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Abstract—Range queries allow data users to outsource their
data to a Cloud Server (CS) that responds to data users
who submit a request with range conditions. However, security
concerns hinder the wide-scale adoption. Existing works neglect
item availability, fail to protect secure verification or sacrifice
search accuracy for efficiency. In this paper, we propose Secure,
Available, Verifiable, and Efficient (SAVE) range query process-
ing, which has three distinctive features. (1) Secure availability
checking against a malicious CS: we design a keyed index-
based secure verification mechanism to check the availability
of matched nodes, including validity and freshness. (2) Secure
result verification: we design a targeted verification mechanism
for result correctness and completeness while not compromising
security. (3) Improved efficiency and accuracy: we design a lay-
ered encoding method to improve search efficiency and accuracy.
We formally stated and proved the security of SAVE in the
random oracle model. We conducted extensive experiments over
the Yelp and FourSquare dataset to validate the efficiency, e.g.,
a query over 10 thousand data items only needs 19.4 ms to get
queried results and 3.5 ms for local verification.

I. INTRODUCTION

Range query services enable data owners to outsource their
data to a Cloud Server (CS). The CS can respond to data users
who submit a range query to look for matching data. Promising
as they are, range queries incur serious security concerns.
This is because data breach is a common occurrence, the CS
is not fully trusted [1]–[3], and the outsourced data (range
queries) contain sensitive data. For example, the personal in-
formation of over 533 million Facebook users are exposed [4]
and sensitive data can be correlated with data owners and
data users’ privacy [5].To dispel security concerns, immense
research efforts have been spawned on secure range query
processing (PBTree [6], IBTree [7], ServeDB [8]) and related
query processing (SecEQP [9]) while achieving a sublinear
search time.

We are motivated by three key observations. (1) Item
availability and security. Node availability is twofold: validity
and freshness. Validity means some data items are valid and
others are not. Freshness refers to the available duration of data
items. Some items are accessible for some time, e.g., some
administrative normative documents are effective within five
years. (2) Malicious CS and secure result verifiability. Most

∗Corresponding author.

existing work adopts an honest-but-curious security model for
the CS [6], [7], [9], [10]. In reality, this does not always hold.
We assume that the CS can tamper with the database and
neglect some data items. Therefore, the CS has to provide
verification information to data users for result correctness
and completeness [8]. Meanwhile, we cannot allow the CS
to violate the security of unmatched items. (3) Efficient and
accurate range coding. Efficiency and accuracy are non-
ignorable factors in building user-friendly online services.
Although our research focus is security, we cannot abandon
efficiency or accuracy. Therefore, it necessitates a proper range
coding algorithm beneath the security mechanism.

In this work, we propose a secure, available, verifiable,
and efficient range query scheme named SAVE. Toward this
goal, we need to cope with three technical challenges. (1)
How to keep the malicious CS from replacing the verification
information of a matching data item? Since each data item
(a leaf node in IBF) has its own verification information for
validity checking, the malicious CS may mismatch the leaf
nodes with their verification information to deceive the data
user. (2) How to achieve secure result verification without vio-
lating the security of unmatched data items? Result verification
involves matching nodes and unmatched nodes. Intuitively,
this process requires the CS to provide partial information
of unmatched nodes, which in turn leaks their data items. (3)
How to improve search accuracy while ensuring the search
efficiency? Efficiency and accuracy restrain each other during
the search. Existing work has achieved good efficiency, but
incurs false positives [8].

To address the three challenges, we make the following
efforts. First, we design a keyed index-based secure validity
verification mechanism. Specifically, we design a keyed
index-based non-interactive zero knowledge proof of knowl-
edge for validity. Checking validity is basically a problem of
existence, i.e., either the data item is valid (1) or invalid (0).
Therefore, we leverage the efficient Zero Knowledge Proof of
Knowledge (ZKPK) [11] for the data user to check validity
locally. Given the Fiat-Shamir heuristic making the proof non-
interactive [12], we are enlightened to use the node’s index
and a secret key as a part of the random challenge to create
joint proofs and complete the proving process, thus binding the
verification information to its corresponding node and solving
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the first challenge. Checking freshness equals to verifying if
current timestamp falls in a predefined range. We utilize the
efficient Bulletproof [13] to achieve this and craft a keyed
index-based proving process similarly.

