∞/D, the usage of χopt and ∆opt has converged the base flow to a residual
level one order of magnitude lower than with the values presented by Jordi et al. (2015) and
three orders of magnitude lower than the usage of χ = 1 and ∆ = 5.
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Chapter 4

The Micro-Ramp Working Principle

4.1 Analysis overview

In the introduction of this work, we have pointed out divergences in the literature regarding
the working principle of the micro-ramp. The current state of the art identifies a pair of
streamwise counter-rotating vortices induced at the micro-ramp, the primary vortex pair,
responsible for lifting up low momentum fluid at the centre plane and entraining high-
momentum fluid towards the wall aside (Babinsky et al., 2009; Ghosh et al., 2010; Lee et al.,
2010). This redistribution of momentum leads to enhanced wall shear and a decrease of the
boundary layer shape factor (Anderson et al., 2006). A fuller velocity profile results in better
resistance against adverse pressure gradients (Lin, 2002; Verma and Hadjadj, 2015). There
is consensus on the fact that the micro-ramp is capable of re-energising the lower portion of
the boundary layer. Nonetheless, discrepancies arise regarding what mechanisms cause this
effect.

Wang et al. (2013) question the capability of the primary vortex pair to transport high-
momentum fluid from the free stream towards the surface. According to Wang et al. (2013),
the mechanism of the micro-ramp is the exchange of high- and low-momentum fluid from dif-
ferent portions of the boundary layer triggered at the micro-ramp rather than by downstream-
travelling vortices. Li and Liu (2011) test the performance of the micro-ramp to control
shock-induced separation. A reduction of the separation bubble is achieved. However, this
is not attributed to increased wall shear under the action of the primary vortex pair but to
the fact that vortex rings induced by K-H instability at the micro-ramp wake destroy the
shock. Blinde et al. (2009) find no sign of the primary vortex pair in the instantaneous flow
field sufficiently downstream the micro-ramp. Eventual breakdown of the primary vortices is
reported by Lu et al. (2010). According to Bo et al. (2012), excess and deficit of momentum in
the micro-ramp wake is first produced by the action of the primary vortex pair and thereafter
sustained by the dynamics of hairpin vortices.

In this chapter, we analyse transitional flow dynamics behind a micro-ramp and the capability
of this device to promote transition. DNS results are compared with tomo-PIV experiments
of Ye (2017) and with results from linear stability analysis. The micro-ramp geometry and
boundary layer properties considered for the analysis, as well as the set-up of the DNS sim-
ulations, are detailed in §2.4. At the same time, this study aims to further contribute to the

MSc. Thesis Jordi Casacuberta Puig



42 The Micro-Ramp Working Principle

(a)

(b)

(c)

Figure 4.1: Streamwise vorticity in the base flow. (a) top and (b) side views of iso-surfaces
of ωx,sh/u∞ = ±0.04, unperturbed boundary layer edge (solid green line). The micro-ramp
geometry is superimposed onto the iso-surfaces. (c) perspective of translucent iso-surface and
y-z planes at x/h = 10; 20; 30; 40; 50.

aforementioned discussion regarding the micro-ramp working principle. Although previous
work devoted to this topic generally considers turbulent and supersonic flow conditions, recent
investigations from Ye (2017) of the incompressible and transitional micro-ramp wake reveal
the existence of flow structures of nature similar to those captured in a turbulent boundary
layer. These were previously described in §1.2. In particular, the time-averaged organisation
of the micro-ramp wake presented by Ye (2017) depicts the primary vortex pair and further
pairs of secondary vortices developing aside. In the instantaneous flow field, a train of hair-
pin vortices induced by K-H instability is reported as major feature. Accordingly, we expect
the current analysis to serve for future studies in which micro-ramps would be employed for
laminar flow control applications, as well as to provide better understanding of mechanisms
which may be partially convoluted in more complex flow environments.

The literature shows the micro-ramp to play a dual role: it is a vortex generator and a surface
roughness element with potential to promote transition. Initially, the micro-ramp induces a
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counter-rotating vortex pair which generates central upwash and lateral downwash. At the
same time, the action of these vortices distorts the organisation of the laminar boundary layer
and introduces velocity streaks and a possibly unstable detached shear layer. If Rehh is large
enough, unstable disturbance growth can lead to the formation of large-scale hairpin vortices
and trigger transition. The evolution of transitional flow structures downstream the micro-
ramp may distort the structure of the primary vortex pair, introduce a new instantaneous
flow organisation, and alter the properties of the near-wall flow region. Accordingly, we are
interested in characterising the role played by the primary vortices on the one hand and the
transitional perturbations on the other hand in the micro-ramp functionality as they serve
the same purpose. To that end, we propose to segregate mechanisms by decomposing the
instantaneous micro-ramp flow field as q(x, t) = qs(x) +q′(x, t), i.e., the steady laminar base
flow and a time-dependant perturbation field following the approach of linear stability theory.

The first part of the analysis presented in this chapter addresses the base flow organisation
(§4.2). We compute DNS of qs by applying SFD since the micro-ramp wake is unstable for
the currently considered supercritical Rehh. The subscript “s” is hereafter used to denote
base flow quantities, which are obtained as the instantaneous converged q̄ solution (§2.2).
Since the primary vortex pair is an element intrinsically contained in the system’s steady
solution, by computing qs we can isolate the structure of the primary vortices and analyse
their momentum-transport capabilities in absence of perturbation development. In figure
4.1, we show iso-contours of streamwise vorticity in the base flow; the primary vortices are
identified as the elongated structures featuring large (absolute) values of streamwise vorticity.

(a)

(b)

Figure 4.2: Wall shear in (a) the base and (b) the time-averaged flow fields.
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These have an associated persisting rotational motion (as shown later on). We detect a region
of high streamwise vorticity close to the micro-ramp; upon examination of the solution qs,
we inquire as well on whether other base flow structures —for instance secondary vortices—
coexist with the primary vortex pair. Figure 4.2(a) portrays wall shear in the base flow, a
quantity which is used in this work to characterise the “health” of the boundary layer and, in
turn, the performance of the micro-ramp. The imprint of the primary vortices in figure 4.2(a)
appears evident. Symmetric regions of enhanced wall shear arise aside the micro-ramp and
are prolonged until the end of the domain. In line with observations of Wang et al. (2013),
largest wall velocity gradients are captured near the micro-ramp. When moving downstream,
wall shear exhibits a rapid decay. Results of figures 4.2(a) thus suggest the model of near-
wall flow re-energisation under the action of downstream-travelling vortex filaments to be
insufficient.

After analysing the base flow solution, in the third section of this chapter we focus the at-
tention on the behaviour of the instantaneous transitional flow (§4.3). We first apply linear
stability analysis (§2.5) and the flow unleash technique (§3.3.1) to characterise the behaviour
of small -amplitude perturbations (1.3). Assessing linear dynamics of the disturbance field q′

provides useful knowledge regarding the onset and nature of flow instabilities in the micro-
ramp wake. Thereafter, we compute DNS of q and characterise large-amplitude perturbation
development. We examine the instantaneous behaviour of the micro-ramp wake, with em-
phasis put on the evolution of perturbation-induced vortical structures.

In the fourth section of this chapter, we discuss the time-averaged organisation of q (§4.4).
Mean flow quantities are hereafter denoted by angle brackets. It should be noted that base
flow variables may also be time-averaged. We introduce the convention that “base flow” refers
to the solution qs and “mean flow” refers to the solution 〈qs + q′〉. Upon comparison between
qs and 〈q〉, differences can be exclusively attributed to the effect of disturbance growth.
Figures 4.2(b) and A.9(b) of the appendix respectively depict wall shear and boundary layer
shape factor in the mean flow. At first glance, we observe major differences between base and
mean representations sufficiently downstream the micro-ramp. In the mean flow, wall shear is
enhanced in the range 10 ≤ x/h ≤ 20 and, far downstream the micro-ramp, the central strips
of increased wall shear display much larger values than in the base flow. Moreover, the wake
of the micro-ramp expands in spanwise direction; at the end of the computational domain,
the region of enhanced wall shear covers a spanwise extent much larger than the micro-ramp
span. These results highlight the importance of the perturbation development to improve the
performance of the micro-ramp in the current conditions. Accordingly, in §4.4, we describe
differences between base and mean flow topology and inquire on the role of perturbations in
the enhancement of momentum transport near the wall.

The analysis presented in this chapter considers a micro-ramp immersed in a quasi-
incompressible M = 0.2 boundary layer. In §A.5 in the appendix, we extend some of the
most relevant results to a M = 0.7 flow case. We show that compressibility acts stabilising;
we capture a perturbation activity much weaker than in the M = 0.2 case. As a consequence,
the distributions of wall shear in the base flow and in the mean flow resemble qualitatively.

Jordi Casacuberta Puig M.Sc. Thesis



4.2 Base flow 45

4.2 Base flow

We commence the analysis of the micro-ramp flow by identifying and describing the main
characteristics of the M = 0.2 base flow. This flow field is a steady-state solution of the
Navier-Stokes equations computed via ESFD. DNS simulations are performed with χ = 0.96
and ∆ = 1.86 until a convergence bound of εR = 10−6 is reached. These SFD parameters are
based on the stability results of Groot et al. (2016).

4.2.1 Primary elements of the base flow topology

The primary vortex pair emanating from the slant edges of the micro-ramp is reported in the
literature as the main feature in micro-ramp flows. It is a structure captured in flow regimes
ranging from incompressible to hypersonic (Babinsky et al., 2009; Lee et al., 2010; Tirtey
et al., 2011; Ye et al., 2016). As mentioned previously, our results indicate that the primary
vortex pair is an element contained in the qs solution. The structure and evolution in space
of the primary vortices in the base flow is characterised through iso-surfaces of streamwise
vorticity and planes of projected streamlines with streamwise velocity in figures 4.1 and 4.3.
The vortices are counter-rotating; inherent to their nature is the fact that they induce upwash
at the centre plane and a lateral downwash. The induced positive wall-normal velocity causes
them to rapidly lift off from the surface (Babinsky et al., 2009). However, we observe the
primary vortex pair to remain within the boundary layer at all streamwise stations. Already
at x/h ≈ 30, the lifting motion of the vortices has become much less pronounced, as compared
to the micro-ramp vicinity; see figure 4.1(b). Generally in this work, the terms “micro-ramp
vicinity” and “close/far to/from the micro-ramp” refer to the x-direction. Along x/h, the
primary vortices show to move away from the centre plane; at x/h = 100 the vortex cores
are separated in spanwise direction by a distance of approximately 2h. This explains the
spanwise expansion of the lateral strips of increased wall shear in figure 4.2(a). Even though
the intensity of the vortices decays with x/h, they are observed to persist far downstream the
micro-ramp.

Along the micro-ramp and at its downstream vicinity, the action of the primary vortices highly
distorts the structure of the boundary layer at the micro-ramp span. High-momentum fluid
from intermediate portions of the boundary layer penetrates into the low-momentum region
under the action of downwash. In parallel, the upwash moves low momentum fluid from the
lower portion of the boundary layer upward. Consequently, a region in which the streamwise
momentum is larger than in the unperturbed boundary layer (momentum excess region)
is initially generated aside the centre plane and near the surface, together with a central
region in which the streamwise momentum is lower than in the unperturbed boundary layer
(momentum deficit region); see figure 4.3(a). The region of reduced momentum, regarded as
a unique flow phenomenon (Li and Liu, 2010), has centred the attention of many researchers.
It was initially detected by Babinsky et al. (2009). Sun et al. (2012) and Ye et al. (2016)
tackle the streamwise evolution and recovery process, Li and Liu (2011) and Wang et al.
(2013) inquire into the origin. Especially the origin has been a subject of great controversy in
the literature. Babinsky et al. (2009) identify the deficit region as the “remnant of the device
wake that has moved slightly away from the surface as a result of upwash”. Lee et al. (2010)
ascribe the deficit to the pairing of the primary vortex tubes. Wang et al. (2013) claim that
the low-momentum fluid from the lower part of the boundary layer upstream the micro-ramp
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(a)

x/h = 3

(b)

x/h = 10

(c)

x/h = 30

(d)

x/h = 60

Figure 4.3: y-z planes of streamwise velocity with selected projected streamlines at (a) x/h = 3,
(b) x/h = 10, (c) x/h = 30, (d) x/h = 60.

is the origin of the deficit, lifted-up under the action of the primary vortices. To shed light
into this matter, the nature and evolution of the momentum deficit region is scrutinised in
further sections of this work.

Downstream the micro-ramp, the action of the primary vortices initially keeps redistributing
momentum within the distorted boundary layer. The central low-momentum dip shows to
reduce its strength and to move upward for increasing x/h at a rate similar to that of the pri-
mary vortices; see figure 4.3. We notice a rapid recovery of the lower portion of the boundary
layer in streamwise direction. From significantly close to the micro-ramp in x/h, and while
moving downstream, the near-wall fluid layers start to reorganise towards a configuration
resembling that of the unperturbed boundary layer; see figure 4.3(b,c). The primary vortex
pair rapidly becomes incapable of maintaining effective the entrainment of high-momentum
fluid close to the surface. It is assumed to be mainly consequence of the initial strong lift-up
of the primary vortices, together with the steep decrease in magnitude of lateral downwash
in x/h (|vmin

s | is less than 1% of u∞ for x/h > 22). Ghosh et al. (2010) and Li and Liu (2010)
report as well that downwash induced by the primary vortices in the turbulent wake of the
micro-ramp weakens rapidly. The current results are conform with the significant decrease of
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(a)

(b)

(c)

Figure 4.4: Wall-normal velocity. y-z planes at (a) x/h = 20, (c) 80, (b) perspective of y-z
planes at x/h = 20; 40; 60; 80; 100 with iso-contour of vs/u∞ = 0 (black line) and iso-surfaces
of vs/u∞ = 0.01 (red), −0.01 (blue).

the wall shear in the base flow for x/h > 10 illustrated in figure 4.2(a).

The rapid decay of downwash intensity along the streamwise direction contrasts with the
endurance of central upwash, which is kept significant until far downstream; see figure 4.4. As
a matter of illustration, and highlighting that δun(−1.25h)/h = 2.27: for x/h = 1, vmax

s /u∞ =
0.14 at y/h ≈ 0.6; for x/h = 30, vmax

s /u∞ = 0.02 at y/h ≈ 1.5; for x/h = 100, vmax
s /u∞ =

0.008 at y/h ≈ 2.1. At x/h = 20, |vmax
s | ≈ 2|vmin

s |; at x/h = 80, |vmin
s | is one order of

magnitude smaller than |vmax
s |.

Far downstream the micro-ramp, the lowest-level fluid aside the centre plane is practically fully
recovered. The remnant of the primary vortices is only capable of inducing a weak rotational
motion; the layers of streamwise velocity located underneath the vortex cores display little
curvature; see figure 4.3(d). The wall shear aside the centre plane features values much lower
than at the micro-ramp downstream vicinity, but larger than in the unperturbed region; see
figure 4.2(a). The latter is not the case at z/h = 0; on the one hand, close to the micro-ramp,
the addition of high-momentum fluid towards the centre plane is rather weak, as illustrated in
figures A.3 and A.4 of the appendix. On the other hand, for large x/h, the persisting upwash
maintains significant its influence close to the surface and progressively lifts the layers of
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(a) (b)

(c) (d)

Figure 4.5: y-z planes of projected streamlines colour-coded by streamwise vorticity at (a) x/h =
6, (b) 11, (c) 20, (d) 60.

low-momentum fluid at the centre plane for increasing x/h. The boundary layer at z/h = 0
gradually becomes emptier and the central-upper layers of streamwise velocity are shaped in
a sharp-pointed fashion (figure 4.3(d)). This is a detrimental effect, inasmuch as wall shear
around the centre plane attains values similar or even lower than in the unperturbed region;
see figure 4.2(a).

So far, we have identified one vortical structure in the base flow, the primary vortex pair,
which shows to play a central role. We next inquire on whether other vortical systems are
contained in the qs solution. Ghosh et al. (2010) and Li and Liu (2011) detect secondary
vortical structures developing in streamwise direction beneath the primary vortex pair. In
the experiments conducted by Ye (2017), secondary streamwise vortices are captured in the
time-averaged field aside the primary vortices. However, these structures are hypothesised to
be an artefact of time-averaging not present in the instantaneous flow field. Upon first glance,
figure 4.1 shows a region of high |ωs,x| underneath the primary vortices. At the vicinity of
the micro-ramp this is not directly identified as secondary vortices, but a near-wall region of
high shearing motion due to the generation of momentum excess.

