
Spatiotemporal Gaussian
random fields using

stochastic partial differential
equations

by

J. Willems
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Tuesday July 6, 2021 at 3:00 PM.

Student number: 4386868
Project duration: November 2, 2020 – June 29, 2021
Thesis committee: Prof. dr. ir. M.C. Veraar, TU Delft, chair

Dr. K. Kirchner, TU Delft, supervisor
Dr. ir. J. Bierkens, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Preface
This thesis is the conclusion of my time as a master’s student of Applied Mathematics at the faculty of
Electrical Engineering, Mathematics & Computer Science at the Delft University of Technology, after a
slightly unusual journey. It started at the Computer Science & Engineering program in the very same
faculty, whose first­year courses taught me two valuable lessons:

1. proving mathematical statements is not as scary as those triangles in high school made me think;

2. I do not necessarily want to be a software engineer after all.

Seeing as how I quite enjoyed the mathematics courses, I did the natural thing and switched to the
bachelor program Applied Physics. Interesting as it was at times, there were some minor indications
that my heart was not fully in this choice either, such as the fact that for some courses the exam was my
first encounter with the responsible professor. Despite this, I made it to the third year. I was required to
do a minor, and I chose to try the minor Applied Mathematics, which happened to be a bridging minor
giving access to the corresponding MSc programme.

I found myself more motivated to do the work for the minor courses, which was a sign that this
may be a more suitable path for me. Indeed, the struggle of taking Real Analysis at the same time as
Mathematical Structures was not enough to discourage me from diving into the deep end that was the
MSc Applied Mathematics the following year. There, after a period of not being able to decide between
different specializations, I contacted Kristin Kirchner who would go on to suggest this interesting topic
on the interface of SPDE theory, numerics and statistics, leading ultimately to this thesis.

I would like to thank Kristin for offering this project and for her guidance and valuable feedback
throughout, as well as Mark Veraar and Joris Bierkens for taking the time and effort to be part of my
graduation committee. I also want to thank the ‘DDD’ crew for their significant part in keeping me sane
throughout These Unprecedented TimesTM: Arie, David, Frank and whomever else incidentally tagged
along. Lastly, I would like to thank some people from the Middelburg metropolitan area, in particular
my parents for the occasional retreat and my friends Daan, Fabian, both Wouters and Pol. Although I
saw less of them the past year or two, we still managed to fit in some good times.

Joshua Willems
Delft, June 2021
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1
Introduction

In many areas of the environmental and social sciences, measurements spread across space and
over time are collected in order to study uncertain phenomena evolving over time. A central goal of
spatiotemporal statistics is to find statistical models which accurately describe such phenomena and
whose parameters can be inferred from spatiotemporal data. Examples of application domains include
neuroimaging [53], epidemiology [47], demography [27, 58] and finance [32].

The current state of data measurement and storage technology allows for the gathering of large
and varied datasets. However, their applicability for spatiotemporal statistical inference is hindered by
high computational costs, which necessitate a compromise in model accuracy in order to account for
the available computational power. In this work, we consider an approach to spatiotemporal modeling
which has the potential to strike a better balance between these metrics than existing methods. It is
based on a class of stochastic partial differential equation (SPDEs) which we envision to possess de­
sirable modeling properties, owing to a number of tunable parameters corresponding to interpretable
properties of their solutions. The goal of this thesis is to study these SPDEs in terms of their analytical
properties and covariance structure, and to take the first exploratory steps towards their efficient nu­
merical simulation.

This introductory chapter is structured in the following way. In Section 1.1, we first provide a more
detailed account of the present state of the art, the proposed method and the motivation behind this
choice. This discussion is followed by Section 1.2, in which we sketch an outline of the chapters com­
prising this work and identify the contributions made to the body of knowledge regarding the class of
SPDEs under consideration. This chapter is concluded with Section 1.3, which summarizes choices in
the notation of certain mathematical concepts with which the reader is assumed to be familiar.

1.1. Background and motivation
The central objective in this work is to investigate random fields which possess useful properties
for spatiotemporal statistical modeling. A spatiotemporal random field is defined to be a collection
(X(t, x))(t,x)∈T×D of random variables indexed by a given spatial domain D and time horizon T; spatial
random fields are of the form (X(x))x∈D. The most commonly used methods to define such random
fields fall into two main categories: second­order­based models and dynamical models, see [22, 60].

A second­order­based model is defined by specifying the first and second moments of the random
field; more precisely, this amounts to prescribing a mean function µ : I → R and a covariance function
% : I × I → R, where the index set I is T × D for a spatiotemporal field or D if the field is merely
spatial. In this work we restrict ourselves to Gaussian random fields (GRFs), which are random fields
for which every finite subcollection of random variables is jointly Gaussian distributed; such fields are
characterized completely by the first two moments.

In the special case of a spatial random field on a d­dimensional Euclidean domain D ⊆ Rd, the
Matérn covariance, named after Swedish forestry statistician Bertil Matérn [51], is perhaps the most
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important and widely used covariance function [65]; it is given by

%(x, y) := %0(x− y) :=
21−νσ2

Γ(ν)
(κ‖x− y‖Rd)

νKν(κ‖x− y‖Rd), x, y ∈ D, (1.1)

where Γ is the Gamma function,‖ · ‖Rd is the Euclidean norm onRd andKν denotes the modified Bessel
function of the second kind. The parameters σ2, ν, κ > 0 determine respectively the variance at each
point, the spatial smoothness of the field and the practical correlation range between points. The utility
of the Matérn model for inference from spatial data lies in the fact that each of these parameters is
controllable and expresses a clearly interpretable property of the spatial field. Note that the covariance
can be written in the form %(x, y) = %0(x− y); a field with such a covariance function is called stationary.

For the spatiotemporal case, it is difficult to find a practical second­order­based model analogous
to the purely spatial Matérn model. There are two main reasons for this: firstly, the problem of finding
suitable spatiotemporal covariance functions is challenging in general [21, 33, 37, 59, 61]. Secondly,
simulating a random field at n points using a second­order­based method requires the factorization of
an n× n covariance matrix which may be dense in general, in which case this operation incurs a com­
putational cost of order O(n3); this makes the computation impractically intensive for the high values of
n typical in spatiotemporal applications. Separable covariance functions, which are simply the products
of a purely spatial and a purely temporal covariance function, have been considered in an attempt to
cope with these two limitations. Indeed, this is a straightforward way to devise spatiotemporal covari­
ance functions and the resulting covariance matrices are easier to factorize since can be written as
the Kronecker product of the spatial and temporal covariance matrices. Unfortunately, stationary and
separable covariance functions generally do not result in realistic models for spatiotemporal processes,
as noted for instance in [22, 52, 64].

The difficulty in defining and using covariance functions possessing the desirable properties of non­
separability and/or non­stationarity have lead to the study of dynamical models, in which random fields
are defined through their conditional probabilities or as solutions to SPDEs. In the remainder of this
work, we focus on the SPDE approach.

As before, consider first the purely spatial situation. Using a power spectral density argument,
PeterWhittle [67] showed that theMatérn model, which was introduced above as a second­order­based
spatial model defined through the covariance function given by (1.1), admits a dynamical representation
as the stationary solution to the SPDE

(κ2 −∆)βX(x) = W(x) for all x ∈ D = Rd. (1.2)

Here ∆ denotes the Laplacian, W denotes Gaussian spatial white noise and the fractional power is
defined as β := ν

2 + d
4 . This observation forms the basis for the technique proposed in the influential

discussion paper by Lindgren, Rue and Lindström [48], who generated approximations to Matérn GRFs
for β ∈ N by applying numerical methods to (1.2) on a bounded domain D. The subsequent devel­
opment of efficient numerical methods for fractional­order elliptic differential operators by Bonito and
Pasciak [14] paved the way for extensions of the SPDE approach to more general fractional powers β,
see [9, 20].

This approach to simulating approximations of spatial Matérn GRFs has a number of advantages
as compared to the second­order­based method. The first of these is the ability to leverage a variety
of computational techniques developed for the numerical approximation of (S)PDEs, such as finite
element methods (FEM) [8, 9, 10, 20, 40, 48] and wavelets [11, 39], which often prove more efficient
than factorizing covariance matrices. Secondly, this approach can be generalized in a natural way to
allow for non­stationary fields; this is achieved by replacing the operator κ2−∆ in (1.2) with a uniformly
elliptic differential operator L of the form

[Lu](x) := κ2(x)u(x)−∇ · (A(x)∇u(x)), x ∈ D.

Here, κ is allowed to be spatially varying and A is a function on D taking its values in the symmetric
d× d matrices D; this has been considered in e.g. [6, 8, 20, 34, 48]. A third advantage is that (1.2) can
be formulated on more general surfaces and manifolds for all β [12, 39, 40]. This is not straightforward
for the second­order­based model: for instance, it has been shown that replacing the Euclidean dis­
tance with the great circle distance in (1.1) does not generally yield a positive definite function on the
sphere [38].
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Turning back to the spatiotemporal case, we consider the matter of extending (1.2) to space­time
in order to obtain a suitable dynamical spatiotemporal model. A natural choice of generalization would
be the diffusion equation

(∂t + Lβ)X(t, x) = Ẇ(t, x) for all t ∈ T and x ∈ D, (1.3)

where Ẇ denotes spatiotemporal Gaussian noise which is assumed to be white in time and white or
possibly colored in space. In fact, we will take one step further in generality and consider the following
stochastic initial boundary value problem, which is the central subject of this work:

(∂t + Lβ)γX(t, x) = Ẇ(t, x), for all t ∈ (0, T ) and x ∈ D;

X(0, x) = X0(x) for all x ∈ D;

X(t, x) = 0 for all x ∈ ∂D;

(1.4)

where γ > 0 is an additional fractional exponent,X0 is an initial random field on D ⊊ Rd and T ∈ (0,∞)
is a finite time horizon.

The choice for (1.4) is motivated by the proposals recently made in [5], in which the authors ana­
lyze its infinite­space counterpart for L = κ2 −∆ using Fourier techniques; similar models have been
studied for instance in [2, 18, 42]. Firstly, it was found that the combination of β and γ governs the
temporal smoothness of the solution; this property is important for the realistic modeling of spatiotem­
poral phenomena, and it extends the situation in the purely spatial model (1.2), where β controls spatial
smoothness. A second finding was that the long­time behavior resembles that of the spatial model (1.2),
which sets the SPDE from (1.4) apart from similar choices, such as (∂γt + Lβ)X = Ẇ which has been
studied in [13, 28]. Note that the choice of homogeneous Dirichlet boundary conditions in (1.4) is mainly
made for simplicity rather than realism of the model.

The aim of the present work is to take the first steps into the analytical and numerical investigation
of (1.4). More precisely, we shall study a slightly more abstract formulation which will be introduced in
Chapter 3, see (3.1).

1.2. Outline and contributions
The remainder of this thesis is structured as follows. Chapter 2 is a summary of preliminary notions
from (functional) analysis, operator theory, probability theory and (S)PDE theory needed to understand
the subsequent chapters. Although some of the results covered in Chapter 2 are non­trivial, they can
usually be found in standard textbooks, to which we often refer for more details. The central topic of
Chapter 3 is the analysis of (3.1), a more abstract counterpart of (1.4). The goals are to define solu­
tions to the equation in a rigorous way and to investigate the effects of various fractional parameters
on qualitative properties of solutions such as well­posedness, regularity and covariance structure. In
Chapter 4, we propose a numerical method for computing approximations to a deterministic fractional
ODE in time, which is a specialization of the SPDE considered throughout the rest of the work.

The main contributions of this work to the knowledge surrounding the proposed fractional SPDE ap­
proach are found throughout Chapter 3. We conclude with a short discussion and outlook in Chapter 5

Since, as stated above, it is not obvious a priori how to define solutions to (1.4) for fractional pow­
ers γ 6∈ N, in Section 3.2 we study the unbounded operator ∂t +A on the Bochner space L2(0, T ;H),
where H is some Hilbert space which can be thought of as L2(D). We show that its negative gen­
erates an exponentially stable product C0­semigroup, expressed as the composition of a translation
semigroup and the analytic C0­semigroup corresponding to the negative of the unbounded, positive
and self­adjoint operator A on H. This is the basis for a convenient representation of fractional powers
(∂t +A)γ , γ ∈ R; in particular, we see that negative fractional powers can be defined in terms of an in­
tegral over the product semigroup, and the explicit representation of the semigroup allows us to derive
a convolution formula for the action of (∂t +A)−γ on functions in L2(0, T ;H).

Inspired by the convolution formula for (∂t+A)−γ , in Section 3.3 we introduce a natural definition of
the mild solution to (3.1), first in the case of a zero initial condition. This choice is then further motivated
by noting its reduction to the familiar variation­of­constants formula in the case γ = 1, and by comparing
it to a generalized weak variational solution concept based on taking Bochner inner products on both
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sides of (3.1); we show that the mild and weak solutions coincide under natural assumptions. Both
formulations are subsequently extended to account for nonzero initial conditions.

In Section 3.4, we prove existence and spatiotemporal regularity of the mild solution by using direct
estimates involving the stochastic convolution formula and the smoothing properties of the analytic C0­
semigroup generated by −A. These results are linked to conditions on the Hilbert–Schmidt norm of
fractional powers of A and the covariance operatorQ coloring the spatial part of the Gaussian noise. In
particular, the results reflect that the temporal Hölder continuity and/or differentiability increases with γ,
a temporal smoothing effect which is desired in applications. In the course of deriving the regularity
results for nonzero initial conditions, we also show the continuous dependence of the mild solution on
the initial datum.

In the last part of the analysis, we prove two results on the asymptotic covariance structure of solu­
tions to (3.1), which are of interest from the viewpoint of statistical applications. First it is shown that for
large times, the marginal spatial covariance of the mild solution can be expressed in terms of fractional
powers of A and Q. In particular, this implies that if A and Q are chosen equal to fractional powers
of the same operator, then the spatial covariance structure is eventually of the same form. Secondly,
we consider the case A = I and prove that the corresponding covariance is separable and that the
temporal part of the covariance function is of Matérn type.

The contributions described above partially generalize well­known results about the stochastic heat
equation, i.e. the non­fractional case γ = β = 1; these can be found in standard references such
as [23]. To the best of our knowledge, the only prior results on similar equations with γ 6= 1 are those
found in the recent work [66], which considers the regularity of a deterministic version of (1.4) with
β = 1, L = −∆ and γ ∈ (0, 1). Besides treating a stochastic equation instead of a deterministic one,
the present work furthermore differs from [66] in the approach taken to define fractional powers of the
parabolic operator ∂t + A (where A is to be defined in Chapter 3), leading to the notion of a (stochas­
tic) fractional convolution. This representation can be leveraged to directly derive well­posedness and
regularity results for a larger class of operators A and for arbitrarily large values of γ, whereas the
authors of [66] only consider γ ∈ (0, 1). The investigations into the covariance structure of solutions
to (3.1) generalize certain results found in [5] to a larger class of spatiotemporal domains T × D and
operators A.

1.3. Notation
This section will introduce some notation which is widely used throughout this work.

We take N to mean the natural numbers excluding zero and N⩾0 := N∪{0}. The real and imaginary
parts of a complex number z ∈ C are written as Re z and Im z respectively. Its argument is denoted
arg z and is taken in (−π, π]. The indicator function of a set A ⊆ X is denoted 1A; recall that the
indicator function 1A : X → {0, 1} is defined by 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x 6∈ A. We
also use the related notation 1{ · }, which is an expression equal to 1 if the condition in between the
brackets is true and 0 otherwise. For any function f : A → B and subsets C ⊆ A,D ⊆ B, define the
image f [C] := {f(x) : x ∈ C} and pre­image f−1[D] := {x ∈ A : f(x) ∈ D}. If f is a linear mapping,
then the square brackets may be omitted.

If (X, T ) is some topological space, then we write A for the closure of A ⊆ X. In a metric space,
the open ball of radius r > 0 centered around x ∈ X is written as B(x, r). The Borel σ­algebra of the
topological space (X, T ) is denoted by B(X); recall that this is the σ­algebra generated by all open
sets O ∈ T .

The space of continuous functions from an interval J ⊆ R to a Hilbert or Banach space X is de­
noted C(J ;X). We equip C(J ;X) with the supremum norm‖f‖C(J;X) := supt∈J

∥∥f(t)∥∥
X
, rendering it

a Banach space. We write C0,{t}(J ;X) for the space of continuous functions which vanish at the point
t ∈ J . Recall the notion of the support of a function f : J → X, namely supp f := {t ∈ J : f(t) 6= 0}; f
is said to be compactly supported if supp f is compact as a subset of J , and the space consisting of
such functions is denoted Cc(J ;X). For n ∈ N, an n times continuously differentiable function is said to
belong to Cn(J ;X). The Hölder­continuous functions with Hölder exponent 0 < α ⩽ 1 form the space
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C0,α(J ;X). For a function f ∈ C0,α(J ;X), we define the Hölder seminorm by

|f |C0,α(J;X) := sup
t̸=s∈J

∥∥f(t)− f(s)
∥∥
X

|t− s|
,

which we recall is not a norm since it vanishes in particular for nonzero constant f . To mitigate this,
one can for instance use the norm

‖f‖C0,α(J;X) := |f |C0,α(J;X) +‖f‖C(J;X)

to render C0,α(J ;X) a Banach space. Functions which are n times continuously differentiable with
α­Hölder continuous nth derivative are said to be members of Cn,α(J ;X). For these spaces, we can
combine the above norms to define the norm

‖f‖Cn,α(J;X) := ‖f (n)‖C0,α(J;X) +

n−1∑
k=0

‖f (k)‖C(J;X) ,

where f (k) denotes the kth derivative of f . Defining Cn,0(J ;X) := Cn(J ;X), the above definition also
yields a norm on Cn(J ;X). Moreover, define C∞(J ;X) :=

⋂
n∈N C

n(J ;X).
For p ∈ [1,∞], the spaces of real­valued p­integrable functions defined on ameasure space (X,A, µ),

are denoted Lp(X). They are Banach spaces when equipped with the norm‖f‖Lp(X) := (
∫
X
|f |p dµ)1/p

if p ∈ [1,∞) and‖f‖L∞(X) := ess supx∈X |f(x)|, where ess sup denotes the essential supremum. For
p = 2, the norm ‖ · ‖L2(X) is induced by the inner product (f, g)L2(X) :=

∫
X
fg dµ, so that L2(X) is a

Hilbert space. As is common, we identify functions which are equal almost everywhere, i.e. functions
which differ only on a µ­zero zet. We often abbreviate the phrase ‘almost everywhere’ to ‘a.e.’ and
‘almost all’ to ‘a.a.’; similarly, we use the acronym ‘a.s.’ to mean ‘almost surely’, which is the same con­
cept but for probability spaces (Ω,F ,P). The corresponding Sobolev spaces with integrability p ∈ [1,∞]
and weak differentiability k ∈ N are denotedW k,p(X); as a norm, we take the p­norm of the finite vector
of Lp(x) norms of all partial derivatives of f . We typically write W k,2(X) =: Hk(X) for the commonly
used special case p = 2.

Hilbert spaces use either the real numbers R or the complex numbers C as their scalar fields. For
statements which do not depend on the underlying field, we sometimes refer to the scalar field as K,
i.e. K ∈ {R,C}. The norm of a Hilbert space H will be written as‖ · ‖H and its inner product as ( · , · )H .
We write I for the identity operator on H. Given two Hilbert spaces U and H, the notation U ↪→ H
expresses that U is continuously embedded in H, i.e. there exists a natural continuous injective map
betweenU andH, typically the inclusionmap, which we often denote by ι : U → H. The same notations
are used for Banach spaces, with the obvious exception of the inner product.

The topological dual space of a Banach space E, consisting of the continuous linear functionals
on E, is written as E′. Sometimes the dual space E′ can be identified with a linear space E∗ ⊃ E
in such a way that x∗ ∈ E∗ if and only if 〈x∗, · 〉 ∈ E′; here, for x ∈ E and x∗ ∈ E∗ the notation
〈x, x∗〉 := x∗(x) stands for the duality pairing of x and x∗. When the difference between E∗ and E′ is
not worth emphasizing, we choose the notation E∗ for the dual of E.
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2
Preliminaries

The purpose of this chapter is to present the necessary theory to understand the rigorous definitions of
the SPDEs introduced in the previous chapter and the (numerical) analysis in the following chapters.
As such, we do not strive for generality: whenever a result is more easily understood by restricting
ourselves to a specialized form which is sufficient for our purposes, we shall do so. Standard references
will be often cited which treat the various subjects covered in the upcoming sections; these can be
consulted for more details and for proofs of many of the statements collected in this chapter.

Throughout this chapter, we assume that U and H are separable Hilbert spaces over the complex
scalar field unless otherwise specified. Sometimes we also use the Banach spaces E and F , for
instance in Section 2.3.

2.1. Linear operators
This section introduces some theory of linear operators on Hilbert and/or Banach spaces. We some­
times omit the word ‘linear’ when it is clear from context that an operator is linear.

2.1.1. Bounded operators
Definition 2.1.1 (Bounded operator). A linear operator T : U → H is called bounded if

‖T‖L (U ;H) := sup
∥x∥U=1

‖Tx‖H <∞.

We denote by L (U ;H) the space of bounded (equivalently, continuous) linear operators from U to H;
equipping it with the operator norm yields a Banach space. If U = H, we simply write L (H).

Some bounded operators satisfy additional properties, thus giving rise to some interesting classes
of operators in L (E;F ). We summarize the additional properties which are of interest for the present
work; the first of these properties is compactness.

Definition 2.1.2 (Compact operator). A bounded linear operator T ∈ L (U ;H) is called compact if it
maps bounded subsets of U into relatively compact subsets ofH, i.e. TA ⊆ H is compact for any given
bounded A ⊆ U . We denote the subspace of compact operators by K (U ;H).

IdentifyingH with its dualH∗ by the Riesz representation theorem, we define the adjoint T ∗ ∈ L (H)
of T ∈ L (H) to be the unique operator satisfying

(Tx, y)H = (x, T ∗y)H ∀x, y ∈ H.

Definition 2.1.3 (Self­adjoint operator). An operator T ∈ L (H) is called self­adjoint if it satisfies T ∗ =
T , i.e.

(Tx, y)H = (x, Ty)H ∀x, y ∈ H.
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Definition 2.1.4 (Positive (semi­)definite operator). An operator T ∈ L (H) is called positive semi­
definite or non­negative if it satisfies

(Tx, x)H ⩾ 0 ∀x ∈ H. (2.1)

If the inequality is strict, then it is called positive definite or simply positive.

It can be checked using the polarization identity for inner products on complex Hilbert spaces that
non­negative operators are necessarily self­adjoint. This result does not hold for real Hilbert spaces;
intuitively, this is due to the fact that (2.1) is more restrictive on a complex Hilbert space than on a real
Hilbert space.

For positive operators, we may introduce the trace as follows.

Definition 2.1.5 (Trace, of a non­negative operator). For a non­negative operator T ∈ L (H), we
define the trace as

tr(T ) :=
∞∑
j=1

(Tej , ej)H , (2.2)

where (ej)j⩾1 is any orthonormal basis of H.

It can be shown that the above definition is indeed independent of the choice of orthonormal basis
for H, thus showing the well­definedness of the trace.

In order to define the trace of general bounded operators T ∈ L (H), we introduce the modulus
|T | := (T ∗T )1/2, which is a non­negative operator. The operator square root can be defined using
fractional powers of operators, a concept which is introduced later in Section 2.5. It recovers some of
the familiar properties of square roots of numbers, such as the fact that T 1/2T 1/2 = T .

Definition 2.1.6 (Trace­class operator). An operator T ∈ L (H) is said to be of trace class if tr|T | <∞.
The space of trace­class operators will be denoted by L1(H); it becomes a Banach space when
equipped with the norm‖T‖L1(H) := tr|T |.

Definition 2.1.7 (Hilbert–Schmidt operator). An operator T ∈ L (H) is called a Hilbert–Schmidt oper­
ator if it has finite Hilbert–Schmidt norm, i.e. if

‖T‖L2(H) :=

( ∞∑
j=1

∥∥Tej∥∥2H)1/2

<∞ (2.3)

for any given orthonormal basis (ej)j⩾1 of H. We denote by L2(H) the set of Hilbert–Schmidt opera­
tors. Then, for T, S ∈ L2(H), we may define the inner product

(T, S)L2(H) :=

∞∑
j=1

(Tej , Sej)H ,

which renders L2(H) a Hilbert space.

The relationship between bounded, compact, trace­class and Hilbert–Schmidt operators can be
summarized by the chain of inclusions

L1(H) ⊂ L2(H) ⊂ K (H) ⊂ L (H).

In particular, we have the following inequalities:

‖T‖L (H) ⩽‖T‖L2(H) ⩽‖T‖L1(H) .

More details on trace­class and Hilbert–Schmidt operators, including proofs of the claims made about
them in this section, may be found in [29, Chapter XI, Section 6].
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2.1.2. Spectral properties of self­adjoint compact operators
First recall the definition of the resolvent set and spectrum of a bounded operator.

Definition 2.1.8. Given a T ∈ L (H), we define the resolvent set of T as

ρ(T ) := {λ ∈ C : λI − T has a bounded two­sided inverse},

and its spectrum as σ(T ) := C \ ρ(T ).

Definition 2.1.9. Given T ∈ L (H) and λ ∈ ρ(T ), define the resolvent operator

R(λ, T ) := (λI − T )−1.

For self­adjoint T ∈ L (H), the spectrum σ(T ) is real­valued. In fact, we have the following.

Proposition 2.1.10 (Spectrum of a self­adjoint bounded linear operator). Let T ∈ L (H) be self­adjoint.
Setting

m := inf
∥x∥=1

(Tx, x)H , M := sup
∥x∥=1

(Tx, x)H ,

it holds that {m,M} ⊆ σ(T ) ⊆ [m,M ] and‖T‖L (H) = max{|m| ,|M |}.

Proof. See [16, Proposition 6.9].

The next theorem tells us that compact self­adjoint operators on H have spectra resembling those
of diagonal matrices on finite­dimensional spaces.

Theorem 2.1.11. Let T ∈ K (H) be self­adjoint. Then σ(T ) is at most countably infinite and has no
accumulation point except possibly λ = 0, every nonzero λ ∈ σ(T ) is an eigenvalue of T with finite­
dimensional eigenspace Eλ := {v ∈ H : Tv = λv} and there exists an orthonormal basis (ej)j⩾1 of H
consisting of eigenvectors of T .

Proof. See [29, Corollary X.3.5].

Wewill call an orthonormal basis (ej)j⩾1 consisting of eigenvectors of T with associated eigenvalues
(λj)j⩾1, i.e. Tej = λjej for all j ∈ N, an (orthonormal) eigenbasis of T ; an eigenbasis will sometimes
be denoted more shortly as (ej , λj)j⩾1.

