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Analytic approaches for the combination of autonomic and neural
activity in the assessment of physiological synchrony*

Ivo V. Stuldreher1, Joost C.F. de Winter2, Nattapong Thammasan3, and Anne-Marie Brouwer1

Abstract— Physiological synchrony (PS) refers to the similar-
ity in physiological responses of two or more individuals and
may be an informative source of information in the field of affec-
tive computing. Up to now, PS has been assessed using either
autonomic measures or neural measures. While in literature
multiple physiological channels have already been combined
into one composite index for PS assessment, multimodal PS,
i.e., using a combination of autonomic and neural channels
in a single composite index (‘A-N’ multimodal), has remained
unexplored. A-N multimodal PS is promising for the robust
detection of emotionally or cognitively relevant events, as both
autonomic and neural activity are sensitive to these events. The
aim of this study is (i) to review analytic approaches that have
been used to combine multiple physiological channels into one
composite index for PS, and (ii) to view these approaches in
the light of their potential applicability to A-N multimodal PS.

A literature search was conducted to find studies assessing PS
based on a composite index of multiple autonomic channels or
multiple channels in electroencephalographic (EEG) recordings.
Four studies were found that assessed PS based on a composite
index using multiple autonomic channels and 12 studies assessed
PS based on a composite index using multiple EEG channels.

We found that analytic approaches varied between studies.
Some averaged over multiple channels after assessing PS
separately per channel (N = 4), or averaged over channels
before assessing PS (N = 1), while others used different linear
combinations of channels based on spatio-spectral decomposi-
tion (N = 1) or correlated component analysis (CCA, N = 8).
CCA finds linear combinations of channels that are maximally
correlated between subjects and has up to now been used to
assess neural PS. We suggest that this method may be most
appropriate for the exploration of multimodal PS assessment.

I. INTRODUCTION
Events that are emotionally or cognitively relevant to an

individual induce autonomic responses, such as changes in
heart rate or electrodermal activity, as well as responses of
the central nervous system (brain signals). These responses
are often modest and hard to detect at the level of a single
event. Detection is especially hard if one does not want
to, or cannot rely on prior knowledge of the time that a
relevant event occurred, and if one does not want to collect
training data in order to train an individually tailored model
for detection of (emotionally) relevant events of the user,
as is usually done in the area of affective computing or
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passive brain-computer interfaces [1]. Within the context
of monitoring the mental state of groups of individuals, an
approach that could deal with these problems is physiological
synchrony (PS). PS refers to the similarity in physiological
responses of two or more individuals. It has been studied for
autonomic activity and neural activity.

Research on autonomic PS started halfway in the 20th

century. Researchers started exploring simultaneous physi-
ological data collection from more than one individual with
the aim of studying interpersonal interactions [2]. From then
onwards, autonomic PS has been used to study interactions
between romantic couples, parent-child dyads and team-
mates, and has been associated with empathy, relationship
quality and team-performance [3], [4], [5].

Neural PS was first monitored in the mid-1960s. Duane
and Behrendt [6] recorded neural activity from two partic-
ipants simultaneously in an attempt to show interpersonal
physiological communication. Since then, neural PS has,
among others, been shown to be a correlate of classroom
engagement [7] and a predictor of expressions of interest
and preference during popular television content [8].

Up to now, research on PS has either focused on PS
in autonomic activity or on PS in neural activity, while
multimodal PS, including both types of signals (from now on
referred to as ‘A-N’ multimodal) might be of added value.
We found two studies in which neural activity was monitored
in parallel with autonomic PS [9], [10]. However, in these
studies, neural activity was only recorded in one of the pair
of individuals, as the researchers were interested in neural
activity of clients during therapist-client interactions during
times of high autonomic PS.

Both autonomic and neural responses can distinguish be-
tween affective and neutral stimuli across visual and auditory
modalities [11], [12], [13], [14] and autonomic and neural
responses can both identify stressful situations [15], [16],
[17], [18]. Therefore, multimodal synchrony assessment,
based on both neural and autonomic channels, could lead to
more robust detection of emotionally or cognitively relevant
events.

