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Abstract

Although additive manufacturing (AM) allows for a large design freedom, there are some manufacturing limitations that
have to be taken into consideration. One of the most restricting design rules is the minimum allowable overhang angle.
To make topology optimization suitable for AM, several algorithms have been published to enforce a minimum overhang
angle. In this work, the layer-by-layer overhang filter proposed by Langelaar (Struct Multidiscip Optim 55(3):871-883,
2017), and the continuous, front propagation-based, overhang filter proposed by van de Ven et al. (Struct Multidiscipl Optim
57(5):2075-2091, 2018) are compared in detail. First, it is shown that the discrete layer-by-layer filter can be formulated in
a continuous setting using front propagation. Then, a comparison is made in which the advantages and disadvantages of both
methods are highlighted. Finally, the continuous overhang filter is improved by incorporating complementary aspects of the
layer-by-layer filter: continuation of the overhang filter and a parameter that had to be user-defined are no longer required.

An implementation of the improved continuous overhang filter is provided.

Keywords Topology optimization - Additive manufacturing - Overhang angle - Front propagation

1 Introduction

Additive manufacturing (AM) is widely recognized for
its capability to manufacture complex components. As
the resulting designs of topology optimization (TO) are
frequently geometrically complex, the combination of both
methods has received significant interest. This interest
is even further increased with the advent of metal AM,
which opens the possibility to realize optimal functional
components with high strength and toughness.

One of the most active research topics on combining
TO and AM is the minimization of support structures
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required during manufacturing. Since AM is a layer-by-
layer manufacturing process, in the majority of industrially
relevant processes each layer requires a certain amount of
support from the previously constructed layers, for a variety
of reasons. For example, in fused deposition modeling, the
support is mainly required because a new layer cannot be
printed on air, and needs to be at least partly supported by
the previous layer (Jiang et al. 2018). For metal powder
bed fusion methods, each layer is built on either the already
existing part or metal powder. Heat accumulation can be a
major issue as the powder has low conductivity (Sih and
Barlow 2004), obstructing the path for heat towards the base
plate which acts as a heat sink. Here supports provide heat
conduction as well as mechanical support to, among others,
prevent distortions (Mercelis and Kruth 2006; Wang et al.
2013; Cloots et al. 2013).

Since the production and removal of supports subsequent
to printing is costly and time consuming, design rules have
been set up to prevent the need for supports (Thomas
2009; Adam and Zimmer 2014; Kranz et al. 2015). For
most AM processes, a critical overhang angle o, has
been defined. The overhang angle is the angle between
a down-facing surface and the base plate, as shown in
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Fig.1 In order to print a given
structure (left), it is discretized
into layers (right). The overhang
angle o is defined as the angle
between a down-facing surface
and the base plate £2¢

Fig. 1. Surfaces with an overhang angle lower than oy
are termed overhanging, and require supports. In order to
attain support free optimized structures, numerous studies
have proposed various methodologies to incorporate the
minimum overhang angle as a design rule in TO. Based on
the principle of overhang detection, these can be classified
into three categories: overhang detection by (i) a processing
of the geometry in printing sequence (e.g. Gaynor and
Guest 2016; Langelaar 2016; van de Ven et al. 2018); (ii)
inspection of the boundary orientation (e.g. Qian 2017; Guo
et al. 2017; Allaire et al. 2017; Zhang et al. 2019); and (iii)
simulating the (simplified) physics of the printing process
(e.g. Allaire et al. 2017; Amir and Mass 2018; Ranjan et al.
2018). For a comprehensive overview, the reader is referred
to Liu et al. (2018).

The focus of this study is on the methods in the first
category: the filters that follow the printing sequence. Most
methods in this category are presented as discrete filters,
defined on a discretized geometry. However, the front
propagation-based filter presented in van de Ven et al.
(2018) is continuous in nature. This study investigates the
differences and similarities between the discrete, layer-by-
layer methods presented in Langelaar (2016, 2017), and the
continuous, front propagation method presented in van de
Ven et al. (2018). Due to similarities in implementation, it
was suspected that the discrete layer-by-layer filter could
be formulated using front propagation. In this paper it is
shown that this is indeed the case. From this, it is concluded
that the layer-by-layer filter cannot be used on unstructured
grids as is. Furthermore, the front propagation-based filter is
improved by using aspects of the layer-by-layer filter, which
is enabled by the front propagation-based formulation of the
layer-by-layer filter.

This paper is structured as follows. First, a brief overview
of both methods is given in Section 2. Then, it is shown
that the discrete method can also be formulated with front
propagation discretized on a structured grid (Section 3).
Next, the differences between both filters are examined
(Section 4), and in Section 5 the continuous overhang filter
is improved by using aspects of the layer-by-layer filter.
Finally, the paper is concluded in Section 6. For clarity this
paper focuses on 2D formulations, but the principles apply
to the 3D case as well.
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2 Overhang detection methods

For the sake of completeness, the overhang detection
methods described in Langelaar (2017) and van de Ven et al.
(2018) are summarized in this section. In the remainder
of this work, the methods described in Langelaar (2017)
and van de Ven et al. (2018) will be referred to as the
layer-by-layer overhang filter, and the continuous overhang
filter, respectively. Both methods are designed for density-
based topology optimization, where the geometry is defined
by a pseudo-density field p where 0 < p < 1. Void
regions are indicated with p = 0, and regions of material
with p = 1 (Bendsge and Sigmund 2004). The overhang
filter is typically applied directly after the density filter, to
convert the density field p into a printable density field
&. The overhang filter removes the overhanging regions:
the geometry described by the printable density field & is
thus directly printable without support structures. This field
is then used evaluate the objective and constraints of the
topology optimization. Note that the overhang filter can
also be implemented as a constraint instead of a filter as
demonstrated in van de Ven et al. (2018), which gives the
possibility to relax the overhang constraint and balance
printability with the impact on performance.

2.1 The layer-by-layer overhang filter

The layer-by-layer overhang filter described in Langelaar
(2017) is defined on a structured rectangular grid. In a 2D
setting, any element of a structured mesh can be identified
by its row and column #, j. The filter can be summarized in
two statements: for an element ¢; ;, its supporting elements
are the three elements ¢; 1 j 1, ¢;—1,; and ¢; 1, j 11 directly
below it (see Fig. 2), and, the element’s printable density

i—1,

J—11 J JJ+1

Fig. 2 Element i, j can be supported by the three elements directly
below it
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&;,j cannot exceed the maximum printable density & of the
elements that support e; ;, i.e.

i = max(§i—1,j-1,&i-1,j, &§i—1,j+1), (D
& j = min(&; j, pi ), (2)

where the printing direction is assumed to be from the
bottom to the top row. The filter can be propagated
through a domain by initializing the bottom row of
elements with & ; = p; j, and then evaluating (1) and
(2) layer-by-layer in the printing direction. Evaluation
of sensitivities is performed in the reverse order. For
continuous differentiability and the use of gradient-based
optimization, the non-smooth min and max operators are
replaced by differentiable counterparts.