Second, we design a secure result verification mechanism
for correctness and completeness. It is straightforward to
verifying correctness and we realize it by building a Merkle
hash tree [14] and returning path proofs of matching nodes.
For completeness, we first return only segments of IBF B to
data user for unmatched non-leaf node. We treat unmatched
leaf node separately because the previous method enables a
curious data user to conduct unlimited queries on B and break
security. Therefore, we compute the complementary IBF B′
of each leaf node and return segments of B′ to data user for
unmatched leaf node, thus protecting the index of unmatched
nodes and solving the second challenge.

Third, we design a layered encoding method as a foun-
dation for efficient and accurate search. The new algorithm
first divides the data ranges into l layers with different number
of cubes. From the top layer down to the l − 1th layer, we
transform each data item to a cube code by using Hash-
based Message Authentication Code (HMAC) to guarantee
efficiency. While in the bottom layer with the finest granularity,
we adopt prefix encoding [15] to compute the precise codes
and compare them with data user’s data range codes, aiming to
maintain accuracy. Consequently, we can achieve a sublinear
search time while not losing accuracy. Our contributions are
briefly summarized as follows.
• To the best of our knowledge, we are the first to study

item availability and pertinent security in range query.
• We propose a secure, available, verifiable, and efficient

range query scheme SAVE.
• We give formal security analysis. We conduct extensive

experiments to demonstrate the efficiency of SAVE.

II. PROBLEM STATEMENT

A. System Model

• Data Owner (DO) has a dataset D with data items
D = {D1, D2, · · · , DN}. For each Di, the DO computes a
secure index, i.e., an IBF Bi by using secret keys and a unique
random number, and calculates its verification information vi
for availability, correctness, and completeness. The DO takes
all indexes as leaf nodes and construct a secure index tree
STree ST from bottom to top. The DO encrypts each Di

by using a Chosen Plaintext Attack (CPA)-secure encryption
algorithm Enc Next, the DO outsources the ST and ciphertexts
to CS, and delegates the query service to authenticated data
users by sharing secret keys with them.
• Data User (DU) is an authorized party who has the shared

keys and a range query RQ with some range conditions. The
DU computes a trapdoor T D of Q and sends T D to the CS.
After receiving the query results from the CS, the DU verifies
the availability, correctness and completeness of the results,
and decrypt the encrypted data items if all verifications pass.
• CS stores the STree and the encrypted data items sent

from the DO, and processes range queries from the DU. When

it searches a td in the ST , it generates corresponding proofs
for correctness and completeness. Finally, it returns query
results and proofs to the DU.

B. Security Model

Unlike the semi-honest model [6], [7], [9] or limited security
model [9] in existing work, we assume that the adversary can
mismatch the IBF of any leaf node in ST with its verification
information, tamper with the query results, and neglect a part
of the secure index tree (dataset). The CS is malicious because
some rogue employee controls the searching process or it has
been compromised by adversaries. We adopt the Adaptive
INDistinguishable under Chosen Keyword Attack (A-IND-
CKA) threat model [16].

Specifically, the malicious CS can launch three types of
attacks. Tampering attack: tamper with the returned data
items that is stored on the cloud. Neglecting attack: ignore
some data items during search in the secure index tree.
Mismatching attack: mismatch some leaf nodes with their
verification information.

C. Design Objectives

Security. Data privacy. The adversary cannot know any-
thing useful about the data items from the secure index B,
encrypted data items E , or the verification information vi.
Query privacy. The adversary cannot learn anything useful
about the range query from the trapdoor T D or the verification
information vi. Result privacy. The DU cannot infer anything
about the unmatched data items more than the fact that they
do not meet the search conditions.

