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Abstract. Wind farm control often relies on computationally inexpensive surrogate models to predict the dy-
namics inside a farm. However, the reliability of these models over the spectrum of wind farm operation remains
questionable due to the many uncertainties in the atmospheric conditions and tough-to-model dynamics at a
range of spatial and temporal scales relevant for control. A closed-loop control framework is proposed in which
a simplified model is calibrated and used for optimization in real time. This paper presents a joint state-parameter
estimation solution with an ensemble Kalman filter at its core, which calibrates the surrogate model to the ac-
tual atmospheric conditions. The estimator is tested in high-fidelity simulations of a nine-turbine wind farm.
Exclusively using measurements of each turbine’s generated power, the adaptability to modeling errors and mis-
matches in atmospheric conditions is shown. Convergence is reached within 400 s of operation, after which the
estimation error in flow fields is negligible. At a low computational cost of 1.2 s on an 8-core CPU, this algo-
rithm shows comparable accuracy to the state of the art from the literature while being approximately 2 orders
of magnitude faster.

1 Introduction

Over the past decades, global awakening on climate change
and the environmental, political and financial issues concern-
ing fossil fuels have been catalysts for the growth of the re-
newable energy industry. As the primary energy demand in
Europe is projected to decrease by 200 million tonnes of oil
equivalent from 2016 to 2040, there is an additional shift in
the energy source used to meet this demand (International
Energy Agency, 2017). Shortly after 2030, onshore and off-
shore wind energy are projected to become the main source
of electricity for the European Union. By then, about 80 % of
all new capacity added is projected to come from renewable
energy sources, enabled by a favorable political climate.

While these developments have clear benefits, an impor-
tant problem with wind energy is that the rotational speed
of most commercial turbines is decoupled from the electric-
ity grid frequency via each turbine’s power electronics (Aho

et al., 2012). As the current grid-connected fossil fuel plants
are replaced by non-synchronous renewable energy plants,
the inertia of the electricity grid will decrease, making it
less stable and more prone to machine damage and black-
outs (Ela et al., 2014). Therefore, there is a strong need for
wind farms and other renewable sources to provide ancillary
grid services. Wind farm control aimed at increasing the grid
stability is more commonly defined as active power control
(APC). In APC, the power production of a wind farm is regu-
lated to meet the power demand of the electricity grid, which
may change from second to second.

Existing literature on wind farm control has mainly fo-
cused on maximizing the power capture (e.g., Rotea, 2014;
Gebraad and van Wingerden, 2015; Gebraad et al., 2016;
Munters and Meyers, 2017). However, literature on APC
has been receiving an increasing amount of atten-
tion (e.g., Fleming et al., 2016; Van Wingerden et al., 2017;
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Boersma et al., 2017). The main challenges in wind farm
control are the large time delays caused by the formation
of wakes, the many uncertainties in the atmospheric con-
ditions, and the questionable reliability of surrogate mod-
els over the wide spectrum of wind farm operation. (See
Boersma et al. (2017) and Knudsen et al. (2015) for state-of-
the-art overviews of control and control-oriented modeling
for wind farms.) While there has been success with model-
free methods for power maximization (e.g., Rotea, 2014),
it is unclear to what degree such methods can be used for
power forecasting. Furthermore, model-free methods typi-
cally have long settling times, making them intractable for
APC. On the other hand, for model-based approaches, the
aforementioned challenges make it impossible for any model
to reliably provide power predictions in an open-loop setting.
Hence, a model-based approach in which a surrogate wind
farm model is actively adjusted to the present conditions is
a necessity for reliable and computationally tractable APC
algorithms. This closed-loop wind farm control framework,
consisting of three components, is shown in Fig. 1.

The first component of the closed-loop framework is a
computationally inexpensive surrogate model that accurately
predicts the power production of the wind farm ahead of
time, on a timescale relevant for control. The most commonly
used surrogate models in wind farm control are steady-state
models, which are heuristic and neglect all temporal dynam-
ics (Boersma et al., 2017). While some of these models have
shown success in wind tunnel tests (e.g., Schreiber et al.,
2017) and field tests (e.g., Fleming et al., 2017a, b) for power
maximization, the actuation frequency is limited to the min-
utes timescale, since the flow and turbine dynamics are pre-
dicted on the minutes timescale. Furthermore, time-ahead
predictions with these models are limited to the steady state,
limiting their use for APC. There is a smaller yet signifi-
cant number of dynamic surrogate wind farm models (e.g.,
Munters and Meyers, 2017; Boersma et al., 2018; Shapiro
et al., 2017a) that attempt to include the dominant temporal
dynamics inside the farm. These models can be used for con-
trol on the seconds timescale, and furthermore allow time-
ahead predictions, some even under changing atmospheric
conditions. Specifically, the dynamic surrogate model em-
ployed in Shapiro et al. (2017a) is computationally feasible,
but only models the flow in one dimension and furthermore
allows no turbine yaw or changes in the wind direction, lim-
iting its applicability. Furthermore, the dynamical model in
Munters and Meyers (2017) has shown success for closed-
loop control applications, but it is too computationally ex-
pensive for any kind of real-time control, and the authors
present their results solely as a benchmark case. In the work
presented here, the model described in Boersma et al. (2018)
is used, which is a two-dimensional (2-D) large eddy simula-
tion (LES) code with wind farm control as its main objective.
This dynamic surrogate model, named “WindFarmSimula-
tor” (WFSim), includes yaw and axial induction actuation,
turbine-induced turbulence effects, and spatially and tempo-

rally varying inflow profiles, with a moderate computational
cost.

The second component of the closed-loop framework is
an algorithm that adjusts the surrogate model’s parameters to
improve its accuracy online using flow and/or turbine mea-
surements (e.g., supervisory control and data acquisition,
SCADA, data; lidar measurements; meteorological masts).
In terms of control, this turns into a joint estimation prob-
lem, in which both the model state and a subset of model
parameters are estimated online. Currently, the optimization
algorithms presented in Munters and Meyers (2017) and Vali
et al. (2017) have assumed full state knowledge, conveniently
ignoring the step of model adaptation. Literature on state re-
construction and model calibration for dynamical wind farm
models is sparse, limited to linear low-order models and/or
common estimation algorithms. Gebraad et al. (2015) de-
signed a traditional Kalman filter (KF) for their low-fidelity
model, showing marginal improvements compared to opti-
mization using a static model. Shapiro et al. (2017a) present
a one-dimensional dynamic wake model used with receding
horizon control for secondary frequency regulation, using an
estimation algorithm following Doekemeijer et al. (2016).
Furthermore, Iungo et al. (2015) used dynamic mode de-
composition to obtain a reduced-order model of the wind
farm dynamics, which was then combined with a traditional
KF for state estimation. To the best of the authors’ knowl-
edge, none of these methods have explored more sophisti-
cated models such as WFSim, and often only use simple state
estimation algorithms that are lacking in terms of accuracy
and computational tractability.