Combining Theorem 2.1.11, with the compactness of trace­class and Hilbert–Schmidt operators
yields different forms of formulas (2.2) and (2.3), namely

‖T‖L1(H) =

∞∑
j=1

λj , (2.4)

‖T‖L2(H) =

( ∞∑
j=1

λ2j

)1/2

, (2.5)

by taking the eigenbasis (ej , λj)j⩾1 of the compact positive operator |T |. The nonzero eigenvalues of
|T | are called singular values. In particular, if T is non­negative, then T = |T | so that equations (2.4)
and (2.5) are expressed in the nonzero eigenvalues of T itself.

2.1.3. Unbounded operators
In order to study linear operators on Hilbert/Banach spaces which are not necessarily bounded or even
defined on the whole space, we introduce the notion of unbounded linear operators.

Definition 2.1.12. A linear operator A, which is defined on a linear subspace D(A) of H and takes its
values in H, is called an unbounded linear operator. We denote by D(A) and R(A) the domain and
range of A, respectively.
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We often use the shorthand notation (A,D(A)), which is taken to mean that A is an unbounded
linear operator with domain D(A).

If D(A) is dense in H, then A is called densely defined. We define the graph of A by

G(A) := {(x,Ax) : x ∈ D(A)},

which can be equipped with the norm ‖(x,Ax)‖G(A) := ‖x‖H + ‖Ax‖H . Similarly, we can define the
norm‖x‖D(A) := ‖x‖H + ‖Ax‖H for D(A); in this context,‖ · ‖D(A) is called the graph norm on D(A). An
unbounded operator A is said to be closed if its graph is closed with respect to‖ · ‖G(A).

Definition 2.1.13 ((Maximal) accretive operator). An unbounded linear operator (A,D(A)) on a Hilbert
space H is called accretive if for all x ∈ D(A) we have Re(Ax, x)H ⩾ 0. If moreover R(A+ I) = H, i.e.
for all f ∈ H there exists a u ∈ D(A) such that Au+ u = f , then (A,D(A)) is called maximal accretive.

2.2. Hilbert tensor product spaces
For the Hilbert spaces H and H̃, we define the algebraic tensor product space H ⊗ H̃ as the tensor
product of H and H̃ in the sense of vector spaces. This means that H ⊗ H̃ consists of elements which
can be written as

N∑
n=1

xn ⊗ x̃n,

where N ∈ N and xn ∈ H, x̃n ∈ H̃ for all n ∈ {1, . . . , N}. Note that this representation is not unique; in
fact, the mapping (x, x̃) 7→ x⊗ x̃ is bilinear, so that for instance we have the identity

x⊗ x̃1 + x⊗ x̃2 = x⊗ (x̃1 + x̃2),

where both sides of the equation are different representations of the same element from H ⊗ H̃.
Various ways exist to extend the algebraic tensor space of two Hilbert spaces to a tensor product

space which is itself a Banach or Hilbert space; each of these corresponds to the completion with
respect to a different norm defined on the algebraic tensor product space. In this discussion, we limit
ourselves to the Hilbert product tensor space. Given the elements

x̂ =

N∑
n=1

xn ⊗ x̃n and ŷ =

M∑
m=1

yn ⊗ ỹn

in H ⊗ H̃, we define the inner product

(x̂, ŷ)H⊗H̃ :=

N∑
n=1

M∑
m=1

(xn, yn)H(x̃n, ỹn)H̃ .

This is a well­defined inner product since can be shown to be independent of the choice of representa­
tion. The Hilbert product tensor space, also denoted H ⊗ H̃, is then obtained by taking the completion
of the algebraic tensor product space with respect to the norm induced by ( · , · )H⊗H̃ . If H = H̃, then
the abbreviation H(2) := H ⊗H is used.

2.3. Integration of vector­valued functions
2.3.1. Riemann integral
Throughout this work, we will encounter a variety of situations in which it is necessary to define the
integral of a vector­valued function, for instance a function taking its values in the Banach space E. It
turns out that for smooth enough integrands, say f ∈ C([a, b];E), the definition of the Riemann integral
still makes sense, and the proofs of most familiar properties carry over upon replacing absolute values
in the codomain by the norm‖ · ‖E . This can then be generalized to functions on R by defining improper
Riemann integrals in the obvious way.
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2.3.2. Bochner integral
For a function defined on a domain with less structure, such as a measurable space, the Riemann
integral no longer makes sense and we would like to proceed as in the real­valued case by finding an
analog to the Lebesgue integral. This is more difficult than for the Riemann case since the construction
of the Lebesgue integral depends on the order structure of the real line. Nonetheless, we shall see that
the Bochner integral is a suitable analog; its construction is the subject of this subsection.

Throughout this section, let (A,A) denote a measurable space, i.e. A is a set and A is a σ­algebra
on this set, and let the Banach spaceE be equipped with the Borel σ­algebra B(E) unless specified oth­
erwise. Recall the notion ofmeasurability: a function f : A→ E is said to be measurable if f−1[B] ∈ A
for all B ∈ B(E). Moreover, recall that in the real­valued setting (i.e., E = R), a function f : A → R
is measurable if and only if it is the pointwise limit of a sequence of simple functions. In the E­valued
setting, a measurable function is not necessarily the pointwise limit of a sequence of simple functions;
since the latter property is the more useful one for defining integrals, we introduce it as an alternative
definition of measurability, called strong measurability.

Definition 2.3.1. A function f : A → E is said to be simple if there exist n ∈ N, A1, . . . , An ∈ A and
x1, . . . , xn ∈ E such that

f =

n∑
j=1

1Aj
⊗ xj ,

where (1Aj ⊗xj)(ξ) := 1Aj (ξ)⊗xj . We call f strongly measurable if it is the pointwise limit of a function
of simple functions.

The following theorem gives a characterization of strongly measurable functions.

Theorem 2.3.2 (Pettis measurability theorem). A function f : A→ E is strongly measurable if and only
if f takes its values in a separable closed subspace of E and 〈f( · ), x∗〉 : E → R is strongly measurable
for all x∗ ∈ X∗.

Proof. See [41, Theorem 1.1.6].

An important corollary of this result is the fact that pointwise limits of sequences of strongly mea­
surable functions are strongly measurable, see [41, Corollary 1.1.9]. The next result implies that the
notions of measurability and strong measurability are equivalent if E is separable.

Proposition 2.3.3. Let f : A→ E. Then these two statements are equivalent:

(a) f is strongly measurable;

(b) f takes its values in a separable subspace of E and f−1[B] ∈ A for all B ∈ B(E).

Proof. See [41, Corollary 1.1.10].

In the remainder of this section, suppose that we have a σ­finite measure space (A,A, µ).

Definition 2.3.4 (Bochner integral of a simple function). A simple function f : A → E is said to be
Bochner integrable if the Lebesgue integral

∫
A
‖f‖E dµ is finite. In that case, writing f =

∑n
j=1 1Aj

⊗xj
for some n ∈ N, pairwise disjoint sets A1, . . . , An ∈ A and x1, . . . , xn ∈ E, we define the Bochner
integral of f by ∫

A

f dµ :=

n∑
j=1

µ(Aj)xj .

It can be shown that the value of the integral is well­defined in the sense that it does not depend on
the choice of representation; i.e., if f =

∑n
j=1 1Aj ⊗ xj =

∑m
i=1 1Bi ⊗ yi for m ∈ N, B1, . . . , Bm ∈ A

and values y1, . . . , ym ∈ E, then
∑n

j=1 µ(Aj)xj =
∑m

i=1 µ(Bi)yi.

Definition 2.3.5 (Bochner integral). A function f : A → E is said to be Bochner integrable if it is the
pointwise limit of a sequence of integrable simple functions (fn)n⩾1 and

lim
n→∞

∫
A

‖fn − f‖E dµ = 0. (2.6)
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In that case, we define the Bochner integral of f by∫
A

f dµ := lim
n→∞

∫
A

fn dµ. (2.7)

It is not immediately obvious that the Bochner integral is well­defined. First note that‖fn − f‖E is
measurable for all n ⩾ 1, since fn and f are strongly measurable and‖ · ‖E is continuous. The limit in
equation (2.7) exists; this can be seen by checking that (

∫
A
fn dµ)n⩾1 is Cauchy, which follows from

(2.6) and an ‘integral triangle inquality’ which can be proved directly for simple functions. Lastly, it can
be checked that the limit does not depend on the approximating sequence (fn)n⩾1.

Now we collect some useful properties of the Bochner integral, some of which are analogous to
familiar properties of the Lebesgue integral.

For a Bochner integrable function f : A→ E and some x∗ ∈ E∗, we have that〈∫
A

f dµ, x∗
〉

=

∫
A

〈f, x∗〉dµ. (2.8)

A convenient characterization of Bochner integrability is the following.

Proposition 2.3.6. A strongly measurable function f : A→ E is Bochner integrable if and only if∫
A

‖f‖E dµ <∞,

where the integral is a Lebesgue integral. In this case, we have the integral triangle inequality∥∥∥∥∫
A

f dµ
∥∥∥∥
E

⩽
∫
A

‖f‖E dµ.

Proof. See [41, Proposition 1.2.2].

The following analog of the dominated convergence theorem (DCT) holds.

Theorem 2.3.7 (Dominated convergence theorem). Suppose that we have a sequence (fn)n⩾1 of
Bochner integrable functions from A to E which converges pointwise a.e. to some f : A → E. If there
exists a scalar­valued Bochner integrable function g on A such that‖fn‖E ⩽ |g| for all n ⩾ 1, then f is
Bochner integrable and we have

lim
n→∞

∫
A

‖f − fn‖E dµ = 0

and in particular
lim
n→∞

∫
A

fn dµ :=

∫
A

f dµ.

Proof. See [41, Proposition 1.2.5].

Under certain conditions, we may interchange closed operators and Bochner integrals. Note that
Definition 2.1.12, which introduces unbounded operators on Hilbert spaces and their domains, gener­
alizes readily to Banach spaces.

Theorem 2.3.8. Let f : A → E be Bochner integrable and let (T,D(T )) be a closed linear operator
from E to F . If f takes its values in D(T ) a.e., and if the a.e.­defined function Tf : A → F is Bochner
integrable, then

∫
A
f dµ ∈ D(T ) and

T

∫
A

f dµ =

∫
A

Tf dµ.

Proof. See [41, Theorem 1.2.4].

A last property of the Bochner integral which is worth noting is that any continuous function f : [a, b] → E
is Bochner integrable and is value coincides with the Riemann integral.
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2.3.3. Lebesgue–Bochner and vector­valued Sobolev spaces
By analogy with the Lebesgue spaces Lp(A), 1 ⩽ p <∞, we define the Lebesgue–Bochner space (or
simply Bochner space) Lp(A;E) as the space consisting of strongly measurable functions f : A → E
such that

‖f‖Lp(A;E) :=

(∫
A

‖f‖pE dµ
) 1

p

<∞,

where we identify functions which are equal almost everywhere. In the same way as for the Lebesgue
spaces, one shows that (Lp(A;E),‖ · ‖Lp(A;E)) is a Banach space. Also note that L1(A;E) is precisely
the space of Bochner integrable functions by Proposition 2.3.6.

Now suppose that A = (0, T ) and E = H. Then for p = 2, the norm on L2(0, T ;H) is induced by
the inner product (f, g)L2(0,T ;H) :=

∫ T

0
(f, g)H dµ which renders it a Hilbert space. Since in this context

we would like to define vector­valued Sobolev spaces, we first introduce distributional derivatives of
Bochner integrable functions. Let D(0, T ) denote the space of test functions, defined to be the set
C∞

c ((0, T );R) of smooth and compactly supported real­valued functions equipped with the topology
described in [24, Appendix “Distributions”, §1.1.4]. AnH­valued distribution is then a continuous linear
mapping from D(0, T ) toH. Given a distribution f , we define the distributional derivative f ′ by f ′(φ) :=
−f(φ′) for φ ∈ D(0, T ); it can be shown that f ′ is indeed still linear and continuous, hence a well­defined
H­valued distribution.

To a given u ∈ Lp(0, T ;H), where 1 ⩽ p <∞, we canonically associate the H­valued distribution f
defined by

f(φ) :=

∫ T

0

u(t)φ(t)dt =: 〈u, φ〉, φ ∈ D(0, T ).

If its distributional derivative f ′ admits the same type of representation, say f ′(φ) = 〈v, φ〉 for some
v ∈ Lq(0, T ;H), 1 ⩽ q < ∞, then we say that u is weakly differentiable with weak derivative ∂tu := v
and ∂tu ∈ Lq(0, T ;H). This allows us to define H­valued Sobolev spaces as follows:

W 1,p(0, T ;H) := {u ∈ Lp(0, T ;H) : ∂tu ∈ Lp(0, T ;H)},

and again we set H1(0, T ;H) :=W 1,2(0, T ;H). The latter can be endowed with the norm

‖u‖H1(0,T ;H) :=
(
‖u‖2L2(0,T ;H) + ‖∂tu‖2L2(0,T ;H)

)1/2

,

which is associated to the obvious inner product and renders H1(0, T ;H) a Hilbert space.
Vector­valued Sobolev spaces appear as trial and test spaces for weak variational formulations of

spatiotemporal problems, see Section 2.7. Let V ↪→ H ' H∗ ↪→ V ∗ be a Gelfand triple — see for
instance the ‘dot spaces’ at the end of Section 2.5 — and consider the spaces

X := L2(0, T ;V ) and Y := L2(0, T ;V ) ∩H1(0, T ;V ∗),

where X is equipped with the standard Bochner 2­norm and Y with the norm

‖u‖Y :=
(
‖u‖2L2(0,T ;V ) + ‖∂tu‖2L2(0,T ;V ∗)

)1/2

,

which is again induced by an inner product which renders Y a Hilbert space. Since we have the
continuous embedding Y ↪→ C([0, T ];H), see [25, Chapter XVIII, §1, Theorem 1], pointwise evaluation
makes sense so that we may define the closed subspaces

Y0,{0} := {u ∈ Y : u(0) = 0} and Y0,{T} := {u ∈ Y : u(T ) = 0},

also equipped with the norm‖ · ‖Y . Alternatively, we can endow Y0,{T} with the equivalent norm

|||u|||Y :=
(
‖u‖2L2(0,T ;H) + ‖∂tu‖2L2(0,T ;V ∗) + ‖u(0)‖2H

)1/2

.

These spaces and norms will be revisited in Section 2.7.
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2.4. Semigroups of linear operators
For bounded operators A ∈ L (H), one defines the exponential operator etA for t ∈ R by the infinite
sum

etA :=

∞∑
k=0

tk

k!
Ak, (2.9)

which converges absolutely in the L (H)­norm by the convergence of the real exponential power series
and the inequality ‖Ak‖L (H) ⩽ ‖A‖kL (H). The operator (or matrix) exponential naturally arises for
instance in solutions to linear systems of ordinary differential equations.

2.4.1. Strongly continuous semigroups
If we could proceed similarly for unbounded operators (A,D(A)), we would be able to solve partial
differential equations such as the evolution equations which are discussed in Section 2.7. Unfortunately,
definition (2.9) does not generalize to unbounded operators, since the defining series will generally
not converge uniformly nor in the pointwise sense; however, to certain unbounded operators we can
associate a family of bounded operators called a strongly continuous semigroup, which resembles the
family (etA)t⩾0 in the following sense.

Definition 2.4.1 (Strongly continuous semigroup). A family (S(t))t⩾0 of bounded operators in L (H) is
said to be a strongly continuous semigroup (or a C0­semigroup) if it satisfies

(i) S(0) = I;

(ii) S(t+ s) = S(t)S(s) for all t, s ⩾ 0 (the semigroup property);

(iii) limt↓0 ‖S(t)x− x‖H = 0 for all x ∈ H (strong continuity).

The aforementioned unbounded operator associated with a semigroup is defined as follows.

Definition 2.4.2 (Infinitesimal generator). Given a C0­semigroup (S(t))t⩾0, define the unbounded op­
erator A : D(A) ⊆ H → H by

D(A) :=
{
x ∈ H : lim

h↓0

S(h)x− x

h
exists

}
,

Ax := lim
h↓0

S(h)x− x

h
.

A is called the (infinitesimal) generator of (S(t))t⩾0.

In other words, Ax is defined to be the derivative at t = 0 of the orbit t 7→ S(t)x, whenever x ∈ H is
such that this derivative exists. Note that a family of exponential operators (etA)t⩾0 satisfies a similar
property whenever it exists.

Next we collect some basic facts about C0­semigroups, which will be used — sometimes without
explicit mention — in the sequel.

Proposition 2.4.3 (Exponential boundedness). For any C0­semigroup (S(t))t⩾0, there exist constants
M ⩾ 1 and w ∈ R such that

‖S(t)‖L (H) ⩽Mewt for all t ⩾ 0.

Proof. See [57, Chapter 1, Theorem 2.2].

If w = 0 andM = 1 in the above proposition, we say that (S(t))t⩾0 is a semigroup of contractions.

Proposition 2.4.4. Let (S(t))t⩾0 be a C0­semigroup with generator A. Then it holds that

(a) for all x ∈ H, the orbit t 7→ S(t)x is continuous on [0,∞);

(b) for all x ∈ H, we have
∫ t

0
S(s)xds ∈ D(A),

A

∫ t

0

S(s)xds = S(t)x− x

and both sides are equal to
∫ t

0
S(s)Axds whenever x ∈ D(A);
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(c) for all x ∈ D(A), the orbit t 7→ S(t)x is continuously differentiable on [0,∞), we have S(t)x ∈ D(A)
and

d
dt
S(t)x = AS(t)x = S(t)Ax;

(d) A is closed and densely defined and determines the semigroup (S(t))t⩾0 uniquely.

Proof. See Corollaries 2.3, 2.5 and Theorems 2.4, 2.7 in Chapter 1 of [57].

For the next result, which is sometimes useful in determining the domain of the generator (A,D(A))
of a C0­semigroup, we introduce the notion of a core for A, defined to be a subspace D ⊆ D(A) which
is dense in D(A) with respect to its graph norm.

Proposition 2.4.5. Let (S(t))t⩾0 be a C0­semigroup with generator (A,D(A)) on H. Any subspace
D ⊆ D(A) which is dense in H with respect to ‖ · ‖H and invariant under S(t), i.e. S(t)D ⊆ D for all
t ⩾ 0, is a core for A.

Proof. See [30, Proposition II.1.7].

Theorem 2.4.6. Let (S(t))t⩾0 be a C0­semigroup on H and let w ∈ R,M ⩾ 1 be as in Proposition
2.4.3. Then its generator (A,D(A)) has the following properties.

(a) Whenever λ ∈ C is such that the integral
∫∞
0
e−λsS(s)ds exists as an improper Riemann integral

converging in L (H), it holds that λ ∈ ρ(A) and R(λ,A) is given by this integral.

(b) ForReλ > w, we have λ ∈ ρ(A)withR(λ,A) given by the integral from part (a) and
∥∥R(λ,A)∥∥

L (H)
⩽

M
Re(λ)−w .

Proof. See [30, Theorem II.1.10].

Some of the properties of generators which we encountered in the past few statements actually
characterize the unbounded operators which generate strongly continuous semigroups. The first of
these so­called generation theorems is the following. We state it separately for contraction semigroups
before generalizing to arbitrary C0­semigroups.

Theorem 2.4.7 (Hille–Yosida, contraction case). Let (A,D(A)) be a closed and densely defined oper­
ator on H. Then the following statements are equivalent.

(a) (A,D(A)) is the generator of a C0­semigroup (S(t))t⩾0 of contractions;

(b) (0,∞) ⊆ ρ(A) and

‖R(λ,A)‖L (H) ⩽
1

λ
for all λ > 0;

(c) {λ ∈ C : Reλ > 0} ⊆ ρ(A) and

‖R(λ,A)‖L (H) ⩽
1

Reλ
for all Reλ > 0.

Proof. See [30, Theorem II.3.5].

From this, the general case can be deduced.

Theorem 2.4.8 (Hille–Yosida, general case). Let (A,D(A)) be a closed and densely defined operator
on H. Then the following statements are equivalent.

(a) (A,D(A)) is the generator of a C0­semigroup (S(t))t⩾0 such that ‖S(t)‖L (H) ⩽ Mewt on t ⩾ 0 for
some constants w ∈ R andM ⩾ 1;

(b) (w,∞) ⊆ ρ(A) and

‖R(λ,A)n‖L (H) ⩽
M

(λ− w)n
for all λ > w, n ∈ N;
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(c) {λ ∈ C : Reλ > w} ⊆ ρ(A) and

‖R(λ,A)n‖L (H) ⩽
M

(Re(λ)− w)n
for all Reλ > w, n ∈ N.

Proof. See [30, Theorem II.3.8].

The following generation theorem characterizes generators of C0­semigroups (of contractions) in
terms of maximal accretiveness rather than resolvent bounds.

Theorem 2.4.9 (Lumer–Phillips). An unbounded operator (A,D(A)) acting on H is maximal accretive
if and only if −A is the generator of a C0­semigroup of contractions.

Proof. A version for Banach spaces is stated and proved in [57, Chapter 1, Theorem 4.3]. To see that
it reduces to the current formulation when the semigroup acts on a Hilbert space H, first note that by
the Riesz representation theorem and Hahn–Banach theorem, the duality set of any given h ∈ H is
simply equal to {h}, i.e. F (h) = {h} in the notation of [57]. Also note that it is formulated for (maximal)
dissipative A, which is equivalent to −A being (maximal) accretive. This shows that the definition of
accretiveness used in [57] reduces to Definition 2.1.13 in the Hilbertian case.

To prove the ‘only if’ part of the theorem, we suppose that (A,D(A)) is maximal accretive as defined
in Definition 2.1.13 and first show that this implies that A (equivalently, −A) is densely defined. We do
this by proving that D(A) has a trivial orthogonal complement; to this end, suppose that f ∈ H is such
that (f, v)H = 0 for all v ∈ D(A). Then by maximal accretiveness there exists a u ∈ D(A) such that
Au+ u = f . But then

0 = Re(f, u)H = Re(Au+ u, u)H =‖u‖2H + Re(Au, u)H ⩾‖u‖2H ,

which implies u = 0 and thus f = 0. Applying part (a) of [57, Chapter 1, Theorem 4.3] to −A with
λ0 = 1 then proves the forward implication.

For the ‘if’ part, let −A be the generator of a C0­semigroup and recall that generators of C0­
semigroups are always closed and densely defined, see Proposition 2.4.4(d). Now the implication
follows from part (b) of [57, Chapter 1, Theorem 4.3] upon taking λ = 1.

2.4.2. Analytic semigroups
The semigroups which we encounter in the problems studied in this work have better regularity prop­
erties than just strong continuity. The most relevant class of more regular semigroups is the class of
analytic semigroups.

For the definition of this concept and the statement of some of its important properties, it is conve­
nient to first define the open sector Σω of angle ω ∈ (0, π] as

Σω := {λ ∈ C \ {0} : |argλ| < ω},

where we recall that the the argument is taken in (−π, π].

Definition 2.4.10 (Analytic semigroup). AC0­semigroup (S(t))t⩾0 onH is called an analytic semigroup
on Σω (with ω ∈ (0, π2 ]) if the mapping t 7→ S(t) can be extended analytically to Σω in such a way that
the extension satisfies the semigroup property and

lim
Σω′∋z→0

S(z)x = x for all ω′ ∈ (0, ω), x ∈ H.

If moreover
sup
z∈Σω′

‖S(z)‖L (H) <∞ for all ω′ ∈ (0, ω),

then the semigroup is called bounded analytic.

It turns out that the generators of bounded analytic semigroups can be characterized as negatives
of the following class of operators.
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Definition 2.4.11 (Sectorial operator). A closed and densely defined operator (A,D(A)) is called sec­
torial of angle ω ∈ (0, π) if σ(A) ⊆ Σω and for each ω′ ∈ (0, ω)

sup
z∈C\Σω′

‖zR(z,A)‖L (H) <∞.

Sectorial operators then give rise to the following family of bounded operators.

Definition 2.4.12. Let (A,D(A)) be a sectorial operator of angle ω ∈ (0, π/2). Define the bounded
operators S(0) := I and

S(z) :=
1

2πi

∫
Γ

eλz(λI +A)−1 dλ, , z ∈ Σπ
2 −ω, (2.10)

where Γ is the upwards oriented boundary of Σπ−ω′ \B(0, 1) for some ω′ ∈ (ω, π).

Equation (2.10) is known as the inverse Laplace transform representation. As the notation suggests,
the thus­defined family of bounded operators is in fact a bounded analytic semigroup with generator
−A; conversely, every bounded analytic semigroup on Σω has a generator which is ω­sectorial. In
summary, we have the following.

Theorem2.4.13. Let (A,D(A)) be an unbounded operator onH and let ω ∈ (0, π/2). Then the following
statements are equivalent:

(i) −A generates a bounded analytic semigroup on Σω;

(ii) A is sectorial of angle π
2 − ω.

These claims are proved in [30, Proposition II.4.3, Proposition II.4.4, Theorem II.4.6].

2.5. Fractional powers of operators
2.5.1. Definition and properties
In this section, we consider the question of how to define, given a closed base operator (A,D(A)) onH
and an exponent α ∈ R, the fractional power operator Aα in such a way that it behaves in some sense
like a fractional power of a number. This turns out to be possible for a large class of base operators and
spaces (e.g. closed operators on locally convex spaces) and exponents (e.g. complex powers α ∈ C);
for more details on fractional powers on this level of generality, see [50].

We will limit ourselves to real powers and linear operators (A,D(A)) on H such that −A generates
a C0­semigroup (S(t))t⩾0 which is ‘exponentially stable’, i.e. there existM ⩾ 1 and w > 0 such that

‖S(t)‖L (H) ⩽Me−wt for all t ⩾ 0; (2.11)

note the minus sign in the exponent. This assumption implies that −A is closed and densely defined
by part (d) of Proposition 2.4.4. Part (b) of Theorem 2.4.6 tells us that

λ ∈ ρ(−A) and ‖(λI +A)−1‖L (H) ⩽
M

w + Reλ
for all Reλ > −w.

In particular, we have 0 ∈ ρ(A), which by definition of the resolvent means thatA is boundedly invertible.
Note that this condition is satisfied when −A is the generator of a bounded analytic semigroup with

0 ∈ ρ(A), since these two conditions imply that A−wI is sectorial for some small enough w > 0, so that
−A+ wI generates a bounded analytic semigroup by Theorem 2.4.13, which is given by (ewtS(t))t⩾0

in this case. The uniform boundedness of (ewtS(t))t⩾0, say with constantM ⩾ 1, then implies estimate
(2.11).

This exponential stability of the semigroup guarantees the uniform convergence with respect to the
operator norm topology of the following integral, which we use to define negative fractional powers ofA:

A−β :=
1

Γ(β)

∫ ∞

0

tβ−1S(t)dt, β > 0. (2.12)
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Note that the uniform convergence in L (H) of this integral implies that A−β is a bounded linear oper­
ator.