Note that the overhang angle is inherently linked to the
grid. For instance, a square element implies ooy, = /4.
When a suitable structured finite element mesh is used,
this filter can thus be applied directly to the elemental
densities. In other cases, a mapping between FE mesh and
a separate overhang grid must be used (Langelaar 2018).
Alternatively, Hoffarth et al. introduce a search cone to
define support relations on arbitrary meshes, instead of a
mapping (Hoffarth et al. 2017).

2.2 Continuous overhang filter
The overhang filter presented in van de Ven et al. (2018)

utilizes front propagation to detect overhanging regions.
In a front propagation scheme, a front is initialized at

output is an arrival time field 7' (x), which indicates for each
location the time at which the front reaches that location.

First, the concept of detecting overhang with front
propagation is demonstrated on a given geometry, ignoring
the dependence on the density field p. In order to detect
overhang in a given geometry, such as the one shown in
Fig. 3a, two arrival time fields are required. In the first
arrival time field, T3¢ the arrival times are proportional
to the height from the base plate §2¢, and isosurfaces thus
represent the printing sequence, as displayed in Fig. 3b.
Assuming that the base plate coincides with the origin, it is
given as

T (x) = b - x/fo, )

where b is a unit vector defining the build direction, and
fo represents the default propagation speed in this build
direction. The exact value of f is not important as it is
a scale factor whose effect is canceled, and is chosen as
1 ms—!. For the second arrival time field, T (x), a front
propagation is performed in the design domain £2, starting
from the base plate §29. This time, the propagation speed
is chosen such that the arrival times are equal to 7' (x),
except when the front travels in a direction below the
minimum overhang angle «op, i.e. when a region is not
printable. This is achieved using a an anisotropic speed
function, and the resulting arrival time field can be seen in
Fig. 3c. Consequently, a delay field t(x) between the two
arrival time fields can be calculated as

a boundary, and propagated throughout the domain. The  t(x) = T(x) — T'¥°(x). (€))
Fig.3 The shaded overhanging N
region in the geometry given in Y - Tlayer [s]
(a) can be detected with front ‘AR 1

. . SN\
propagation by constructing the 0 NN
arrival time fields given in (b) SR Y
and (c), and evaluating the AARRRRN 0.5
difference (d). The vector b ’
indicates the build direction
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In regions where t(x) > 0, the propagation has been
delayed, indicating that the structure is overhanging, as can
be seen in Fig. 3d. Finally, the printable density field & (x)
is attained from the delay field t(x) with the delay-density
relation h:

£(x) = h(t(x)), &)

where h is a monotonically decreasing differentiable
function with 2(0) = 1, such that zero delay results in full
density, and 0 < h(7(x)) < 1 for t(x) > 0. In (van de Ven
et al. 2018), & is defined as

h(t(x)) =27K7®), (6)

where k is a numerical parameter related to the element size:
a high value for k will result in a short transition from full
density to void as small delays will already result in low
values for £. Therefore, for fine meshes, k& is set to a higher
value than for coarse meshes.

The first arrival time field, 7'¢'(x), can be obtained
without performing an actual front propagation, as the
arrival times are equal to the distance between the base
plate £2¢ and the point of interest x. However, in order to
obtain the second arrival time field T (x), a front propagation
is performed, which is governed by the Hamilton-Jacobi-
Bellman equation:

min {(VIT(®)-a) fs(p(x),a,a0n)} =1, X € £2, (N
aed]

where f; anisotropic is the speed function that dictates the
propagation speed, and a is a unit vector determining the
direction of propagation: a € S1, S| = {a € R?|||a = 1}.
It is in the speed function f; where the original density field
p is coupled to the arrival times 7 (x) and thus printable
densities £(x). It is later shown that the speed function is
simply scaled with the densities. Since all the densities are
printable at the base plate £2p, it is required that

£(x) = p(x),

From this relation and (5), the initial condition for the front
propagation can be derived as

T(x)=h"'(p(x)),

where h~! is the inverse function of the delay-density
relation A, such that #(h~!(p(x))) = p(x). For example,
elements with p = 1 at the base plate are initialized at
T = Tlayer~

X € §2. (8)

X € £29, €))

2.2.1 The speed function

For the sake of simplicity, the anisotropic speed function
was scaled linearly with the density value p. As such,
the speed function f; can be decomposed into a part that
depends on the density field, and a part that depends on

@ Springer

the direction of propagation a and minimum overhang angle
Ooh-

fs(p(x), a, aon) = g(p(x)) f (@, aon). (10)

The function f(a, o) relates the direction of propagation
to speed. The speed function as used in van de Ven et al.
(2018) is displayed in Fig. 4, where « represents the
propagation direction defined by a. The top part of the speed
function, where oo, < o < 180° — aqp, is defined by
f = fo/sina. When the propagation direction is equal to
the build direction (¢ = 90°), the propagation speed is equal
to that of the reference field T e, f = fo. Moreover,
in order to maintain a front parallel to the base plate, the
propagation speed is increased to compensate for the larger
distance travelled to the next printing layer. For example,
for @ = 45°, f = /2 fo. However, when the propagation
direction is below ogp, i.e. when @ < agp or @ > 180° —aop,
the propagation speed is lowered, thereby a non zero value
of 7(x) is attained. The anisotropic speed function capable
of creating a delay in the overhanging regions is not unique.
In van de Ven et al. (2018) a function resembling a rectangle
is used, which is numerically efficient. The aspect ratio
of the rectangle shown in Fig. 4 designates the minimum
overhang angle aop.