The onset and growth of secondary vortices in the base flow is investigated in more detail by
plotting the streamlines of the flow. Figure 4.5 displays y-z planes of projected streamlines at
four representative streamwise positions. At x/h = 6, a weak streamwise rotational motion is
captured near the wall; see figure 4.5(a). It is assumed to be the onset of secondary vortices
induced by the action of the primary vortex pair. They appear to grow in between the
surface and the near-wall regions of enhanced shear and to rotate with a sense opposite to
that of the primary vortices. At x/h = 11, each secondary vortex bifurcates into two branches
(figure 4.5(b)). These branches then re-connect at x/h = 13. While bifurcated, the secondary
structures spread in spanwise direction, a trend which is accentuated downstream the re-
connection point. As a consequence, already at x/h = 20, the influence of the secondary
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vortex pair covers a large spanwise extent; see figure 4.5(c). No further pairs of secondary
streamwise vortices are captured in the current base flow. Far downstream the micro-ramp,
only the remnant of the secondary vortex pair in the near wall region (figure 4.5(d)) and the
primary vortices are observed. Based on this qualitative inspection, the rather weak secondary
vortices do not show evidence to have a significant impact onto the transport of high- and
low-momentum fluid across the boundary layer. The reliability of the previous analysis is
subjected to the grid resolution. The steep spanwise coarsening of the grid at x/h = 4.25 has
been observed to slightly affect the accuracy of the computation of flow features around this
streamwise position. The fact that this occurs close to the onset of the secondary vortices
may impact on their inception. At x/h = 6, three grid points cover the wall-normal extent
of the vortices. The λ2 and Q-criterion detection methods did not show conclusive results.

4.2.2 Flow around the micro-ramp

In the previous section, we have qualitatively shown that entrainment of high-momentum
fluid close to the wall is significant only for a limited range of x/h values downstream the
micro-ramp. Accordingly, we now focus on the behaviour of the flow around the micro-ramp
and at its direct downstream vicinity, with special emphasis put on the origin and initial
development of the primary vortex pair and its role in the generation of momentum excess
and deficit. The latter remains controversial in the literature.

(a) (b)

(c)

(d)

Figure 4.6: Flow separation represented by us/u∞ = 0 isosurfaces, primary vortices detected by
Q-criterion (Qh/u∞ = 0.1), colour-coded by streamwise vorticity. Wall shear at y/h = 0. (a)
top view. (b) perspective. (c) side view. (d) inclined back view.
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(a) (b)

Figure 4.7: Flow separation represented by us/u∞ = 0 isosurfaces colour-coded by streamwise
vorticity similar to figure 4.6. Slice of shear at y/h = 0. Rake of streamlines generated with seeds
placed at (x, y, z)/h = (0.5, 0.3, [−0.05, 0.05]). (a) top view. (b) perspective.

Flow recirculation is detected at the leading and trailing edges of the micro-ramp. Leading
edge separation is also reported by Babinsky et al. (2009) and Li et al. (2011). These authors
point out that leading edge separation creates a horseshoe vortex in front of the micro-ramp
which propagates downstream. We do not find evidence of the existence of this structure in
our results. The flow reversal region at the trailing edge extends up to x/h = 1, as illustrated
in figures 4.6 and 4.7. A similar rear separation region is reported by Wang et al. (2014) in
the instantaneous supersonic and turbulent wake of the micro-ramp. However, flow reversal
in (Wang et al., 2014) appears to be weaker and featuring three disconnected regions. Around
the edges of the micro-ramp, separated vortices are captured by Q-criterion (Haller, 2004); see
figure 4.6. The element in this work referred to as primary vortex pair is recognised as these
separated vortices travelling downstream in the form of streamwise-developing structures.
Similar observations are performed by Wang et al. (2013). The action of the primary vortices
is observed to delay trailing edge separation at the central part of the micro-ramp’s side walls.
In figure 4.6(d), the middle portion of the us/u∞ = 0 isosurface indicating separation features
large values of streamwise vorticity with a rotational sense opposite to that of the primary
vortex structure developing aside.

According to Wang et al. (2013), the lowest level fluid is strongly lifted up under the influence
of the primary vortices along the chord of the micro-ramp. This gives rise to the origin of the
momentum deficit. At the same time, the high-momentum fluid from outer portions of the
boundary layer upstream the micro-ramp is entrained in the near-wall region. In view of their
results, Wang et al. (2013) claim that the main working principle of the micro-ramp is the
—what they refer to as— mechanism of position alternation of low- and high-momentum fluid
along the micro-ramp. This mechanism is revealed in figure 4.8 and in agreement with the
results presented by Wang et al. (2013). Fluid moving over the slant edges of the micro-ramp
generates strong downwash which causes a large-scale transport of streamwise momentum
along the micro-ramp chord. The large acceleration of the fluid due to the steep change in
geometry in conjunction with the fact that wall-normal gradients of streamwise momentum
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(1) (2)

(3)

(a)

(b)

Figure 4.8: y-z planes of streamwise velocity at x/h = 0 and 4. Rake of streamlines gener-
ated with seeds placed at (1) (x, y, z)/h = (−3, [0.2, 0.6], 0), (2) (−2.25, 0.45, [0.6, 1.1]), (3)
(−2.25, 0.15, [0.6, 1.1]). Particles following the streamlines in time (magenta spheres), initially
located at the origin of the rakes (magenta lines). (a) represents a time instant prior to (b).

are strong in the range 0 ≤ y/h ≤ 1, effectively generate momentum excess and deficit already
at x/h = 0.

The origin and nature of the deficit region is an open question in the literature. We agree with
part of the current consensus (Li and Liu, 2011; Wang et al., 2013) in that the central deficit
is caused by the action of the primary vortices and its source is the low-momentum fluid
upstream the micro-ramp placed along its span (figure 4.8). The behaviour of the streamlines
of the flow with seeds placed in the region indicated with a yellow (3) in figure 4.8 illustrates
the latter. However, we propose to add to this model the contribution of flow reversal. As
portrayed in figure A.3(a) of the appendix, at x/h = 0, the separation region features a
central bone-shaped contour and initially defines the core of the deficit region. The primary
vortices place low-momentum fluid at its sides, under the mechanism described above. This
combination of effects gives birth to the structure of the central momentum deficit, which
is initially spade-shaped. Immediately downstream, flow recovers from separation and the
rotational motion of the vortices gives the low-momentum dip its characteristic circular shape,
widely reported in the literature (Babinsky et al., 2009; Ghosh et al., 2010; Sun et al., 2012;
Ye et al., 2016).
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(a)

(b)

Figure 4.9: Pressure difference around the micro-ramp. x-z planes at y/h = 0 and y-x planes
at (a) z/h = 0, (b) z/h = −1.2. Interface of mesh blocks (solid black lines).

Figure 4.8 furthermore shows a clear-cut visualisation of some of the characteristic effects
described in the previous section. In particular, once position alternation has taken place,
the vortices move part of the high-momentum fluid that was entrained near the wall back
towards upper portions mostly within the deficit region. The streamlines of the flow with
seeds placed in the region indicated with a yellow (2) in figure 4.8 show a divergent pattern; a
number of particles remain within the momentum excess region, whereas the others are lifted
by the upwash into the momentum deficit region (illustrated in figure 4.7(b) as well). This
may be an explanation for the efficient recovery of the core of the low-momentum dip in x/h
in the base flow. In parallel, we observe the system of entrained high-momentum fluid and
the low-momentum dip to move upward.

The presence of the micro-ramp in the boundary layer alters the pressure distribution, as
illustrated in figure 4.7. On the one hand, ps− ps,∞ is positive upstream the micro-ramp and
on its upper face, where the pressure difference attains its maximum positive values. This is
ascribed to the effect of velocity deceleration upstream the micro-ramp and flow recirculation
at its leading edge. On the other hand, at the sides of the micro-ramp and at its downstream
vicinity, ps − ps,∞ acquires negative values. The low pressure region aside the micro-ramp is
assumed to be caused by the influence of the cores of the primary vortices. Near the micro-
ramp tip, this vortex-induced low pressure contributes to the decrease of the pressure due to
trailing edge flow separation. Figure 4.9 displays streamwise planes of pressure difference at
z/h = 0 and z/h = −1.2, two spanwise coordinates which serve to characterise the behaviour
of pressure in the deficit and excess regions respectively. Around these spanwise coordinates,
at x/h = 0, ps − ps,∞ has attained low values. Further downstream, pressure recovery yields
∂ps/∂x > 0. The current pressure distribution is in qualitative agreement with that presented
by Yan et al. (2016) for a supersonic micro-ramp flow.
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4.2.3 Streamwise-momentum-streak and shear fields

As reported above, the interaction of the micro-ramp with the incoming boundary layer
significantly alters its structure already at x/h = 0. Downstream the micro-ramp, the regions
of added and reduced momentum show to move away from the surface for increasing x/h
and to reduce their strength. These observations are made upon inspection of the streamwise
velocity field. We next aim to more thoroughly characterise the evolution in space of the
regions of added and reduced momentum because it is of relevance to assess the micro-ramp
performance. To that end, we compute the streamwise-velocity-streak field (2.17) of the qs

solution. This field, denoted by ustr
s , is the difference between the streamwise velocity and

the unperturbed boundary layer, i.e., ustr
s = us − uun. Accordingly, the momentum excess

region is hereafter formally defined as the portion of the flow field at which ustr
s > 0, whilst

the momentum deficit region is defined as the portion with ustr
s < 0. The streamwise-velocity-

streak field of the micro-ramp base flow is depicted in figure 4.10.

(a)

(b)

(c)

(I)

(II)

Figure 4.10: Streamwise velocity streaks. y-z planes at (a) x/h = 20, (c) 80 with iso-contours
of ustrs /u∞ = −0.2 (white line), 0.1 (black). (b) perspective of y-z planes at x/h = 20; 40; 60;
80; 100 with iso-surfaces of −0.4 (black opaque); −0.3 (brown moderately translucent); −0.2
(red highly translucent); 0.1 (yellow opaque). Ending positions of the iso-surfaces defined by
ustrs /u∞ = −0.4 and −0.3 at x/h = 36 (I) and 74 (II).
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(a)

x/h = 3

(b)

x/h = 10

(c)

x/h = 30

(d)

x/h = 60

Figure 4.11: y-z planes of streamwise velocity streaks with selected projected streamlines at (a)
x/h = 3, (b) 10, (c) 30, (d) 90.

In figure 4.11, we reproduce figure 4.3 and show a representation of the streamwise-velocity-
streak field at four representative x/h stations together with the projected streamlines of
the flow. The spatial evolution of the regions of momentum excess and deficit in the range
0 ≤ x/h ≤ 10 is illustrated in figures A.3 and A.4 of the appendix.

At x/h = 0, the excess region is made up of two symmetric lobes attached to the wall; see figure
A.3(c) of the appendix. The deficit region is initially spade-shaped, due to the combination
of flow reversal at the centre plane and the placement of low-momentum fluid at its sides, as
described in §4.2.2. Immediately downstream, the rotational motion of the vortices expands
the excess lobes towards the centre plane, hence reducing the initial momentum deficit at
z/h = 0 close to the wall. This is illustrated in figure A.4(c) of the appendix. At x/h = 10,
the excess lobes are practically connected at the centre plane. Nonetheless, the streamwise-
momentum-streak field features small values at z/h = 0 (figure 4.11(b)). This is conform
with the reduced wall shear at the centre plane for small x/h. As the primary vortices move
away from the surface, so do the excess lobes and the low-momentum dip. The excess of
momentum at the wall gradually becomes less strong.
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(a)

(b)

(c)

Figure 4.12: Shear. y-z planes at (a) x/h = 10, (c) 30 with iso-contours of ssh/u∞ attaining
1/2 and 2/3 of the peak value (red and black lines). (b) perspective of y-z planes at x/h = 0;
10; 20; 30; 40.

Along 0 ≤ x/h ≤ 10, the excess lobes move from aside the centre plane towards z/h =
0. For x/h ≥ 10 this trend is reverted, which is ascribed to the gradual spanwise shift of
the primary vortex pair for increasing x/h. This effect, in conjunction with the previously
reported sustained action of central upwash, cause the deficit region to propagate downward
towards the wall; see figure 4.11(c,d). In parallel, its upper boundary expands radially. Far
downstream the micro-ramp, the excess lobes have increased their area by expanding in y- and
z-directions and the deficit region has become bulb-shaped. The near-wall fluid layers feature
small values of ustr

s . Both the deficit and the excess regions have become more homogeneous
and their core values have significantly decreased, as compared to near-ramp streamwise
positions.

The regions of reduced and added momentum are accompanied by strong shear layers. The
shear field of the micro-ramp base flow, defined as the norm of the strain-rate tensor (2.15),
is portrayed in figure 4.12. The low-momentum dip is partially bounded by an arch-shaped
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shear layer since it features large gradients of streamwise velocity in the wall-normal and
spanwise directions at its upper boundary. This structure is hence linked to the momentum
deficit. The wall-normal shear layer appears to be stronger than the spanwise shear layer.
When moving downstream, the overall structure lifts up and decreases in strength due to
the rapid recovery of the central momentum deficit. Further regions of high shearing motion
are captured aside the centre plane near the wall, as a consequence of the entrainment of
high-momentum fluid close to the surface. These high-shear patches are related to the strips
of enhanced wall shear in figure 4.2(a). Downstream the micro-ramp, they show to decrease
in strength due to the recovery of the flow near the wall and to progressively shift towards
larger |z/h|. The development of shear layers in the near-ramp field is portrayed in figures
A.3(i,j ) and A.4(i,j ) of the appendix.

4.2.4 Derivation and evaluation of a streamwise-momentum-streak trans-
port equation for incompressible steady flow fields

Previous qualitative observations have suggested that the laminar primary vortices are un-
able to maintain a significant generation of momentum excess sufficiently downstream the
micro-ramp. In an attempt to assess this fact quantitatively, we next derive a streamwise-
momentum-streak transport equation for incompressible steady flow fields. With it, we intend
to identify which flow mechanisms play a dominant role in the generation of streamwise-
velocity streaks, evaluate their relative contribution as a function of x/h and further under-
stand how the momentum excess and deficit evolve downstream the micro-ramp.

The following derivation assumes steady incompressible flow with constant viscosity, which
is a reasonable approximation for M < 0.3. Furthermore, in the unperturbed flow region
(2.16), wun = 0, ∂uun/∂z = 0 and ∂vun/∂z = 0. Since we are interested in mathematically
characterising the behaviour of the momentum excess and deficit in the base flow, we propose
to decompose the base flow velocity field, vs, as

vs = vun + vstr
s , (4.1)

i.e., the sum of the velocity field of the unperturbed boundary layer, vun, and the velocity-
streak field, vstr

s . The pressure field is decomposed similarly. For incompressible flows,

∇ · vun = 0, (4.2)

and

∇ · vstr
s = 0. (4.3)

By introducing the velocity and pressure decompositions into the streamwise component of
the momentum conservation equation (2.4), we obtain

ρ
(
vun + vstr

s

)
·
(
∇uun +∇ustr

s

)
= −∂pun

∂x
− ∂pstr

s

∂x
+ µ∇2uun + µ∇2ustr

s . (4.4)

The steady streamwise momentum conservation equation for the unperturbed flow reads

ρ (vun · ∇)uun = −∂pun

∂x
+ µ∇2uun, (4.5)
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and hence combining (4.4) with (4.5) and (4.3) yields

ρ(vun · ∇)ustr
s = −∂p

str
s

∂x
+ µ∇2ustr

s +∇ · (−ρuunv
str
s ) +∇ · (−ρustr

s v
str
s ), (4.6)

or, by using (4.1) to combine the last two terms,

ρ(vun · ∇)ustr
s︸ ︷︷ ︸

streak advection

= −∂p
str
s

∂x︸ ︷︷ ︸
pressure

+µ∇2ustr
s︸ ︷︷ ︸

diffusion

+ ∇ ·
streak stress︷ ︸︸ ︷
(−ρusv

str
s )︸ ︷︷ ︸

streak-shear-correlation

. (4.7)

This equation resembles the streamwise component of the momentum conservation equation,
with advection, pressure and viscous diffusion. However, we additionally obtain an extra term,
the so-called streak-shear-correlation. It is interpreted as the divergence of an apparent stress,
−ρusv

str
s , hereafter referred to as streak stress, in an analogous fashion to the treatment of the

Reynolds stresses in the RANS equations (White, 2006). The streak-shear-correlation term,
as its name suggests, requires large velocity streaks in presence of strong velocity gradients to
effectively contribute to the generation of ρustr

s . The relative contribution of each component
is further revealed when the term is expanded:

−ρ
(
ustr

s

∂us

∂x
+ vstr

s

∂us

∂y

)
, (4.8)

using ∇ · vstr
s .

We have identified three main mechanisms contributing to the generation of ρustr
s and we

aim to characterise their role in the micro-ramp base flow. To that end, expression (4.7) is
evaluated using a control volume approach; we denote by ΩE the domain of the flow field with
ustr

s > 0 (momentum excess region), and by ΩD the domain of the flow field with ustr
s < 0

(momentum deficit region). Both ΩE and ΩD are continuous three-dimensional domains, as
exemplified in figure 4.10. The approach presented next relies on computing the relative
contribution of pressure, diffusion and streak stresses to the flux of ρustr

s across the boundary
of ΩE and ΩD (denoted by ∂ΩE and ∂ΩD) as function of the streamwise coordinate.