The third component of the closed-loop framework is an
optimization algorithm, which typically is a gradient-based
or nonlinear optimization algorithm (e.g., Gebraad et al.,
2016) for steady-state models, and a predictive optimization
method for dynamical models (e.g., Goit and Meyers, 2015;
Vali et al., 2017; Siniscalchi-Minna et al., 2018). A more
in-depth discussion on optimization algorithms is out of the
scope of this article.

The focus of this work is on a model adaptation algo-
rithm for WFSim, which balances estimation accuracy and
computational complexity. In previous work (Doekemeijer
et al., 2016, 2017), state estimation using flow measurements
downstream of each turbine has shown success using an en-
semble KF (EnKF), with a computational cost several orders
of magnitude lower than traditional KF methods. The main
contributions of this article specifically are

– the additional adaptation to a mismatch in atmospheric
conditions (specifically the ambient wind speed and tur-
bulence intensity),

– the option to use turbine’s power signals in addition to,
or instead of, flow measurements,

– a further reduction in the computational complexity,
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Figure 1. Closed-loop wind farm control framework. Measurements z (e.g., SCADA or lidar data) are fed into the controller. First, the state
of the surrogate model x is estimated to represent the actual atmospheric and turbine conditions inside the wind farm. Secondly, using the
calibrated model, an optimization algorithm determines the control policy (e.g., yaw angles) for all turbines q. This control policy may be a
set of constant operating points, but can also be time-varying, depending on whether the surrogate model is time-varying and the employed
optimization algorithm. The photograph of the wind farm is from Christian Steiness.

– and a comparison of the EnKF with the state of the art
in the literature.

The structure of this article is as follows. In Sect. 2, the sur-
rogate model will be introduced. In Sect. 3, a time-efficient,
online model calibration algorithm for dynamical wind farm
models is detailed. This calibration algorithm is validated
and compared with standard algorithms in the literature in
high-fidelity simulations in Sect. 4. The article is concluded
in Sect. 5.

2 The surrogate model

The framework of Fig. 1 requires a surrogate model of the
wind farm. In this work, that is the WindFarmSimulator
(WFSim) model presented by Boersma et al. (2018). This
model is particularly suited as it includes both yaw and axial
induction actuation and yields a relatively high accuracy with
a relatively low computational cost1. The aim of this section
is to give a summary of the surrogate model, rather than a
full derivation and motivation of the assumptions made. The
reader is referred to Boersma et al. (2018) for more informa-
tion.

Fundamentally, WFSim is based on the 2-D unsteady in-
compressible Navier–Stokes (NS) equations. The surrogate
model can be completely described by the flow and rotor dy-
namics in a horizontal plane at hub height. WFSim deviates
from a traditional 2-D NS model in two ways. Firstly, the
diffusion term is neglected, as it plays a negligible role due
to the low viscosity of air. Secondly, the dissipation term in
the lateral direction in the continuity equation is multiplied
by a factor of 2 to approximate flow dissipating in the ver-

1Note that it is still uncertain what accuracy is necessary and
what computational cost can be permitted for real-time closed-loop
wind farm control.

tical flow dimension. Other vertical flow contributions such
as vertical meandering and shear are neglected. The subgrid-
scale model is formulated using an eddy-viscosity assump-
tion in combination with Prandtl’s mixing length model. The
mixing length is parameterized as a function of the spatial
location, increasing linearly with distance from the down-
stream rotor, starting at zero at distance d ′ downstream and
peaking at distance d , where `s defines the slope of the mix-
ing length. Basically, the larger `s, the quicker wakes recover
to their free-stream properties. Furthermore, the turbines are
modeled using the non-rotating (static) actuator disk model,
projected onto the 2-D plane at hub height. The turbine is
assumed to be a rigid object applying a 2-D force vector on
the flow. Both the turbine forcing term and the turbine power
output are scaled by tuning factors cf and cp, respectively, to
account for unmodeled effects. Together with the three pa-
rameters from the turbulence model, this leads to a total of
five tuning parameters.

These NS equations are solved over a spatially and tem-
porally discretized domain (Boersma et al., 2018). Dirichlet
boundary conditions for the longitudinal and lateral velocity
are applied on one side of the grid for inflow, while Neu-
mann boundary conditions are applied on the remaining sides
for the outflow. The surrogate model reduces to a nonlinear
discrete-time deterministic state-space model as

xk+1 = f (xk,qk),
zk = h(xk,qk),

where xk ∈ RN is the system state at time k, which is a
column vector containing the collocated longitudinal flow
velocity at each cell in the domain uk ∈ RNu , the lateral
flow velocity at each cell in the domain vk ∈ RNv , and the
pressure term at each cell in the domain pk ∈ RNp , with
N =Nu+Nv +Np and Nu ≈Nv ≈Np ≈ 1

3N . The state xk
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is formulated as

xT
k =

[
uT
k vT

k pT
k

]
.

Empirically, good results have been achieved with cell di-
mensions of about 30–50 m in width and length, resulting in
N with a typical value on the order of 103–104 for six- to
nine-turbine wind farms (e.g., Vali et al., 2017; Doekemei-
jer et al., 2016, 2017; Boersma et al., 2018). Such a num-
ber of states may seem very small for LES simulations, yet
is very high for control purposes. Furthermore, qk ∈ RO in-
cludes the system inputs, i.e., the turbine control settings:
the turbine yaw angles γi and the thrust coefficients C′Ti for
i = 1, . . .,NT , with NT being the number of turbines. The
system outputs zk ∈ RM are defined by sensors. It can in-
clude, among others, flow field measurements (zk ⊂ xk) and
power measurements. We define the integer Mu,v ∈ Z with
0≤Mu,v ≤M as the total number of flow field measure-
ments. The nonlinear functions f and h are the state forward
propagation and output equation, respectively.

The computational cost may vary from 0.02 s for two-
turbine wind farms with N = 3× 103 states (e.g., in Doeke-
meijer et al., 2017) to 1.2 s for N = 1× 105 states for
medium-sized wind farms (e.g., in Boersma et al., 2018),
for a single time-step forward simulation on a single desk-
top CPU core. The computational complexity of the model
is what motivates the use of time-efficient estimation al-
gorithms in this work, and time-efficient predictive control
methods for optimization in related work (Vali et al., 2017).
Here, the limits of computational cost are explored to max-
imize model accuracy while still allowing real-time control.
Note that research on the computational feasibility of opti-
mization algorithms using WFSim is ongoing.

3 Online model calibration

Due to the limited accuracy of surrogate wind farm mod-
els, and due to the many uncertainties in the environment,
surrogate models often yield predictions with significant un-
certainty in the wind flow and power capture inside a wind
farm. Since control algorithms largely rely on such predic-
tions, this may suppress gains or even lead to losses inside
a wind farm. Unfortunately, higher-fidelity models are com-
putationally prohibitively expensive for control applications.
Hence, lower-fidelity surrogate models are calibrated online
using readily available measurement equipment.