Finally, the speed function f; also contains a geometry
dependence in the speed-density relation g(p(x)). In the
example shown in Fig. 3, the front propagated only through
the structure. However, with topology optimization, this
structure is determined by the density field p. In van de Ven
et al. (2018), the propagation speed is linearly scaled with
the density:

g(p (X)) = vyoid + (1 — vyoid) p(X), (1)

where vyeig 1S the minimum propagation speed in the void
regions, chosen such that 0 < vyoig < 1. Consequently, the

90
135° 45°

1800 L L L ] 00
1.5

a  225°

I/ fo

Fig.4 Polar plot of the rectangular speed function for o, = 45°, with
propagation speed on the radial axis, and propagation direction on the
tangential axis. A propagation direction of @ = 90° coincides with the
build direction b

270°
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front will be delayed in void regions, leading to t(x) > O,
and thus also void in the printable density field & (5).

2.2.2 Numerical implementation

The layer-by-layer overhang filter by Langelaar (2017)
is defined on a discretized domain, hence its numerical
implementation is straightforward (see Langelaar (2017)
for details). Here, the numerical implementation of the
continuous filter is briefly described in order to make a
comparison between the two.

The front propagation can be efficiently executed
using the Ordered Upwind Method (OUM) (Sethian and
Vladimirsky 2003), on any mesh type in 2D as well as
3D. The necessary steps are briefly explained, while some
details are omitted for brevity. In the OUM, nodes are
labelled either Far, Candidate, or Accepted. All of the nodes
are initialized as Far, with T = oo. Then, the arrival times
of nodes at the fixed boundary £2( are initialized and are
labelled Accepted. Finally, the nodes within a distance d
of these Accepted nodes are labelled Candidate. Then, the
following algorithm is executed:

1. Calculate the arrival times of the Candidate nodes.
Label the Candidate node with the lowest arrival time
as Accepted, and label the nodes within a distance d of
that node, that are not Accepted, as Candidate.

3. [If there are any Candidate nodes left, go to Step 1.

The distance d is defined as
d=zF/F, (12)

where z is a typical element length, and F| and F, are the
maximum and minimum values of f(a, «op), respectively.
Thus, the more anisotropic the speed function, the larger this
distance.

A crucial part of the algorithm is the calculation of the
arrival times of Candidate nodes. Let us first consider the
calculation of the arrival time of node i from a given point
x,,. This is simply the distance divided by the speed, plus
the arrival time at point x,,, defined as T, :

i Ix; —x, ||

P Tt a7 (13)

where a = (x; — x,)/I|x; —x, ||, and T)j' denotes the arrival
time at x; when calculated from x,,. In reality, the arrival
time of the Candidate node i is calculated from, in 2D, two
Accepted nodes, j and k. The point x,, is then a point on
the segment XX, as displayed in Fig. 5. The position and
arrival time are linearly interpolated between nodes j and &,
defined by parameter y:

Xy, =X;(1 —y) +x¢y, (14)
T, =T;(—-y)+Try. (15)

Fig. 5 Update of a node x; from x,, on the line segment x;x;. The
position of x,, is determined by y € [0, 1]. The update direction is
given by the unit vector a

The point from which x; is updated is the point that results
in the lowest arrival time:

lIxi — x|

T;k = min 7! = min ——— ¥~
yel0,11 fs(p(Xi), a, aoh)

T, 16
yelo,1] 7 +tly (16)

where T;k denotes the arrival time at X; when calculated
from the segment Xx;x;. Note that there is a dependency
between the speed function f; and y through the
propagation direction a. The final arrival time at x; is
the minimum arrival time that can be obtained from all
the segments between adjacent Accepted nodes within a
distance d:

7= min T! (17)
where NF(x;) is the set of Accepted nodes that are within
the distance d of x;.

In 3D the algorithm is unchanged, except that the
propagation is based on tetrahedrons instead of triangles: the
arrival time for a node i is calculated from three other nodes
instead of two, where the point x,, is now in the triangle
spanned by these three nodes instead of a line segment.

Analogous to the layer-by-layer filter, the sensitivities are
evaluated by following the reverse order in which the arrival
times are evaluated. Since the order of the front propogation
is already known, this reduces to a trivial loop over all the
elements, as detailed in van de Ven et al. (2018).

3 Formulating the layer-by-layer filter
with front propagation

Because the continuous filter is described in a continuous
setting, it can be readily used in unstructured meshes while
the maximum overhang angle can be adjusted independent
of the mesh by simply modifying the speed function.
However, in the previous section it became apparent that
there is a considerable difference in complexity between
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the two methods: the layer-by-layer filter can be described
by two equations while the continuous filter is much more
involved. This is caused for a large part by the fact that the
layer-by-layer filter is a discrete formulation, while the front
propagation filter is continuous, which makes it difficult
to compare both methods. Therefore, in this section, the
layer-by-layer filter is cast into in an equivalent continuous
formulation based on front propagation. To this end, the
speed function (10) and the speed-density relation (11) have
to be changed compared to the continuous filter, which is
shown in the following.

3.1 Speed function for the continuous layer-by-later
filter

In order to represent the layer-by-layer filter with front
propagation, first, the speed function is adapted. The
speed function utilized in van de Ven et al. (2018) allows
propagation in all directions (Fig. 4). However, in the layer-
by-layer filter, the printable density of an element only
depends on either of the three elements directly below it (1).
Therefore, the wedge-shaped speed function is chosen as
displayed in Fig. 6 (its 3D equivalent is a cone). With this
speed function, the propagation speed below the overhang
angle is set to zero, and is given by

Jo

a, o — ) ba ,
f(@. aon) 0 b-a < sin(ag)

b - a > sin(aep) (18)

where, similar to the previous section, a and b are the
propagation and build direction, respectively.

This speed function can be propagated on a structured
grid with Ay/Ax = tan(op), where Ax and Ay are element
width and height, and where the build direction coincides
with the vertical axis, as displayed in Fig. 7. Because the

180°

a  225°

I/ fo

Fig. 6 Polar plot of the wedge-shaped speed function, with prop-
agation speed on the radial axis, and propagation direction on the
tangential axis, for oo, = 45°. A propagation direction of « = 90°
coincides with the build direction b

270°
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Fig. 7 The node x; can be updated from any node in the green area.
The red nodes can be updated from nodes in the red area, covering all
the yellow nodes. Due to the overlap, x; only has to be updated by the
red nodes

propagation speed in (18) is zero for propagation directions
below «on, a node can only be updated from nodes in a
wedge below it, as indicated with the shaded green region
in Fig. 7 where node i can only be updated from the red
and yellow nodes. The same holds for the three red nodes
directly below x;, which can be updated from nodes in the
region shaded red. Due to the overlap of the red and green
regions, it can be seen that any yellow node that can update
node i, can also update at least one of the three red nodes.
Since the red nodes are closer to the yellow nodes than
node i is, the front will pass the red nodes first. In order
to propagate the speed function in Fig. 6, it is therefore
sufficient to only check for updates from the three nodes
directly below a given node.