We split the streamwise extent of the domain into segments defined by points xi and xi+1,
i = 1, 2, 3... The cross-sectional areas of ΩE and ΩD at xi are respectively denoted by AE

i

and AD
i . We integrate (4.7) over AE

i and AD
i (superscripts E and D are next omitted) at a

streamwise position xi:∫
Ai

ρ(vun · ∇)ustr
s dAi =

∫
Ai

−∂p
str
s

∂x
dAi +

∫
Ai

µ∇2ustr
s dAi +

∫
Ai

∇ ·
(
−ρusv

str
s

)
dAi.

(4.9)

The term on the LHS of (4.9), the flux of ρustr
s across ∂ΩE or ∂ΩD at xi, expresses whether

locally streamwise-momentum streaks are generated, destructed or maintained. When the
analysis is applied to ΩE, positive and negative contributions of the terms on the RHS of
(4.9) are respectively associated to local generation and destruction of (positive) streamwise
momentum streaks. On the contrary, when considering ΩD, positive and negative contribu-
tions of the terms on the RHS are respectively associated to local destruction and generation
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Figure 4.13: Integral terms of (4.9) as function of the streamwise coordinate evaluated in (a)
ΩE, (b) ΩD: ρ(vun · ∇)ustrs (solid black), −∂pstrs /∂x (solid green), µ∇2ustrs (solid magenta),
∇ · (−ρusvstrs ) (solid blue) split into the relative contribution of ∇ · (−ρuunvstrs ) (dash-dotted
blue) and ∇·(−ρustrs v

str
s ) (dotted blue) as expressed in (4.6), local sum of terms of (4.9) (dashed

black). (c) AE
i (orange) and AD

i (red) along x/h.

of (negative) streamwise-momentum streaks. Attention must be paid to the fact that (4.9)
does not give direct information on the trend followed by Ai in x, on the topology of the excess
lobes and the central low-momentum dip, or on the distribution of streamwise-momentum
streaks within ΩE and ΩD. These are other relevant features, which ought to be addressed by
analysing (4.7) locally in the flow field and/or by other tools. The terms (4.9) are evaluated
numerically; we choose xi to be the streamwise coordinates of the nodes of the computational
mesh. The results of the numerical integration and the trend followed by AE

i and AD
i along

the streamwise direction are presented in figure 4.13.

At first glance, figure 4.13(a) reveals that generation of positive velocity streaks (black solid
line) is first significant near the micro-ramp and, for x/h > 10, it experiences a noticeable
decrease. Accordingly, we structure the analysis presented next in the following manner:
we first focus on generation of momentum excess at and near the micro-ramp by analysing
the evolution in x/h of the integral terms of (4.9) evaluated at ΩE for −4 ≤ x/h ≤ 10. In
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Figure 4.14: Integral terms of (4.9) as function of the streamwise coordinate evaluated in ΩE.
ρ(vun · ∇)ustrs (solid black), −∂pstrs /∂x (solid green), µ∇2ustrs (solid magenta), ∇ · (−ρusvstrs )
(solid blue), local sum of terms of (4.9) (dashed black).

figure 4.14, we reproduce figure 4.13(a) zooming into this x-range. Thereafter, we discuss the
generation of momentum excess and deficit for 10 ≤ x/h ≤ 90 by assessing the streamwise
evolution of the terms of (4.9) evaluated at both ΩE and ΩD.

Generation of momentum excess at and near the micro-ramp (−4 ≤ x/h ≤ 10)

Results of figure 4.14 indicate that streak stresses (blue curve) act so as to generate momentum
excess for all x/h in the range −4 ≤ x/h ≤ 10; the associated curve lies in the positive half-
plane. Diffusion (purple curve) plays an opposite role, it is of destructive nature. Pressure
(green curve) first contributes positively to the flux of ρustr

s across ∂ΩE and, as x/h increases,
it contributes negatively. We observe inaccuracies of the results presented in figure 4.14
around x/h = 4.25, as explained above, due to a too steep coarsening of the mesh in this
location.

To better understand the behaviour of the pressure curve in figure 4.14, we recall figure 4.9(b)
depicting the pressure distribution at a spanwise plane (z/h = −1.2) contained in the excess
region at the micro-ramp vicinity. The boundary layer is not subjected to an external pressure
gradient, so ps − ps,∞ represents the pressure streaks field. Pressure starts to contribute to
the generation of momentum excess when ∂ps/∂x aside the micro-ramp becomes negative due
to the influence of the vortex cores. The pressure curve in figure 4.14 peaks at x/h ≈ −1.7;
immediately upstream of this position, pressure has undergone a rapid decrease; see figure
4.9(b). From x/h ≈ −1.7 onward, the contribution of the pressure in streak generation
first decreases and thereafter (x/h > −0.75) becomes destructive. The latter is ascribed to
the fact that pressure recovery in streamwise direction yields ∂ps/∂x > 0. Downstream of
x/h = 0.5, the pressure curve in figure 4.14 gradually approaches the horizontal axis from
the negative half-plane. Current results show that pressure contributes significantly to the
initial generation of momentum excess at the micro-ramp. As soon as the pressure introduces
gradients of ρustr

s , diffusion starts to play a role as well. The largest productive contribution,
however, comes from streak stresses. The associated curve in figure 4.14 first becomes non-
zero at x/h = −2.1, which is approximately the position of the micro-ramp’s leading edge,
and peaks at x/h = 0, the position of the micro-ramp’s trailing edge.

Through visual inspection, we first detect regions of positive ustr
s in the flow field at x/h = −3,

thus upstream the micro-ramp. At this streamwise coordinate, the positive contribution of
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pressure to the flux of ρustr
s across ∂ΩE starts to exceed the negative contribution of diffusion.

As a consequence, the curve in figure 4.14 indicating the total generation of momentum excess
departs from the horizontal axis. Further downstream, although the contribution of pressure
eventually decreases, the rapid streamwise growth of the streak stresses maintains the flux of
momentum excess across ∂ΩE increasingly positive in streamwise direction until it attains a
maximum at x/h = −1.

From x/h = −1 onward, generation of positive streamwise-momentum streaks decreases.
However, it remains significant for an initial range of x/h values downstream the micro-ramp.
This shows partial disagreement with conclusions drawn by Wang et al. (2013), inasmuch as
they claim that the mechanism of the micro-ramp is position alternation along the micro-
ramp rather than the downstream activity of the primary vortices. Although we agree with
Wang et al. (2013) in that the capability of the primary vortices to generate momentum
excess downstream the micro-ramp is less than what is established by the current consensus,
our results indicate that momentum excess is not uniquely generated at the micro-ramp.
Furthermore, it ought to be emphasised that the current interpretations are based on the
base flow results. In §4.1 we have pointed out the importance of disturbance activity in the
micro-ramp functionality, an issue that is discussed later on.

Generation of momentum excess and deficit along the domain (0 ≤ x/h ≤ 90)

We have shown that pressure has a destructive effect on the momentum excess at the micro-
ramp’s downstream vicinity. Similar observations are made for the region of reduced momen-
tum: downstream the micro-ramp, the pressure generates momentum deficit, i.e., contributes
negatively to the flux of ρustr

s across ∂ΩD; see figure 4.13(b). The core of the low-momentum
dip is located at the centre plane. In this region near the micro-ramp, pressure recovery yields
∂ps/∂x > 0 (figure 4.9(a)) and thus the pressure term in (4.9) yields a negative contribution.
Results of figure 4.13(a,b) indicate that for x/h > 10, the pressure does not add a significant
contribution to the generation of momentum excess nor momentum deficit.

Diffusion has a destructive nature in ΩE but also in ΩD for all x/h, i.e., contributes negatively
to the flux of ρustr

s across ∂ΩE and positively to the flux of ρustr
s across ∂ΩD. This behaviour

was expected, inasmuch as diffusion acts to balance the amount of streamwise-momentum
streaks. Unlike pressure, its contribution is prolonged until far downstream the micro-ramp
rather than exclusively at the vicinity of it. The curves associated to diffusion in figure
4.13(a,b) follow a rather constant trend in streamwise direction. The largest (absolute) values
are found for small x/h. In this range, the interface of ΩE and ΩD features large gradients of
ustr

s ; see figure 4.11.

Streak stresses act so as to generate momentum excess and deficit along the entire streamwise
extent of the domain, i.e., contribute positively to the flux of ρustr

s across ∂ΩE and negatively
to the flux of ρustr

s across ∂ΩD. We first focus on added momentum. Streak stresses have
been shown to play the central role in the generation of momentum excess at the micro-ramp
and at its immediate downstream vicinity. Results of figure 4.13(a) show that in the range
0 ≤ x/h ≤ 90, the curve of streak stresses decreases monotonically. Gradually, their con-
tribution to the flux of ρustr

s across ∂ΩE approaches that of diffusion in absolute value;
eventually, streak stresses solely counter-act the effect of diffusion. As a consequence, for
x/h > 50, the total flux of momentum excess (black line in figure 4.13(a)) approaches zero
from above. Thus, at these downstream locations, the momentum excess generated upstream
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(a)

x/h = 3

(b)

x/h = 10

(c)

x/h = 30

(d)

x/h = 60

Figure 4.15: y-z planes of streak-shear-correlation with selected projected streamlines at (a)
x/h = 3, (b) x/h = 10, (c) x/h = 30, (d) x/h = 60. Iso-contours of ustrs /u∞ = −0.06 (red
line), ustrs /u∞ = 0.06 (yellow line).

is conserved; it is essentially transported downstream without further significant addition or
subtraction. Current results thereby confirm quantitatively that the primary vortices are not
capable of generating momentum excess sufficiently downstream the micro-ramp. As men-
tioned previously, this is hypothesised to be mainly combination of two factors: the decay of
vortex-induced downwash and the fact that as the primary vortices lift up, they move into
portions of the boundary layer featuring lower wall-normal gradients of streamwise velocity.
With regard to the momentum deficit, the total generation of negative streamwise-momentum
streaks persists for large x/h with a small productive value. This highlights the endurance of
the central upwash as compared to the lateral downwash.

In figure 4.15 we reproduce figures 4.3 and 4.11 and we show y-z planes of the non-
dimensionalised streak-shear-correlation field (4.7) with iso-contours of streamwise-velocity
streaks. Streak stresses play the central role in the budget of ρustr

s and we observe that the
system of streamwise-velocity streaks evolves according to the distribution of streak-shear-
correlation. Close to the micro-ramp, the lateral regions of positive streak-shear-correlation
(figure 4.15(a,b)) match the regions of figure 4.3(a,b) in which fluid from mid-outer portions of
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the boundary layer is actively moved downward under the action of the primary vortices. For
increasing x/h, these lateral regions of positive streak-shear-correlation decrease in strength
and move beneath the vortex cores; see figure 4.15(c,d). At the regions where positive streak-
shear-correlation in figure 4.15(c,d) is dominant, the layers of streamwise velocity aside the
centre plane display the largest downward curvature in figure 4.3(c,d).

For all x/h, we observe regions of negative streak-shear-correlation at the bottom and top
parts of the momentum deficit region. The bottom part is attributed to the lift-up of low-
momentum fluid near the wall under the action of vortex-induced upwash. The top part,
linked as well to the action of upwash, characterises the transport of low-momentum fluid
from the core of the deficit region upward and towards outer fresh portions of boundary
layer. The central region of positive streak-shear-correlation is ascribed to the transport of
high-momentum fluid initially entrained near the wall back towards upper positions under
the self-induced motion of the primary vortices. This explains the efficient recovery of the
core of the low-momentum dip in x/h; the velocity deficit is initially strong enough to persist
the continuous entrainment of high-momentum fluid from the excess region. We see lateral
branches of negative streak-shear-correlation at the bottom part of ΩD for small x/h. They
are as well attributed to redistribution of high-momentum fluid.

The action of the primary vortices causes an initial efficient large-scale transport of streamwise
momentum. Thus, close to the micro-ramp, we observe the shape of the momentum excess
and deficit regions to undergo rapid deformation in x/h. Far downstream the micro-ramp,
decay of vortex activity together with the fact that transport by diffusion becomes relevant
merely cause the diffusion of the excess and deficit regions. The rate of change in x/h of the
shape of ΩE and ΩD is much slower than in the near-ramp field. This is in agreement with
plotted trends of the areas AE

i and AD
i in figure 4.13(c).
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4.3 Instantaneous flow

In §4.2, we have described the base flow and analysed micro-ramp flow features in absence of
disturbance activity. We now turn our attention to the dynamics of perturbations naturally
evolving in the flow field when SFD is not applied. As for considering a supercritical roughness
Reynolds number for our analysis, we expect unsteady and transitional behaviour of the
flow, as detailed in §1.1. Disturbance growth alters the structure of the primary vortex
pair, modifies the topology of the base flow and introduces a new (time-dependant) flow
organisation.

In the first part of the analysis presented next, we analyse the dynamics of small-amplitude
perturbations, i.e., the behaviour of the field q′ when it is of infinitessimally-small amplitude
(1.3) and evolves without distorting the base flow. This is exemplified in figure 4.16, depicting
iso-surfaces of u′ obtained by applying the flow unleash technique merged to a plane of shear
in the base flow. Assessing linear perturbation dynamics provides insight into the onset and
nature of flow instabilities. In the second part of the analysis, we compute DNS without
SFD and characterise the dynamics of large-amplitude perturbations and the instantaneous
organisation of qs + q′. The focus is put on the evolution of perturbation-induced vortical
structures in the transitional wake of the micro-ramp. Furthermore, we quantify linear and
non-linear perturbation growth along the streamwise extent of the domain. For validation
purposes, the results of the DNS are compared with the results of linear stability analysis
performed for the base flow presented in §4.2 and with experimental work of Ye (2017). Details
regarding the approach and numerical set-up of the stability analysis are provided in §2.5 and
in (Groot et al., 2016), whereas details regarding the experimental set-up can be found in
(Ye, 2017).

(a) (b)

Figure 4.16: Instantaneous streamwise velocity perturbations (u′). Isosurfaces of (u− ū)/u∞ =
9 × 10−4 (red) and −6 × 10−4 (grey) from DNS when the base flow is unleashed. y-z plane of
shear in the base flow. (a) front view, (b) back view.
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4.3.1 Small-amplitude-perturbation dynamics

Detached shear layers in the wake of roughness elements are commonly identified as the
regions of onset of flow instabilities. When unstable, disturbances growing downstream the
element can ultimately cause transition if they attain a sufficiently large amplitude (Ergin
and White, 2006). Many authors identify streamwise vortices originated at the roughness
element giving rise to a system of streamwise velocity streaks able to sustain eigenmodes of
unstable nature (Redford et al., 2010; Choudhari et al., 2010; De Tullio et al., 2013). The
micro-ramp base flow described in §4.2 fits this description. As illustrated in figure 4.12, the
momentum excess and deficit caused by the action of the primary vortices are accompanied
by strong shear layers.

The central arch-shaped shear layer is especially critical for the stability of the system, inas-
much as the local velocity profile contains an inflection point susceptible to the K-H instability.
Li and Liu (2010) and Sun et al. (2012) observe large-scale hairpin vortices induced by a flow
instability of this type being shed downstream the micro-ramp. In the case of cylindrical and
diamond-shaped roughness elements, Kegerise et al. (2012) and Loiseau et al. (2014) identify
two types of modes supported by the unstable wake of the roughness element, of antisym-
metric (sinuous) and symmetric (varicose) nature with respect to the centre plane. For a
cylindrical roughness element of large aspect ratio, the latter is claimed to be responsible
for inducing hairpin vortices which ultimately cause transition (Loiseau et al., 2014). Groot
et al. (2016) observe the varicose instability to exhibit the shape of hairpin and to be more
unstable than the sinuous instability.

Spatial spanwise BiGlobal linear stability analysis (§2.5) carried out for the current micro-
ramp base flow confirms the existence of convectively unstable varicose and sinuous instabil-
ities. For a broad range of x/h and frequencies, two branches of eigenvalues are observed to
penetrate into the unstable region of eigenspectra computed at successive y-z planes in the x-
direction. Upon integration of the eigenmode’s spatial growth rate, per fixed frequency, along
the streamwise direction, one obtains a set of curves representing the perturbation growth
in this direction. The envelope of these curves yields the maximum logarithmic disturbance
amplification factor, denoted by N (Van Ingen, 2008). For engineering applications, it is
common to correlate this total perturbation growth N and the transition location (Schmid
and Henningson, 2001). Based on it, current results from linear stability analysis indicate
that the varicose eigenmode is the dominant instability kind, i.e., yields the largest growth
rates. This is in agreement with conclusions drawn by Groot et al. (2016) and by Kegerise
et al. (2012) from experiments performed at similar roughness Reynolds number (Rehh = 470
and Rehh = 462 respectively). In the latter case, the sinuous instability is reported to claim
dominance only when Rehh is sufficiently small (Rehh = 319 for their set-up).