Availability. Validity. The DU can verify whether the re-
turned data items are valid. Freshness. The DU can verify
whether the returned data items are fresh.

Verifiability. Correctness. The returned data items are not
tampered by the CS, i.e., its B and E are intact. Completeness.
The returned data items are all the answers to DO’s range
query, i.e., no matching data items are left out.

Efficiency. SAVE should achieve high efficiency, i.e., the
index building time, trapdoor generation time, query process-
ing time, and the verification time are acceptable.

III. THE PROPOSED SCHEME SAVE

A. Overview

At a high level, SAVE consists of five phases: setup, index
building, trapdoor generation, range query processing, and
local verification. We give an overview of SAVE in Fig. 1.

B. Setup

The DO randomly chooses four secret keys sk1, sk2, sk3,
sk4 to compute cube code, HMAC for item availability proof,
HMAC of segments, and symmetric encryption, respectively.

The DO randomly chooses a set of t+ 1 secret keys SK =
{k1, k2, · · · , kt+1}, t pseudo-random hash functions h1, h2,
· · · , ht, and a hash function H() for constructing IBFs and
a STree. Here, hi() = HMAC()%n (1 ≤ i ≤ t), ht+1() =
HMACt+1(), and H() = SHA256()%2. n is the length of an
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Fig. 1. Overview of SAVE.

IBF. The IBFs on the same layer of the STree share the same
length that increases from the bottom up as the high-layer
nodes contain more data items.

Assume r is a large prime such that q = 2r + 1 and p =
kq + 1 are prime where k is an even number [11]. The DO
initiates a multiplicative group G with an element g of order r,
i.e., G = 〈g〉, a fixed element f ∈ G, and a collision-resistant
hash function h. The DO sends the keys and public parameters
to qualified DUs.

C. Index Building
The DO, who has a dataset D, encodes the N data items,

builds N IBFs, generates proofs of availability, encrypts N
data items, and builds an STree as follows.

Layered Encoding. The DO collects the left bound and
right bound of each dimension of N data items to form a
d-dimensional multi-cube [8]. The DO divides the cube into
2d equal-size sub-cubes and obtains the first-layer of a layered
cube structure. The division continues until the lth layer where
the side length reaches a threshold.

Then, the DO encodes each cube from layer 1 to layer l−1.
Assume a cube cbi is on layer j, it is encoded to a cube code
ci = HMAC(sk1, j + cpi.x + cpi.y) where cpi is the central
point of cube cbi. Each data item Di will have l − 1 a cube
code set Ci = {c1, c2, · · · , cl−1}. For layer l, we transform
the value of each dimension into a prefix family by using
prefix encoding, thereby avoiding the false positives in existing
work [8]. Next, the DO computes codes of the prefixes for Di

and inserts them into Ci.
Note that for the negative numbers, we treat it like positive

numbers but with a special character ‘#’.
Building IBFs. For Ci of Di (1 ≤ i ≤ N ), the DO initiates

an IBF Bi, chooses a random number ri, and inserts the cube
codes of Ci = {cij} into Bi by setting for 1 ≤ o ≤ t:

Bi[ho(cij)][H(ht+1(ho(cij))⊕ ri)] = 1, (1)
Bi[ho(cij)][1−H(ht+1(ho(cij))⊕ ri)] = 0. (2)

Generating Proof of Availability (PoA). For 1 ≤ i ≤ N ,
the DO extracts Di’s auxiliary information Aux(Di) regarding
availability (i.e., validity and freshness), and computes a PoA:

πAva
i = GenProof(sk2, Aux(Di),Bi). (3)

