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H I G H L I G H T S

Gradual VIPV charging can reduce grid
charging frequency by 23%.
Gradual VIPV charging can reduce cal-
endar ageing by 9% in the first year.

Cycling for V2G can reduce battery life
by 12.5 years for NMC and 3.9 years for
LFP.
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A B S T R A C T

Electric vehicles (EVs) with vehicle-integrated photovoltaics (VIPV) and vehicle-to-grid (V2G) technology can
help address power grid challenges arising from the energy transition. While VIPV and V2G offer widespread
benefits, their impact on EV battery life affects their economic viability. Many existing studies examining
the impact of VIPV and V2G on EV battery life do not fully capture the complexity of real-world battery
usage, often relying on less detailed battery data. This work models and combines detailed and validated EV
battery data with validated battery ageing models to determine the impact of VIPV and V2G on EV battery
life. First, a validated EV battery simulation model is used to generate realistic, per-second battery data for
an EV operating in The Netherlands and Spain. Following this, VIPV power profiles, V2G day-ahead energy
trading power profiles, and V2G automatic frequency restoration reserve power profiles are integrated with
the battery data. Subsequently, battery datasets for different scenarios are implemented in both NMC and LFP-
based semi-empirical ageing models to quantify calendar and cycling ageing capacity loss. The results show
that gradual VIPV charging decreases the required annual grid charging frequency by 23% in The Netherlands
and 44% in Spain, leading to lower SoC ranges, which can reduce NMC and LFP calendar ageing capacity loss
by 9% in both countries. Additional cycling due to V2G day-ahead energy trading can shorten battery life by
up to 12.5 years for NMC and up to 3.9 years for LFP. Moreover, the research indicates that ageing models
based on tests with regular power profiles may not accurately estimate cycling ageing in power profiles with
increased irregularity caused by VIPV and V2G.
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Fig. 1. Illustration of the energy flows of the Lightyear 0 charging its battery using
VIPV and discharging it using V2G.

1. Introduction

Li-ion batteries are the most expensive component in electric ve-
hicles (EVs), driving the need for battery longevity. This research
examines the impact on battery life of vehicle-integrated photovoltaics
(VIPV), which enables EVs to charge from solar energy, and vehicle-to-
grid (V2G) technology, which allows EVs to discharge power back to
the grid. Fig. 1 shows the energy flows of an EV charging its battery
using VIPV and discharging it into the power grid using V2G.

1.1. VIPV and V2G

VIPV and V2G can support grid operators in overcoming power grid
challenges. EVs that partially charge using VIPV are often designed to
be energy-efficient, reducing grid power demand and thereby helping
ease grid congestion compared to traditional EVs [1]. EVs with V2G can
enable a more reliable power grid by enabling EVs to trade on energy
markets and offer grid balancing services to transmission system opera-
tors (TSOs). To realise a widespread implementation of VIPV and V2G,
the technologies must be cost-effective. By discharging and charging
the battery, VIPV and V2G impact the EV’s battery life, affecting the
economic viability of these technologies [2].

1.2. Li-ion battery ageing and (semi-)empirical ageing models

Understanding Li-ion battery degradation is crucial for assessing
the impact of V2G and VIPV on battery life. Battery degradation can
be split into calendar ageing and cycling ageing. Calendar ageing is
always present and degrades the battery during usage and resting.
Cycling ageing is only present during usage and results from charg-
ing/discharging the battery. A comprehensive review of degradation
mechanisms is presented in [3]. Factors such as low SoC levels (<10%),
high SoC levels (>90%), low temperatures (<5 ◦C), high temperatures
(>30 ◦C), high C-rates (>1 C), and deep discharge cycles, accelerate
ageing [4–8]. One of the major contributors to ageing is the Solid
Electrolyte Interphase (SEI) layer [9]. The SEI layer forms on the anode
surface because the electrochemical potential of graphite is outside
the stability window of the electrolyte, causing the electrolyte solvent
and salts to react with the lithium [9]. The SEI layer contributes to
calendar and cycling ageing. SEI formation is accelerated by high SoC
and high temperatures [5,6,10,11]. During cycling, SEI formation can
be accelerated through side reactions like particle cracking [12] and
transition metal dissolution [13]. Another large ageing mechanism is
Lithium plating [14], where lithium is deposited on the anode surface
instead of intercalating into the anode particle. Lithium plating is
accelerated at low temperatures, high charging current, and high SoC
levels [4,15,16].

(Semi-)empirical ageing models curve-fit the relation of ageing
stress factors onto ageing data to derive equations for estimating bat-
tery calendar and cycling ageing. These models are often used in
system design and smart charging analyses due to their mathematical
simplicity, providing intuitive insight into how the ageing stress factors
affect ageing [4]. Despite their advantages, these models are based
on specific operating conditions and cell chemistries, and are not
designed to analyse highly irregular power profiles, leading to potential
inaccuracies in ageing estimations.
2 
Table 1
Literature on the impact of VIPV and V2G on battery ageing indicating the cathode
chemistry, the used degradation model, and if battery temperature is included.

Study Year Case Cathode Model Temp.

Mallon et al. [17] 2017 VIPV LFP [18] –
Zhou et al. [18] 2011 V2G LMO [23] –
Wang et al. [1] 2016 V2G NMC-LMO [24] x
Dubarry et al. [19] 2017 V2G NCA Meas. x
Uddin et al. [20] 2017 V2G NCA [20] x
Steffen et al. [2] 2020 V2G NMC [5] –
Schwenk et al. [22] 2023 V2G ? ? x

1.3. Literature review

The only study identified on the impact of VIPV on EV battery
life [17], examined the impact of onboard solar panels on the cycle life
of an electric bus’ Li-ion battery. The study suggests that as gradual
solar charging reduces the required number of battery cycles, battery
cycle life may extend by up to 19% if VIPV are mounted on the roof and
the sides of the bus. However, the model only factors in the battery’s
DoD at the end of the day, neglecting the effects of minor cycles due
to gradual solar charging throughout the day, as well as overlooking
the battery’s temperature and average SoC. Furthermore, the authors
defined the battery’s end of life (EoL) when cycling ageing had caused
a 20% capacity loss, neglecting the contribution of calendar ageing to
the battery’s overall degradation.

Researchers generally agree that additional cycling for V2G services
is harmful to battery life. Zhou et al. [18] modelled the cost of EV
battery ageing due to V2G. The research highlights the effect of DoD
on ageing cost per kWh at peak electricity rate. In addition, the study
compares the cost of battery ageing to the cost of energy purchased
and to the benefits of energy sales to the utility grid. The researchers,
however, disregarded the thermal management of the EV’s battery,
posing inherent limitations to the analysis. Steffen et al. [2] researched
optimal EV charging considering the effects of a financial incentive
on battery ageing. The authors state that with an appropriate thermal
strategy, no significant additional battery ageing should occur. Wang
et al. [1] quantified EV battery ageing from driving compared to
using an EV for V2G services and driving. The simulations used for
the research incorporated a detailed thermal management model. The
study found that if V2G were only used 20 times per year, the 10-
year average capacity losses would be a maximum of 1.18% more than
without the V2G services. Dubarry et al. [19] and Uddin et al. [20]
studied the ageing of similar Li-ion NCA battery technologies. Dubarry
et al. [19] and Uddin et al. [20] had varying findings on battery ageing
due to V2G. These researchers collaborated and published a paper in
2018, clearing up how battery ageing due to V2G can be managed to
extend battery lifespan using a smart control algorithm [21]. A study on
the impact of V2G services on battery ageing shows that battery ageing
is highly temperature-sensitive and therefore requires precise thermal
models and that overlooking ageing can substantially underestimate
V2G-related EV operating costs [22].