We start the validation of results from DNS and from linear stability analysis by qualitatively
comparing the disturbance field in the unleashed base flow (§3.3) with eigenfunctions from
the spanwise BiGlobal stability analysis. For the sake of completeness, we shall highlight the
following: first, for the reasons stated above, we only present stability results related to the
varicose instability. Secondly, BiGlobal is a two-dimensional approach; the three-dimensional
structures developing when the flow is unleashed are compared with stability eigenfunctions
interpolated along x/h between sets of y-z planes over which stability analysis is applied.
Thirdly, the flow unleash technique relies on slightly perturbing the unstable base flow after
turning off the SFD model. Thereafter, we expect modal exponential growth of perturbations
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(a.1 ) (a.2 )

(a.3 ) (a.4 )

(b.1 ) (b.2 )

(b.3 ) (b.4 )

Figure 4.17: Instantaneous positive streamwise velocity perturbations (u′). Isosurfaces of (u −
ū)/u∞ = 0.0022 (1) and 6.8 × 10−4 (3) from DNS when the base flow is unleashed. Real part
of spanwise BiGlobal stability eigenfunctions (2,4), interpolated along x/h. (a) side view, (b)
perspective.

downstream the micro-ramp as the first stage of their development. The initial disturbance
amplitude after SFD is imposed to be sufficiently small such that we can capture the linear
evolution of disturbances for a broad range of x/h. Only when these disturbances have grown
sufficiently, assumption (1.3) breaks down, non-linear perturbation mechanisms may arise,
and disturbances may deform the base flow. We carry out the comparison for a range of x/h
values in which the latter is not the case. Finally, varicose instability has been reported to
be of convective nature in the current case. Consequently, in the DNS we expect unsteady
disturbances travelling in the form of a wave packet resulting from superposition of wave
forms with different frequencies (Schmid and Henningson, 2001). The results from stability
analysis only account for one single frequency. So, to compare the DNS results with the
stability analysis results, a wave packet was selected having a large streamwise envelope, such
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(a.1 ) (a.2 )

(a.3 ) (a.4 )

(b.1 ) (b.2 )

(b.3 ) (b.4 )

Figure 4.18: Instantaneous negative wall-normal velocity perturbations (v′). Isosurfaces of (v −
v̄)/u∞ = −0.0011 (1) and −3× 10−4 (3) from DNS when the base flow is unleashed. Real part
of spanwise BiGlobal stability eigenfunctions (2,4), interpolated along x/h. (a) side view, (b)
perspective.

that it could be reasonably compared to the wavetrain. Particularly, we chose that frequency
corresponding to the largest integrated growth rate (N -factor) at x/h = 18.75.

Results of the comparison are presented in figures 4.17, 4.18 and 4.19, characterising per-
turbations of streamwise velocity, wall-normal velocity and streamwise vorticity, respectively.
The latter is obtained as ω′x = ωx − ωx,s. We observe a reasonable match for v′ and ω′x.
The u′ field shows lower resemblance. With regard to the v′ field, large iso-surface levels
(figure 4.18(a.1,b.1,a.2,b.2 )) are characterised as disconnected ghost-shaped structures. Mi-
nor differences are found in the head and neck regions. When the iso-level is decreased, the
backward part of the body connects with the head of the backward structure. In turn, the
head expands and the lower part of the body develops lobes. All structures seem to cover a
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(a.1 ) (a.2 )

(a.3 ) (a.4 )

(b.1 ) (b.2 )

(b.3 ) (b.4 )

Figure 4.19: Instantaneous streamwise vorticity perturbations (ω′x). Isosurfaces of (ωx −
ωx,s)h/u∞ = ±0.01 (1) and ±0.003 (3), orange for clockwise rotation and blue for anticlockwise
rotation, from DNS when the base flow is unleashed. Real part of spanwise BiGlobal stability eigen-
functions (2,4), interpolated along x/h. Translucent purple isosurfaces of λ2−λ2,s = −2×10−4,
only in (a.1). (a) top view, (b) perspective.

similar wall-normal extent of the domain.

Large iso-surface levels of streamwise velocity perturbations appear in the form of elongated
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structures (figure 4.17(a.1,b.1,a.2,b.2 )). The forward part of each structure features two legs
which are connected to the forward structure from below. We observe differences between
results of DNS and stability analysis in the topology of the body and leg parts, and the
way structures connect to each other. As the iso-surface level is decreased, we observe the
formation of a characteristic arch. In turn, this arch connects to the forward structure while
lobes are being developed aside. The spanwise expansion of the lobes is one of the main
differences between figure 4.17(b.3 ) and (b.4 ). We detect other significant differences, as for
instance, the existence of a structure near the wall in the DNS results whose origin is unclear
to us.

Figure 4.19(a.1,b.1,a.2,b.2 ) depicts the streamwise vorticity perturbation field as patches of
opposite vorticity. These patches resemble the leg structure of a hairpin vortex. When
isosurfaces of λ2 (Jeong and Hussain, 1995) are additionally introduced, the combination of
isosurfaces features an overall hairpin-like shape; see figure 4.19(a.1 ). More precisely, hairpin
heads in figure 4.19(a.1 ) are characterised through isosurface of λ′2 = λ2(v) − λ2(vs) =
λ2 − λ2,s. These are observed to be connected with ω′x patches in pairs (positive ω′x for
z > 0, negative ω′x for z < 0). In a fashion similar to the previously described perturbation
fields, when the iso-level of ω′x is decreased, we observe lateral lobes. Neither the streamwise
vorticity patches in between hairpin heads nor the lobes developing aside are detected by λ′2.
We assume these structures to be regions of induced shearing motion.

The topological resemblance between perturbations developing in the unleashed base flow and
varicose mode eigenfunction suggests that this instability kind rules the linear perturbation
dynamics in DNS as well. Due to the existence of an inflection point in the velocity profile
as well as the similarities found with literature, the instabilities in the central shear layer
are of an inviscid nature. In figure 4.16, isosurfaces of unleashed u′ are merged to a slice of
shear in the base flow. We observe isosurfaces of opposite sign to develop around the central
arch-shaped shear layer and to fit with each other. This is in line with results presented by
Loiseau et al. (2014); the varicose eigenmode is recognised as an instability of the full shear
layer enclosing the low-momentum dip rather than an instability of the ∂us/∂y component
as indicated by Asai et al. (2002). As expected, the central shear layer does not manifest
large distortions during the first stages of the flow unleash technique despite the presence of
unstable perturbations (1.3). Even though another strong shear layer is present near the wall
(figure 4.12), no perturbation activity is captured in this region associated to the varicose
eigenmode. Results of figure 4.19 seem to confirm the existence of a train of hairpin vortices
travelling downstream the micro-ramp. The evolution of vortices of this kind is further
analysed in §4.3.2. Yet, the current results point out that hairpin-shaped structures are
generated through linear perturbation mechanisms associated to the varicose K-H instability.
Opposite conclusions are drawn by De Tullio et al. (2013); hairpin-like vortices are claimed
to be an effect of the base flow deformation due to the non-linear evolution of the varicose
instability.

4.3.2 Transitional flow dynamics

The sustained growth of small-amplitude disturbances eventually triggers non-linear mode
interaction and saturation if perturbations attain large enough amplitude. When the system
evolves towards this state, modal perturbation growth is then solely captured for small x/h.
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(a)

(b)

(c)

Figure 4.20: Instantaneous streamwise perturbation field (u′′). (b) isosurfaces of (u−〈u〉)/u∞ =
0.012 (red) and −0.012 (black). Zoom (a) close to the micro-ramp, (c) far downstream the
micro-ramp.

We perform DNS of the micro-ramp flow without SFD to resolve the non-linear evolution of
flow instabilities.

Sufficiently downstream the micro-ramp, disturbance activity significantly deforms the base
flow. The time-averaged flow configuration, 〈q〉, then becomes a relevant entity to represent
the organisation of the flow. Hence, in the current section, the dynamics of large-amplitude
perturbations are characterised by measuring instantaneous disturbances with respect to mean
flow quantities. This is addressed as follows: we compute DNS of q and 〈q〉. Details on how
the mean flow field is obtained are given in §4.4. We then define the perturbation field q′′

as the departure of the instantaneous flow field to the mean flow solution, i.e., q′′ = q − 〈q〉
(2.20). Figures 4.20 and 4.21 illustrate the streamwise evolution of disturbances u′′ and v′′.

Close to the micro-ramp, we capture the expected linear perturbation behaviour; structures in
figures 4.20, 4.21 resemble those of figures 4.17, 4.18 since for small x/h, v′ ≈ v′′ reasonably.
Initially, isosurfaces of opposite sign fit with each other and show a rapid growth. Generally
from x/h ≈ 14 onward, significant differences arise between the structure of perturbations
in figures 4.20, 4.21 and the real part of stability eigenfunctions. Along the approximate
range of 14 ≤ x/h ≤ 50, perturbations undergo distortion while maintaining elements of
their original morphology. This is for instance the case of the arch exhibited by positive
u′′ perturbations or the expanded head part of positive v′′ perturbations. In this range, we
additionally detect the onset of lateral strips of streamwise velocity perturbation; see figure
4.20. For x/h > 50, the u′′ field is dominated by elongated patches of this kind. We observe
a central dominant region of positive u′′ surrounded by strips of positive and negative u′′.
Although v′′ structures also appear to be highly distorted for x/h > 50, they do not undergo
significant elongation. We observe u′′ and v′′ disturbances to significantly spread in spanwise
direction. As a consequence, the wake of the micro-ramp broadens and it becomes much wider
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(a)

(b)

(c)

Figure 4.21: Instantaneous wall-normal perturbation field (v′′). (b) isosurfaces of (v−〈v〉)/u∞ =
0.012 (purple) and −0.012 (green). Zoom (a) close to the micro-ramp, (c) far downstream the
micro-ramp.

than the micro-ramp span; far downstream the micro-ramp, perturbations have contaminated
a large portion of the flow field. As for being of great relevance, this issue is further analysed
later on in this section.

Previously, we have confirmed the existence of hairpin vortices travelling downstream the
micro-ramp in the unleashed base flow. We now examine the manifestation of this and other
relevant vortical structures in the instantaneous flow field when perturbations non-linearly
saturate. Figure 4.22(a,b) and (c,d) respectively depict isosurfaces of λ2 and ωx from DNS
without SFD. For validation purposes, figure 4.22(e,f ) displays isosurfaces of ωx obtained
from tomo-PIV experiments after low order POD reconstruction (Ye, 2017). Around the
micro-ramp and at its downstream vicinity, isosurfaces of λ2 and ωx represent the primary
vortex pair. These isosurfaces show a steady behaviour and a spatial development equal to
that observed in the base flow configuration (figure 4.6). Hence, current results indicate that
the primary vortex pair is present in the instantaneous flow solution at the micro-ramp’s
downstream vicinity. For increasing x/h, the structures gradually start to oscillate under the
influence of perturbations, as also reported by Li and Liu (2010). At x/h ≈ 4, the motion has
become more pronounced and along 4 ≤ x/h ≤ 7 we observe the onset of arch-shaped vortices
on top of the structures characterising the primary vortices. As detailed in the analysis of the
base flow, near the micro-ramp the primary vortex pair is bounded superiorly by the central
shear layer, around which K-H instabilities develop and associated vortices are incepted. In
the range 4 ≤ x/h ≤ 7, based on qualitative observations, the vortex-to-vortex distance is
generally determined to fluctuate between 1.7h and 2h. Ye (2017) reports a value of 3.5h.
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(a)
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Figure 4.22: Instantaneous streamwise vorticity and λ2. Isosurface of λ2 = −0.004 from DNS
colour-coded by streamwise vorticity, (a) side view, (b) top view. Isosurface of ωxh/u∞ =
±0.3 from DNS, (c) side view, (d) top view. Isosurface of ωx from tomo-PIV experiments (Ye,
2017)(e,f ).
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(a.1 ) (b.1 ) (c.1 )

(a.2 ) (b.2 ) (c.2 )

Figure 4.23: Instantaneous streamwise and wall-normal velocity and λ2 perturbation fields (u′,
v′, λ′2) near the micro-ramp. Isosurfaces of (a) λ2 − λ2,s = −0.01 (yellow), (b) −0.01 (yellow),
(u−us)/u∞ = 0.03 (red) and −0.05 (grey), (c) λ2−λ2,s = −0.01 (yellow), (v−vs)/u∞ = 0.03
(purple) and −0.04 (green). (1) front view, (2) back view.

Along 7 ≤ x/h ≤ 11, we detect vortices featuring a hairpin shape for the first time. For the
current interpretation, unsteady vortical structures are isolated via subtraction of the λ2,s

field to the instantaneous λ2 field, thus yielding λ′2. In this range, the instantaneous velocity
perturbations of figures 4.20 and 4.21 resemble those developing in the unleashed base flow and
are observed to fit with isosurfaces of λ′2; see figure 4.23. In the head portion of λ′2 isosurface,
we observe the combined action of positive and negative u′, v′ causing the central shear layer
to roll-up (figure 4.23). The roll-up of the detached shear layer due to instability growth was
first described by Li and Liu (2010). More specifically, events associated to u′ < 0, v′ > 0
(ejection) focus on the inner part of the head, whereas events associated to u′ > 0, v′ < 0
(sweep) are predominant on the outer part of the head. In parallel, the initially arch-shaped
vortices develop an elongated streamwise leg part, hereafter referred to as “HL” (hairpin leg);
see figure 4.23.

Sufficiently downstream the micro-ramp we do not find evidence of the activity of the primary
vortex pair in the instantaneous flow field. Instead, the instantaneous flow organisation ap-
pears to be dominated by the dynamics of downstream-travelling large-scale hairpin vortices.
Blinde et al. (2009) perform similar observations. Eventual breakdown of primary vortices is
suggested by Lu et al. (2010). At x/h ≈ 10, λ2 structures in figure 4.22(a,b) are completely
disconnected for the first time. Along 11 ≤ x/h ≤ 30, the head part of hairpin vortices lifts
up and straightens (Groot et al., 2016), the leg portion undergoes further elongation while
shifting downward, vortex-to-vortex distance is observed to gradually increase; see figure 4.22.
This behaviour matches that reported by Ye (2017).

In the aforementioned range of 7 ≤ x/h ≤ 11, along which hairpin vortices are observed to
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acquire their characteristic “separated” shape, we additionally capture the onset and initial
evolution of a new kind of vortex. We observe a structure detected by λ2 protruding forward
from the hairpin head in a region dominated by u′ > 0, v′ < 0 (sweep) events (figure 4.23).
The action of perturbations causes this new structure to move forward, downward and away
from the centre plane, bifurcate into two parts featuring opposite streamwise vorticity, elon-
gate, detach from the head part, and eventually interact with the forward hairpin leg. This
secondary vortex structure, referred to as leg-buffer and labelled as “LB” in figure 4.22, was
initially discovered by Ye (2017). It has been observed to play a critical role in the develop-
ment of the wake of the micro-ramp and so we now put the focus onto its streamwise evolution.
It should be noted that even though the phases of the spatial evolution of leg-buffers are sim-
ilar among all captured structures, we notice differences regarding the streamwise location at
which they occur when different time instants of DNS results are considered. Discrepancies
are found as well when comparing the streamwise location of structures from DNS and from
tomo-PIV experiments.

For the time instance represented in figure 4.23, the interaction between leg-buffer and forward
hairpin leg takes place at x/h ≈ 12. From that point onward, we distinguish two differentiated
trends followed by distinct parts of the leg-buffer structure. On the one hand, the forward
part, which has just interacted with the forward vortex, increases its vorticity, elongates,
aligns with the forward hairpin leg and moves away from the centre plane. On the other
hand, the backward part of the leg-buffer wraps around the backward hairpin leg from below
and moves towards the centre plane. Both parts show a tendency to tilt around the wall-
normal direction. The aforementioned behaviour is generally captured along 12 ≤ x/h ≤ 24.
Ye (2017) indicates x/h = 14 to be the onset location of a secondary vortex pair captured
in the time-averaged streamwise vorticity field aside the primary vortex pair, hypothesised

LoB
LBIV

LoB

second generation of hairpin vortices

(a)

(b)

Figure 4.24: Instantaneous λ2. Isosurface of λ2 = −0.004 from DNS colour-coded by streamwise
vorticity, (a) top view, (b) zoomed top view.
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to be an artefact of averaging of leg-buffer structures. The coordinate x/h = 14 had been
previously reported as inception location of disturbances developing aside the original pertur-
bation train (illustrated in figures 4.20 and 4.21) and starting point of significant differences
between perturbation structure characterised through linear stability analysis and obtained
from instantaneous DNS. Generally for x/h ≥ 24, the two branches in which the leg-buffer has
mutated elongate, further incline towards larger |z/h| and increase their vorticity intensity.
The structure labelled as “LB7” in figure 4.22(d) is representative of this.

The leg-buffer is observed to induce a new vortical structure, which initially grows quasi-
perpendicularly to it. The onset of this leg-buffer-induced-vortex (labelled as “LBIV” in
figure 4.22(b,d)) is generally captured in the range 20 ≤ x/h ≤ 28. As a consequence, for
x/h > 30, two main vortical structures appear to significantly contribute to the broadening
of the wake of the micro-ramp by introducing lateral disturbances, the LBIV, and the lower
branch (LoB) of the original leg-buffer structure (figure 4.24). The latter shows to disconnect
from the upper branch and to move downstream separately. The upper branch is observed
to be rather weak and it is eventually destroyed. On the contrary, the lower branch persists
until far downstream the micro-ramp.