There are two types of πAva: one for validity and the other
one for freshness. For the first type, we design keyed index-
based non-interactive zero knowledge proof of knowledge.
Instead of proving that DO has a secret s being either 1 (valid,
F = gsfz = gfz , z ∈ Zq) or 0 (invalid, F = gsfz = fz ,
z ∈ Zq), we adopt the proof rationale of the valid case and
infuse (Bi, sk2) into the process to create a joint proof. For
the invalid case, we just use random number to replace the
original parameters. We can also swap the two cases. In this
way, the adversary cannot distinguish from the two cases other
that a 50% successful probability or recreate the correct proof.
Concretely, if Di is valid, the DU proceeds as follows:
• randomly choose e, u2, v2 ∈R Zq ,
• compute A = fu2F−v2 mod p and B = fe mod p,
• compute a random challenge rc = HMAC(sk2, tp,Bi),

where tp is the current time period, indicating a regular
index update,

• compute v1 = rc−v2 mod q and u1 = e+zv1 mod q,
• set as πAva

i = (A,B, u1, u2, v1, v2).
For the second type, we design a keyed index-based Bullet-
proof by using sk3 to craft two similar random challenges.

Encrypting Data Items. The DO encrypts the N data items
to obtain a ciphertext set E = {E1, E2, · · · , EN} with Ei =
Ω.Enc(sk4, Di). Each ciphertext will correspond to a leaf node
during tree construction.

Building STree. Given {Bi, πAva
i , Ei}, the DO constructs a

STree ST as follows.
For 1 ≤ i ≤ N , the DO initiates a leaf node LNi =

(Bi, πAva
i ) and computes the l complementary sets of Di on

l layers. After acquiring all cube codes, the complementary
B′i is computed. By doing so, when a query does not match
a node, instead of strenuously proving such a case, we can
prove that the query matches the B′i, i.e., one cube code of
the query is key-hashed into t ‘1’s in B′i.

Given Bi and B′i (1 ≤ i ≤ N ), the DO divides each of them
into L segments of bits {segi1, segi2, · · · , segiL}, computes
L HMACs {hmi1, hmi2, · · · , hmiL} corresponding to the
segments, and computes a hash value hvi = SHA256(Bi).
The segments and their HMACs are to be used for generating
a proof for completeness. The hash values are prepared for
generating a proof for correctness.

The DO merges the N leaf nodes from the bottom up. For
each non-leaf node NNj , the DO computes a new comple-
mentary set as well as a new complementary B′, computes Bj
by using a new random number rj and the cube codes of the
data items from its left child node Nle and right child node
Nri, and computes hvj = hash(Bj + hvle + hvri).

Finally, a leaf node Ni and a non-leaf node Nj are

LNi = (Bi, πAva
i , hvi,B′i, {segij , hmij}), (4)

NNi = (Bi, hvi,B′i, {segij , hmij}). (5)

The DO outsources (ST , E) to CS and shares hvrt with DUs.

D. Trapdoor Generation

A DU has a range query Q = [90, 130], [0, 50], computes l1
cube codes for the first l−1 layers and a set of cube codes for
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the lth layer, and a cube code set CQ. Then, the DU computes
a trapdoor T D by inserting the cube codes into a sequence of
hash pairs. For layer l, the DU transforms [90, 130] and [0, 50]
into two minimum set of prefixes MSF and computes two code
sets cx3i = HMAC(sk1, 3 + wi), cy3j = HMAC(sk1, 3 + wj)
where wi ∈ MSF([90, 130]) and wj ∈ MSF([0, 50]). Finally,
the a full set of cube codes of Q is CQ = {c1, c2, {cx3i}, {c

y
3y}}

and the DU computes a trapdoor for ci ∈ CQ, T D =:

{(h1(ci), H(ht+1(h1(ci))), · · · , (ht(ci), H(ht+1(ht(ci)))}.

The DU sends T D to the CS and waits a result and a proof.

E. Range Query Processing

Searching. The CS initiates a result R and a proof π, and
searches ST with T D. For a non-leaf node NNi, the CS
maps each element in ST to Bi. If there exists a cube code
in CQ that for every i(0 ≤ i ≤ t), all the hash values of the
mapped positions on Bi are ‘1’, it means that T D matches
Bi. Therefore, the CS continues to search from the matched
non-leaf node MND. Otherwise, the CS stops search from the
unmatched non-leaf node (UNN). For a matched leaf node
MLN, the CS inserts its E and πAva into R and π. For a
unmatched non-leaf node ULN, the CS stops branch-search.