In addition to this semigroup representation of negative fractional powers, we also have the following
equivalent representation which is valid for 0 < β < 1:

A−β =
sinπβ
π

∫ ∞

0

t−β(tI +A)−1 dt, β ∈ (0, 1). (2.13)

We remark that one cannot expect the above integral to converge for β ⩾ 1 in general, since even if
‖(tI +A)−1‖L (H) is bounded near t = 0, the factor t−β grows too large as t → 0, thus causing the
integral to diverge.

Equation (2.13) is known as the Balakrishnan formula, named after A.V. Balakrishnan who studied
fractional powers using similar representations, see [7]. Formula (2.13) can be derived from (2.12)
using the representation of the resolvent given by Theorem 2.4.6,

(λI +A)−1 =

∫ ∞

0

e−λsS(s)ds for all Reλ > −w.

Substituting this representation into (2.13), using the Fubini theorem and changing variables then yields
(2.12) for β ∈ (0, 1).

Now we wish to define arbitrary powers Aβ for β ∈ R. We set A0 := I. It follows from 0 ∈ ρ(A)
that A−1 is injective, and A−β inherits the injectivity so that we may define positive fractional powers
of A as the unbounded linear operators (Aβ ,D(Aβ)) with D(Aβ) := R(A−β) and Aβx := (A−β)−1x for
x ∈ R(A−β), where the latter denotes the left inverse of A−β . We record this in the following definition.

Definition 2.5.1 (Fractional powers). Let (A,D(A)) be an unbounded operator on H whose negative
is the generator of an exponentially stable semigroup (S(t))t⩾0. Let β ∈ R be given and

(i) for β < 0, define Aβ through formula (2.12);

(i) for β = 0, set Aβ := I;

(i) for β > 0 and x ∈ R(A−β) =: D(Aβ), set Aβx := (A−β)−1x.

The following theorem collects some important basic facts about the thus­defined fractional powers.

Theorem 2.5.2. Let (A,D(A)) be as in Definition 2.5.1. Then

(a) for all β > 0, Aβ is closed and densely defined;

(b) D(Aα) ⊆ D(Aβ) whenever α ⩾ β > 0;

(c) if α, β ∈ R, then Aα+βx = AαAβx for every x ∈ D(Amax{α,β,α+β});

(d) (A−β)β⩾0 is a C0­semigroup of bounded linear operators.

Proof. See [57, Chapter 2, Corollary 6.5 and Theorem 6.8]. Note that Pazy assumes that−A generates
an analytic C0­semigroup, but in fact only the resulting property (2.11) is used for the proofs of this
theorem and the next.

We have the following results regarding the interplay between the fractional powers Aβ and the
semigroup (S(t))t⩾0 generated by −A in the case that (S(t))t⩾0 is bounded analytic.

Theorem 2.5.3. Let (A,D(A)) and (S(t))t⩾0 be as in Definition 2.5.1. If (S(t))t⩾0 is moreover a
bounded analytic semigroup, then

(a) S(t)x ∈ D(Aβ) for all t > 0 and β ⩾ 0;

(b) S(t)Aβx = AβS(t)x for all x ∈ D(Aβ), t ⩾ 0 and β ⩾ 0;

(c) if β ⩾ 0, the operator AβS(t) is bounded for all t > 0 and there exist constantsMβ ⩾ 1, w > 0 such
that

‖AβS(t)‖L (H) ⩽Mβt
−βe−wt for all t > 0;
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(d) for 0 < β ⩽ 1 and x ∈ D(Aβ) there exists a constant Cβ ⩾ 0 such that

‖S(t)x− x‖H ⩽ Cβt
β ‖Aβx‖H for all t ⩾ 0.

Proof. See [57, Chapter 2, Theorem 6.13] and the remark in the proof of Theorem 2.5.2.

Now we consider the question of whether−Aβ generates a C0­semigroup. To this end, we consider
the sectoriality of fractional powers of sectorial operators.

Theorem 2.5.4. Let (A,D(A)) satisfy the assumptions in Definition 2.5.1 and suppose furthermore that
A is sectorial of angle ω ∈ (0, π). If β > 0 is such that βω < π, then Aβ is sectorial of angle less than
or equal to βω.

Proof. See [50, Theorem 5.4.1]. In order for this theorem to be applicable, we must first verify that the
definition of fractional powers introduced in Chapter 5 of [50] is equivalent to Definition 2.5.1 whenever
the base operator A satisfies the assumptions of this section.

If, as we assume, 0 ∈ ρ(A), then the authors similarly define positive fractional powers through
the inverse of negative ones [50, Definition 5.1.2]; therefore, it suffices to check that their formulas for
negative fractional powers coincide with (2.12).

Let Ãβ , β ∈ R denote the fractional powers defined as in [50]. The negative fractional powers Ã−β

are obtained by applying a positive­power Balakrishnan formula to the bounded operator A−1, which
for 0 < β < 1 yields

Ã−βx =
sinπβ
π

∫ ∞

0

tβ−1(tI +A−1)−1A−1xdt, x ∈ D(A−1) = H,

see [50, Definition 5.1.1 and Definition 3.1.1(i)]. Using properties of the inverse and the change of
variables s := t−1, we see that

Ã−β =
sinπβ
π

∫ ∞

0

tβ−1(tI +A−1)−1A−1 dt

=
sinπβ
π

∫ ∞

0

tβ−1(tA+ I)−1 dt

=
sinπβ
π

∫ ∞

0

s−β(A+ sI)−1 ds,

i.e. we recover (2.13) and equivalently (2.12), thus A−β = Ã−β for 0 < β < 1. If n < β < n + 1 for
some n ∈ N, then for all x ∈ H we have

Ã−βx := Ãn−βA−nx = An−βA−nx = A−βx,

where we used [50, Definition 3.1.1(iii)] followed by the case 0 < β < 1 and Theorem 2.5.2(c). We have
now shown that the mappings β 7→ Ã−β and β 7→ A−β agree on the dense subset (0,∞) \N of [0,∞).
Since they are both strongly continuous, respectively by [50, Proposition 3.1.1] and Theorem 2.5.2(d),
we obtain A−β = Ã−β for all β ⩾ 0, which finishes the proof.

In light of Theorem 2.4.13, we have as a corollary that−Aβ generates a bounded analytic semigroup
if βω < π/2.

2.5.2. Dot spaces and Gelfand triples
Next we introduce for θ ⩾ 0 the spaces Ḣθ

A := D(Aθ/2), which can bemade a Hilbert space by equipping
it with the inner product

(u, v)Ḣθ
A
:= (Aθ/2u,Aθ/2v)H .

Combining some of the previously mentioned properties of fractional power operators, it follows that
for 0 ⩽ η < θ, the inclusion map from Ḣθ

A to Ḣη
A is a dense continuous embedding. The negative­

exponent spaces can be defined by Ḣ−θ
A := (Ḣθ

A)
∗ for θ ⩾ 0. Then the map which restricts bounded
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linear functionals on Ḣη
A to Ḣθ

A is again a continuous dense embedding. Finally, one can identify H
with its dual via the Riesz representation theorem to obtain

Ḣθ
A ↪→ Ḣη

A ↪→ H ' H∗ ↪→ Ḣ−η
A ↪→ Ḣ−θ

A .

More generally, a triplet
V ↪→ H ↪→ V ∗,

where both embeddings are continuous and dense, is called aGelfand triple. It does not make sense to
identify V with its dual just as we did forH, but often it can be identified with a larger space containingH.
More precisely, if we let V ′ := L (V ;K) denote the actual dual of V , then we may often identify V ′ with
some space V ∗ ⊃ H in such a way that g ∈ V ∗ if and only if 〈g, · 〉 ∈ V ′.

Example 2.5.5. Consider V := Ḣ1
A and suppose that A is self­adjoint. To any given v ∈ V we can

naturally associate the functional

〈Av,w〉 := (A1/2v,A1/2w)H = (v, w)Ḣ1
A
, w ∈ V.

It turns out that the map v 7→ 〈Av, · 〉 is an isometric isomorphism between V and V ′. Equipping
H with the norm |||h|||H :=

∥∥〈AA−1h, · 〉
∥∥
V ′ , it follows that we can extend the (unbounded) operator

A : Ḣ2
A ⊂ H → H by density of Ḣ2

A ↪→ Ḣ1
A to an isomorphism A : V → V ∗, where V ∗ is defined as the

completion of H with respect to the norm ||| · |||H .

2.6. Elliptic second­order differential operators
The aim of this section is to define self­adjoint uniformly elliptic second­order differential operators
and summarize some of their key properties. These operators are important because they arise in
many situations, including the Whittle–Matérn SPDEs described in the introduction. Moreover, they
are concrete nontrivial examples of operators which can be associated with analytic semigroups; in
fact, we will see that the same holds for arbitrary positive fractional powers of such operators.

Let D ⊂ Rd be a bounded, open and connected domain. Assume that

(i) A ∈ L∞(D;Rd×d) is symmetric a.e. and satisfies the following uniform ellipticity condition:

∃θ > 0: ξTA(x)ξ ⩾ θ‖ξ‖2Rd for all ξ ∈ Rd and almost all x ∈ D;

(ii) κ ∈ L∞(D).

Define the bilinear form a : H1
0 (D)×H1

0 (D) → R by

a(u, v) :=

∫
D
[(A(x)∇u(x),∇v(x))Rd + κ2(x)u(x)v(x)]dx, u, v ∈ H1

0 (D). (2.14)

Proposition 2.6.1. Let a be as in (2.14) and define‖u‖a := (a(u, u) +‖u‖2L2(D))
1
2 for u ∈ H1

0 (D). Then

(a) a is densely defined, i.e. H1
0 (D) ⊂ L2(D) is dense;

(b) a is symmetric, i.e. a(u, v) = a(v, u) for all u, v ∈ H1
0 (D);

(c) a is accretive (or positive), i.e. a(u, u) ⩾ 0 for all u ∈ H1
0 (D);

(d) a is continuous, i.e. there exists a constantC ⩾ 0 such that a(u, v) ⩽ C‖u‖a‖v‖a for all u, v ∈ H1
0 (D);

(e) a is coercive, i.e. there exists a constant δ > 0 such that a(u, u) ⩾ δ‖u‖2H1(D) for all u ∈ H1
0 (D).

(f) a is closed, i.e. the space (H1
0 (D), ‖ · ‖a) is complete.
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Proof. The density of H1
0 (D) ⊂ L2(D) with respect to the L2(D) norm is well­known, yielding (a).

Statements (b)–(e) can be shown by estimates of the bilinear form; we will not show this in detail but
rather only mention which assumptions are needed to derive each statement.

Part (b) follows from the assumption that A(x) is symmetric almost everywhere on D. The proof of
part (c) uses the uniform ellipticity assumption, which in particular implies that A(x) is positive definite
a.e. Proving part (d) involves estimates using Cauchy–Schwarz and the boundedness of A and κ2.
For part (e), we need the Poincaré inequality, which holds since D is bounded, as well as the uniform
ellipticity.

To show part (f), one proves that the norms‖ · ‖H1(D) and‖ · ‖a are equivalent; this is sufficient since
H1

0 (D) is a closed subspace of (H1(D), ‖ · ‖H1(D)), so that (H1
0 (D), ‖ · ‖H1(D)) is complete and the

equivalence of‖ · ‖H1(D) and‖ · ‖a would give the result. The equivalence is shown by using estimates
similar to the continuity proof to prove‖u‖a ⩽M‖u‖H1(D), while using uniform ellipticity to prove‖u‖a ⩾
m‖u‖H1(D), for some positive constants m,M ⩾ 0.

Next we introduce the operator associated with a, i.e. the unbounded linear operator (L,D(L))
whose domain is defined by

D(L) :=
{
u ∈ H1

0 (D) : ∃C ⩾ 0 such that
∣∣a(u, v)∣∣ ⩽ C‖v‖L2(D) ∀v ∈ H1

0 (D)
}

and for all u ∈ D(L), the value Lu is defined as the unique element of L2(D) which satisfies

(Lu, v)L2(D) = a(u, v) ∀v ∈ H1
0 (D);

such an element exists by the Riesz representation theorem and the density of H1
0 (D) in L2(D).

The various properties listed in Proposition 2.6.1 correspond to analogous properties of the asso­
ciated operator L. The symmetry of a implies that L is self­adjoint [56, Proposition 1.24]. Moreover,
−L is the generator of a strongly continuous semigroup of contractions since a is also densely defined,
continuous and closed [56, Proposition 1.51]. In fact, we have that L is sectorial of arbitrarily small
spectral angle ω > 0 [56, Theorem 1.54], so that −L generates a bounded analytic semigroup on any
sector with angle strictly less than π

2 . Hence, given an exponent β > 0, we can take ω > 0 arbitrarily
small while appealing to Theorem 2.5.4 and it follows that −Lβ generates an analytic semigroup as
well.

By the Lax–Milgram lemma [56, Lemma 1.3], the coercivity of a implies that L has an inverse which
may be extended to a bounded operator L−1 : H1

0 (D) → H1
0 (D). By the Rellich–Kondrachov compact

embedding theorem, L−1 is compact [36, Theorem 6.3.1]. In view of the spectral theorem for self­adjoint
compact operators (Theorem 2.1.11), we conclude that L has an orthonormal eigenbasis (λj , ej)j⩾1

whose sequence of eigenvalues (λj)j⩾1 is positive and has no accumulation point so that it may be
presumed to be in increasing order. In fact, we can be more precise about the eigenvalues of L in this
particular situation: we have the following asymptotic relation, known as Weyl’s law.

Theorem 2.6.2 (Weyl’s law). Let L be the operator associated with the bilinear form a defined in (2.14).
Then there exist constants c, C ⩾ 0, depending only on the coefficient functions A, κ2 and the domain
D ⊂ Rd, such that the eigenvalues (λj)j⩾1 of L satisfy

cj
2
d ⩽ λj ⩽ Cj

2
d ∀j ∈ N.

Proof. See [26, Theorem 6.3.1].

2.7. Deterministic evolution equations
In this section, we discuss the so­called inhomogeneous abstract Cauchy problem (IACP):

u′(t) +Au(t) = f(t), t ∈ (0, T ];

u(0) = u0.
(2.15)

Here we suppose that (A,D(A)) is a linear operator on H whose negative generates an analytic C0

semigroup (S(t))t⩾0. We assume that the initial value u0 belongs to H. The right­hand side f belongs
to the Bochner space L1(0, T ;H). The interpretation of the derivative u′ may differ throughout the
section.
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2.7.1. Solution concepts
In this section we introduce a variety of solution concepts for the IACP. The first subsection is concerned
with three solution concepts which are most commonly considered in the context of evolution equations:
classical, strong and mild solutions. After that, we cover the variational formulation of the IACP, which
gives rise to the concept of weak solutions. Generally speaking, the first three solution concepts are
more suited to the analysis of qualitative properties of the SPDE such as well­posedness, whereas the
alternative variational viewpoint can be especially useful for numerical analysis, see [62, 63].

Classical, strong and mild solutions
Definition 2.7.1 (Classical solution). We call u a classical solution to the IACP if

u ∈ C([0, T );H) ∩ C((0, T );D(A)),

its (classical) derivative satisfies u′ ∈ C((0, T );H) and (2.15) is satisfied pointwise.

For f = 0 it can be shown that u(t) = S(t)u0 is a solution, which has the proper regularity to be a
classical solution owing to the smoothing properties of analytic semigroups; in fact, it is the only such
solution. For general f ∈ L1(0, T ;H), a classical solution often does not exist. Indeed, f needs to be
continuous in order to even make sense of pointwise evaluation of the evolution equation, but even for
f ∈ C((0, T );H) one can construct situations in which a classical solution does not exist. This suggests
the need for a less restrictive solution concept in order to define solutions to the IACP.

We can formally integrate the evolution equation to obtain

u(t) = u0 −
∫ t

0

Au(s)ds+
∫ t

0

f(s)ds.

Based on the properties that a function u satisfying the above equation must have, we can formulate
the following solution concept.

Definition 2.7.2 (Strong solution). We call u a strong solution to the IACP if u ∈ C([0, T );H), u(0) = u0
and u is (classically) differentiable a.e. with u′ ∈ L(0, T ;H), takes its values in D(A) a.e. and satisfies
the evolution equation in (2.15) a.e.

This solution concept is less restrictive than that of a classical solution. Consequently, it turns out
that the IACP has a unique solution whenever f is locally α­Hölder continuous with α > 0, but not
necessarily for general f ∈ L1(0, T ;H). To mitigate this, we introduce the next solution concept.

First note that t 7→ S(t)u0 solves the following integrated form of the IACP for f = 0:

u(t) = u0 −A

∫ t

0

u(s)ds, t ∈ [0, T );

this follows from the interplay between integration and semigroups noted in Proposition 2.4.4(b). Based
on this observation, it makes sense to seek, given an f ∈ L1(0, T ;H), a u ∈ C([0, T );H) such that for
all t ∈ (0, T ] we have

∫ t

0
u(s)ds ∈ D(A) and

u(t) = u0 −A

∫ t

0

u(s)ds+
∫ t

0

f(s)ds. (2.16)

It turns out that this is uniquely solved by the following variation of constants formula:

u(t) = S(t)u0 +

∫ t

0

S(t− s)f(s)ds. (2.17)

Definition 2.7.3 (Mild solution). We call u a mild solution to the IACP if u ∈ C([0, T );H), u(0) = u0
and for all t ∈ (0, T ] we have

∫ t

0
u(s)ds ∈ D(A) and u satisfies the integral equation (2.16). For

problem (2.15) where −A generates an analytic C0­semigroup and f ∈ L1(0, T ;H), the unique mild
solution is given by (2.17).

More details on classical, strong and mild solutions can be found for instance in [57, Section 4.2].
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Weak solutions
As mentioned at the beginning of this section, we can also take the variational approach to making
sense of solutions to (2.15): roughly speaking, we associate to (2.15) a suitable bilinear form b and
functional ` and we call u a solution to the variational problem if b(u, v) = `(v) for all test functions v.
The function space in which we seek the solution is called the trial space, whereas the space consisting
of test functions is called the test space; they are both generally Bochner or (vector­valued) Sobolev
spaces. Each choice of trial and test spaces, bilinear form b and functional ` then gives rise to a different
notion of a weak variational solution.

We will now make these notions more precise. Assume for the remainder of this section that A
satisfies some stronger assumptions than in the previous subsection: we assume that A is self­adjoint,
positive and has a compact inverse. Recall from Section 2.5.2 the spaces Ḣθ

A and set V := Ḣ1
A so

that V ∗ = H−1
A and we have the Gelfand triple V ↪→ H ∼= H∗ ↪→ V ∗. Note that A can now also be

considered a bounded operator A ∈ L (V ;V ∗) instead of an unbounded operator A : D(A) ⊂ H → H.
From Section 2.3.3, recall the spaces X , Y, Y0,{0} and Y0,{T}.

For the first variational formulation, we take Y as our trial space and X as the test space. Assuming
for themoment that u0 = 0, the trial space ismore specificallyY0,{0} ⊂ Y. Note that ∂tu+Au ∈ L2(0, T ;V ∗),
so that for a given f ∈ L2(0, T ;V ∗) and v ∈ L2(0, T ;V ) =: X we can ‘multiply’ both sides of the equa­
tion by v, in the sense that we apply the duality pairing of L2(0, T ;V ) and L2(0, T ;V ∗). This gives rise
to the following variational formulation:

Find u ∈ Y0,{0} such that b0(u, v) = `0(v) for all v ∈ X ,

where the bilinear form b0 : Y0,{0} ×X → R and the functional `0 : X → R are respectively defined by

b0(u, v) :=

∫ T

0

〈∂tu(t) +Au(t), v(t)〉dt, u ∈ Y0,{0}, v ∈ X ;

`0(v) :=

∫ T

0

〈f(t), v(t)〉dt, v ∈ X . (2.18)

This approach can be extended to allow for nonzero u0 — see [62] — but this will not be covered in
this section.

To derive an alternative variational formulation, which works for arbitrary u0 ∈ H, consider the case
that u and v are smooth enough so that pointwise evaluation makes sense and the following integration
by parts formula for V ∗­valued distributional derivatives holds:∫ T

0

〈∂tu(t), v(t)〉dt = −
∫ T

0

〈u(t), ∂tv(t)〉dt+ (u(T ), v(T ))H − (u(0), v(0))H .

In the context of the IACP, we require that u(0) = u0, which implies that t 7→ u(t) ∈ H should at least be
continuous in a neighborhood of t = 0 in order for this requirement to make sense. If we furthermore
assume u ∈ X and v ∈ Y0,{T}, where the latter also has a pointwise meaning as noted in Section 2.3.3,
then we obtain ∫ T

0

〈∂tu(t), v(t)〉dt = −
∫ T

0

〈u(t), ∂tv(t)〉dt− (u0, v(0))H .

Using the self­adjointness of A, this implies that∫ T

0

〈∂tu(t) +Au(t), v(t)〉dt =
∫ T

0

〈u(t), Av(t)− ∂tv(t)〉dt− (u0, v(0))H .

These observations motivate the definition of the following bilinear form b : X × Y0,{T} → R and func­
tional ` : Y0,{T} → R:

b(u, v) :=

∫ T

0

〈u(t), Av(t)− ∂tv(t)〉dt, u ∈ X , v ∈ Y0,{T};

`(v) :=

∫ T

0

〈f(t), v(t)〉dt+ (u0, v(0))H , v ∈ Y0,{T}.
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The associated variational formulation is

Find u ∈ X such that b(u, v) = `(v) for all v ∈ Y0,{T}. (2.19)

Note that (2.19) moves some regularity requirements from the trial functions to the test functions less as
compared to (2.18). Therefore, solutions to (2.18) are sometimes called strong variational solutions in
contrast to solutions to (2.19) which are calledweak variational solutions. Note that the weak variational
formulation does not place more stringent assumptions on f and u0 than the mild solution concept;
indeed, any u0 ∈ H is permitted and the functional ` associated to a given f ∈ L1(0, T ;H) belongs to
Y ′.

For the remainder of this section, we focus on the weak variational problem, noting that the other
variational problems satisfy analogous properties to the ones which we cover for the weak variational
problem.

An important property to establish is the well­posedness of the variational problem. To this end, we
interpret the bilinear form as an operator from the trial space to the dual of the test space. I.e., we define
B ∈ L (X ;Y ′

0,{T}) by (Bu)(v) := b(u, v) for u ∈ X , v ∈ Y0,{T}. Solving (2.19) then amounts to inverting
B and computing u = B−1`. Consequently, the bounded invertibility of B implies the well­posedness of
the weak variational problem. This, in turn, is equivalent to the following there conditions on the bilinear
form:

‖b‖ := sup
u∈X\{0}

sup
v∈Y0,{T}\{0}

∣∣b(u, v)∣∣
‖u‖X ‖v‖Y

<∞ (continuity); (2.20)

β := inf
u∈X\{0}

sup
v∈Y0,{T}\{0}

∣∣b(u, v)∣∣
‖u‖X ‖v‖Y

> 0 (inf­sup condition); (2.21)

∀v ∈ Y0,{T} \ {0} : sup
u∈X\{0}

∣∣b(u, v)∣∣ > 0 (surjectivity).

This result is known as the Banach–Nečas–Babuška theorem, see for instance [3]. For the weak varia­
tional problem andA satisfying some further conditions on its associated bilinear form a( · , · ) : V ×V →
R, these properties are shown to hold in [63, Theorem 2.2]. Hence in this situation, B ∈ L (X ;Y ′

0,{T}) is
boundedly invertible and the weak variational problem is well­posed. If we equip Y with the equivalent
norm ||| · |||Y introduced in Section 2.3.3, then it can be derived from these results that B is in fact an
isometric isomorphism.

2.7.2. Maximal regularity
Given a p ∈ (1,∞), we say that an operator (A,D(A)) on H has maximal Lp­regularity if the abstract
Cauchy problem has a unique solution u ∈ Lp(0, T ;D(A))∩W 1,p

0,{0}(0, T ;H), in the pointwise a.e. sense,
for u0 = 0 and any given f ∈ Lp(0, T ;H). We have the following result.

Theorem 2.7.4 (Maximal Lp­regularity). Let H be a Hilbert space and let (A,D(A)) be an unbounded
linear operator on H such that −A generates an analytic C0­semigroup. Then A has maximal Lp­
regularity for 1 < p <∞.

Proof. See [45, Corollary 1.7].

2.8. Hilbertian stochastic calculus
This section is devoted to setting up the stochastic theory needed to make sense of SPDE (1.3). In
this section U,H and H̃ denote separable Hilbert spaces over the real scalar field. (Ω,F ,P) denotes a
probability space which is fixed throughout the section.

2.8.1. Hilbert­space­valued random variables
In this subsection, we collect some basic notions regarding H­valued random variables. A mapping
X : (Ω,F ,P) → (H,B(H)) is said to be a random variable if it is measurable. The measure P ◦ X−1

defined by
(P ◦X−1)(B) := P(X−1[B]) := P({ω ∈ Ω: X(ω) ∈ B}), B ∈ B(H)
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is called the distribution of X. Whenever a random variable X is P­Bochner integrable, the expected
value or expectation is defined as the Bochner integral

E[X] :=

∫
Ω

X(ω)dP(ω).

The characteristic function ϕX of X is defined as

ϕX(h) := E[ei(X,h)H ], h ∈ H,

and it completely characterizes the distribution of X.

If X is square integrable, i.e., if X ∈ L2(Ω;H), then we can introduce the notion of its covariance.
There are multiple ways to define the covariance of X. Using the Hilbert tensor product space intro­
duced in Section 2.2, we define the covariance Cov(X) ∈ H(2) by

Cov(X) := E[(X − E[X])⊗ (X − E[X])].

Note the analogy of this definition with the scalar­valued case, where the tensor product reduces to
multiplication of scalars.

A closely related concept is that of the covariance operator : a non­negative, self­adjoint, trace­class
operator QX ∈ L1(H) which satisfies

(Cov(X), ϕ⊗ ψ)H(2) = (QXϕ,ψ)H for all ϕ,ψ ∈ H. (2.22)

It holds that a unique covariance operator can be associated to every X ∈ L2(Ω;H). Note that by the
definitions of Cov(X) and the inner product on H(2), we have

(Cov(X), ϕ⊗ ψ)H(2) = E[((X − E[X])⊗ (X − E[X]), ϕ⊗ ψ)H(2) ]

= E[(X − E[X], ϕ)H(X − E[X], ψ)H ],

so that (2.22) becomes

E[(X − E[X], ϕ)H(X − E[X], ψ)H ] = (QXϕ,ψ)H . (2.23)

Whenever it is obvious from context to which random variable we refer, the subscriptX may be omitted
from QX .