With only the three nodes directly below the node
of interest required for the arrival time calculation, (17)
simplifies to:

7; = min {7}, 7} (19)

where node i is the node of interest, and nodes j, k, and
[ are the three nodes below i, as displayed in Fig. 8. This

Azx

N

Fig. 8 Update of a node x; on a structured grid can occur only from
the segments XX, and xxX;
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means that node i is updated from a point on either x;xy
or x¢X;. Since for any position X, on both line segments
b - a > sin(wop), the speed function in (18) reduces to
f (@, aoh) = fo/(b - a). Substituted into (13) this gives

i b-(xi—xy)
Y ogoxiNfo

Since the build direction b is a unit vector and x,, moves
perpendicular to b with changing y, b- (x; —x,) = Ay
(Fig. 8). This implies that the changing distance between x;
and x,, has no influence on the final arrival time. Looking
at the shape of the speed function in Fig. 6, this makes
sense. As X, moves from x; to X; in Fig. 8, the distance
X;X, increases, but the speed increases proportionally, as the
direction of propagation changes. This reduces (20) to

T
Y goxiNfo

In order to find the point x,, that results in the lowest arrival
time 7)), this equation is differentiated w.r.t. y:

(20)

2y

y
— =T —T;. 22
3y k j ( )
As the right-hand side of (22) is a constant term, the
minimum lies at the bounds of each segment. This reduces
(19) to

Tizmin{ff,Tki,Y}i}, (23)

where T}'{ represents the arrival time at node i when
calculated from node X, as shown in (21).

3.2 Delay-density and speed-density relation

The change of speed function was the first step to
represent the layer-by-layer filter with a front propagation
formulation. It can be seen that (23) already resembles (1),
where the arrival time value of a node depends on the three
nodes below it. The next step is to choose the speed-density
relation (11) and the delay-density relation (5) such that
the behaviour of the layer-by-layer filter is obtained. For
this part, we ignore without loss of generality that each
element can be supported by three elements, as this is now
inherent to the specific speed function chosen, and we will
be looking at single columns of elements only, as depicted
in Fig. 9a.

Let us first examine how the printable densities are
related to original densities in the layer-by-layer filter. For
a single column of elements, such as the one displayed in
Fig. 9a, (1) and (2) reduce to

& = min(§;_1, p;), (24)
= min(py, 02, ..., Pi), (25)

index P &

W &~ Ot

(a)

Fig. 9 Demonstration of the conversion of densities p a to printable
densities £ b by the conventional layer-by-layer filter on a single
column of elements

(b)

where i is the index of each element, with i = 1 being the
bottom element. Thus, the printable density of element i is
equal to the lowest density encountered in elements 1 to i.
This ensures that an element can only have full printable
density if all the elements that support it also have full
density. This can be seen in Fig. 9b, where the densities
given in Fig. 9a have been processed according to (25).
Here, e.g. elements 4 and 5 have £ = 0.1, as p4 = 0.1 is the
lowest density in the set. The density of element 5 is reduced
from 1 to 0.1 as it is not properly supported.

In order to describe the layer-by-layer filter with front
propagation, the speed-density and delay-density relations
need to be chosen such that (24) is obtained. Recall that with
the front propagation formulation, the printable density is
defined as (5)

£00 = h(z(x) = h (T (0 = T'™(x)) (26)

In a discrete single column setting as in Fig. 9, and
substituting (21) for the arrival time 7 (x), the printable
density for an element i (26) reduces to

Ay _ T.layer) . 27)
g fo

The terms between brackets are the following: the arrival
time of the previous element, the distance to the current
element divided by the propagation speed, and the arrival
time of the reference field. In order to obtain the layer-by-
layer filter, the speed-density relation g is chosen such that
(24) is obtained from (27):

& =h<Ti—l +

A
h <TH += - T,»lay“) = min(§i—1, pi), (28)
8fo
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where the arguments of the speed-density relation g are
omitted for brevity. The arrival time of the previous element,
T;_1, can be substituted by its printable density using (26):

A
h (h—l(s,-_l) + T2+

= Tilayer> = min(§;—1, o;). (29)
gfo

Using Tl.layer — Tl.lfyler = Ay/fo (3), the following speed-
density relation is derived:

Ay
Jo (= (min(&i—1, pi)) = h~'(E-1) + Ay

g = (30)

This can be interpreted as follows. If p; > &;_1, the arrival
time should be such that & = &;_, or h(t;) = h(ti—1).
In other words, the delay should not increase, which is
achieved when the front propagates with the same speed
as with which T!%¢ increases over distance, i.e. when
g = 1. This corresponds to (30), which reduces to 1 when
pi > &i—1.

For p; < &;_1, the arrival time should ensure that & = p;.
Because p; < &;_1, the delay should increase to lower the
printable density & as compared to &_;. With the speed-
density relation given in (30), the speed is lowered exactly
such that the new delay will result in &; = p;.

3.3 Comparison of front propagation and
layer-by-layer formulation

With the speed-density relation in (30) and the speed
function given in (18), the layer-by-layer AM filter can be
described in a continuous setting with front propagation.
For comparison of these formulations, both the layer-by-
layer formulation as provided in Langelaar (2017) and its
front propagation implementation described in this section
are applied to a given density field displayed in Fig. 10a.
The resulting printable density fields from the layer-by-
layer filter and the front propagation implementation are
shown in Fig. 10b and c, respectively. Although they appear
visually similar, there are some differences, displayed in
Fig. 10d. As can be seen, there is hardly a difference in
printable regions (§ = 1), but for intermediate density
regions the printable density values differ. This is due to the
different minimum approximations that are used. For the
front propagation formulation, the minimum approximation
are chosen as close as possible to the default settings given
in Langelaar (2017). When the smooth minimum/maximum
approximation are chosen more accurate and less smooth,
the error between both implementations vanishes, and the
layer-by-layer filter can be exactly reproduced with front
propagation.
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(b) Printable densities &1 obtained with the layer-by-
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Fig. 10 Application of the layer-by-layer and front propagation
formulation on the density field given in (a). The differences occur
only in the intermediate density regions, as different minimum
approximation are used (d). a Input density field p. b Printable
densities &y obtained with the layer-by-layer formulation. ¢ Printable
densities &, obtained with the front propagation formulation. d
Absolute difference between &jpy and &g,

4 Comparison of layer-by-layer and front
propagation-based overhang filters

In the previous section, it is shown that the layer-by-
layer filter by Langelaar (2017) can be cast into a front
propagation formulation. The front propagation formulation
of the layer-by-layer filter enables a detailed comparison
between the layer-by-layer overhang filter and the front
propagation-based overhang filter presented in van de Ven
et al. (2018). To avoid confusion of both methods, the
front propagation implementation of the layer-by-layer
filter, as shown in Section 3, is referred to as simply
the layer-by-layer overhang filter. The original continuous,
front propagation based, overhang filter, as introduced in
Section 2.2, is referred to as the continuous overhang filter.