To enable A-N multimodal PS, an overview of analytic
approaches that might be suited for the combination of neural
and autonomic measures into a single composite index, for
which overall PS can be assessed, is needed. PS literature
can provide us with methods enabling the combination
of multiple physiological channels into one index for PS
assessment, that may be used for this aim. Developments
in methodological approaches have led to increasingly ad-
vanced methods to assess PS. Early studies used zero-order
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correlations between electrodermal activity and heart rate
of therapist and client [19], [20], [2]. Since then, more
advanced methods have been used to quantify interpersonal
PS, such as wavelet analysis or dynamic systems modeling
[21], [22], [23]. The combination of multiple autonomic
physiological measures into one composite index was also
explored, to provide a single measure of PS. Levenson
and Gotmann [4] argued that a composite index provides
a better test in characterizing the interpersonal physiological
relation in a dyad than separate measures of PS. In neural PS
studies, electroencephalography (EEG) is typically recorded
using multiple electrodes. Researchers have used methods to
combine these data streams as well.

Reviews on analytic approaches for PS exist already
[24], [25]. They focus on important issues such as how
to determine whether observed synchrony is higher than
chance. However, they are on assessment of PS between
just two channels and do not cover approaches enabling
the combination of multiple channels into one composite
index. The literature review on autonomic PS from Palumbo
et al. [26] includes studies using a composite index for PS
assessment. However, Palumbo et al. do not focus on the an-
alytic approaches of these studies, do not include approaches
from neural literature and do not view the approaches from
included studies in the light of potential A-N multimodal
applications. The current literature study is aimed at (i)
providing an overview of analytic approaches that are used
to combine multiple channels into one composite index for
PS assessment, within the field of autonomic PS and within
the field of neural PS, and (ii) to view them in the light of
their potential applicability to A-N multimodal PS.

II. METHODS

To find analytic approaches used to combine multiple
autonomic measures into a single composite index for PS
assessment, the systematic review on autonomic PS from
Palumbo et al. [26] was chosen as a start. This review
provides an overview of studies monitoring autonomic PS,
published in peer-reviewed journals before November 2015.
Studies using a composite index for PS assessment (see
Appendix F in [26], which summarizes studies according
to physiological measures, context, findings, and results)
were reviewed in the present study. Studies were included
if interpersonal PS was assessed using a composite index
based on more than one autonomic measure. References of
the included studies and citations in the included studies were
also reviewed.

For providing an overview of the analytic approaches used
to assess neural PS, a systematic search was conducted.
The goal of this search was to find a comprehensive, but
representative sample of studies that monitored multi-channel
EEG of multiple participants and assessed their interpersonal
PS using a composite index. Using Scopus, a search was
conducted with the following search terms.
TITLE-ABS-KEY((brain-to-brain OR interbrain

OR inter-brain OR hyperbrain OR intersubject
OR inter-subject) AND (electroencephalogra*

OR eeg) AND (synchron* OR correlation OR
coupling))

Based on title, abstract and keywords, studies were only
selected if neural PS between multiple human subjects was
assessed using a composite index based on multi-channel
EEG. The literature study was performed in February 2019.

III. RESULTS

A. Approaches from autonomic literature

From the 61 studies reviewed in [26], only three studies as-
sessed PS based on a composite index. Others only measured
one physiological channel (N = 38) or measured more than
one physiological channel, but assessed PS separately per
channel (N = 20). After reviewing references in the included
studies and citations of the included studies, one more study
using a composite index was included, resulting in four
studies in total. Table I summarizes the studies according to
purpose, sample, physiological measures, and the composite
index.

As shown in the table, the four studies used similar combi-
nations of physiological measures in their composite index.
All studies used a measure of cardiovascular activity, three
studies used a measure of electrodermal activity and three
studies included general somatic activity (body movement).
The combination of measures resulted in both sympathetic
and parasympathetic measures in all studies.

In two of the included studies [4], [28], the composite
index for PS assessment was calculated using a bivariate
time-series analysis. All physiological channels were aver-
aged over time within 10 second windows. The z-score of
these average values was computed, after which the bivariate
time-series analysis, following [27, Chapters 23-25], was
performed. For each physiological measure, this analysis
provided two chi-square values. These values represented
the extent to which the physiological responses from one
individual of the couple accounted for the variance in the
physiological pattern of their partner, beyond the variance
accounted for by the physiological pattern of the partner
itself. The z-scores of these values were computed and
then averaged over all measures as an overall measure of
directional PS in that 10 second time-window. Levenson and
Gottman [4] used this to study how PS was associated with
marital satisfaction.