In applications, it is sometimes useful to consider another viewpoint of the covariance concept,
namely the covariance kernel. It is defined for the frequently occurring situation when H = L2(D),
where D ⊆ Rd, d ∈ N. Since covariance operators are of trace class, they are in particular Hilbert–
Schmidt, so that there exists a unique kernel %X ∈ L2(D ×D) which satisfies

[QXf ](y) =

∫
D
%X(x, y)f(x)dx for all f ∈ L2(D) and almost all y ∈ D;

see for instance [17, Section 3]. Combining this observation with (2.22) and (2.23), we see that

(QXf, g)L2(D) =

∫
D

∫
D
%X(x, y)f(x)g(y)dxdy

= E[(X − E[X], f)L2(D)(X − E[X], g)L2(D)]

= E
[∫

D
(X(x)− E[X(x)])f(x)dx

∫
D
(X(y)− E[X(y)])g(y)dy

]
.

(2.24)

If %X were continuous and if we could validate the step

E
[∫

D
(X(x)− E[X(x)])f(x)dx

∫
D
(X(y)− E[X(y)])g(y)dy

]
=

∫
D

∫
D
E[(X(x)− E[X(x)])(X(y)− E[X(y)])]f(x)g(y)dxdy,
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then a comparison with the first line of (2.24) would yield the identity

%X(x, y) = E[(X(x)− E[X(x)])(X(y)− E[X(y)])] for all x, y ∈ D,

which is the definition of the covariance function for spatial random fields (X(x))x∈D. Thus we see the
connection between this concrete definition, which was also used in Chapter 1, and the more abstract
definitions introduced in this chapter. It can also be seen from this identity that a covariance function is
positive semi­definite, i.e. %X(x, x) ⩾ 0 for x ∈ D.

2.8.2. Gaussian measures and random variables
Definition 2.8.1 (Gaussian measure on R). The Gaussian measure µ on (R,B(R)) with mean m ∈ R
and variance σ2 > 0 is defined by

µ(A) =

∫
A

1√
2πσ2

exp
(
− (x−m)2

2σ2

)
dx, A ∈ B(R).

For σ2 = 0, we define µ by

µ(A) =

{
1 if m ∈ A,

0 if m 6∈ A.

In this case, we say that the Gaussian measure is degenerate.

Definition 2.8.2. A real­valued random variable X is called a Gaussian random variable if its distribu­
tion is a Gaussian measure on R. This situation is abbreviated to X ∼ N (m,σ2), where m ∈ R and
σ2 ⩾ 0 are respectively the mean and variance of the associated Gaussian measure.

Definition 2.8.3. We say that an H­valued random variable X is Gaussian if the real­valued random
variable (X,h)H is Gaussian for all h ∈ H.

The following theorem collects the most important basic facts about H­valued Gaussian random
variables.

Theorem 2.8.4. Given an H­valued Gaussian random variable X, there exists a vector m ∈ H and a
non­negative, self­adjoint and trace­class operator Q ∈ L1(H) such that

E[(X,h)H ] = (m,h)H ∀h ∈ H,

E[(X −m,h1)H(X −m,h2)H ] = (Qh1, h2)H ∀h1, h2 ∈ H.

We callm themean andQ the covariance operator ofX and we writeX ∼ N (m,Q). The characteristic
function of X is

ϕX(h) = ei(h,m)H− 1
2 (Qh,h)H ∀h ∈ H,

which implies that m and Q characterize the distribution of X.
Conversely, there exists a Gaussian random variable X ∼ N (m,Q) given any such m ∈ H and

Q ∈ L1(H).

Proof. The various claims made in this theorem are proved in Section 2.3.1 of [23].

2.8.3. Hilbert­space­valued random processes
This subsection is devoted to recalling some basic facts and definitions regarding stochastic processes
and generalizing them to the H­valued situation. Recall that a stochastic process is an indexed family
of random variables, usually indexed by a subset of the real numbers which carries the interpretation
of a time horizon. Most commonly we consider (X(t))t⩾0 or (X(t))t∈[0,T ] for some T ∈ (0,∞).

As was the case for random variables, we can define various notions of integrability for stochastic
processes. A stochastic process is said to be integrable if

‖X(t)‖L1(Ω;H) := E ‖X(t)‖H <∞ ∀t ∈ [0, T ]
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and square integrable if

‖X(t)‖L2(Ω;H) :=
(
E
[
‖X(t)‖2H

])1/2
<∞ ∀t ∈ [0, T ].

For a fixed ω ∈ Ω, we call the mapping

t 7→ X(t, ω) := (X(t))(ω), t ∈ [0, T ]

a path of the stochastic process (X(t))t∈[0,T ].

Just as for single random variables, for anH­valued square­integrable stochastic process (X(t))t⩾0, we
can define the concept of covariance in multiple ways. The covariance tensor Cov(X(t), X(s)) ∈ H(2)

is defined by

Cov(X(t), X(s)) := E[(X(t)− E[X(t)])⊗ (X(s)− E[X(s)])], t, s ⩾ 0.

For t, s ⩾ 0 we can always associate the covariance operator QX(t),X(s) ∈ L1(H) associated to
Cov(X(t), X(s)). In the case of a spatiotemporal process, i.e. if moreover H = L2(D) for a given
domain D ⊆ Rd, d ∈ N, then we have a covariance kernel %X(t),X(s) ∈ L2(D ×D).

If t = s, then trivially Cov(X(t), X(s)) = Cov(X(t)), which is simply the covariance of a single
random variable as introduced in the previous section; in particular, the corresponding covariance op­
erator is self­adjoint and non­negative and the kernel, if applicable, is positive semi­definite. If t 6= s,
then it may occur that QX(t),X(s) is not self­adjoint or non­negative and that %X(t),X(s) is not positive
semi­definite.

To understand why this is true, it is instructive to consider the case when H = L2(D) and the
stochastic process (X(t))t⩾0 can be viewed as a single, square­integrable, Bochner­space­valued ran­
dom variable X ∈ L2(Ω;L2(0, T ;L2(D))) ∼= L2(Ω;L2((0, T )×D)). Then by the theory of Section 2.8.1,
there exists a kernel %X : (0, T )×D → R such that

(Cov(X), ϕ⊗ ψ)L2((0,T )×D)(2) =

∫
(0,T )×D

∫
(0,T )×D

%X((t, x), (s, y))ϕ(t, x), ψ(s, y)dtdxdsdy,

see (2.24). On the other hand, assuming that all integrals can be interchanged and using the definition
of the kernel %X(t),X(s), we have

(Cov(X), ϕ⊗ ψ)L2((0,T )×D)(2) = E[(X − E[X], ϕ)L2((0,T )×D)(X − E[X], ψ)L2((0,T )×D)]

= E
[∫ T

0

∫ T

0

(X(t)− E[X(t)], ϕ(t))L2(D)(X(s)− E[X(s)], ψ(s))L2(D) dtds
]

=

∫ T

0

∫ T

0

E[(X(t)− E[X(t)], ϕ(t))L2(D)(X(s)− E[X(s)], ψ(s))L2(D)]dtds

=

∫ T

0

∫ T

0

∫
D

∫
D
%X(t),X(s)(x, y)ϕ(t, x)ψ(s, y)dxdy dtds.

This informal argument shows that we can interpret %X(t),X(s)(x, y) as %X((t, x), (s, y)) for (almost) all
t, s ∈ (0, T ) and x, y ∈ D. The former is positive semi­definite for t = s, so that %((t, x), (t, y)) ⩾ 0 for
all x, y ∈ D; the latter is positive semi­definite in the sene that %X((t, x), (t, x)) ⩾ 0. However, there is
no such guarantee for %X((t, x), (s, y)) if t 6= s.

2.8.4. Spatiotemporal noise
The noise term Ẇ occurring on the right­hand side of SPDE (1.3) represents spatiotemporal white
or colored noise. Intuitively, spatiotemporal white noise should have the property that Ẇ (t, x) is a
Gaussian random variable with mean zero and correlation

E[Ẇ (t, x)Ẇ (s, y)] = δ(t− s)δ(x− y)

for all t, s ⩾ 0 and x, y ∈ D, where we recall that D ⊆ Rd is some spatial domain. In this context, δ
is understood to be the Dirac delta. For colored noise, on the other hand, the spatial part of the noise
may have a smoother correlation function; this can be expressed as

E[Ẇ q(t, x)Ẇ q(s, y)] = δ(t− s)q(x− y),
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where q is a given real­valued function on the domain D.
As a first step towards making this idea more mathematically rigorous, we adopt a different view­

point: instead of considering Ẇ to be a (random) function of space and time, we view it as a random
function of time which takes its values in a function space, say L2(D); this can subsequently be gener­
alized to some Hilbert space H.

Next, we consider the following definition. In contrast to the usual situation where the index set of
a stochastic process is a finite or infinite real interval thought of as time, in the following definition it is
the Hilbert space H.

Definition 2.8.5 (H­isonormal Gaussian process). Given a separable Hilbert spaceH, we call (W(h))h∈H ⊆ L2(Ω)
an H­isonormal Gaussian process if

(i) it is aGaussian process, i.e. for any given n ∈ N and h1, . . . , hn ∈ H we have that (W(h1), . . . ,W(hn))
is an Rn­valued Gaussian random variable with mean zero;

(ii) for all h1, h2 ∈ H we have
E[W(h1)W(h2)] = (h1, h2)H .

The motivation for this definition is that an L2(D)­isonormal Gaussian process should be interpreted
as spatial white noise.

We note some properties of H­isonormal Gaussian processes. Firstly, we recall that Gaussian
processes are characterized by their mean function

m(h) := E[W(h)], h ∈ H,

and covariance function

c(h1, h2) := E[W(h1)W(h2)]− E[W(h1)]E[W(h2)], h1, h2 ∈ H.

Moreover, it follows from the definition that the mapping h 7→ W(h) is in fact linear as a mapping from
H to L2(Ω).

An H­isonormal Gaussian process may be constructed in the following way.

Proposition 2.8.6. Let (βj)j⩾1 be a sequence of independent and identically distributed (i.i.d.) real­
valued random variables with distribution N (0, 1) and let (ej)j⩾1 be an orthonormal basis for H. Then

W(h) :=

∞∑
j=1

(h, ej)Hβj , h ∈ H,

converges in L2(Ω) and defines an H­isonormal Gaussian process.

Proof. See [15, Proposition 2.2].

2.8.5. Relation between real­valued Wiener and isonormal Gaussian processes
In this section we consider how isonormal Gaussian process relate to real­valued Wiener processes.

Given two stochastic processes (X(t))t⩾0 and (Y (t))t⩾0, we say that Y is a version ofX if P(X(t) =
Y (t)) = 1 for all t ⩾ 0. If X and Y satisfy the stronger condition that P(X(t) = Y (t) ∀t ⩾ 0) = 1,
then they are said to be indistinguishable. Two versions of a stochastic process with almost surely
continuous paths are in fact indistinguishable. Whenever a process has a version with almost surely
continuous paths, we always consider that version unless specified otherwise.

Definition 2.8.7. A real­valued stochastic process (W (t))t⩾0 is called a Wiener process if

(i) W (0) = 0 almost surely;

(ii) the paths of (W (t))t⩾0 are continuous almost surely;

(iii) W has independent increments, meaning that the random variables

W (t1)−W (t0),W (t2)−W (t1), . . . ,W (tn)−W (tn−1)

are mutually independent for 0 ⩽ t0 < t1 < · · · < tn, n ∈ N;
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(iv) W (t)−W (s) ∼ N (0, t− s) for all t ⩾ s ⩾ 0.

We can construct real­valued Wiener processes using L2(0, T )­isonormal Gaussian processes in
the following way.

Proposition 2.8.8. Let W be an L2(0, T )­isonormal Gaussian process and set W (t) := W(1[0,t]) for
t ∈ [0, T ]. Then (W (t))t∈[0,T ] has a continuous version which is a real­valued Wiener process.

Proof. See [15, Proposition 2.4].

The proof of Proposition 2.8.8 uses the following well­known theorem, which gives a sufficient con­
dition for the existence of versions with almost surely Hölder continuous paths, in order to establish
property (ii) of Definition 2.8.7.

Theorem 2.8.9 (Kolmogorov–Chentsov). If there exist constants p ∈ (1,∞) and α ∈ ( 1p , 1] such that
X ∈ C0,α([a, b];Lp(Ω;H)), then there exists a version Y ∈

⋂
β∈(0,α− 1

p )
Lp(Ω;C0,β([a, b];H)) of X.

Proof. See for instance [54, Theorem 2.1].

Proposition 2.8.8 reflects the intuitive notion that ‘white noise is the derivative of a Wiener process’.
We keep this idea in mind in order to define spatiotemporal white noise: we wish to define a quantity
W (t) such that its time derivative would be spatiotemporal white noise. Such a process must behave
as a Wiener process in time but as white noise in space. This gives rise to the following definition.

Definition 2.8.10. Given an L2(0, T ×D)­isonormal Gaussian process, define

Wt(φ) := W(1[0,t] ⊗ φ), t ∈ [0, T ], φ ∈ L2(D),

where (1[0,t] ⊗ φ)(s, x) := 1[0,t](s)φ(x) for (almost) all s ∈ (0, T ] and x ∈ D.

We then have that 1√
t
Wt( · ) is an L2(D)­isonormal Gaussian process. As noted before, we can thus

interpretWt as spatial white noise for any given t ∈ (0, T ]. We have the following analog to Proposition
2.8.6.

Proposition 2.8.11. Let (ej)j⩾1 be an orthonormal basis for L2(D) and define

βj(t) := W(1[0,t] ⊗ ej) for all j ∈ N, t ∈ [0, T ]. (2.25)

Then (βj)j⩾1 are independent real­valued Wiener processes and we have almost surely

Wt(φ) =

∞∑
j=1

βj(t)(φ, ej)L2(D). (2.26)

Proof. See [15, Proposition 2.6].

2.8.6. Wiener processes on Hilbert spaces
Thie considerations from the previous subsection lead us to the following, more general definition.

Definition 2.8.12 (Cylindrical Wiener process). Let (ej)j⩾1 be an orthonormal basis for H and let
(βj)j⩾1 be the sequence of independent real­valued Wiener processes defined by (2.25). For any
t ∈ [0, T ], we define the cylindrical Wiener process in H by

W (t) :=

∞∑
j=1

βj(t)ej ,

where the convergence is almost surely in any Hilbert space H̃ ⊃ H with Hilbert–Schmidt embedding.

The convergence is a special case of the following result.
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Proposition 2.8.13. Let (ej)j⩾1 be an orthonormal basis for H and let T ∈ L2(H; H̃). If (βj)j⩾1 is the
sequence of independent real­valued Wiener processes defined by (2.25), then it holds for all t ∈ [0, T ]
that TW (t) :=

∑∞
j=1 βj(t)Tej is a well­defined element of L2(Ω; H̃), which is independent of the choice

of orthonormal basis.

Proof. Fix a t ∈ [0, T ] and assume without loss of generality that n,m ∈ N are such that n ⩾ m. Then,
by the independence and zero mean of the real­valued Wiener processes (βj)j⩾1, and the fact that
βj(t) ∼ N (0, t), we have∥∥∥∥∥

n∑
j=1

βj(t)Tej −
m∑
j=1

βj(t)Tej

∥∥∥∥∥
2

L2(Ω;H̃)

=

n∑
j=m+1

‖βj(t)Tej‖2L2(Ω;H̃)

= t

n∑
j=m+1

‖Tej‖2H̃ ⩽ t ‖T‖2L2(H;H̃) <∞.

The sum on the second line tends to zero as n,m → ∞ as it is the difference of partial sums of a
convergent series; by the Cauchy criterion it thus follows that the series TW (t) :=

∑∞
j=1 βj(t)Tej

converges in L2(Ω; H̃).
To show that TW (t) is well­defined, i.e. the definition does not depend on the choice of orthonormal

basis, let another orthonormal basis (gi)i⩾1 forH be given. If T̃W (t) is the result of the definition using
(gi)i⩾1, then it holds almost surely that

TW (t) : =

∞∑
j=1

βj(t)Tej =

∞∑
j=1

Wt(ej)Tej =

∞∑
j=1

∞∑
i=1

(ej , gi)HWt(gi)Tej =

=

∞∑
i=1

∞∑
j=1

Wt(gi)(ej , gi)HTej =

∞∑
i=1

∞∑
j=1

Wt(gi)Tgi = T̃W (t),

where we used (2.26), the Fubini theorem, and the continuity of T .

We proceed with some examples showing how Proposition 2.8.13 may be applied in different con­
texts related to Wiener processes in Hilbert spaces.

Example 2.8.14. For all h ∈ H it holds that the mapping x 7→ (h, x)H belongs to L2(H;R). Hence by
Proposition 2.8.13 (h,W (t))H is a well­defined random process and

(h,W (t))H :=

∞∑
j=1

βj(t)(h, ej)H = Wt(h).

Example 2.8.15. Let H ⊂ H̃ with Hilbert–Schmidt embedding, i.e. ι ∈ L2(H; H̃), where ι denotes the
inclusion map from H to H̃. Then we may identify ιW (t), which is a well­defined element of L2(Ω; H̃),
withW (t).

Note that a Hilbert space H̃ ⊃ H as in Example 2.8.15 can always be constructed: for any given
orthonormal basis (ej)j⩾1 of H, we let H̃ be such that (ẽj)j⩾1 := (jej)j⩾1 is an orthonormal basis; i.e.,
h̃ ∈ H̃ if and only if h̃ =

∑∞
j=1 cj ẽj with

∑∞
j=1 c

2
j <∞.

Example 2.8.16 (Spatiotemporal cylindrical Wiener process). Suppose H = L2(D) and H̃ = H−s(D)
for s > d/2 and a bounded domainD. For simplicity, we take s to be an integer. Also note thatH−s(D) is
not one of the dot spaces introduced in Section 2.5.2, but rather the dual of a conventional integer­order
Sobolev space.

In [19, Theorem 2] it is stated that the embedding Hs(D) ↪→ L2(D) is Hilbert–Schmidt. Since
we can view the embedding L2(D) ↪→ H−s(D) as its adjoint, it follows that the latter is also Hilbert–
Schmidt. Thus, we have a concrete way of formulating the convergence of the series which defines
the spatiotemporal cylindrical Wiener process.
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Example 2.8.17 (Q­Wiener process). Let a non­negative and self­adjoint operator Q ∈ L (U ;H) be
given. Define the space H := Q

1
2U with the inner product

(h1, h2)H := (Q− 1
2h1, Q

− 1
2h2)U , h1, h2 ∈ H,

where Q− 1
2 denotes the operator pseudo­inverse of Q 1

2 . This results in a Hilbert space.
Now consider the following definition:

WQ(t) := Q
1
2W (t) :=

∞∑
j=1

βj(t)Q
1
2 ej , t ∈ [0, T ],

where (ej)j⩾1 and (βj)j⩾1 are as in the previous propositions. If trQ < ∞, then we have that Q 1
2 ∈

L2(U ;H) (equivalently, ι ∈ L2(H;H)) so that WQ takes its values in H by Proposition 2.8.13. In
fact, one can show thatWQ satisfies a generalization of Definition 2.8.7 toH­valued processes, where
condition (iv) is changed toW (t)−W (s) ∼ N (0, (t− s)Q).

If trQ = ∞, then as beforeWQ takes its values in a space which containsH with a Hilbert–Schmidt
embedding, but which is possibly smaller than the space in which the cylindrical Wiener process W
takes its values.

We call WQ a Q­Wiener process. The space H is called the reproducing kernel Hilbert space
(RKHS) ofWQ.

2.8.7. Stochastic integration
Having defined Wiener processes on Hilbert spaces, we can now make sense of stochastic integration
with respect to a given H­valued Wiener processes W . For our purposes, it is sufficient to define
the stochastic integral for deterministic integrands Φ: (0, T ) → L (H; H̃). We define the integral in
terms of real­valued Itô integrals as follows. A more general approach, which allows for the integration
of so­called predictable stochastic processes with certain integrability requirements, can be found for
instance in Section 4.2 of [23].

Proposition 2.8.18. Let W be a cylindrical Wiener process on H, let H̃ be a Hilbert space and let
Φ: (0, T ) → L (H; H̃) satisfy ∫ T

0

‖Φ(t)‖2L2(H;H̃) dt <∞.

Given orthonormal bases (ej)j⩾1 for H and (gi)i⩾1 for H̃ and the sequence (βj)j⩾1 of independent
real­valued Wiener processes defined by (2.25), the stochastic integral defined by∫ T

0

Φ(t)dW (t) :=

∞∑
i=1

( ∞∑
j=1

∫ T

0

(Φ(t)ej , gi)H̃ dβj(t)
)
gi

is a well­defined element of L2(Ω; H̃) which satisfies the Itô isometry:∥∥∥∥∫ T

0

Φ(t)dW (t)

∥∥∥∥2
L2(Ω;H̃)

=

∫ T

0

‖Φ(t)‖2L2(H;H̃) dt.

Proof. The proof of the Itô isometry uses the isometry for real­valued stochastic integrals, see [15,
Proposition 2.10]. To show that the definition does not depend on the choices of orthonormal bases for
H and H̃, one argues as in the second part of the proof of Proposition 2.8.13.

In light of Example 2.8.17, note that we can naturally define the stochastic integral against a Q­
Wiener process by ∫ T

0

Φ(t)dWQ(t) :=

∞∑
i=1

( ∞∑
j=1

∫ T

0

(Φ(t)Q
1
2 ej , gi)H̃ dβj(t)

)
gi.
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The Itô isometry can then be written using the RKHS H:∥∥∥∥∫ T

0

Φ(t)dWQ(t)

∥∥∥∥2
L2(Ω;H̃)

=

∫ T

0

‖Φ(t)Q 1
2 ‖

2

L2(H;H̃) dt =
∫ T

0

‖Φ(t)‖2L2(H;H̃) dt.

The following special stochastic integral can also be useful.

Definition 2.8.19 (Weak stochastic integral). Given Φ: (0, T ) → L (H; H̃) and Ψ: (0, T ) → H̃, we
define the weak stochastic integral by∫ t

0

(Ψ(s),Φ(s)dW (s))H̃ :=

∫ t

0

Φ̃Ψ(s)dW (s), t ∈ [0, T ],

where Φ̃Ψ : (0, T ) → L (H;R) is defined by

Φ̃Ψ(t)h := (Ψ(t),Φ(t)h)H̃ , t ∈ (0, T ), h ∈ H.

We conclude with a stochastic generalization of the Fubini theorem, which gives sufficient conditions
to interchange deterministic and stochastic integrals.

Theorem 2.8.20 (Stochastic Fubini theorem). Let Φ: (0, T )× (0, T ) → L2(H; H̃) be strongly measur­
able with respect to the (product) Borel σ­algebras on both sides. If∫ T

0

(∫ T

0

‖Φ(t, s)‖2L2(H;H) dt
) 1

2

ds <∞,

then almost surely it holds that∫ T

0

∫ T

0

Φ(t, s)dW (t)ds =
∫ T

0

∫ T

0

Φ(t, s)dsdW (t).

Proof. This is the specialization to deterministic integrands of [23, Theorem 4.33].
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3
Analysis of the SPDE

In this chapter, we study the following problem:

(∂t +A)γX = ẆQ, X(0) = X0 ∈ Lp(Ω; Ḣη
A). (3.1)

Here we assume thatA is a self­adjoint operator whose negative−A generates an analyticC0­semigroup
(S(t))t⩾0 of contractions on the real and separable Hilbert space H, and ẆQ is Q­Wiener spatiotem­
poral white noise and γ, η ⩾ 0 are real parameters. As before, we will often omit the Q fromWQ when
no confusion arises as a result. Given a filtration (Ft)t⩾0 to which WQ is adapted, we suppose that
X0 is F0­measurable. We call the SPDE (3.1) non­fractional parabolic if γ = 1 and fractional parabolic
otherwise.

This chapter is structured as follows. Before addressing the matter of defining solution concepts
for (3.1), in Section 3.1 we first consider the solution concepts known for the non­fractional parabolic
problem and compare them to the deterministic solution concepts described in Section 2.7. Then in
Section 3.2, we investigate the parabolic operator ∂t + A and the C0­semigroup which it generates,
upon which we conclude that fractional powers of this Bochner space operator can be defined using
the theory described in Section 2.5. This will allow us to define the concept of a mild fractional solution
in Section 3.3, where we also introduce a fractional variational weak solution concept and show that
the two are equivalent whenever A and X0 are such that a mild solution exists. Working with the mild
solution, we derive well­posedness and spatiotemporal regularity results in Section 3.4, where the latter
are linked to the Hilbert–Schmidt norm of certain fractional powers of the operators A and Q. Lastly,
in Section 3.5 a connection is made with the statistical application by investigating briefly the marginal
covariance structure and deriving an explicit expression for Cov(X(t)) as t→ ∞.

3.1. Solution concepts for the non­fractional parabolic SPDE
The analysis of the non­fractional problem is more straightforward than that of the fractional one since
the non­fractional SPDE can be written in the form of a stochastic evolution equation:

dX(t) +AX(t)dt = dWQ, X(0) = X0 ∈ Lp(Ω; Ḣη
A). (3.2)

The most straightforward definition of a solution to (3.2) is obtained by formally integrating the equation,
which suggests the formula

X(t) = X0 −
∫ t

0

AX(s)ds+WQ(t), P­a.s. (3.3)

Definition 3.1.1 (Strong solution). AnH­valued process (X(t))t∈[0,T ] is called a strong solution to (3.2)
if

(i) X(t) ∈ D(A) for almost all t ∈ [0, T ];

(ii)
∫ T

0
‖AX(t)‖H dt <∞;
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(iii) equation (3.3) is satisfied for all t ∈ [0, T ].

Keeping in mind the discussion in the previous chapter, it is clear that equation (3.3) only makes
sense if trQ <∞.

The next solution concept can be motivated by taking the inner product of (3.3) with a test vector
and using the adjoint of A.

Definition 3.1.2 (H­weak solution). AnH­valued process (X(t))t∈[0,T ] is called anH­weak solution to
(3.2) if its paths are Bochner integrable P­a.s. and for all v ∈ D(A) and almost all t ∈ [0, T ] we have

(X(t), v)H = (X0, v)H −
∫ t

0

(X(s), Av)H ds+ (WQ(t), v)H .

Compared to the strong solution, theH­weak solution concept places less stringent assumptions on
both the solution X(t), which is no longer required to belong to D(A), and on the covariance operator
Q, which may have infinite trace since ((WQ(t), v)H)t∈[0,T ] is always a well­defined real­valued Wiener
process. The terminology ‘weak’ and ‘strong’ is further justified by the fact that a strong solution is also
a weak solution, which is an immediate consequence of the respective definitions.

Another possibility is to test (3.2) against functions from a Bochner space such as L2(0, T ;H), by
formally taking the corresponding inner product, integrating by parts and taking adjoints.