A common characteristic between LoBs and LBIVs is the fact that further downstream they
undergo significant elongation. These structures first penetrate deep into the flow region aside
the perturbation core and as they move downstream tend to align in the streamwise direction.
In this range, distance between hairpin heads shows a noticeable increase. The leg portion
has acquired large dimensions in x/h as it has continuously undergone elongation due to the
shearing motion of the flow since early stages. Due to the fact that HLs remain attached
to the wall whereas hairpin heads gradually lift up, far downstream the micro-ramp hairpin
legs cover a large extension in x/h and also in y/h. Around x/h = 70, we capture a second
generation of large-scale hairpin vortices; see figure 4.24(b). This is as well reported by Ye
(2017). In this region, we furthermore identify hairpin vortices originally induced near the
micro-ramp which persist far downstream and the elongated lower branches of leg-buffers.

Ye (2017) captures a tertiary vortex pair aside the secondary vortex pair in the time-averaged
streamwise vorticity field arising at x/h = 45. The secondary vortex pair is assumed to be an
artefact of time-averaging of the leg-buffer structure. In a similar fashion, the tertiary vortex
pair detected in the time-average flow field (Ye, 2017) is now hypothesised to be linked to
the activity of LBIVs. Furthermore, based on our results, we conjecture that iso-surfaces of
time-averaged streamwise vorticity presented by Ye (2017) in figure 5.1(b) identified as the
primary vortex pair may only represent this structure close to the micro-ramp. Sufficiently
downstream, the mean representation of the streamwise vorticity field at the centre plane
location would characterise hairpin-vortex structures. This is supported by the following
reasoning: in the base flow analysis, we have used iso-surfaces of ωx,sh/u∞ = ±0.04 to
represent the structure of the primary vortices (figure 4.1 of this work). This is the same
iso-surface level used by Ye (2017) in figure 5.1(b) to characterise streamwise vortices in
the time-averaged configuration. In figure 4.1 of this work, we observe the iso-surfaces to
gradually decrease their cross-sectional area and to terminate at x/h = 50; the vortices are
maintained active but reduce their strength in x/h. In figure 5.1(b) of (Ye, 2017), the iso-
surfaces of streamwise vorticity at the centre plane maintain a rather constant structure in
the streamwise direction and show to persist until (at least) x/h = 70.

Moreover, as mentioned above, we find no sign of the primary vortices sufficiently downstream
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the micro-ramp in the instantaneous flow organisation. This is in line with observations
performed by Blinde et al. (2009), Lu et al. (2010) and Bo et al. (2012). Blinde et al. (2009)
indicate the presence of instantaneous individual pairs of counter-rotating vortices in the wake
of the micro-ramp. These are hypothesised to be linked to the presence of hairpin vortices. Bo
et al. (2012) suggest that, sufficiently downstream the micro-ramp, the hairpin vortices become
the dominant vortical structure in place of the primary vortex pair. Results of figures 4.22 and
4.24 and the aforementioned description of the instantaneous vortical field are in agreement
with these descriptions and seem to support the aforementioned speculation regarding the
micro-ramp mean flow representation. Sun et al. (2012), on the other hand, indicate that
the primary vortex pair persist in the instantaneous flow field although it interacts with K-
H vortices induced at the shear layer. They report that the latter do not manifest in the
mean flow field. Sun et al. (2012) study the micro-ramp wake in the range 8.75 ≤ x/h ≤ 15,
considering a turbulent M = 2 boundary layer. At these streamwise positions, we capture the

(a)

(b)

(c)

LoB
HL2

HL1

HL1

LoB

LBIV

Figure 4.25: Instantaneous λ2 and wall-normal velocity. (b) isosurface of λ2 = −0.004 colour-
coded by streamwise vorticity. y-z planes of v at (a,b) x/h = 21.5, (b,c) x/h = 42.2 with
iso-contour of λ2 = −0.003 (black line).
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first stages of the development of the large-scale hairpin vortices; the perturbation activity is
less intense, as compared to more downstream positions. In figure A.6(a.2), in the appendix,
we show a y-z plane of the mean wall-normal velocity at x/h = 10. At this streamwise
position, the structure of the upwash and downwash only shows a small distortion with
respect to that observed in the base flow (figure A.6(a.1)).

The characterisation of unsteady vortical activity downstream the micro-ramp is paramount
to understand the instantaneous evolution of flow quantities of interest. In particular, to
better understand how perturbation development enhances the transport of momentum which
carries the increase of wall shear illustrated in figure 4.2, it appears relevant to inquire on how
are upwash and downwash initially induced by the primary vortex pair altered by the presence
of unsteady hairpin vortices. Figure 4.25 portrays instantaneous vortices captured by λ2. It
is combined with y-z planes of instantaneous wall-normal velocity at two streamwise stations
which, based on the previous discussion, aim to be representative of two distinct phases of
hairpin vortex development. For the sake of consistency, both planes characterise flow events
taking place at the upstream vicinity of a hairpin head.

Figure 4.25(a) shows the cross-sectional contour of relevant vortex kinds at x/h ≈ 20, namely
leg portions of the current hairpin vortex (HL1), leg portions of the forward hairpin vortex
(HL2) and lower branches of the leg-buffer (LoB). At this stage, the lower and upper branches
of the leg-buffer are still connected. The latter, which wraps around the current hairpin leg,
is captured as well and its contour appears attached to the lower part of the HL1 structure.
Sufficiently downstream the micro-ramp, the development of this system of vortices introduces
a new dominant pattern of instantaneous wall-normal fluid motion. In figure 4.25(a) we
observe local upwash and downwash generated at the sides of HL1, HL2, and LoB, and
upwash induced by the motion of the hairpin head at the top. At its downstream vicinity, the
hairpin head causes a strong downwash instead (not shown). The hairpin leg portions rotate
in the same sense as the primary vortex pair; they induce upwash close to the centre plane
and lateral downwash. The lower branches of leg-buffers rotate in an opposite sense as the
hairpin legs and thus act to enhance the hairpin-leg-induced downwash near the wall while
generating upwash aside. Even though the magnitude and relative position of induced wall-
normal velocity fluctuations is dependant on the location of the vortical structures in space,
the large streamwise extension of elongated HLs and thereafter LoBs makes this pattern of
instantaneous wall-normal velocity recurrent in x/h. When moving downstream, hairpin head
portions increase their spatial separation. In figure 4.25(c), we only identify the cross-sectional
contour of one pair of hairpin legs. They remain at a rather constant spanwise position. The
LoB structures have evolved and seem to contribute more significantly to the enhancement of
wall-normal velocity fluctuations. At these streamwise positions we additionally capture weak
activity of LBIVs which, in turn, reinforce lateral upwash and introduce negative wall-normal
velocity perturbations aside.

Overall, far downstream the micro-ramp, the instantaneous wall-normal velocity field fea-
tures a spanwise-alternating pattern of upwash and downwash. On the contrary, upwash and
especially downwash in the base flow reduce their strength when moving downstream the
micro-ramp. These results indicate further evidence in support of the hypothesis that suf-
ficiently downstream the micro-ramp the primary vortex pair does not coexist with hairpin
vortices or, at least, that induced upwash and downwash is solely attributed to hairpin vortex
dynamics.
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4.3.3 Quantification of perturbation growth

Until now, we have qualitatively assessed the instantaneous development of velocity pertur-
bations and vortical structures in the wake of the micro-ramp. We now aim to condense and
quantitatively characterise previous findings by analysing the evolution in x/h of disturbance
growth. For that purpose, following the approach of Ergin and White (2006) and Ye (2017),
we evaluate

εrms =

∫
Swake

〈u′′u′′〉
u2
∞

d
(y
h

)
d
( z
h

)
, (4.10)

the integrated streamwise velocity perturbation energy. Swake is the local area of the micro-
ramp wake. Ye (2017) defines it as the region in which 〈u′′〉 / 〈u′′〉max ≥ 0.3; for consistency, we
follow this definition when comparing the results from the DNS and from the PIV experiments
of Ye (2017). On the other hand, to compare the perturbation growth in the DNS with that
obtained from the linear stability analysis, εrms is evaluated using full y-z planes. The results
of the comparison are presented in figure 4.26: it contains the N -factor curve obtained through
linear stability analysis with (4.10) computed from DNS and tomo-PIV experiments. It should
be noted that, since we measure the streamwise evolution of perturbation energy, we include
a factor 2 to the N -factor curve.

Close to the micro-ramp, we observe that εrms computed from DNS follows a plateau. It is
ascribed to the numerical contamination near the micro-ramp, which sets an initial perturba-
tion amplitude. At x/h = 3, DNS perturbations start to grow exponentially at the same rate
as the N -factor curve. Inherent to the eN method is the fact that it characterises amplitude
growth rather than total amplitude (Van Ingen, 2008). Therefore, we use the DNS data to
assign linear perturbations an initial amplitude based on the best visual match between the
N -factor curve and the integrated DNS perturbation energy. Exponential growth of K-H dis-
turbances is captured until x/h ≈ 9; at this streamwise location, a difference arises between
the trend followed by the N -factor curve and integrated DNS disturbance energy. From the
results of figure 4.26(b), we obtain that εrms(3) = 1.6 × 10−5 and εrms(9) = 7.3 × 10−3.
Thereby, N(9)−N(3) = 3.1.

At x/h = 9, the DNS distribution bends and starts a plateau due to non-linear perturbation
saturation. The plateau settles at x/h = 13. Nonetheless, at x/h = 14.5, disturbance energy
is observed to grow again; see figure 4.26(a)). This streamwise station has been previously
reported in the current analysis as starting point of lateral perturbation development due to
leg-buffer activity. From this point onward, we observe exponential perturbation growth at a
relatively constant rate, much lower than in the micro-ramp vicinity. The disturbance energy
measured from tomo-PIV experiments grows at the same rate.
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Figure 4.26: Integrated streamwise velocity perturbation energy as function of x/h from DNS
(solid black) and (a) from tomo-PIV (solid red), (b) combined with the e2N curve (dashed blue).

4.4 Mean flow

In §4.3, we have analysed the instantaneous evolution of perturbations in the unstable wake of
the micro-ramp. As explained, when disturbances acquire sufficiently large amplitude, (1.3) is
rendered invalid, and perturbation activity deforms the base flow. Under these circumstances,
the time-averaged flow field characterises the flow organisation more accurately. Accordingly,
in the current section we describe the mean flow organisation and highlight the major differ-
ences with the base flow organisation. Comparison between base and mean flow results allows
us to segregate mechanisms attributed to disturbance growth from those purely contained in
the system’s base state. In figure 4.2, the importance of perturbation development in the
micro-ramp functionality was highlighted: wall shear in 〈q〉 is significantly larger than in qs.
In the current analysis, we deepen into this matter by examining the role of perturbations in
the improvement of the “health” of the boundary layer; we ultimately show how the evolution
of transitional disturbances downstream the micro-ramp is key to the device performance.

At the micro-ramp tip, εrms (4.10) has an order of magnitude of O
(
10−5

)
. This low level of

perturbation energy, as compared to base flow quantities, ought to imply qs = 〈q〉 around the
micro-ramp and at its downstream vicinity. We, however, observe differences between mean
and base streamwise velocity at x/h = 0 to be of order O

(
10−2

)
, mainly at the location the

primary vortex pair. This could lead to misleading interpretations with regard to the role of
perturbations in the way the base flow becomes distorted. Accordingly, differences between
base and mean flow are highlighted sufficiently downstream the micro-ramp, when base flow
distortion is observed to be the consequence of perturbation growth primarily.

The mean flow configuration presented in this work has been obtained by time-averaging the
instantaneous flow field of a simulation performed without SFD over approximately 5 flow-
through-cycles (FTC). The period of an FTC is the time required for a fluid particle to travel
across the entire streamwise extent of the domain. In each FTC, we generate approximately
400 samples, which roughly represent 7 samples per cycle of hairpin shedding. Far downstream
the micro-ramp, this does not seem to yield a sufficiently well-converged mean flow, inasmuch
as we capture a slight asymmetry of the flow field —see for instance figure 4.2(b). The
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instantaneous wake of the micro-ramp has been shown to contain an intricate system of
unsteady vortical structures. Larger averaging times would be required to very accurately
represent their mean activity at the end of the computational domain. For the current DNS
simulations, this would represent a high computational cost, whereas it is beyond the scope
of this work to thoroughly assess the flow behaviour in this range.

4.4.1 Base flow vs mean flow topology

Four main fields previously used to characterise the base flow over the micro-ramp are next
compared with their mean representation, namely streamwise and wall-normal velocity, shear
and streamwise-velocity streaks. To pinpoint diverging patterns, we additionally present the
mean-flow distortion (2.19). This field, denoted by 〈q〉d, is obtained as subtraction of the base
flow to the mean flow, i.e., 〈q〉d = 〈q〉 − qs. Thus, when considering the streamwise velocity
and shear fields, regions with 〈q〉d > 0 express that mean flow values are larger in magnitude
than base flow values and vice-versa. This may not be the case for the wall-normal velocity
and streamwise-velocity-streak fields due to the importance of the sign in these quantities.
To maintain this consistency with respect to the interpretation of the sign in the comparison
between base and mean representations, differences in the wall-normal velocity and streak
fields are respectively highlighted by computing | 〈v〉 | − |vs| and the distorted streamwise-

velocity-streak energy, i.e.,
〈
estr
〉d

= 1/2(
〈
ustr
〉2 −

(
ustr

s

)2
). Accordingly, regions of positive

values of these variables express as well that the mean flow quantities are larger in magnitude
and vice-versa. An extended list of y-z planes of the aforementioned flow variables at different
streamwise locations can be found in §A.4, in the appendix.

Streamwise and wall-normal velocity fields

Through visual inspection, differences between base and mean streamwise and wall-normal
velocity fields are observed to become significant for x/h ≥ 10. This streamwise location
has as well been reported as the point of divergence between the N -factor curve and the
integrated DNS disturbance energy (figure 4.26). Furthermore, as for being the region of
onset of flow instabilities, differences are first detected at the central shear layer. At x/h = 10,
the streamwise mean-flow distortion captures the imprint of K-H instability in this region;
see figure A.5(a) of the appendix.

As discussed previously in this work, the wall-normal velocity field in the base flow undergoes
a strong decrease in magnitude along x/h. In the mean flow field, however, upwash and
downwash regions maintain their strength and expand upward and sideward; see figure A.6
of the appendix. The activity of hairpin vortices and leg-buffers has shown to introduce a
spanwise-alternating pattern of upwash and downwash in the instantaneous flow field (figure
4.25). This is as well captured in the mean flow configuration. The organisation of 〈v〉 in
figure 4.27(c,d) is consistent with the organisation of v in figure 4.25(a,b) and the analysis
presented in §4.3.2. The increased wall-normal activity of the instantaneous flow enhances
the redistribution of streamwise momentum within the boundary layer.

Close to the micro-ramp, perturbation-induced upwash and downwash gradually start ex-
changing momentum between the deficit region and central outer portions of the boundary
layer. Due to the fact that for increasing x/h hairpin legs move downward and remain close
to the surface, wall-normal perturbation activity gradually intensifies near the wall as well.
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This carries a strong implication, because the perturbation-induced downwash maintains an
effective entrainment of high-momentum fluid near the wall. In the mean flow field, the lower
portion of the boundary layer aside the centre plane progressively becomes fuller, while it
undergoes a rapid recovery in the base flow. At x/h ≈ 14, two symmetric regions of posi-
tive streamwise mean-flow distortion arise at |z/h| = 1, the spanwise location of enhanced
downwash (figure 4.27)(a,c). On the other hand, a hairpin-induced central upwash moves
low-momentum fluid upward, which causes a downward expansion of the momentum deficit.
In the laminar base flow, the persistent central upwash has shown to produce a similar effect.
Hence, for a broad range of x/h, streamwise mean-flow distortion yields near-zero values at
the centre plane near the wall; see figure A.5 of the appendix.

Further downstream, the activity of LoBs enhances the downwash around |z/h| = 1; at
x/h = 40, all regions of positive streamwise mean-flow distortion have become similar in
magnitude, as illustrated in figure A.5(d.3 ) of the appendix. In the near-wall region along
the micro-ramp span, the downwash gradually fills up the boundary layer at the centre plane
since it starts to dominates over central upwash. In parallel, LoBs exert as well upwash at
their outermost side; this upwash lifts low-momentum fluid up and empties the boundary
layer around |z/h| = 2. Regions of negative 〈u〉d thus arise at these spanwise positions.
Ye et al. (2016) point out that sideward regions of low-speed fluid yield conditions for a
second generation of hairpin vortices to grow far downstream the micro-ramp. These vortices
have been previously identified in the instantaneous vortical field depicted in figure 4.24.
LBIVs further contribute to subtract momentum from the boundary layer at |z/h| = 2 since
they rotate in a sense opposite to LoBs. In turn, the rotational motion associated to LBIVs
introduces new regions of positive streamwise mean-flow distortion away from the centre plane
(figure 4.27(b)). High and low-momentum fluid moved under the action of LoBs and LBIVs
is recognised as the first and second generations of lateral perturbations in figure 4.20.