The two elements of the front propagation that differ
between both filters are summarized in Fig. 11. First, the
difference in the speed function f(a, agn) is discussed,



A comparison of continuous front propagation-based and discrete layer-by-layer overhang control 769

layer-by-layer filter

continuous filter
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Uvoid + (1 - Uvoid)pi

Fig. 11 Differences in speed function and speed-density relation between the layer-by-layer and the continuous overhang filter

followed by the differences in speed-density relation.
Finally, the numerical implementations of the various
minimum/maximum operators and their effect on the
sensitivities are analysed.

4.1 Differences in speed function

The speed functions of both implementations share a similar
profile for propagation directions above the minimum
allowable overhang angle, i.e. when b - a > sin(aen) (18).
However, for other directions of propagation, the speed
functions are different, as can be seen in Fig. 11 (both
speed functions are displayed in more detail in Figs. 4
and 6). The rectangular speed function of the continuous
filter allows propagation in all directions, even opposite to
the build direction, and is only slightly anisotropic, with
an anisotropy ratio, i.e. maximum speed divided by the
minimum speed, of V2 for oon = 45°. The triangular
speed function of the layer-by-layer filter on the other hand,
only allows propagation when b -a > sin(ogn) while the
propagation speed is zero for other directions. It therefore
has an infinite anisotropy ratio.

The layer-by-layer speed function has a close resem-
blance to the AM process, as it can only propagate in
directions that are printable from its current position. It is
therefore a more natural choice, and was investigated for
the continuous filter as well, before adopting the rectangu-
lar speed function for numerical reasons further detailed in
the following.

For practical applicability, one of the requirements for
the continuous filter was that it should be applicable to
unstructured meshes. On unstructured meshes, it is difficult
to propagate a front with a highly anisotropic speed
function. As mentioned in Section 2.2, a crucial part of the
front propagation algorithm is the calculation of the arrival
time for a node when updated from two other nodes. This
update is executed several times per node, and is therefore
the dominant factor in computational cost. Reducing the
number of updates greatly reduces the computational
cost.

The number of updates required per node depends on
the distance d from which a node can be updated, which in
turn depends on the anisotropy ratio of the speed function
(12). Ideally, one would update a node only from its direct
neighbours, as is the case for an isotropic speed function.
However, for the speed function of the layer-by-layer filter,
as the minimum speed equals zero, d = 0o, meaning a node
can be updated from every other node in the mesh. This is
demonstrated on the unstructured mesh given in Fig. 12a.
Here, a front is propagated from the blue node with the
wedge-shaped speed function as given in Fig. 6. If the front
is propagated correctly, all the nodes in the gray area should
be reached by the front. In order to do so, some nodes must
be updated from a large distance. For example, due to the
nature of the speed function, node x; in Fig. 12b can only
be updated from locations in the transparent green area. The
only node that can provide the update is the blue node itself.
Consequently, this front can only be propagated correctly
when nodes are updated from a much larger distance than
only the direct neighbours. This is shown in Fig. 12¢, where
the arrows indicate the closest node from which a node can
be updated, such that the direction of the update is above the
overhang angle.

For structured meshes, on the other hand, the wedge-
shaped speed function can be propagated efficiently. If the
overhang angle does not align with the mesh, as in Fig. 12d,
the situation is similar to unstructured meshes, and updates
from a large distance might be required, as illustrated.
However, when tan(aon) = Ay/Ax, where dy and dx are
the element height and width, a node only has to be updated
from its direct neighbours, as displayed in Fig. 12e. That is
because if a node i can be updated from a far away node
Jj, at least one of the direct neighbours below i can also
be updated from node j (Fig. 7). For the speed function as
given in (18), it is therefore sufficient to only consider the
three nodes directly below the node of interest.

Altogether, if the filter is required to function on an
unstructured mesh, the anisotropic speed function used
in the layer-by-layer filter cannot be used. Therefore, a
different speed function is chosen that instead of having
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® Initial node
® Passed by front
® Not passed by front

(a)

(d)

Fig. 12 Front propagation from a single node (blue) with a speed
function as displayed in Fig. 6 for unstructured (a, b, ¢) and structured
meshes (d, e). Nodes in the gray domain are reachable by the front,
while black nodes are not

a zero propagation speed in the direction that are not
printable, has a non-zero propagation speed in those
directions. This requires a different processing of the
resulting arrival times of the front propagation, which is
discussed in Section 4.2.

4.1.1 Effect of the speed function on sensitivities

The speed function influences the direction in which the
front propagates, which determines the order in which the
nodes meet with the propagating front. This is important
for the resulting sensitivities, as the sensitivity information
spreads through the domain in exactly the opposite order as
in which the front is propagated. This is shown in Fig. 13,
where the layer-by-layer filter and the continuous filter have
been applied to the same geometry shown in black-white.
For every element, it is displayed from which other elements
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Fig. 13 The arrows pointing from each element indicate which
elements are used to calculate its arrival time. This indicates to
which elements sensitivity information is passed. For one element,
highlighted by a blue circle, all the dependencies of elements that
are involved in the calculation of its arrival time are coloured blue.
a Layer-by-layer filter. b Continuous filter with low uvyeig. €
Continuous filter with high vyeiq

its arrival time has been calculated, indicated by the arrows.
For one element, indicated with a light-blue circle, all the
nodes that could have contributed to this node arrival time
are highlighted with blue arrows.