Definition 3.1.3 (L2(0, T ;H)­weak solution). AnH­valued process (X(t))t∈[0,T ] is called anL2(0, T ;H)­
weak solution to (3.2) if its paths are Bochner integrable P­a.s. and for all v ∈ C1

0,{T}([0, T ];D(A)) we
have

(X, (−∂t +A)v)L2(0,T ;H) = (X0, v(0))H +

∫ T

0

(v(t),dWQ(t))H ,

where the latter term is a weak stochastic integral. Note that ∂t denotes a weak derivative, which
coincides with the strong derivative for v ∈ C1

0,{T}([0, T ];D(A)).

Since wemoved the temporal derivative and the operatorA from the trial function to the test function,
this yields a solution concept analogous to the weak variational formulation introduced in Section 2.7
for the deterministic evolution equation. We continue the analogy with the deterministic situation by
introducing the following stochastic mild solution concept.

Definition 3.1.4 (Mild solution). Suppose that −A generates a C0­semigroup (S(t))t∈[0,T ] in H satis­
fying ∫ T

0

∥∥S(t)∥∥2
L2(H;H)

dt <∞, (3.4)

where H := Q
1
2H is the RKHS ofWQ. The mild solution to (3.2) is given by

X(t) = S(t)X0 +

∫ t

0

S(t− s)dWQ(s), t ∈ [0, T ].

Theorem 5.4 of [23] now tells us that (3.2) has a unique H­weak solution which coincides with
the mild solution, given that (3.4) and the standing assumptions on A and X0 hold. Under the same
conditions, a mild solution is necessarily a L2(0, T ;H)­weak solution is necessarily a mild solution, as
noted in [46, Lemma 3.2]; later we will see that it is equivalent to the mild solution, hence to theH­weak
solution, see Propositions 3.3.2 and 3.3.4.

3.2. The parabolic operator
In order to define solution concepts in the fractional parabolic case, we need to find a suitable interpre­
tation the fractional parabolic operator (∂t + A)γ . The idea is to view ∂t + A as an unbounded linear
operator defined on a subset of the Bochner space L2(0, T ;H) and show that it generates a semigroup
suitable for defining fractional powers, see Section 2.5.

First define

[Av](ϑ) := Av(ϑ), v ∈ D(A) := L2(0, T ;D(A)), almost all ϑ ∈ (0, T );
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this is the Bochner space counterpart of A. The parabolic operator is then defined as

(∂t +A)v := ∂tv +Av, v ∈ D(∂t +A) := H1
0,{0}(0, T ;H) ∩ L2(0, T ;D(A)),

where ∂tv denotes the weak derivative of v in the Bochner space sense, see Section 2.3.3.
We now state and prove some properties of this operator, which will subsequently be combined

into a proof that −(∂t +A) generates a C0­semigroup which we may use to define negative fractional
powers. We first prove that the parabolic operator inherits the maximal accretivity from A.

Proposition 3.2.1. If −A generates an analytic semigroup of contractions on a Hilbert space H, then
the parabolic operator ∂t +A : D(∂t +A) ⊂ L2(0, T ;H) → L2(0, T ;H) is maximally accretive.

Proof. First note that the assumption that −A generates an analytic semigroup of contractions implies
by the Lumer­Phillips theorem that A is maximally accretive, hence in particular accretive. Thus A is
also accretive, since for v ∈ L2(0, T ;D(A)) we have

(Av, v)L2(0,T ;H) =

∫ T

0

(Av(t), v(t))H︸ ︷︷ ︸
⩾0

dt ⩾ 0.

Moreover, it follows from integration by parts that the weak derivative operator is accretive: indeed, for
v ∈ H1

0,{0}(0, T ;H):

(∂tv, v)L2(0,T ;H) =

∫ T

0

(∂tv(t), v(t))H dt = −
∫ T

0

(v(t), ∂tv(t))H dt+ ‖v(T )‖2 −
∥∥v(0)∥∥2

= −(∂tv, v)L2(0,T ;H) + ‖v(T )‖2 ,

where we note that pointwise evaluation is meaningful since H1(0, T ;H) ↪→ C([0, T ];H) [25, XVIII.1.2,
Theorem 1].

Isolating (∂tv, v)L2(0,T ;H) yields

(∂tv, v)L2(0,T ;H) =
1

2

∥∥v(T )∥∥2 ⩾ 0.

It follows that ∂t +A on L2(0, T ;H) is accretive as the sum of accretive operators; it remains to show
that it is in fact maximal accretive. This means that given an f ∈ L2(0, T ;H), we need to find a
u ∈ D(∂t +A) = L2(0, T ;D(A)) ∩H1

0,{0}(0, T ;H) such that

(∂t +A)u+ u = f ;

see Definition 2.1.13. But this amounts to the problem of maximal L2­regularity of the abstract Cauchy
problem

∂tu(t) + (A+ I)u(t) = f(t), almost all t ∈ (0, T ).

Thus by Theorem 2.7.4 it suffices to check that −(A+ I) generates an analytic C0­semigroup. Indeed,
if we denote by (S(t))t⩾0 the semigroup generated by−A, then−(I+A) generates (e−tS(t))t⩾0, which
clearly preserves all the properties needed for a semigroup to be analytic.

Next we consider the operators (S(t))t⩾0 on L2(0, T ;H) defined by

[S(t)v](ϑ) := S(t)v(ϑ), t ⩾ 0, v ∈ L2(0, T ;H), almost all ϑ ∈ (0, T ). (3.5)

This is the natural Bochner space version of the family (S(t))t⩾0. We expect this to be a C0­semigroup
generating −A; the next proposition shows that this is indeed the case.

Proposition 3.2.2. (S(t))t⩾0 is a family of well­defined bounded operators on L2(0, T ;H) forming a
C0­semigroup with infinitesimal generator −A.
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Proof. We first verify that the operators defined in (3.5) are well­defined. Indeed, for v ∈ L2(0, T ;D(A))
we have

‖Av‖L2(0,T ;H) =

(∫ T

0

‖Av(ϑ)‖2H dϑ
)1/2

⩽‖v‖L2(0,T ;D(A)) . (3.6)

LetM ⩾ 1 and w ⩾ 0 be as in Proposition 2.4.3, i.e. they satisfy ‖S(t)‖L (H) ⩽Mewt for all t ⩾ 0. Then
for fixed t ⩾ 0 we have

∥∥S(t)v∥∥
L2(0,T ;H)

=

(∫ T

0

‖S(t)v(ϑ)‖2H dϑ
)1/2

⩽Mewt‖v‖L2(0,T ;H) . (3.7)

This shows that A is well­defined and that S(t) is bounded for every t ⩾ 0.
We now check that (S(t))t⩾0 is a strongly continuous semigroup. Clearly, S(0) = I and S(t+ s) =

S(t)S(s). To show that it is strongly continuous, let v ∈ L2(0, T ;H), 0 < h < h′ and note that

∥∥S(h)v − v
∥∥
L2(0,T ;H)

=

(∫ T

0

∥∥S(h)v(ϑ)− v(ϑ)
∥∥2
H
dϑ

)1/2

⩽
∥∥S(h)v∥∥

L2(0,T ;H)
+‖v‖L2(0,T ;H)

⩽ (Mewh′
+ 1)‖v‖L2(0,T ;H) ,

so that by dominated convergence we may pass to the limit h ↓ 0 under the integral sign to deduce
the strong continuity of (S(t))t⩾0 from that of (S(t))t⩾0. This finishes the proof that (S(t))t⩾0 is a C0­
semigroup.

We now consider its generator. Let v ∈ L2(0, T ;D(A)) and consider for 0 < h < h′:∥∥∥∥ 1h (S(h)v − v) +Av
∥∥∥∥
L2(0,T ;H)

=

(∫ T

0

∥∥∥∥ 1h (S(h)v(ϑ)− v(ϑ)) +Av(ϑ)

∥∥∥∥2
H

dϑ
)1/2

⩽
∥∥∥∥ 1h (S(h)v − v)

∥∥∥∥
L2(0,T ;H)

+‖Av‖L2(0,T ;H) .

(3.8)

Note that ∥∥∥∥ 1h (S(h)v − v)

∥∥∥∥
L2(0,T ;H)

=

(∫ T

0

∥∥∥∥ 1h (S(h)v(ϑ)− v(ϑ))

∥∥∥∥2
H

dϑ
)1/2

=

(∫ T

0

∥∥∥∥ 1h
∫ h

0

S(s)Av(ϑ)ds
∥∥∥∥2
H

dϑ
)1/2

⩽
(∫ T

0

1

h2

[∫ h

0

∥∥S(s)Av(ϑ)∥∥
H
ds

]2
dϑ

)1/2

⩽
(∫ T

0

1

h2

[∫ h

0

Mewh′∥∥Av(ϑ)∥∥
H
ds

]2
dϑ

)1/2

=Mewh′
(∫ T

0

∥∥Av(ϑ)∥∥2
H
dϑ

)1/2

=Mewh′
‖Av‖L2(0,T ;H) .

Applying this and (3.6) to (3.8) yields∥∥∥∥ 1h (S(h)v − v) +Av
∥∥∥∥
L2(0,T ;H)

⩽ (Mewh′
+ 1)‖v‖L2(0,T ;D(A)) .

This justifies the use of the dominated convergence theorem to conclude that

lim
h↓0

1

h
(S(h)v − v) = −Av,

i.e., L2(0, T ;D(A)) is contained in the domain of the generator of (S(t))t⩾0, which is an extension of
A. Next, observe that L2(0, T ;D(A)) is dense in L2(0, T ;H) by the density of D(A) in H. Moreover,

36



it follows from an argument analogous to (3.7) that S(t) maps L2(0, T ;D(A)) to itself for each t ⩾ 0.
Hence we have that L2(0, T ;D(A)) is dense in the domain of the generator of (S(t))t⩾0 with respect
to the graph norm of the latter by Proposition 2.4.5. Since these observations together imply that the
generator is the closure of A, it suffices to prove that A is closed.

To this end, let the sequence (vn)n⩾1 ⊆ D(A) = L2(0, T ;D(A)) be such that vn → v and Avn → y
in L2(0, T ;H). We need to prove that v ∈ L2(0, T ;D(A)) and y = Av. Let (vnk

)k⩾1 be a subsequence
such that vnk

(t) → v(t) and Avnk
(t) → y(t) in H for almost all t ∈ (0, T ). Then by the closedness of A

it follows that v(t) ∈ D(A) and y(t) = Av(t) for almost all t ∈ (0, T ). We use this to see

‖v‖D(A) =‖v‖L2(0,T ;D(A)) =

(∫ T

0

∥∥v(ϑ)∥∥2D(A)
dϑ

)1/2

=

(∫ T

0

[∥∥v(ϑ)∥∥
H
+
∥∥Av(ϑ)∥∥

H

]2
dϑ

)1/2

=

(∫ T

0

[∥∥v(ϑ)∥∥
H
+
∥∥y(ϑ)∥∥

H

]2
dϑ

)1/2

⩽ C2(‖v‖L2(0,T ;H) + ‖y‖L2(0,T ;H)) <∞,

so v ∈ D(A). Now the result follows from once again applying the dominated convergence theorem,
this time to let k → ∞ under the integral appearing in

∥∥Av −Avnk

∥∥
L2(0,T ;H)

=

(∫ T

0

∥∥y(ϑ)−Avnk
(ϑ)

∥∥2
H
dϑ

)1/2

⩽ C2(‖y‖L2(0,T ;H) + ‖Avnk
‖L2(0,T ;H))

⩽ C2(‖y‖L2(0,T ;H) +K),

where K := supk⩾1 ‖Avnk
‖L2(0,T ;H) is finite since (Avnk

)k⩾1 converges in L2(0, T ;H). This shows
that Av = y.

Next we consider the family of zero­padded right­translation operators (T (t))t⩾0 on L2(0, T ;H),
defined by

[T (t)v](ϑ) := v(ϑ− t)1{ϑ ⩾ t}, t ⩾ 0, v ∈ L2(0, T ;H), almost all ϑ ∈ (0, T ). (3.9)

Proposition 3.2.3. The family (T (t))t⩾0 of bounded operators on L2(0, T ;H) is a C0­semigroup whose
infinitesimal generator is given by the negative of the weak derivative Rv := −∂tv for v ∈ D(R) =
H1

0,{0}(0, T ;H).

Proof. For each t ⩾ 0, it is clear that T (t) is well­defined as bounded linear map on L2(0, T ;H); in fact,
it is a contraction. It follows readily from the definition that T (0) = I, and the semigroup property is
satisfied since for s, t ⩾ 0, ϑ ∈ [0, T ] in some suitable full­measure set and v ∈ L2(0, T ;H), we have

T (t)T (s)vt(ϑ) := [T (s)v](ϑ− t)1{ϑ ⩾ t}
= v(ϑ− t− s)1{ϑ− t ⩾ s}1{ϑ ⩾ t}
= v(ϑ− (t+ s))1{ϑ ⩾ t+ s} = [T (t+ s)v](ϑ).

To prove strong continuity, first let v ∈ Cc((0, T ];H) and let ṽ denote its extension by zero to the interval
(−∞, T ]. Then ṽ is uniformly continuous by the compact support of v, so that given any ε > 0 we can
choose δ > 0 so small that ‖ṽ(ϑ− t)− ṽ(ϑ)‖H < ε for all ϑ ∈ [0, T ] and t < δ. Then for some interval
[a, b] which contains the support of v, it follows that

‖T (t)v − v‖2L2(0,T ;H) =

∫ T

0

∥∥ṽ(ϑ− t)− ṽ(ϑ)
∥∥2
H
dϑ ⩽ ε2(b− a+ δ)

for all t < δ; this proves limt↓0 ‖T (t)v − v‖L2(0,T ;H) = 0. Since Cc((0, T ];H) is dense in L2(0, T ;H),
and (T (t))t⩾0 is contractive, hence uniformly bounded, we get the strong continuity on the whole of
L2(0, T ;H); this proves that (T (t))t⩾0 is a C0­semigroup.
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Nowwe turn to the generator of (T (t))t⩾0. To this end, let an arbitrary v ∈ C1
c ((0, T ];H) be given and

note that its zero extension ṽ is continuously differentiable with classical (and hence, weak) derivative
∂ϑṽ = ∂̃ϑv by the compact support of v in (0, T ]. Given an arbitrary ϑ ∈ [0, T ], the function [ϑ−T,∞) 3
s 7→ ṽ(ϑ− s) is therefore continuously differentiable with derivative s 7→ −∂̃ϑv(ϑ− s) by the chain rule.
Thus, by the fundamental theorem of calculus, we have

T (t)v(ϑ)− v(ϑ) = ṽ(ϑ− t)− ṽ(ϑ)

= −
∫ t

0

∂̃sv(ϑ− s)ds

= −
∫ t

0

[T (s)∂ϑv](ϑ)ds,

It follows that
T (t)v − v = −

∫ t

0

T (s)∂ϑv ds

almost everywhere. On the other hand we know from Proposition 2.4.4(b) that if R denotes the gener­
ator of (T (t))t⩾0, then we have

T (t)v − v = R

∫ t

0

T (s)v ds,

hence combining the previous two displays yields

R

∫ t

0

T (s)v ds = −
∫ t

0

T (s)∂θv ds. (3.10)

Note that by continuity of s 7→ T (s)v, we have the following averaging result:

lim
t↓0

1

t

∫ t

0

T (s)v ds = T (0)v = v. (3.11)

Dividing both sides of (3.10) by t, letting t ↓ 0 and using averaging again, one obtains

lim
t↓0

R
1

t

∫ t

0

T (s)v ds = − lim
t↓0

1

t

∫ t

0

T (s)∂ϑv ds = −T (0)∂ϑv = −∂ϑv. (3.12)

Since R is assumed to be the generator of a C0­semigroup, it is in particular closed by Proposition
2.4.4(d); combining the closedness of R with (3.11) and (3.12) then yields v ∈ D(R) and Rv = −∂ϑv.

Since C1
c ((0, T ];H) is dense in L2(0, T ;H) and T (t)C1

c ((0, T ];H) ⊆ C1
c ((0, T ];H) for all t ⩾ 0, we

have that C1
c ((0, T ];H) is dense in D(R) with respect to the graph norm of R by Proposition 2.4.5. On

the other hand, we have that C1
c ((0, T ];H) is dense in H1

0,{0}(0, T ;H) and for all v ∈ C1
c ((0, T ];H) we

have

‖v‖D(R) =‖v‖Lp(0,T ;H) + ‖Rv‖Lp(0,T ;H) =‖∂ϑv‖Lp(0,T ;H) + ‖v′‖Lp(0,T ;H) =‖v‖H1
0,{0}(0,T ;H) ,

it follows that D(R) = H1
0,{0}(0, T ;H) and Rv = −∂ϑv for all v ∈ H1

0,{0}(0, T ;H). Now we may relabel
∂ϑv to ∂tv to obtain the result.

We can combine these results to obtain the following proposition, which says that the operator ∂t+A
generates a product semigroup which is exponentially stable.

Proposition 3.2.4. The negative of the unbounded operator ∂t +A on L2(0, T ;H) with domain

D(∂t +A) = H1
0,{0}(0, T ;H) ∩ L2(0, T ;D(A))

generates the C0­semigroup (S(t)T (t))t⩾0 which satisfies∥∥T (t)S(t)
∥∥

L (L2(0,T ;H))
⩽Me−wt, t ⩾ 0 (3.13)

for someM ⩾ 0 and w > 0.
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Proof. It follows directly from definitions (3.5) and (3.9) that for t ⩾ 0, we have

(S(t)T (t)v)(ϑ) = (T (t)S(t)v)(ϑ) = S(t)v(ϑ− t)1{ϑ ⩾ t}, ϑ ∈ (0, T ), v ∈ L2(0, T ;H),

i.e., the semigroups (T (t))t⩾0 and (S(t))t⩾0 commute. From this we may conclude that (T (t)S(t))t⩾0

is a C0­semigroup known as the product semigroup; its generator is an extension of −∂t −A, and the
domain of the generator contains H1

0,{0}(0, T ;H) ∩ L2(0, T ;D(A)) as a dense subset, see [30, p. 64].
This means that the generator is the closure of −∂t −A, but since the parabolic operator is maximally
accretive, its negative generates a semigroup and is thus closed, so we must have that −∂t − A is
the generator of (T (t)S(t)). In order to check (3.13), we recall that S(t) satisfies such an estimate by
analyticity and see that it carries over to the product semigroup: given v ∈ L2(0, T ;H) and t ⩾ 0, we
have ∥∥T (t)S(t)v

∥∥2
L2(0,T ;H)

=

∫ T

t

∥∥S(t)v(ϑ− t)
∥∥2
H
dϑ ⩽M2e−2δt‖v‖2L2(0,T ;H) ,

and the desired operator norm estimate follows.

Proposition 3.2.4 tells us that we are in a position to apply equation (2.12) to the parabolic operator,
thus producing

(∂t +A)−γ :=
1

Γ(γ)

∫ ∞

0

sγ−1S(s)T (s)ds, (3.14)

which defines a bounded operator on L2(0, T ;H) for all γ > 0. It follows that for a given f ∈ L2(0, T ;H),
we have [

(∂t +A)−γf
]
(t) :=

1

Γ(γ)

∫ ∞

0

sγ−1[S(s)T (s)f ](t)ds

=
1

Γ(γ)

∫ t

0

sγ−1S(s)f(t− s)ds

=
1

Γ(γ)

∫ t

0

(t− s)γ−1S(t− s)f(s)ds

(3.15)

for almost all t ∈ (0, T ). It follows from [23, Proposition 5.9] that (∂t + A)−γf maps functions in
L2(0, T ;H) to functions in C([0, T ];H) for γ > 1/2. Thus, pointwise evaluation of (∂t+A)−γf is mean­
ingful, so that the previous display shows that [(∂t+A)−γf ](0) = 0, i.e. R((∂t+A)−γ) = D((∂t+A)γ) ⊆
C0,{0}([0, T ];H).

We can also consider the adjoint (∂t+A)−γ∗, which will be used in the next section to define solution
concepts for the fractional parabolic SPDE and to show how they relate. The following lemma states
two properties of the adjoint which are similar to the ones just discussed for the original operator.

Lemma 3.2.5. For γ > 1/2, the adjoint negative fractional parabolic operator (∂t + A)−γ∗ maps from
L2(0, T ;H) to C0,{T}([0, T ];H) and is given by

[(∂t +A)−γ∗f ](t) =
1

Γ(γ)

∫ T

t

(t− s)γ−1S(t− s)f(s)ds for all f ∈ L2(0, T ) and t ∈ [0, T ]. (3.16)

Proof. Let f, g ∈ L2(0, T ;H) be arbitrary, and consider

((∂t +A)−γf, g)L2(0,T ;H) =

∫ T

0

([(∂t +A)−γf ](t), g(t))H dt

=

∫ T

0

(
1

Γ(γ)

∫ t

0

(t− s)γ−1S(t− s)f(s)ds, g(t)
)

H

dt

=
1

Γ(γ)

∫ T

0

∫ T

0

(1(0,t)(s)(t− s)γ−1S(t− s)f(s), g(t))H dsdt;

(3.17)

here, the interchange of inner product and integral on the third line is justified by (2.8). Next we would
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like to use Fubini’s theorem to change the order of integration. To this end, we check that∫ T

0

∫ T

0

|(1(0,t)(s)(t− s)γ−1S(t− s)f(s), g(t))H |dsdt

⩽
∫ T

0

∫ T

0

1(0,t)(s)(t− s)γ−1 ‖S(t− s)f(s)‖H ‖g(t)‖H dsdt

⩽M

∫ T

0

∫ t

0

(t− s)γ−1 ‖f(s)‖H ds ‖g(t)‖H dt

⩽M

∫ T

0

(∫ t

0

(t− s)2γ−2 ds
) 1

2 ∥∥g(t)∥∥
H
dt‖f‖L2(0,T ;H)

= CγM

∫ T

0

tγ−
1
2

∥∥g(t)∥∥
H
dt‖f‖L2(0,T ;H)

⩽ CγM

(∫ T

0

t2γ−1 dt
) 1

2

‖g‖L2(0,T ;H)‖f‖L2(0,T ;H)

= C(2)
γ MT γ‖g‖L2(0,T ;H)‖f‖L2(0,T ;H) <∞.

In this estimate, we used the Cauchy–Schwarz inequality for bothH and L(0, T ;R), the uniform bound­
edness of (S(t))t⩾0 with constant M ⩾ 1, and the fact that γ > 1/2 so that the integrals on the fourth
and sixth lines admitted antiderivatives vanishing at zero. So we change the order of integration on the
last line of (3.17) to obtain

((∂t +A)−γf, g)L2(0,T ;H) =
1

Γ(γ)

∫ T

0

∫ T

0

(1(0,t)(s)(t− s)γ−1S(t− s)f(s), g(t))H dtds

=
1

Γ(γ)

∫ T

0

∫ T

0

(f(s),1(s,T )(t)(t− s)γ−1S(t− s)g(t))H dtds

=

∫ T

0

(
f(s),

1

Γ(γ)

∫ T

s

(t− s)γ−1S(t− s)g(t)dt
)

H

ds,

where we used the self­adjointness of A and hence that of S(t−s) in the second line, and interchanged
integrals and inner products as before on the last. Relabeling s↔ t and g ↔ f , this establishes identity
(3.16).

The fact that (∂t + A)−γ∗f belongs to C0,{T}([0, T ];H) for all f ∈ L2(0, T ) can be obtained by
reasoning as for (∂t +A)−γ .

Lastly we note that (∂t +A)−γ∗ = ([∂t +A]∗)−γ . To see that the fractional power on the right­hand
side is indeed well­defined, we use [57, Corollary I.10.6] to see that −[∂t +A]∗ is the generator of the
C0­semigroup ([S(t)T (t)]∗)t⩾0, which clearly inherits the exponential boundedness from (S(t)T (t))t⩾0

since their norms are equal. The equality is then obtained as follows:

(∂t +A)−γ∗ =

(
1

Γ(γ)

∫ ∞

0

sγ−1S(s)T (s)ds
)∗

=
1

Γ(γ)

∫ ∞

0

sγ−1[S(s)T (s)]∗ ds = ([∂t +A]∗)−γ ,

where the first and last equalities are due to (3.14) and the second is a consequence of (2.8).

3.3. Solution concepts for the fractional parabolic SPDE
We now turn back to the matter of defining solutions to (3.1) for fractional powers γ. Having defined
and investigated the parabolic operator ∂t + A, its domain and its fractional powers, we are now in
particular able to invert the fractional parabolic operator (∂t + A)γ . The observations from the end of
the previous section suggest that the fractional parabolic equation (3.1) with initial datum X0 = 0 has
a mild solution which may be defined as the following ‘fractional stochastic convolution’:

Zγ(t) :=
[
(∂t +A)−γẆ

]
(t) :=

1

Γ(γ)

∫ t

0

(t− s)γ−1S(t− s)dW (s), a.a. t ∈ (0, T ); (3.18)
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which by the Itô isometry or the Burkholder–Davis–Gundy inequality is only well­defined if we assume
the following analog to (3.4): ∫ T

0

t2γ−2 ‖S(t)‖2L2(H;H) dt <∞. (3.19)

In order to provide a more rigorous justification for defining mild solutions to the fractional parabolic
equation in this way, we would like to proceed as in the non­fractional case (Section 3.1), namely by
finding a suitable weak solution concept which follows naturally from the fractional SPDE and show
that it is equivalent to (3.18). For this, we use the following weak solution concept, which is based on
L2(0, T ;H) inner products and the weak stochastic integral; it is an analog to Definition 3.1.3 for the
parabolic fractional problem with zero initial condition.

Definition 3.3.1 (Fractional weak solution, X0 = 0). A H­valued predictable process (X(t))t∈[0,T ]

is called a weak solution to (3.1) with X0 = 0 if its paths are Bochner integrable P­a.s. and for all
ϕ ∈ D((∂t +A)γ∗) it holds P­a.s. that

(X, (∂t +A)γ∗ϕ)L2(0,T ;H) =

∫ T

0

(ϕ(t),dW (t))H . (3.20)

We now claim that the weak and mild solutions defined in this section are indeed equivalent.

Proposition 3.3.2. IfA satisfies the standing assumptions from this chapter and condition (3.19) holds,
then Zγ is the unique weak solution to (3.1) with X0 = 0 in the sense of Definition 3.3.1.

Proof. First we show that Zγ is a weak solution. To this end, let ϕ ∈ D((∂t +A)γ∗) be arbitrary and set
ψ := (∂t+A)γ∗ϕ for convenience. Then we use the definitions of the Bochner inner product and of Zγ ,
pull an inner product inside the integral and use adjoints to obtain, P­a.s.,

(Zγ , (∂t +A)γ∗ϕ)L2(0,T ;H) = (Zγ , ψ)L2(0,T ;H)

=
1

Γ(γ)

∫ T

0

(∫ t

0

(t− s)γ−1S(t− s)dW (s), ψ(t)

)
H

dt

=
1

Γ(γ)

∫ T

0

∫ T

0

(1{s ⩽ t}(t− s)γ−1S(t− s)dW (s), ψ(t))H dt

=
1

Γ(γ)

∫ T

0

∫ T

0

(1{s ⩽ t}(t− s)γ−1S(t− s)ψ(t),dW (s))H dt.