An overview of the relevant literature on the impact of VIPV and
V2G on Li-ion batteries is summarised in Table 1 below.

1.4. Research contribution

This study represents an advancement in understanding the effects
of VIPV and V2G on EV battery life. Building upon the limited ex-
isting research in this area, particularly on VIPV battery ageing, this
work introduces a novel and comprehensive approach by integrating
detailed and validated per-second EV battery data with semi-empirical
ageing models, specifically to account for the irregular power profiles
generated by VIPV and V2G. Unlike previous studies, which often
rely on simplified models and overlook real-world conditions, this
research examines a broader set of battery ageing stress factors, such as
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state of charge, temperature, and charge/discharge cycles, across two
geographical settings and two Li-ion battery chemistries. The novelty of
this approach make it one of the most holistic analyses of in this area,
leading to the following key contributions:

• Holistic Analysis of VIPV on Battery Ageing with Compre-
hensive Stress Factors: This study advances the limited existing
research on VIPV’s impact on battery life by incorporating a
wider spectrum of ageing stress factors, including time 𝑡 [s],
state of charge 𝑆 𝑜𝐶(𝑡) [%], temperature 𝑇 (𝑡) [◦C], voltage 𝑈 (𝑡)
[V], current 𝐼(𝑡) [A], 𝐶-𝑟𝑎𝑡𝑒(𝑡) [h−1], and throughput 𝑄(𝑡) [Ah].
Additionally, unlike previous research that only considers cycling
ageing capacity loss, this study conducts a more thorough analysis
by also considering calendar ageing capacity loss. This extensive
approach provides a more accurate depiction of the total ageing
process to improve our understanding of VIPV interactions with
EV batteries.

• Comprehensive and Realistic power profile Modelling using
Advanced Simulation Tools: The integration of Lightyear’s Ve-
hicle Performance Model (VPM), Lightyear’s VIPV SolarSimulator
tool, and V2G modelling using mixed-integer linear programming
(MILP), enables the simulation of detailed per-second EV battery
power profiles. This approach improves previous methodologies
by including a wide range of dynamic factors such as electric
motor characteristics, regenerative braking, thermal management
systems, VIPV systems, and V2G services. The enhanced detail
in the modelled battery power profile improves the precision in
estimating battery ageing to offer a more nuanced understanding
of the impact of VIPV and V2G on EV batteries.

• Battery Ageing Model Analysis Covering Multiple Battery
Chemistries and Geographical Variations: A distinct feature
of this research is the use of two semi-empirical ageing models,
analysing both NMC and LFP batteries. This comprehensive ap-
proach allows for a comparative analysis of how different battery
chemistries respond to identical influences of VIPV and V2G.
Additionally, by considering two distinct geographical locations,
Amsterdam, the Netherlands and Madrid, Spain, the study in-
corporates the effects of varying ambient temperatures and solar
irradiance on VIPV performance and subsequent battery ageing.

• Analysis of VIPV and V2G Synergies in EV Battery Life: The
research offers novel insights into the integration of VIPV and
V2G technologies with EVs. By analysing the interaction of these
technologies under different operational conditions, the study
contributes to a deeper understanding of their cumulative impact
on battery ageing. This comprehensive analysis guides future
design and implementation strategies for VIPV and V2G systems
to support battery longevity.

These contributions offer a more complete and nuanced understand-
ing of the impact of VIPV and V2G on EV battery life. The findings
not only fill existing gaps in the literature but also provide actionable
insights for policymakers, EV manufacturers, and researchers to support
a sustainable and efficient integration of VIPV and V2G technologies in
EVs.

1.5. Structure of the paper

Section 2 provides an in-depth description of the methodology
used for simulating NMC and LFP Li-ion battery datasets and ageing,
impacted by VIPV and V2G. Subsequently, Section 3 presents the results
of the battery ageing simulations, focusing on the impact of VIPV and
V2G on battery life. Finally, Section 4 gives an overview of the key
findings, the potential implications of semi-empirical battery ageing
models, and recommendations for future research in the field of EV
battery ageing modelling.
3 
Fig. 2. Flowchart illustrating the EV battery ageing modelling methodology used in
this work.

2. Modelling methodology

This section explains the methodology for modelling EV battery
data, both with and without the influence of VIPV and V2G. The process
involves generating and merging detailed battery power profiles to
generate per-second data of the battery ageing stress factors. These
battery ageing stress factors are subsequently integrated into semi-
empirical battery ageing models to assess capacity decrease over time.
The modelling methodology used in this work could be adapted for
real-time applications by linking real-time battery ageing stress factor
data to a cell-specific battery ageing model.

2.1. Simulating EV battery data

Fig. 2 shows the EV battery ageing modelling methodology. In this
methodology, several inputs generate the power profile which subse-
quently serves as the basis for deriving battery ageing stress factors,
namely 𝑆 𝑜𝐶(𝑡) [%], 𝑇 (𝑡) [◦C], 𝑈 (𝑡) [V], 𝐼(𝑡) [A], 𝐶-𝑟𝑎𝑡𝑒(𝑡) [h−1], and
𝑄(𝑡) [Ah]. Finally, the semi-empirical battery ageing models use the
battery ageing stress factors to determine the capacity decrease over
time. The methodology of modelling EV battery ageing that was used
in this work is detailed below.

2.1.1. Lightyear’s VPM
Lightyear’s VPM is an EV simulation model that simulates the

Lightyear 0, a highly efficient EV with integrated solar panels devel-
oped by Lightyear in 2022 and discontinued in 2023. It was promoted
to achieve a 700 km range on its 60 kWh battery, excluding additional
range contributed by the solar panels during driving. The EV simulation
model was developed in Simulink by capturing various EV dynamics
including aerodynamics, rolling resistance, motor characteristics, con-
verters, inverters, and thermal systems for high-voltage and low-voltage
batteries. To ensure that the model is accurate and representative of
real-world conditions, the VPM has been validated on subsystem level,
after which the data has been fed back into the model. Lightyear’s VPM
was used to simulate a variety of driving cycles, generating the battery
ageing stress factor data required to determine battery degradation.
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2.1.2. Lightyear 0 battery cells and pack configuration
The Lightyear 0 and its VPM use TerraE INR 21700 50E NMC

battery cells. These cells have a nominal capacity of 5000 mAh, a
usable capacity of 4909 mAh, a maximum charging voltage 4.2 V, a
nominal voltage of 3.6 V, a maximum discharge current of 15 A, and a
maximum resistance of 20 mΩ. The cells could operate between −20 ◦C
and +60 ◦C and weigh 70 grams each.

The battery pack consists of modules that have 34 cells in parallel
and 10 in series. The battery pack contains 10 such modules in series,
totalling 100 cells in series. This configuration provides a total energy
storage capacity of 60,086 Wh.