For the layer-by-layer filter (Fig. 13a), each element can
only be updated from the three elements of the underlying
layer (1). Since a smooth maximum is used to determine
from which of the three lower elements it is updated, it
can depend on up to three elements. This is usually the
case when all the three underlying elements have the same
printable density, for example for all the elements of the
second row. On the other hand, in the implementation of the
continuous filter as in van de Ven et al. (2018), no smooth
minimum operator is used to select from which elements
the arrival time is calculated (17). Therefore, each element
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depends strictly on two other elements: the two elements
that define the line segment from which the element was
updated (16), which can be seen in Fig. 13b. When multiple
update directions result in a similar arrival time, a single
direction is chosen. This can be seen in, for example, the
elements on the second row. Most of them are updated
from the elements below-left and below. An update from
the elements below-right and below would have resulted in
the same arrival time, but this is neglected due to the strict
minimum operator. Furthermore, contrary to the layer-by-
layer filter, the continuous filter allows propagation in all
directions. Therefore, one can find elements that have been
updated from elements in the same or even higher layers,
as is the case for the element indicated with the light-blue
circle.

As the sensitivities are propagated in opposite direction
of the front propagation, these differences have a major
effect on the sensitivities, albeit the resulting arrival times
are similar. In Fig. 13, all the elements that have a blue arrow
are in some way involved in the calculation of the arrival
time of the element indicated with the light-blue circle. In
other words, in order to increase the printable density of the
indicated element, the density of the blue-arrowed elements
should be increased. For the layer-by-layer filter, this results
in the creation of a support column through the void region
in the middle. For the continuous filter, the column to left
of the indicated element will be expanded towards this
element. In this case, the layer-by-layer filter is more likely
to form support columns, while the continuous filter will
expand or shift existing column for support.

For the continuous filter, the speed with which the front
propagates through void can be increased, as can be seen in
Fig. 13c. The higher void speed shifts the region for which
it is faster to travel directly to the base upwards (i.e. where
elements are updated from below, as in the layer-by-layer
filter), as indicated by the dashed green line in Fig. 13c
and b. This will result in a more similar behaviour to the
layer-by-layer filter. Finally, a higher void speed also allows
the front to “cut corners”, as can be seen by the corner
indicated with the green circle, which can be beneficial for
the sensitivities, as these corner elements are usually the
only elements whose density can be further increased, as
can be seen in Fig. 13b for the blue-arrowed elements.

4.2 Differences in speed-density relations

One of the most attractive features of the layer-by-layer
filter as compared to the continuous filter, is that an element
can be supported by an underlying element with a similar or
higher density. For example, when the layer-by-layer filter
is applied to a uniform density field of p = 0.5, the resulting
printable density field is identical: £ = 0.5, as displayed
in Fig. 14a and b. With the continuous filter, the front

P

0.01

0.05

0.15

0.5

(a) (c)

Fig. 14 Processing of a uniform intermediate density field (a), a
typical initial condition of density-based topology optimization, by the
layer-by-layer filter (b), and the continuous filter (c)

(b)

will travel at half speed through the domain, and the delay
will increase with increasing height, resulting in a printable
density field that decays with height, as can be seen in
Fig. 14c. Since only material at the bottom of the domain
is usually an unfavourable starting condition, it is proposed
in van de Ven et al. (2018) to activate the continuous filter
after 10 iterations.

The layer-by-layer filter achieves its behaviour by
a smart choice of speed-density relation. As explained
in Section 3.2, the propagation speed is only lowered
when the current element has a lower density than the
printable density of the supporting element. Otherwise,
g = 1, maintaining a propagation speed equal to fo, the
propagation speed used for the reference field 7', If the
propagation speed is equal to fj, the delay does not increase,
and the printable density is equal to that of the supporting
element, resulting in the desired behaviour described by (2).

For the continuous filter, the propagation speed is simply
scaled with the element’s density: when the element has full
density, g = 1, and for intermediate densities g < 1. This
results in a stricter penalization of intermediate densities:
for every intermediate density element, g < 1 and the delay
increases.

Certainly, the layer-by-layer speed-density relation is
preferable for better convergence. In Section 5 it is
investigated if the speed function used in the layer-by-layer
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filter can be transferred to the continuous filter to improve
its performance.

4.3 Smooth min/max approximations

The final difference between both methods that is com-
pared in this work, is the implementation of the mini-
mum/maximum operators of both methods to select which
underlying element is the supporting element. For the layer-
by-layer filter, this is the element with the highest printable
density (1), and for the continuous filter the element with
the lowest arrival time (17).

In Langelaar (2017), the discrete maximum operator is
implemented as a penalized p-norm, to provide a smooth
differentiable function. This enables the calculation of
correct sensitivities when the arguments of the maximum
operator are close to each other. In van de Ven et al. (2018),
the minimum operator that selects the lowest arrival time is
implemented as a discrete operator: only the lowest arrival
time is used for the front propagation, and in the sensitivity
analysis the adjoint is propagated only to the elements that
provided the lowest arrival time. This leads to incorrect
sensitivity information when the arrival time calculated
from different nodes is equal, which is especially visible in
the first iteration, where one starts with a uniform density
field.

In order to investigate the effect of the discrete operator
on the sensitivities, consider the volume constraint

N
fl = ZE; Vel/ Vtot - Vfl‘aC7 (31)

i=1

Fig. 15 Comparison of finite
differences and adjoint

Finite differences

where V. and Vi are the element and domain volume,
respectively, and N is the total number of elements. For the
volume constraint on a structured mesh, the derivatives to
the printable densities are equal for every element:

d
i = Vel/vtot’ Vi. (32)

d§;

The sensitivities towards the densities gi? for a uniform
density field are displayed in Fig. 15a. The finite differences
show the expected result, where densities towards the
bottom have a higher sensitivity value, since more printable
densities (and thus a large volume) are influenced by the
lower elements than by the higher elements, as the front
propagates bottom to top.

Unfortunately, the adjoint sensitivity analysis is not
able to capture the sensitivity behaviour accurately, as
can be seen in Fig. 15a. Although for every element
the three underlying elements provide equal arrival times
in the uniform density field, the sensitivity information
is propagated to only one of the underlying elements
because of the discrete minimum operator. In this case, the
sensitivities are transferred to the lower left element because
it has the lowest index. This results in an aggregation of
sensitivities in the leftmost column, as displayed in Fig. 15a.

Fortunately, this is a problem that only occurs for a
perfectly uniform density field. For example, when a tiny
random perturbation with a magnitude of 1 x107 is
added to the density field, the adjoint sensitivities and
finite differences are virtually identical. This can be seen
in Fig. 15b, where instead of a uniform density field, a
density field resulting from an MBB beam optimization is

Adjoint sensitivities

sensitivities for a the continuous
filter applied to a uniform
density field, b the continuous
filter applied to a typical MBB
beam result, and ¢ the smoothed
continuous filter applied to a
uniform density field
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Tter. Filter Layer-by-layer Continuous Continuous improved
0
20
final

Fig. 16 Initial, intermediate and final designs of the different overhang filters for the MBB beam optimization problem

used, similar to the density field shown in Fig. 10a. As
can be seen, there is a good correspondence between the
finite differences and adjoint sensitivities, with a maximum
relative difference of less than 0.1%.