Note that the interchange of inner products and integrals is justified by a combination of (2.8) and the
definition of the weak stochastic integral. Also by the definition of the weak stochastic integral, we have
P­a.s.

1

Γ(γ)

∫ T

0

∫ T

0

(1{s ⩽ t}(t− s)γ−1S(t− s)dW (s), ψ(t))H dt =
1

Γ(γ)

∫ T

0

∫ T

0

Ψ(s, t)dW (s)dt,

where the integrand Ψ(s, t) : H → R is defined for s, t ∈ [0, T ] by

Ψ(s, t)u := (1{s ⩽ t}(t− s)γ−1S(t− s)u, ψ(t))H .

Note that, given an orthonormal basis (gj)j⩾1 of H,

‖Ψ(s, t)‖2L2(H;R) =

∞∑
j=1

|Ψ(s, t)gj |2

=

∞∑
j=1

|(1{s ⩽ t}(t− s)γ−1S(t− s)gj , ψ(t))H |2

⩽
∞∑
j=1

‖1{s ⩽ t}(t− s)γ−1S(t− s)gj‖
2

H ‖ψ(t)‖2H

= ‖1{s ⩽ t}(t− s)γ−1S(t− s)‖2L2(H;H) ‖ψ(t)‖
2
H
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From this, it follows that∫ T

0

(∫ T

0

‖Ψ(s, t)‖2L2(H;R) ds
) 1

2

dt ⩽
∫ T

0

(∫ t

0

‖(t− s)γ−1S(t− s)‖2L2(H;H) ‖ψ(t)‖
2
H ds

) 1
2

dt

=

∫ T

0

(∫ t

0

‖sγ−1S(s)‖2L2(H;H) ds
) 1

2

‖ψ(t)‖H dt

⩽
∫ T

0

(∫ T

0

‖sγ−1S(s)‖2L2(H;H) ds
) 1

2

‖ψ(t)‖H dt

⩽ T
1
2

∫ T

0

‖sγ−1S(s)‖2L2(H;H) ds ‖ψ‖L2(0,T ;H) <∞,

where we used the Cauchy–Schwarz inequality for L2(0, T ;R) on the last line. Recall that the integral
on the last line is finite owing to the assumption (3.19). Applying the stochastic Fubini theorem to
change the order of integration and pulling the deterministic integral into the inner product yields

(Zγ , (∂t +A)γ∗ϕ)L2(0,T ;H) =
1

Γ(γ)

∫ T

0

(∫ T

s

(t− s)γ−1S∗(t− s)ψ(t)dt,dW (s)

)
H

=

∫ T

0

([(∂t +A)−γ∗ψ](s),dW (s))H

=

∫ T

0

(ϕ(s),dW (s))H ,

where we use (3.16) to derive the second line from the first, and subsequently recall that ψ := (∂t +
A)γ∗ϕ. This proves that Zγ is a weak solution.

Conversely, suppose that X is a weak solution, let an arbitrary ψ ∈ L2(0, T ;H) be given and set
ϕ := (∂t +A)−γ∗ψ. Substituting this into the definition of the weak solution gives

(X,ψ)L2(0,T ;H) =

∫ T

0

((∂t +A)−γ∗ψ(t),dW (t))H ,

and reading the proof of the previous implication backwards, we see that

(X,ψ)L2(0,T ;H) = (Zγ , ψ)L2(0,T ;H)

P­a.s. for all ψ ∈ L2(0, T ;H), hence X = Zγ in L2(0, T ;H) P­a.s.

This covers the case X0 = 0; from this we can deduce the nonzero initial value case using the
linearity of SPDE (3.1). To this end, we ignore for the moment the domain of (∂t +A)γ and argue that
X being a (weak or mild) solution to (3.1) should formally be equivalent to Y (t) := X(t)−X0 solving

(∂t +A)γY = Ẇ −AγX0, Y (0) = 0,

since the time derivative occurring in (−∂t + A)γ should not affect the time­independent function X0.
Then, taking L2(0, T ;H) inner products and using adjoints, we can state an analog of (3.20): Y must
satisfy

(Y, (∂t +A)γ∗ϕ)L2(0,T ;H) =

∫ T

0

(ϕ(t),dW (t))H − (X0,Aγ∗ϕ)L2(0,T ;H).

for all ϕ ∈ D((∂t +A)γ∗). Turning back to X(t) = Y (t) +X0 then gives rise to the following definition
of a weak solution to the nonhomogeneous problem.

Definition 3.3.3 (Fractional weak solution). A H­valued predictable process (X(t))t∈[0,T ] is called a
weak solution to (3.1) if its paths are Bochner integrable P­a.s. and for all ϕ ∈ D((∂t + A)γ∗) it holds
P­a.s. that

(X, (∂t +A)γ∗ϕ)L2(0,T ;H) =

∫ T

0

(ϕ(t),dW (t))H + (X0, (∂t +A)γ∗ϕ)L2(0,T ;H)

−(X0,Aγ∗ϕ)L2(0,T ;H).

(3.21)
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The next proposition states that we can associate a mild solution to the weak solution in the non­
homogeneous case as well.

Proposition 3.3.4. Define

Z0(ω, t) :=
1

Γ(γ)
Aγ

∫ ∞

t

sγ−1S(s)X0(ω)ds, a.a. t ∈ (0, T ) and ω ∈ Ω.

If A satisfies the standing assumptions from this chapter and condition (3.19) holds, then Z := Zγ +Z0

is the unique weak solution to (3.1) in the sense of Definition 3.3.1.

Proof. First note that Z0 is indeed well­defined. To see this, first fix a representative of X0 and some
ω ∈ Ω. The integrand appearing in the definition of Z0 then belongs to D(Aγ) for all s > t by analyticity
of the semigroup S(s), hence the same holds for the integral, which converges for the same reason
that (2.12) does. Also note that

Z0(ω, t) =
1

Γ(γ)
Aγ

∫ ∞

0

sγ−1S(s)X0(ω)ds−
1

Γ(γ)
Aγ

∫ t

0

sγ−1S(s)X0(ω)ds

= X0(ω)−
1

Γ(γ)
Aγ

∫ t

0

sγ−1S(s)X0(ω)ds,

since the integral in the first term of the first line equalsA−γX0(ω). ViewingX0(ω) as a constant function
in L2(0, T ;H), this can be summarized as

Z0(ω) = X0(ω)−Aγ(∂t +A)−γX0(ω). (3.22)

Clearly, given another representative ofX0, this identity holds on a P­a.s. set, hence Z0 is well­defined.
In what follows, we omit the argument ω from X0 and Z0; since all the identities in this proof involving
random variables are meant in the almost sure sense, we assume that an ω is fixed throughout so that
we may treat X0 and Z0 as if they are deterministic.

Now we wish to show that Z is a weak solution. Let ϕ ∈ D((∂t +A)γ∗). In order to check (3.21), by
Proposition 3.3.2 it suffices to establish

(Z0, (∂t +A)γ∗ϕ)L2(0,T ;H) = (X0, (∂t +A)γ∗ϕ−Aγ∗ϕ)L2(0,T ;H), (3.23)

which by (3.22) is equivalent to

(Aγ(∂t +A)−γX0, (∂t +A)γ∗ϕ)L2(0,T ;H) = (X0,Aγ∗ϕ)L2(0,T ;H). (3.24)

First let X0 ∈ D(Aγ). In this case, we have that

1

Γ(γ)
Aγ

∫ t

0

sγ−1S(s)X0 ds =
1

Γ(γ)

∫ t

0

sγ−1S(s)AγX0 ds

for almost all t ∈ (0, T ); this holds since Aγ is closed and commutes with S(s) and since the Bochner
integral on the right­hand side exists, which can be seen again by comparing with (2.12). It follows that

Aγ(∂t +A)−γX0 = (∂t +A)−γAγX0,

which in turn implies (3.24) after taking adjoints. Now we would like to use the density of D(Aγ) in H in
order to obtain identity (3.23) for all X0 ∈ H. To this end, it suffices to prove that the first arguments of
the inner products on both sides of the equation depend continuously on X0. For the right­hand side,
this follows easily from‖X0‖L2(0,T ;H) = T 1/2‖X0‖H . For the left­hand side, observe that

‖Z0‖2L2(0,T ;H) =

∫ T

0

∥∥∥∥ 1

Γ(γ)
Aγ

∫ ∞

t

sγ−1S(s)X0 ds
∥∥∥∥2
H

dt

⩽ 1

Γ(γ)2

∫ T

0

(∫ ∞

t

‖Aγsγ−1S(s)X0‖H ds
)2

dt

⩽ M2

Γ(γ)2

∫ T

0

(∫ ∞

t

s−1e−δs ds
)2

dt ‖X0‖2H ,

43



where we use that ‖AγS(s)‖L (H) ⩽ Ms−γe−δs for some M ⩾ 1, δ > 0 and all s > 0. The iterated
integral is finite since∫ T

0

(∫ ∞

t

s−1e−δs ds
)2

dt ⩽
∫ ∞

0

(∫ ∞

t

s−1e−δs ds
)2

dt

=

∫ ∞

0

(∫ ∞

δt

u−1e−u du
)2

dt = δ−1 log 4,

where we used the change of variables u = δs and an identity for the integral of a squared exponential
integral [35, Identity 4.6.2]. This completes the proof that X is a weak solution.

Conversely, suppose thatX is a weak solution. Let an arbitrary ψ ∈ L2(0, T ;H) be given and define
ϕ := (∂t +A)−γ∗ψ so that ϕ ∈ D((∂t +A)γ∗). Then (3.21) becomes

(X,ψ)L2(0,T ;H) =

∫ T

0

([(∂t +A)−γ∗ψ](t),dW (t))H + (X0, ψ)L2(0,T ;H)

−(X0,Aγ∗(∂t +A)−γ∗ψ)L2(0,T ;H).

Applying the corresponding implication of Proposition 3.3.2 yields

(X,ψ)L2(0,T ;H) = (Zγ +X0, ψ)L2(0,T ;H) − (X0,Aγ∗(∂t +A)−γ∗ψ)L2(0,T ;H),

but the same density argument as before now shows that

(X0,Aγ∗(∂t +A)−γ∗ψ)L2(0,T ;H) = (Aγ(∂t +A)−γX0, ψ)L2(0,T ;H),

and thus
(X,ψ)L2(0,T ;H) = (Zγ + Z0, ψ)L2(0,T ;H)

for arbitrary ψ ∈ L2(0, T ;H); the desired conclusion follows.

3.4. Well­posedness and regularity of the mild solution
3.4.1. Regularity of the fractional stochastic convolution
This section is devoted to studying the spatial and temporal regularity of the fractional stochastic con­
volution Zγ . The main results are Corollary 3.4.2 and Theorem 3.4.4, which are essentially exten­
sions of [44, Lemma 4.1 and Theorem 4.2], respectively. They link the existence and regularity in the
Lp(Ω), p ⩾ 2 sense of mild solutions to the boundedness of the Hilbert–Schmidt norm of operators
involving Q, A and their fractional powers. An application of the Kolmogorov–Chentsov continuity the­
orem allows us to partially transport these regularity result to the pathwise setting, see Theorem 3.4.8.
This section is concluded with Example 3.4.9, which demonstrates the concrete conditions on the pa­
rameters α, β ⩾ 0 when taking A := Lβ and Q := L̃−α for two given self­adjoint and uniformly elliptic
operators L and L̃; this is a very important example since it covers the Whittle–Matérn situation.

For given constants a, b ∈ R and σ ⩾ 0, define the function Φa,b : [0, T ] → L (H; Ḣσ
A) by

Φa,b(t) := taAbS(t).

Moreover, we recall two estimates which hold for analytic semigroups such as (S(t))t⩾0 and which will
be used for the estimates in what follows: (see [57, Theorem 6.13, p. 74])

‖AαS(t)‖L (H) ⩽ Cαt
−α, α ⩾ 0, t > 0, (3.25)

‖(S(t)− I)A−α‖L (H) ⩽ Cαt
α, 0 ⩽ α ⩽ 1, t ⩾ 0. (3.26)

Theorem 3.4.1 (Spatial regularity). Let a, b ∈ R and σ ⩾ 0 be such that b+ σ
2 ⩾ 0 and a− b− σ

2 > − 1
2

and suppose that
‖Ab−a− 1

2 ‖L2(H;Ḣσ
A) <∞.

Then t 7→
∫ t

0
Φa,b(t− s)dW (s) belongs to C([0, T ];Lp(Ω; Ḣσ

A)) for p ⩾ 2.
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Proof. We first check that
∫ t

0
Φa,b(t− s)dW (s) is a well­defined element of Lp(Ω; Ḣσ

A) for arbitrary t ∈
[0, T ]. By the Burkholder–Davis–Gundy inequality, we know that this is equivalent to

∫ t

0
‖saAbS(s)‖2L2(H;Ḣσ

A) ds <
∞. Let t ∈ [0, T ] and x ∈ H. Using the self­adjointness ofA (and hence of S(t)) and changing variables
from t to 2t, we obtain∫ T

0

∥∥taAbS(t)x
∥∥2
Ḣσ

A

dt =
∫ T

0

(taAbS(t)x, taAbS(t)x)Ḣσ
A
dt

=

∫ T

0

(t2aA2b+σS(2t)x, x)H dt

= 2−1−2a

∫ T

0

(t2aA2b+σS(t)x, x)H dt

= 2−1−2a

(∫ T

0

t2aA2b+σS(t)xdt, x
)

H

.

Suppose for the moment that in fact x ∈ D(A2b+σ). Then we may interchange S(t) with A2b+σ on the
last line, and by equation (2.12), the integral on the last line converges in H as T → ∞ if and only if
2a+1 > 0, which holds since we assume a > −1/2. Thus, passing to this limit and using the continuity
of inner products yields∫ ∞

0

∥∥taAbS(t)x
∥∥2
Ḣσ

A

dt = 2−1−2aΓ(2a+ 1)(A−1−2aA2b+σx, x)H

= 2−1−2aΓ(2a+ 1) ‖Ab−a− 1
2x‖

2

Ḣσ
A
.

It follows that ∫ T

0

∥∥taAbS(t)x
∥∥2
Ḣσ

A

dt ⩽ 2−1−2aΓ(2a+ 1) ‖Ab−a− 1
2x‖

2

Ḣσ
A
. (3.27)

Now we want to use the density of D(A2b+σ) in H to obtain (3.27) for arbitrary x ∈ H. To this end, we
show that both sides of the inequality depend continuously on x. For the right­hand side, this follows
from the boundedness of Ab−a− 1

2+
σ
2 . For the left­hand side we make use of (3.25) to see that∫ t

0

‖saAbS(s)x‖2Ḣσ
A
ds ⩽ Cb,σ

∫ t

0

s2a−2b−σ ds ‖x‖2H = Ca,b,σ,tt
2a−2b−σ+1 ‖x‖2H ,

which requires b+ σ/2 ⩾ 0 for the estimate and a− b− σ/2 > −1/2 for the evaluation of the integral. If
xn → x is the approximating sequence in D(A2b+σ) converging in the H­norm, then we can estimate∫ t

0

‖saAbS(s)xn‖
2

Ḣσ
A
ds ⩽ Ca,b,σ,tt

2a−2b−σ+1 sup
n⩾1

‖xn‖2H ,

so that we may pull the limit as n → ∞ inside the integral by dominated convergence, which gives
establishes (3.27) for all x ∈ H. Finally, for the Hilbert–Schmidt norm this implies (using Fubini)∫ t

0

‖saAbS(s)x‖2L2(H;Ḣσ
A) ds ⩽ 2−1−2aΓ(2a+ 1) ‖Ab−a− 1

2x‖
2

L2(H;Ḣσ
A) .

In view of the assumption ‖Ab−a− 1
2 ‖L2(H;Ḣσ

A) < ∞, this shows that Zγ(t) ∈ Lp(Ω; Ḣσ
A) for all t ∈ [0, T ]

and p ⩾ 2.
It remains to check the mean square continuity of Zγ . For t ⩾ 0 and (without loss of generality)

h > 0, we split the stochastic integral∫ t+h

0

Φa,b(t+ h− s)dW (s)−
∫ t

0

Φa,b(t− s)dW (s)

=

∫ t+h

t

Φa,b(t+ h− s)dW (s) +

∫ t

0

[Φa,b(t+ h− s)− Φa,b(t− s)]dW (s).
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For p ⩾ 2, the Burkholder–Davis–Gundy inequality yields∥∥∥∥∫ t+h

t

Φa,b(t+ h− s)dW (s) +

∫ t

0

[Φa,b(t+ h− s)− Φa,b(t− s)]dW (s)

∥∥∥∥
Lp(Ω;H)

⩽ Cp

[∫ t+h

t

‖Φa,b(t+ h− s)‖2L2(H;Ḣσ
A) ds

] 1
2

+ Cp

[∫ t

0

∥∥Φa,b(t+ h− s)− Φa,b(t− s)
∥∥2

L2(H;Ḣσ
A)
ds

] 1
2

⩽ 5Cp

[∫ T

0

‖Φa,b(s)‖2L2(H;Ḣσ
A) ds

] 1
2

<∞,

so that the continuity follows by taking the limit as h→ 0 inside the integrals on the second line, which
is justified by dominated convergence owing to the bound on the last line.

Taking a = γ − 1 and b = 0 yields the following statement for the parabolic stochastic convolution
Zγ .

Corollary 3.4.2 (Spatial regularity of Zγ). Let γ ∈ R and σ ⩾ 0 be such that γ − σ
2 >

1
2 and suppose

that
‖A−γ+ 1

2 ‖L2(H;Ḣσ
A) <∞.

Then Zγ belongs to C([0, T ];Lp(Ω; Ḣσ
A)) for all p ⩾ 2.

Next we investigate the temporal regularity of Zγ . We need some information about the derivatives
of the integrands Φa,b(t).

Lemma 3.4.3. For all x ∈ H, the orbit t 7→ Φa,b(t)x belongs to C∞((0, T ]; Ḣσ
A) and its nth derivative is

dn

dtn
Φa,b(t)x =

n∑
j=0

Ca,j,nt
a−(n−j)Ab+jS(t)x =

n∑
j=0

Ca,j,nΦa−(n−j),b+j(t)x, (3.28)

where

Ca,j,n = (−1)j
(
n

j

) n−j∏
i=1

(a− (n− j) + i).

Proof. Fix an x ∈ H. By analyticity, the orbit t 7→ S(t)x is in C∞((0, T ];H) with nth derivative
(−A)nS(t)x ∈ Ḣσ

A for all t > 0. Now fix t ∈ (0, T ] and let ε := t/2. Observe that
(n)(t) = [S(· − ε)Ab+σ/2S(ε)x](n)(t) = (−A)nS(t− ε)Ab+σ/2S(ε)x

= (−1)nAn+b+σ/2S(t)x,

where the limits for the derivatives are taken in the H norm. This is equivalent to saying that
(n)(t) = (−1)nAn+bS(t)x

with respect to the Ḣσ
A norm. The expression (3.28) for the nth derivative of t 7→ Φ(t)x now follows

from a general product rule.

It is convenient to define for t > 0 the suggestively named operators Φ
(n)
a,b (t) ∈ L (H; Ḣσ

A) as

Φ
(n)
a,b (t) :=

n∑
j=0

Ca,j,nΦa−(n−j),b+j(t) (3.29)

by analogy with equation (3.28). In particular, denote Φ′
a,b(t) := Φ

(1)
a,b(t).

Theorem 3.4.4. Suppose the constants σ ⩾ 0, n ∈ N⩾0, 0 < τ ⩽ 1 and γ > n + τ + 1
2 + σ

2 are such
that

‖An+τ−γ+1/2‖L2(H;Ḣσ
A) <∞.

Then for all p ⩾ 2, Zγ belongs to Cn,τ ([0, T ];Lp(Ω; Ḣσ
A)) with nth derivative

Z(n)
γ (t) =

1

Γ(γ)

∫ t

0

Φ
(n)
γ−1,0(t− s)dW (s). (3.30)
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The proof depends on the following intermediate results.

Lemma 3.4.5. Let a, b ∈ R, σ ⩾ 0 and δ > 0 be such that

a− δ +
1

2
>max

{
0, b+

σ

2

}
and

‖Aδ−a+b−1/2‖L2(H;Ḣσ
A) <∞.

Then for t ∈ [0, T ] and h > 0 satisfying t+ h ∈ [0, T ], it holds that∥∥∥∥∫ t+h

t

Φa,b(t+ h− s)dW (s)

∥∥∥∥
Lp(Ω;Ḣσ

A)

⩽ Cp,a,δh
δ ‖Aδ−a+b−1/2‖L2(H;Ḣσ

A) ,

where p ⩾ 2.

Proof. We apply the Burkholder–Davis–Gundy inequality followed by (3.25) to estimate the norm as
follows: ∥∥∥∥∫ t+h

t

Φa,b(t+ h− s)dW (s)

∥∥∥∥
Lp(Ω;Ḣσ

A)

=

∥∥∥∥∫ t+h

t

(t+ h− s)aAa−δ+1/2S(t+ h− s)Aδ−a+b−1/2 dW (s)

∥∥∥∥
Lp(Ω;Ḣσ

A)

⩽ Cp

[∫ t+h

t

∥∥(t+ h− s)aAa−δ+1/2S(t+ h− s)Aδ−a+b−1/2
∥∥2

L2(H;Ḣσ
A)
ds

]1/2
⩽ Cp,δ,a

[∫ t+h

t

(t+ h− s)2δ−1 ds
]1/2∥∥Aδ−a+b−1/2

∥∥
L2(H;Ḣσ

A)

= Cp,δ,a(2δ)
−1/2hδ

∥∥Aδ−a+b−1/2
∥∥

L2(H;Ḣσ
A)
,

where we need a− δ+1/2 ⩾ 0 in order to apply (3.25) on the fourth line and δ > 0 on the last line.

Lemma 3.4.6. Let a, b ∈ R, σ ⩾ 0 and 0 < δ ⩽ min{1, a+ 1
2} be such that

a− δ +
1

2
>max

{
0, b+

σ

2

}
and

‖Aδ−a+b−1/2‖L2(H;Ḣσ
A) <∞.

Then for t ∈ [0, T ] and h > 0 satisfying t+ h ∈ [0, T ], it holds that∥∥∥∥∫ t

0

[Φa,b(t+ h− s)− Φa,b(t− s)]dW (s)

∥∥∥∥
Lp(Ω;Ḣσ

A)

⩽ Cp,a,δh
δ ‖Aδ−a+b−1/2‖L2(H;Ḣσ

A) .

Proof. We use the Burkholder–Davis–Gundy inequality, then perform the change of variables s↔ t−s
and subsequently split as follows:∥∥∥∥∫ t

0

[Φa,b(t+ h− s)− Φa,b(t− s)]dW (s)

∥∥∥∥
Lp(Ω;Ḣσ

A)

⩽ Cp

(∫ t

0

∥∥(t+ h− s)aAbS(t+ h− s)− (t− s)aAbS(t− s)
∥∥2

L2(H;Ḣσ
A)
ds

)1/2

= Cp

(∫ t

0

∥∥saAbS(s)− (s+ h)aAbS(s+ h)
∥∥2

L2(H;Ḣσ
A)
ds

)1/2

⩽ Cp

(∫ t

0

∥∥saAb[S(s)− S(s+ h)]
∥∥2

L2(H;Ḣσ
A)
ds

)1/2

+ Cp

(∫ t

0

∥∥[sa − (s+ h)a]AbS(s+ h)
∥∥2

L2(H;Ḣσ
A)
ds

)1/2

=: Cp(T1 + T2).
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Then, given an orthonormal basis (gj)j⩾1 for H, we have

T1 =

(∫ t

0

∥∥saAb[S(s)− S(h+ s)]
∥∥2

L2(H;Ḣσ
A)
ds

)1/2

=

( ∞∑
j=1

∫ t

0

∥∥sa(I − S(h))A−δAδ+bS(s)gj
∥∥2
Ḣσ

A

ds
)1/2

⩽ Cδh
δ

( ∞∑
j=1

∫ t

0

∥∥saAδ+bS(s)gj
∥∥2
Ḣσ

A

ds
)1/2

⩽ Cδ,ah
δ ‖Aδ−a+b−1/2‖L2(H;Ḣσ

A) .

Here we used 0 < δ ⩽ 1 to use estimate (3.26) on the third line; for the last line, we need to argue as
in Theorem 3.4.1 and thus need b+ δ + σ

2 ⩾ 0 and a− b− δ − σ
2 > − 1

2 .
For T2 we introduce an arbitrary ε > 0, use (3.25) and subsequently perform a change of variables

s↔ s/h to see that

T2 =

(∫ t

0

∥∥[sa − (s+ h)a]AbS(s+ h)
∥∥2

L2(H;Ḣσ
A)
ds

)1/2

⩽ Cδ,a

(∫ t

0

∥∥∥[sa − (s+ h)a](s+ h)δ−a− 1
2−εAδ−a+b− 1

2−ε
∥∥∥2

L2(H;Ḣσ
A)
dr

)1/2

= Cδ,a

(∫ t

0

[sa − (s+ h)a]2(s+ h)2δ−2a−1−2ε ds
)1/2∥∥Aδ−a+b− 1

2−ε
∥∥

L2(H;Ḣσ
A)

⩽ Cδ,a,ε

(∫ t

0

[sa − (s+ h)a]2(s+ h)2δ−2a−1−2ε ds
)1/2∥∥Aδ−a+b− 1

2

∥∥
L2(H;Ḣσ

A)

= Cδ,a,εh
c

(∫ t/h

0

[sa − (s+ 1)a]2(s+ 1)2δ−2a−1−2ε ds
)1/2∥∥Aδ−a+b− 1

2

∥∥
L2(H;Ḣσ

A)

⩽ Cδ,a,εh
c

(∫ ∞

0

[sa − (s+ 1)a]2(s+ 1)2δ−2a−1−2ε ds
)1/2∥∥Aδ−a+b− 1

2

∥∥
L2(H;Ḣσ

A)
.

The first inequality in this display requires a + 1
2 − δ + ε ⩾ 0, which is satisfied since a − δ + 1

2 > 0 by
assumption. The introduction of the ε > 0 causes the improper integral appearing on the last line to
converge: as s ↓ 0 the integrand is O(s2a) with 2a > −1; as s→ ∞ it is O(s2δ−3) with

2δ − 3− 2ε ⩽ −1− 2ε < −1.

This finishes the proof.

Combining Lemmas 3.4.5 and 3.4.6 yields the following corollary.