2.1.3. Mobility and EV charging profile
The mobility profile of a new EV was designed based on mobility

data from the Dutch Central Bureau of Statistics (CBS) and a study
called Mobility in Germany (MiG) [25,26]. In this simulation, the EV
covers 19,190 km annually, including 250 commutes, 50 leisure trips,
13 weekend trips, a 2 seasonal trips. Five standard driving cycles,
including the Worldwide Harmonised Light Vehicles Test Procedure
(WLTC) and Artemis cycles were alternately simulated in the VPM to
create a variety of one-week power profiles.

EV charging profiles were modelled using data from ElaadNL [27].
In the simulations, the battery is consistently charged up to 90% SoC
with a power of Pcharging = 11 kW and an efficiency of 𝜂charging = 0.95.

2.1.4. VIPV
Lightyear’s SolarSimulator tool simulates the energy generated by

PV cells using weather and location data. It incorporates optical, ther-
mal, and electrical models. Initially, the optical model calculates irra-
diance on the surface, followed by the thermal and electrical models
which determine output power. Key variables of the electrical model
that influence VIPV performance include the PV panel efficiency of
22%, panel temperature and solar irradiance. Unlike Standard Test
Conditions, real conditions see higher irradiance increasing the temper-
ature of the panels, thus reducing the power output of the VIPV system.
Therefore, both panel temperature and irradiance are used as input
for the thermal and electrical models. The optical model, using ray-
tracing, estimates irradiance, integrating an all-weather model for sky
luminance [28]. The model also considers shading from city buildings
affecting the VIPV system’s power output. The thermal model examines
heat transfer via conduction, radiation, and convection. The electrical
model employs a single-diode approach, requiring three parameters:
short-circuit current (ISC), 𝑉 OC, and the diode ideality factor n. The
model includes a series resistance 𝑅𝑆 to better account for environmen-
tal changes, which improves the model’s reliability and computational
efficiency.

In Fig. 3, the top graph shows a one-week battery power and SoC
profile without VIPV, and the bottom graph shows the same week with
VIPV. The simulation covers regular weekday commuting and leisure
trips on Wednesday evenings and the weekend. VIPV charging leads to
more irregular power profiles and reduces the number of grid charging
sessions by 23% in the Netherlands and 44% in Spain. The gradual
VIPV charging causes the SoC to range at mid-levels for longer, which
is beneficial for calendar ageing.

2.1.5. V2G
V2G power profiles were modelled using MILP, with data derived

from the EPEX SPOT day-ahead (DA) market and the Dutch automatic
frequency restoration reserve (aFRR) market, which are interesting V2G
services for EVs in the Netherlands.

DA trading involves forecasting daily VIPV energy production to
optimise the balance of EV charging and V2G discharging based on
electricity prices, as outlined in Eqs. (1)–(2):

minimise
𝜏
∑

𝜖DA,t ⋅ (𝑃charge,t − 𝑃V2G,t) (1)

𝑡

4 
Fig. 3. Two plots showing a one-week power profile (left y-axis) and SoC profile (right
y-axis), without VIPV (top graph) and with VIPV (bottom graph), illustrating the impact
of VIPV on a one-week SoC profile.

𝐸stored,t = 𝐸start,t-1 + (𝑃charge,t-1 ⋅ 𝜂charge −
𝑃V2G,t-1
𝜂charge

− 𝑃drive,t-1) (2)

where:

• 𝜖DA,t is the electricity price on the DA market in e/kWh,
• 𝑃charge,t is the charging power from the grid in kW,
• 𝑃V2G,t is the discharging power to the grid in kW,
• 𝐸stored is the energy stored in the EV’s battery in kWh,
• 𝜂charge is the EV’s charging efficiency,
• 𝑃drive,t is the power used for driving the vehicle in kW.

For aFRR, EVs contribute to grid stability by adjusting their charging
speed based on the grid demands of the transmission system operator,
through both upward and downward regulation. The aFRR model uses
bid and acceptance strategies to manage grid imbalances. Key equations
for this process are shown in Eqs. (3) and (4), which represent the bids
for downward and upward regulation, respectively:

𝐵down,𝜏 = max(𝜖aFRR,t, 0) (3)

𝐵up,𝜏 = 𝜖aFRR,t (4)

𝐵down,𝜏 ensures that bids for downward regulation are placed only
when economically favourable, while 𝐵up,𝜏 sets the bid for upward
regulation based on the current aFRR tariff.

SoC retention limits during V2G are set at 50% and 20% for the
modelled V2G scenarios to balance V2G participation with the need for
sufficient EV driving range. Thereby, the SoC limits ensure that the EVs
maintain battery energy capacity for emergency driving needs while
maximising their grid services potential. This balancing act affects the
feasibility and attractiveness of participating in V2G services, although
EV battery degradation due to participation in grid services should be
accounted for.

In Fig. 4, the top graph shows a battery power and SoC profile
without V2G and the bottom graph shows a battery power and SoC pro-
file including V2G day-ahead energy trading with a 50% SoC retention
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Fig. 4. Two plots showing a one-week power profile (left y-axis) and SoC profile (right
y-axis), without V2G (top graph) and with V2G (bottom graph), illustrating the impact
of V2G on a one-week SoC profile.

strategy.

2.1.6. 𝑃 (𝑡) and 𝑆 𝑜𝐶(𝑡)
The battery power profiles modelled using Lightyear’s VPM are

combined with VIPV power profiles generated by Lightyear’s VIPV
SolarSimulator tool and V2G power profiles developed using MILP.
Eq. (5) shows that the SoC profile is derived from the battery energy
storage profile 𝐸batt(𝑡) and is calculated by subtracting the integration
of the power profile P(t) from the initial battery capacity. In the
power profile, positive values correspond to the power output required
to drive the vehicle forward and to power auxiliaries, and negative
values correspond to power input due to grid charging and regenerative
braking.

𝐸batt(𝑡) = 𝐸batt(𝑡 = 0) − ∫ 𝑃 (𝑡) 𝑑 𝑡 (5)

Subsequently, Eq. (6) derives the SoC profile by dividing the stored
battery energy capacity 𝐸batt(𝑡) by the full battery capacity 𝐸full

batt. 𝐸
full
batt

equals 60 kWh at 𝑡 = 0 and slightly decreases over time due to battery
capacity degradation.

𝑆 𝑜𝐶(𝑡) = 𝐸batt(𝑡)
𝐸full

batt
(6)

Fig. 5 shows four one-year SoC profiles, showing the impact of
VIPV and V2G on cycling frequency relative to the base scenario.
Fig. 5a corresponds to the base scenario, Fig. 5b to the VIPVNL scenario,
Fig. 5c to the V2G20% SoC

DA scenario, and Fig. 5d to the V2G50% SoC
aFRR

scenario. Compared to the base scenario, the VIPVNL scenario shows
a reduced grid charging frequency and an increase in small varia-
tions. The V2G20% SoC

DA and V2G50% SoC
aFRR scenarios show a significant

increase in grid charging frequency caused by additional cycling for
V2G services.