In this section, first the challenges for real-time model
calibration for the surrogate “WFSim” model described in
Sect. 2 will be highlighted in Sect. 3.1. Secondly, a mathe-
matical framework for recursive model state estimation will
be presented in Sect. 3.2. Thirdly, a number of nonlinear
state estimation algorithms are presented in Sects. 3.3 to 3.5,
building up from the industry standard to the state of the art in
the literature. Finally, a robust and computationally efficient
model calibration solution is synthesized in Sect. 3.6, which

allows for the simultaneous estimation of the boundary con-
ditions, model parameters, and the model states of WFSim
in real time using readily available measurements from the
wind farm.

Note that we will henceforth refer to the estimation of x as
state(-only) estimation. The estimation of both model states
and model parameters such as `s is referred to as (joint) state-
parameter estimation.

3.1 Challenges

Online model calibration for WFSim is challenging for a
number of reasons. First of all, the model is nonlinear, and
thus the common linear estimation algorithms cannot be used
without linearization, which limits accuracy (Boersma et al.,
2018). Secondly, an estimation solution relying on WFSim
is sensitive to instability when the model state sufficiently
deviates from the continuity equation. Finally, the surrogate
model typically has on the order of N ∼ 103–104 states,
which is extraordinarily high for control applications. How-
ever, real-time estimation is a necessity for real-time model-
based control, and thus one needs to find a trade-off between
accuracy while guaranteeing state updates at a low computa-
tional cost.

3.2 General formulation

This section summarizes the basics of the KF, which is the
literature standard for state estimation in control. The goal
of a KF is to recursively estimate the unmeasured states of
a dynamical system through noisy measurements. Assumed
here is a system (the wind farm) represented mathematically
by a discrete-time stochastic state-space model with additive
noise,

xk+1 = f (xk,qk)+wk, (1)
zk = h(xk,qk)+ vk, (2)

where k is the time index, x ∈ RN is the unobserved sys-
tem state, z ∈ RM are the measured outputs of the system,
q ∈ RO and w ∈ RN are the controllable inputs and pro-
cess noise, respectively, that drive the system dynamics, and
v ∈ RM is measurement noise. Furthermore, we assume w
and v to be zero-mean white Gaussian noise with covariance
matrices

E

[[
vk
wk

][
vT
` wT

`

]]
=

[
Rk ST

k

Sk Qk

]
1k−`,

where 1k−` =

{
1 if k = `,

0 otherwise,
(3)

with E the expectation operator. Estimates of the state xk ,
denoted by x̂k|k , are computed based on measurements from
the real system. Here, x̂k|` means an estimate of the state
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vector x at time k, using all past measurements and inputs
Z` as

x̂k|` = E [xk|Z`] ,
with Z` = z0,z1,z2. . .z`, q0,q1,q2. . .q`. (4)

State estimates are based on the internal model dynamics and
the measurements, weighted according to their probability
distributions. We aim to find an optimal state estimate, in
which optimality is defined as unbiasedness,E[xk−x̂k] = 0,
and when the variance of any linear combination of state es-
timation errors (e.g., the trace of E[(xk − x̂k)(xk − x̂k)T

]) is
minimized.

In reality, the assumed model described by f and h always
has mismatches with the true system, and the assumptions in
Eq. (3) often do not hold. Further, the matrices Qk , Rk , and
Sk are usually not known and are rather considered to be tun-
ing parameters, used to shift the confidence levels between
the internal model and the measured values. For R�Q, es-
timations will heavily rely on the measurements, while for
Q� R, estimations will mostly rely on the internal model.
Kalman filtering remains one of the most common methods
of recursive state estimation. KF algorithms typically consist
of two steps.

1. A state and output forecast, including their uncertainties
(covariances):

x̂k|k−1 = E
[
f (xk−1,qk−1)+wk−1|Zk−1

]
, (5)

ẑk|k−1 = E
[
h(xk,qk)+ vk|Zk−1

]
, (6)

Pxk|k−1 = Cov(xk,xk|Zk−1)

= E[(xk − x̂k|k−1)(xk − x̂k|k−1)T
], (7)

Pzk|k−1 = Cov(zk,zk|Zk−1)

= E[(zk − ẑk|k−1)(zk − ẑk|k−1)T
], (8)

Pxzk|k−1 = Cov(xk,zk|Zk−1)

= E[(xk − x̂k|k−1)(zk − ẑk|k−1)T
]. (9)

In Eqs. (5) and (6), x̂k|` and ẑk|` are the forecasted sys-
tem state vector and measurement vector, respectively.

2. An analysis update of the state vector, where the mea-
surements are fused with the internal model:

Lk = Pxzk|k−1 ·
(

Pzk|k−1

)−1
(10)

x̂k|k = x̂k|k−1+Lk
(
zk − ẑk|k−1

)
, (11)

Pxk|k = Cov(xk,xk|Zk)= Pxk|k−1−LkPzk|k−1LT
k . (12)

Here,
(

Pzk|k−1

)−1
in Eq. (10) is the pseudo-inverse of

Pzk|k−1, since this matrix is not necessarily invertible.

Traditionally, state estimation for linear dynamic models
is done using the linear KF (Kalman, 1960). However, this is
not a viable option here, as the surrogate model is nonlinear.
Rather, a number of nonlinear KF variants are looked upon.

3.3 Extended Kalman filter (ExKF)

Linearization of the surrogate model is the most popular
and straight-forward solution to the issue of model non-
linearity, as done in the extended KF (ExKF). The ExKF
has shown success in academia and industry (Wan and Van
Der Merwe, 2000) and is perhaps the most popular non-
linear KF. However, it has a number of disadvantages. As
described in Sect. 3.1, model linearization is troublesome.
Furthermore, for surrogate models with many states such
as WFSim, the ExKF has an additional challenge: compu-
tational complexity. The operation in Eq. (10) includes a ma-
trix inversion with a computational complexity of O(M3),
and the ExKF furthermore includes two matrix multiplica-
tions each with a complexity of O(N3). As there are sig-
nificantly fewer measurements than states (M �N ) for the
problem at hand, these matrix multiplications dominate the
computational cost. The ExKF has a CPU time on the order
of 101 s for a two-turbine wind farm, which may be too large
for our purposes. To reduce computational cost in the ExKF,
the surrogate model and/or the covariance matrix P have to
be simplified. This is not further explored here. Instead, two
KF approaches will be explored that directly use the nonlin-
ear system for forecasting and analysis updates. Doing so, we
circumvent the problems with linearization, and additionally
better maintain the true covariance of the system state.