Corollary 3.4.7. Let a, b ∈ R, σ ⩾ 0 and 0 < δ ⩽ 1 be such that

a− δ +
1

2
>max

{
0, b+

σ

2

}
and

‖Aδ−a+b−1/2‖L2(H;Ḣσ
A) <∞.

Then

t 7→
∫ t

0

Φa,b(t− s)dW (s)

belongs to C0,δ([0, T ];Lp(Ω; Ḣσ
A)) for all p ⩾ 2.
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Proof. For t ⩾ 0 and (without loss of generality) h > 0, we split the stochastic integral∫ t+h

0

Φa,b(t+ h− s)dW (s)−
∫ t

0

Φa,b(t− s)dW (s)

=

∫ t+h

t

Φa,b(t+ h− s)dW (s) +

∫ t

0

[Φa,b(t+ h− s)− Φa,b(t− s)]dW (s).

The result then follows by applying Lemma 3.4.5 and Lemma 3.4.6 respectively.

We can now prove Theorem 3.4.4.

Proof of Theorem 3.4.4. We first prove identity (3.30) by induction on n. The base case n = 0 is trivial,
noting that Ca,0,0 = 1 for any a. Now suppose that (3.30) holds for some k ∈ {0, . . . , n − 1}. Applying
the induction hypothesis yields

dk+1

dtk+1

∫ t

0

Φγ−1,0(t− s)dW (s) =
d
dt

∫ t

0

Φ
(k)
γ−1,0(t− s)dW (s)

=
d
dt

∫ t

0

k∑
j=0

Cγ−1,j,kΦγ−1−(k−j),j(t− s)dW (s).

Fixing an arbitrary j ∈ {0, . . . , k} and setting Ψ := Φγ−1−(k−j),j , it suffices to prove that

d
dt

∫ t

0

Ψ(t− s)dW (s) =

∫ t

0

Ψ′(t− s)dW (s), (3.31)

where we reiterate that Ψ′(t) := Φ′
γ−1−(k−j),j(t) with the latter being defined as in (3.29). Indeed,

having proved this for an arbitrary j, we have by linearity

dk+1

dtk+1

∫ t

0

Φγ−1,0(t− s)dW (s) =

∫ t

0

k∑
j=0

Cγ−1,j,kΦ
′
γ−1−(k−j),j(t− s)dW (s)

=

∫ t

0

Φ
(k+1)
γ−1,0(t− s)dW (s),

where the latter identity holds in an operator sense; this can be seen by checking it through equation
(3.28) for all x ∈ H.

By definition of the mean square derivative, proving (3.31) amounts to showing that

lim
h→0

1

h

(∫ t+h

0

Ψ(t+ h− s)dW (s)−
∫ t

0

Ψ(t− s)dW (s)

)
=

∫ t

0

Ψ′(t− s)dW (s),

where the limit is taken with respect to the L2(Ω; Ḣσ
A) norm. To do so, let t > 0, let h > 0 without loss

of generality and write

1

h

(∫ t+h

0

Ψ(t+ h− s)dW (s)−
∫ t

0

Ψ(t− s)dW (s)

)
−
∫ t

0

Ψ′(t− s)dW (s)

=
1

h

∫ t+h

t

Ψ(t+ h− s)dW (s) +

∫ t

0

(
Ψ(t+ h− s)−Ψ(t− s)

h
−Ψ′(t− s)

)
dW (s).

We consider the Lp(Ω; Ḣσ
A)­norms of the last two integrals separately. For the first term, we apply

Lemma 3.4.5 with a = γ − 1− (k − j), b = j and δ = τ + 1, thus producing

1

h

∥∥∥∥∫ t+h

t

Ψ(t+ h− s)dW (s)

∥∥∥∥
Lp(Ω;Ḣσ

A)

⩽ Cp,γ,j,k,τh
τ ‖A 1

2+τ−γ+k+1‖L2(H;Ḣσ
A)

⩽ Cp,γ,j,k,τh
τ ‖A 1

2+τ−γ+n‖L2(H;Ḣσ
A) ,

which tends to zero as h→ 0 since τ > 0.
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Now consider the Lp(Ω; Ḣσ
A)­norm of the other stochastic integral; the Burkholder–Davis–Gundy

inequality, it suffices to consider

Cp

(∫ t

0

∥∥∥∥Ψ(t+ h− s)−Ψ(t− s)

h
−Ψ′(t− s)

∥∥∥∥2
L2(H;Ḣσ

A)

ds
)1/2

⩽ 1

h

(∫ t

0

‖Ψ(t+ h− s)−Ψ(t− s)‖2L2(H;Ḣσ
A) ds

)1/2

+

(∫ t

0

‖Ψ′(t− s)‖2L2(H;Ḣσ
A) ds

)1/2

.

To the first term, we can apply Lemma 3.4.6 with a = γ − 1− (k − j), b = j and δ = 1:

1

h

(∫ t

0

‖Ψ(t+ h− s)−Ψ(t− s)‖2L2(H;Ḣσ
A) ds

)1/2

⩽ Cγ,j,k ‖A
1
2−γ+k+1‖L2(H;Ḣσ

A)

⩽ Cγ,j,k ‖A
1
2+τ−γ+n‖L2(H;Ḣσ

A) .

Note that
Ψ′ = (γ − 1− (k − j))Φγ−1−(k−j)−1,j +Φγ−1−(k−j),j+1.

Applying the estimate fromTheorem 3.4.1 with a = γ−1−(k−j)−1, b = j (respectively a = γ−1−(k−j),
b = j + 1) yields ∫ t

0

‖Ψ′(t− s)‖2L2(H;Ḣσ
A) ds ⩽ Cγ,k,j ‖A

1
2−γ+k+1‖

2

L2(H;Ḣσ
A)

⩽ Cγ,k,j ‖A
1
2−γ+n+τ‖

2

L2(H;Ḣσ
A) .

Given an orthonormal basis (gj)j⩾1 ofH, expanding the Hilbert­Schmidt norm and using Fubini’s theo­
rem, which allows us to interchange summation and integration for non­negative integrands/summands,
gives ∫ t

0

∥∥∥∥Ψ(t− s+ h)−Ψ(t− s)

h
−Ψ′(t− s)

∥∥∥∥2
L2(H;Ḣσ

A)

ds

=

∫ t

0

∞∑
j=1

∥∥∥∥[Ψ(t− s+ h)−Ψ(t− s)

h
−Ψ′(t− s)

]
gj

∥∥∥∥2
Ḣσ

A

ds

=

∞∑
j=1

∫ t

0

∥∥∥∥[Ψ(t− s+ h)−Ψ(t− s)

h
−Ψ′(t− s)

]
gj

∥∥∥∥2
Ḣσ

A

ds.

(3.32)

Passing to the limit h→ 0, we may take the limit under the sum by monotone convergence, and under
the integrals by dominated convergence since we bounded them independently of h. Since the operator
Ψ′ was defined by analogy with equation (3.28), we have for the orbits

lim
h→0

Ψ(t− s+ h)gj −Ψ(t− s)gj
h

= Ψ′(t− s)gj ,

so (3.32) becomes zero in the limit h→ 0. This finishes the proof of the induction step, hence of identity
(3.30).

It remains to be proven that the nth derivative, i.e. the right­hand side of equation (3.30), is τ ­Hölder
in mean square. Writing∫ t

0

Φ
(n)
γ−1,0(t− s)dW (s) =

n∑
j=0

Cγ,j,n

∫ t

0

Φγ−1−(n−j),j(t− s)dW (s),

we see that it follows by invoking Corollary 3.4.7 with a = γ − 1 − (n − j), b = j and δ = τ for all
j ∈ {0, . . . , n}.

We can now use the Kolmogorov–Chentsov theorem in order to turn part of the temporal regularity
results for Zγ into pathwise continuity results.
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Theorem 3.4.8. Suppose the constants σ ⩾ 0, 0 < τ ⩽ 1 and γ > τ + 1
2 + σ

2 are such that

‖Aτ−γ+1/2‖L2(H;Ḣσ
A) <∞.

Then for all p ⩾ 2, there exists a version Z̃γ ∈
⋂

τ ′∈(0,τ) L
p(Ω;C0,τ ′

([0, T ]; Ḣσ
A)) of Zγ .

Proof. We first invoke Theorem 3.4.4 with n = 0, which implies that Zγ ∈ C0,τ ([0, T ];Lq(Ω; Ḣσ
A)) for

all q ⩾ 2. Then the result follows by choosing q ⩾ 2 large enough and applying Theorem 2.8.9 with q
instead of p.

The most important application of the preceding theory is the following example, which includes the
Whittle–Matérn case.

Example 3.4.9. Let L and L̃ be uniformly elliptic differential operators as described in Section 2.6.
Suppose that L and L̃ diagonalize with respect to the same orthonormal basis (ej)j⩾1 of eigenvectors,
i.e. there exist sequences of positive real numbers (λj)j⩾1 and (λ̃j)j⩾1 such that for all j ∈ N we have

Lej = λjej and L̃ej = λ̃jej .

We set A := Lβ and Q := L̃−α for given exponents α, β ⩾ 0. As remarked in Section 2.6, this is
an admissible choice of A since −A generates an analytic C0­semigroup. Moreover, Q is indeed a
non­negative, self­adjoint and bounded operator.

We first check when the conditions of Corollary 3.4.2 are satisfied. For simplicity, we consider σ = 0,
and thus we suppose γ > 1/2. By the spectral mapping theorem for fractional powers of operators,
see e.g. [50, Section 5.3], it holds that

Aej = Lβej = λβj ej and Qej = L̃−αej = λ̃−α
j ej .

We use this to compute

‖A 1
2−γ‖

2

L2(H;H) = ‖A 1
2−γQ

1
2 ‖

2

L2(H) = ‖Lβ( 1
2−γ)L̃−α

2 ‖
2

L2(H) =

∞∑
j=1

‖Lβ( 1
2−γ)L̃−α

2 ej‖
2

H

=

∞∑
j=1

λ
β(1−2γ)
j λ̃−α

j

Applying Weyl’s law (Theorem 2.6.2) to both L and L̃, it follows that there exist constants c, C ⩾ 0 such
that

c

∞∑
j=1

j
2
d [β(1−2γ)−α] ⩽

∞∑
j=1

λ
β(1−2γ)
j λ̃−α

j ⩽ C

∞∑
j=1

j
2
d [β(1−2γ)−α].

Therefore, ‖A 1
2−γ‖L2(H;H) <∞ if and only if

β(1− 2γ)− α <
d

2
.

In this case, Corollary 3.4.2 yields the existence of the stochastic convolutionZγ belonging toC([0, T ];Lp(Ω; Ḣσ
A))

for all p ⩾ 2.
If we want to draw conclusion about the regularity of the solution, the stronger assumptions of

Theorem 3.4.4 need to be satisfied. Namely, we need to assume that σ ⩾ 0, n ∈ N⩾0 and 0 < τ ⩽ 1
are such that γ > n+ τ + 1

2 + σ
2 ; an analogous computation now shows that we furthermore need

β[σ + 1− 2(γ − n− τ)]− α <
d

2

in order to conclude that Zγ ∈ Cn,τ ([0, T ];Lp(Ω; Ḣσ
A)) for all p ⩾ 2. If the above holds with n = 0, then

by Theorem 3.4.8 we know that there exists a version Z̃γ ∈
⋂

τ ′∈(0,τ) L
p(Ω;C0,τ ′

([0, T ]; Ḣσ
A)) of Zγ .
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3.4.2. Regularity of the initial value term
Now we turn to the ‘initial value term’ Z0 in the mild solution to the fractional parabolic problem. We
investigate its spatiotemporal regularity as we did before for the stochastic convolution, and additionally
we prove the continuous dependence on the initial datum X0.

Proposition 3.4.10. Suppose that X0 ∈ Lp(Ω; Ḣσ
A) for some 2 ⩽ p < ∞ and σ ⩾ 0. Then Z0 ∈

Lp(Ω;C([0, T ]; Ḣσ
A)), and the linear map X0 7→ Z0 is bounded from Lp(Ω; Ḣσ

A) to Lp(Ω;C([0, T ]; Ḣσ
A)).

Proof. We first treat the deterministic case, i.e. we suppose that X0 = x ∈ Ḣσ+2γ
A . Then for all t ⩾ 0

we have

1

Γ(γ)

∫ ∞

t

‖sγ−1S(s)Aγx‖Ḣσ
A
ds ⩽ 1

Γ(γ)

∫ ∞

0

‖sγ−1S(s)Aγx‖Ḣσ
A
ds =‖X0‖Ḣσ

A
<∞,

hence Z0(t) = 1
Γ(γ)

∫∞
t
sγ−1S(s)Aγxds and it follows that Z0(t) is continuous by dominated conver­

gence. In particular, ‖Z0(t)‖Ḣσ
A
is continuous at t = 0 and Z0(0) = x, so there exists some t0 > 0 such

that ‖Z0(t)‖Ḣσ
A
⩽ 2 ‖x‖Ḣσ

A
for all 0 ⩽ t < t0. On the other hand, for t ⩾ t0 we have

‖Z0(t)‖Ḣσ
A
⩽ 1

Γ(γ)

∫ ∞

t

‖sγ−1S(s)Aγx‖Ḣσ
A
ds

⩽ 1

Γ(γ)

∫ ∞

t0

‖sγ−1S(s)Aγx‖Ḣσ
A
ds

⩽ Cγ

∫ ∞

t0

s−1e−ws ds ‖x‖Ḣσ
A
.

Here, w > 0 is a constant which exists by the exponential boundedness of (S(t))t⩾0. Noting that the
integral on the last line is the exponential integral E1 evaluated at wt0 > 0, which is finite for positive
arguments, we setM := max{2, CγE1(wt0)} and see that

‖Z0‖C([0,T ];Ḣσ
A) = sup

t∈[0,T ]

‖Z0(t)‖Ḣσ
A
⩽M‖x‖Ḣσ

A
. (3.33)

By density of Ḣσ+2γ
A ⊆ Ḣσ

A, the above holds for all x ∈ Ḣσ
A, and x 7→ Z0 is a bounded linear map from

Ḣσ
A to C([0, T ]; Ḣσ

A). Applying the above with x := X0(ω) for ω ∈ Ω in some suitable almost sure set
and taking the Lp(Ω)­norm on both sides of (3.33) now finishes the proof.

Theorem 3.4.11. Let n ∈ N⩾0, 0 < η ⩽ 1 and 2 ⩽ p < ∞. Suppose that X0 ∈ Lp(Ω; Ḣ
σ+2(η+n)
A )

and that γ satisfies either γ ∈ N or n + η ⩽ γ. Then Z0 ∈ Lp(Ω;Cn,η([0, T ]; Ḣσ
A)) and the linear map

X0 7→ Z0 is bounded from Lp(Ω; Ḣ
σ+2(n+η)
A ) to Lp(Ω;Cn,η([0, T ]; Ḣσ

A)).

Proof. Again, we first consider the deterministic vector x instead of the random variable X0. Note that
the assumption η > 0 implies that the closed operatorAγ can be moved inside of the (Bochner) integral;
this is valid since, for all t ⩾ 0,∫ t

0

‖Aγsγ−1S(s)x‖Ḣσ
A
ds ⩽ Cγ,η

∫ t

0

s−1+η ds ‖Aηx‖Ḣσ
A
= Cγ,η

tη

η
‖Aηx‖Ḣσ

A
<∞,

where we use η ⩽ γ in order for the first estimate to hold. It follows that we may write Z0(t) = x −
1

Γ(γ)

∫ t

0
sγ−1AγS(s)xds.

Since the integrand s 7→ sγ−1AγS(s)x is smooth as a map from [0, T ] to Ḣσ
A everywhere except

possibly at s = 0, we expect its nth derivative to be of the following form, given by the fundamental
theorem of calculus and the general Leibniz rule:

Z
(n)
0 (t) =

n−1∑
k=0

Cγ,k,(n−1)t
γ−(n−k)Aγ+kS(t)x,

where k ranges from 0 to n− 1 instead of n since the first differentiation merely removes the integral.
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In order to check that Z0 ∈ Cn([0, T ]; Ḣσ
A), it suffices to prove that all the terms in the above sum

are bounded as t ↓ 0. Fix a k ∈ {0, . . . , n− 1} and observe that

‖tγ−(n−k)Aγ+kS(t)x‖Ḣσ
A
= tγ−(n−k) ‖Aγ−(n−k)−ηS(t)An+ηx‖Ḣσ

A

⩽ C̃γ,n,k,ηt
η ‖An+ηx‖Ḣσ

A
,

which is finite at t = 0 since η ⩾ 0. To apply the inequality in the above estimate, we need n−k+η ⩽ γ. If
γ ∈ N, then the coefficients Cγ,k,(n−1) from the general Leibniz rule vanish whenever γ−1−(n−k) < 0,
so that these terms can be ignored and we may assume γ− 1− (n− k) ⩾ 0 in the above estimate. But
this implies n− k + η ⩽ γ − (1− η) ⩽ γ since 0 < η ⩽ 1, so we see that the requirement n− k + η ⩽ γ
is always satisfied. If γ 6∈ N, then we need to use that n+ η ⩽ γ. This shows that Z0 ∈ Cn([0, T ]; Ḣσ

A).
We now consider the Hölder regularity of the nth derivative. Fix t ∈ [0, T ] and, without loss of

generality, h > 0 small enough. Then, using the fundamental theorem of calculus, we can estimate the
increment of Z0 as follows:

‖Z(n)
0 (t+ h)− Z

(n)
0 (t)‖Ḣσ

A
=

∥∥∥∥∫ t+h

t

Z
(n+1)
0 (s)ds

∥∥∥∥
Ḣσ

A

⩽
n∑

k=0

Cγ,k,n

∫ t+h

t

sγ−1−(n−k) ‖Aγ+kS(s)x‖Ḣσ
A
ds.

For each k ∈ {0, . . . , n}, we estimate the corresponding term as before:∫ t+h

t

sγ−1−(n−k) ‖Aγ+kS(s)x‖Ḣσ
A
ds ⩽ C̃

(1)
γ,n,k,η

∫ t+h

t

sη−1 ds ‖An+ηx‖Ḣσ
A

= C̃
(2)
γ,n,k,η[(t+ h)η − tη] ‖An+ηx‖Ḣσ

A

⩽ C̃
(3)
γ,n,k,ηh

η ‖An+ηx‖Ḣσ
A
,

where we need n− k+ η ⩽ γ on the fourth line, η 6= 0 for the fifth and 0 ⩽ η ⩽ 1 for the last. As before,
the first requirement is fulfilled for all k if γ ∈ N or n+η ⩽ γ. This proves that Z0 ∈ Cn,η([0, T ]; Ḣσ

A). The
above estimates also show that the linear map x 7→ Z0 is bounded from Ḣ

σ+2(n+η)
A to Cn,η([0, T ]; Ḣσ

A).
As before, the proof is finished upon applying the above to x := X0(ω) for almost all ω ∈ Ω and taking
the Lp(Ω)­norm of the boundedness estimates.

3.5. Covariance structure
The purpose of this section is to investigate the covariance of the solution to (1.4), where we limit
ourselves to the case X0 = 0 for the moment. In particular, we would like to obtain results analogous
to those found in [5, Section 3]; in that work, Fourier techniques were used to study the covariance
structure of the same type of SPDE on an infinite spatiotemporal domain D × T = R × R2 using the
operators A := Lβ and Q := L−α where L := κ2 −∆ is the Matérn operator and α, β ⩾ 0.

Our formulation of the problem necessitates a different approach, since the boundaries of both the
spatial domain D ⊊ Rd and the time horizon T limit the effectiveness of Fourier arguments. Instead,
we proceed as in the previous sections of this chapter, namely by starting from (3.1) and working with
the fractional stochastic convolution Zγ .

The main results of this section are Propositions 3.5.2 and 3.5.3, which are analogs to Proposi­
tion 3.1 and Corollary 3.3 from [5], respectively. Indeed, we see that there is a price to be paid for the
introduction of boundaries in the domain, since the results are less explicit and only hold asymptotically
in time. The latter observation provides another reason, besides simplicity, to merely consider the case
X0 = 0: the desired covariance results only hold for large times, at which point one expects that the
effects of the initial condition will have diminished, so that wemay as well takeX0 = 0 in our model (1.4).

We start by considering the covariance operators corresponding to Cov(Zγ(t), Zγ(s)) ∈ H(2) for given
t, s ⩾ 0 and to Cov(Zγ) ∈ L2(0, T ;H)(2).

Proposition 3.5.1. Suppose that A satisfies the standing assumptions for this chapter and suppose
that X0 = 0 and (3.19) hold. Then the following two statements hold.
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(a) For arbitrary t, s ⩾ 0 and x, y ∈ H, we have

(Cov(Zγ(t), Zγ(s)), x⊗ y)H(2) =

(
1

Γ(γ)2

∫ t∧s

0

[(t− σ)(s− σ)]γ−1S(t− σ)QS(s− σ)xdσ, y
)

H

.

In other words, the covariance operator QZγ(t),Zγ(s) on H associated to Cov(Zγ(t), Zγ(s)) is given
by

QZγ(t),Zγ(s) =
1

Γ(γ)2

∫ t∧s

0

[(t− σ)(s− σ)]γ−1S(t− σ)QS(s− σ)dσ. (3.34)

(b) For all ϕ,ψ ∈ L2(0, T ;H) we have

(Cov(Zγ), ϕ⊗ ψ)L2(0,T ;H)(2) =

∫ T

0

∫ T

0

(QZγ(t),Zγ(s)ϕ(t), ψ(s))H dtds. (3.35)

In other words, the covariance operator QZγ on L2(0, T ;H) associated to Cov(Zγ) is given by

[QZγϕ](s) =

∫ T

0

QZγ(t),Zγ(s)ϕ(t)dt for all ϕ ∈ L2(0, T ;H) and almost all s ∈ (0, T ).

Proof. First note that E[Zγ(t)] = 0 for all t ⩾ 0 by the corresponding property of the Wiener processes
used to define the stochastic integral. Thus, we have for the covariance:

(Cov(Zγ(t), Zγ(s)), x⊗ y)H(2)

= E[(Zγ(t), x)H(Zγ(s), y)H ]

= E
[(

1

Γ(γ)

∫ t

0

(t− σ)γ−1S(t− σ)dW (σ), x

)
H

(
1

Γ(γ)

∫ s

0

(s− σ)γ−1S(s− σ)dW (σ), y

)
H

]
=

1

Γ(γ)2
E
[∫ t

0

((t− σ)γ−1S(t− σ)dW (σ), x)H

∫ s

0

((s− σ)γ−1S(s− σ)dW (σ), y)H

]
,

where the latter step holds by definition of the weak stochastic integral. Using a formula for the expec­
tation of a product of stochastic integrals integrated for different lengths of time, see [23, Section 4.3],
we obtain

1

Γ(γ)2
E
[∫ t

0

((t− σ)γ−1S(t− σ)dW (σ), x)H

∫ s

0

((s− σ)γ−1S(s− σ)dW (σ), y)H

]
=

1

Γ(γ)2

∫ t∧s

0

(Q
1
2 (t− σ)γ−1S(t− σ)x,Q

1
2 (s− σ)γ−1S(s− σ)y)H dσ,

where we used the assumption that A, and hence (S(t))t⩾0, is self­adjoint. Using this fact once more,
and subsequently applying the fact that inner products and integrals can be interchanged, we obtain

1

Γ(γ)2

∫ t∧s

0

(Q
1
2 (t− σ)γ−1S(t− σ)x,Q

1
2 (s− σ)γ−1S(s− σ)y)H dσ

=
1

Γ(γ)2

∫ t∧s

0

[(t− σ)(s− σ)]γ−1(S(s− σ)QS(t− σ)x, y)H dσ

=

(
1

Γ(γ)2

∫ t∧s

0

[(t− σ)(s− σ)]γ−1S(s− σ)QS(t− σ)xdσ, y
)

H

.
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This proves part (a). For part (b), let ϕ,ψ ∈ L2(0, T ;H) be arbitrary and consider

(Zγ , ϕ⊗ ψ)L2(0,T ;H) = E[(Zγ , ϕ)L2(0,T ;H)(Zγ , ψ)L2(0,T ;H)]

= E
[∫ T

0

(Zγ(t), ϕ(t))H dt
∫ T

0

(Zγ(s), ψ(s))H ds
]

= E
[∫ T

0

∫ T

0

(Zγ(t), ϕ(t))H(Zγ(s), ψ(s))H dtds
]

=

∫ T

0

∫ T

0

E[(Zγ(t), ϕ(t))H(Zγ(s), ψ(s))H ]dtds

=

∫ T

0

∫ T

0

(QZγ(t),Zγ(s)ϕ(t), ψ(s))H dtds,

where the Fubini theorem was used to interchange integrals and expectations and where part (a) was
used in the last step.

We can use this proposition to derive the next statement about the asymptotic spatial covariance of
Zγ . In the case that H = L2(D), the following proposition can be interpreted as saying that, for large
t, the marginal spatial covariance of the random field Zγ(t, x) is determined by a spatial covariance
operator consisting of fractional powers of Q and A.

Proposition 3.5.2. Suppose that A satisfies the standing assumptions for this chapter and suppose
that (3.19) holds. If γ > 1/2 and the spatial covariance operatorQ of theWiener process ẆQ commutes
with S(t) for all t, then the covariance operator of Zγ(t) asymptotically satisfies

lim
t→∞

QZγ(t) =
Γ(γ − 1

2 )

2
√
πΓ(γ)

A1−2γQ,

with convergence in the operator norm.

Proof. Letting t = s causes equation (3.34) to reduce to

QZγ(t) =
1

Γ(γ)2

∫ t

0

(t− s)2(γ−1)S(t− σ)QS(t− σ)dσ.

By the assumption that Q commutes with S(t) for all t ⩾ 0, in conjunction with the semigroup property
for (S(t))t⩾0, this can be written as

QZγ(t) =
1

Γ(γ)2

∫ t

0

(t− s)2γ−2QS(2t− 2σ)dσ.

The change of variables u := 2(t− σ) then yields

QZγ(t) =
1

Γ(γ)2
21−2γ

∫ 2t

0

u2γ−2QS(u)du.

Since Q is bounded, it does not influence the convergence of the above integral in the operator norm
topology as t → ∞. By comparison with (2.12), we then see that the improper integral indeed exists
as a bounded operator for γ > 1/2; we have

lim
t→∞

QZγ(t) =
1

Γ(γ)2
21−2γ

∫ ∞

0

u2γ−2QS(u)du =
Γ(2γ − 1)

Γ(γ)2
21−2γQA1−2γ .

Applying the Legendre duplication formula for the gamma function with γ − 1/2 > 0 then yields

Γ(γ − 1
2 )Γ(γ) = 22−2γ

√
πΓ(2γ − 1),

which produces the prefactor given in the statement, thus completing the proof.