Generating Proof of Correctness (PoCor). For MLFs,
UNNs, and ULNs, the CS inserts their hash values of B into
π. For MLN, the CS additionally inserts t pairs of segment
and HMAC and random number into π.

Generating Proof of Completeness (PoCom). For ULNs
and UNNs, the CS inserts one pair of segment and HMAC
and a random number of their B′ as PoCom.

Eventually, the CS returns (R, π) to the DU.

F. Local Verification

Given (R, π), the DU verifies the availability, correctness
and completeness of R.

Verifying PoA. For validity of a MLN, the DU verifies
rc

?
= v1 + v2 mod q, fu1

?
= B(F/g)v1 mod p, and fu2

?
=

AF v2 mod p. For freshness of a MLN, the DU verifies the
keyed index-based Bulletproof as in [13]. If either of the two
verifications passes, the DU continues to check correctness
and completeness.

Verifying PoCor. First, the DU decrypts the ciphertexts and
checks whether the data item matches the range condition.
Second, the DU recomputes the hash value hv′rt based on the
hash values in π and checks if hv′rt

?
= hvrt, the data user

acknowledges the correctness of R and continues.
Verifying PoCom. For UNN and ULN, the DU remaps

T D to each UNN and ULN’s segments to see whether the
remapped locations include ‘0’. If so, the DU accepts the R.

IV. SECURITY ANALYSIS

We define two leakage functions as follows. L1 reveals what
is leaked from the index and L2 reveals what is leaked from
the queries and verification operation:
• L1(D) = {N,n,∆(ST ), |E|}: Given a dataset D, L1

outputs a dataset size N , an IBF length n, an STree structure

∆, and a ciphertext length |E|. In SAVE, the STree is
constructed as a balanced binary tree, i.e., each non-leaf node
is randomly and evenly split into two child nodes.
• L2(D, Q) = {α(Q), β(Q), γ(Q), (α(ci), β(ci), γ(ci))ci∈Q}:

Given a dataset D and a range query Q, L2 outputs an access
pattern α(Q), a search pattern β(Q), and a path pattern γ(Q).
α(Q) outputs the data item id returned by Q, β(Q) outputs
the information about whether two queries Qi and Qj are
different, γ(Q) outputs the search path of T D from Q.

We denote S as a PPT simulator that can simulate fu-
ture queries and define two experiments RealΠA(1λ) and
IdealΠS,L1,L2

(1λ) as follows.
RealΠA(1λ). A challenger C executes Setup(1λ) to generate

secret keys sk1, sk2, sk3, sk4,SK. A generates a dataset D
and gets a secure index tree ST ← Index(D, sk1, sk2, sk3,
sk4,SK) from C. A submits a polynomial number of queries
Q1, Q2, · · · , Qnum to C. For each Qi (1 ≤ i ≤ num),
A receives a trapdoor T D ← Trapdoor(SK, Q) from C.
Eventually, A returns a bit b that is output by the experiment.

IdealΠS,L1,L2
(1λ). A outputs a dataset D′. Given L1(D′),

S produces and sends an index ST and an encrypted
dataset E to A. A submits a polynomial number of queries
Q1, Q2, · · · , Qnum to S. For each Qi (1 ≤ i ≤ num), S
is given L2(D′, Qi) = {α(Qi), β(Qi), γ(Qi), {α(ci), β(ci),
γ(ci)}ci∈Qi

}. S returns a trapdoor T D. Eventually, A returns
a bit b that is output by the experiment.