3.4 The unscented Kalman filter (UKF)

The unscented Kalman filter (UKF) relies on the so-called
“unscented transformation” to estimate the means and co-
variance matrices described by Eqs. (5) to (9). The con-
ditional state probability distribution of xk knowing Zk is
again assumed to be Gaussian. In the UKF, firstly a number
of sigma points (also referred to as “particles”) are generated
such that their mean is equal to x̂k|k and their covariance is
equal to Cov(xk,xk). Secondly, each particle is propagated
through the nonlinear system dynamics (f , h). Thirdly, the
mean and covariance of the forecasted state probability dis-
tribution is again approximated by a weighted mean of these
forecasted sigma points (Wan and Van Der Merwe, 2000).

Mathematically, we define the ith particle as ψ ik|` ∈ RN ,
which is a realization of the conditional probability distribu-
tion of xk given Z`. The UKF follows a very similar forecast
and analysis update approach as the traditional KF in Eqs. (5)
to (12), yet applied to a finite set of particles (Wan and Van
Der Merwe, 2000).

1. For the forecast step, a particle-based approach is taken.

i. A total of Y = 2N + 1 particles, with N equal to
the state dimension, are (re)sampled to capture the
mean and covariance of the conditional state prob-
ability distribution p

[
xk−1|Zk−1

]
by

www.wind-energ-sci.net/3/749/2018/ Wind Energ. Sci., 3, 749–765, 2018
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ψ ik−1|k−1 =

ψk−1|k−1
for i = 1,

ψk−1|k−1+
(√

(N + λ) ·Pxk−1|k−1

)
i

for i = 2, . . .,N + 1,

ψk−1|k−1−
(√

(N + λ) ·Pxk−1|k−1

)
i−N−1

for i =N + 2, . . .,Y,

(13)

where λ= α2 (N + κ)−N is a scaling param-
eter, α determines the spread of the particles
around the mean, and κ is a secondary scal-
ing parameter typically set to 0 (Wan and Van
Der Merwe, 2000). The vector ψk−1|k−1 is the
estimated state vector calculated as ψk−1|k−1 =∑Y
i=1

(
wimean ·ψ

i
k−|k−1

)
, where the weight of each

particle’s meanwimean and covariancewicov. is given
by

wimean =

{
λ(N + λ)−1 for i = 1,
1
2 (N + λ)−1 otherwise,

wicov. =

{
λ(N + λ)−1

+ (1−α2
+β) for i = 1,

1
2 (N + λ)−1 otherwise,

and β is used to incorporate prior knowledge on the
probability distribution. In this work, β = 2 is as-
sumed, which is stated to be optimal for Gaussian
distributions (Wan and Van Der Merwe, 2000).

ii. Each particle is propagated forward in time using
the expectation of the nonlinear model as

ψ ik|k−1 = f (ψ ik−1|k−1,qk−1) for i = 1, . . .,Y,

ζ ik|k−1 = h(ψ ik|k−1,qk) for i = 1, . . .,Y, (14)

where ζ ik|` is defined as the system output corre-
sponding to the particle ψ ik|`.

iii. The expected stateψ and expected output ζ are cal-
culated as

x̂k|k−1 = ψk|k−1 =

Y∑
i=1

(
wimean ·ψ

i
k|k−1

)
,

ẑk|k−1 = ζ k|k−1 =

Y∑
i=1

(
wimean · ζ

i
k|k−1

)
, (15)

and the covariance matrices are (re-)estimated from
the forecasted ensemble by

Pxk|k−1 =

Y∑
i=1

(
wicov.

(
ψ ik|k−1−ψk|k−1

)
(
ψ ik|k−1−ψk|k−1

)T)
+Qk−1, (16)

Pzk|k−1 =

Y∑
i=1

(
wicov.

(
ζ ik|k−1− ζ k|k−1

)
(
ζ ik|k−1− ζ k|k−1

)T)
+Rk, (17)

Pxzk|k−1 =

Y∑
i=1

(
wicov.

(
ψ ik|k−1−ψk|k−1

)
(
ζ ik|k−1− ζ k|k−1

)T)
+Sk. (18)

2. For the analysis step, one can apply the same equations
as in Eqs. (10) to (12).

The UKF has been shown to consistently outperform the
ExKF in terms of accuracy, since it uses the nonlinear model
for forecasting and covariance propagation. However, this
does come at an increased computational cost. Namely, Y =
2N+1 particles are required to capture the mean and covari-
ance of the conditional state probability distribution. This im-
plies that 2N + 1 function evaluations are required for each
UKF update. Even for a two-turbine wind farm in WFSim,
a computational cost of 1× 102 s per iteration (k→ k+ 1)
would not be surprising. While Eq. (14) can easily be paral-
lelized, computational complexity remains troublesome, es-
pecially for larger wind farms. The issue of computational
complexity is tackled by the ensemble KF.

3.5 The ensemble Kalman filter (EnKF)

The ensemble Kalman filter (EnKF; Evensen, 2003) is very
similar to the UKF in that it relies on a finite number of real-
izations (the “sigma points” or “particles” in the UKF) to ap-
proximate the mean and covariance of the conditional proba-
bility distribution of xk knowing Zk . However, whereas the
UKF relies on a systematic way of distributing the particles
such that the mean and covariance of the conditional proba-
bility distribution p [xk|Zk] are equal to that of the particles,
the EnKF relies on random realizations, without guarantees
that the mean and covariance are captured accurately. How-
ever, the EnKF has been shown to work well in a number
of applications, with typically far fewer particles than states,
i.e., Y �N (e.g., Houtekamer and Mitchell, 2005; Gillijns
et al., 2006). The forecast and update step are very similar to
that of the UKF.

1. In the UKF the particles are redistributed at every
time step, in contrast to the EnKF. Rather, the EnKF
propagates the particles forward without redistribution.
We define the ith particle as ψ ik|` ∈ RN , which is a
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realization of the conditional probability distribution
p [xk|Z`]. The forecast steps are

i. Each particle is propagated forward in time us-
ing the nonlinear system dynamics, and with the
realizations of noise terms w and v denoted by
ŵik−1 ∈ RN and v̂ik ∈ RM , generated using MAT-
LABs randn(. . . ) function.

ψ ik|k−1 = f (ψ ik−1|k−1,qk−1)+ ŵik−1

for i = 1, . . .,Y,

ζ ik|k−1 = h(ψ ik|k−1,qk)+ v̂
i
k

for i = 1, . . .,Y. (19)

ii. The expected state and output are identically
calculated as in the UKF using Eq. (15) with
wimean = (Y − 1)−1. The covariance matrices are
(re-)estimated from the forecasted ensemble by

Pzk|k−1 =
1

Y − 1

Y∑
i=1

((
ζ ik|k−1− ζ k|k−1

)
(
ζ ik|k−1− ζ k|k−1

)T)
, (20)

Pxzk|k−1 =
1

Y − 1

Y∑
i=1

((
ζ ik|k−1− ζ k|k−1

)
(
ψ ik|k−1−ψk|k−1

)T)
. (21)

2. For the analysis step, one applies Eq. (10) to determine
the Kalman gain Lk . Then, each particle is updated in-
dividually as

ψ ik|k = ψ
i
k|k−1+Lk

(
zk − ζ

i
k|k−1

)
for i = 1, . . .,Y. (22)

Note that, in contrast to the ExKF and the UKF, the state
covariance matrix Px (see Eqs. 7 and 12) need not be calcu-
lated explicitly in the EnKF. This, in combination with the
small number of particles Y �N , is what makes the EnKF
computationally superior to the UKF (and often also com-
putationally superior to the ExKF). However, this reduction
in computational complexity comes at a price. The disadvan-
tages of the EnKF are discussed in the next section.