55



The following result concerns a situation in which the covariance of Zγ becomes separable into
a distinct spatial and temporal part, see Section 1.1. Furthermore, the marginal temporal covariance
turns out to behave like a Matérn function for large times. We see that these effects occur when taking
A = I in (3.1), which we note corresponds to setting the exponent β = 0 in (1.4).

Proposition 3.5.3. Let A = I and γ > 1/2. Then the covariance of Zγ is separable and the temporal
part of its covariance function is asymptotically of Matérn type. More precisely, there exists a function

%time : (0,∞)× (0,∞) → R

such that
QZγ(t),Zγ(s) = %time(t, s)Q for all t, s ⩾ 0, (3.36)

and for all h ∈ R we have

lim
t→∞

%time(t+ h, t) =
2

1
2−γ

√
πΓ(γ)

hγ−
1
2Kγ− 1

2
(h). (3.37)

Remark 3.5.4. Before proceeding with the proof of Proposition 3.5.3, we remark why equation (3.36)
is related to the concept of separability as introduced for covariance functions. To this end, suppose
that H = L2(D). Substituting (3.36) into (3.35) leads to

(Cov(Zγ), ϕ⊗ ψ)L2(0,T ;L2(D))(2) =

∫ T

0

∫ T

0

%time(t, s)(Qϕ(t), ψ(s))L2(D) dtds

If Q is Hilbert–Schmidt, then we recall that it admits a representation as an integral operator for some
covariance kernel %space ∈ L2(D ×D), so that the above equation reads

(Cov(Zγ), ϕ⊗ ψ)L2(0,T ;L2(D))(2) =

∫ T

0

∫ T

0

%time(t, s)

(∫
D

∫
D
%space(x, y)ϕ(t, x)ψ(s, y)dxdy

)
dtds

=

∫ T

0

∫ T

0

∫
D

∫
D
%time(t, s)%space(x, y)ϕ(t, x)ψ(s, y)dxdy dtds,

supposing that the conditions of the Fubini theorem are met in order to interchange integrals in the last
step. If, moreover, %space were known to be continuous, then this argument shows that the covariance
kernel % : (T×D)2 → R of Zγ satisfies

%((t, x), (s, y)) = %time(t, s)%space(x, y) for all t, s ∈ T, x, y ∈ D,

which is precisely the definition of separability in the sense of covariance functions. We conclude that
(3.36) is a generalization of separability to situations in which the spatial covariance operator Q is
bounded but not necessarily trace­class or even Hilbert–Schmidt.

Proof of Proposition 3.5.3. The C0­semigroup (S(t))t⩾0 generated by the bounded operator A = I
reduces to the family of exponential operators (e−It)t⩾0. Using the definition (2.9) of the latter, we
obtain a simple representation:

e−It :=

∞∑
k=0

(−t)k

k!
Ik =

∞∑
k=0

(−t)k

k!
I = e−tI for all t ⩾ 0.

Let s, t ⩾ 0 be arbitrary. Substituting (S(t))t⩾0 = (e−tI)t⩾0 into (3.34) produces

QZγ(t),Zγ(s) =
1

Γ(γ)2

∫ t∧s

0

[(t− σ)(s− σ)]γ−1e−(t−σ)Qe−(s−σ) dσ

=
1

Γ(γ)2

∫ t∧s

0

[(t− σ)(s− σ)]γ−1e−(t+s−2σ) dσQ

=: %time(t, s)Q,

where we pulled the bounded and σ­independent operator Q out of the integral. This proves (3.36).
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Now t ⩾ 0 once again and, without loss of generality, let h > 0. We have

%time(t+ h, t) =
1

Γ(γ)2

∫ t

0

[(t+ h− σ)(t− σ)]γ−1e−(2t+h−2σ) dσ.

The change of variables u := 2t+ h− 2σ yields

%time(t+ h, t) =
21−2γ

Γ(γ)2

∫ 2t+h

h

[(u+ h)(u− h)]γ−1e−u du

=
21−2γ

Γ(γ)2

∫ 2t+h

h

(u2 − h2)γ−1e−u du,

and thus,

lim
t→∞

%time(t+ h, t) =
21−2γ

Γ(γ)2

∫ ∞

h

(u2 − h2)γ−1e−u du, (3.38)

Define the function f : (0,∞) → R by

f(u) :=

{
0, 0 < u ⩽ h;

(u2 − h2)γ−1, u > h.

Now note that the integral on the right­hand side of equation (3.38) is equal to L[f ](1), i.e. the Laplace
transform of f evaluated at s = 1. It follows from [55, Chapter II, Equation (13.21)] that

L[f ](s) = (2h)γ−
1
2Γ(γ)√
π

s−(γ− 1
2 )Kγ− 1

2
(hs), s > 0;

in order for this equation to hold, we use the assumption that γ > 1/2. Evaluating this at s = 1 and
substituting the result into (3.38) produces (3.37).
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4
Numerical approximation

As a first step towards the numerical analysis of the fractional parabolic problem, in this chapter we
reduce (3.1) to a fractional ODE in time which can be solved directly, yet retains some of the novelty of
the original problem due to the presence of the fractional exponent γ. We describe a numerical scheme
which can be implemented for the approximation of solutions to this type of equation, and we explain
the ideas behind this scheme. The reduction of the problem eases the exposition and implementation
of the numerical schemes and the computation of the errors in the respective approximations. Gaining
insight into the convergence behavior of various numerical schemes applied to the simpler problem
then gives an idea of what to expect of analogous numerical approximation methods for the original
problem.

We start this chapter by explaining the model problem in Section 4.1, namely a deterministic frac­
tional initial value problem with zero initial condition. Subsequently, we explain in Section 4.2 the nu­
merical schemes which we propose to study for future numerical experiments; these are combinations
of weak variational time discretization methods with a sinc quadrature to deal with the fractional power.

4.1. Model problem
We consider the following reduction of (1.4). As our Hilbert space, we take H = R so that we may
naturally identify the positive, self­adjoint operator A with some real constant λ > 0. Moreover, we take
a deterministic right­hand side f instead of a noise term. In fact, we consider f ≡ 1 on [0, T ]. Lastly,
we limit ourselves to the case u0 = 0. Together, this yields the following deterministic fractional ODE:

(∂t + λ)γu = 1, u0 = 0, (4.1)

where γ > 0. Note that we retain the ∂t notation for consistency with the previous chapters, keeping
in mind that this actually refers to an ordinary derivative. This can be considered a minimal nontrivial
fractional parabolic problem, which still poses a numerical challenge while requiring less effort in the
implementation and analysis of numerical schemes compared to the infinite­dimensional problem.

Noting that the C0­semigroup generated by −A = −λ can be identified with S(t) = e−λt, applying
the result of (3.15) and subsequently performing a change of variables r(s) := λ(t − s) produces the
exact solution

u(t) =
1

Γ(γ)

∫ t

0

(t− s)γ−1e−λ(t−s) ds

=
1

Γ(γ)λγ

∫ λt

0

rγ−1e−r dr

=
P (λt, γ)

λγ
,

where P (x, a) denotes the lower incomplete gamma function, defined by

P (x, a) :=
1

Γ(a)

∫ x

0

ta−1e−t dt, x, a > 0.
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Since the (lower) incomplete gamma function can be computed to high precision in scientific computing
environments such as MATLAB ® and NumPy, the error of a numerical scheme can easily be computed
for this model problem. This will be useful when studying the convergence behavior through numerical
experiments.

4.2. Numerical schemes
In this section, we explain our proposed approach to computing numerical approximations to problem
(4.1). First we describe finite element discretizations of the weak variational formulation of (4.1) for
γ = 1, and subsequently we explain how the use of a sinc quadrature method allows us to deal with
fractional exponents.

4.2.1. Nonfractional finite element time discretization
In this subsection, we limit ourselves to the non­fractional counterpart of (4.1), i.e. the case γ = 1, and
describe an approach for the finite element time discretization of this problem based on weak varia­
tional formulations. Such techniques are described in more detail in [4] and [31, Section 65.1.5]; see
also [43, Section 3.2].

The weak variational formulation (see Section 2.7) corresponding to the non­fractional model prob­
lem is

Find u ∈ X such that b(u, v) = `(v) for all v ∈ Y0,{T}. (4.2)

For the problem under consideration, the trial and test spaces are chosen to be respectivelyX = L2(0, T )
and Y0,{T}, the latter being the space of functions belonging to Y = H1(0, T ) ↪→ C([0, T ]) which vanish
at t = T . The bilinear form b : X × Y0,{T} → R and functional ` : Y0,{T} → R are defined by

b(u, v) := λ

∫ T

0

u(t)v(t)dt−
∫ T

0

u(t)v′(t)dt, u ∈ X , v ∈ Y0,{T}; (4.3)

`(v) :=

∫ T

0

v(t)dt, v ∈ Y0,{T}.

We re­emphasize at this point that we have chosen to move the time derivative from the trial function
to the test function using integration by parts.

In order to discretize (4.2), we introduce discrete trial and test subspaces Ek ⊂ X and F k ⊂ Y0,{T}
respectively, both having the same finite and non­trivial dimension. Here the superscript k > 0 is a
number indicating the temporal mesh size, where lower values of k indicate a finer mesh, as will be
made precise later on. We look for a solution to the discrete variational problem

Find uk ∈ Ek such that b(uk, vk) = `(vk) for all vk ∈ F k. (4.4)

By analogy with (2.21), we define the discrete inf­sup constant βk by

βk := inf
u∈Ek\{0}

sup
v∈Fk\{0}

∣∣b(u, v)∣∣
‖u‖X ‖v‖Y

.

Recall that‖b‖ is the norm of the bilinear form b, which was defined by (2.20).
The discrete variational problem is well­posed if and only if βk > 0, see for instance [68, Section 2].

In that case, we also have the following estimate, see [68, Theorem 2]:

‖u− uk‖X ⩽ ‖b‖
βk

inf
w∈Ek

‖u− w‖X . (4.5)

This estimate, which expresses that the error of the approximate solution uk to u can be bounded by
a positive constant multiplied by the least possible error given the discrete trial space Ek, is known as
the quasi­optimality bound of the discrete variational problem.
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Let a temporal mesh T be given, consisting of nodes 0 =: t0 < t1 < · · · < tN =: T for some N ∈ N, so
that the interval [0, T ] is split up into the N corresponding intervals in between the nodes. This mesh is
used to construct a discretization pair Ek×F k. We now describe two particular choices of discretization
pairs, namely the CN∗ and iE∗ discretizations. Both of these schemes use the discrete test space F k

consisting of continuous piecewise affine functions which correspond in the obvious way to the mesh
T and which vanish at t = T , but they differ in the choice of discrete trial space Ek.

The CN∗ discretization takes the discrete trial spaceEk to be the space of piecewise constant functions
corresponding to T . Its name is motivated by the observation that if the roles of the trial and test space
are reversed — i.e., if Ek is chosen to be the space of piecewise affine continuous functions vanishing
at t = 0 and F k is chosen to be piecewise constant — then one obtains the Crank–Nicolson (CN) time
stepping scheme. The name CN∗ should be read as ‘adjoint Crank–Nicolson’, referring moreover to
the fact that the variational problems discretized by CN and CN∗ differ by an application of the adjoint
parabolic operator in order to move the derivative from the trial to the test space.

A family of discretization pairs (Ek × F k)k>0 is said to be uniformly stable if infk>0 βk > 0, i.e. if
(βk)k>0 is uniformly bounded away from zero. Uniform stability is a desirable property since, by the
quasi­optimality estimate (4.5), it implies that the convergence of the method is governed by the ap­
proximation properties of Ek as k ↓ 0. The CN∗ discretization is not uniformly stable: for a fixed mesh,
the discrete inf­sup constant βk corresponding to the CN∗ discretization tends to zero as λ → ∞, as
observed in [4, Equation (2.3.10)]. More precisely, as noted in [43, Section 3.2.1], βk depends in the
same way on the parabolic CFL number. This leads to a stability condition which states that the scheme
is only stable if the time step size k decreases fast enough relative to the spatial mesh ∆x as the latter
tends to zero. Therefore, the CN∗ scheme may require a large number of time steps to ensure conver­
gence when applied to a parabolic PDE on a fine spatial mesh.

The other discretization method we describe is the iE∗ discretization, in which the discrete trial space
Ek is taken to be the space of functions w ∈ L2(0, T ) such that w|[tn−1,tn] can be transformed into the
function (0, 1) 3 s 7→ (4 − 6s) through translation and dilation for each n ∈ {1, . . . , N}. Its name is
read as ‘adjoint implicit Euler’, since it relates to the implicit Euler time stepping scheme applied to the
adjoint variational problem. It is part of the larger class ofGauss–Radau discretizations, for which it has
been established in [1, Section 3.4] that stability can be obtained under mild conditions on the temporal
mesh. To be precise, we have the following lower bound for the discrete inf­sup constant:

βk ⩾ 1√
2(1 +max{1, r})

,

where

r := max
n∈{1,...,N}

|tn − tn−1|
|tn+1 − tn|

,

see [43, Proposition 3.1]. Since this estimate does not depend on the parameter λ > 0, the iE∗ dis­
cretization is uniformly stable with respect to λ for each k, in contrast to the situation for the CN∗ scheme.
We also see that uniform stability with respect to k > 0 is obtained if we take a family of meshes such
that r remains bounded. Another difference with the CN∗ scheme is the fact that the family (Ek)k>0 of
trial spaces chosen for iE∗ is not nested, i.e. we do not have Ek ⊂ Ek+1, and that piecewise constant
functions cannot be approximated by functions in Ek. As a consequence, the approximation properties
of (Ek)k>0 are such that we cannot use the quasi­optimality (4.5) to draw conclusions regarding the
convergence of the iE∗ scheme.

4.2.2. Sinc quadrature and the numerical approximation of fractional problems
This section describes how the application of the sinc quadrature leads us to define a numerical method
which allows for fractional exponents γ in (4.1). This quadrature approximation reduces the numerical
computation of solutions to (4.1) to the repeated solution of nonfractional problems, which in turn can
be handled using a temporal discretization method such as either of the discretizations described in
the previous section. We first give a general overview of sinc quadrature techniques; after that, we will
see where it can be applied in the context of the fractional parabolic problem (4.1).
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Sinc quadrature
Sinc numerical methods are a class of computational techniques which can be applied to a variety of
numerical approximation problems; for instance, in the standard reference [49] by Lund and Bowers,
the goal is to develop numerical schemes for solving ordinary differential equations. In the context of
the present work, we are most interested in the theory underlying sinc methods for numerical interpo­
lation and integration, the main ideas of which are summarized in this subsection.

As the name suggests, a central rule in this theory is played by the sinc function, defined here by

sincx :=

{
sin (πx)

πx , x ∈ C \ {0},
1, x = 0.

It is used to define, for a function f on R and a constant h > 0, the cardinal function expansion

C(f, h)(x) :=

∞∑
ℓ=−∞

f(`h) sinc
(
x− `h

h

)
,

whenever the series on the right­hand side converges. It follows from the definition of the sinc function
that C(f, h) coincides with f on points kh, k ∈ Z; in other words, C(f, h) interpolates f between the
nodes kh. One is then lead to wonder when it holds that C(f, h) = f on the whole real line. It turns
out that such functions are characterized as members of the Paley–Wiener class of functions, and that
such functions in fact coincide with their cardinal function expansion on the whole complex plane.

Definition 4.2.1. Let h > 0. A function f : C → C is said to belong to the Paley–Wiener class, denoted
f ∈ B(h), if

(i) f is entire, i.e. it is analytic on the whole complex plane C;

(ii) f |R ∈ L2(R), i.e. the restriction of f to the real line is square­integrable;

(iii) f is of exponential type π/h on the complex plane, meaning that there exists some K > 0 such
that ∣∣f(z)∣∣ ⩽ K exp(πh |z|) for all z ∈ C.

The exact interpolation result then reads as follows; its proof is based on the formulation of the
Paley–Wiener theorem which states that functions in the Paley–Wiener class as defined here have
compactly supported Fourier transforms.

Theorem 4.2.2. Given h > 0, a function f ∈ B(h) can be represented as

f(z) =

∞∑
ℓ=−∞

f(`h) sinc
(
z − `h

h

)
for all z ∈ C.

Proof. See [49, Theorem 2.5].

This leads to the following corollary, which asserts that the trapezoidal rule of integration over the
real line is exact for integrable functions in the Paley–Wiener class.

Corollary 4.2.3. For h > 0, f ∈ B(h) and f ∈ L1(R), we have that∫ ∞

−∞
f(t)dt = h

∞∑
ℓ=−∞

f(`h). (4.6)

Proof. See [49, Corollary 2.6].

This exactness result is not yet feasible to use as the basis for a practical numerical method. Firstly,
the conditions for a function to belong to the Paley–Wiener class are too restrictive for many integrands,
in particular the requirement that f be entire. Secondly, the infinite sum on the right­hand side of (4.6)
must be truncated to a finite sum. We expect that both taking f 6∈ B(h) and truncating the series will
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introduce errors, leading to the question of what can be said about the rates of these respective errors
as functions of h.

Since we are interested in the approximation of integrals over the real line, it is natural to study
integrands f which may not necessarily be entire but which are analytic on a region containing the real
line. For such functions, we may then hope that the truncated trapezoidal rule of integration still exhibits
fast convergence to the exact solution as h ↓ 0. This leads to the following definition.
Definition 4.2.4. Let d > 0 be given and let f be a function defined on the infinite strip of width 2d:

Sd := {z ∈ C : z = x+ iy, |y| < d}.

If f is analytic in Sd, and moreover satisfies∫ d

−d

∣∣f(t+ iy)
∣∣dy = O(|t|a) as |t| → ∞, for a ∈ [0, 1),

and for some p ∈ [1,∞),

Np(f, d) := lim
y↑d

(∥∥f(·+ iy)
∥∥
Lp(R) +

∥∥f(· − iy)
∥∥
Lp(R)

)
<∞,

then f is said to belong to Bp(d).
The use of the class Bp(d) is illustrated by the next theorem, which states that the error of the

trapezoidal rule applied to functions f ∈ B1(d) decreases exponentially.
Theorem 4.2.5. Let d, h > 0 and f ∈ B1(d) be given. Then it holds that∣∣∣∣∫ ∞

−∞
f(t)dt− h

∞∑
ℓ=−∞

f(`h)

∣∣∣∣ ⩽ N1(f, d)

2 sinh(πd/h)
e−πd/h.

It follows that the quadrature error of the trapezoidal rule in this situation is of order O(e−2πd/h).
Proof. See [49, Theorem 2.20].

The above result shows that the trapezoidal rule is a highly efficient numerical integration technique
whenever the integrand belongs to the class B1(d), in the sense that an amount of quadrature nodes
of order O(log(ε−1)) is sufficient to approximate the integral up to an error of ε > 0. However, as
mentioned before, we still need to consider the error introduced by truncating the infinite series arising
from the trapezoidal rule to a finite sum. It is desirable to have conditions on the integrand which
ensure that the truncation error is balanced with the quadrature error, i.e. that the truncation error also
has an exponential convergence rate. As one may naturally expect, this requirement leads to growth
conditions of the integrand as t→ ±∞; the precise formulation is given in the following result.
Theorem 4.2.6. Let d > 0 be given and suppose that f ∈ B1(d). Let α, β,C > 0 be constants such
that ∣∣f(x)∣∣ ⩽ C

{
exp(−α|x|), x < 0,

exp(−β|x|), x ⩾ 0.

Choosing K+,K− ∈ N such that
K+ =

⌈α
β
K− + 1

⌉
,

where d · e denotes the function which rounds numbers up to the next integer, and setting

h :=

√
2πd

αK− ,

we have the following estimate for the error of the truncated trapezoidal rule:∣∣∣∣∫ ∞

−∞
f(t)dt− h

K+∑
ℓ=−K−

f(`h)

∣∣∣∣ ⩽ Cf exp(−(2πdαK−)1/2).

Proof. See [49, Theorem 2.21].

Note that the summation bounds K− and K+ are generally not chosen equal to each other, i.e. the
truncated summation is non­symmetric in general.
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Application to fractional problems
We now describe how the sinc numerical methods outlined in the previous subsection inspire a nu­
merical method which can be applied to the problem of approximating solutions to problems involving
fractional powers of operators. The idea is due to Bonito and Pasciak, who first proposed and studied
this approach in the context of fractional powers of elliptic operators, which was published as [14]. A
major finding in this work was the fact that exponential convergence of the quadrature error was pos­
sible for a suitable integral [14, Section 3.3], thus giving rise to a highly efficient numerical method for
fractional elliptic problems. This approach has been widely used since its inception, owing mainly to its
ease of implementation using standard FEM techniques.

In order to give a rough outline of the idea, let L be some linear operator on a Hilbert spaceH which
admits fractional powers, let γ > 0 be a fractional power, and consider the problem of finding a solution
u to Lγu = f where u and f belong to some appropriate function spaces. Thus, we are interested in
approximating u = L−γf . We restrict ourselves to 0 < γ < 1 for ease of presentation, but the method
can be generalized to arbitrary γ > 0 by splitting up the exponent into fractional and integer parts, which
reduces the problem to a combination of the techniques we will describe.

Themain idea now is to represent the fractional solution operator L−γ as an operator­valued integral
which is amenable to approximation using the obvious generalization of the trapezoidal rule described in
the previous subsection. Moreover, for practical purposes we seek an integrand which can be evaluated
efficiently. To this end, we start by applying the Balakrishnan formula (2.13) to Lγ , yielding

L−γ =
sinπγ
π

∫ ∞

0

t−γ(tI + L)−1 dt.

Indeed, this is a suitable starting point: we represent the fractional solution map by an integral over a
real domain of an expression involving shifted non­fractional solution operators, for which we assume
that there exists an efficient approximation technique. In order to obtain an integral over the whole real
line, we employ the change of variables t = e−2y which produces

L−γ =
2 sinπγ

π

∫ ∞

−∞
e2γy(tI + e2yL)−1 dy.

We approximate this integral by the truncated trapezoidal rule, finally resulting in the sinc quadrature
approximation Qγ

q of the solution operator L−γ :

Qγ
q =

2q sinπγ
π

K+∑
ℓ=−K−

e2γℓq(I + e2ℓqL)−1.

Here the q > 0 denotes the quadrature step size K−,K+ ∈ N are the summation bounds as in the
previous subsection.

We would like to establish some suitable operator­valued analog of Theorem 4.2.6 for the approxi­
mation of the Balakrishnan integral for L−γ , which would yield exponential convergence similar to what
is observed in the scalar­valued case. In [14, Sections 3.3–3.4], this analysis was performed for the
case that L is a positive, self­adjoint and uniformly elliptic differential operator. To this end, the authors
first checked that the integral obtained when taking L := λ ⩾ λ0 > 0 for some positive real constant λ0
satisfies the conditions for Theorem 4.2.6. The application of the theorem then results in an error bound
for |λ−γ −Qγ

q | which is independent of λ ⩾ λ0. This scalar­valued result can subsequently be extended
to the operator­valued case by means of the orthonormal eigenbasis (λj , ej)j⩾1 on H corresponding
to L, using the fact that λj ⩾ λ1 > 0 for all j ⩾ 1 given that the eigenvalues are chosen in increasing
order, see [14, Theorem 3.5].

Now we propose to solve the fractional parabolic equation using the natural analog to the one de­
scribed in [14]. I.e., we approximate the fractional parabolic solution operator as follows:

(∂t + λ)−γ =
2 sinπγ

π

∫ ∞

−∞
e2γy(1 + e2y[∂t + λ])−1 dy. (4.7)

Let Bk : E
k → (F k)′ be the linear operator corresponding to the discrete weak variational problem (4.4)

using one of the time discretizations introduced in the previous section. Approximating the integral on
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the right­hand side of (4.7) by the truncated trapezoidal integration rule now yields

Qγ
q,k =

2q sinπγ
π

K+∑
ℓ=−K−

e2γℓq(IEk→(Fk)′ + e2ℓqBk)
−1.

Note that computing an approximation Qγ
q,kf for some f ∈ (F k)′ then amounts so solving a nonfrac­

tional problem for each term on the right­hand side of the previous display. More explicitly, given a
source term fk with respect to a basis for Ek, the solution uq,k can be expressed in the following way:

uq,k =
2q sinπγ

π

K+∑
ℓ=−K−

e2γℓq((1 + λe2ℓq)Mk − e2ℓqGk)
−1fk,

whereMk denotes themassmatrix andGk denotes theGrammatrix corresponding to the term
∫ T

0
u(t)v′(t)dt

in the definition of the bilinear form (4.3). Hence, we have finally arrived at the explicit form of the nu­
merical method proposed to solve the fractional problem (4.1) using a combination of variational time
discretizations and sinc quadrature methods.
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5
Discussion and outlook

We have studied an SPDE­based method for the generation of Gaussian random fields suitable for the
purposes of spatiotemporal statistics, which has the potential to be an efficient generalization of existing
spatial methods. The main focus of this work was on the analysis of the SPDE (3.1) itself rather than
that of the possible numerical approximations, the ideas for which were briefly introduced in Chapter 4.

We have introducedmild andweak solution concepts for (3.1) and showed under which assumptions
on A and Q they are well­posed. Moreover, the spatiotemporal regularity of the SPDE was studied, in
such a way that they can be linked explicitly to fractional parameters of the SPDE in practical situations.
The assumptions made on for instance the operator A in the SPDE were motivated mainly by the
situation known from applications, which furthermore facilitated direct arguments to derive regularity
and well­posedness results. We believe that some results in this area can be extended to situations
where, for instance, A is not self­adjoint or the C0­semigroup generated by −A is not necessarily
analytic.

We have also considered the covariance structure of solutions to the SPDE, which was seen to
asymptotically behave in a predictable way with regard to both the spatial and temporal marginal co­
variance. This confirms the potential for this SPDE model to be useful for spatiotemporal statistical
inference applications.

In Chapter 4 we have described one possible way of dealing with the numerical approximation of
a fractional initial value problem, which can be generalized to the PDE situation. It was based on the
combination of variational time discretizations with the sinc quadrature techniques which have proven
powerful in the solution of elliptic problems.

It is clear that many questions on this subject are still open for future study, particularly on the nu­
merical side. The first challenge in that respect will be to prove error estimates with the aim of showing
that the fractional parabolic (deterministic) PDEs are equally amenable to the sinc quadrature meth­
ods which have thus far only been considered for the elliptic case. It is expected that the regularity
results will play a central role in the estimates which need to be derived here. The next question would
be whether such a method can carry over to an efficient simulation technique for the corresponding
stochastic PDE.

From the point of view of both (numerical) analysis and applications, it is also interesting to consider
extending the problem considered in this work to more general (S)PDEs on manifolds such as the
sphere. Obviously, the specific case of the sphere is a highly relevant example due to the prevalence
of data collected across the globe. For this problem, one can attempt to answer the same questions
as considered on the Euclidean domain in the present work.
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