Formally, a range query processing scheme Π is secure if a
PPT adversary A cannot distinguish the a real index generated
by pseudo-random functions from a simulated index generated
by truly random functions, with a non-negligible probability:

|Pr[RealΠA(1λ) = 1]− Pr[IdealΠS,L1,L2
(1λ) = 1]| ≤ negl(λ),

where negl(λ) is a negligible function.
Theorem 1: The range querying processing scheme SAVE is

IND-CKA (L1, L2)-secure in the random oracle model against
an adaptive adversary A.
Proof : We first construct S that simulates a view V∗ =
(ST ∗, T D∗, E∗) based on the information returned by
L1(ST ,D) and L2(ST ,D, Q). Next, we show that A cannot
distinguish between V∗ and the real adversary view A.
• To simulate ST ∗, S first builds an identically structured

STree. S acquires N from L1 and sets up an IBF B for each
node in the ST . In the jth cell of Bi, S sets Bi[j][0] = 1 and
Bi[j][1] = 0 or vice versa. The twin is determined by flipping
a coin. Next, S attaches each Bi with a random number ri.
S computes B′i similarly. For PoA, S just generates random
numbers for proof of validity or proof of freshness. If the
PoA is computed to prove validity, then the random numbers
will not validate the local verification, i.e., A successfully
guess the underlying data item’s validity with probability 1/2.
Otherwise, A generates a Bulletproof with a fixed range to
hide the real freshness. For PoCor, S computes a hash value
hv for each Bi. For PoCom, S divides each Bi and B′i, chooses
a random secret key, and computes the HMACs of segments.
Finally, S returns ST ∗ to A. Each IBF Bi in ST ∗ and ST
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share the same size. Their ‘0’s and ‘1’s are equally distributed.
Therefore, A cannot distinguish ST ∗ from the real ST .
• If a received Q has been processed, S returns the previous

trapdoor T D to A. Otherwise, S generates a new trapdoor
T D∗ that is a set of t-pair of hashes. Given the α from
L2, S knows which data items match T D. For the MLF, S
generates the output by using H to select t-pair of hashes
while satisfying that the selected hash pairs match the MLF.
For the ULN, S generates the output by using the random
oracle to mismatch the T D with the leaf node. The t-pair of
hashes is T D∗. Since the trapdoor is generated by the random
hash functions, A cannot distinguish T D∗ from the real T D.
• To simulate E∗, S acquires N and |E| from L1. Next,

S generates N random plaintexts, simulates N ciphertexts
with the random plaintexts and an encryption algorithm Ω.Enc.
Meanwhile, S ensures that the size of the simulated ciphertext
is the same as the one of a real ciphertext. Since Ω.Enc is
CPA-secure, A cannot distinguish E∗ from the real E .
• During PoCom generation, only one segment of ULN

and UNN’s Bi and its random number are returned to DUs.
Hence, a curious DU cannot breach the data privacy of Di by
a brute-force attack, i.e., mapping a new trapdoor into the B.
• To improve security protection of search and access

patterns, we can use padding to obfuscate search and access
patterns [17], [18]. Furthermore, we can adopt re-encryption
to periodically redefine L1 and L2 periodically [8].

To sum up, the simulated view and the real view are
indistinguishable by A. Therefore, SAVE is adaptive IND-
CKA (L1, L2)-secure in the random oracle model against an
adaptive adversary. �

V. PERFORMANCE ANALYSIS

A. Experiment Settings

Dataset and Parameters. We use a Yelp dataset consisting
of 150,346 business data. We list the parameter in Table I.

TABLE I
PARAMETER SETTINGS (BOLD: DEFAULT VALUES)

Parameter Value
Number of data items N 20000 40000 60000 80000 100000
Length of keys |sk|, |k| 1024
Number of secret keys t+ 1 6
False positive rate (FPR) 1%

Length of an IBF |n| dN ∗ log(FPR)/log(1/2log(2))e
Ratio of validity to freshness 1:1, 1 : 3, 1 : 2, 2 : 1, 3 : 1.

Metrics. We measure the computational cost (C.C.) and the
communication overhead (C.O.) of DO, DU, and CS in the
index building, trapdoor generation, range query processing,
and result verification.

Baselines. To further evaluate the performance of SAVE, we
compare TiveQP with three baselines: (1) PBtree [6] supports
privacy-preserving range query on single dimensional data by
using Bloom filters. (2) IBtree [7] achieves conjunctive query
processing by using IBFs. (3) ServeDB [8] facilitates multi-
dimensional and verifiable range query with result verification.