As a consequence of the aforementioned, we observe major differences between base and
mean flow organisations far downstream the micro-ramp. For the latter case, at x/h =
80, the spanwise-alternating pattern of wall-normal velocity extends to approximately 0 ≤
y/h ≤ 5, |z/h| ≤ 5, as illustrated in figure 4.27(d). The mean streamwise velocity field
features a wavy pattern, which is assumed to be consequence of the fact that the system of
elongated quasi-streamwise vortices has taken the dominant role in redistributing momentum
within the boundary layer. The location of peaks and valleys along z/h in figure 4.27(b.2 )
is coherent with the spanwise organisation of upwash and downwash in figure 4.27(d.2 ).
From approximately x/h = 50 onward, the largest difference between the base and mean
streamwise velocity fields is captured near the wall aside the centre plane, as mentioned, due
to the sustained perturbation-induced entrainment of high-momentum fluid in this region.
The spanwise spreading of the wake, however, has also caused the region of positive mean-
flow distortion to expand along approximately |z/h| = 6. On the other hand, the central-
upper region of positive streamwise mean-flow distortion, initially much stronger than its
near-wall counterpart, has significantly decreased in magnitude. This is the consequence of
the sustained upwash in the base flow that shapes part of the central velocity profile (§4.2.1)
in a manner similar to hairpin vortices.
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Figure 4.27: y-z planes of (a,b) streamwise and (c,d) wall-normal velocity in (1) base flow, (2)

mean flow at (a,c) x/h = 20; (b,d) x/h = 80. 〈u〉 d at (a.3) x/h = 20; (b.3) x/h = 80.

| 〈v〉 | − |vs| at (c.3) x/h = 20; (d.3) x/h = 80. Iso-contour of 〈u〉 d = 0 (black line).
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Streamwise-velocity-streak and shear fields

The wake of the micro-ramp develops a system of streamwise-velocity streaks different to that
observed in the base flow. The differences are consistent with the topology of the streamwise
mean-flow distortion field. Already at x/h = 20, the cores of the momentum excess regions
in the mean flow have become stronger and remain close to the surface; see figure 4.28(c.2).
The largest values of

〈
ustr

s

〉
are observed at |z/h| = 1, the spanwise location of downwash

in the mean flow and positive streamwise mean-flow distortion near the wall. On the other
hand, the core of the momentum deficit in the mean flow has recovered more rapidly than
in the base flow and the whole region of reduced momentum has grown upward; see figure
4.28(c). As explained, this is consequence of alternate upwash and downwash in x/h at the
central shear layer induced by hairpin vortices.

Far downstream the micro-ramp, velocity deficit at the central outer portion of the boundary
layer maintains its initial characteristics: it is less strong that the base flow deficit and reaches
larger wall-normal positions; see figure 4.28(d). On either side, above the wall, we capture
further regions of reduced velocity produced by the activity of LoBs and LBIVs. Momentum
excess is dominant near the wall and much stronger than in the base flow. Aside the centre
plane, we detect patches of added momentum attached to the wall; these feature the largest
values of

〈
ustr

s

〉
. Sufficiently downstream the micro-ramp, the streamwise-momentum streak

field becomes positive at z/h = 0. This is not the case in the base flow. Moreover, the
action of LBIVs introduces positive streaks much aside the centre plane, which coincide with
the lateral regions of positive mean-flow distortion. As a consequence, the momentum excess
close to the surface covers a spanwise extent much broader than the micro-ramp span. Only
in the range 2 ≤ |z/h| ≤ 3 —the exact position depends on x/h— less momentum excess is
generated, as compared to its spanwise vicinity. This is ascribed to the fact that LoBs and
LBIVs lift upward the lowest level fluid at this spanwise position.

Added momentum near the wall yields an enhanced wall shear. The behaviour of the mean
shear field in figures 4.28(a,b) and A.7 of the appendix is in agreement with the trend initially
presented in figure 4.2(b). Sufficiently close to the micro-ramp, the distribution of wall shear
in qs and in 〈q〉 resemble each other qualitatively. At x/h ≈ 14, wall shear in the mean
flow experiences an increase. The leg portions of hairpin vortices move towards the surface,
suggesting that they enhance the momentum transport close to the wall and introduce the
positive mean-flow distortion in this region. The change of role in the re-energisation of the
near-wall fluid from the primary vortices to hairpin vortices would be additionally supported
by the fact that in figure 4.2(b), we detect a sudden spanwise expansion of the high wall-shear
strips at the position at which these increase in magnitude. As illustrated in figure 4.22(b),
hairpin legs cover a larger spanwise extent than the primary vortices at this location.

When moving downstream, hairpin legs are maintained at a rather constant spanwise position,
and so do the regions of enhanced wall shear. Like the situation in the base flow, we detect a
less “healthy” boundary layer at the centre plane for a broad range of x/h, as a consequence
of the lift-up of low momentum fluid under the action of the hairpins, but at the outer part of
the wake as well, due to negative streamwise velocity streaks introduced by LoBs. The action
of LBIVs manifests as well; when moving downstream, wall shear is observed to gradually
expand in the spanwise direction. Away from the surface, the action of perturbation has
introduced a spanwise-alternating patter of low and high shear and has destroyed the upper
part of the central arch-shaped shear layer; see figure 4.28(b.2).
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Figure 4.28: y-z planes of (a,b) shear and (c,d) streamwise velocity streaks in (1) base flow,

(2) mean flow at (a,c) x/h = 20; (b,d) x/h = 80. 〈s〉 d at (a.3) x/h = 20; (b.3) x/h = 80.

〈estr〉d at (c.3) x/h = 20 ; (d.3) x/h = 80. Iso-contours of (a.1,b.1) ssh/u∞ = 1/2, (a.2,b.2)

〈s〉 d h/u∞ = 1/2, (c,d) 〈ustr〉 /u∞ = 0.2 (black line).
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4.4.2 Derivation and evaluation of a streamwise-momentum-streak trans-
port equation for incompressible mean flow fields

Results of figure 4.28(c,d) show visual evidence that perturbation activity enhances the gen-
eration of momentum excess. Like in the base flow analysis, we intend to assess these ob-
servations quantitatively. For that purpose, we next reproduce figure 4.13 and the streak
budget analysis presented in §4.2.4 for the mean flow field. So, we first address the deriva-
tion of a streamwise-momentum-streak transport equation for incompressible mean flow fields
analogous to (4.7).

We assume incompressible flow with constant viscosity. In the unperturbed region (2.16),
wun = 0, ∂uun/∂z = 0, ∂vun/∂z = 0. Moreover, we consider the mean flow field to be a
time-independent solution, i.e., ∂ 〈q〉 /∂t = 0. Due to the lack of mean flow convergence
near the outlet, we consider this assumption valid for 0 ≤ x/h ≤ 70, a range in which we
do not observe significant asymmetries in the mean flow organisation. Following the RANS
decomposition (White, 2006), we express the instantaneous velocity field as (2.20)

v = 〈v〉+ v′′. (4.11)

Under the definition of the instantaneous streaks field (2.17), the time-averaged velocity-streak
field reads〈

vstr
〉

= 〈v〉 − vun. (4.12)

We now propose to re-express (4.11) as

v = vun +
〈
vstr
〉

+ v′′. (4.13)

A similar decomposition is performed for the pressure. First, introducing (4.13) into the mass
conservation equation (2.3) yields

∇ ·
〈
vstr
〉

+∇ · v′′ = 0,

inasmuch as ∇ · vun. By time-averaging the equation above, and since 〈q′′〉 = 0, it follows
that

∇ · v′′ = 0 (4.14)

and

∇ ·
〈
vstr
〉

= 0. (4.15)

Secondly, by introducing the velocity and pressure decompositions into the streamwise com-
ponent of the momentum conservation equation (2.4), we obtain

ρ
∂v

∂t
+ ρvun ·

(
∇
〈
ustr
〉

+∇u′′
)

+ ρ
(〈
vstr
〉

+ v′′
)
·
(
∇uun +∇

〈
ustr
〉

+∇u′′
)

+

ρvun · ∇uun +
∂pun

∂x
− µ∇2uun︸ ︷︷ ︸

= 0 (4.5)

= −
∂
〈
pstr
〉

∂x
− ∂p′′

∂x
+ µ∇2

〈
ustr
〉

+ µ∇2u′′.
(4.16)
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Finally, by time-averaging equation (4.16) and since vun,
〈
vstr
〉
, and v′′ are solenoidal fields,

it follows that

ρ(vun · ∇)
〈
ustr
〉

= −
∂
〈
pstr
〉

∂x
+ µ∇2

〈
ustr
〉

+∇ ·
(
−ρuun

〈
vstr
〉)

+∇ ·
(
−ρ
〈
ustr
〉 〈
vstr
〉)

+∇ ·
(
−ρ
〈
u′′v′′

〉) (4.17)

or

ρ(vun · ∇)
〈
ustr
〉︸ ︷︷ ︸

streak advection

= −
∂
〈
pstr
〉

∂x︸ ︷︷ ︸
pressure

+µ∇2
〈
ustr
〉︸ ︷︷ ︸

diffusion

+ ∇ ·
streak stress︷ ︸︸ ︷

(−ρ 〈u〉
〈
vstr
〉
)︸ ︷︷ ︸

streak-shear-correlation

+∇ ·

Reynolds stress︷ ︸︸ ︷
(−ρ

〈
u′′v′′

〉
) .

(4.18)

Equation (4.18) as a whole, and its terms independently, show a structure similar to the
transport equation of streamwise-momentum streaks for steady flow fields (4.7). In particular,
the streak stress term, which is the primary generator of the streaks in the base flow, presents
the same form as in (4.7). Here, an extra term on the RHS of (4.18) is obtained, the well-
known Reynolds stress term of the RANS equations. It represents a new streak transport
mechanism since it does not have a counterpart in (4.7). Congruence between terms in
equations (4.18) and (4.7) allows us to compare their relative contribution in the generation
and destruction of streamwise-momentum streaks in the base and mean configurations of the
micro-ramp wake. Differences will be attributed to the effect of perturbation development.

Following the approach of the base flow analysis, we evaluate the transport equation (4.18)
using a control volume approach. Expression (4.18) is integrated over the excess and deficit
regions: ΩE and ΩD, which are now defined based on the mean quantities. In a fashion similar
to the base flow analysis, positive or negative flux of ρ(vun · ∇)

〈
ustr
〉

across ∂ΩE respectively
express local generation or destruction of momentum excess. In ΩD, positive or negative
flux of ρ(vun · ∇)

〈
ustr
〉

across ∂ΩD respectively indicate whether momentum deficit is locally
destructed or generated. The results of the integration are presented in figure 4.29(a,b). It
contains two curves that are not present in the base flow analysis, namely the contribution
of Reynolds stresses and

∫ (
ρ(vun · ∇)

〈
ustr
〉
− ρ(vun · ∇)ustr

s

)
dAE

i . The latter is additionally
incorporated to highlight differences between generation or destruction of momentum streaks
in the base and mean flows. In figure 4.29(c), the distribution of AE

i and AD
i along x/h is

additionally presented. Upon first glance, figure 4.29(a) gives a quantitative confirmation
that the generation of momentum excess in the mean flow far downstream the micro-ramp is
positive and much larger than that in the base flow.

First, we focus on the streak generation in ΩE. Like in the base flow, in the micro-ramp
vicinity, the primary vortex pair plays the dominant role in introducing positive streamwise-
velocity streaks into the flow field. In absence of significant perturbation activity, the con-
tribution of the Reynolds stresses (red curve in figure 4.29(a)) to the flux of ρ

〈
ustr
〉

across
∂ΩE is virtually zero close to the micro-ramp, conform with small-perturbation amplitude.
All other terms in (4.18) follow a trend similar to that presented in figure 4.13(a). As pertur-
bations grow gradually, the Reynolds stress term departs from the horizontal axis, becomes
negative, and so it yields a destructive contribution, i.e., contributes negatively to the flux
of ρ

〈
ustr
〉

across ∂ΩE. The effect of disturbance activity in the transport of momentum
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Figure 4.29: Terms of (4.18) integrated over (a) ΩE, (b) ΩD in the mean flow as function of
the streamwise coordinate: ρ(vun ·∇) 〈ustr〉 (solid black), −∂ 〈pstr〉 /∂x (solid green), µ∇2 〈ustr〉
(solid magenta), ∇· (−ρ 〈u′′v′′〉) (solid red), ∇· (−ρ 〈u〉 〈vstr〉) (solid blue) split into the relative
contribution of ∇ · (−ρuun 〈vstr〉) (dash-dotted blue) and ∇ · (−ρ 〈ustr〉 〈vstr〉) (dotted blue) as
expressed in (4.17), ρ(vun ·∇) 〈ustr〉− ρ(vun ·∇)ustrs (solid orange), local sum of terms of (4.18)
(dashed black). (c) AE

i (orange) and AD
i (red) in the mean flow along x/h.

streaks is, however, not completely characterised by the Reynolds stress term. It also man-
ifests itself through the adaptation of the streak stresses (blue curve) and diffusion (purple
curve) in that perturbation development deforms the mean flow with respect to the base flow.
The pressure (green curve) exhibits a behaviour that is very similar to that in the steady-
state configuration, i.e., does not add a significant contribution for x/h > 10, neither in ΩE

nor in ΩD. At x/h = 11.5 the curve characterising Reynolds stresses reaches a local mini-
mum; the K-H instability has given rise to the first generation of hairpin vortices. The term∫ (
ρ(vun · ∇)

〈
ustr
〉
− ρ(vun · ∇)ustr

s

)
dAE

i (orange curve in figure 4.29(a)) is negative around
this position mainly as a consequence of the destructive contribution of the Reynolds stresses.
It implies that generation of momentum excess momentarily becomes larger in the base flow.

The decrease of the streak stress curve along x/h in the base flow highlights that the primary
vortices gradually lose their capability to generate momentum excess. In the mean flow, how-
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Figure 4.30: Streamwise evolution of the normalised (4.19), the added momentum in the base
flow, EB (black), and in the mean flow, EM (red).

ever, the curve of the streak stresses —which adds the largest productive contribution as well—
reaches a global minimum at x/h = 21. As mentioned previously, the downwash induced by
the hairpins starts to reinforce the core of the excess region. This manifests through the streak
stress term, whose decreasing trend is first stabilised and thereafter reverted. Perturbation
motion takes over the role of the primary vortex pair in redistributing momentum within the
boundary layer, in agreement with observations of Bo et al. (2012), and starts to enhance it.
At x/h = 25, the contribution of the Reynolds stresses has decreased in absolute value, while
that of diffusion is maintained rather constant; the

∫ (
ρ(vun · ∇)

〈
ustr
〉
− ρ(vun · ∇)ustr

s

)
dAE

i

becomes zero at this streamwise position. From that point onward, until x/h = 70, this dif-
ference becomes positive and gradually increases due to the intensification of streak stresses.
The action of the streak stresses grows sufficiently to counteract the effect of diffusion and the
Reynolds stresses, which remain of destructive nature, and generates the momentum excess
with increasing x/h. At the end of the domain, the flux of ρ

〈
ustr
〉

across ∂ΩE becomes as
large as at x/h = 8.

With regard to the momentum deficit, the previously reported initial effective exchange of
momentum between the deficit region and the outer part of the boundary layer due to K-H
activity is mathematically expressed as positive flux of ρ

〈
ustr
〉

across ∂ΩD for 7.2 ≤ x/h ≤ 16
in figure 4.29(b). Momentum deficit is destroyed in this range, which is conform with the
initial rapid recovery of the low-momentum dip, much faster than in the base flow. It is
illustrated in figure A.8 of the appendix. Further downstream, the system of fluxes across ∂ΩD

shows similarities to that across ∂ΩE. Diffusion and Reynolds stresses remain of a destructive
nature, i.e., contribute positively to the flux of ρ

〈
ustr
〉

across ∂ΩD. The contribution of streak
stresses gradually grows in x/h and carries an increase of the total momentum deficit. For
x/h > 25, the curve characterising the total flux of negative momentum streaks (solid black
curve) follows a trend analogous to that of the positive streaks; it first stabilises and thereafter
experiences an increase. At x/h = 70, the streak stresses, the Reynolds stresses and diffusion
evolve in absolute value at a rather similar rate in x/h, which balances the generation of
momentum streaks in ΩD and in ΩE.