It is however possible to formulate the front propagation
with a smooth minimum operator. The implementation is
mainly an exercise in bookkeeping as, contrary to the
layer-by-layer filter, it is not known a priori from how
many elements an element is updated. This is determined
during the front propagation, based on the order in which
the elements are updated. Therefore, one needs to keep
track of the number of updates an element receives, from
which elements these updates are done, the resulting arrival
times of these updates, and the corresponding sensitivity
information. The resulting adjoint sensitivities are much
closer to the finite differences for a uniform field, as shown
in Fig. 15c. As the smoothed minimum operator is tedious
to implement and did not result in a significant improvement
in convergence, it was not implemented in van de Ven et al.
(2018).

5 Improved continuous overhang filter

In the previous section, a detailed comparison between
the layer-by-layer filter and the continuous filter was
performed, enabled by the front propagation formulation of
the layer-by-layer filter. In this section, an improved version
of the continuous front propagation filter is proposed, by
incorporating elements of the front propagation formulation
of the layer-by-layer filter.

In Section 4.1 it was shown that the wedge-shaped speed
function used by the layer-by-layer filter can only be used
on a structured grid, and is therefore not eligible for use
in the continuous filter. However, the speed-density relation
g (30) can be applied to the rectangular speed function
of the continuous filter. For this, only one alteration is

required. For the layer-by-layer filter, the distance between
two elements projected on the build direction is constant
and appears as Ay in the speed-density relation (30). For the
continuous filter, an element i is update from a location x,,
on a line segment between two other elements j and k, as
displayed in Fig. 5. Therefore, the speed-density relation is
formulated as:

g = |b S (X — Xy)l (33)
fo (=1 (min &y, pi)) —h=' &) + b~ (xi = x|

with

£, = h(T, — T,). (34)

In principle, this speed-density relation can be interpreted
similar to the layer-by-layer version, as described in
Section 3.2. Compared to the old speed-density relation, this
speed function is not strictly anisotropic. When &, < p;
on the whole line segment XX, the speed-density relation
reduces to 1, and is isotropic (except for the edge case when
b - (x; — x,)| = 0, in which case the speed function
should be defined as g = 1). However, when &, > p;,
the speed-density relation tries to increase the delay such
that & = p;, which makes it dependent on x, and thus

500 H T I I I
) : —— Layer-by-layer
”l‘ Cont.
__ 400 R S P Cont. 4 continuation [
§ “, ————— Cont. improved
= 3
300 —
| | | | | | |
200O 20 40 60 8 100 120 140

iteration

Fig. 17 Convergence behaviour of the different overhang filters
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anisotropic. Therefore, one cannot use the same update
algorithm as proposed in van de Ven et al. (2018). For this
study, the minimization problem that has to be solved to
find the minimal arrival time over the line segment X ;X
(16) is solved with brute force by probing 10 locations along
the line segment and accepting the minimum value. For
practical applications, a similar solution as in van de Ven
et al. (2018) should be constructed to speed up the front
propagation.

Another effect of using the speed-density relation as
given in (33), is that the choice of the delay-density
relation i (34), as long as it is monotonically decreasing,
is not relevant: the speed-density relation g will reduce the
equation for printable densities to a minimum formulation
(24), independent of %. Therefore, the parameter k that had
to be set for the continuous overhang filter in van de Ven
et al. (2018) (6) is no longer required. This simplifies the
formulation and makes it more robust, as a user-defined
parameter is eliminated.

5.1 Numerical results

First, the layer-by-layer filter and the conventional and
improved continuous filter are compared on a 2D problem,

Fig. 18 The bicycle pull brake case. The fixed regions are shown in
red, while the design domain is shown in gray. Applied forces are indi-
cated by yellow arrows and fixed regions are indicated in (a). The

@ Springer

7 e \‘\

&
.
Supported surface

after which the improved continuous filter is demonstrated
in 3D.

5.1.1 2D case—comparison

The different overhang filters are compared on the
compliance optimization of the MBB beam with 3:1 aspect
ratio, with a volume constraint set to 50%. A density filter
(Bruns and Tortorelli 2001; Sigmund and Petersson 1998)
with a filter radius r = 2Ax is applied, intermediate
densities are penalized with SIMP penalization (Bendsge
1989; Bendsge and Sigmund 1999) of p = 3, and the
Method of Moving Asymptotes (Svanberg 1987) is used as
optimization algorithm. The optimizations are terminated
when the maximum change of printable densities is smaller
than 0.01.

The printable densities at the iteration 0, iteration 20,
and final designs for the three methods are displayed in
Fig. 16. The initial condition is a uniform density field
with p = 0.5. It can be seen that both the layer-by-layer
filter and the improved continuous filter allow the stacking
of intermediate densities, and thus have a resulting initial
field of £ = 0.5. The conventional implementation of the
continuous filter does not allow this and therefore only

—

Print direction

(b)

domain is meshed with tetrahedral elements, of which a clipped section
is shown in (b) and is to be printed in the orientation as shown in (b)
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the bottom layers remain. This is an unfavourable starting
condition, as the design now has to grow from the bottom,
as can be seen in the following snapshots. Eventually the
optimization terminates in an suboptimal local minimum, as
can be seen in Fig. 17. This behaviour is very similar to the
overhang filter presented in Gaynor and Guest (2016).

The layer-by-layer filter and the improved continuous
filter do not suffer from the poor initial condition, and can
straight away put material at the top of the domain, as can
be seen in Fig. 16. Both methods finalize in similar designs
with similar objective values, as displayed in Fig. 17.
Finally, the convergence behaviour of the conventional
continuous filter with gradual activation after 10 iterations,
as proposed in van de Ven et al. (2018), is also plotted in
Fig. 17. As the filter is activated, the objective spikes, but
converges to a lower objective than without continuation.
However, the final objective is still higher than the layer-by-
layer filter and the improved continuous filter.