Challenges in the EnKF for small number of particles

The caveat to representing the conditional state probability
distribution with fewer particles than states, Y �N , is the
formation of inbreeding and long-range spurious correlations
(Petrie, 2008). The former, inbreeding, is defined as a situ-
ation where the state error covariance matrix Px is consis-
tently underestimated, leading to state estimates that incor-
rectly rely more on the internal model. One straight-forward

method to address this is called “covariance inflation”, in
which Px (or rather, the ensemble from which Px is calcu-
lated) is “inflated” to correct for the underestimated state un-
certainty (Petrie, 2008). Mathematically, this is achieved by
applying

ψ ik|k−1 = ψk|k−1+ r
(
ψ ik|k−1−ψk|k−1

)
for i = 1, . . .,Y (23)

before the analysis step, with r ∈ R the inflation factor, typi-
cally with a value of 1.01–1.25.

The latter problem, long-range spurious correlations, can
be better visualized in Fig. 2.

In particle-based approaches, the covariance terms cannot
be captured exactly. This may lead to the formation of small
yet nonzero covariance terms between states and outputs
which, in reality, are uncorrelated. This can lead to the drift
of unobservable states, and eventually to instability of the
KF. Increasing the number of particles is the most straight-
forward solution to this problem, but comes at a huge compu-
tational cost. A better alternative is “covariance localization”,
where physical knowledge of the states and measurements is
used to steer the sample-based covariance matrices. Recall
that in the surrogate model of Sect. 2, the model states are the
velocity and pressure terms inside the wind farm at a physi-
cal location. Define that the ith state entry (xk)i belongs to a
physical location in the farm si . Then, looking at an arbitrary
state covariance term (i,j ),(

Pxk|k−1

)
i,j
= E

[(
(xk)i − (x̂k|k−1)i

)(
(xk)j − (x̂k|k−1)j

)T]
,

we define the physical distance between these two states as
1si,j = ||si − sj ||2. Now, we introduce a weighting factor
into our covariance matrices by multiplying physically dis-
tant states with a value close to 0, and multiplying physi-
cally nearby states with a value close to 1. A popular choice
for such a weighting function is Gaspari–Cohn’s fifth-order
discretization of a Gaussian distribution (Gaspari and Cohn,
1999), given by

φ(ci,j )=



−
1
4c

5
i,j +

1
2c

4
i,j +

5
8c

3
i,j −

5
3c

2
i,j + 1

if 0≤ ci,j ≤ 1,
1

12c
5
i,j −

1
2c

4
i,j +

5
8c

3
i,j +

5
3c

2
i,j

−5ci,j + 4− 2
3

1
ci,j

if 1< ci,j ≤ 2,
0

otherwise,

(24)

with ci,j =
||1si,j ||2

L
a normalized distance measure, with L

the cut-off distance. Applying Eq. (24) for the covariance
matrices Pzk|k−1 and Pxzk|k−1 we can define the localization
matrices
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Figure 2. Long-range spurious correlations arise in the case where a covariance matrix is described by a small number of particles. Using
physical knowledge of the system, these undesired correlations can be corrected. 8x is the localization matrix. Applying localization, the
covariance of physically nearby states are multiplied with a value close to 1, and the covariance of physically distant states are multiplied
with a value close to 0. In our example case, this results in the localized covariance matrix 8x ◦Px , where ◦ is the element-wise product.

8z =

 φ(cz1,1) · · · · · ·φ(cz1,M )
...

. . .

φ(czM,1) φ(czM,M )

 ,

8xz =

φ(cxz1,1) · · · · · ·φ(cxz1,M )
...

. . .

φ(cxzN,1) φ(cxzN,M )

 ,
where czi,j is the normalized distance between two measure-
ments i and j , and cxzi,j is the normalized distance between
state i and measurement j , respectively. Finally, localization
and inflation can be incorporated into Eqs. (20) and (21) by

Pzk|k−1 = 8z ◦
1

Y − 1

Y∑
i=1

((
ζ ik|k−1− ζ k|k−1

)
(
ζ ik|k−1− ζ k|k−1

)T)
, (25)

Pxzk|k−1 = r ·8
xz
◦

1
Y − 1

Y∑
i=1

((
ζ ik|k−1− ζ k|k−1

)
(
ψ ik|k−1−ψk|k−1

)T)
, (26)

where ◦ is the element-wise product (Hadamard) of the two
matrices. The improvement in terms of computational effi-
ciency and estimation performance is displayed in Fig. 3.

A significant increase in performance is shown, especially
for smaller numbers of particles. This is in agreement with
what was seen in previous work (Doekemeijer et al., 2017).
Furthermore, performance is more consistent. Additionally,
note that there is no increase in computational cost, as the
covariance matrices are made sparse, leading to a cost reduc-
tion in the calculation of Eq. (10), which makes up for the
extra operations of Eqs. (25) and (26). Also, note that the lo-
calization matrices are time-invariant and can be calculated
offline.

3.6 Synthesizing an online model calibration solution

Certain model parameters such as `s are closely related to
the turbulence intensity, which vary over time. Estimation
of such parameters is achieved by extending the state vec-
tor with (a subset of) the model parameters. In this work, `s
is concatenated to the state vector as random walk model,
with a certain standard deviation (covariance). Higher values
of `s lead to more wake recovery, making the calibration so-
lution adaptable to varying turbulence levels. This adds one
scalar entry to xk , which is a negligible addition in terms of
computational cost.