Marci [29] combined PS in four physiological channels
with the cumulative strength of the overall physiological
responses, with the aim to measure audience engagement
during television commercials. Unfortunately, it was not
described how PS in the four physiological channels was
combined into one moment-to-moment time-locked compos-
ite index for PS.

Walker et al. [30] aimed to predict team performance in
a simulated task by assessing PS between team members,
using a multiple regression approach. Team performance was
estimated based on task difficulty in the first regression step
and based on physiological measures in the second step. The
authors described three different approaches. In Analyses
1 & 2, the individual parasympathetic and sympathetic
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TABLE I: STUDIES COMBINING MULTIPLE AUTONOMIC CHANNELS INTO ONE COMPOSITE INDEX FOR PS ASSESSMENT.∗

Reference Purpose Sample Measures Composite index

[4] Determined whether PS could be detected in
couples, and whether that was predictive of
marital satisfaction.

30 married
couples

ACT, EDA,
IBI, PTT

Bivariate time-series analysis [27, Chapters
23-25] separately per channel, averaged over all
channels.

[28] Tested whether there was a relationship between
PS and perceived empathy.

31 married
participants

ACT, EDA,
FPA, HR,
PTT,

Bivariate time-series analysis [27, Chapters
23-25] separately per channel, averaged over all
channels.

[29] Tested whether PS and arousal level predicted
viewers’ engagement in advertisements.

27 male
viewers in two
groups

ACT, EDA,
HR, RR

PS was combined with physiological intensity,
defined as the cumulative strength of the
physiological responses, as a measure of viewer
engagement.

[30] Investigated the relationship between PS and
joint team performance in a simulated task.

34 two-person
teams

LVET, PEP,
RSA

Three regression methods were executed to
create a measure of team autonomic activity,
using individual, correlated and canonically
correlated [31] measures of sympathetic and
parasympathetic activity respectively.

ACT = general somatic activity (body movement), EDA = electrodermal activity, HR = heart rate, IBI = inter-beat interval, LVET = left ventricular
ejection time, PEP = pre-ejection period, PTT = pulse transmission time, RR = respiration rate, RSA = respiratory sinus arrhythmia.
∗Parts adapted from [26]

measures were used, respectively, to estimate team perfor-
mance. In Analyses 3 & 4, the normalized parasympathetic
and sympathetic measures were correlated between team
members, producing a team parasympathetic score and a
team sympathetic score. In Analysis 5, the parasympathetic
and sympathetic scores were combined and correlated, using
canonical correlation [31].

B. Approaches from EEG literature

Using the search terms described above, 170 studies were
found. From these studies, 12 studies that met the inclusion
criteria were selected. Table II summarizes them according
to purpose, sample, number of channels and the composite
index.

The most simple approach that was followed in order
to combine multiple measures in one composite index is
to average over multiple channels after assessing synchrony
separately per channel. In a study on neural PS in students
following classes with different teaching styles, Dikker et
al. [7] employed a method called total interdependence TI
[35]. Magnitude squared coherence was computed using the
Welch method for six one-to-one paired electrodes from two
subjects. TI for one pair of subjects was then obtained by
averaging over all six electrodes and subject-to-group TI
was obtained by averaging over all pairwise combinations
of one subject with the other subjects. To validate if TI
reflects attention to external stimuli, student-to-group TI
values were compared between auditory tones and teaching
styles with a single-source auditory input (e.g., lecture or
reading aloud), hypothesizing that values would be similar.
Student-to-group TI was numerically similar in response to
tones as in response of the single-source teaching styles.

Lindenberger et al. [38] selected two synchronization
measures to study PS in pairs of guitarists: the phase locking
index, as a within-brain phase synchronization measure, and
interbrain phase coherence (IPC), as a between-brain phase

synchronization measure. EEG time series divided into 3
s epochs were transformed into a complex time-frequency
signal, for frequencies up to 20 Hz, using a complex Ga-
bor expansion function. IPC values from six fronto-central
electrode pairs were averaged in time-frequency domain as
measures of PS. Mean IPC values three standard deviations
above baseline were considered as statistically significant.