2.1.7. 𝑇 (𝑡)
The temperature profile is modelled based on the power profile, SoC

profile, and various EV characteristics determined from the VPM. The
5 
Fig. 5. Overview of the one-year SoC graphs for the base, VIPVNL, V2G20% SoC
DA , and

V2G50% SoC
aFRR scenarios (in order from top to bottom graph), illustrating the impact of

VIPV and V2G on a one-year SoC profile.

modelling of the battery temperature profile includes separate scenar-
ios: the decrease to ambient temperature during parking, preheating
to 5 ◦C, precooling to 25 ◦C, active cooling at 35 ◦C, the increase
in temperature during driving, and the increase in temperature during
charging.

Eq. (7) demonstrates that the heat transfer rate for battery cool-
ing, preconditioning, and active cooling processes are modelled using
Newton’s law of cooling.
𝑑 𝑇
𝑑 𝑡 = −ℎ

𝑐
⋅ 𝐴 ⋅ (𝑇amb − 𝑇batt) (7)

where ℎ is the heat transfer coefficient, 𝑐 is the battery pack’s heat
capacity, 𝐴 is the battery pack’s surface area, 𝑇amb is the ambient
temperature, and 𝑇batt is the initial temperature of the battery pack.
The heat transfer coefficient is assumed to be 10 W / (m2 K) at the
bottom side of the battery pack, and 5 W / (m2 K) at the cabin side.
Lightyear’s battery pack dimensions correspond to an area of 2.88 m2.
Lightyear’s battery cells, battery enclosure, and battery coolant, have a
total heat capacity of 380 kJ/K.

Managing the battery temperature using a high-voltage air condi-
tioning (HVAC) system demands power from the battery, for which a
power penalty is incorporated in the modelled power profile until the
battery reaches the desired battery temperature. The energy required
to adjust the battery’s temperature to the desired operating range is
calculated using Eq. (8).

𝐸HVAC
req = 𝛥𝑇 ⋅ 𝑐

3, 600 ⋅ 𝐶 𝑂 𝑃 (8)

where 𝐸HVAC
req is the energy required to enable the HVAC system to

manage the battery’s temperature, 𝛥T is the temperature difference,
c is the sum of the heat capacity of the battery pack components, and
𝐶 𝑂 𝑃 represents the coefficient of performance, which is a function of
temperature. The power penalty is modelled by distributing the energy
requirement 𝐸HVAC

req evenly over the duration needed to achieve the
desired battery temperature.

The battery temperatures are governed by ambient temperatures.
Each morning and evening in January, the battery preheats from the
ambient temperature to 5 ◦C. During parking, the battery cools down
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to the ambient temperature according to Eq. (7). The rate of bat-
tery temperature increase during driving, consistently assumed to be
2.58 ◦C per hour in the temperature profile modelling, is based on VPM
simulation analyses that examined the battery temperature increase
over time and relative to the distance travelled, under various initial
battery temperatures and ambient conditions. The rate of battery tem-
perature increase during charging is assumed to be equal to the battery
temperature increase during driving.

2.1.8. 𝑈 (𝑡)
The voltage profile is derived from the SoC profile and the cell-

specific UOC(SoC) curve, which ranges from 2.8 V to 4.15 V. The
average voltage of the battery cells is calculated using Eq. (9):

𝑈cell(𝑡) = 𝑈𝑂 𝐶 (𝑆 𝑜𝐶(𝑡)) − 𝛥𝑈cell(𝑡) (9)

where 𝑈cell(𝑡) is the average voltage of the battery cells in the battery
pack, 𝑈𝑂 𝐶 (𝑆 𝑜𝐶(𝑡)) is the open-circuit voltage of the battery cell, which
is the difference in electrical potential between the two electrodes of
a battery cell when no current is applied, and 𝛥𝑈cell(𝑡) is the voltage
drop over the battery cell’s resistance. The voltage drop over a cell’s
resistance is calculated using Eq. (10):

𝛥𝑈cell(𝑡) = 𝑅cell(𝑡) ⋅ 𝐼cell(𝑡) (10)

where 𝑅cell(𝑡) is the resistance of the battery cell and 𝐼cell(𝑡) is the
average current running through the battery cell. 𝑅cell(𝑡) depends on
the cell’s SoC and the cell’s temperature.

2.1.9. 𝐼(𝑡)
The current profile is derived from the power and voltage profiles.

Eq. (11) shows that the average cell’s current 𝐼cell(𝑡) is calculated in
amperes by dividing the battery pack’s total power output 𝑃pack(𝑡) by
the cell’s voltage 𝑈cell(𝑡).

𝐼cell(𝑡) =
𝑃pack(𝑡)

𝑁 series
cells ⋅ 𝑈cell(𝑡)

(11)

where 𝑁 series
cells is the number of cells in series, amounting to 100 in total,

which add up to the battery pack’s total operating voltage.

2.1.10. 𝐶-𝑟𝑎𝑡𝑒(𝑡)
Eq. (12) shows that the C-rate profile is calculated by dividing the

absolute of the average cell current 𝐼cell(𝑡) in amperes by the nominal
cell capacity 𝐼cell in amperes for each second.

𝐶-𝑟𝑎𝑡𝑒(𝑡) = |𝐼cell(𝑡)|
𝐼cell

(12)

2.1.11. 𝑄(𝑡)
The battery pack’s throughput profile is calculated using Eq. (13).

In this work, throughput is defined as the energy discharged by the
battery. The throughput is determined for each second by dividing the
current at each second by 3600.

𝑄pack(𝑡) =
𝐼cell(𝑡) ⋅𝑁

parallel
cells

3, 600
(13)

where 𝑄pack(𝑡) is the battery pack’s total throughput and 𝑁parallel
cells is

the number of cells in parallel, amounting to 34, which add up to the
battery pack’s total operating current.

The throughput per cycle is determined by taking the cumulative
discharged capacity between the start and end of each partial discharge
cycle. The start and end of each partial cycle is determined using the
battery cycle counting method mentioned above.
6 
Fig. 6. Illustration of the method for counting partial battery cycles based on when
the power equals 0 W.

2.2. Battery cycle counting

Battery cycle counters can be used to identify the beginning and
end of each battery cycle. Two options for battery cycle counting are
the rainflow cycle counting method, which is based on the battery’s
SoC profile [5], and the power profile cycle counting method. Rainflow
cycle counting is used in engineering to determine the combined fatigue
of individual stress cycles. Rainflow cycle counting is based on the
assumptions that the specific sequence of different-sized cycles does
not influence the fatigue, and that the impact of a cycle on fatigue
is the same over the period of time over which the cycle counting is
performed [29]. The power profile cycle counting method is another
way to identify the beginning and end of each charge and discharge
‘partial cycle’. In this approach, the start and end of a partial cycle
are marked by the instances when the power profile intersects the zero
mark of the 𝑦-axis (P = 0 W).

In this work, the power profile cycle counting method is used for cy-
cle counting. Fig. 6 illustrates the power profile cycle counting method
used in this research. The partial discharge cycle in this illustration
starts at point A and ends at point B, when the power equals 0 W.
The power profile’s corresponding SoC profile on the right 𝑦-axis shows
how the battery SoC drops from point A’ to point B’ during the partial
discharge cycle. The partial charging cycle in the illustration starts at
point B and ends at point C, when the power equals 0 W again, with
the SoC profile showing the increase in battery capacity from point B’
to point C’.