We finalise the analysis by condensing previous findings with regard to the momentum excess
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generated in the base flow and in the mean flow. We evaluate the streamwise evolution of
the amount of momentum excess contained in the boundary layer at a particular streamwise
position, relative to the amount of momentum excess at x/h = 0. For that purpose, we define

EB(xi) =

∫
AE
i

ρustr
s

ρ∞u∞
d

(
Ai
h2

)
and EM(xi) =

∫
AE
i

ρ
〈
ustr
〉

ρ∞u∞
d

(
Ai
h2

)
, (4.19)

i.e., the non-dimensional added momentum in the base flow (EB) and in the mean flow (EM)
at xi. The terms in (4.19) are respectively integrated over the regions of momentum excess
defined using the base flow and the mean flow quantities. Expressions (4.19) evaluated in
the range 0 ≤ x/h ≤ 90 are presented in figure 4.30. The trend followed by the curves of
figure 4.30 is consistent with the analysis presented above. In the base flow, the generation of
momentum excess is not limited to the micro-ramp location, but the amount of momentum
excess in the boundary layer eventually stabilises in the streamwise direction. In the mean
flow, we observe that around x/h = 12, the amount of momentum excess is slightly lower
than in the base flow. This is in agreement with the result of figure 4.29(a) and the previous
analysis with regard to the role played by the Reynolds stresses for small x/h. The curves of
figure 4.30 diverge at x/h ≈ 20, slightly upstream the x-position at which we reported that the
generation of momentum excess in the mean flow equals to that in the base flow. From that
point onward, the amount of added momentum in the mean flow becomes increasingly larger
than in the base flow for increasing x/h. At approximately x/h = 50, the curve representing
the productive flux of momentum excess in the mean flow in figure 4.29(a) acquires a relatively
constant trend, and the curve of EM in figure 4.30 grows in x/h quasi-linearly. At x/h = 90,
the amount of added momentum in the mean flow is significantly larger than in the base flow.
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Chapter 5

Conclusions and Recommendations

In the introduction, we raised four main research questions and stated several objectives. We
now aim to summarise and condense the major achievements and findings of our investigations
based on these, as well as to provide recommendations for possible future work.

5.1 Conclusions

5.1.1 SFD functionality

Selective Frequency Damping (SFD) is a method for the computation of steady-state solutions
of globally unstable dynamical systems. Our interest in SFD was driven by the necessity
to numerically stabilise the unstable wake of a micro-ramp vortex generator operating at
supercritial roughness Reynolds number (Rehh) conditions. In this flow regime, the classical
numerical time-marching methods generally fail to converge towards a steady solution of the
Navier-Stokes equations, because the instantaneous flow field, denoted by q, naturally diverges
from the laminar steady (base) flow field, denoted by qs. SFD is widely used nowadays and
the preferred approach for aerospace applications. However, it has two model parameters, χ
and ∆, which are key to the method’s effectiveness and efficiency and whose selection remains
a common predicament in the literature. In the first part of this work, we examined in detail
the effect of χ and ∆ to the functionality of SFD.

Upon relation of the eigenvalues, µ, of an uncontrolled Navier-Stokes system with the eigenval-
ues, λ, of its controlled SFD version, we found simplified algebraic expressions which describe
the dynamics of SFD systems. Useful properties were derived based on these: we found
that the SFD equations are self-similar to the ratio of the growth rate over the frequency
of the most unstable eigenvalue, µc, of the system and we proved that SFD is not capable
of stabilising systems unstable to steady eigenmodes, as suggested by some authors in the
literature.

Two different, but interconnected, behaviours of the λ eigenvalues of the controlled system
were identified. When χ→ 0, one solution tends to µc and the other to −i/∆. When χ→∞,
one solution tends to 0 and the other to µc

r in its real part and to −∞ in its imaginary part.
We showed that the λ solution which approaches the origin when χ→∞ does that from the

MSc. Thesis Jordi Casacuberta Puig



90 Conclusions and Recommendations

positive semi-plane (unstable region). Consequently, we indicated that choosing too large χ
yields unstable behaviour of the controlled system and SFD may fail to converge. This is
opposed to what is claimed by Åkervik et al. (2006), the accepted consensus in the literature,
and recently questioned by Jordi et al. (2014). We proved that SFD is always able to stabilise
systems that are unstable to one mode with a non-zero eigenfrequency. Upon examination
of the λ solution branches, we found that there exists a combination of model parameters,
denoted by χ? and ∆?, which maps both λ solutions towards the same point in the complex
plane (λ?). Since λ? is always located in the negative semi-plane (stable region), choosing
χ = χ?(µc) and ∆ = ∆?(µc) virtually always stabilises the flow problem.

Although χ? and ∆? are simple analytical expressions, their computation requires a previous
knowledge of µc, in turn requiring the base flow. We proposed the flow unleash technique
for characterising the stability properties of the unstable eigenmode associated to the dis-
cretised system without having to perform an independent stability analysis. The technique
relies on letting the small perturbation eigenmodes of the system develop on a sufficiently
time-converged SFD base flow. From the controlled and flow unleash SFD simulations, the
eigenvalues µs and µc respectively ruling the dynamics of the stabilised and uncontrolled sys-
tems can be inferred. In this regard, the accuracy of the estimate of µc is key to the success
of χ? and ∆? to yield convergence; we found that the non-dimensional parameter µc

i/µ
c
r rules

the numerical feasibility of SFD. The larger µc
i/µ

c
r, the larger is the required relative accuracy

of χ? and ∆?. Accordingly, depending on the digital precision of the numerical tools used to
compute the base state, a threshold can be set for which the application of SFD is practically
infeasible.

The stabilisation of systems unstable to more than one mode is challenging and can even be
impossible depending on the dynamical characteristics of the system. Difficulties arise when
unstable eigenvalues with large µi/µr are located close to the origin of the complex plane.
We derived an analytical expression that can be used to determine whether SFD is capable
of driving the system, unstable to multiple modes, towards the base solution. Under these
conditions, a technique is introduced to select adequate χ and ∆ yielding global stabilisation
of the system.

We implemented SFD into INCA, a TU Delft’s in-house code. We tested the SFD method
and the aforementioned theoretical developments by computing the steady state of an incom-
pressible cylinder flow at Re = 100. The usage of χ? and ∆? yielded a well-converged base
flow under the conditions predicted by our mathematical model. Furthermore, by applying
the flow unleash technique to the cylinder case, we obtained matching eigenmode dynamics
with the results of an independent stability analysis.

The choice of χ? and ∆? generally yields suboptimal performance in terms of convergence
rate. Based on the dynamics of the controlled eigenvalues λ, we proposed a new hypothetical
optimal configuration: the highest convergence rate of an SFD simulation is obtained when

the most critical stable steady or low-frequency eigenvalue intersects max
{
λc

1,i, λ
c
2,i

}
in the

imaginary coordinate at the furthest distance from λi = 0. This represents a new contribution
that leads to more efficient parameters than the current consensus established by Jordi et al.
(2015); the existence of such parameters for the cylinder flow case was already demonstrated
by Cunha et al. (2015). The optimisation analysis was based on the fact that the time-
asymptotic SFD dynamics are governed by the least stable controlled eigenvalue λs; in the
linear perturbation regime the spectral radius of the simulation is determined by λs

i . Given the
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hypotheses that the base state is unstable to an unsteady discrete mode and the convergence of
the stabilised dynamics is ruled by a stable steady mode, we presented analytical expressions
for the SFD parameters, χopt and ∆opt, that minimise the spectral radius of the simulation.

The proposed optimal configuration was tested to the cylinder flow case. We ran simulations
with different model parameters and compared the computational time required to reach a
convergence bound of 10−7. The application of χopt and ∆opt yielded a reduction in time by
35% with respect to the parameters presented by Jordi et al. (2015), which coincided with
the application of χ? and ∆?. A reduction by 75% of the time was achieved when comparing
the usage of χopt and ∆opt and standard model parameters, χ = 1 and ∆ = 5.

5.1.2 Micro-ramp flow dynamics

In the second part of this work, we studied the wake of a micro-ramp vortex generator
immersed in a quasi-incompressible (M = 0.2) boundary layer at low supercritical Rehh con-
ditions. The micro-ramp is a passive flow control device which has become popular due to
its structural robustness and reduced drag. It induces a pair of counter-rotating stream-
wise vortices, the so-called primary vortex pair, which alters the structure of the boundary
layer. Ye et al. (2016) and Ye (2017) recently assessed the potential of this device to trigger
laminar-turbulent transition. By means of Direct Numerical Simulations (DNS), we numeri-
cally reproduced the Particle Image Velocimetry (PIV) experiments performed by Ye (2017)
and analysed the transitional flow dynamics behind the micro-ramp. The DNS results were
additionally compared with the results from linear stability analysis performed for the micro-
ramp base flow. Furthermore, our analysis intends to contribute to the discussion on the
micro-ramp working principle. Some authors suggest the micro-ramp to behave differently
from conventional vortex generators and question the current consensus with regard to the
role played by the primary vortex pair in making the boundary layer more robust.

We computed with DNS and SFD the base flow over the micro-ramp. SFD successfully
quenched the unstable frequencies developing in the micro-ramp wake. Nonetheless, large
computational efforts were required to obtain a sufficiently well-converged representation of
the three-dimensional base flow because SFD relies on asymptotic eigenmode decay in time.
The interest in obtaining the micro-ramp base state was driven, first, because it is an entity
required to perform linear stability analysis. Secondly, the primary vortex pair is a flow
feature contained in the base solution. Upon computation of qs, we isolated the structure of
the primary vortex pair and examined its momentum-transport capabilities when transitional
perturbation structures do not develop. We observed that the laminar primary vortices only
produce a significant entrainment of high-momentum fluid towards the wall at the micro-ramp
location and for an initial limited range of streamwise positions downstream from it. The
lower portion of the boundary layer aside the centre plane in the base flow undergoes a rapid
recovery in the streamwise direction, which is conform with the observed large decrease of
the wall shear far downstream the micro-ramp as compared to the near-ramp field. This was
hypothesised to be consequence of the rapid upward shift of the primary vortices together
with the steep decay of the lateral vortex-induced downwash in streamwise direction. At the
centre plane, a sustained upwash lifts the lowest-level fluid and empties the boundary layer in
this region. We detected secondary vortices in the base flow, much weaker than the primary
ones. These were assumed to not contribute significantly to redistribute momentum.
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We captured flow separation at the leading and trailing edges of the micro-ramp and our
results reproduced the mechanism of position alternation described by Wang et al. (2013).
According to this mechanism, low- and high-momentum fluid from the incoming bound-
ary layer at the micro-ramp span are respectively moved upward and downward along the
micro-ramp chord, which generates significant momentum excess and deficit already at the
streamwise position of the micro-ramp tip. However, contrarily to what is claimed by Wang
et al. (2013), we found that the momentum excess —both in the base flow and in the mean
flow configurations— is not uniquely generated at the micro-ramp. Lifted low-momentum
fluid under the action of the primary vortices (Li and Liu, 2011; Wang et al., 2013) and
rear separation at the micro-ramp would give rise to the characteristic low-momentum dip in
micro-ramp flows.

The results of spanwise BiGlobal stability analysis applied to the SFD-computed base flow
indicated that the wake of the micro-ramp sustains two convective instabilities. We qual-
itatively compared the real part of the stability eigenfunction of the dominant mode with
the structure of disturbances developing in the unleashed flow and we found high topological
resemblance with regard to the wall-normal-velocity and streamwise-vorticity perturbation
fields. The onset location of small-amplitude disturbances was found to be the detached
shear layer featuring an inflection point; the instability in this shear layer was hypothesised
to be of Kelvin-Helmholtz (K-H) type. Close to the micro-ramp, we obtained a good match
between the N -factor curve computed from the results of the linear stability analysis and
the integrated streamwise velocity perturbation energy obtained from the DNS. Significant
differences between the trend followed by these curves in streamwise direction were observed
to arise at nine micro-ramp heights downstream from the micro-ramp tip.

We computed with DNS the instantaneous organisation of the transitional micro-ramp wake.
Hairpin vortices induced at the detached shear layer were found to be a major structure
contributing to the unsteady behaviour of the wake. We detected hairpin-shaped vortices
developing in the unleashed flow, which suggested that these structures may be generated
through linear perturbation mechanisms. In agreement with the results presented by Ye
(2017), we captured a secondary vortical structure initially developing in between hairpin
vortices, the so-called leg-buffer. In turn, it induces another secondary vortical structure;
together, they play the central role in expanding the wake of the micro-ramp in spanwise
direction. We found a good topological match between the instantaneous iso-surfaces of
streamwise vorticity from DNS and those presented by Ye (2017) from PIV experiments after
low-order Proper Orthogonal Decomposition (POD) reconstruction. We detected the primary
vortices in the instantaneous flow field close to the micro-ramp. Sufficiently downstream,
however, we did not find evidence of their activity; the dominant pattern of upwash and
downwash in the instantaneous flow field was attributed to the dynamics of transitional
perturbations. We conjectured that the iso-surfaces of time-averaged streamwise vorticity
identified by Ye (2017) as the primary vortex pair would represent the mean activity of the
hairpin vortices sufficiently downstream the micro-ramp. In the streamwise range of ten to
seventy micro-ramp heights downstream from the micro-ramp tip, the curves of the integrated
streamwise velocity perturbation energy presented by Ye (2017) and computed from the DNS
results grow in streamwise direction at a similar rate.

We compared the topology of the qs and the time-averaged q fields. The differences were at-
tributed to the effect of perturbation development. Far downstream the micro-ramp, whereas
the central upwash and the lateral downwash in the base flow have significantly decreased
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their strength, the mean wall-normal velocity field displays a spanwise-alternating pattern of
upwash and downwash of larger magnitude. A major difference between the base and the
mean streamwise velocity fields was found near the wall aside the centre plane; the bound-
ary layer in the mean flow becomes fuller than the base flow boundary layer in this region.
Sufficiently far from the micro-ramp in the streamwise direction, perturbation activity takes
a central role in redistributing momentum in place of the primary vortices, and produces a
sustained entrainment of high-momentum fluid towards the surface close to the centre plane.
As a consequence of the spanwise spread of the perturbations under the action of the sec-
ondary vortices, the near-wall momentum at larger spanwise coordinates increases as well and
regions of reduced momentum are introduced away from the wall and from the centre plane;
the boundary layer in the mean flow is modulated in the spanwise direction. We observed a
significant increase in the wall shear in the mean flow as compared to the base flow, which
is conform with the aforementioned description. Furthermore, we showed that, whereas the
amount of momentum excess in the base flow boundary layer is stabilised in the streamwise
direction, the generation of momentum excess in the mean flow is kept significant far down-
stream the micro-ramp. The primary vortex pair in the base flow eventually becomes unable
to increase the near-wall momentum, but the instantaneous transitional perturbations are
capable of doing so in the mean flow.

All in all, our results question the current consensus with regard to the working principle of the
micro-ramp. We have shown the importance of the perturbation development in improving
the functionality of the micro-ramp for flow control applications when it is immersed in a
laminar boundary layer under the flow conditions considered in this work.

5.2 Recommendations and future work

On the efficiency of SFD

The SFD method succeeded to provide a well-converged base flow for both the cylinder and the
micro-ramp problems. However, even though we propose an optimal configuration in terms
of convergence rate, large computational efforts may be required to stabilise large discretised
systems because the nature of the method relies on eigenmode decay, asymptotically in time.
SFD is a very robust method and it is easy to implement, but it is not an efficient method,
especially when compared to the class of Newton iteration methods (Knoll and Keyes, 2004).
In §A.1, in the appendix, we test a coupled approach between SFD and a Newton method
to combine their strong points which shows promising results. It is applied to a test case,
the Lorenz system; see §A.1. On the one hand, when the coupled approach is compared to
the pure SFD method, the coupled approach reduces in two orders of magnitude the number
of iterations required to stabilise the system. On the other hand, when compared to a pure
Newton method, a similar number of iterations is needed, but the coupled approach does not
show sensitivity to the initial conditions, a major drawback in Newton methods. Accordingly,
we propose to test this idea of coupling SFD and the Newton iteration methods on Navier-
Stokes systems.

On the effectivity of SFD

We have shown that SFD is virtually always capable to stabilise systems that are unstable
to one unsteady eigenmode. At the same time, however, we have reported that SFD may
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not be able to stabilise systems supporting multiple modes. In the latter case, even though
the most unstable eigenmodes are quenched after applying SFD, less unstable modes, and
especially those with an associated small frequency, may remain unstable. At this point, we
would like to propose the following: one could think of the SFD-stabilised configuration as
a new system, F (q, q̄), to which SFD (or a different stabilising method) could be applied.
Since we have proved that a property of the SFD equations is that stable eigenmodes do not
become unstable after applying SFD, with a stabilising iterative approach, one could focus
on the most critical eigenmodes over and over until all of them have become stable, without
risk of destabilising the initially stable ones. We found that Massa (2014) proposes a similar
approach, by studying the effect of adding multiple control and filter terms to the original
system. Massa (2014) shows, through a parametric study, that for a particular flow problem
(initially posing difficulty to be stabilised with SFD), it is possible to reach a steady state if
a large enough number of extra terms is introduced.

A starting point of our proposed approach would be, for instance, to initially apply χ? and ∆?

evaluated for µc and, at each SFD iteration, apply χ? and ∆? computed using the least stable
λ of the previous iteration. Accordingly, it could be guaranteed that, at each SFD iteration,
the most unstable eigenmode is stabilised and hence, the maximum required number of SFD
iterations would be equal to the number of unstable eigenmodes supported by the original
system. Furthermore, considering the encapsulated formulation introduced by Jordi et al.
(2014), this method might be developed in such a way that it is only required to concatenate
multiple matrices containing the information of the parameters χ and ∆ at each iteration,
without altering the original discretised system. However, we have shown that too large χ
values move the unstable solutions towards the origin. After some iterations, the eigenvalues
associated to certain eigenmodes might have significantly increased their argument, eventually
leading to an infeasible application of this approach in reality.