Since the first two baselines do not have result verification, we
only compare with ServeDB in this regard.

Setup. We implemented SAVE in Java and conducted
experiments on a PC server running Windows Server 2021
R2 Datacenter with a 3.7-GHz Intel(R) Core(TM) i7-8770K
processor and 32 GB RAM.

B. Index Building

The construction time of STree grows from 33.3 to 166.22
second with N increasing from 2, 000 to 10, 000.The size of
STree grows from 15.02 to 75.15 MB.The results indicate
a positive correlation between construction cost and N . In
STree, due to the need to compute validity and freshness
proofs for each leaf, as well as compute hm and hv for
each node, more time needs to be spent on these verification
information compute operations and more cost to store them.
For example, when N = 2, 000, the tree size is 15.02 MB
while the size of verification information is 5.56 MB.

C. Trapdoor Generation

We used a two-dimension query in the experiments, i.e., a
query has two ranges corresponding to the locations of data
items. The time cost of generating a trapdoor is 0.6 millisecond
with a size of 0.48 KB. Since this part is entirely unrelated to
N , we do not draw experimental figures.

D. Range Query Processing

Given the structure of the tree index, the time complexity of
range query processing is O(log(N)). Fig. 2(a) and Fig. 2(b)
shows that the C.C. in different datasets grows sublinearly with
N and the time cost is in ms scale. When N = 2, 000, the
processing times are 5.5 and 10.4 ms.
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(a) C.C., varying N in Yelp
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(b) C.C., varying N in FourSquare

Fig. 2. Performance of Range Query Processing.

E. Result Verification

Fig. 3(a) and Fig. 3(b) show that the time and size grow
with N because the total number of leaf nodes that need to be
verified is increasing in different ratio setting. For the same N ,
the evidence size and validation time for freshness to validity
in each ratio are different, and the evidence size generated by
a single node is larger for freshness than validity, resulting in
a longer validation time.
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(b) C.O. with varying N

Fig. 3. Performance of Result Verification with Varied Ratio of VP to FP.

���� ���� ���� ���� �����
�

�

��

��

��
���������
�����

�
�
�
�
�
�
�
�


�

�
�
�
�
�
�
�
�
�
	
�
�
�
�


	


�
�
�


�

�
�
�
�

���
������	�	��������

(a) C.C. with varying N
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(b) C.O. with varying N

Fig. 4. Comparison of Result Verification.

F. Comparison

In index construction, the costs of PBtree and IBtree are
lower for no verification information. ServeDB costs less than
STree for not generating a complementary set of location
attribute and then compute more hash, and there is no need to
generate extra proof information for validity and freshness for
each leaf node. In trapdoor generation, the time and size of all
schemes are consistent. In query processing, First, compared
to STree, PBtree and IBtree do not use the multi-cube structure
to encode location attribute, resulting in lower query efficiency.
Second, ServeDB has extra query time for using matched
trapdoor set UMT and matched trapdoor set MT that involves
more hash checks on Bloom filters. It requires the transmission
of Bloom filter and corresponding HMAC of key nodes as
proof, which comes at a higher cost. In result verification,
ServeDB consumes more time and size than STree (Fig. 4(a)
and Fig. 4(b)) because its data user spend more time on
verifying the correctness of the entire Bloom filter for each
key node and of UMT and MT for each key node. But for
STree, it does not have the operations and can accelerate the
validation process through validity and freshness verification.

STree has advantages in query processing and result verifi-
cation. And for the construction, it is an one-time and offline
process, which will not impact the efficiency greatly.

VI. CONCLUSIONS

In this work, we have proposed a secure, available, ver-
ifiable, and efficient range query processing scheme SAVE.
In particular, we developed STree in SAVE that organized
multi-dimensions data, which enabled security, availability,
verifiability, and efficiency of range query. We have formally
defined and proved the security and validated the efficiency.
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