Eq. (14) shows that the number of full equivalent cycles 𝑛cycles
is determined by dividing the cell’s cumulative discharged capacity
𝐸cumulative

discharged by the cell’s full capacity 𝐸full
cell.

𝑛cycles =
𝐸cumulative

discharged

𝐸full
cell

(14)

2.3. Use case scenarios

The base case scenario was merged with EV battery data of VIPV
and V2G to create eight distinct datasets, each analysed based on cal-
endar and cycling battery ageing. The scenarios ranged from standard
battery usage to various VIPV, V2GDA, and V2GaFRR configurations.
The datasets were then applied to NMC and LFP-based semi-empirical
ageing models. To model VIPV power generation profiles for both
the Netherlands and Spain, Lightyear’s SolarSimulator tool was used,
incorporating irradiance and ambient temperature data derived from
a typical meteorological year (TMY) dataset spanning 2010 to 2022
from the Photovoltaic Geographical Information System (PVGIS). For
each month, the average temperature values were selected from this
12-year period (see Table 2).
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Table 2
Use case scenarios with variations of VIPV and V2G which have been evaluated for
attery ageing.

Power profiles

Use case scenario Standard VIPV V2GDA V2GaFRR

Base V
VIPVNL V V
VIPVESP V V
VIPVNL & V2G50% SoC

DA V V V
V2G50% SoC

DA V V
V2G20% SoC

DA V V
V2G50% SoC

aFRR V V
V2G20% SoC

aFRR V V

2.4. Semi-empirical battery ageing models

The EV battery datasets were implemented into battery ageing
models sourced from the literature that showed good applicability due
to clear descriptions regarding implementation compared to alternative
semi-empirical battery ageing models. Specifically, the used battery
ageing models include an NMC-based semi-empirical model (NMC-AM)
developed by Schmalstieg et al. [5] and a semi-empirical LFP-based
geing model (LFP-AM) developed by Schimpe et al. [30].

2.4.1. NMC ageing model
NMC-AM was developed using accelerated ageing tests on 60 Sanyo

UR18650E Panasonic NMC cells to address capacity decrease and resis-
tance increase due to calendar and cycling ageing. The calendar ageing
tests were conducted by taking measurements every 50 days over a
eriod of 500 days at various SoC levels and temperatures, to establish
he impact of these factors on ageing rates. The model also considered
2 cycling ageing tests under constant conditions, showing differential
geing relations based on the SoC range, thus highlighting SoC’s in-

fluence on cycling ageing. Eq. (A.1)–(A.4) show the NMC-AM ageing
equations that define the capacity decrease and resistance increase due
o calendar ageing. Eq. (A.5)–(A.8) show the ageing equations that
efine the capacity decrease and resistance increase due to cycling

ageing.
According to NMC-AM, calendar and cycling ageing can be super-

positioned to determine total ageing. The superposition of the calendar
and cycling result in two ageing equations that holistically describe
capacity decrease and resistance increase, namely Eq. (15) and (16),
respectively.

𝑄total
I = 1 − 𝛼Q

I ⋅ 𝑡0.75 − 𝛽Q
I ⋅

√

𝐴ℎ (15)

𝑅total
I = 1 + 𝛼R

I ⋅ 𝑡0.75 + 𝛽R
I ⋅ 𝐴ℎ (16)

where t is time in days and Ah is the throughput delivered.
To assess the battery’s capacity degradation, the ageing stress fac-

tors described in Section 2 are implemented using Eq. (A.7)–(16).
Calendar ageing capacity loss is computed on a per-second basis and
ggregated to track the total capacity loss due to calendar ageing over
ime. Cycling ageing capacity loss is assessed for each partial cycle,
ith losses from all partial cycles added sequentially according to their

hronological occurrence to track the total capacity loss due to cycling
geing over time.

2.4.2. LFP ageing model
LFP-AM was developed using accelerated ageing tests on Sony

US26650FTC1 LFP cells, to address capacity decrease due to calendar
and cycling ageing. The calendar ageing tests were conducted over 234
days and across a range of temperatures and SoC values, focusing on
time, temperature, and voltage as stress factors. Cycling ageing tests
were performed at various temperatures, current levels, and C-rates.
7 
The ageing equations that define the capacity decrease due to
cycling ageing are described in Eq. (17)–(20) [30], and the reference
parameters are calculated using Eq. (A.11)–(A.13). Eq. (17) shows that
the capacity loss due to cycling ageing consists of three sub-equations.
Eq. (18) describes cycling ageing at high temperatures, Eq. (19) de-
scribes cycling ageing at low temperatures and all SoC values, and
Eq. (20) describes cycling ageing at low temperatures and SoC values
bove 81%, giving an extra cycling ageing weight to higher SoC cycles.

𝑄cycling
II = 𝑄cycling

high T +𝑄cycling
low T +𝑄cycling

low T, SoC ≥ 82% (17)

with

𝑄cycling
high T = 𝑘cyc, high T ⋅

√

𝐴ℎtotal (18)

𝑄cycling
low T = 𝑘cyc, low T ⋅

√

𝐴ℎcharge (19)

𝑄cycling
low T, SoC ≥ 82% = 𝑘cyc, low T, SoC ≥ 82% ⋅ 𝐴ℎcharge (20)

with the reference parameters used in these equations calculated using
Eq. (19)–(A.13).

The ageing equation that determines the capacity decrease due to
calendar ageing are described in Eq. (21) and (22) [30].

𝑄calendar
II = 𝑘cal ⋅

√

𝑡 (21)

where kcal is determined using

𝑘cal = 𝑘cal, ref ⋅ exp
[

−𝐸a, cal
𝑅g

(

1
𝑇

− 1
𝑇ref

)]

⋅

(

exp
[

𝛼 ⋅ 𝐹
𝑅g

(

𝑈a, ref − 𝑈a(𝑆 𝑜𝐶)
𝑇ref

)]

+ 𝑘0

) (22)

where 𝑘cal, ref is the calendar reference stress factor which equals 3.694
⋅ 10−4 h−0.5, 𝐸a, cal is the activation energy parameter which equals
20,592 J/mol, 𝑇ref is the reference temperature which equals 298.15 K,
𝑅g is the universal gas constant which equals 8.314 J/(mol K), F is the
araday constant which equals 96,485 C/mol, 𝑈a, ref is the reference
otential set at 𝑈a,(SoC = 50%) = 0.123 V, T is the battery temperature

in Kelvin, and 𝛼 and 𝑘0 are fitting parameters set at 0.384 and 0.142,
respectively.

LFP-AM was used in this work as this model provides insight into
he anode stoichiometry on which the model is based, from which the
node open-circuit potential can be determined. Eq. (A.9) shows that
he anode stoichiometry is calculated as a function of SoC through

linear interpolation between 0% and 100% SoC. The anode stoichiom-
etry given by Safari and Delacourt [31] and used by Käbitz et al.
[32] to develop the model describes the relation between SoC and the
egree of lithiation of the LFP anode. The LFP anode stoichiometry,

used to calculate the anode open circuit voltage 𝑈a, is derived from an
NMC-motivated SoC profile due to its origin in NMC-based simulations.