Furthermore, a proposal is made for the estimation of the
free-stream wind speed U∞. This is suggested to be done us-
ing the turbine’s power generation measurements, following
the ideas of Gebraad et al. (2016) and Shapiro et al. (2017b).
Using the wind vanes and employing a simple steady-state
wake model from the literature (Mittelmeier et al., 2017), the
turbines operating in free-stream flow can be distinguished
from the ones operating in waked flow. Next, define 0 ∈ Zℵ
as a vector specifying the upstream turbines, with ℵ the total
number of turbines operating in free stream. Then, the in-
stantaneous rotor-averaged flow speed at each turbine’s hub
can be estimated by inverting the turbine power expression
from WFSim (Boersma et al., 2018). One wind-farm-wide
free-stream wind speed U∞ is then calculated using actua-
tor disk theory. Smoothing results with a low-pass filter with
time-constant cu∞ on the average of U∞i

for each upstream
turbine i, we obtain

cu∞
∂U∞

∂t
=

1
ℵ

∑
i∈0

 3

√√√√ Pmeas.
turb,i

cp
2 ρAC

′

Ti
cos(γi)3 ·

(
1+

1
4
C′Ti

)−U∞, (27)

where it is assumed that U∞i
≈ Uri

(
1+ 1

4 ·C
′

Ti

)
when γi ≈

0, with Uri the wind speed at the rotor of turbine i. Research
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Figure 3. This figure shows the estimation performance and computational cost (parallelized, 8 cores) of the EnKF for a range of ensemble
sizes, with and without inflation and localization. Great improvement is seen for estimation accuracy, at no additional computational cost.
The simulation scenario is described in detail in Sect. 4.2, and the results presented here are rather meant as an indication.

is currently ongoing on how to best incorporate the effects of
turbine yaw (γ 6= 0) into the definition of C′T . Furthermore,
ρ is the air density, A is the rotor swept area, and Pmeas.

turb,i is
the measured instantaneous power capture of turbine i2.

Combining these elements yields an efficient, modular,
and accurate model calibration solution for WFSim. The
model states are estimated using SCADA and/or lidar data,
of which the former is readily available, and the latter be-
coming more popular. State estimation paired with parameter
estimation improves the accuracy of the surrogate model, po-
tentially leading to more accurate control. Additionally, the
free-stream wind speed is estimated using readily available
SCADA data. This control solution is implemented in MAT-
LAB, and leverages the numerically efficient pre-compiled
solvers and parallelization for model propagation. The EnKF
is orders of magnitude faster than existing estimation algo-
rithms due to covariance localization and inflation, while
competing with the UKF in terms of accuracy.

4 Results

In this section, the calibration solution detailed in Sect. 3
will be validated using high-fidelity simulations. First, the
model used to generate the validation data will be described
in Sect. 4.1. Then, a two-turbine and a nine-turbine simula-
tion case are presented in Sects. 4.2 and 4.3, respectively.

Note that for the presented results, pressure terms are ig-
nored in the state vector, as they appeared unnecessary for
state estimation in previous work (Doekemeijer et al., 2017).
Furthermore, for simplicity and due to lack of information,
the process and measurement noise will be assumed to be
uncorrelated, Sk = 0, and Qk and Rk are assumed to be time-

2Note that this method for the estimation of U∞ relies solely
on power measurements, and therefore only works for below-rated
conditions. For estimation of U∞ in above-rated conditions, one
may require the implementation of a wind speed estimator on each
turbine (e.g., Simley and Pao, 2016).

invariant and diagonal. Also, note that the simulations pre-
sented are not conclusive on the feasibility of the solution
under all relevant conditions experienced in an operational
wind farm. Rather, this work presents a first step towards al-
gorithm validation.

4.1 SOWFA

High-fidelity simulation data are generated using the Simula-
tor fOr Wind Farm Applications (SOWFA), developed by the
National Renewable Energy Laboratory (NREL). SOWFA
provides accurate flow data at a fraction of the cost of field
tests. It solves the filtered, three-dimensional, unsteady, in-
compressible Navier–Stokes equations over a finite temporal
and spatial mesh, accounting for the Coriolis and geostrophic
forcing terms. SOWFA is a LES solver, meaning that larger-
scale dynamics are resolved directly, and turbulent struc-
tures smaller than the discretization are approximated us-
ing subgrid-scale models to suppress computational cost.
(Churchfield et al., 2012). The turbine rotor is modeled us-
ing an actuator line representation (ALM) as derived from
Sorensen and Shen (2002). SOWFA has previously been
used for lower-fidelity model validation, controller testing,
and to study the aerodynamics in wind farms (e.g., Flem-
ing et al., 2016, 2017a; Gebraad et al., 2017). The interested
reader is referred to Churchfield et al. (2012) for a more in-
depth description of SOWFA and LES solvers in general.

4.2 Two-turbine simulation with turbulent inflow

In this section, a two-turbine wind farm is simulated to an-
alyze the effect of different measurement sources, KF al-
gorithms, and the difference between state-only and state-
parameter estimation. This simple wind farm contains two
NREL 5-MW baseline turbines withD = 126.4 m, separated
5D in stream-wise direction. This LES simulation was de-
scribed in more detail in Annoni et al. (2016). Important sim-
ulation properties are listed in Table 1 for SOWFA and WF-
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Table 1. Overview of several settings for the SOWFA and the WFSim two-turbine wind farm simulation.

Variable Symbol SOWFA WFSim

Domain size – 3.0 km× 3.0 km× 1.0 km 1.9 km× 0.80 km
Cell size near rotors – 3m× 3m× 3m 38m× 33m
Cell size outer regions – 12m× 12m× 12m 38m× 33m
Rotor model – ALM ADM (cf = 1.4, cp = 0.95)
Inflow wind speed U∞ 8.0 m s−1 8.0 m s−1

Atmospheric turbulence – Turbulent inflow, TI∞ = 5.0 % d ′ = 1.8× 102 m, d = 6.1× 102 m, `s = 1.8× 10−2
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Figure 4. Comparison of absolute values of the estimation errors (in long. flow fields) for state-only estimation with the ExKF, EnKF and
UKF at t = 300 s and t = 700 s, with (1u) q= |u q−uSOWFA|. The model and KF settings are depicted in Tables 1, 2, and 3. Wind is coming
in from the top, flowing towards the bottom. The measured states are depicted by red dots in the flow, not to be confused with estimation
error. The KFs consistently improve the instantaneous flow field estimations, noticeably nearby the measurements.

Sim. The effect of the turbulence intensity on the wake dy-
namics in SOWFA is captured in WFSim through its mixing-
length turbulence model. In these simulations, WFSim is pur-
posely initialized with a too low value for `s in order to rep-
resent the realistic situation of a model mismatch. The re-
maining tuning parameters in WFSim were chosen such that
a weighted-sum cost function of the power and flow errors
was minimized.

Firstly, the three KF variants will be compared in
Sect. 4.2.1. Secondly, in Sect. 4.2.2, estimation using differ-
ent information sources is compared. Thirdly, the potential of
joint state-parameter estimation is displayed in Sect. 4.2.3.

4.2.1 A comparison of the KF variants for state
estimation

In this simulation study, four estimation cases are compared:
(1) the ExKF, (2) the UKF, (3) the EnKF, and (4) the open-
loop (OL) simulation, i.e., without estimation. The focus here
is on state-only estimation, thus excluding `s. Flow measure-
ments downstream of each turbine are assumed (e.g., using
lidar), their locations denoted as red dots in Fig. 4, which
is about 2 % of the full to-be-estimated state space. These
measurements are artificially disturbed by zero-mean white
noise with σ = 0.10 m s−1. The KF settings are listed in Ta-
bles 2 and 3. The KF covariance matrices were obtained
through an iterative tuning process in previous work (Doeke-
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Table 2. Covariance settings for the KF variants, with I q the R q× q identity matrix. The full cov. matrices are diagonal concatenations of the
entries. For example, P0 is diag

(
P0,u, P0,v

)
and diag

(
P0,u, P0,v, P0,`s

)
for state-only and state-parameter estimation, respectively.