On the micro-ramp functionality

The results presented in this work suggest a revision of the working principle of the micro-
ramp. We analyse the performance of this device when it is immersed in a laminar and
incompressible boundary layer. However, other authors which study micro-ramps operating
at supersonic and turbulent flow conditions point in a similar direction with regard to the
role played by the hairpin vortices. This is for instance the case of Bo et al. (2012) for a
turbulent M = 2.7 boundary layer. Based on the results of our analysis, we suggest to examine
the role played by the primary vortices and the large-scale hairpin vortices in different flow
environments as well. Sun et al. (2012) study the interaction between the primary vortex
pair and K-H vortices in a turbulent M = 2 boundary layer, but only for a limited range of
streamwise positions. We have observed a strong dependence of the development and the role
played by the primary vortices and the hairpin vortices with regard to the spatial coordinates.
We expect our analysis to serve for future studies of the design of micro-ramp set-ups, both
isolated and in an array configuration. Important features would be the strength of the
primary vortices, but also the stability properties of the detached shear layer and thus the
characteristics of the low-momentum dip.

When considering the usage of micro-ramps for laminar flow control applications, our results
highlight the relevance of the parameter Rehh. If the roughness Reynolds number is small
enough, the boundary layer remains laminar despite the presence of the micro-ramp, thus
yielding a possibly reduced performance. This is observed in the analysis presented in §A.5,
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in the appendix, considering a micro-ramp operating at M = 0.7. The stabilising effect of
compressibility weakens the perturbation growth, which affects negatively the micro-ramp
performance with respect to the M = 0.2 case.

A main reason for the eventual incapability of the base flow primary vortices to increase the
near-wall momentum is their rapid upward shift downstream the micro-ramp. An improved
design of a laminar passive flow control device would combine an enhanced momentum-
transport capability of the induced streamwise vortices with the promotion of laminar-
turbulent transition. For instance, a surface roughness element which would generate a strong
pair of streamwise counter-rotating vortices rotating in a sense opposite to that of the primary
vortices. Downstream-travelling vortex filament might then be kept attached to the wall, thus
possibly maintaining a more effective entrainment of high-momentum fluid towards the wall.
At the same time, the device would ideally introduce a strong instability into the flow field.
A hypothetical associated detached shear layer would give rise to transitional perturbation
structures initially closer to the surface.
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Appendix

A.1 Selective Frequency Damping and Jacobian-free Newton-
Krylov methods to stabilise a Lorenz attractor

The first section of the Appendix includes an initial test case which served to investigate the
functionality of SFD. Besides testing SFD, its performance was compared to that of Newton
iteration methods. The latter were finally discarded for the final cylinder and micro-ramp
applications.

A.1.1 Jacobian-free Newton-Krylov (JFNK) methods

As stated previously, the non-linear Navier-Stokes equations are expressed as q̇ = f(q). Since
we aim to drive this system towards a solution such that q̇ = 0, the goal of the approach
is to find the roots of f(q). The Newton iteration for q̇ = f(q) relies on applying a Taylor
expansion of f(q) around a past state qn, such that f(q) evaluated at a future state qn+1

reads

f(qn+1) = f(qn) +
∂f(q)

∂q

∣∣∣∣
qn

(qn+1 − qn) + h.o.t.

By neglecting high-order terms and setting f(qn+1) = 0, the Newton algorithm is expressed
as

J(qn)δqn = −f(qn), qn+1 = qn + δqn, n = 0, 1, ..., (A.1)

where J(qn) is the Jacobian matrix of f(q) evaluated at q = qn; δqn represents an increment
of q between states n and n+ 1.

Now we have to solve linear system defined by (A.1) at every nth step. For that purpose we
use a Krylov sub-space method. It is based on defining an initial linear residual, r0, for a
given initial guess of δq0,

r0 = −f(qn)− J(qn)δq0. (A.2)

MSc. Thesis Jordi Casacuberta Puig



104 Appendix

The method aims to minimize r0. Since it must be accomplished at every nth state, r and
δq are named with a different index (j). From all existing Krylov methods, we particularly
choose the Biconjugate Gradient Stabilized Method (BiCGSTAB).

In (A.1) we see that one of the terms of the expression is the product of J(qn) with the
increment of q between states n and n+ 1. The storage of the Jacobian matrix at every time
step for the current flow case described by the Navier-Stokes equations is not feasible due
to memory requirements. Therefore, a Jacobian-free approach is considered. This technique
relies on approximating the product of J(qn) with vector δqj as follows:

J(qn)δqj ≈ f(qn + εδqj)− f(qn)

ε
, (A.3)

with ε representing a small quantity. We take ε = 10−6 for the current analysis.

A.1.2 Coupled approach between SFD and JFNK

A new proposed method which couples SFD and JFNK with the aim of combining their strong
points is presented next. Major considerations are:

A. Initialization: due to the fact that the JFNK method is very sensitive to the initiali-
sation parameters, the coupled approach first applies a pure SFD method. After some
initial iterations, and once the solution has started to point towards the steady-state, the
method is switched and then pure JFNK takes the role. Generally, the JFNK method
converges very fast once a correct iteration direction has been taken. On the contrary,
the SFD method needs a few iterations to bring the solution near the steady state but
then it shows a low convergence rate until the problem is stabilized.

B. Modified line search method: we test a common globalisation approach combined
with the class of Newton iteration methods based on the line search method (Knoll and
Keyes, 2004). It relies on applying a relaxation factor (s) to the calculated δqn param-
eter, based on the idea that although δqn may point towards a correct direction, its
magnitude might not be adequate to ensure convergence. Therefore, at every iteration,
the new state is obtained as

qn+1 = qn + s δqn. (A.4)

Then the question that arises is what value to assign to the parameter s. We propose to
gradually decrease it (from s = 1 to s = 0.2) and choose a value such that ||f(qn+1)|| <
||f(qn)||, since the aim of the Newton iteration method is to drive f(q) towards a q
solution such that f(q)→ 0.

The implementation of the coupled SFD/JFNK approach considers the following steps:

1. Compute the multivariate function f(qn) at the original state n

2. Evaluate f(q) at the new state, based on qn+1 = qn + δqn

3. Define a tolerance (normcond), set s = 1 and logical = false
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4. if (||f(qn+1)|| > normcond× ||f(qn)||)

5. while (s > 0.2) and (logical == false)

6. s = s− 0.1

7. Compute a new update of ||f(qn+1)|| but now based on qn+1 = qn + s δqn

8. if (||f(qn+1)|| < ||f(qn)||)

9. lock = true

10. end

11. end

12. if (||f(qn+1)|| > normcond× ||f(qn)||)

13. qn+1 = qn+1
SFD

14. else

15. qn+1 = qn + s δqn

16. end

17. else

18. qn+1 = qn + δqn

19. end

A.1.3 Application to the Lorenz attractor

The Lorenz attractor is a set of three-dimensional non-linear time-dependant ordinary differ-
ential equations well-known for having chaotic solutions for a certain combinations of system
parameters. The equations defining the system read

dx

dt
= σ(x− y),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz,

(A.5)

where x = x(t), y = y(t), z = z(t). The parameters of the system are σ, ρ, β ∈ R, which
are generally assumed to be positive. The Lorenz system is a simplified model describing
atmospheric flows under the effect of convection.

For ρ < 1, there is only one steady-state point, corresponding to (0, 0, 0) and hence all trajec-
tories are attracted to the origin regardless of the initial conditions. For ρ > 1, two additional
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Figure A.1: Trajectory r(t) = (x(t), y(t), z(t)) of the Lorenz system in an unstable situation with
σ = 10, ρ = 28, and β = 8/3

steady-state points arise, whose coordinates are
(
±
√
β(ρ− 1),±

√
β(ρ− 1), ρ− 1

)
. These

points are stable if

ρ < σ
σ + β + 3

σ − β − 1
. (A.6)

When the system parameters are chosen such that the equilibrium points are unstable, the
solution orbits infinitely around these. Figure A.1 is representative of this, and shows the
trajectory of r(t) = (x(t), y(t), z(t)) considering σ = 10, ρ = 28 and β = 8/3, for which the
Lorenz attractor has chaotic solutions. To indicate the location in space of different relevant
solution point, in all figures we include the following notation: “IP” stands for initial point (of
the simulation), “FP” for final point (of the simulation), “‘SP” for steady point and “PSP”
for permanent steady point, which corresponds to (0, 0, 0). Now the aim is to apply different
stabilisation methods to drive the solution of the Lorenz attractor towards a steady state for
system parameters which make it unstable.

Based on the aforementioned specifications, the spatial evolution of r(t) when considering
σ = 10, ρ = 28 and β = 8/3 (corresponding to the same parameters of the unmodified
problem shown in figure A.1) is presented next for each of the stabilising methods (figure
A.2). Although it corresponds to an unstable configuration, it is moderately unstable. Thus,
we test as well more unstable configurations of the Lorenz system by increasing ρ for fixed σ
and β. For all simulations, the time step is set to τ = 0.01, χ = 1, ∆ = 5, the initial condition
is (5, 5, 5) and normcond = 2 for the coupled approach. To compare the performance of the
methods in terms of convergence velocity, the number of iterations until the steady-state point
is reached (||qn+1− qn|| = 10−4) for each approach is computed and summarised in table A.1.
In the coupled ESFD/JFNK approach, the total number of iterations includes those of the
base algorithm plus the ones associated to the line search method.
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SFD ESFD JFNK Coupled ESFD/JFNK

ρ = 25 1217 1221 43 24

ρ = 30 2179 2351 14 22

ρ = 40 3204 3162 7 17

ρ = 50 - - 7 17

ρ = 90 - - 66 19

ρ = 150 - - 76 27

Table A.1: Number of iterations required to reach the steady-state of the Lorenz system for each
of the tested methods and for different values of the ρ parameter
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Figure A.2: Trajectory r(t) of the Lorenz system when it is artificially driven towards steady-
state points by using four different methods (SFD, ESFD, JFNK and coupled ESFD/JFNK). The
parameters of the system are σ = 10, ρ = 28 and β = 8/3

MSc. Thesis Jordi Casacuberta Puig



108 Appendix

A.2 List of y-z planes of base flow variables in the near-ramp
region
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(a) (b)

(c) (d)

(e) (f )

(g) (h)

(i) (j )

Figure A.3: y-z planes. Streamwise velocity, x/h = 0 (a), x/h = 1 (b); iso-contour of us/u∞ =
0 (white line). Streamwise velocity streaks, x/h = 0 (c), x/h = 1 (d). Wall-normal velocity,
x/h = 0 (e), x/h = 1 (f ). Streamwise vorticity, x/h = 0 (g), x/h = 1 (h). Shear, x/h = 0 (i),
x/h = 1 (j).
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(a) (b)

(c) (d)

(e) (f )

(g) (h)

(i) (j )

Figure A.4: y-z planes. Streamwise velocity, x/h = 5 (a), x/h = 10 (b). Streamwise velocity
streaks, x/h = 5 (c), x/h = 10 (d). Wall-normal velocity, x/h = 5 (e), x/h = 10 (f ).
Streamwise vorticity, x/h = 5 (g), x/h = 10 (h). Shear, x/h = 5 (i), x/h = 10 (j).
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A.3 List of y-z planes of base and mean flow variables
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(i.1 )

(i.2 )

(i.3 )

(x/h = 90 )

(x/h = 90 )

(x/h = 90 )

(j.1 )

(j.2 )

(j.3 )

(x/h = 100 )

(x/h = 100 )

(x/h = 100 )

Figure A.5: Streamwise velocity in the base flow (1), mean flow (2), and 〈u〉 d /u∞ (3). y-z
planes at x/h = 10 (a), x/h = 20 (b), x/h = 30 (c), x/h = 40 (d), x/h = 50 (e), x/h = 60

(f ), x/h = 71 (g), x/h = 80 (h), x/h = 90 (i), x/h = 100 (j). Iso-contour of 〈u〉 d /u∞ = 0
(solid black line).
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(e.1 )
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(i.1 )

(i.2 )

(i.3 )

(x/h = 90 )

(x/h = 90 )

(x/h = 90 )

(j.1 )

(j.2 )

(j.3 )

(x/h = 100 )

(x/h = 100 )

(x/h = 100 )

Figure A.6: Wall-normal velocity in the base flow (1), mean flow (2), and | 〈v〉 /u∞| − |vs/u∞|
(3). y-z planes at x/h = 10 (a), x/h = 20 (b), x/h = 30 (c), x/h = 40 (d), x/h = 50 (e),
x/h = 60 (f ), x/h = 70 (g), x/h = 80 (h), x/h = 90 (i), x/h = 100 (j).
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(i.1 )

(i.2 )
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(x/h = 90 )
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(j.1 )

(j.2 )

(j.3 )
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(x/h = 100 )

Figure A.7: Shear in the base flow (1), mean flow (2), and 〈s〉 d h/u∞ (3). y-z planes at
x/h = 10 (a), x/h = 20 (b), x/h = 30 (c), x/h = 40 (d), x/h = 50 (e), x/h = 60 (f ),
x/h = 70 (g), x/h = 80 (h), x/h = 90 (i), x/h = 100 (j). Iso-contours of ssh/u∞ = 1/2,

〈s〉 d h/u∞ = 1/2 (solid black line).
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(i.1 )

(i.2 )

(i.3 )

(x/h = 90 )

(x/h = 90 )

(x/h = 90 )

(j.1 )

(j.2 )

(j.3 )
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(x/h = 100 )

(x/h = 100 )

Figure A.8: Streamwise streaks in the base flow (1), mean flow (2), and 〈estr〉d /u2∞ (3). y-z
planes at x/h = 10 (a), x/h = 20 (b), x/h = 30 (c), x/h = 40 (d), x/h = 50 (e), x/h = 60
(f ), x/h = 70 (g), x/h = 80 (h), x/h = 90 (i), x/h = 100 (j). Iso-contour of 〈ustr〉 /u∞ = 0.2
(solid black line).
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A.4 Boundary layer shape factor in the base and mean flow
fields

(a)

(b)

Figure A.9: Shape factor of the boundary layer in (a) the base and (b) the time-averaged flow
fields, depicted at y = 0.
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A.5 Compressibility effects

In this last section of the Appendix, we extend and describe some of the results of the M = 0.2
micro-ramp flow analysis to a M = 0.7 boundary layer case. The base flow is computed via
ESFD using χ = 0.96 and ∆ = 1.86, the same SFD parameters used to stabilise the M = 0.2
case. The convergence bound of the simulation is εR = 10−8. We use the M = 0.2 base flow
solution as initial condition.

A first main observation is the strong stabilising effect of compressibility, as suggested by the
literature (von Doenhoff and Braslow, 1961; Redford et al., 2010; Bernardini et al., 2012).
In the M = 0.7 instantaneous flow field, for small-to-moderate x/h, we do not capture a
significant perturbation activity and the structure of the primary vortex pair resembles that
of the M = 0.7 base flow configuration. Only for large x/h, the primary vortices start to
become distorted under the action of disturbances; see figure A.10. Although it is critical for
the system’s stability, the effect of the Mach number increase does not seem to significantly
alter the organisation of the base flow.

In the M = 0.7 instantaneous flow field, the primary vortex pair rapidly lifts off from the
surface; at x/h ≈ 30, its lifting motion has become less pronounced. This trend is analogous
to that reported in the M = 0.2 base flow analysis (§4.2.1). Gradually, the primary vortices
start to oscillate due to the fact that a (rather weak) perturbation train develops at the
spanwise upper shear layer. Differently from the M = 0.2 case, perturbation-induced vortical
structures do not become arch-shaped and feature significantly lower streamwise vorticity
values. As a consequence of the decreased disturbance activity, transitional perturbations
are not capable to significantly enhance the transport of momentum within the boundary
layer, even for large x/h. The primary vortices remain as the dominant structure in the
instantaneous flow field. This is supported by the results of figure A.11. Qualitatively, the
trend followed by the wall shear in the M = 0.7 base and mean flow fields appears to be
almost identical. Furthermore, the evolution in x/h of the regions of enhanced wall shear is
similar to that exhibited in the M = 0.2 base flow. Since secondary vortical structures do
not develop, the micro-ramp wake does not show to significantly expand in |z/h|.

Figure A.10: Instantaneous λ2 in the M = 0.7 case. Isosurface of λ2 = −4×10−5 colour-coded
by streamwise vorticity.
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(a)

(b)

Figure A.11: Wall shear in the M = 0.7 case for (a) the base and (b) the time-averaged flow
fields.

Thus, when it is immersed in a M = 0.7 boundary layer, the micro-ramp investigated in
this work shows a similar performance with and without disturbance development because
compressibility strongly weakens the perturbation activity. Since for this configuration the
primary vortices play the central role in the re-energisation of the lowest-level fluid, the
boundary layer is less “healthy” than in the M = 0.2 case sufficiently downstream the micro-
ramp.
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