The implementation of LFP-AM follows a similar implementation as
NMC-AM. The calendar ageing capacity loss is determined by scaling
up modelled per-second data to per-hour data, and subsequently accu-
mulating the calendar ageing capacity loss over time. Cycling ageing
capacity loss is determined per partial cycle and accumulated over
charge throughput cycles and total throughput cycles according to
Eq. (17) in the appendix.

3. Modelling results

Table 3 provides an overview of the results from NMC-AM and
LFP-AM for each use case scenario, including one-year calendar, cy-
ling, and total normalised capacity loss for each scenario. It details

Qcell
throughput, the net energy delivered by a single cell after one year, and

Neq. full cycles, and the number of full equivalent discharge cycles within
a year.

The NMC-AM and LFP-AM ageing models used in this study are
based on cells with 2.15 Ah and 3.00 Ah capacities, respectively, while
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Table 3
One-year capacity loss of different use case scenarios, with and without VIPV or V2G, according to NMC-AM and LFP-AM.
Scenario Ageing type NMC-AM LFP-AM One-year use case characteristics

Base Calendar 1.05% 3.04% Qcell
throughput 342 Ah SoCavg 69%

Cycling 2.80% 2.03% Neq. full cycles 70.5 DoDavg 0.18%
Total 3.85% 5.07% Npartial cycles 70,797

VIPVNL Calendar 0.97% 2.91% Qcell
throughput 340 Ah SoCavg 63%

Cycling 2.81% 2.21% Neq. full cycles 70.1 DoDavg 0.13%
Total 3.78% 5.12% Npartial cycles 73,642

VIPVESP with TESP Calendar 1.26% 3.02% Qcell
throughput 339 Ah SoCavg 58%

Cycling 2.86% 2.07% Neq. full cycles 69.9 DoDavg 0.14%
Total 4.12% 5.09% Npartial cycles 74,098

VIPVNL & V2G50% SoC
DA Calendar 1.14% 3.36% Qcell

throughput 606 Ah SoCavg 76%
Cycling 5.46% 2.40% Neq. full cycles 125 DoDavg 0.30%
Total 6.60% 5.76% Npartial cycles 71,686

V2G50% SoC
DA Calendar 1.14% 3.36% Qcell

throughput 607 Ah SoCavg 76%
Cycling 5.48% 2.40% Neq. full cycles 125 DoDavg 0.31%
Total 6.62% 5.76% Npartial cycles 71,695

V2G20% SoC
DA Calendar 1.08% 3.19% Qcell

throughput 772 Ah SoCavg 71%
Cycling 8.78% 2.94% Neq. full cycles 159 DoDavg 0.36%
Total 9.86% 6.13% Npartial cycles 71,529

V2G50% SoC
aFRR Calendar 1.23% 3.64% Qcell

throughput 459 Ah SoCavg 84%
Cycling 4.83% 1.78% Neq. full cycles 95 DoDavg 0.24%
Total 6.06% 5.42% Npartial cycles 72,459

V2G20% SoC
aFRR Calendar 1.22% 3.63% Qcell

throughput 477 Ah SoCavg 83%
Cycling 4.80% 1.83% Neq. full cycles 98 DoDavg 0.25%
Total 6.02% 5.46% Npartial cycles 72,368
the Lightyear vehicle’s battery cells have a capacity of 4.85 Ah. To ac-
count for this, one approach would have been to scale the throughput in
our vehicle model to match the battery ageing models. While this would
have provided a more precise match for throughput-induced ageing,
it would have required introducing a scaling factor into the original
ageing equations without adjusting other battery cell parameters, such
as the SoC profile and temperature dynamics, which also significantly
impact battery ageing. To avoid altering the equations and to ensure
consistency, we chose to use the throughput of the Lightyear vehicle’s
battery directly, despite the size difference. This simplified the study
and preserved the integrity of the ageing models, while still allowing
for reliable comparison of relative degradation trends across different
scenarios within each battery chemistry. Consequently, while absolute
degradation values should be interpreted with caution, the relative
trends provide meaningful insights into the comparative impacts of
VIPV and V2G on NMC and LFP batteries.

Table 3 details Npartial cycles, the number of partial cycles, SoCavg, the
average state of charge (SoC) over the year, and DoDavg, the average
cycle depth of the partial cycles throughout the year, and EoL, the year
when the battery retains 80% of its initial capacity. The time period and
temperature profiles are identical across all scenarios. It is important
to recognise that the loss of lithium inventory due to SEI formation is
more significant during the first few hundred cycles, after which the
reaction rate decelerates [33]. Consequently, battery ageing in the first
year might be more prominent compared to the subsequent years.

For illustration, Fig. 7 shows the one-year SoC, temperature and
NMC-AM capacity loss profiles for the base scenario. The tempera-
ture spikes in January and July correspond to long-distance drives of
1876 km in January and 2696 km in July, representing seasonal holiday
trips. The seasonal effect of temperature causes the wavy capacity loss
pattern over the year, as differences in temperature impact battery
ageing [9]. A comparison of degradation between the base case, VIPV
case, and 𝑉 2𝐺50%

𝐷 𝐴 is shown in Fig. 9.

Impact of VIPV on calendar ageing
As VIPV gradually charges the battery, it reduces the required grid

charging frequency, causing the average annual SoC to range 9% lower
in the Netherlands and 16% lower in Spain. Lower SoC is beneficial for
calendar ageing as it decelerates the growth of the SEI layer. NMC-
AM suggests that VIPV can reduce one-year calendar ageing capacity
8 
Fig. 7. Base scenario: one-year SoC, temperature and Qloss profiles for an NMC battery
determined using NMC-AM.

loss by 8% in the Netherlands and by 9% in Spain, suggesting that
policymakers should incentivise the integration of VIPV in EVs. LFP-AM
suggests that VIPV can reduce one-year calendar ageing capacity loss
by 4% in the Netherlands and by 10% in Spain. This difference between
the two countries is due to the increased solar irradiance in Spain,
which increases VIPV’s charging capacity, further decreasing the need
for grid charging. Consequently, the average SoC remains at mid-levels
for longer in the EV in Spain compared to the Netherlands.

Impact of VIPV on cycling ageing
Results show that VIPV reduces the average cycle depth by 22%

in the Netherlands and 28% in Spain. Fig. 8a illustrates the cycle
depths in the base scenario and Fig. 8b in the VIPVNL scenario. A
decrease in cycle depth is beneficial for battery cycling life [5,7,34,35].
Moreover, VIPV decreased the battery’s annual throughput by 26 kWh,
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Fig. 8. Two graphs illustrating the difference in the number of cycles per cycle depth
according to Matlab’s rainflow cycling counting algorithm for the base scenario (top
graph) and the VIPVNL scenario (bottom graph).

which is beneficial for battery cycle life. In contrast, results from both
ageing models suggest an increase in cycling ageing in the VIPVNL
scenario, which is due to the frequent transitions between charging
and discharging, causing the power profile to cross the zero-watt line
more often. This frequent crossing leads to an increased count of partial
cycles. Despite these partial cycles being shallow and theoretically less
harmful to battery ageing, the ageing models misinterpret the high
frequency of these cycles as an indicator of increased cycling stress. This
misinterpretation could lead to the prediction of accelerated ageing.
However, the actual impact of these shallower, more frequent cycles is
likely less detrimental than deeper, more intensive cycles. The reduced
depth of the battery cycles should, in theory, contribute positively to
battery longevity by minimising both the chemical and mechanical
stresses associated with deeper discharge cycles.