Variable Symbol Units Value

Init. state error cov. of uk P0,u (m s−1)2 1.0× 10−1
· INu

Init. state error cov. of vk P0,v (m s−1)2 1.0× 10−1
· INv

Init. state error cov. of `sk P0,`s − 5.0× 10−1

Model error cov. of uk Q0,u (m s−1)2 1.0× 10−2
· INu

Model error cov. of vk Q0,v (m s−1)2 1.0× 10−4
· INv

Model error cov. of `sk Q0,`s – 1.0× 10−4

Meas. error cov. of flow Ru,v (m s−1)2 1.0× 10−2
· IMu,v

Meas. error cov. of P RP (W)2 1.0× 108
· INT
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Figure 5. Comparison of absolute values of the estimation errors (in long. flow fields) for state-only estimation with the EnKF for various
sensor configurations: using turbine power measurements, using flow measurements with a lidar system pointing upstream, and using flow
measurements with a lidar system pointing downstream of the rotor. Here, (1u) q= |u q−uSOWFA|. Here, wind flows from top to bottom.
The sensors are depicted by red dots (flow meas.) or red turbines (power meas.), not to be confused with estimation error.

meijer et al., 2017) with minor adjustments to simulate per-
formance for untrained data. Figure 4 shows state (flow field)
estimation of the three KF variants for two time instants,
t = 300 s and t = 700 s. In this figure, (1u) q ∈ RNu is de-
fined as the absolute error between the estimated and true
longitudinal flow velocities in the field.

Looking at Fig. 4, the OL estimations are accurate for the
unwaked and single-waked flow, yet are lacking in the situ-
ation of two overlapping wakes, for which the KFs correct.
There is no significant difference in accuracy between the

different KF variants, yet they differ by 2 orders of magni-
tude in computational cost (Table 3).

4.2.2 A comparison of sensor configurations

Previous results (Doekemeijer et al., 2016, 2017) have relied
on flow measurements for state estimation. However, in ex-
isting wind farms, such measurements are typically not avail-
able. Rather, readily available SCADA data should be used
for the purpose of model calibration. For this reason, state
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Table 3. Choice of tuning parameters for the KF variants, for both the two-turbine and nine-turbine simulation case. Note that the ExKF
does not support power measurements nor parameter estimation due to the lack of linearization, and does not have any additional tuning
parameters. In terms of computational cost: simulations were run on a single node using 8 cores in parallel.

2-turb. 2-turb. 2-turb. 9-turb.

Variable ExKF UKF EnKF EnKF

Number of particles, Y – 4275 50 50
Tuning parameters – α 1.0 L 131 m L 131 m

β 2.0 r 1.025 r 1.025
κ 0

Comp. cost per iteration 16.2 s 14.0 s 0.25 s 1.2 s

Table 4. Overview of several settings for the SOWFA and the WFSim nine-turbine wind farm simulation.

Variable Symbol SOWFA WFSim

Domain size – 3.5 km× 3.0 km× 1.0 km 1.9 km× 0.80 km
Cell size near rotors – 3m× 3m× 3m 25m× 38m
Cell size outer regions – 12m× 12m× 12m 25m× 38m
Rotor model – ALM ADM (cf = 2.0, cp = 0.97)
Inflow wind speed U∞ 12.03 m s−1 9.0 and 12.0 m s−1 (OL)

9.0 m s−1 (EnKF)
Atmospheric turbulence – Turbulent inflow, TI∞ = 4.7 % d ′ = 3.8× 101 m, d = 5.2× 102 m, `s = 3.9× 10−2

estimation with the EnKF leveraging instantaneous turbine
power measurements, using an upstream-pointing lidar, and
using a downstream-pointing lidar are compared in Fig. 5.
Flow and power measurements are artificially disturbed by
zero-mean white Gaussian noise with σ = 0.10 m s−1 and
σ = 104 W, respectively.

The KF settings are displayed in Tables 2 and 3. In Fig. 5
it can be seen that SCADA data allows comparable perfor-
mance compared to the use of flow measurements, making
the proposed closed-loop control solution feasible for imple-
mentation in existing wind farms, without the need for addi-
tional equipment. Furthermore, this modular framework al-
lows for the use of a combination of lidar systems, measure-
ment towers, and/or SCADA data – whichever is available –
for model calibration.

4.2.3 Joint state-parameter estimation

Forecasting, as used in predictive control, benefits from the
calibration of model parameters in addition to the states.
Joint state-parameter estimation using flow measurements
downstream of each turbine (as shown in the rightmost plots
in Fig. 5) disturbed by zero-mean white noise with σ =

0.10 m s−1 for the EnKF and UKF is displayed in Fig. 6. The
KF settings are shown in Tables 2 and 3. At t = 0 s, both
the OL and the KF simulations start with the same (wrong)
value for `s. Then, every second, (noisy) measurements are
fed into the KFs, and the state vector as well as the model pa-
rameter `s is estimated. However, for the OL simulation, no
measurements are fed in: the state vector is simply updated

with the nominal model, and the value for `s remains the
same throughout the simulation. Now, after 600 s (left plot in
Fig. 6) and 900 s (right plot in Fig. 6), a forecast is started,
meaning no measurements are available after that time. At
that moment, the OL model still has the same (poor) value
for `s as at t = 0 s, while the value for `s in the KFs has im-
proved. From Fig. 6, it becomes clear that the estimates are
not only improved for the 3 min forecast, but are also con-
sistently better than the non-calibrated (open-loop) model’s
10 min forecast due to the estimation of `s

3. Furthermore, the
EnKF performs comparably to the UKF at a lower computa-
tional cost. Note that the EnKF even outperforms the UKF
in this simulation, expected to be due to randomness in the
EnKF.

4.3 Nine-turbine simulation with turbulent inflow

In this section, we investigate the performance of the EnKF-
based model calibration solution under a more realistic nine-
turbine wind farm scenario. The purpose of this case study
is to highlight the need for state-parameter estimation for
accurate wind farm modeling. The wind farm contains nine
NREL 5-MW baseline turbines, oriented in a three by three
layout, separated 5D and 3D in stream- and crosswise di-
rections, respectively. The turbines start with a 30◦ yaw mis-
alignment, but are then aligned with the mean wind direc-
tion within the first 30 s of simulation. The turbine layout

3Note that this is highly dependent on the frequency at which
the free-stream conditions change in the atmosphere.
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Figure 6. Comparison of forecasting performance for state-only and joint state-parameter (`s) estimation with the EnKF and UKF, where
measurements are available up until the vertical dashed lines, after which the estimation becomes a forecast. Here, the 2-norm of the estima-
tion error is plotted along the y axis, with (1u) q= |u q−uSOWFA|.
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Figure 7. Convergence of `s and U∞ using the EnKF. Dashed lines are the grid-searched optimal constant values for the open-loop simula-
tion. With power measurements only, the EnKF is able to estimate these parameters successfully in addition to the model states.