5.1.2 3D case—bicycle pull brake

To fully demonstrate the capabilities of the improved
continuous filter, it is demonstrated on a compliance
case with a more challenging design domain, such as
one might encounter in real-life problems. For the 3D
case a linear pull brake for a bicycle is optimized for
stiffness against a 10% volume constraint. The case will
be optimized without an overhang constraint and with a
45° overhang constraint. The 3D optimization is performed
with an optimization code based on the Portable, Extensible
Toolkit for Scientific Computing (PETSc) (Balay et al.
2017; Balay et al. 1997; Karypis and Kumar 1998),
and visualized with ParaView (Ahrens et al. 2005).
Isosurfaces of the printable density field at £ = 0.5 are
depicted for visualization. Finally, the PETSc-based MMA
implementation presented in Aage and Lazarov (2013)
and Aage et al. (2015) has been used as optimization
algorithm.

The design domain for the pull brake is shown in Fig. 18.
The red regions are fixed regions, while the gray region is

1019

1 20 ‘ ‘ :

i‘ —— No overhang filter

— 13 Continuous with continuation
E 31 ", Continuous improved ]
=

2] S — TTTTTTEre -

| | | 1
0 20 40 60 80

iteration

Fig. 19 Convergence behaviour for the first 90 iterations of the 3D
case

(d)

Fig.20 Optimized geometries of the bicycle pull brake with: improved
continuous filter (a), the old continuous filter with continuation
(b), and without overhang filter (c). The geometry of the improved
continuous filter is also shown with outlines of the original design
domain, where the fixed density regions are shown in red (d)

the design domain. The pull brake is mounted to the bicycle
with a bolt at the lowest fixed region in Fig. 18a. This is
simulated by fixing the centre line of the bolted region in
x- and y-direction, allowing rotation around the z-axis, and
by fixing the back side in z-direction as indicated. When
the brake is applied, a clamping force of Fcjamp = 200N is
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exerted on the top fixed region, indicated by the two yellow
arrows in x-direction. This will push the brake pad against
the wheel. Therefore, the brake pad is fixed in x-direction,
and the brake force exerted by the tire on the brake pad is
applied in z-direction, indicated by the yellow arrows in z-
direction. The force on the brake pad is proportional to the
clamping force: due to the geometry of the lever mechanism,
the clamping force is amplified by a factor 3.7, which gives
Forake = 3.7 Fclamp, Where p is the friction coefficient
assumed to be 0.5. The mechanism is to be printed (without
the brake pad) in the orientation shown in Fig. 18b. A
small amount of support will be required to manufacture
the curved section of the supported surface, but since metal
components are generally already printed on a small layer of
supports, this is not introducing a large amount of additional
support material.

The irregular design domain of the pull brake shows the
advantage of being able to restrict overhanging features on
unstructured meshes. Standard meshing algorithms can be
used to create a tetrahedral mesh, and fixed regions such
as the brake pad can be meshed with a lower resolution to
reduce the total number of nodes, as shown in Fig. 18b. In

this case, the domain is meshed using Gmsh (Geuzaine and
Remacle 2009), with 2.7 x 10° nodes and 1.5 x 10° elements.

The optimized geometries are shown in Fig. 20. It can
be seen that the geometries optimized with overhang filter
can be printed in the given orientation without support
material, while the geometry without overhang constraint
has some overhanging members. The optimizations ran for
300 iterations; however, after 90 iterations, there is little
change in the design and the objective values of all three
optimizations are within 1% of their final values. The
convergence behaviour for the first 90 iterations is shown in
Fig. 19. The convergence curve is smooth for the improved
continuous filter, as there is no need for continuation. For
the continuous filter which requires continuation there is
some non-smooth behaviour between iterations 10 and 20
where the continuation is applied, but the impact on the
final result is negligible. It can however happen that the
continuation is too aggressive, and the design has to be built
up from the bottom of the domain, as was the case in Fig.
16 for the continuous filter without continuation. Therefore,
the improved filter is a more stable version of the continuous
filter because it does not require continuation. The final

Fig.21 Snapshot of the Jupyter
notebook provided in the
Supplementary Material
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objective values for the optimizations with the continuous
improved filter and continuous filter with continuation
are 0.6% and 1.0% higher than without overhang filter,
respectively. It is however difficult to compare these values
as the overhang filter slightly alters the length scale
introduced by the density filter (Fig. 20).

6 Conclusion

In this paper, a detailed comparison is made between the
layer-by-layer overhang filter as proposed in Langelaar
(2017), and the continuous overhang filter as proposed in
van de Ven et al. (2018). It is demonstrated that the layer-by-
layer filter, originally formulated in a discrete setting, can be
formulated in a continuous setting using front propagation.
Similar to the continuous filter, the printable densities are
based on a delay between two arrival time fields. As
such, the layer-by-layer filter can be formulated using front
propagation by only changing the speed function, and the
speed-density relation.

The front propagation formulation of the layer-by-layer
filter allows a component-level comparison between the two
methods. It is shown that the speed function used by the
layer-by-layer function cannot be applied to unstructured
meshed due to the large anisotropy of the speed function.
However, the speed-density relation of the layer-by-layer
filter has the advantageous characteristic that it allows the
support of intermediate density elements by elements of
the same or higher density, improving convergence in the
early stage of the optimization. Additionally, the different
implementations of the minimum/maximum operators are
investigated. As the continuous filter does not use a smooth
minimum operator, the resulting sensitivities for a uniform
density field are incorrect. It is possible to use smoothed opera-
tors, but in practice the difference is small, as the sensitivities
are only inaccurate for a uniform density field: a minutely
perturbed density field results in correct sensitivities.

Finally, the speed-density relation used by the layer-
by-layer filter is transferred to the continuous overhang
filter, resulting in an overhang filter with the advantageous
characteristics of the layer-by-layer filter, but directly
applicable to unstructured meshes.

A Matlab implementation of the continuous filter is
provided with this work, to aide with the implementation
of a front propagation-based overhang filter in any existing
density-based topology optimization.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00158-021-02887-2.
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Replication of results An implementation of the front propagation-
based overhang filter presented in this work is provided in the form
of an interactive Jupyter notebook, shown in Fig. 21. It is based
on the Python implementation of the 88-line topology optimization
code (Andreassen et al. 2011). It contains the front propagation-
based overhang filter as presented in van de Ven et al. (2018), the
improved variant presented in this work, and a Python adaption
of the layer-by-layer filter provided in Langelaar (2017). In order
to run the notebook, open a Jupyter notebook (www.jupyter.org),
inside the notebook navigate to the Supplementary Material and run
TopOptAMapplet . ipynb. Then follow the instructions inside the
notebook. The reader is encouraged to play with the various overhang
filters and parameters to gain an understanding of their effect on the
optimization.
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