Impact of V2G on calendar ageing
NMC-AM suggests that in the modelled scenario, V2G aFRR can

increase one-year calendar ageing capacity loss by up to 17% due to
a 22% increase in SoC. NMC-AM suggests that if the EV allows V2G
services to discharge the battery to a lower battery capacity retention
limit during V2G, SoC can be reduced, which reduces calendar ageing.
In case the capacity retention limit during V2G is 20% SoC, NMC-
AM suggests that calendar ageing can have a relative reduction of 5%
compared to a 50% SoC retention limit. By implementing a controlled
V2G strategy that lowers the average SoC, V2G can reduce calendar
ageing.

LFP-AM suggests that V2G aFRR can increase one-year calendar
ageing capacity loss by up to 16% due to a 22% increase in SoC. As for
NMC-AM, increased average SoC due to V2G increased calendar ageing.
Thus, V2G could lower calendar ageing by regulating the battery’s
SoC. In case the capacity retention limit during V2G is 20% SoC, LFP-
AM suggests that calendar ageing can have a relative reduction of 5%
compared to a 50% SoC retention limit due to deeper discharge cycles
causing a decrease in SoC.

Impact of V2G on cycling ageing
NMC-AM suggests that V2G day-ahead energy trading with a 20%

SoC retention limit during V2G can increase one-year cycling ageing
by up to 214% compared to the base scenario, which would shorten
battery life by up to 12.5 years. This large increase in cycling ageing is
due to a 126% increase in throughput.

LFP-AM suggests that V2G day-ahead energy trading with a 20%
SoC retention limit during V2G can increase one-year cycling ageing
capacity loss by 45%, which could shorten battery life by 3.9 years.
The increase in cycling ageing is due to a 126% increase in throughput,
which causes, among other things, further growth of the SEI layer
and lithium plating. It seems that V2G caused battery life to shorten
significantly less in LFP-AM compared to NMC-AM. Although this
phenomenon is often observed in V2G degradation studies [36–38],
the comparison is hard to make in this study because the LFP-AM and
NMC-AM are modelled with different cell capacities.
9 
Fig. 9. Comparison between three scenarios showing the differences in degradation
speed. 𝑉 𝐼 𝑃 𝑉𝑁 𝐿 shows the least degradation followed by the Base case. The V2G case
with Day-ahead optimisation shows the worst degradation.

4. Conclusion

EVs with VIPV and V2G technology can support in mitigating power
grid challenges arising from the energy transition. While VIPV and V2G
can provide widespread benefits, their impact on EV battery life is
a crucial factor in their economic feasibility. Current studies on the
impact of VIPV and V2G on battery life often use simplistic battery data
and do not use validated battery ageing models. This paper explores
the impact of VIPV and V2G on the lifetime of NMC and LFP batteries,
using detailed battery power profiles and validated semi-empirical
battery ageing models. Key contributions of this study are the holistic
analysis of VIPV’s impact on battery life with comprehensive stress
factors, the use of advanced simulation tools for creating detailed EV
battery power profiles, a comparative analysis of battery ageing across
two chemistries and two geographical locations, and insights into the
synergies between VIPV and V2G technologies.

The findings reveal that VIPV decreases the need for grid charging,
leading to a lower average SoC, and reducing calendar ageing capacity
loss. Specifically, VIPV can reduce NMC calendar ageing capacity loss
by 9% in the Netherlands and 8% in Spain, and VIPV can reduce
LFP calendar ageing capacity loss by 6% in the Netherlands and by
9% in Spain. In contrast, the simulation results indicate that V2G can
increase battery cycling ageing, particularly when deployed for DA
energy trading and aFRR. In this work, cycling ageing increased more
significantly during DA due to higher V2G demands, leading to an
accelerated capacity loss compared to the simulated aFRR applications.
Additionally, calendar ageing in V2G scenarios was found to be heavily
influenced by the increased SoC levels necessary for providing reliable
grid support, which illustrates the trade-off between grid benefits and
battery longevity.

These insights are useful for policymakers and EV manufacturers to
incentivise VIPV integration and account for accelerated battery ageing
caused by V2G applications. Despite VIPV reducing average cycle depth
and annual throughput, the ageing models estimated increased cycling
ageing capacity loss. Ongoing research should focus on refining (semi-
)empirical ageing models by clarifying battery cycle definitions and
battery ageing simulation methodologies. To more accurately estimate
capacity loss due to cycling ageing of EV batteries that experience
highly irregular power profiles, it is recommended to develop age-
ing models based on highly irregular power profiles, apply machine
learning-based ageing models, or conduct extensive empirical cycling
ageing tests.
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Appendix

NMC-AM

To develop NMC-AM, researchers from RWTH Aachen used accel-
erated ageing tests to design an ageing model that addresses capacity
decrease and resistance increase due to calendar and cycling ageing [5].
The ageing tests were performed using 60 Sanyo UR18650E round
Panasonic NMC cells (1:1:1), which have a nominal capacity of 2.15 Ah,
a maximum C-rate of 3C and a specific energy of 162 Wh/kg. The Sanyo
UR18650E cell is a high energy and high power battery cell ideal for
e-bikes, smaller electrical appliances, and robotics.

𝑄calendar
I = 1 − 𝛼Q

𝐼 ⋅ 𝑡0.75 (A.1)

𝑅calendar
I = 1 + 𝛼R

I ⋅ 𝑡0.75 (A.2)

with

𝛼Q
I = (7.543 ⋅ 𝑉 − 23.75) ⋅ 106 ⋅ exp

(

−6, 976
𝑇

)

(A.3)

𝛼R
I = (5.270 ⋅ 𝑉 − 16.32) ⋅ 105 ⋅ exp

(

−5, 986
𝑇

)

(A.4)

where 𝑄calendar
I is the battery’s normalised storage capacity, 𝑅calendar

I is
the battery’s normalised resistance, t is time in days, T is the absolute
temperature of the battery in Kelvin, and V is the voltage of the
battery cell. The t0.75 term indicates that calendar-led ageing follows an
exponential decay over time, which is in line with the slowing growth
of the SEI layer [4]. Thus, considered calendar ageing stress factors are
time, temperature, and voltage.