Table 5. Turbine-averaged RMSE in power time series of Fig. 9
(compared to SOWFA). The lower the RMSE, the better the fore-
cast.

Turbine OL OL EnKF
row (U∞ = 9.0 m s−1) (U∞ = 12.0 m s−1)

1 1.46 MW 0.19 MW 0.16 MW
2 1.61 MW 0.30 MW 0.18 MW
3 1.78 MW 0.82 MW 0.32 MW

and numbering is shown in the top-left panel of Fig. 8. This
LES simulation has been used before in the literature, and is
described in more detail in Boersma et al. (2018). A number
of important simulation properties are listed in Table 4 for
SOWFA and WFSim, respectively.

Compared to the two-turbine case, N has increased by a
factor of 4. In the UKF, this would result in the same factor of
additional particles. Thus, not only is each particle more ex-
pensive to calculate but there are also more particles. Rather,
in the EnKF, the approach is heuristic. None of the EnKF set-
tings needed to be changed for good performance compared
to Sect. 4.2, as displayed in Tables 2 and 3.

As shown in Table 3, the EnKF has a low computational
cost of 1.2 s per iteration (8 cores, parallel). In this case study,
both the complete model state (flow field), the turbulence
model parameter `s, and the free-stream flow speed U∞ are
estimated in real-time using exclusively (readily available)
power measurements from the turbines. The EnKF and one
of the open-loop simulations (OL) will deliberately be ini-
tialized with poor values for `s and U∞ to investigate con-
vergence. The other OL simulation will be initialized with a
poor value for `s but a correct value for U∞ for comparison.

In Fig. 7, it can be seen that the EnKF is successful in esti-
mating U∞ and `s after 300 s using only wind turbine power
measurements. Furthermore, the flow fields of SOWFA, of
the OL simulation with U∞ = 9.0 m s−1, and of the EnKF at
various time instants are displayed in Fig. 8. From this fig-
ure, it can be seen that the EnKF has large errors at the start
of the simulation. However, after 10 s, the error in flow states
surrounding each turbine significantly decreases through the
use of turbine power measurements. This estimated flow then
propagates downstream, “clearing up” the errors in the vicin-
ity of the wind turbines. As time further propagates, the free-
stream estimation improves, and finally the estimation error
converges.

The power forecasting performance is shown in Fig. 9 and
Table 5. As also seen in Fig. 7, the EnKF converges after
300 s, and indeed the power forecasts outperform those of
the OL simulation at t = 300 s. Furthermore, it is interesting
to see that the filtered power estimates of the first row of tur-
bines (i = 1, 2, 3) starts low at t = 1 s, but converges to the
true power at t ≈ 200 s. This can be related to the mismatch
in U∞, which takes approximately 300 s to converge to the
true value of 12 m s−1, as seen in Fig. 7. The oscillatory be-
havior in both the OL and EnKF power predictions is due
to the absence of rotor inertia in the rotor model, turbulent
structures in the flow, and large fluctuations on the excitation
signal C′T .

Finally, the forecasts for flow at times t = 300 s and t =
600 s are examined in Fig. 10. The large flow estimation
mismatch in the EnKF at t < 250 s quickly reduces and for
t ≥ 250 s the EnKF estimation is consistently better than both
the OL cases. This has to do with the convergence of the
model parameters `s and U∞, and the estimation of the states
surrounding the turbines using the power measurements.
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Figure 8. Comparison of absolute values of the estimation errors (in long. flow fields) for state-parameter estimation with the EnKF. Wind is
coming in from the top and flows downwards. The variables U∞ and `s are incorrectly initialized in both the OL and the EnKF. In the EnKF,
U∞ and `s are estimated in addition to the states, using only turbine power measurements. The EnKF quickly converges for the states, and
more slowly for `s and U∞. After 300 s, the EnKF has converged to a negligible estimation error.

A crucial remark with the simulations presented here is
that low-frequency changes in the atmosphere are neglected.
In a real wind farm, atmospheric properties such as the mean
wind direction and turbulence intensity change continuously,
and this will impact the estimation and forecasting perfor-
mance. The EnKF uses an assumption of persistence for the
atmospheric properties at the time of forecasting, and thus
a change in mean wind direction may invalidate the model
forecast. In future work, the algorithm presented here should
be tested under high-fidelity simulations with such realistic
low-frequency changes. This would provide insight into the
potential of the work at hand, and advance towards a practical
wind farm implementation.

5 Conclusion

This paper presented a real-time model calibration algorithm
for the dynamic wind farm model “WFSim”, relying on an
ensemble Kalman filter (EnKF) at its core. The joint state-
parameter calibration solution was tested in two high-fidelity
simulation case studies. Exclusively using SCADA measure-
ments, which are readily available in current wind farms, the
adaptability to model discrepancies in a nine-turbine wind
farm simulation was shown, at a low computational cost
of 1.2 s per time step on an eight-core CPU. Specifically,
the free-stream wind speed and turbulence intensity were
shown to converge to their optimal values within 300 s. Fur-
thermore, the EnKF was shown to perform comparably in
terms of accuracy to the state-of-the-art algorithms in the lit-
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Figure 9. Comparison of power forecasting using the EnKF with measurements available up until time t = 600 s. After convergence U∞ (as
seen as a positive power slope for the first row of turbines), `s is also calibrated. After convergence, forecasting is better than in open-loop.
Oscillatory behavior is still present due to an oscillatory input signal (C′

T
), turbulent flow field, and the absence of inertia in the rotor model.
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Figure 10. Comparison of flow field estimation for the nine-turbine case. Measurements are available until t = 300 s (a) and t = 600 s (b),
respectively. The EnKF converges to the true U∞ after 300 s. After convergence, the forecasts are significantly better than in open-loop
simulations.

erature, at a computational cost of multiple orders of mag-
nitude lower. Additionally, estimation using flow measure-
ments from lidar was compared to estimation using SCADA
data, and it was shown that SCADA data can effectively be
used for real-time model calibration. In future work, the algo-
rithm presented here should be tested under high-fidelity sim-
ulations with realistic low-frequency changes. This would
provide insight into the potential of the work at hand, and
advance towards a practical wind farm implementation. This
work presented an essential building block for real-time

closed-loop wind farm control using surrogate dynamic wind
farm models.

Code and data availability. The surrogate model and estima-
tion solutions presented in this article are open-source software,
available at https://github.com/tudelft-datadrivencontrol (last ac-
cess: 7 September 2018). SOWFA is available at https://github.com/
NREL/SOWFA (last access: 5 July 2018). All rights for SOWFA
and the simulation data presented in this work belong to the Na-
tional Renewable Energy Laboratory.
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