PS of a composite index can also be quantified by av-
eraging over channels before assessing PS. Kinreich et al.
[37] computed the Spearman correlation over the time signal
of the Stockwell transform frequency spectrum, for each
frequency bin, averaged over electrodes within regions of
interest (frontal, parietal, temporoparietal, occipital) in two
romantic partners and compared this to stranger-dyads. The
dyadic correlation values for each frequency bin and region
of interest were averaged over two groups (partners and
strangers).

Other linear approaches have also been explored. Zamm
et al. [42] reduced the dimensionality of the multi-channel
EEG recordings to a single dimension using spatio-spectral
decomposition (SSD) [43], which is a linear spatial decom-
position filter. SSD finds a linear filter that maximizes the
variance of the signal at peak frequency, while minimizing
the variance of the noise at the neighboring frequency bins.
After spatial filtering, correlations between the amplitude
envelopes of two pianists were calculated as a measure
of PS. The observed correlations were compared with a
chance distribution of white-noise correlations and observed
amplitude envelope correlations were found to be higher than
the 95% chance estimates.

Eight studies [33], [8], [36], [32], [39], [41], [34], [40]
evaluated intersubject correlation based on correlated com-
ponent analysis (CCA) [33]. The method was designed to
find linear combinations of channels that are maximally
correlated in time, to identify distributed sources of neural
activity. Formally, the approach seeks to maximize the Pear-
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TABLE II: STUDIES COMBINING MULTIPLE EEG CHANNELS INTO ONE COMPOSITE INDEX FOR PS ASSESSMENT.

Reference Purpose Sample No.
channels∗

Composite index

[32] Determined the conditions under which
multisensory stimulation would benefit or hinder
the retrieval of everyday experiences, with PS as a
marker of enhanced stimulus processing.

88 participants 64 CCA [33], linear combination of channels resulting
in maximum ISC

[34] Investigated whether similarity of EEG responses
across subjects to educational videos would be a
sensitive measure of knowledge acquisition.

39 participants 64 CCA [33], linear combination of channels resulting
in maximum ISC

[7] Identified whether PS could be a neural marker of
group engagement during dynamic real-world
group interactions.

12 students 6 Averaged over all channels after calculating PS
separately per channel using TI [35]

[33] Identified brain areas marked by high levels of
correlation within and between subjects, evoked by
short film clips.

20 participants 64 CCA, linear combination of channels resulting in
maximum ISC

[8] Investigated whether PS was predictive of
expressions of interest and viewership during a
popular television series.

16 participants 64 CCA [33], linear combination of channels resulting
in maximum ISC

[36] Explored whether PS would predict attentional
engagement to a naturalistic narrative stimulus.

76 participants 64 CCA [33], linear combination of channels resulting
in maximum ISC

[37] Compared PS during a male-female naturalistic
social interaction between romantic couples and
strangers.

24 romantic
couples & 25
stranger dyads

32 SC between SP was averaged over channels, after
which dyadic correlation values were computed.

[38] Investigated PS in pairs of guitarists playing a
short melody together.

8 pairs of
guitarists

16 PLI and IPC values from six fronto-central
electrode pairs were averaged in time-frequency
domain.

[39] Investigated whether PS as a measure of auditory
attention could distinguish between patients and
healthy controls.

20 participants
with disorders
of
consciousness
& 14 controls

37 CCA [33], linear combination of channels resulting
in maximum ISC

[40] Investigated whether PS to naturalistic video
stimuli decreases with maturity as a marker of
neural development.

114
participants
(main) & 202
participants
(replication)

105 CCA [33], linear combination of channels resulting
in maximum ISC

[41] Determined whether student PS can be quantified
in a real-time manner based on portable EEG
recordings in a classroom.

28 participants
in 4 groups

14 CCA [33], linear combination of channels resulting
in maximum ISC

[42] Explored PS between two pianists performing a
musical duet.