𝑄cycling
I = 1 − 𝛽Q

I ⋅
√

𝐴ℎ (A.5)

𝑅cycling
I = 1 + 𝛽R

I ⋅ 𝐴ℎ (A.6)

with
𝛽Q

I = 7.348 ⋅ 10−3 ⋅ (∞𝑉 − 3.667)2+
7.600 ⋅ 10−4 + 4.081 ⋅ 10−3 ⋅ 𝛥𝐷 𝑜𝐷

(A.7)

𝛽R
I = 2.153 ⋅ 10−4 ⋅ (∞𝑉 − 3.725)2−
1.521 ⋅ 10−5 + 2.798 ⋅ 10−4 ⋅ 𝛥𝐷 𝑜𝐷 (A.8)

where ∞𝑉 describes the dependency on the root mean square voltage
of the cycle and 𝛥𝐷 𝑜𝐷 describes the cycle depth. The

√

𝐴ℎ term of
Eq. (A.5) indicates that cycling ageing capacity loss decreases with
throughput or number of cycles. The

√

𝐴ℎ term of Eq. (A.6) indicates
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Fig. A.10. Measured ageing data (circles) and ageing simulation results (lines)
by Schmalstieg et al. [5]. The dashed lines show the calendar degradation part of
the cumulative degradation.

that cycling ageing resistance increases linearly with the number of
cycles. Thus, considered cycling ageing stress factors are voltage, DoD,
and throughput. Eq. (A.7) and (A.7) show that the capacity loss follows
an exponential decay over time, which is considered through linearisa-
tion of the ageing equations over time. Note that only the capacity loss
ageing equations are used in this work.

Schmalstieg et al. [5] assumed that there is little to no temperature
dependency on cycling ageing, which the researchers validated using
verification tests with irregular power profiles.

The validation of NMC-AM involved simulating the validation tests
conducted by the authors and comparing the modelled results with
their measurements. The ageing modelling results of the reproduced
power profiles were compared with the measured and modelled ageing
results by Schmalstieg et al. [5] to determine the accuracy of the
implementation of NMC-AM. The modelled ageing results imitated the
measured ageing results, showing a maximum deviation of 0.2% in
ageing after six months (see Fig. A.10).

LFP-AM

To develop LFP-AM, researchers performed accelerated ageing tests
over a period of 234 days to analyse the capacity decrease due to
calendar and cycling ageing [30]. The ageing tests were performed
on commercial cylindrical 26650-format Sony US26650FTC1 LFP cells,
which have a nominal capacity of 3.0 Ah, a nominal voltage of 3.2 V,
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Fig. A.11. Capacity loss for the calendar ageing experiments by Schimpe et al. [30].
The squares represent experimental data and the curves represent simulations by the
authors.

and are designed for stationary applications.
𝑥a(𝑆 𝑜𝐶) = 𝑥a(𝑆 𝑜𝐶 = 0%)+

𝑆 𝑜𝐶 ⋅ [𝑥a(𝑆 𝑜𝐶 = 100%) − 𝑥a(𝑆 𝑜𝐶 = 0%)] (A.9)

where the degree of lithiation at 0% SoC and 100% SoC is derived by
fitting the half-cell open circuit potentials of both electrodes (Anode
Li-C and cathode LiFePO4) to full-cell open circuit potential data.

Eq. (A.10) shows that the anode stoichiometry is used to determine
the open circuit potential of the anode.
𝑈a(𝑥a) = 0.6379 + 0.5416 ⋅ exp(−305.5309 ⋅ 𝑥a)+

0.044 ⋅ 𝑡𝑎𝑛ℎ

(

−
𝑥a − 0.1958

0.1088

)

−

0.1978 ⋅ 𝑡𝑎𝑛ℎ

(

𝑥a − 1.0571
0.0854

)

− 0.6875⋅

𝑡𝑎𝑛ℎ

(

𝑥a + 0.0117
0.0529

)

− 0.0175 ⋅ 𝑡𝑎𝑛ℎ
(

𝑥a − 0.5692
0.0875

)

(A.10)

where 𝑈a is the anode open circuit potential, and 𝑥a is the degree of
lithiation, taken from Safari and Delacourt [31].

In this ageing model, a distinction is made between cycling ageing
effects that occur at low and high temperatures. The high-temperature
cycling ageing mechanism is assumed to occur both during charging
and discharging and thus independently of the current direction. In
contrast, the low-temperature induced cycling ageing mechanism is
assumed to occur only during charging. The researchers therefore
distinguish charge throughput and total throughput defined as the sum
of charge and discharge throughput. The reference parameters of the
ageing equations that define the capacity decrease due to cycling ageing
(Eq. (17)–(20) [30]), are calculated using Eq. (A.11)–(A.13).

𝑘cyc, high T = 𝑘cyc, high T, ref⋅

exp
[

−𝐸a, cyc, high T
𝑅g

(

1
𝑇

− 1
𝑇ref

)]

(A.11)

𝑘cyc, low T = 𝑘cyc, low T, ref⋅

exp
[

−𝐸a, cyc, low T
(

1 − 1
)]

(A.12)

𝑅g 𝑇 𝑇ref

11 
Fig. A.12. Modelled capacity loss for battery temperatures at 10 ◦C, 25 ◦C, and 45 ◦C
and a constant 100% SoC.

𝑘cyc, low T, SoC ≥ 82% = 𝑘cyc, low T, SoC ≥ 82%, ref⋅

exp
[

−𝐸a, cyc, low T, SoC ≥ 82%

𝑅g

(

1
𝑇

− 1
𝑇ref

)]

⋅

exp
[

𝛽cyc, low T, SoC ≥ 82% ⋅
𝐼charge − 𝐼charge, ref

𝐶0

]

⋅

(

𝑠𝑔 𝑛(𝑆 𝑜𝐶 − 𝑆 𝑜𝐶ref) + 1
2

)

(A.13)

where 𝑘ref are reference parameters set at 𝑇ref = 298.15 K, with values
𝑘cyc, high T, ref = 1.456 ⋅ 10−4 ⋅ Ah−0.5, 𝑘cyc, low T, ref = 4.009 ⋅ 10−4 ⋅
Ah−0.5, and 𝑘cyc, low T, SoC ≥ 82%, ref = 2.031 ⋅ 10−6 ⋅ Ah−1. The tem-
perature dependence is implemented through the Arrhenius equation
where 𝐸a, cyc, high T = 32,699 J/mol, 𝐸a, cyc, low T = 55,546 J/mol, and
𝐸a, cyc, low T, SoC ≥ 82% = 2.3⋅ 105 J/mol. Furthermore, 𝐼charge, ref = 3 A,
𝛽cyc, low T, SoC ≥ 82% = 7.8 h, and SoCref = 82%. Due to its sign function
(sgn), Eq. (A.12) is only included when the SoC exceeds 82%.

To validate the implementation of the ageing model, the capacity
loss measured during the ageing experiments performed to develop
the ageing model, is compared with the capacity loss modelled for
the base scenario, under identical temperature and SoC conditions.
Fig. A.11 shows the measured capacity loss during calendar ageing
tests by Schimpe et al. [30]. The authors performed these calendar
ageing tests to determine the influence of temperatures ranging from
10 ◦C to 55 ◦C, at a constant 100% SoC, corresponding to 3.42 V.
Fig. A.12 shows the modelled capacity loss for calendar ageing for two
battery temperatures and at a constant SoC level. The figure shows
that The 200-day measured capacity loss at battery temperatures of
10 ◦C ◦C, 25 ◦C, and 45 ◦C were 3.6%, 4.5%, and 7.9%, respectively.
Fig. A.12 shows that the 200-day modelled capacity loss at battery
temperatures of 10 ◦C ◦C, 25 ◦C, and 45 ◦C were 3.1%, 4.8%, and
8.1%, respectively. Comparing the capacity loss curves from Figs. A.11
and A.12 at the same battery temperatures, the modelled results closely
follow the measured calendar ageing capacity loss results.

Data availability

Data will be made available on request.
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