1 pair of
pianists

24 Channels were combined using SSD [43], after
which amplitude envelope correlations were
calculated.

CCA = correlated component analysis, IPC = interbrain phase coherence, ISC = inter-subject correlations, PLV = phase locking value measure, PS =
physiological synchrony, SC between SP = Spearman correlation between spectral powers, SSD = spatio-spectral decomposition, TI = total
interdependence.
∗Represents the No. of channels used in the composite index for synchrony assessment, not the total No. of monitored channels.

son Product Moment Correlation Coefficient. CCA is similar
to the more familiar principal component analysis, as both
methods project data on a common subspace, except that
projections of CCA capture maximal correlation between
datasets instead of maximal variance within a dataset. To
obtain a measure of subject-to-group PS, data from a single
subject was projected on the component vectors. Then, PS
of the group was calculated as the correlation coefficient
of these projections separately for each component and
averaged over all possible subject-pairs involving a single
subject. The result is a time-locked, moment-to-moment
measure of PS. To check the significance of the correlated
components, Dmochowski et al. [33] employed a permutation
test approach [44]. Correlations were computed with a data
set of which 5 s blocks were randomly shuffled in time. The
three component correlations were significantly larger than

chance levels for 33%, 23% and 10% of movie time for
a short, arousing film clip. Similar, Cohen and Parra [32]
compared PS of the correlated components to PS in 100
phase-randomized surrogate data-sets [45]. The first three
components were selected, as correlations in the weaker
components were not always significantly different from
chance levels.

IV. DISCUSSION

This literature study was aimed at (i) providing an
overview of analytic approaches that are used to combine
multiple physiological channels into one composite index
for PS assessment and (ii) to view them in the light of their
potential applicability to A-N multimodal PS, which will be
done below.

Both for autonomic channels and neural channels, PS
is most often assessed separately per channel, if multiple
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channels are assessed at all. The analytic approaches that
are used to combine multiple channels in a composite
index vary in complexity and potential suitability for A-N
multimodal applications. The simplest indices average over
multiple physiological channels after assessing PS separately
per channel, such as [7], [4], [28], [38], or average over
multiple physiological channels before assessing PS, such as
[37]. Averaging over multiple channels can be advantageous,
for example to assess synchrony based on multiple electrode
readings within a region of interest of the brain or to obtain
an overall measure of brain-to-brain synchrony. However,
when stimulus-response latency varies strongly between vari-
ables, averaging over multiple physiological channels is not
appropriate. This is the case when neural and autonomic
measures would be considered. For instance, neural event-
related potential latencies are in the order of tens or at most
a few hundreds of ms, while response latency exceeds 1000
ms for skin conductance responses [46].

Other linear combinations of channels are not all suited
for A-N multimodal applications either. Zamm et al. [42]
reduced multi-channel EEG to a single dimension using SSD,
which maximizes variance at peak frequency, while reducing
variance in neighboring frequency bins. As the frequency
power spectrum varies greatly between autonomic and neu-
ral measures, SSD is not appropriate for A-N multimodal
applications.

The CCA [33], on the other hand, seems appropriate for
the exploration of A-N multimodal PS. Data is projected on
a subset of data for which intersubject PS is maximized. The
method itself thus selects the appropriate linear combination
of channels that maximize PS across subjects. This can
be especially useful for exploration of mixed neural and
autonomic channels, where it might not be known if or
how strong each channel synchronizes across participants.
If channels of interest are a-priori known, simpler aggre-
gations of channels might be more suited. Note that for a
small number of participants, CCA could lead to misleading
results, as it could provide a subset of data that maximizes PS
only within the small population. However, the observation
that neural PS in a small sample of participants predicted
expressions of interest of the larger audience with higher
accuracy than the expressions of interest of the small sample
[8], suggests that CCA can provide valid results even for
small samples of participants. Our next step is to exploit and
test this method to analyze an A-N multimodal dataset we
recently collected from participants who were presented with
the same audio but differed in attentional focus.

We end by noting two limitations of the current literature
review. Firstly, we did not do a targeted search for combining
multiple autonomic and/or neural measures in intra-person
synchrony. Such a search may still provide new insights as
to methodology to reach A-N multimodal composite indices
for PS assessment. Secondly, for neural measures, the current
literature review only examined analytic approaches used to
assess multi-channel electroencephalographic PS. Analytic
approaches used for assessing PS monitored with other neu-
roimaging techniques, such as functional magnetic resonance

imaging (fMRI) or magnetoencephalography (MEG), might
also be suited for A-N multimodal applications.
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